Sample records for rotor swept area

  1. Stall Characteristics and Tip Clearance Effects in Forward Swept Axial Compressor Rotors

    Institute of Scientific and Technical Information of China (English)

    Ramakrishna PV; Govardhan M


    Tilting the blade sections to the flow direction (blade sweep) would increase the operating range of an axial com-pressor due to modifications in the pressure and velocity fields on the suction surface. On the other hand, blade tip gap, though finite, has great influence on the performance of a turbomachine. The present paper investigates the combined effect of these two factors on various flow characteristics in'a low speed axial flow compressor. For this present study, nine computational domains were modeled; three rotor sweep configurations (0°, 20° and 30°) and for three different clearance levels for each rotor. Commercial CFD solver ANSYS CFX 11.0 is used for the simulations. Results indicated that tip chordline sweep is found to improve the stall margin of the compressor by modifying the suction surface boundary layer migration phenomenon. Diffusion Factor (DF) contours showed the severity of stalling with unswept rotor. For the swept rotors, the zones of high probable stall are less severe and they become less in size with increasing sweep. Increment in the tip gap is found to gradually affect the perform-ance of unswept rotor, while the effect is very high for the two swept rotors for the earlier increments. As a mini-mum clearance is unavoidable, swept rotors suffer relatively higher deviation from the idealistic behavior than the unswept rotor due to tip clearance.

  2. Acoustic evaluation of a novel swept-rotor fan. [noise reduction in turbofan engines (United States)

    Lucas, J. G.; Woodward, R. P.; Mackinnon, M. J.


    Inlet noise and aerodynamic performance are presented for a high tip speed fan designed with rotor blade leading edge sweep that gives a subsonic component of inlet Mach number normal to the edge at all radii. The intent of the design was to minimize the generation of rotor leading edge shock waves thereby minimizing multiple pure tone noise. Sound power level and spectral comparisons are made with several high-speed fans of conventional design. Results show multiple pure tone noise at levels below those of some of the other fans and this noise was initiated at a higher tip speed. Aerodynamic performance of the fan did not meet design goals for this first build which applied conventional design procedures to the swept fan geometry.

  3. 前掠对高负荷风扇转子泄漏涡结构的影响%Numerically Investigating Effects of Highly-loaded and Forward-swept Fan Rotor on Tip Clearance Vortex

    Institute of Scientific and Technical Information of China (English)

    王雷; 刘波; 赵鹏程


    We numerically calculate the three-dimensional viscous flow field near the blade tip region at the near stall margin of a highly-loaded and forward-swept fan rotor. We compare the effects of the forward-swept fan rotor on the tip clearance vortex structure with those of a conventionally stacked radial rotor that has aerodynamically equal performance. The comparison results show that both the stall margin of the forward-swept fan rotor and the distribu- tion of its aerodynamic tip loading are improved. Our detailed analysis of its flow field reveals that the tip clearance vortex of the forward-swept fan rotor does not break under the near stall condition, thus providing a novel explanation why the tip clearance vortex structure of a forward-swept fan rotor is different from that of a conventional fan rotor.%以高负荷两级风扇第一级前掠转子为研究对象,通过数值模拟手段对近失速点叶尖流场进行了深入分析。为比较前掠对泄漏涡结构的影响,与同等气动性能下的常规转子进行了对比。结果表明前掠转子在近失速工况下泄漏涡涡心并未发生破碎,气动负荷展向分布更加均匀。对前掠转子不同于常规转子的叶尖泄漏涡结构产生机理提出了新的解释。

  4. Large-Area Atom Interferometry with Frequency-Swept Raman Adiabatic Passage. (United States)

    Kotru, Krish; Butts, David L; Kinast, Joseph M; Stoner, Richard E


    We demonstrate light-pulse atom interferometry with large-momentum-transfer atom optics based on stimulated Raman transitions and frequency-swept adiabatic rapid passage. Our atom optics have produced momentum splittings of up to 30 photon recoil momenta in an acceleration-sensitive interferometer for laser cooled atoms. We experimentally verify the enhancement of phase shift per unit acceleration and characterize interferometer contrast loss. By forgoing evaporative cooling and velocity selection, this method lowers the atom shot-noise-limited measurement uncertainty and enables large-area atom interferometry at higher data rates.

  5. Innovative multi rotor wind turbine designs

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.A.; Sapali, S.N. [College of Engineering. Mechanical Engineering Dept, Pune (India)


    Among the renewable energy sources, today wind energy is the most recognized and cost effective. Developers and researchers in this sector are optimistic and continuously working innovatively to improve the technology. The wind power obtained is proportional to the swept area of wind turbine. The swept area is increased by using a single rotor of large diameter or multi rotors in array. The rotor size is growing continuously with mature technology. Multi rotor technology has a long history and the multi rotor concept persists in a variety of modern innovative systems but the concept has fallen out of consideration in mainstream design from the perception that is complex and unnecessary as very large single rotor units are now technically feasible. This work addresses the evaluation of different multi rotor wind turbine systems. These innovative wind turbines are evaluated on the basis of feasibility, technological advantages, security of expected power performance, cost, reliability, impact of innovative system, comparison with existing wind turbine design. The findings of this work will provide guidelines for the practical and economical ways for further research on the multi rotor wind turbines. (Author)

  6. Noninvasive characterisation of foot reflexology areas by swept source-optical coherence tomography in patients with low back pain. (United States)

    Dalal, Krishna; Elanchezhiyan, D; Das, Raunak; Dalal, Devjyoti; Pandey, Ravindra Mohan; Chatterjee, Subhamoy; Upadhyay, Ashish Datt; Maran, V Bharathi; Chatterjee, Jyotirmoy


    Objective. When exploring the scientific basis of reflexology techniques, elucidation of the surface and subsurface features of reflexology areas (RAs) is crucial. In this study, the subcutaneous features of RAs related to the lumbar vertebrae were evaluated by swept source-optical coherence tomography (SS-OCT) in subjects with and without low back pain (LBP). Methods. Volunteers without LBP (n = 6 (male : female = 1 : 1)) and subjects with LBP (n = 15 (male : female = 2 : 3)) were clinically examined in terms of skin colour (visual perception), localised tenderness (visual analogue scale) and structural as well as optical attributes as per SS-OCT. From each subject, 6 optical tomograms were recorded from equidistant transverse planes along the longitudinal axis of the RAs, and from each tomogram, 25 different spatial locations were considered for recording SS-OCT image attributes. The images were analysed with respect to the optical intensity distributions and thicknesses of different skin layers by using AxioVision Rel. 4.8.2 software. The SS-OCT images could be categorised into 4 pathological grades (i.e., 0, 1, 2, and 3) according to distinctness in the visible skin layers. Results. Three specific grades for abnormalities in SS-OCT images were identified considering gradual loss of distinctness and increase in luminosity of skin layers. Almost 90.05% subjects were of mixed type having predominance in certain grades. Conclusion. The skin SS-OCT system demonstrated a definite association of the surface features of healthy/unhealthy RAs with cutaneous features and the clinical status of the lumbar vertebrae.

  7. Noninvasive Characterisation of Foot Reflexology Areas by Swept Source-Optical Coherence Tomography in Patients with Low Back Pain

    Directory of Open Access Journals (Sweden)

    Krishna Dalal


    Full Text Available Objective. When exploring the scientific basis of reflexology techniques, elucidation of the surface and subsurface features of reflexology areas (RAs is crucial. In this study, the subcutaneous features of RAs related to the lumbar vertebrae were evaluated by swept source-optical coherence tomography (SS-OCT in subjects with and without low back pain (LBP. Methods. Volunteers without LBP (n=6 (male : female = 1 : 1 and subjects with LBP (n=15 (male : female = 2 : 3 were clinically examined in terms of skin colour (visual perception, localised tenderness (visual analogue scale and structural as well as optical attributes as per SS-OCT. From each subject, 6 optical tomograms were recorded from equidistant transverse planes along the longitudinal axis of the RAs, and from each tomogram, 25 different spatial locations were considered for recording SS-OCT image attributes. The images were analysed with respect to the optical intensity distributions and thicknesses of different skin layers by using AxioVision Rel. 4.8.2 software. The SS-OCT images could be categorised into 4 pathological grades (i.e., 0, 1, 2, and 3 according to distinctness in the visible skin layers. Results. Three specific grades for abnormalities in SS-OCT images were identified considering gradual loss of distinctness and increase in luminosity of skin layers. Almost 90.05% subjects were of mixed type having predominance in certain grades. Conclusion. The skin SS-OCT system demonstrated a definite association of the surface features of healthy/unhealthy RAs with cutaneous features and the clinical status of the lumbar vertebrae.

  8. Preliminary Structural Design Conceptualization for Composite Rotor for Verdant Power Water Current: Cooperative Research and Development Final Report, CRADA Number CRD-08-296

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, S.


    The primary thrust of the CRADA will be to develop a new rotor design that will allow higher current flows (>4m/s), greater swept area (6-11m), and in the process, will maximize performance and energy capture.

  9. CFD simulation and analysis for Savonius rotors with different blade configuration (United States)

    Lin, Ching-Huei; Klimina, Liubov A.


    Savonius rotor is seldom applied in wind power generation system due to its lower aerodynamic efficiency. But studies about Savonius rotor still continued since the rotor structure is simpler and the manufacturing cost is lower. Computational fluid dynamics simulations are adopted to compare the output power, torque and power coefficient (Cp) for the conventional two-blade Savonius rotors with three different aspect ratios but the same swept area under the same wind condition to investigate the optimum blade configuration. The rotor with tall and thin configuration is found to have the maximum output power and Cp. The rotor with short and wide configuration has the maximum torque but the minimum Cp. The current result suggests the optimum aspect ratio is 4/1. The influence related to the circular cover plates at two ends of rotor was studied also. It reveals that both the torque and power coefficient for Savonius rotor with end-plates are larger than that without end-plates.

  10. Frequency comb swept lasers. (United States)

    Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C; Fujimoto, James G


    We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a approximately -1.2dB sensitivity roll off over approximately 3mm range, compared to conventional swept source and FDML lasers which have -10dB and -5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0-3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed.

  11. Area-Based COI-Referred Rotor Angle Index for Transient Stability Assessment and Control of Power Systems

    Directory of Open Access Journals (Sweden)

    Noor Izzri Abdul Wahab


    Full Text Available This paper describes an index for judging the severity of transient events of power systems in simulation. The proposed transient stability index, known as the area-based COI-referred rotor angle index, is developed by considering the fact that a large-sized power system is divided into several areas according to the coherency of generators in a particular area. It can be assumed that an equivalent single large machine can represent all the generators in that area. Thus, the assessment of rotor angles for all generators can be simplified by only assessing the index of areas in a power system. The effectiveness of the proposed index in assessing the stability of power systems and its ability in pinpointing the weakest area in the power system is analyzed. Furthermore, this paper developed an emergency control scheme known as the combined UFLS and generator tripping in order to stabilize the system when unstable faults occurred in a power system. The proposed index is used to identify the generator to be tripped when the developed emergency control scheme operates. The performance of the proposed index and the combined UFLS and generator tripping scheme are evaluated on the IEEE 39-bus test system.

  12. Aeroelastic multidisciplinary design optimization of a swept wind turbine blade

    DEFF Research Database (Denmark)

    Pavese, Christian; Tibaldi, Carlo; Zahle, Frederik


    Mitigating loads on a wind turbine rotor can reduce the cost of energy. Sweeping blades produces a structural coupling between flapwise bending and torsion, which can be used for load alleviation purposes. A multidisciplinary design optimization (MDO) problem is formulated including the blade sweep...... against time-domain full design load basis aeroelastic simulations to ensure that they comply with the constraints. A 10-MW wind turbine blade is optimized by minimizing a cost function that includes mass and blade root flapwise fatigue loading. The design space is subjected to constraints that represent...... this achievement, a set of optimized straight blade designs is compared to a set of optimized swept blade designs. Relative to the respective optimized straight designs, the blade mass of the swept blades is reduced of an extra 2% to 3% and the blade root flapwise fatigue damage equivalent load by a further 8%....

  13. High Resolution Frequency Swept Imaging. (United States)


    centers on practical targets. (iv) Greater immunity to phase fluctuations arising from turbulance and inhomogenieties in the propagation medium because...frequency swept illumination. Since the impulse reponse of a time invariant linear system can also be deduced from white noise excitation and

  14. Molecular Rotors (United States)


    Molecular Dipolar Rotors on Insulating Surfaces," Salamanca , Spain. Trends in Nanotechnology Conference. September 5-9, 2003 [86] Laura I. Clarke, Mary Beth...Horansky at the Trends in Nanotechnology Conference, Salamanca , Spain (September 5-9, 2003). [145] Michl, J. “Unusual Molecules: Artificial Surface...temperature and frequency for difluorophenylene rotor crystal. Figure JP6. Monte Carlo results for the local potential asymmetry at

  15. Swept Frequency Laser Metrology System (United States)

    Zhao, Feng (Inventor)


    A swept frequency laser ranging system having sub-micron accuracy that employs multiple common-path heterodyne interferometers, one coupled to a calibrated delay-line for use as an absolute reference for the ranging system. An exemplary embodiment uses two laser heterodyne interferometers to create two laser beams at two different frequencies to measure distance and motions of target(s). Heterodyne fringes generated from reflections off a reference fiducial X(sub R) and measurement (or target) fiducial X(sub M) are reflected back and are then detected by photodiodes. The measured phase changes Delta phi(sub R) and Delta phi (sub m) resulting from the laser frequency swept gives target position. The reference delay-line is the only absolute reference needed in the metrology system and this provides an ultra-stable reference and simple/economical system.

  16. Influence of vane sweep on rotor-stator interaction noise (United States)

    Envia, Edmane; Kerschen, Edward J.


    The influence of vane sweep in rotor-stator interaction noise is investigated. In an analytical approach, the interaction of a convected gust representing the rotor viscous wake, with a cascade of cascade of finite span swept airfoils, representing the stator, is analyzed. The analysis is based on the solution of the exact linearized equations of motion. High frequency convected gusts for which noise generation is concentrated near the leading edge of airfoils is considered. In a preliminary study, the problem of an isolated finite span swept airfoil interacting with a convected gust is analyzed. Results indicate that sweep can substantially reduce the farfield noise levels for a single airfoil. Using the single airfoil model, an approximate solution to the problem of noise radiation from a cascade of finite span swept airfoils interacting with a convected gust is derived. A parametric study of noise generated by gust cascade interaction is carried out to assess the effectiveness of vane sweep in reducing rotor-stator interaction noise. The results show that sweep is beneficial in reducing noise levels. Rotor wake twist or circumferential lean substantially influences the effectiveness of vane sweep. The orientation of vane sweep must be chosen to enhance the natural phase lag caused by wake lean, in which case rather small sweep angles substantially reduce the noise levels.

  17. On Cup Anemometer Rotor Aerodynamics


    Santiago Pindado; Sergio Avila-Sanchez; Javier Pérez


    The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a lin...

  18. Preform spar cap for a wind turbine rotor blade (United States)

    Livingston, Jamie T [Simpsonville, SC; Driver, Howard D [Greer, SC; van Breugel, Sjef [Enschede, NL; Jenkins, Thomas B [Cantonment, FL; Bakhuis, Jan Willem [Nijverdal, NL; Billen, Andrew J [Daarlerveen, NL; Riahi, Amir [Pensacola, FL


    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  19. The Differential Equation Algorithm for General Deformed Swept Volumes

    Institute of Scientific and Technical Information of China (English)

    汪国平; 华宣积; 孙家广


    The differential equation approach for characterizing swept volume boundaries is extended to include objects experiencing deformation. For deformed swept volume, it is found that the structure and algorithm of sweep-envelope differential equation (SEDE) are similar between the deformed and the rigid swept volumes. The efficiency of SEDE approach for deformed swept volume is proved with an example.

  20. Swept Impact Seismic Technique (SIST) (United States)

    Park, C.B.; Miller, R.D.; Steeples, D.W.; Black, R.A.


    A coded seismic technique is developed that can result in a higher signal-to-noise ratio than a conventional single-pulse method does. The technique is cost-effective and time-efficient and therefore well suited for shallow-reflection surveys where high resolution and cost-effectiveness are critical. A low-power impact source transmits a few to several hundred high-frequency broad-band seismic pulses during several seconds of recording time according to a deterministic coding scheme. The coding scheme consists of a time-encoded impact sequence in which the rate of impact (cycles/s) changes linearly with time providing a broad range of impact rates. Impact times used during the decoding process are recorded on one channel of the seismograph. The coding concept combines the vibroseis swept-frequency and the Mini-Sosie random impact concepts. The swept-frequency concept greatly improves the suppression of correlation noise with much fewer impacts than normally used in the Mini-Sosie technique. The impact concept makes the technique simple and efficient in generating high-resolution seismic data especially in the presence of noise. The transfer function of the impact sequence simulates a low-cut filter with the cutoff frequency the same as the lowest impact rate. This property can be used to attenuate low-frequency ground-roll noise without using an analog low-cut filter or a spatial source (or receiver) array as is necessary with a conventional single-pulse method. Because of the discontinuous coding scheme, the decoding process is accomplished by a "shift-and-stacking" method that is much simpler and quicker than cross-correlation. The simplicity of the coding allows the mechanical design of the source to remain simple. Several different types of mechanical systems could be adapted to generate a linear impact sweep. In addition, the simplicity of the coding also allows the technique to be used with conventional acquisition systems, with only minor modifications.

  1. Development of end-bent/swept blade for multistage axial compressors; Jikuryu asshukukiyo end bent sweep yoku no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tanino, T.; Kuromaru, M.; Furukawa, M.; Niizeki, Y.; Inoue, M. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Kinoue, Y. [Saga University, Saga (Japan). Faculty of Science and Engineering; Okuno, K. [Toshiba Corp., Tokyo (Japan)


    The endbent/swept (EBS) blades have been developed to improve the endwall boundary layer flows in middle stages of axial compressors. They have three distinctive features: the leading-edge sweep near the tip and hub to activate the annulus boundary layer flows, the leading-edge bend near the tip and hub to meet a preferable inlet flow condition, and the same exit metal angle of blade evaluated by a conventional vortex design method. The EBS and baseline blades were designed for both of the rotor and stator, and the stage performance testing was conducted in every combination of the rotor and stator in a low speed compressor test rig. The results showed that the maximum stage efficiency of the EBS rotor was higher than the baseline rotor and the considerable increase in surge margin was obtained by using the EBS rotor and stator. The effects of the EBS rotor and stator on the endwall boundary layer flows were clarified by the flow measurements downstream of the rotor and stator with a hot-wire and 5 hole-probe. (author)

  2. On cup anemometer rotor aerodynamics. (United States)

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio


    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  3. Development of a Wind Turbine Rotor Flow Panel Method

    Energy Technology Data Exchange (ETDEWEB)

    Van Garrel, A. [ECN Wind Energy, Petten (Netherlands)


    The ongoing trend towards larger wind turbines intensifies the demand for more physically realistic wind turbine rotor aerodynamics models that can predict the detailed transient pressure loadings on the rotor blades better than current engineering models. In this report the mathematical, numerical, and practical aspects of a new wind turbine rotor flow simulation code is described. This wind turbine simulation code is designated ROTORFLOW. In this method the fluid dynamics problem is solved through a boundary integral equation which reduces the problem to the surface of the configuration. The derivation of the integral equations is described as well as the assumptions made to arrive at them starting with the full Navier-Stokes equations. The basic numerical aspects in the solution method are described and a verification study is performed to confirm the validity of the implementation. Example simulations with the code show the flow solutions for a stationary wing and for a rotating wing in yawed conditions. With the ROTORFLOW code developed in this project it is possible to simulate the unsteady flow around wind turbine rotors in yawed conditions and obtain detailed pressure distributions, and thus blade loadings, at the surface of the blades. General rotor blade geometries can be handled, opening the way to the detailed flow analysis of winglets, partial span flaps, swept blade tips, etc. The ROTORFLOW solver only requires a description of the rotor surface which keeps simulation preparation time short, and makes it feasible to use the solver in the design iteration process.

  4. Open Rotor Development (United States)

    Van Zante, Dale E.; Rizzi, Stephen A.


    The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.

  5. Computational Study of Flow Interactions in Coaxial Rotors (United States)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.


    account for multiple real-world constraints up front in design nor possible to know what performance is possible with a given design. Since unmanned vehicles are sized and optimized for the particular mission, a modern low-fidelity conceptual design and sizing tool that has been used for the design of large helicopters can be used for design of small coaxial rotorcraft. However, unlike most helicopters with single main rotor, the interactions between the upper and lower rotors emerge as an important factor to consider in design because an increase in performance of a multi-rotor system is not proportional to the number of rotors. Interference losses and differences in thrusts between the upper and lower rotors were investigated by theoretical methods as well as a computational fluid dynamics (CFD) method using the Reynolds-Averaged Navier-Stokes (RANS) equations. In this work, hybrid turbulence models are used to investigate the physics of interactions between coaxial rotors and a fuselage that are not well understood. Present study covers not only small-scale drones but also large-scale coaxial rotors for heavy-lifting missions. Considering the recently proposed FAA drone rules that require the flight only in visual line-of-sight, a large multirotor might be used as an airborne carrier for launch and recovery of unmanned aircraft systems with a human operator onboard. For applications to civil operations, their aerodynamic performance and noise levels need to be assessed. Noise is one of the largest limiting factors to rotorcraft operations in urban area. Since the high-frequency noise of multi-rotors may increase the annoyance, noise may turn out to be a key issue that must be addressed for market acceptability. One of the objectives of the present work is to study the effects of inter-rotor spacing and collectives on the performance, efficiency, and acoustics of coaxial rotor systems.

  6. On Cup Anemometer Rotor Aerodynamics

    Directory of Open Access Journals (Sweden)

    Santiago Pindado


    Full Text Available The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal, tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups’ center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor’s cup.


    Institute of Scientific and Technical Information of China (English)


    A new analytical approach, based on a lifting surface model and a full-span free wake analysis using the curved vortex element on the circular arc, is established for evaluating the aerodynamic characteristics of the helicopter rotor with an anhedral blade-tip and is emphasized to be applicable to various blade-tip configurations, such as the tapered, swept, anhedral and combined shapes. Sample calculations on the rotor aerodynamic characteristics for different anhedral tips in both hover and forward flight are performed. The results on the induced velocity, blade section lift distribution, tip vortex path and rotor performance are presented so that the effect of the anhedral tip on the rotor aerodynamic characteristics is fully analyzed.

  8. The advantages of a swept source optical coherence tomography system in the evaluation of occlusal disorders (United States)

    Marcauteanu, Corina; Bradu, Adrian; Sinescu, Cosmin; Topala, Florin Ionel; Negrutiu, Meda Lavinia; Duma, Virgil Florin; Podoleanu, Adrian Gh.


    Occlusal disorders are characterized by multiple dental and periodontal signs. Some of these are reversible (such as excessive tooth mobility, fremitus, tooth pain, migration of teeth in the absence of periodontitis), some are not (pathological occlusal/incisal wear, abfractions, enamel cracks, tooth fractures, gingival recessions). In this paper we prove the advantages of a fast swept source OCT system in the diagnosis of pathological incisal wear, a key sign of the occlusal disorders. On 15 extracted frontal teeth four levels of pathological incisal wear facets were artificially created. After every level of induced defect, OCT scanning was performed. B scans were acquired and 3D reconstructions were generated. A swept source OCT instrument is used in this study. The swept source is has a central wavelength of 1050 nm and a sweeping rate of 100 kHz. A depth resolution determined by the swept source of 12 μm in air was experimentally measured. The pathological incisal wear is qualitatively observed on the B-scans as 2D images and 3D reconstructions (volumes). For quantitative evaluations of volumes, we used the Image J software. Our swept source OCT system has several advantages, including the ability to measure (in air) a minimal volume of 2352 μm3 and to collect high resolution volumetric images in 2.5 s. By calculating the areas of the amount of lost tissue corresponding to each difference of B-scans, the final volumes of incisal wear were obtained. This swept source OCT method is very useful for the dynamic evaluation of pathological incisal wear.

  9. Interaction of a swept shock wave and a supersonic wake (United States)

    He, G.; Zhao, Y. X.; Zhou, J.


    The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.

  10. Interaction of a swept shock wave and a supersonic wake (United States)

    He, G.; Zhao, Y. X.; Zhou, J.


    The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.

  11. The passage of an infinite swept airfoil through an oblique gust. [approximate solution for aerodynamic response (United States)

    Adamczyk, J. L.


    An approximate solution is reported for the unsteady aerodynamic response of an infinite swept wing encountering a vertical oblique gust in a compressible stream. The approximate expressions are of closed form and do not require excessive computer storage or computation time, and further, they are in good agreement with the results of exact theory. This analysis is used to predict the unsteady aerodynamic response of a helicopter rotor blade encountering the trailing vortex from a previous blade. Significant effects of three dimensionality and compressibility are evident in the results obtained. In addition, an approximate solution for the unsteady aerodynamic forces associated with the pitching or plunging motion of a two dimensional airfoil in a subsonic stream is presented. The mathematical form of this solution approaches the incompressible solution as the Mach number vanishes, the linear transonic solution as the Mach number approaches one, and the solution predicted by piston theory as the reduced frequency becomes large.

  12. Open Rotor Aeroacoustic Modelling (United States)

    Envia, Edmane


    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  13. High performance forward swept wing aircraft (United States)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)


    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  14. Swept Volume Parameterization for Isogeometric Analysis (United States)

    Aigner, M.; Heinrich, C.; Jüttler, B.; Pilgerstorfer, E.; Simeon, B.; Vuong, A.-V.

    Isogeometric Analysis uses NURBS representations of the domain for performing numerical simulations. The first part of this paper presents a variational framework for generating NURBS parameterizations of swept volumes. The class of these volumes covers a number of interesting free-form shapes, such as blades of turbines and propellers, ship hulls or wings of airplanes. The second part of the paper reports the results of isogeometric analysis which were obtained with the help of the generated NURBS volume parameterizations. In particular we discuss the influence of the chosen parameterization and the incorporation of boundary conditions.

  15. Optimum design configuration of Savonius rotor through wind tunnel experiments

    Energy Technology Data Exchange (ETDEWEB)

    Saha, U.K.; Thotla, S. [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039 (India); Maity, D. [Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039 (India)


    Wind tunnel tests were conducted to assess the aerodynamic performance of single-, two- and three-stage Savonius rotor systems. Both semicircular and twisted blades have been used in either case. A family of rotor systems has been manufactured with identical stage aspect ratio keeping the identical projected area of each rotor. Experiments were carried out to optimize the different parameters like number of stages, number of blades (two and three) and geometry of the blade (semicircular and twisted). A further attempt was made to investigate the performance of two-stage rotor system by inserting valves on the concave side of blade. (author)

  16. Numerical and performance analysis of one row transonic rotor with sweep and lean angle (United States)

    Razavi, Seyed Reza; Boroomand, Masoud


    In this study, aerodynamic behaviors of swept and leaned blades were investigated. Axial and tangential blade curvatures impacts on compressor's operating parameters were analyzed separately. A commercial CFD program which solves the Reynolds-averaged Navier-Stokes equations was used to find out the mentioned impact and the complicated flow field of transonic compressor-rotors. The CFD method that was used for solving flow field's equation was validated by experimental data of NASA Rotor 67. The results showed that the compressor with curved rotors had higher efficiency, rotor pressure ratio and stable operating range compared to the compressor with un-curved rotors. Using curved rotors mostly had higher impact on the overall stable operating range compared to the other operating parameters. Operating range involves choking point and stall point that were changed separately by using of bended blade. For finding the detailed impact of sweep and lean angle on transonic blades, various forms of lean and sweep angles were exerted to basic rotor. It was found that sweep angles increased overall operating range up to 30%, efficiency up to 2% and pressure ratio up to 1%. Leaning the blades increased the safe operating range, the pressure ratio and efficiency by 14%, 4% and 2% respectively.

  17. Large Rotor Test Apparatus (United States)

    Federal Laboratory Consortium — This test apparatus, when combined with the National Full-Scale Aerodynamics Complex, produces a thorough, full-scale test capability. The Large Rotor Test Apparatus...

  18. Reducing rotor weight

    Energy Technology Data Exchange (ETDEWEB)

    Cheney, M.C. [PS Enterprises, Inc., Glastonbury, CT (United States)


    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  19. Estimación de la biomasa de langostino amarillo (Cervimunida johni, aplicando Modelo Lineal Generalizado a registros de captura por área barridaen la zona central de Chile Estimating yellow squat lobster (Cervimunida johni biomass by applying a generalized linear model to catch records per swept area in central Chile

    Directory of Open Access Journals (Sweden)

    Cristian Canales


    effect of different sampling criteria and designs that have been used over time and to determine the factors explain in variations in the density of this resource. The above approach allowed estimating the expected value of the annual density for the biomass calculation through the "swept area" method. By using the haul-to-haul records of catch per unit of the swept area (CPUA, it was possible to identify and measure the points of abundance and characterize the distribution and area occupied by the resource over time. The significant effects identified by the GLM were the year, zone, depth, and first-order annual interactions; which explained 43% of the residual deviance in the model. The main effects that explain the CPUA variations are the year and the year-zone interaction. The zone with the greatest average abundance was located between 32° and 34°S; the same was for the depth range <250 m. Within the period analyzed, the biomass of the population of this resource increased steadily until 2006, mainly in the northern zone of the study area, followed by a sharp reduction 2009, that is 75% compared to the maximum and results in a biomass of 11,000 ton.

  20. Rotor balancing apparatus and system (United States)

    Lyman, Frank (Inventor); Lyman, Joseph (Inventor)


    Rotor balancing apparatus and a system comprising balance probes for measuring unbalance at the ends of a magnetically suspended rotor are disclosed. Each balance probe comprises a photocell which is located in relationship to the magnetically suspended rotor such that unbalance of the rotor changes the amount of light recorded by each photocell. The signal from each photocell is electrically amplified and displayed by a suitable device, such as an oscilloscope.

  1. Lift augmentation for highly swept wing aircraft (United States)

    Rao, Dhanvada M. (Inventor)


    A pair of spaced slots, disposed on each side of an aircraft centerline and spaced well inboard of the wing leading edges, are provided in the wing upper surfaces and directed tangentially spanwise toward thin sharp leading wing edges of a highly swept, delta wing aircraft. The slots are individually connected through separate plenum chambers to separate compressed air tanks and serve, collectively, as a system for providing aircraft lift augmentation. A compressed air supply is tapped from the aircraft turbojet power plant. Suitable valves, under the control of the aircraft pilot, serve to selective provide jet blowing from the individual slots to provide spanwise sheets of jet air closely adjacent to the upper surfaces and across the aircraft wing span to thereby create artificial vortices whose suction generate additional lift on the aircraft. When desired, or found necessary, unequal or one-side wing blowing is employed to generate rolling moments for augmented lateral control. Trailing flaps are provided that may be deflected differentially, individually, or in unison, as needed for assistance in take-off or landing of the aircraft.

  2. Desempeño de dos diseños de muestreo empleados en la evaluación de crustáceos demersales mediante el método de área barrida Performance of two sampling designs used to evaluate demersal crustaceans with the swept area method

    Directory of Open Access Journals (Sweden)

    Cristian Canales


    Full Text Available Se simula la densidad teórica de la variable Captura por Unidad de Área (CPUA que podría tener un crustáceo demersal distribuido sobre la plataforma continental en una locación geográfica pre-defmida. Sobre esta densidad se simulan dos diseños de muestreo empleados tradicionalmente para la evaluación de crustáceos en Chile mediante el método de área barrida. Se evalúa el desempeño de un muestreo sistemático y otro aleatorio estratificado, considerando distintos escenarios en el número de estratos, las transectas y el número de lances por transectas o estratos. Como indicador de eficiencia se mide el error cuadrático medio y el error relativo del estimador de densidad promedio. Los resultados indican que para un recurso que se agrega en el espacio, correlacionado espacialmente y con importantes gradientes en densidad, el diseño de muestreo sistemático presenta menores índices de error respecto del diseño de muestreo estratificado.Herein, we simulate the theoretical density of the variable catch per unit area (CPUA for demurral crustaceans distributed over the continental shelf in a pre-determined geographic location. This density was used to simulate two sampling designs traditionally used in Chile for evaluating crustaceans with the swept area method. The performances of systematic and stratified random samplings were evaluated considering different scenarios in terms of the number of strata, transects, and the number of hauls per transect or stratum. As an indicator of efficiency, we measured the mean squared error and the relative error of the estimator of average density. The results indicate that, for a resource that is aggregated in space, is correlated spatially, and has important density gradients, the systematic sampling design presents lower indices of error than does the stratified sampling design.

  3. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)


    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  4. Numerical modeling of a rotor misalignment; Modelado numerico del desalineamiento de un rotor

    Energy Technology Data Exchange (ETDEWEB)

    Leon Pina, Roberto


    In the turbo-machinery area after an unbalancing, the misalignment is the fault that most frequently appears, and this one has been little studied compared to the unbalance. The misalignment appears when the geometric centers of two shafts and/or bearings do not coincide, these differences take place by different factors such as: incorrect installation of the bearings or rotors, thermal effects, or rotor weight, to mention some of them. The of the misalignment diagnosis continues being an area little studied, since the effects it generates are complex and include diverse physical processes reason why it presents/displays similar symptoms to those of other faults; thus, one of the methods that are used to diagnose this fault, is based on analyzing the vibration phantoms but this works only under particular conditions. In order to reproduce the dynamic behavior of a misaligned rotor, in the present work non-linear simplified models of the supports are used, whose objective is to contribute to facilitate future studies of the flow-dynamic behavior of the bearing, helping to identify the type and magnitude of the existing non-linearity in the supports and leaning in the analysis of the vibratory behavior of misaligned rotors observed in the field. [Spanish] En el area de turbomaquinaria despues del desbalance, el desalineamiento es la falla que se presenta con mayor frecuencia, y esta se ha estudiado poco comparada con el desbalance. El desalineamiento se presenta cuando los centros geometricos de dos flechas y/o chumaceras no coinciden, estas diferencias se producen por diferentes factores como: instalacion incorrecta de las chumaceras o rotores, efectos termicos, o el peso del rotor, por mencionar algunos. El diagnostico del desalineamiento sigue siendo una area poco estudiada, ya que los efectos que genera son complejos y abarcan diversos procesos fisicos por lo que presenta sintomas similares a los de otras fallas; asi, uno de los metodos que se utilizan para

  5. Extension of Goldstein's circulation function for optimal rotors with hub (United States)

    Okulov, V. L.; Sørensen, J. N.; Shen, W. Z.


    The aerodynamic interaction or interference between rotor blades and hub body is usually very complicated, but some useful simplifications can be made by considering the hub with an infinite cylinder. Various attempts to find the optimum distribution of circulation by the lifting vortex lines method have been previously proposed to describe the blade interaction with the hub modeled by the infinite cylinder. In this case, the ideal distribution of bound circulation on the rotor blades is such that the shed vortex system in the hub-area is a set of helicoidal vortex sheets moving uniformly as if rigid, exactly as in the case where there is no influence of the streamtube deformations by the central hub-body. In the present investigation, we consider a more specific problem of the rotor-hub interaction where the initial flow streamtubes and the rotor slipstream submitted strong deformations at the nose-area of the semi-infinite hub.

  6. Lessons from Rotor 37

    Institute of Scientific and Technical Information of China (English)



    NASA rotor 37 was used as a blind test case for turbomachinery CFD by the Turbomachinery Committee of the IGTI.The rotor is a transonic compressor with a tip speed of 454 m/s(1500ft/s)and a relatively high pressure ratio of 2.1.It was tested in isolation with a circumferentially uniform inlet flow so that the flow through it should be steady apart from and effects of passage to passage geometry variation and mechanical vibration.As such it represents the simplest possible type of test for three-dimensional turbomachinery flow solvers.Howerver,the rotor still presents a real challenge to 3D viscous flow solvers because the shock wave-boudary layer interaction is strong and the effects of viscosity are dominant in determining the flow deviation and hence the pressure ration.Eleven blind solutions were submittewd and in addition a non-blind solution was used to prepare for the exercies.This paper reviews the flow in the test case and the comparisons of the CFD solutions with the test data.Lessons for both the Flow physics in transonic fans and for the application of CFD to such machines are pointed out.

  7. Homopolar motor with dual rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S. (Oak Ridge, TN)


    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  8. Homopolar motor with dual rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.


    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  9. Rotor/body aerodynamic interactions (United States)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.


    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  10. Variable Speed Rotor System Project (United States)

    National Aeronautics and Space Administration — Variable speed rotors will give helicopters several advantages: higher top speed, greater fuel efficiency, momentary emergency over-power, resonance detuning...

  11. SLEDs and Swept Source Laser Technology for OCT (United States)

    Duelk, Marcus; Hsu, Kevin

    EXALOS offers broadband and high-power superluminescent light-emitting diodes (SLEDs) and high-speed wavelength-swept lasers, covering various visible and near-infrared wavelength regions (390-1,700 nm). These diverse wavelengths are realized in different semiconductor material systems such as GaN, GaAs, or InP. Those light sources are used in various fields such as navigation, optical coherence tomography (OCT), metrology, sensing, and microscopy. Detailed discussions on SLED characteristics and key swept-source OCT system design parameters are presented.

  12. Fiber-based swept-source terahertz radar. (United States)

    Huang, Yu-Wei; Tseng, Tzu-Fang; Kuo, Chung-Chiu; Hwang, Yuh-Jing; Sun, Chi-Kuang


    We demonstrate an all-terahertz swept-source imaging radar operated at room temperature by using terahertz fibers for radiation delivery and with a terahertz-fiber directional coupler acting as a Michelson interferometer. By taking advantage of the high water reflection contrast in the low terahertz regime and by electrically sweeping at a high speed a terahertz source combined with a fast rotating mirror, we obtained the living object's distance information with a high image frame rate. Our experiment showed that this fiber-based swept-source terahertz radar could be used in real time to locate concealed moving live objects with high stability.

  13. Molecular Rotors as Switches

    Directory of Open Access Journals (Sweden)

    Kang L. Wang


    Full Text Available The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V revealed a temperature-dependent negative differential resistance (NDR associated with the device. The analysis of the device

  14. Estandarización de la captura por área barrida (CPUA en cruceros de evaluación directa de camarón nailon (Heterocarpus reedi (1998-2006 Standardization of the catch per swept area (CPUA for direct stock assessment cruises of nylon shrimp (Heterocarpus reedi (1998-2006

    Directory of Open Access Journals (Sweden)

    Cristian Canales


    estimate the CPUA. A generalized linear model was applied; the model used four effects as factors: year, zone, depth layer, and year-zone interaction. The results showed that the year was the most relevant effect, followed by the year-zone interaction for each model analyzed. The effects of the year of the assessment and the probability of catch showed sustained growth during the study period. The interaction effect showed growth in the shrimp population mainly from Valparaíso southward. Moreover, we found that shrimp abundance was related positively to the probability of catch and inversely to the area of aggregation of the population. Finally, the discrepancy found between the analyzed abundance indexes and the biomass (particularly north of 32°S due to the geomorphologic characteristics of the sea floor and the diverse methodological criteria used in the "swept-area" assessment of this species leads us to we recommend CPUA modeling as the best option for obtaining a relative abundance index comparable over time and space.

  15. Flow visualization of swept wing boundary layer transition

    NARCIS (Netherlands)

    Serpieri, J.; Kotsonis, M.


    In this work the flow visualization of the transition pattern occurring on a swept wing in a subsonic flow is presented. This is done by means of fluorescent oil flow technique and boundary layer hot-wire scans. The experiment was performed at Reynolds number of 2:15 . 106 and at angle of attack of

  16. FDML swept source at 1060 nm using a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang;


    in this wavelength range. We demonstrate that a tapered amplifier can be integrated into a fiber-based swept source and allows for high-speed FDML operation. The developed light source operates at a sweep rate of 116kHz with an effective average output power in excess of 30mW. With a total sweep range of 70 nm...

  17. Useful life extension of steam turbine rotors; Alargamiento de la vida en rotores de turbina de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Arelle, Carlos [Turbomaquinas S. A. de C.V., La Piedad, Michoacan (Mexico)


    The continuous use of steam turbines, the chemistry of the steam itself and the variations of operation velocities, cause the gradual deterioration by erosion, oxidation and/or corrosion of the rotors and blades. When this happens most of the original manufacturers recommend to rectify the areas, diminishing the surfaces, or to compare with a new rotor. TURBOMAQUINARIAS S.A. de C.V. has developed the most reliable and safe methods to return the rotor to its original dimensions and in case of recurrent problems such as erosion, oxidation and/or wear, it offers the alternative of attaching coatings metallurgically compatible with which these problems are eliminated or diminished that might show up on the rotor surface as well as in the body of the discs or of the blades. These restoring methods are recommended by the international standards such as API 687. [Spanish] El uso continuo de las turbinas de vapor, la quimica del mismo vapor y la variacion de las velocidades de operacion, ocasionan el deterioro gradual por erosion, oxidacion y/o corrosion de los rotores y de los alabes. Al ocurrir esto la mayoria de los fabricantes originales recomiendan rectificar las areas, disminuyendo las superficies, o bien comparar un rotor nuevo. TURBOMAQUINARIAS S.A. de C.V. ha desarrollado los metodos mas confiables y seguros para devolver a su rotor las dimensiones originales y en caso de problemas recurrentes tales como erosion, oxidacion y/o desgaste, ofrece la alternativa de agregar recubrimientos metalurgicamente compatibles con los cuales se eliminan o se disminuyen estos problemas que pueden presentarse tanto en la superficie del rotor como del cuerpo de los discos o bien de los alabes. Estos metodos de restauracion son recomendados por las normas internacionales tales como la API 687.

  18. Aerodynamic Classification of Swept-Wing Ice Accretion (United States)

    Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.


    The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current stateof- the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of "nominally 3D" or "highly 3D" horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.

  19. Electromagnetic Field Analysis of the Performance of Single-Phase Capacitor-Run Induction Motor Using Composite Rotor Conductor

    Directory of Open Access Journals (Sweden)

    Mohd Afaque Iqbal


    Full Text Available Single-phase induction motor (SPIM has very crucial role in industrial, domestic and commercial sectors. So, the efficient SPIM is a major requirement of today’s market. For efficient motors, many research methodologies and suggestions have been given by researchers in past. Various parameters like as stator/rotor slot variation, size and shape of stator/rotor slots, stator/rotor winding configuration, choice of core material etc. have significant impact on machine design. Rotor slot geometry influences the distribution of the magnetic field to a degree. Even a little difference of the magnetic field distribution can make big difference on the performance of the induction motor. The rotor slot geometry influences the skin effect and slot leakage flux in order to increase the torque and efficiency. In this paper, three types of rotor slot configurations are designed and simulated with different rotor slot configuration and rotor bars composition by changing the rotor slot configuration of base model. Aluminum and Copper are used simultaneously as rotor winding material. The rotor bar is a composite conductor which carries Aluminum as well as Copper sub-conductors running parallel in the same slot. Overall cross section area of rotor bar in each model kept same and work is carried out with difference proportion of Aluminum and Copper sub conductors. All models are investigated and simulated in FEMM and finally the simulated results are compared for optimal solution.

  20. 14 CFR 27.1509 - Rotor speed. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  1. 14 CFR 29.1509 - Rotor speed. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the...

  2. Performance tests on helical Savonius rotors

    Energy Technology Data Exchange (ETDEWEB)

    Kamoji, M.A.; Kedare, S.B. [Department of Energy Science and Engineering, Indian Institute of Technology, Bombay (India); Prabhu, S.V. [Department of Mechanical Engineering, Indian Institute of Technology, Bombay (India)


    Conventional Savonius rotors have high coefficient of static torque at certain rotor angles and a negative coefficient of static torque from 135 to 165 and from 315 to 345 in one cycle of 360 . In order to decrease this variation in static torque from 0 to 360 , a helical Savonius rotor with a twist of 90 is proposed. In this study, tests on helical Savonius rotors are conducted in an open jet wind tunnel. Coefficient of static torque, coefficient of torque and coefficient of power for each helical Savonius rotor are measured. The performance of helical rotor with shaft between the end plates and helical rotor without shaft between the end plates at different overlap ratios namely 0.0, 0.1 and 0.16 is compared. Helical Savonius rotor without shaft is also compared with the performance of the conventional Savonius rotor. The results indicate that all the helical Savonius rotors have positive coefficient of static torque at all the rotor angles. The helical rotors with shaft have lower coefficient of power than the helical rotors without shaft. Helical rotor without shaft at an overlap ratio of 0.0 and an aspect ratio of 0.88 is found to have almost the same coefficient of power when compared with the conventional Savonius rotor. Correlation for coefficient of torque and power is developed for helical Savonius rotor for a range of Reynolds numbers studied. (author)

  3. Boundary Layer Transition Detection on a Rotor Blade Using Rotating Mirror Thermography (United States)

    Heineck, James T.; Schuelein, Erich; Raffel, Markus


    Laminar-to-turbulent transition on a rotor blade in hover has been imaged using an area-scan infrared camera. A new method for tracking a blade using a rotating mirror was employed. The mirror axis of rotation roughly corresponded to the rotor axis of rotation and the mirror rotational frequency is 1/2 that of the rotor. This permitted the use of cameras whose integration time was too long to prevent image blur due to the motion of the blade. This article will show the use of this method for a rotor blade at different collective pitch angles.


    Institute of Scientific and Technical Information of China (English)

    邹剑; 陈进; 蒲亚鹏


    The dynamic equation of cracked rotor in rotational frame was modelled, the numerical simulation solutions of the cracked rotor and the uncracked rotor were obtained. By the wavelet transform, the time-frequency properties of the cracked rotor and the uncracked rotor were discussed, the difference of the time-frequency properties between the cracked rotor and the uncracked rotor was compared. A new detection algorithm using wavelet transform to identify crack was proposed. The experiments verify the availability and validity of the wavelet transform in identification of crack.

  5. Rotor blade assembly having internal loading features

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, Daniel David


    Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movement of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.

  6. Test rig for investigations of force excited and synchrocoupling loaded rotor (United States)

    Rauch, Adam


    The main topics of test rig based rotor investigations are: dynamic relations of a rotor bearing foundation system, shaft cracking, torsional simulation of rotor-generator hunting, flexural-torsional coupling of vibrations, and other areas of rotor dynamics including balancing, maintenance and modal analysis of a rotor. The present paper describes a general purpose rotor test rig capable of handling a great number of these areas. The test rig simulates a heavy, power-loaded rotor mounted on a flexible foundation. Five forms of excitation are provided: oscillating or impact torque, impact force, step force, bearing and foundation excitation. They can be combined if necessary. New research facilities offered by the rig are: external flexural force loading, driving torque loading by synchrocoupling with a full recovery of brake energy, bending release of rotor ends by pivoting, and multi-pulse impact force excitation. The most remarkable is the synchroaxle principle, called SAP for short, which is described in detail. Test rig features have been proved to be successful by research of shaft cracking and rotor-foundation vibrations. This presentation concerns only the general description, calculation and application aspects of the rig.

  7. Feedback Control of Rotor Overspeed (United States)

    Churchill, G. B.


    Feedback system for automatically governing helicopter rotor speed promises to lessen pilot's workload, enhance maneuverability, and protect airframe. With suitable modifications, concept applied to control speed of electrical generators, automotive engines and other machinery.

  8. Design of composite flywheel rotor

    Institute of Scientific and Technical Information of China (English)

    Yue BAI; Qingjia GAO; Haiwen LI; Yihui WU; Ming XUAN


    A design method for a flywheel rotor com-posed of a composite rim and a metal hub is proposed by studying the connection between the rotor and the driving machine. The influence of some factors such as the rotor material, configuration, connection, and frac-ture techniques on energy density is analyzed. The results show that the ratio of the inner radius to outer radius of the rim is the key factor, and is determined by the rim material. Optimizing the hub can further efficiently improve energy density. The composite flywheel rotor is produced and its rotation stress has been tested at the speed of 20 krpm. The emulation results are consistent with testing results, which proves that the introduced design method is useful.

  9. Extension of Goldstein's circulation function for optimal rotors with hub

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær; Shen, Wen Zhong


    The aerodynamic interaction or interference between rotor blades and hub body is usually very complicated, but some useful simplifications can be made by considering the hub with an infinite cylinder. Various attempts to find the optimum distribution of circulation by the lifting vortex lines...... method have been previously proposed to describe the blade interaction with the hub modeled by the infinite cylinder. In this case, the ideal distribution of bound circulation on the rotor blades is such that the shed vortex system in the hub-area is a set of helicoidal vortex sheets moving uniformly...... at the nose-area of the semi-infinite hub....

  10. Numerical analysis on noise of rotor with unconventional blade tips based on CFD/Kirchhoff method

    Institute of Scientific and Technical Information of China (English)

    Wang Bo; Zhao Qijun; Xu Guohua; Ye Liang; Wang Junyi


    A solver is developed aiming at efficiently predicting rotor noise in hover and forward flight.In this solver,the nonlinear near-field solutions are calculated by a hybrid approach which includes the Navier-Stokes and Euler equations based on a moving-embedded grid system and adaptive grid methodology.A combination of the third-order upwind scheme and flux-difference splitting scheme,instead of the second-order center-difference scheme which may cause larger wake dissipation,has been employed in the present computational fluid dynamics (CFD) method.The sound pressure data in the near field can be calculated directly by solving the Navier-Stokes equations,and the sound propagation can be predicted by the Kirchhoffmethod.A harmonic expansion approach is presented for rotor far-field noise prediction,which gives an analytical expression for the integral function in the Kirchhoff formula.As a result,the interpolation process is simplified and the efficiency and accuracy of the interpolation are improved.Then,the high-speed impulsive (HIS) noise of a helicopter rotor at different tip Mach numbers and on different observers is calculated and analyzed in hover and forward flight,which shows a highly directional characteristic of the rotor HIS noise with a maximum value in the rotor plane,and the HSI noise weakens rapidly with the increasing of the directivity angle.In order to investigate the effects of the rotor blade-tip shape on its aeroacoustic characteristics,four kinds of blade tips are designed and their noise characteristics have been simulated.At last,a new unconventional CLOR-Ⅱ blade tip has been designed,and the noise characteristics of the presented CLOR-Ⅱ model rotor have been simulated and measured compared to the reference rotors with a rectangular or swept-back platform blade tip.The results demonstrate that the unconventional CLOR-Ⅱblade tip can significantly reduce the HSI noise of a rotor.

  11. Swept-source digital holography to reconstruct tomographic images. (United States)

    Sheoran, Gyanendra; Dubey, Satish; Anand, Arun; Mehta, Dalip Singh; Shakher, Chandra


    We present what we believe to be a new method of swept-source digital holography using a superluminescent diode (SLD) as a broadband light source and an acousto-optic tunable filter (AOTF) as a frequency tunable device. The swept source consists of an SLD as a broadband source in conjunction with the AOTF as the frequency tuning device in the wavelength range of 800-870 nm. Since the AOTF is an electronically controlled device, frequency tuning can be achieved without mechanical movement . The angular spectrum approach to the scalar diffraction theory is used to reconstruct the images for each wavelength. Applications of a broadband source ensure an increased axial resolution of reconstructed images. The proposed swept-source system provides a sufficiently broad range of tunability and can increase the axial range and the resolution of reconstructed tomographic images using digital holography. The system was tested using a semireflecting glass substrate; a character "B" is written on it with black ink. Experimental results are presented.

  12. Evaluation of Icing Scaling on Swept NACA 0012 Airfoil Models (United States)

    Tsao, Jen-Ching; Lee, Sam


    Icing scaling tests in the NASA Glenn Icing Research Tunnel (IRT) were performed on swept wing models using existing recommended scaling methods that were originally developed for straight wing. Some needed modifications on the stagnation-point local collection efficiency (i.e., beta(sub 0) calculation and the corresponding convective heat transfer coefficient for swept NACA 0012 airfoil models have been studied and reported in 2009, and the correlations will be used in the current study. The reference tests used a 91.4-cm chord, 152.4-cm span, adjustable sweep airfoil model of NACA 0012 profile at velocities of 100 and 150 knot and MVD of 44 and 93 mm. Scale-to-reference model size ratio was 1:2.4. All tests were conducted at 0deg angle of attack (AoA) and 45deg sweep angle. Ice shape comparison results were presented for stagnation-point freezing fractions in the range of 0.4 to 1.0. Preliminary results showed that good scaling was achieved for the conditions test by using the modified scaling methods developed for swept wing icing.

  13. Rotor-Router Aggregation on the Comb


    Huss, Wilfried; Sava, Ecaterina


    We prove a shape theorem for rotor-router aggregation on the comb, for a specific initial rotor configuration and clockwise rotor sequence for all vertices. Furthermore, as an application of rotor-router walks, we describe the harmonic measure of the rotor-router aggregate and related shapes, which is useful in the study of other growth models on the comb. We also identify the shape for which the harmonic measure is uniform. This gives the first known example where the rotor-router cluster ha...

  14. Rotor/Wing Interactions in Hover (United States)

    Young, Larry A.; Derby, Michael R.


    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  15. Limitations caused by distortion in room impulse response measurements by swept sine technique

    DEFF Research Database (Denmark)

    Stojic, Branko; Ciric, Dejan; Markovic, Milos


    by the distortion in room impulse response measurements by swept sine technique are analyzed here by the simulations and measurements. For the investigation, both linear and exponential swept sines are used as an excitation signal. In the simulations, this signal is modified by the nonlinearity model in the time...... of a measured response can be limited in a similar way as in maximum length sequence technique, although the saturation level (maximum dynamic range) is higher for swept sine technique. Thus, swept sine technique is also vulnerable to a certain extent to distortion that limits the quality of measured impulse...

  16. Non-linear swept frequency technique for CO2 measurements using a CW laser system

    CERN Document Server

    Campbell, Joel F


    A system using a non-linear multi-swept sine wave system is described which employs a multi-channel, multi-swept orthogonal waves, to separate channels and make multiple, simultaneous online/offline CO2 measurements. An analytic expression and systematic method for determining the orthogonal frequencies for the unswept, linear swept and non-linear swept cases is presented. It is shown that one may reduce sidelobes of the autocorrelation function while preserving cross channel orthogonality, for thin cloud rejection.

  17. Collision Distance Detection Based on Swept Volume Strategy for Optimal Motion Plan (United States)

    Huang, Tsai-Jeon

    A swept volume strategy to detect the collision distances between obstacles is presented in this paper for robot motion planning based on optimization technique. The strategy utilizes the recursive quadratic programming optimization method to perform the motion planning problem. This paper is based on segmental swept volume for convenient distance-to-contact calculation. Hermite interpolation is presented to approach the envelope bounding the swept volume. The new method is capable of handling a modestly non-convex swept volume and it has yielded accurate answers in distance calculations. Also, examples would be presented to illustrate and demonstrate this approach in the paper.

  18. The Diver with a Rotor

    CERN Document Server

    Bharadwaj, Sudarsh; Dullin, Holger R; Leung, Karen; Tong, William


    We present and analyse a simple model for the twisting somersault. The model is a rigid body with a rotor attached which can be switched on and off. This makes it simple enough to devise explicit analytical formulas whilst still maintaining sufficient complexity to preserve the shape-changing dynamics essential for twisting somersaults in springboard and platform diving. With `rotor on' and with `rotor off' the corresponding Euler-type equations can be solved, and the essential quantities characterising the dynamics, such as the periods and rotation numbers, can be computed in terms of complete elliptic integrals. Thus we arrive at explicit formulas for how to achieve a dive with m somersaults and n twists in a given total time. This can be thought of as a special case of a geometric phase formula due to Cabrera 2007.

  19. Transonic Axial Splittered Rotor Tandem Stator Stage (United States)


    compressor rotor was designed incorporating a splitter vane between the principal blades . Historical experiments conducted by Dr. Arthur J...conventional rotor design . The stage is composed of the rotor and stator. The flow of the air passing through the rotor is turned, and the flow is required...derived results achieved the best blade geometry for design continuation. The best circumferential and axial placement for the splitter blade was

  20. Fan Noise Source Diagnostic Test: Rotor Alone Aerodynamic Performance Results (United States)

    Hughes, Christopher E.; Jeracki, Robert J.; Woodward, Richard P.; Miller, Christopher J.


    The aerodynamic performance of an isolated fan or rotor alone model was measured in the NASA Glenn Research Center 9- by 15- Foot Low Speed Wind Tunnel as part of the Fan Broadband Source Diagnostic Test conducted at NASA Glenn. The Source Diagnostic Test was conducted to identify the noise sources within a wind tunnel scale model of a turbofan engine and quantify their contribution to the overall system noise level. The fan was part of a 1/5th scale model representation of the bypass stage of a current technology turbofan engine. For the rotor alone testing, the fan and nacelle, including the inlet, external cowl, and fixed area fan exit nozzle, were modeled in the test hardware; the internal outlet guide vanes located behind the fan were removed. Without the outlet guide vanes, the velocity at the nozzle exit changes significantly, thereby affecting the fan performance. As part of the investigation, variations in the fan nozzle area were tested in order to match as closely as possible the rotor alone performance with the fan performance obtained with the outlet guide vanes installed. The fan operating performance was determined using fixed pressure/temperature combination rakes and the corrected weight flow. The performance results indicate that a suitable nozzle exit was achieved to be able to closely match the rotor alone and fan/outlet guide vane configuration performance on the sea level operating line. A small shift in the slope of the sea level operating line was measured, which resulted in a slightly higher rotor alone fan pressure ratio at take-off conditions, matched fan performance at cutback conditions, and a slightly lower rotor alone fan pressure ratio at approach conditions. However, the small differences in fan performance at all fan conditions were considered too small to affect the fan acoustic performance.

  1. Hi-Q Rotor - Low Wind Speed Technology

    Energy Technology Data Exchange (ETDEWEB)

    Todd E. Mills; Judy Tatum


    The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data

  2. Rotor Losses in a Switched Reluctance Motor - Analysis and Reduction Methods (United States)

    Schweighofer, B.; Recheis, M.; Fulmek, P.; Wegleiter, H.


    Due to the increasing hybridization and electrification of vehicles, flywheel energy storage devices are an important area of research. In automotive application besides the weight criteria, some additionally constrains, such as size, efficiency and especially cost have to be fulfilled. Therefore typically a compact design, in which the rotor of the needed electrical machine simultaneously acts as storage mass is chosen. Since the machine is running in vacuum and the rotor can dissipate its heat only by means of thermal radiation or through the bearings if conventional bearings are used, the rotor losses play a vital role. In this work the rotor losses of a switched reluctance machine are analyzed in detail and a method to reduce the rotor losses is proposed.

  3. Quad-rotor flight path energy optimization (United States)

    Kemper, Edward

    Quad-Rotor unmanned areal vehicles (UAVs) have been a popular area of research and development in the last decade, especially with the advent of affordable microcontrollers like the MSP 430 and the Raspberry Pi. Path-Energy Optimization is an area that is well developed for linear systems. In this thesis, this idea of path-energy optimization is extended to the nonlinear model of the Quad-rotor UAV. The classical optimization technique is adapted to the nonlinear model that is derived for the problem at hand, coming up with a set of partial differential equations and boundary value conditions to solve these equations. Then, different techniques to implement energy optimization algorithms are tested using simulations in Python. First, a purely nonlinear approach is used. This method is shown to be computationally intensive, with no practical solution available in a reasonable amount of time. Second, heuristic techniques to minimize the energy of the flight path are tested, using Ziegler-Nichols' proportional integral derivative (PID) controller tuning technique. Finally, a brute force look-up table based PID controller is used. Simulation results of the heuristic method show that both reliable control of the system and path-energy optimization are achieved in a reasonable amount of time.

  4. Routes to turbulence in the rotating disk boundary-layer of a rotor-stator cavity (United States)

    Yim, Eunok; Serre, Eric; Martinand, Denis; Chomaz, Jean-Marc


    The rotating disk is an important classical problem, due to the similarities between the 3D boundary layers on a disk and a swept aircraft wing. It is nowadays admitted that a direct transition to turbulence may exist through a steep-fronted nonlinear global mode located at the boundary between the locally connectively and absolutely unstable regions (Pier 2003; Viaud et al. 2008, 2011; Imayama et al. 2014 and others). However, recent studies (Healey 2010; Harris et al. 2012; Imayama et al. 2013) suggest that there may be an alternative route starting at lower critical Reynolds number, based on convective travelling waves but this scenario is still not fully validated and proven. To better characterize such transition, direct numerical simulations are performed in a closed cylindrical rotor-stator cavity (without hub) up to Re = O (105) . All boundaries are no slip and for the stable region around the rotation axis prevents the disturbances coming from the very unstable stator boundary to disturb the rotor boundary layer. Different transition scenarii to turbulence are investigated when the rotor boundary layer is forced at different positions and forcing amplitude. The associated dynamics of coherent structures in various flow regions are also investigated when increasing Re .

  5. Swept frequency technique for dispersion measurement of microstrip lines (United States)

    Lee, Richard Q.


    Microstrip lines used in microwave integrated circuits are dispersive. Because a microstrip line is an open structure, the dispersion can not be derived with pure TEM, TE, or TM mode analysis. Dispersion analysis has commonly been done using a spectral domain approach, and dispersion measurement has been made with high Q microstrip ring resonators. Since the dispersion of a microstrip line is fully characterized by the frequency dependent phase velocity of the line, dispersion measurement of microstrip lines requires the measurement of the line wavelength as a function of frequency. In this paper, a swept frequency technique for dispersion measurement is described.


    Institute of Scientific and Technical Information of China (English)


    This paper presents briefly the recent progress on study of swept shock wave/boundary layer interactions with emphasis on application of zonalanalysis and correlation analysis to them. Based on the zonal analysis an overall framework of complicated interaction flow structure including both surface flowfield and space flowfield is discussed. Based on correlation analysis the conical interactions induced by four families of shock wave generators have been discussedin detail. Some control parameter and physical mechanism of conical interaction have been revealed. Finally some aspects of the problem and the prospects for future work are suggested.

  7. Wireless In-situ Nondestructive Inspection of Engine Rotor Disks with Ultrasonic Guided Waves Project (United States)

    National Aeronautics and Space Administration — The structural integrity of jet engine turbine or fan rotor disks is vital for aviation safety. Cumulative cracks at critical loading and high stress areas, if not...

  8. Wireless In-situ Nondestructive Inspection of Engine Rotor Disks with Ultrasonic Guided Waves Project (United States)

    National Aeronautics and Space Administration — The integrity of rotor disks in engine turbines or fans is vital to aviation safety. Cumulative cracks at critical loading and high stress areas, if not detected and...

  9. The effect of protons on the performance of second generation Swept Charge Devices

    Energy Technology Data Exchange (ETDEWEB)

    Gow, Jason P.D., E-mail: [e2v Centre for Electronic Imaging, Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Holland, Andrew D. [e2v Centre for Electronic Imaging, Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Pool, Peter J. [e2v Technologies PLC, 106 Waterhouse Lance, Chelmsford, Essex CM1 2QU (United Kingdom); Smith, David R. [Centre for Sensors and Instrumentation, School of Engineering and Design, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)


    The e2v technologies Swept Charge Device (SCD) was developed as a large area detector for X-ray Fluorescence (XRF) analysis, achieving near Fano-limited spectroscopy at -15 Degree-Sign C. The SCD was flown in the XRF instruments onboard the European Space Agency's SMART-1 and the Indian Space Research Organisation's Chandrayaan-1 lunar missions. The second generation SCD, proposed for use in the soft X-ray Spectrometer on the Chandrayaan-2 lunar orbiter and the soft X-ray imager on China's HXMT mission, was developed, in part, using the findings of the radiation damage studies performed for the Chandrayaan-1 X-ray Spectrometer. This paper discusses the factor of two improvements in radiation tolerance achieved in the second generation SCD, the different SCD sizes produced and their advantages for future XRF instruments, for example through reduced shielding mass or higher operating temperatures.

  10. Pitch link loads reduction of variable speed rotors by variable tuning frequency fluidlastic isolators

    Institute of Scientific and Technical Information of China (English)

    Han Dong


    To reduce the pitch link loads of variable speed rotors, variable tuning frequency fluid-lastic isolators are proposed. This isolator utilizes the variation of centrifugal force due to the change of rotor speed to change the tuning port area ratio, which can change the tuning frequency of the isolator. A rotor model including the model of fluidlastic isolator is coupled with a fuselage model to predict the steady responses of the rotor system in forward flight. The aeroelastic analyses indicate that distinct performance improvement in pitch link load control can be achieved by the utilization of variable frequency isolators compared with the constant tuning frequency isolators. The 4/rev (per revolution) pitch link load is observed to be reduced by 87.6%compared with the increase of 56.3%by the constant frequency isolator, when the rotor speed is reduced by 16.7%. The isolation ability at different rotor speeds in different flight states is investigated. To achieve overall load reduction within the whole range of rotor speed, the strategy of the variation of tuning frequency is adjusted. The results indicate that the 4/rev pitch link load within the whole rotor speed range is decreased.

  11. Pitch link loads reduction of variable speed rotors by variable tuning frequency fluidlastic isolators

    Directory of Open Access Journals (Sweden)

    Han Dong


    Full Text Available To reduce the pitch link loads of variable speed rotors, variable tuning frequency fluidlastic isolators are proposed. This isolator utilizes the variation of centrifugal force due to the change of rotor speed to change the tuning port area ratio, which can change the tuning frequency of the isolator. A rotor model including the model of fluidlastic isolator is coupled with a fuselage model to predict the steady responses of the rotor system in forward flight. The aeroelastic analyses indicate that distinct performance improvement in pitch link load control can be achieved by the utilization of variable frequency isolators compared with the constant tuning frequency isolators. The 4/rev (per revolution pitch link load is observed to be reduced by 87.6% compared with the increase of 56.3% by the constant frequency isolator, when the rotor speed is reduced by 16.7%. The isolation ability at different rotor speeds in different flight states is investigated. To achieve overall load reduction within the whole range of rotor speed, the strategy of the variation of tuning frequency is adjusted. The results indicate that the 4/rev pitch link load within the whole rotor speed range is decreased.

  12. Structural Considerations of a 20MW Multi-Rotor Wind Energy System (United States)

    Jamieson, P.; Branney, M.


    The drive to upscale offshore wind turbines relates especially to possiblereductions in O&M and electrical interconnection costs per MW of installed capacity.Even with best current technologies, designs with rated capacity above about 3 MW are less cost effective exfactory per rated MW(turbine system costs) than smaller machines.Very large offshore wind turbines are thereforejustifiedprimarily by overall offshore project economics. Furthermore, continuing progress in materials and structures has been essential to avoid severe penalties in the power/mass ratio of large multi-MW machines.The multi-rotor concept employs many small rotors to maximise energy capture area withminimum systemvolume. Previous work has indicated that this can enablea very large reduction in the total weight and cost of rotors and drive trains compared to an equivalent large single rotor system.Thus the multi rotor concept may enable rated capacities of 20 MW or more at a single maintenancesite. Establishing the cost benefit of a multi rotor system requires examination of solutions for the support structure and yawing, ensuring aerodynamic losses from rotor interaction are not significant and that overall logistics, with much increased part count (more reliable components) and less consequence of single failuresare favourable. This paper addresses the viability of a support structure in respect of structural concept and likely weight as one necessary step in exploring the potential of the multi rotor concept.

  13. The use of the swept area method for assessing the seabob shrimp Xiphopenaeus kroyeri (Heller, 1862 biomass and removal rates based on artisanal fishery-derived data in southern Brazil: using depletion models to reduce uncertainty El uso del método de area de barrido para la evaluación de la biomasa y tasas de remoción del camarón Xiphopenaeus kroyeri (Heller, 1862 a partir de datos de la pesca artesanal en el sur de Brasil: la utilización de modelos de reducción de stock para disminuir incertidumbres

    Directory of Open Access Journals (Sweden)

    Paulo R Pezzuto


    Full Text Available The seabob shrimp (Xiphopenaeus kroyeri represents an important fishing resource for artisanal fishermen in coastal areas of southern Brazil. Stock assessments of this species ha ve generally relied on biomass dynamics models as applied to CPUE time-series, which (a are only available for a small offshore fraction of the exploited population and (b does not comprise patterns of the shallowest artisanal fishing grounds. This work explores the use of extensive catch and effort data derived from a small-scale trawl fishery to obtain swept-area estimates of abundance and removal rates in a limited coastal area of southern Brazil (Tijucas Bay, Santa Catarina State, 27°15'S-48°33'W. Data were obtained from 7,198 fishing trips monitored at the fishing communities between June 2004 and August 2005. Because three parameters of the swept-area equation (i.e. trawl velocity, catch efficiency and wing spread were unknown, they were defined through a stochastic procedure and calibrated by estimates produced by a Leslie depletion model applied to concurrent catches obtained in one fishing ground. A 21.7% removal rate was estimated for the period June 2004-January 2005; this increased to nearly 34% between February and July 2005. This removal scenario predicted that a five-month fishery would suffice to remo ve 90% of the biomass available in the Tijucas Bay, nearing the 87% CPUE reduction observed in the same period. Whereas abundance and harvest rate estimates were likely affected by inadequate knowledge of the swept-area equation parameters, the similarity of these estimates with relative abundance indexes supports the convenience of the proposed method and justifies future efforts to improve its accuracy.El camarón (Xiphopenaeus kroyeri representa un importante recurso para pescadores artesanales en areas costeras del sur de Brasil. Evaluaciones de stock de esta especie generalmente resultan de modelos de dinámica de biomasa aplicados a series

  14. Genetics Home Reference: Rotor syndrome (United States)

    ... of these proteins. Without the function of either transport protein, bilirubin is less efficiently taken up by the ... Schinkel AH. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into ...

  15. Rotor damage detection by using piezoelectric impedance (United States)

    Qin, Y.; Tao, Y.; Mao, Y. F.


    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.


    Institute of Scientific and Technical Information of China (English)

    LI Jiangxiong; KE Yinglin; LI An; ZHU Weidong


    A principal direction Gaussian image (PDGI)-based algorithm is proposed to extract the regular swept surface from point cloud. Firstly, the PDGI of the regular swept surface is constructed from point cloud, then the bounding box of the Gaussian sphere is uniformly partitioned into a number of small cubes (3D grids) and the PDGI points on the Gaussian sphere are associated with the corresponding 3D grids. Secondly, cluster analysis technique is used to sort out a group of 3D grids containing more PDGI points among the 3D grids. By the connected-region growing algorithm, the congregation point or the great circle is detected from the 3D grids. Thus the translational direction is determined by the congregation point and the direction of the rotational axis is determined by the great circle. In addition, the positional point of the rotational axis is obtained by the intersection of all the projected normal lines of the rotational surface on the plane being perpendicular to the estimated direction of the rotational axis. Finally, a pattern search method is applied to optimize the translational direction and the rotational axis. Some experiments are used to illustrate the feasibility of the above algorithm.

  17. Advances in tilt rotor noise prediction (United States)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  18. Clearance flow-generated transverse forces at the rotors of thermal turbomachines. Ph.D. Thesis - Technische Univ., 1975 (United States)

    Urlichs, K.


    Self-excited rotor whirl represents a serious hazard in the operation of turbomachines. The reported investigation has, therefore, the objective to measure the lateral forces acting on the rotor and to determine the characteristic pressure distribution in the rotor clearance area. A description is presented of an approach for calculating the leakage flow in the case of an eccentric rotor position on the basis of empirical loss coefficients. The results are reported of an experimental investigation with a turbine stage, taking into account a variation of the clearance characteristics. The pressure data measured are consistent with the theoretical considerations.

  19. Dynamic approximate entropy electroanatomic maps detect rotors in a simulated atrial fibrillation model. (United States)

    Ugarte, Juan P; Orozco-Duque, Andrés; Tobón, Catalina; Kremen, Vaclav; Novak, Daniel; Saiz, Javier; Oesterlein, Tobias; Schmitt, Clauss; Luik, Armin; Bustamante, John


    There is evidence that rotors could be drivers that maintain atrial fibrillation. Complex fractionated atrial electrograms have been located in rotor tip areas. However, the concept of electrogram fractionation, defined using time intervals, is still controversial as a tool for locating target sites for ablation. We hypothesize that the fractionation phenomenon is better described using non-linear dynamic measures, such as approximate entropy, and that this tool could be used for locating the rotor tip. The aim of this work has been to determine the relationship between approximate entropy and fractionated electrograms, and to develop a new tool for rotor mapping based on fractionation levels. Two episodes of chronic atrial fibrillation were simulated in a 3D human atrial model, in which rotors were observed. Dynamic approximate entropy maps were calculated using unipolar electrogram signals generated over the whole surface of the 3D atrial model. In addition, we optimized the approximate entropy calculation using two real multi-center databases of fractionated electrogram signals, labeled in 4 levels of fractionation. We found that the values of approximate entropy and the levels of fractionation are positively correlated. This allows the dynamic approximate entropy maps to localize the tips from stable and meandering rotors. Furthermore, we assessed the optimized approximate entropy using bipolar electrograms generated over a vicinity enclosing a rotor, achieving rotor detection. Our results suggest that high approximate entropy values are able to detect a high level of fractionation and to locate rotor tips in simulated atrial fibrillation episodes. We suggest that dynamic approximate entropy maps could become a tool for atrial fibrillation rotor mapping.

  20. Swept-sine noise-induced damage as a hearing loss model for preclinical assays

    Directory of Open Access Journals (Sweden)

    Lorena eSanz


    Full Text Available Mouse models are key tools for studying cochlear alterations in noise-induced hearing loss and for evaluating new therapies. Stimuli used to induce deafness in mice are usually white and octave band noises that include very low frequencies, considering the large mouse auditory range. We designed different sound stimuli, enriched in frequencies up to 20 kHz (violet noises to examine their impact on hearing thresholds and cochlear cytoarchitecture after short exposure. In addition, we developed a cytocochleogram to quantitatively assess the ensuing structural degeneration and its functional correlation. Finally, we used this mouse model and cochleogram procedure to evaluate the potential therapeutic effect of transforming growth factor β1 inhibitors P17 and P144 on noise-induced hearing loss. CBA mice were exposed to violet swept-sine noise with different frequency ranges (2-20 or 9-13 kHz and levels (105 or 120 dB SPL for 30 minutes. Mice were evaluated by auditory brainstem response and otoacoustic emission tests prior to and 2, 14 and 28 days after noise exposure. Cochlear pathology was assessed with gross histology; hair cell number was estimated by a stereological counting method. Our results indicate that functional and morphological changes induced by violet swept-sine noise depend on the sound level and frequency composition. Partial hearing recovery followed the exposure to 105 dB SPL, whereas permanent cochlear damage resulted from the exposure to 120 dB SPL. Exposure to 9-13 kHz noise caused an auditory threshold shift in those frequencies that correlated with hair cell loss in the corresponding areas of the cochlea that were spotted on the cytocochleogram. In summary, we present mouse models of noise-induced hearing loss, which depending on the sound properties of the noise, cause different degrees of cochlear damage, and could therefore be used to study molecules which are potential players in hearing loss protection and repair.

  1. Maximization of induction motor torque in the zone of high speed of rotor using a genetic algorithm



    Is studied the problem of quality improving of the vector-controlled induction motor drives. Using genetic algorithm obtained a law forming of the rotor flux linkage that maximizes the torque of an induction motor with constraints voltage and stator current. Numerical studies have shown that the proposed law can significantly increase the motor torque in the area of high speed of rotor.

  2. Lateral vibration control of a flexible overcritical rotor via an active gas bearing – Theoretical and experimental comparisons

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar


    The lack of damping of radial gas bearings leads to high vibration levels of a rotor supported by this type of bearing when crossing resonant areas. This is even more relevant for flexible rotors, as studied in this work. In order to reduce these high vibration levels, an active gas bearing is pr...

  3. Rotor blade monitoring of wind turbines; Ueberwachung von Rotorblaettern von Windkraftanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Frankenstein, Bernd; Schubert, Lars; Klesse, Thomas; Schulze, Eberhard [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren (IZFP), Dresden (Germany); Friedmann, Herbert; Ebert, Carsten [Woelfel Beratende Ingenieure GmbH und Co. KG, Hoechberg (Germany)


    This work describes the development of a structural health monitoring system (SHM) which monitors the condition of rotor blades of wind turbines, and detects and locates structural changes before final failure. It is based on a combination of measuring techniques with guided waves in the ultrasound range and low frequency modal analysis. The combination of both techniques has been applied promisingly in rotor blade investigations so far. Modal analysis allows for statements regarding the structural behaviour of the rotor blade structure. Areas of higher risk and stress are additionally monitored by guided waves in the ultrasound range. (orig.)

  4. IMPER: Characterization of the Wind Field over a Large Wind Turbine Rotor:Final report


    Schmidt Paulsen, Uwe; Wagner, Rozenn


    A modern wind turbine rotor with a contemporary rotor size would easily with the tips penetrate the air between 116 m and 30 m and herby experience effects of different wind. With current rules on power performance measurements such as IEC 61400-121 the reference wind speed is measured at hub height, an oversimplification of the wind energy power over the rotor disk area is carried out. The project comprised a number of innovative and coordinated measurements on a full scale turbine with remo...

  5. IMPER: Characterization of the Wind Field over a Large Wind Turbine Rotor

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Wagner, Rozenn

    A modern wind turbine rotor with a contemporary rotor size would easily with the tips penetrate the air between 116 m and 30 m and herby experience effects of different wind. With current rules on power performance measurements such as IEC 61400-121 the reference wind speed is measured at hub...... height, an oversimplification of the wind energy power over the rotor disk area is carried out. The project comprised a number of innovative and coordinated measurements on a full scale turbine with remote sensing technology and simulations on a 500 kW wind turbine for the effects of wind field...

  6. Assessment of Anterior Segment Measurements with Swept Source Optical Coherence Tomography before and after Ab Interno Trabeculotomy (Trabectome) Surgery (United States)

    Huang, Ping


    Purpose. To compare the changes of anterior segment parameters, assessed by swept source anterior segment optical coherence tomography (AS-OCT) after combined Trabectome-cataract surgery and Trabectome-only surgery in open angle glaucoma patients. Methods. Thirty-eight eyes of 24 patients with open angle glaucoma were scanned with swept source AS-OCT before and 4 weeks after combined Trabectome-cataract or Trabectome-only surgery. Intraocular pressure, number of medications, and AS-OCT parameters, such as angle opening distance at 500 and 750 μm from the scleral spur (AOD500 and AOD750), trabecular-iris space area at 500 and 750 mm2 (TISA500, TISA750), angle recess area at 500 and 750 mm2 (ARA500, ARA750), trabecular iris angle (TIA), anterior chamber depth (ACD), anterior chamber width (ACW), and anterior chamber volume (ACV), were obtained before the surgery. These parameters were compared to evaluate whether the outcome of the surgery differed among the patients after the surgery. The width of the trabecular cleft was also measured for both groups. Results. The reduction of IOP and number of medications was found to be statistically significant in both groups (p ACV, and angle parameters such as AOD 500/750, TISA 500/750, ARA 500/750, and TIA500 showed significantly greater changes from the preoperative values to postoperative 1st month values in combined Trabectome-cataract surgery group (p 0.05). There was no statistically significant difference between two groups for the width of the trabecular cleft (p = 0.7). Conclusion. Anterior chamber angle parameters measured with swept source AS-OCT may be useful for evaluating glaucoma patients before and after Trabectome surgery with or without cataract surgery. PMID:27795855

  7. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research (United States)

    Coleman, Colin P.


    The recent appearance of the Kamov Ka-50 helicopter and the application of coaxial rotors to unmanned aerial vehicles have renewed international interest in the coaxial rotor configuration. This report addresses the aerodynamic issues peculiar to coaxial rotors by surveying American, Russian, Japanese, British, and German research. (Herein, 'coaxial rotors' refers to helicopter, not propeller, rotors. The intermeshing rotor system was not investigated.) Issues addressed are separation distance, load sharing between rotors, wake structure, solidity effects, swirl recovery, and the effects of having no tail rotor. A general summary of the coaxial rotor configuration explores the configuration's advantages and applications.

  8. Model and Stability Analysis of a Flexible Bladed Rotor

    Directory of Open Access Journals (Sweden)


    Full Text Available This paper presents a fully bladed flexible rotor and outlines the associated stability analysis. From an energetic approach based on the complete energies and potentials for Euler-Bernoulli beams, a system of equations is derived, in the rotational frame, for the rotor. This later one is made of a hollow shaft modelled by an Euler-Bernoulli beam supported by a set of bearings. It is connected to a rigid disk having a rotational inertia. A full set of flexible blades is also modelled by Euler-Bernoulli beams clamped in the disk. The flexural vibrations of the blades as well as those of the shaft are considered. The evolution of the eigenvalues of this rotor, in the corotational frame, is studied. A stability detection method, bringing coalescence and loci separation phenomena to the fore, in case of an asymmetric rotor, is undertaken in order to determine a parametric domain where turbomachinery cannot encounter damage. Finally, extensive parametric studies including the length and the stagger angle of the blades as well as their flexibility are presented in order to obtain robust criteria for stable and unstable areas prediction.

  9. Investigation potential flow about swept back wing using panel method

    Directory of Open Access Journals (Sweden)

    WakkasAli Rasheed, NabeelAbdulhadiGhyadh, Sahib Shihab Ahmed


    Full Text Available In the present investigation Low order panel method with Dirichlet boundary condition conjugated with Kutta condition, was used to calculate pressure coefficients for potential flow about isolated swept back wings at different aspect ratios and different angles of attack. Also both local and total lift coefficients were calculated for the same wings, with detailed streamline behavior on both upper and lower surface. Constant strength quadrilateral doublet element and Constant strength quadrilateral source element were placed on each panel, except on wake sheet only constant strength quadrilateral doublets were placed to satisfy Kutta condition at trailing edge. A set of linear algebraic equations were established by setting inner potential equals to free stream potential. These equations were solved using Gauss-elimination to determine quadrilateral doublet singularity strength distribution. Finally finite difference formula was used to predict aerodynamic loads calculation.

  10. Generalized Swept Mid-structure for Polygonal Models

    KAUST Repository

    Martin, Tobias


    We introduce a novel mid-structure called the generalized swept mid-structure (GSM) of a closed polygonal shape, and a framework to compute it. The GSM contains both curve and surface elements and has consistent sheet-by-sheet topology, versus triangle-by-triangle topology produced by other mid-structure methods. To obtain this structure, a harmonic function, defined on the volume that is enclosed by the surface, is used to decompose the volume into a set of slices. A technique for computing the 1D mid-structures of these slices is introduced. The mid-structures of adjacent slices are then iteratively matched through a boundary similarity computation and triangulated to form the GSM. This structure respects the topology of the input surface model is a hybrid mid-structure representation. The construction and topology of the GSM allows for local and global simplification, used in further applications such as parameterization, volumetric mesh generation and medical applications.

  11. Swept Source OCT Angiography of Neovascular Macular Telangiectasia Type 2 (United States)

    Zhang, Qinqin; Wang, Ruikang K.; Chen, Chieh-Li; Legarreta, Andrew D.; Durbin, Mary K.; An, Lin; Sharma, Utkarsh; Stetson, Paul F.; Legarreta, John E.; Roisman, Luiz; Gregori, Giovanni; Rosenfeld, Philip J.


    Objective To image subretinal neovascularization in proliferative macular telangiectasia type 2 (MacTel2) using swept source optical coherence tomography based microangiography (OMAG). Study Design Patients with MacTel2 were enrolled in a prospective, observational study known as the MacTel Project and evaluated using a high-speed 1050nm swept-source OCT (SS-OCT) prototype system. The OMAG algorithm generated en face flow images from three retinal layers, as well as the region bounded by the outer retina and Bruch’s membrane, the choriocapillaris, and the remaining choroidal vasculature. The en face OMAG images were compared to images from fluorescein angiography (FA) and indocyanine green angiography (ICGA). Results Three eyes with neovascular MacTel2 were imaged. The neovascularization was best identified from the en face OMAG images that included a layer between the outer retinal boundary and Bruch’s membrane. OMAG images identified these abnormal vessels better than FA and were comparable to the images obtained using ICGA. In all three cases, OMAG identified choroidal vessels communicating with the neovascularization, and these choroidal vessels were evident in the two cases with ICGA imaging. In one case, monthly injections of bevacizumab reduced the microvascular complexity of the neovascularization, as well as the telangiectatic changes within the retinal microvasculature. In another case, less frequent bevacizumab therapy was associated with growth of the subretinal neovascular complex. Conclusions OMAG imaging provided detailed, depth-resolved information about subretinal neovascularization in MacTel2 eyes demonstrating superiority to FA imaging and similarities to ICGA imaging for documenting the retinal microvascular changes, the size and extent of the neovascular complex, the communications between the neovascular complex and the choroidal circulation, and the response to monthly bevacizumab therapy. PMID:26457402

  12. Rotor Embedded with Shape Memory Alloy Wires

    Directory of Open Access Journals (Sweden)

    K. Gupta


    Full Text Available In the present analysis, the fundamental natural frequency of a Jeffcott and a two-mass rotor with fibre reinforced composite shaft embedded with shape memory alloy (SMA wires is evaluated by Rayleigh's procedure. The flexibility of rotor supports is taken into account. The effect of three factors, either singly or in combination with each other, on rotor critical speed is studied. The three factors are: (i increase in Young's modulus of SMA (NITINOL wires when activated, (ii tension in wires because of phase recovery stresses, and (iii variation of support stiffness by three times because of activation of SMA in rotor supports. It is shown by numerical examples that substantial variation in rotor critical speeds can be achieved by a combination of these factors which can be effectively used to avoid resonance during rotor coast up/down.

  13. Design of plywood and paper flywheel rotors (United States)

    Hagen, D. L.

    Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of plywood rotors are evaluated. Wound kraft paper, twine and veneer rotors are examined. Two bulb attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Plywood moisture equilibrium during manufacture and assembly is critical. Disk shaping and rotor assembly are described. Potential self-centering dynamic balancing methods and equipment are described. Detailed measurements of the distribution of strengths, densities and specific energy of conventional Finnish Birch plywood and of custom made hexagonal Birch plywood are detailed. High resolution tensile tests were performed while monitoring the acoustic emissions with micoprocessor controlled data acquisition. Preliminary duration of load tests were performed on vacuum dried hexagonal birch plywood. Economics of cellulosic and conventional rotors were examined.

  14. Flywheel Rotor Safe-Life Technology (United States)

    Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)


    Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options

  15. Investigation of the Flow Physics Driving Stall-Side Flutter in Advanced Forward Swept Fan Designs (United States)

    Sanders, Albert J.; Liu, Jong S.; Panovsky, Josef; Bakhle, Milind A.; Stefko, George; Srivastava, Rakesh


    Flutter-free operation of advanced transonic fan designs continues to be a challenging task for the designers of aircraft engines. In order to meet the demands of increased performance and lighter weight, these modern fan designs usually feature low-aspect ratio shroudless rotor blade designs that make the task of achieving adequate flutter margin even more challenging for the aeroelastician. This is especially true for advanced forward swept designs that encompass an entirely new design space compared to previous experience. Fortunately, advances in unsteady computational fluid dynamic (CFD) techniques over the past decade now provide an analysis capability that can be used to quantitatively assess the aeroelastic characteristics of these next generation fans during the design cycle. For aeroelastic applications, Mississippi State University and NASA Glenn Research Center have developed the CFD code TURBO-AE. This code is a time-accurate three-dimensional Euler/Navier-Stokes unsteady flow solver developed for axial-flow turbomachinery that can model multiple blade rows undergoing harmonic oscillations with arbitrary interblade phase angles, i.e., nodal diameter patterns. Details of the code can be found in Chen et al. (1993, 1994), Bakhle et al. (1997, 1998), and Srivastava et al. (1999). To assess aeroelastic stability, the work-per-cycle from TURBO-AE is converted to the critical damping ratio since this value is more physically meaningful, with both the unsteady normal pressure and viscous shear forces included in the work-per-cycle calculation. If the total damping (aerodynamic plus mechanical) is negative, then the blade is unstable since it extracts energy from the flow field over the vibration cycle. TURBO-AE is an integral part of an aeroelastic design system being developed at Honeywell Engines, Systems & Services for flutter and forced response predictions, with test cases from development rig and engine tests being used to validate its predictive

  16. Optimization of wind turbine rotors

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Tor Anders


    The Constrained Steepest Descent method has been applied to the optimization of wind turbine rotors through the development of a numerical model. The model consists of an optimization kernel, an aerodynamic model, a structural dynamic model of a rotating beam, and a cost model for the wind turbine. The cost of energy is minimized directly by varying the blade design, the rotational speed and the resulting design of the drive-train and tower. The aerodynamic model is a combination of a fast engineering model based on strip-theory and two and three-dimensional Euler solvers. The two-dimensional Euler solver is used for generation of pre-stall airfoil data. Comparisons with experimental data verify that the engineering model effectively approximates non-stalled flow, except at the blade tip. The three-dimensional Euler solver is in good agreement with the experimental data at the tip, and is therefore a useful supplement for corrections of the tip-loss model, and evaluation of an optimized design. The structural dynamic model evaluates stresses and deformations for the blade. It is based on constitutive relations for a slender beam that are solved with the equations of motions using a finite-difference method. The cost model evaluates the design change of the wind turbine and the resulting costs that occur when a change in blade design modifies the blade mass and the overall forces. The cost model is based on engineering design rules for the drive-train and tower. The model was applied using a Danish 600 kW wind turbine as a reference. Two rotors were optimized using traditional NACA airfoils and a new low-lift airfoil family developed specifically for wind turbine purposes. The cost of energy decreased four percent for the NACA rotor, and seven percent for the low-lift rotor. Optimizations with a high number of degrees of freedom show that a designer has considerable flexibility in choosing some primary parameters such as rated power and rotor diameter, if the rest

  17. Energy from Swastika-Shaped Rotors

    Directory of Open Access Journals (Sweden)

    McCulloch M. E.


    Full Text Available It is suggested here that a swastika-shaped rotor exposed to waves will rotate in the di- rection its arms are pointing (towards the arm-tips due to a sheltering effect. A formula is derived to predict the motion obtainable from swastika rotors of different sizes given the ocean wave height and phase speed and it is suggested that the rotor could provide a new, simpler method of wave energy generation. It is also proposed that the swastika rotor could generate energy on a smaller scale from sound waves and Brownian motion, and potentially the zero point field.

  18. Rotor thermal stress monitoring in steam turbines (United States)

    Antonín, Bouberle; Jan, Jakl; Jindřich, Liška


    One of the issues of steam turbines diagnostics is monitoring of rotor thermal stress that arises from nonuniform temperature field. The effort of steam turbine operator is to operate steam turbine in such conditions, that rotor thermal stress doesn't exceed the specified limits. If rotor thermal stress limits are exceeded for a long time during machine operation, the rotor fatigue life is shortened and this may lead to unexpected machine failure. Thermal stress plays important role during turbine cold startup, when occur the most significant differences of temperatures through rotor cross section. The temperature field can't be measured directly in the entire rotor cross section and standardly the temperature is measured by thermocouple mounted in stator part. From this reason method for numerical solution of partial differential equation of heat propagation through rotor cross section must be combined with method for calculation of temperature on rotor surface. In the first part of this article, the application of finite volume method for calculation of rotor thermal stress is described. The second part of article deals with optimal trend generation of thermal flux, that could be used for optimal machine loading.

  19. High-power FDML laser for swept source-OCT at 1060 nm

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang;


    We present a novel frequency-swept light source working at 1060nm that utilizes a tapered amplifier as gain medium. These devices feature significantly higher saturation power than conventional semiconductor optical amplifiers and can thus improve the limited output power of swept sources...... in this wavelength range. We demonstrate that a tapered amplifier can be integrated into a fiber-based swept source and allows for high-speed FDML operation. The developed light source operates at a sweep rate of 116kHz with an effective average output power in excess of 30mW. With a total sweep range of 70 nm...

  20. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.


    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  1. Inhomogeneity of Microstructure and Damping Capacity of a FC25 Disc-Brake Rotor and Their Interrelationship (United States)

    Park, Jongbin; Han, Jeongho; Lee, Seung-Joon; Yi, Kyoungdon; Kwon, Chelwoong; Lee, Young-Kook


    The objective of the present study was to investigate the inhomogeneity of microstructure and damping capacity of a FC25 disc-brake rotor made of gray cast iron (GCI) and their interrelationship. The rotor had inhomogeneous microstructure due to different cooling rates caused by the position of inlets in a mold during casting. The volume fraction and size of graphite decreased with increasing cooling rate. A maximum deviation of the volume fraction of graphite within the rotor was approximately 2 pct, whereas that of the total perimeter of graphite per unit area was approximately 33 pct. Damping capacities measured at the first vibrational mode of both the real rotor and cantilever specimens, which were taken from four different regions within the rotor, depended on the location within the rotor. This result indicates that the damping capacity of the rotor is influenced by the inhomogeneous microstructure; particularly, the damping capacity was proportional to the total perimeter of graphite per unit area. Therefore, it was concluded that the damping of the GCI rotor used in the present study occurs primarily by the viscous or plastic flow at the interphase boundaries between the pearlite matrix and graphite particles at least at the frequencies of below 1140 Hz.

  2. Performance tests of a Benesh wind turbine rotor and a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Moutsoglou, A.; Yan Weng [South Dakota State Univ., Brookings, SD (United States). Dept. of Mechanical Engineering


    A study was conducted to compare the performance of a Benesh rotor against a Savonius rotor as a wind power generating device. Rotors of similar dimensions were tested at the exit of a 1.22 m x 0.91 wind tunnel, at two different shaft heights above the ground. In all the tests, the maximum power coefficient for the Benesh rotor was considerably greater than for the Savonius and occurred at a lower tip speed ratio. The Benesh rotor also displayed better starting characteristics throughout. Finally, the present data compared very favourably with the experimental data of Backwell et al. (Author)

  3. Numerical Investigation of the Unsteady Flow in a Transonic Compressor with Curved Rotors

    Institute of Scientific and Technical Information of China (English)

    Mao Mingming; Song Yanping; Wang Zhongqi


    The unsteady 3D flow fields in a single-stage transonic compressor under designed conditions are simulated numerically to inves- tigate the effects of the curved rotors on the stage performance and the aerodynamic interaction between the blade rows. The results show that, compared to the compressor with un-curved rotors, the compressor under scrutiny acquires remarkable increases in efficiency with significantly reduced amplitudes of the time-dependent fluctuation. The amplitude of the pressure fluctuation around the stator leading edge decreases at both endwalls, but increases at the mid-span in the curved rotors. The pressure fluctuation near the stator lead- ing edge, therefore, becomes more uniform in the radial direction of this compressor. Except for the leading edge area, the pressure fluc- tuation amplitude declines remarkably in the tip region of stator surface downstream of the curved rotor, but hardly changes in the mid- dle and at the hub.

  4. Limitations caused by distortion in room impulse response measurements by swept sine technique

    DEFF Research Database (Denmark)

    Stojic, Branko; Ciric, Dejan; Markovic, Milos


    of a measured response can be limited in a similar way as in maximum length sequence technique, although the saturation level (maximum dynamic range) is higher for swept sine technique. Thus, swept sine technique is also vulnerable to a certain extent to distortion that limits the quality of measured impulse......The significance of a room impulse response implies the requirement that its measurement should have a high level of accuracy in certain applications. One of the common problems in a measurement process is nonlinearity leading to the distortion of a room impulse response. Limitations caused...... by the distortion in room impulse response measurements by swept sine technique are analyzed here by the simulations and measurements. For the investigation, both linear and exponential swept sines are used as an excitation signal. In the simulations, this signal is modified by the nonlinearity model in the time...

  5. An experimental investigation of the effect of rotor tip shape on helicopter blade-slap noise. [in the langley v/stol wind tunnel (United States)

    Hoad, D. R.


    The effect of tip-shape modification on blade-vortex interaction-induced helicopter blade-slap noise was investigated. The general rotor model system (GRMS) with a 3.148 m (10.33 ft) diameter, four-bladed fully articulated rotor was installed in the Langley V/STOL wind tunnel. The tunnel was operated in the open-throat configuration with treatment to improve the semi-anechoic characteristics of the test chamber. Based on previous investigation, four promising tips (ogee, sub-wing, 60 deg swept-tapered, and end-plate) were used along with a standard square tip as a baseline configuration. Aerodynamic and acoustical data concerning the relative applicability of the various tip configurations for blade-slap noise reduction are presented without analysis or discussion.

  6. Swept source OCT imaging of human anterior segment at 200 kHz (United States)

    Karnowski, Karol; Gora, Michalina; Kaluzny, Bartlomiej; Huber, Robert; Szkulmowski, Maciej; Kowalczyk, Andrzej; Wojtkowski, Maciej


    We present applicability of the high speed swept-source optical coherence tomography for in vivo imaging of the anterior segment of the human eye. Three dimensional imaging of the cornea with reduced motion artifacts is possible by using swept source with Fourier domain mode locking operating at 200kHz with 1300nm central wavelength. High imaging speeds allow for assessment of anterior and posterior corneal topography and generation of thickness and elevation maps.

  7. Rotor theories by Professor Joukowsky: Momentum theories

    DEFF Research Database (Denmark)

    van Kuik, G. A. M.; Sørensen, Jens Nørkær; Okulov, V. L.


    This paper is the first of two papers on the history of rotor aerodynamics with special emphasis on the role of Joukowsky. The present one focuses on the development of the momentum theory while the second one surveys the development of vortex theory for rotors. Joukowsky has played a major role ...

  8. Pneumatic boot for helicopter rotor deicing (United States)

    Blaha, B. J.; Evanich, P. L.


    Pneumatic deicer boots for helicopter rotor blades were tested. The tests were conducted in the 6 by 9 ft icing research tunnel on a stationary section of a UH-IH helicopter main rotor blade. The boots were effective in removing ice and in reducing aerodynamic drag due to ice.

  9. Computational Analysis of Multi-Rotor Flows (United States)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.


    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  10. Open Rotor - Analysis of Diagnostic Data (United States)

    Envia, Edmane


    NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.

  11. Laminar-turbulent transition delay on a swept wing (United States)

    Borodulin, V. I.; Ivanov, A. V.; Kachanov, Y. S.; Hanifi, A.


    The paper describes the results of experiments on robustness of laminar-turbulent transition control on a swept-wing using distributed micro-sized roughness (DMSR) elements. These elements introduce controlled stationary vortices which are able to significantly modify the base flow and its stability characteristics. We have performed parametric study first varying height and period of the DMSR elements in order to find the most stabilizing effect on boundary later flow in compare to uncontrolled reference case without DMSR. Significant downstream shift of laminar-turbulent transition position due to application of DMSR is found and well documented with help of thermography. The robustness of this flow control method was studied by variation of the wind-tunnel flow quality introducing significant sound background or introducing enhanced turbulence level (applying turbulizing grids). The wind-tunnel tests performed with turbulence-generating grids (at enhanced turbulence levels) have shown that laminar-turbulent transition moves upstream in this case, while DMSR-elements loose their effectiveness for transition control (no matter in quiet sound conditions or at elevated sound background). The experiments on acoustic influence have shown that without DMSR acoustic does not effect transition location. However, in case then laminar-turbulent transition is delayed by presence of DMSR, an additional transition delay was observed when harmonic acoustic waves of certain frequency were excited.

  12. Rotors stress analysis and design

    CERN Document Server

    Vullo, Vincenzo


    Stress and strain analysis of rotors subjected to surface and body loads, as well as to thermal loads deriving from temperature variation along the radius, constitutes a classic subject of machine design. Nevertheless attention is limited to rotor profiles for which governing equations are solvable in closed form. Furthermore very few actual engineering issues may relate to structures for which stress and strain analysis in the linear elastic field and, even more, under non-linear conditions (i.e. plastic or viscoelastic conditions) produces equations to be solved in closed form. Moreover, when a product is still in its design stage, an analytical formulation with closed-form solution is of course simpler and more versatile than numerical methods, and it allows to quickly define a general configuration, which may then be fine-tuned using such numerical methods. In this view, all subjects are based on analytical-methodological approach, and some new solutions in closed form are presented. The analytical formul...

  13. Experimental modal tests applied to rotor balancing; Pruebas modales experimentales aplicadas al balanceo de rotores

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Solis, Jose Antonio; Munoz Quezada, Rodolfo; Franco Nava, Jose Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)


    At the Instituto de Investigaciones Electricas (IIE), the experimental modal tests were initiated in order to validate the numerical models used by computer programs for the study of the rotor dynamic behavior. In order to contribute to the application of the rotor balancing methods based in the calculation of their modal forms, currently the capacity to determine these modal forms and the natural frequencies of turbogenerator rotors, is being developed, through experimental modal tests. In this paper a short description is made of the technique and the results of its application in an experimental rotor and in one of the rotors of a turbogenerator, are presented. [Espanol] En el Instituto de Investigaciones Electricas (IIE), las pruebas modales experimentales se iniciaron con la finalidad de validar los modelos numericos empleados por programas de computo para el estudio del comportamiento dinamico de rotores. Con objeto de contribuir a la aplicacion de los metodos de balanceo de rotores basados en el calculo de sus formas modales, actualmente esta desarrollandose la capacidad para determinar esas formas modales y las frecuencias naturales de rotores de turbogeneradores, a traves de las pruebas modales experimentales. En este trabajo se describe brevemente la tecnica y se presentan los resultados de su aplicacion en un rotor experimental y en uno de los tres rotores de un turbogenerador.

  14. 14 CFR 27.1461 - Equipment containing high energy rotors. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  15. 14 CFR 29.1461 - Equipment containing high energy rotors. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  16. 14 CFR 25.1461 - Equipment containing high energy rotors. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  17. Wind rotor with vertical axis. Vindrotor med vertikal axel

    Energy Technology Data Exchange (ETDEWEB)

    Colling, J.; Sjoenell, B.


    This rotor is of dual type i.e. a paddle wheel shaped rotor close to the vertical axis and a second rotor consisting of vertical blades with wing profile and attached to radial spokes which are fixed to the axis together with the paddle wheel rotor. (L.F.).

  18. Magnetostatic analysis of a rotor system supported by radial active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Ferfecki P.


    Full Text Available The development and the design of a radial active magnetic bearing (AMB reflects a complex process of the multidisciplinary rotor dynamics, electromagnetism and automatic control analysis. Modelling is performed by application of the physical laws from different areas, e.g. Newton's laws of motion and Maxwell's equations. The new approach in the numerical modelling of radial AMB and design methodology allowing automatic generation of primary dimensions of the radial AMB is proposed. Instead of the common way of computation of electromagnetic forces by linearizing at the centre position of the rotor with respect to rotor displacement and coil current, the finite element computation of electromagnetic forces is used. The heteropolar radial AMB consisting of eight pole shoes was designed by means of the built up algorithms for rotor system with two discs fixed on the cantilever shaft. A study of the influence of the nonlinear magnetization characteristics of a rotor and stator material on the equilibrium position of a rotor system is carried out. The performed numerical study shows that results obtained from the analytical nonlinear relation for electromagnetic forces can be considerably different from forces computed with magnetostatic finite element analysis.

  19. On the torque mechanism of Savonius rotors

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, N. (Dept. of Mechanical Univ., Kiryu (Japan))


    The aerodynamic performance and the flow fields of Savonius rotors at various overlap ratios have been investigated by measuring the pressure distributions on the blades and by visualizing the flow fields in and around the rotors with and without rotation. Experiments have been performed on four rotors having two semicircular blades but with different overlap ratios ranging 0 to 0.5. The static torque performance is improved by increasing the overlap ratio especially on the returning blade, which is due to the pressure recovery effect by the flow through the overlap. On the other hand, the torque and the power performance of the rotating rotor reaches a maximum at an overlap of 0.15. This effect is largely created by the Coanda-like flow on the convex side of the advancing blade, which is strengthened by the flow through the overlap at this small overlap ratio. However, this phenomena is weakened as the overlap ratio is further increased, suggesting a deteriorated performance of the rotor. Observations of the flow inside the rotor indicate an increased recirculation region at such large overlap ratios, which also suggests a reduced aerodynamic efficiency for rotors with large overlap. 11 figs., 16 refs.

  20. Swept source optical coherence tomography for quantitative and qualitative assessment of dental composite restorations (United States)

    Sadr, Alireza; Shimada, Yasushi; Mayoral, Juan Ricardo; Hariri, Ilnaz; Bakhsh, Turki A.; Sumi, Yasunori; Tagami, Junji


    The aim of this work was to explore the utility of swept-source optical coherence tomography (SS-OCT) for quantitative evaluation of dental composite restorations. The system (Santec, Japan) with a center wavelength of around 1300 nm and axial resolution of 12 μm was used to record data during and after placement of light-cured composites. The Fresnel phenomenon at the interfacial defects resulted in brighter areas indicating gaps as small as a few micrometers. The gap extension at the interface was quantified and compared to the observation by confocal laser scanning microscope after trimming the specimen to the same cross-section. Also, video imaging of the composite during polymerization could provide information about real-time kinetics of contraction stress and resulting gaps, distinguishing them from those gaps resulting from poor adaptation of composite to the cavity prior to polymerization. Some samples were also subjected to a high resolution microfocus X-ray computed tomography (μCT) assessment; it was found that differentiation of smaller gaps from the radiolucent bonding layer was difficult with 3D μCT. Finally, a clinical imaging example using a newly developed dental SS-OCT system with an intra-oral scanning probe (Panasonic Healthcare, Japan) is presented. SS-OCT is a unique tool for clinical assessment and laboratory research on resin-based dental restorations. Supported by GCOE at TMDU and NCGG.

  1. The effect of protons on the performance of swept-charge devices

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David R. [Imaging for Space and Terrestrial Applications Group, School of Engineering and Design, Brunel University, Uxbridge Middlesex UB8 3PH (United Kingdom)], E-mail:; Gow, Jason [Imaging for Space and Terrestrial Applications Group, School of Engineering and Design, Brunel University, Uxbridge Middlesex UB8 3PH (United Kingdom)


    The e2v technologies CCD54, or swept-charge device (SCD) has been extensively radiation tested for use in the Chandrayaan-1 X-ray Spectrometer (C1XS) instrument, to be launched as a part of the Indian Space Research Organisation (ISRO) Chandrayaan-1 payload in 2008. The principle use of the SCD is in X-ray fluorescence (XRF) applications, the device providing a relatively large collecting area of 1.1 cm{sup 2}, and achieving near Fano-limited spectroscopy at -15 deg. C, a temperature that is easily obtained using a thermoelectric cooler (TEC). This paper describes the structure and operation of the SCD and details the methodology and results obtained from two proton irradiation studies carried out in 2006 and 2008, respectively to quantify the effects of proton irradiation on the operational characteristics of the device. The analysis concentrates on the degradation of the measured FWHM of various elemental lines and quantifies the effects of proton fluence on the observed X-ray fluorescence spectra from mineralogical target samples.

  2. Swept-source OCT Angiography of the Retinal Vasculature using Intensity Differentiation Based OMAG Algorithms (United States)

    Huang, Yanping; Zhang, Qinqin; Thorell, Mariana Rossi; An, Lin; Durbin, Mary; Laron, Michal; Sharma, Utkarsh; Gregori, Giovanni; Rosenfeld, Philip J.; Wang, Ruikang K


    Background and Objective To demonstrate the feasibility of using a 1050 nm swept-source OCT (SS-OCT) system to achieve noninvasive retinal vasculature imaging in human eyes. Materials and Methods Volumetric datasets were acquired using a ZEISS 1 µm SS-OCT prototype that operated at an A-line rate of 100 kHz. A scanning protocol designed to allow for motion contrast processing, referred to as OCT angiography or optical microangiography (OMAG), was used to scan ~3 mm × 3 mm area in the central macular region of the retina within ~4.5 seconds. Intensity differentiation based OMAG algorithm was used to extract 3-D retinal functional microvasculature information. Results Intensity signal differentiation generated capillary-level resolution en face OMAG images of the retina. The parafoveal capillaries were clearly visible, thereby allowing visualization of the foveal avascular zone (FAZ) in normal subjects. Conclusion The capability of OMAG to produce retinal vascular images was demonstrated using the ZEISS 1 µm SS-OCT prototype. This technique can potentially have clinical value for studying retinal vasculature abnormalities. PMID:25230403

  3. Characteristics of wind power on Savonius rotor using a guide-box tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Irabu, Kunio; Roy, Jitendro Nath [Faculty of Mechanical Engineering, University of the Ryukyus, Senbaru-1, Nishihara, Okinawa 903-0213 (Japan)


    This study investigates to improve and adjust the output power of Savonius rotor under various wind power and suggests the method of prevention the rotor from strong wind disaster. In this study, as the appropriate device to achieve the purpose of it, a guide-box tunnel is employed. The guide-box tunnel is like a rectangular box as wind passage in which a test rotor is included. The area ratio between the inlet and exit of it is variable to adjust the inlet mass flow rate or input power. At first, the experiment was conducted to find the adequate configuration which would provide the best relative performance. The present experiment, however, does not include the test to retain the guide-box tunnel from the strong wind. The experiments include the static torque test of the fixed rotor at any phase angle and the dynamic torque test at rotation of them. Consequently, it was found that the maximum rotor rotational speed was achieved in the range of the guide-box area ratio between 0.3 and 0.7 and the value of the output power coefficient of the rotor with guide-box tunnel of the area ratio 0.43 increases about 1.5 times with three blades and 1.23 times with two blades greater than that without guide-box tunnel, respectively. It seemed that the performance of Savonius rotor within the guide-box tunnel is comparable enough with other methods for augmentation and control of the output. (author)

  4. Discrete analog computing with rotor-routers. (United States)

    Propp, James


    Rotor-routing is a procedure for routing tokens through a network that can implement certain kinds of computation. These computations are inherently asynchronous (the order in which tokens are routed makes no difference) and distributed (information is spread throughout the system). It is also possible to efficiently check that a computation has been carried out correctly in less time than the computation itself required, provided one has a certificate that can itself be computed by the rotor-router network. Rotor-router networks can be viewed as both discrete analogs of continuous linear systems and deterministic analogs of stochastic processes.

  5. Cyclic Control Optimization for a Smart Rotor

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Henriksen, Lars Christian


    The paper presents a method to determine cyclic control trajectories for a smart rotor undergoing periodic-deterministic load variations. The control trajectories result from a constrained optimization problem, where the cost function to minimize is given by the variation of the blade root flapwise...... bending moment within a rotor revolution. The method is applied to a rotor equipped with trailing edge flaps, and capable of individual blade pitching. Results show that the optimized cyclic control significantly alleviates the load variations from periodic disturbances; the combination of both cyclic...

  6. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Keith D.; Plank, William L.


    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  7. Study on wave rotor refrigerators

    Institute of Scientific and Technical Information of China (English)

    Yuqiang DAI; Dapeng HU; Meixia DING


    As a novel generation of a rotational gas wave machine, the wave rotor refrigerator (WRR) is an unsteady flow device used for refrigeration, in whose passages pressured streams directly contact and exchange energy due to the movement of pressure waves. In this paper, the working mechanism and refrigeration principle are inves-tigated based on the one-dimensional unsteady flow theory.A basic limitation on main structural parameters and operating parameters is deduced and the wave diagram of WRR to guide designing is sketched. The main influential factors are studied through an experiment. In the DUT Gas Wave Refrigeration Studying and Development Center (GWRSDC) lab, the isentropic efficiency can now reach about 65%. The results show that the WRR is a feasible and promising technology in pressured gas refrigeration cases.

  8. Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft (United States)

    Bishop, H. E.; Burkam, J. E.; Heminway, R. C.; Keys, C. N.; Smith, K. E.; Smith, J. H.; Staley, J. A.


    Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed.

  9. Improving the Accuracy of Wind Turbine Power Curve Validation by the Rotor Equivalent Wind Speed Concept (United States)

    Scheurich, Frank; Enevoldsen, Peder B.; Paulsen, Henrik N.; Dickow, Kristoffer K.; Fiedel, Moritz; Loeven, Alex; Antoniou, Ioannis


    The measurement of the wind speed at hub height is part of the current IEC standard procedure for the power curve validation of wind turbines. The inherent assumption is thereby made that this measured hub height wind speed sufficiently represents the wind speed across the entire rotor area. It is very questionable, however, whether the hub height wind speed (HHWS) method is appropriate for rotor sizes of commercial state-of-the-art wind turbines. The rotor equivalent wind speed (REWS) concept, in which the wind velocities are measured at several different heights across the rotor area, is deemed to be better suited to represent the wind speed in power curve measurements and thus results in more accurate predictions of the annual energy production (AEP) of the turbine. The present paper compares the estimated AEP, based on HHWS power curves, of two different commercial wind turbines to the AEP that is based on REWS power curves. The REWS was determined by LiDAR measurements of the wind velocities at ten different heights across the rotor area. It is shown that a REWS power curve can, depending on the wind shear profile, result in higher, equal or lower AEP estimations compared to the AEP predicted by a HHWS power curve.

  10. A 64 Bits Rotor Enhanced Block Cipher (Rebc3

    Directory of Open Access Journals (Sweden)

    Ahmed ElShafee


    Full Text Available This paper gives a new proposed cryptosystem (REBC3 that is designed to take advantages of the new generation of 64bits microprocessors which commercially known as x64 systems. The old version REBC2,which was published in Africon 2007. REBC2 was basically developed for the 32bits microprocessors which is commercially known as x86 systems. REBC3 like REBC2 use the concept of rotor enhanced blockcipher which was initially proposed by the author in [NRSC 2002] on the first version of REBC. REBC2 used the same concept from a another point of view, which is using rotors to achieve two basiccryptographic operations; permutation, and substitution. Round key is generated using rotor too, which is used to achieve ciphertext key dependency. To enhance non-linearity and to resist linear cryptanalysis,REBC3 has a variable block, and key lengths. Each round has its own block length which depends on round the key and round key length. Dependency is based upon the previous round generated key. Rotors implemented using successive affine transformation . The 32 bits version was proposed in KAMFEE cipher, then the 64bits version was proposed in KAMFEE-X64 cipher. This achieved memory-less, normalized ciphertext statistics, and small processing speed trend. The strength of this system is compared with the REBC2 and RIJNDAEL (AES ciphers.REBC3 cipher gives excellent results from security characteristics and statistical point of view of. So authors suggests to use REBC3 in the area of banking and electronic fund transfer.

  11. HARP model rotor test at the DNW. [Hughes Advanced Rotor Program (United States)

    Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou


    Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.

  12. The Savonius rotor. A construction guide. 11. ed.; Der Savonius-Rotor. Eine Bauanleitung

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Heinz


    The Savonius rotor is particularly suited for medium and low wind velocities and low capacities (up to 500 W). It can be constructed of commercial components and using simple techniques. It requires little wind to start, and the useful energy is transmitted via a shaft. In this lavishly illustrated book, the author describes the construction and operation of a robust Savonius rotor. He also shows how this rotor can be developed into a flow-through rotor for bigger plants, and he presents recommendations for appropriate machinery like pumps and slow generators.

  13. Aerodynamics of Rotor Blades for Quadrotors

    CERN Document Server

    Bangura, Moses; Naldi, Roberto; Mahony, Robert


    In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and blade element theories. From a robotics perspective, the theoretical development of the models for thrust and horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using momentum theory, we propose and model the existence of a horizontal force along with its associated power. Given the limitations associated with momentum theory and the inadequacy of the theory to account for the different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory, models are then developed for the different quadrotor rotor geometries and aerodynamic properties including the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric variations are also dictated by a desired th...

  14. Valve-aided twisted Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Rajkumar, M.; Saha, U.K.


    Accessories, such as end plates, deflecting plates, shielding and guide vanes, may increase the power of a Savonius rotor, but make the system structurally complex. In such cases, the rotor can develop a relatively large torque at small rotational speeds and is cheap to build, however it harnesses only a small fraction of the incident wind energy. Another proposition for increasing specific output is to place non-return valves inside the concave side of the blades. Such methods have been studied experimentally with a twisted-blade Thus improving a Savonius rotor's energy capture. This new concept has been named as the 'Valve-Aided Twisted Savonius'rotor. Tests were conducted in a low-speed wind tunnel to evaluate performance. This mechanism is found to be independent of flow direction, and shows potential for large machines. [Author].

  15. Edge states of periodically kicked quantum rotors

    CERN Document Server

    Floß, Johannes


    We present a quantum localization phenomenon that exists in periodically kicked 3D rotors, but is absent in the commonly studied 2D ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at $J=0$. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.

  16. Rotor dynamic analysis of main coolant pump

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chong Won; Seo, Jeong Hwan; Kim, Choong Hwan; Shin, Jae Chul; Wang, Lei Tian [Korea Advanced Institute of Science and Technology, Taejon (Korea)


    A rotor dynamic analysis program DARBS/MCP, for the main coolant pump of the integral reactor, has been developed. The dynamic analysis model of the main coolant pump includes a vertical shaft, three grooved radial journal bearings and gaps that represent the structure-fluid interaction effects between the rotor and the lubricant fluid. The electromagnetic force from the motor and the hydro-dynamic force induced by impeller are the major sources of vibration that may affect the rotor system stability. DARBS/MCP is a software that is developed to effectively analyze the dynamics of MCP rotor systems effectively by applying powerful numerical algorithms such as FEM with modal truncation and {lambda}-matrix method for harmonic analysis. Main design control parameters, that have much influence to the dynamic stability, have been found by Taguchi's sensitivity analysis method. Design suggestions to improve the stability of MCP rotor system have been documented. The dynamic bearing parameters of the journal bearings used for main coolant pump have been determined by directly solving the Reynolds equation using FDM method. Fluid-structure interaction effect that occurs at the small gaps between the rotor and the stator were modeled as equivalent seals, the electromagnetic force effect was regarded as a linear negative radial spring and the impeller was modeled as a rigid disk with hydrodynamic and static radial force. Although there exist critical speeds in the range of operational speeds for type I and II rotor systems, the amplitude of vibration appears to be less than the vibration limit set by the API standards. Further more, it has been verified that the main design parameters such as the clearance and length of journal bearings, and the static radial force of impeller should be properly adjusted, in order to the improve dynamic stability of the rotor system. (author). 39 refs., 81 figs., 17 tabs.

  17. A Preliminary Feasibility Study for the Utilization of a Tilt-Rotor Aircraft (MV-22) for Logistical Support to the Military Outpost Along the Venezuelan Jungle Area Bordering Colombia (United States)


    PK/H where PK/H = Av/Ap Av = vulnerable area. Ap = presented area. The actual calculation of vulnerable area used computer generated irregular terrain landing. The payload which is actually transported by helicopters to the zone can be doubled and the time employed can be...Venezuela 4. Jefatura de Educacion 2 Comandancia General de la Armada Avenida Vollmer San Bernardino Caracas, Venezuela 5. Escuela Superior de Guerra Naval

  18. Investigation of rotor control system loads

    Institute of Scientific and Technical Information of China (English)

    Sun Tao; Tan Jianfeng; Wang Haowen


    This paper concentrates on the aeroelasticity analysis of rotor blade and rotor control systems. A new multi-body dynamics model is established to predict both rotor pitch link loads and swashplate servo loads. Two helicopter rotors of UH-60A and SA349/2, both operating in two critical flight conditions, high-speed flight and high-thrust flight, are studied. The analysis shows good agreements with the flight test data and the calculation results using CAMRAD II. The mechanisms of rotor control loads are then analyzed in details based on the present predictions and the flight test data. In high-speed conditions, the pitch link loads are dominated by the integral of blade pitching moments, which are generated by cyclic pitch control. In high-thrust conditions, the positive pitching loads in the advancing side are caused by high collective pitch angle, and dynamic stall in the retreating side excites high-frequency responses. The swashplate servo loads are predominated by the rotor pitch link loads, and the inertia of the swashplate has significant effects on high-frequency harmonics of the servo loads.

  19. Dynamic Gust Load Analysis for Rotors

    Directory of Open Access Journals (Sweden)

    Yuting Dai


    Full Text Available Dynamic load of helicopter rotors due to gust directly affects the structural stress and flight performance for helicopters. Based on a large deflection beam theory, an aeroelastic model for isolated helicopter rotors in the time domain is constructed. The dynamic response and structural load for a rotor under the impulse gust and slope-shape gust are calculated, respectively. First, a nonlinear Euler beam model with 36 degrees-of-freedoms per element is applied to depict the structural dynamics for an isolated rotor. The generalized dynamic wake model and Leishman-Beddoes dynamic stall model are applied to calculate the nonlinear unsteady aerodynamic forces on rotors. Then, we transformed the differential aeroelastic governing equation to an algebraic one. Hence, the widely used Newton-Raphson iteration algorithm is employed to simulate the dynamic gust load. An isolated helicopter rotor with four blades is studied to validate the structural model and the aeroelastic model. The modal frequencies based on the Euler beam model agree well with published ones by CAMRAD. The flap deflection due to impulse gust with the speed of 2m/s increases twice to the one without gust. In this numerical example, results indicate that the bending moment at the blade root is alleviated due to elastic effect.

  20. Forces exciting generation roll at rotor vibrations when rotor-to-stator rubbing (United States)

    Shatokhin, V. F.


    The consequences of emergencies of turbosets for different application are revealed, the cause of forced shutdown and even catastrophic destructions of which many researchers consider the rotor-to-stator rubbing and development—to a greater or lesser extent—of the phenomena of the rotor generation roll over the stator. The synchronous or asynchronous generation roll is determined by the rotor precession direction, coinciding or not coinciding with the self-rotation direction of the rotor. Asynchronous generation roll is the most dangerous form of the rotor-stator contact interaction with the vibrations with rubbing. The basic equations of rotor vibrations are presented: symmetric rotor fixed on two supports and that fixed on several supports after abrupt imbalance with and without rotor coming in contact with a flexible stator. The vibration process is considered as the rotor motion in a backlash with subsequent contact with the stator, loss of contact, or development of generation roll. The latter essentially depends on the properties of the "rotor-support-stator" dynamic system. The stator stiffness characteristic is specified in "force-deformation" coordinates that make it possible to take into account damping in the supports and power loss in the stator. The diagram of elastic-damping device was presented, which makes it possible to ensure a certain level of power loss at the stator displacements. The exciting forces promoting development of self-exciting vibrations of the rotor in the form of asynchronous generation roll were compared with the exciting forces of oil film of sliding bearings and forces of aerodynamic excitation in the turbine flow path and sealings. For the rotor systems of high and medium pressure of a 300 MW capacity turboset, the simulation results of the process of development of asynchronous generation roll at the vibrations with rubbing were revealed, and the basic characteristics of development of generation roll in a span between

  1. Chromatic polarization effects of swept waveforms in FDML lasers and fiber spools. (United States)

    Wieser, Wolfgang; Palte, Gesa; Eigenwillig, Christoph M; Biedermann, Benjamin R; Pfeiffer, Tom; Huber, Robert


    We present detailed investigations of chromatic polarization effects, caused by fiber spools used in FDML lasers and buffering spools for rapidly wavelength swept lasers. We introduce a novel wavelength swept FDML laser source, specially tailored for polarization sensitive optical coherence tomography (OCT) which switches between two different linear polarization states separated by 45°, i.e. 90° on the Poincaré sphere. The polarization maintaining laser cavity itself generates a stable linear polarization state and uses an external buffering technique in order to provide alternating polarization states for successive wavelength sweeps. The design of the setup is based on a comprehensive analysis of the polarization output from FDML lasers, using a novel 150 MHz polarization analyzer. We investigate the fiber polarization properties related to swept source OCT for different fiber delay topologies and analyze the polarization state of different FDML laser sources. © 2012 Optical Society of America

  2. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging. (United States)

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun


    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  3. Acousto-Optic–Based Wavelength-Comb-Swept Laser for Extended Displacement Measurements

    Directory of Open Access Journals (Sweden)

    Nam Su Park


    Full Text Available We demonstrate a novel wavelength-comb-swept laser based on two intra-cavity filters: an acousto-optic tunable filter (AOTF and a Fabry-Pérot etalon filter. The AOTF is used for the tunable selection of the output wavelength with time and the etalon filter for the narrowing of the spectral linewidth to extend the coherence length. Compared to the conventional wavelength-swept laser, the acousto-optic–based wavelength-comb-swept laser (WCSL can extend the measureable range of displacement measurements by decreasing the sensitivity roll-off of the point spread function. Because the AOTF contains no mechanical moving parts to select the output wavelength acousto-optically, the WCSL source has a high wavenumber (k linearity of R2 = 0.9999 to ensure equally spaced wavelength combs in the wavenumber domain.

  4. Full-scale S-76 rotor performance and loads at low speeds in the NASA Ames 80- by 120-Foot Wind Tunnel. Vol. 1 (United States)

    Shinoda, Patrick M.


    A full-scale helicopter rotor test was conducted in the NASA Ames 80- by 120-Foot Wind Tunnel with a four-bladed S-76 rotor system. Rotor performance and loads data were obtained over a wide range of rotor shaft angles-of-attack and thrust conditions at tunnel speeds ranging from 0 to 100 kt. The primary objectives of this test were (1) to acquire forward flight rotor performance and loads data for comparison with analytical results; (2) to acquire S-76 forward flight rotor performance data in the 80- by 120-Foot Wind Tunnel to compare with existing full-scale 40- by 80-Foot Wind Tunnel test data that were acquired in 1977; (3) to evaluate the acoustic capability of the 80- by 120- Foot Wind Tunnel for acquiring blade vortex interaction (BVI) noise in the low speed range and compare BVI noise with in-flight test data; and (4) to evaluate the capability of the 80- by 120-Foot Wind Tunnel test section as a hover facility. The secondary objectives were (1) to evaluate rotor inflow and wake effects (variations in tunnel speed, shaft angle, and thrust condition) on wind tunnel test section wall and floor pressures; (2) to establish the criteria for the definition of flow breakdown (condition where wall corrections are no longer valid) for this size rotor and wind tunnel cross-sectional area; and (3) to evaluate the wide-field shadowgraph technique for visualizing full-scale rotor wakes. This data base of rotor performance and loads can be used for analytical and experimental comparison studies for full-scale, four-bladed, fully articulated rotor systems. Rotor performance and structural loads data are presented in this report.

  5. En face mode of swept-source optical coherence tomography in circumscribed choroidal haemangioma. (United States)

    Flores-Moreno, Ignacio; Caminal, Josep M; Arias-Barquet, Luis; Rubio-Caso, Marcos J; Catala-Mora, Jaume; Vidal-Martí, María; Muñoz-Blanco, Alex; Filloy, Alejandro; Ruiz-Moreno, José M; Duker, Jay S; Arruga, Jorge


    To describe the findings in circumscribed choroidal haemangioma (CCH) using en face swept-source optical coherence tomography (SS-OCT). En face images were obtained employing DRI-1 Atlantis OCT (Topcon, Tokyo, Japan), using a three-dimensional volumetric scan of 12×9 mm. Images were obtained from the retinal pigment epithelium to 1000 μm in depth of the tumour. Twenty-two eyes from 22 patients with the clinical diagnosis of CCH were included. In 20 eyes (90.9%), a characteristic pattern was visualised in the en face image across the vascular tumour. A multilobular pattern, similar to a honeycomb, with hyporeflective, confluent, oval or round areas corresponding with the lumen of the tumour vascular spaces, and hyper-reflective zones, which may represent the vessels walls and connective tissue of the tumour. Ten eyes (45.4%) showed a hyper-reflective halo surrounding the tumour. Seventeen tumours (77.2%) showed small diameter vessels at the inner zone and larger vessels in the outer area. Twelve patients (54.5%) had previously received treatment (photodynamic therapy, transpupillary thermotherapy, dexamethasone intravitreal implant or brachytherapy with ruthenium-106). No differences were found between treated and untreated patients in any of the measured parameters. En face SS-OCT is a rapid, non-invasive, high-resolution, technology, which allows a complementary study to cross-sectional scans in CCH. A characteristic multilobular pattern, with a hyper-reflective halo surrounding the tumour, was found in en face SS-OCT images. No morphological differences were found between naïve patients and patients who received previous treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  6. Higher harmonic control analysis for vibration reduction of helicopter rotor systems (United States)

    Nguyen, Khanh Q.


    An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor

  7. A rotor for a high-rise building; Ein Rotor fuer das Hochhaus

    Energy Technology Data Exchange (ETDEWEB)

    Zastrow, F. [Hochschule Bremerhaven (Germany). Inst. fuer Automatisierungs- und Elektrotechnik; Okoth, G.; Boehm, K.; El Naggar, S. [Alfred-Wegener Inst. fuer Polar- und Meeresforschung, Bremerhaven (Germany)


    The typical characteristics of the H rotor recommend it not only for use in extreme climate zones but also for installation on buildings and in built-on terrain. It is difficult, however, to make small H rotors efficient and economical. (orig.)

  8. Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation


    Yamanari, Masahiro; Makita, Shuichi; Yasuno, Yoshiaki


    We present fiber-based polarization-sensitive swept-source optical coherence tomography (SS-OCT) based on continuous source polarization modulation. The light source is a frequency swept laser centered at 1.31 μm with a scanning rate of 20 kHz. The incident polarization is modulated by a resonant electro-optic modulator at 33.3 MHz, which is one-third of the data acquisition frequency. The zeroth- and first-order harmonic components of the OCT signals with respect to the polarization modulati...

  9. Noise reduction for centrifugal fan with non-isometric forward-swept blade impeller

    Institute of Scientific and Technical Information of China (English)

    Jianfeng MA; Datong QI; Yijun MAO


    To reduce the noise of the T9-19No.4A centri-fugal fan, whose impeller has equidistant forward-swept blades, two new impellers with different blade spacing were designed and an experimental study was conducted. Both the fan's aerodynamic performance and noise were measured when the two redesigned impellers were com-pared with the original ones. The test results are discussed in detail and the effect of the noise reduction method for a centrifugal fan using impellers with non-isometric for-ward-swept blades was analyzed, which can serve as a reference for researches on reduction of fan noise.

  10. Electrogasdynamic excitation of controlling disturbances near a swept wing leading edge (United States)

    Chernyshev, Sergey; Kiselev, Andrey; Kuryachii, Aleksandr


    New design of multiple plasma actuator intended for the excitation of disturbances in boundary layer near a leading edge of a swept wing is proposed. The excited disturbances have to suppress the cross-flow-type instability modes provoking laminar-to-turbulent transition in usual conditions. Numerical modeling of the excitation of controlling disturbances by plasma actuator has been executed in stationary approximation for the case of infinite span swept wing at subsonic cruise flight conditions. Localized volumetric force and heat impact of actuator periodic along a wing span has been considered. Calculations have been executed for physical parameters of impact typical for surface dielectric barrier discharge.

  11. Aeropropulsive characteristics of twin nonaxisymmetric vectoring nozzles installed with forward-swept and aft-swept wings. [in the Langley 16 Foot Transonic Tunnel (United States)

    Capone, F. J.


    An investigation was conducted in the Langley 16 Foot Transonic Tunnel to determine the aeropropulsive characteristics of a single expansion ramp nozzle (SERN) and a two dimensional convergent divergent nozzle (2-D C-D) installed with both an aft swept and a forward swept wing. The SERN was tested in both an upright and an inverted position. The effects of thrust vectoring at nozzle vector angles from -5 deg to 20 deg were studied. This investigation was conducted at Mach numbers from 0.40 to 1.20 and angles of attack from -2.0 deg to 16 deg. Nozzle pressure ratio was varied from 1.0 (jet off) to about 9.0. Reynolds number based on the wing mean geometric chord varied from about 3 million to 4.8 million, depending upon free stream number.

  12. Electric Drive Control with Rotor Resistance and Rotor Speed Observers Based on Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    C. Ben Regaya


    Full Text Available Many scientific researchers have proposed the control of the induction motor without speed sensor. These methods have the disadvantage that the variation of the rotor resistance causes an error of estimating the motor speed. Thus, simultaneous estimation of the rotor resistance and the motor speed is required. In this paper, a scheme for estimating simultaneously the rotor resistance and the rotor speed of an induction motor using fuzzy logic has been developed. We present a method which is based on two adaptive observers using fuzzy logic without affecting each other and a simple algorithm in order to facilitate the determination of the optimal values of the controller gains. The control algorithm is proved by the simulation tests. The results analysis shows the characteristic robustness of the two observers of the proposed method even in the case of variation of the rotor resistance.

  13. Optimum blade loading for a powered rotor in descent

    Institute of Scientific and Technical Information of China (English)

    Ramin Modarres; David A. Peters


    The optimum loading for rotors has previously been found for hover, climb and wind turbine conditions;but, up to now, no one has determined the optimum rotor loading in descent. This could be an important design consideration for rotary-wing parachutes and low-speed des-cents. In this paper, the optimal loading for a powered rotor in descent is found from momentum theory based on a variational principle. This loading is compared with the optimal loading for a rotor in hover or climb and with the Betz rotor loading (which is optimum for a lightly-loaded rotor). Wake contraction for each of the various loadings is also presented.


    Directory of Open Access Journals (Sweden)

    Ali BEAZIT


    Full Text Available The researches in rotor theory, the increasing use of computers and the connection between design and manufacturing of rotors, have determined the revaluation and completion of classical rotor geometry. This paper presents practical applications of mathematical description of rotor geometry. A program has been created to describe the rotor geometry for arbitrary shape of the blade. The results can be imported by GAMBIT - a processor for geometry with modeling and mesh generations, to create a mesh needed in hydrodynamics analysis of rotor CFD. The results obtained are applicable in numerical methods and are functionally convenient for CAD/CAM systems.

  15. Rotor Wake Development During the First Revolution (United States)

    McAlister, Kenneth W.


    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.

  16. Soil Moisture Sensing via Swept Frequency Based Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Greg A. Holt


    Full Text Available There is a need for low-cost, high-accuracy measurement of water content in various materials. This study assesses the performance of a new microwave swept frequency domain instrument (SFI that has promise to provide a low-cost, high-accuracy alternative to the traditional and more expensive time domain reflectometry (TDR. The technique obtains permittivity measurements of soils in the frequency domain utilizing a through transmission configuration, transmissometry, which provides a frequency domain transmissometry measurement (FDT. The measurement is comparable to time domain transmissometry (TDT with the added advantage of also being able to separately quantify the real and imaginary portions of the complex permittivity so that the measured bulk permittivity is more accurate that the measurement TDR provides where the apparent permittivity is impacted by the signal loss, which can be significant in heavier soils. The experimental SFI was compared with a high-end 12 GHz TDR/TDT system across a range of soils at varying soil water contents and densities. As propagation delay is the fundamental measurement of interest to the well-established TDR or TDT technique; the first set of tests utilized precision propagation delay lines to test the accuracy of the SFI instrument’s ability to resolve propagation delays across the expected range of delays that a soil probe would present when subjected to the expected range of soil types and soil moisture typical to an agronomic cropping system. The results of the precision-delay line testing suggests the instrument is capable of predicting propagation delays with a RMSE of +/−105 ps across the range of delays ranging from 0 to 12,000 ps with a coefficient of determination of r2 = 0.998. The second phase of tests noted the rich history of TDR for prediction of soil moisture and leveraged this history by utilizing TDT measured with a high-end Hewlett Packard TDR/TDT instrument to directly benchmark the

  17. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo


    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  18. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle (United States)

    Mourey, D. J.


    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  19. Macular Choroidal Thickness and Volume Measured by Swept-source Optical Coherence Tomography in Healthy Korean Children. (United States)

    Lee, Jung Wook; Song, In Seok; Lee, Ju-hyang; Shin, Yong Un; Lim, Han Woong; Lee, Won June; Lee, Byung Ro


    To evaluate the thickness and volume of the choroid in healthy Korean children using swept-source optical coherence tomography. We examined 80 eyes of 40 healthy children and teenagers (choroidal thickness map. We also examined 44 eyes of 35 healthy adult volunteers (≥18 years) and compared adult measurements with the findings in children. The mean age of the children and teenagers was 9.47 ± 3.80 (4 to 17) vs. 55.04 ± 12.63 years (36 to 70 years) in the adult group (p choroid were thinner (p = 0.004, p = 0.002, respectively) than the surrounding areas. The mean choroidal volumes of the inner and outer nasal areas were smaller (p = 0.004, p = 0.003, respectively) than those of all the other areas in each circle. Among the nine subfields, all areas in the children, except the outer nasal subfield, were thicker than those in adults (p choroidal thickness (p choroidal thickness and volume in children and teenagers were significantly greater than in adults. The nasal choroid was significantly thinner than the surrounding areas. The pediatric subfoveal choroid is prone to thinning with increasing age, axial length, and refractive error. These differences should be considered when choroidal thickness is evaluated in children with chorioretinal diseases.

  20. Inlet Guide Vane Wakes Including Rotor Effects (United States)

    Johnston, R. T.; Fleeter, S.


    Fundamental experiments are described directed at the investigation of forcing functions generated by an inlet guide vane (IGV) row, including interactions with the downstream rotor, for application to turbomachine forced response design systems. The experiments are performed in a high-speed research fan facility comprised of an IGV row upstream of a rotor. IGV-rotor axial spacing is variable, with the IGV row able to be indexed circumferentially, thereby allowing measurements to be made across several IGV wakes. With an IGV relative Mach number of 0.29, measurements include the IGV wake pressure and velocity fields for three IGV-rotor axial spacings. The decay characteristics of the IGV wakes are compared to the Majjigi and Gliebe empirical correlations. After Fourier decomposition, a vortical-potential gust splitting analysis is implemented to determine the vortical and potential harmonic wake gust forcing functions both upstream and downstream of the rotor. Higher harmonics of the vortical gust component of the IGV wakes are found to decay at a uniform rate due to viscous diffusion.

  1. Performance investigation of the S-Rotors (United States)

    Bhayo, B. A.; Al-Kayiem, H. H.; Yahaya, N. Z.


    This paper presents and discusses results from an experimental investigation of three models of wind S-rotors. Models 1 is modified from conventional Savonius rotor with a single stage and zero offsets zero overlaps; model 2 is three blade single stage wind rotor; and model 3 is double stage conventional Savonius rotor. The three models were designed, fabricated and characterized in terms of their coefficient of performance and dynamic torque coefficient. A special open wind simulator was designed for the test. The optimum parameters for the models were based on previous studies. The results showed that the model 1, model 2 and model 3 has the maximum power coefficient of 0.26, 0.17, and 0.21 at the correspondence tip speed ratio (TSR) of 0.42, 0.39 and 0.46, respectively. Model 1 is further optimized in terms of the aspect ratio resulting in improved power coefficient by 24%. The maximum dynamic torque coefficient of model 1, model 2 and model 3 was found as 0.81, 0.56 and 0.67 at the correspondence minimum TSR of 0.28, 0.21 and 0.17, respectively. It was noted that the all three models have high torque coefficient because the models were tested at higher applied torque on the rotors.

  2. Control and flight test of a tilt-rotor unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Chao Chen


    Full Text Available Tilt-rotor unmanned aerial vehicles have attracted increasing attention due to their ability to perform vertical take-off and landing and their high-speed cruising abilities, thereby presenting broad application prospects. Considering portability and applications in tasks characterized by constrained or small scope areas, this article presents a compact tricopter configuration tilt-rotor unmanned aerial vehicle with full modes of flight from the rotor mode to the fixed-wing mode and vice versa. The unique multiple modes make the tilt-rotor unmanned aerial vehicle a multi-input multi-output, non-affine, multi-channel cross coupling, and nonlinear system. Considering these characteristics, a control allocation method is designed to make the controller adaptive to the full modes of flight. To reduce the cost, the accurate dynamic model of the tilt-rotor unmanned aerial vehicle is not obtained, so a full-mode flight strategy is designed in view of this situation. An autonomous flight test was conducted, and the results indicate the satisfactory performance of the control allocation method and flight strategy.

  3. Calculation of rotor impedance for use in design analysis of helicopter airframe vibrations (United States)

    Nygren, Kip P.


    Excessive vibration is one of the most prevalent technical obstacles encountered in the development of new rotorcraft. The inability to predict these vibrations is primarily due to deficiencies in analysis and simulation tools. The Langley Rotorcraft Structural Dynamics Program was instituted in 1984 to meet long term industry needs in the area of rotorcraft vibration prediction. As a part of the Langley program, this research endeavors to develop an efficient means of coupling the rotor to the airframe for preliminary design analysis of helicopter airframe vibrations. The main effort was to modify the existing computer program for modeling the dynamic and aerodynamic behavior of rotorcraft called DYSCO (DYnamic System COupler) to calculate the rotor impedance. DYSCO was recently developed for the U.S. Army and has proven to be adaptable for the inclusion of new solution methods. The solution procedure developed to use DYSCO for the calculation of rotor impedance is presented. Verification of the procedure by comparison with a known solution for a simple wind turbine model is about 75 percent completed, and initial results are encouraging. After the wind turbine impedance is confirmed, the verification effort will continue by comparison to solutions of a more sophisticated rotorcraft model. Future work includes determination of the sensitivity of the rotorcraft airframe vibrations to helicopter flight conditions and rotor modeling assumptions. When completed, this research will ascertain the feasibility and efficiency of the impedance matching method of rotor-airframe coupling for use in the analysis of airframe vibrations during the preliminary rotorcraft design process.

  4. An Experimental Analysis of the Effect of Icing on Wind Turbine Rotor Blades

    DEFF Research Database (Denmark)

    Raja, Muhammad Imran; Hussain, Dil muhammed Akbar; Soltani, Mohsen


    are printed with 3D printer and tested one by one in a Wind Tunnel. Lift, drag and moment coefficients are calculated from the measured experimental data and program WT-Perf based on blade-element momentum (BEM) theory is used to predict the performance of wind turbine. Cp curves generated from the test......Wind Turbine is highly nonlinear plant whose dynamics changes with change in aerodynamics of the rotor blade. Power extracted from the wind turbine is a function of coefficient of power (Cp). Wind turbine installed in the cold climate areas has an icing on its rotor blade which might change its...


    DEFF Research Database (Denmark)

    Steffensen, John Fleng


    Fulton, C.J., Johansen, J. L. and Steffensen, J.F. Abstract: Shallow wave-swept habitats are a major challenge for fish locomotion, where crashing waves produce water flows equivalent to cyclone-force winds. Here we document the exceptional locomotor energetics of Bluelined wrasse (Stethojulis...

  6. Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators

    Directory of Open Access Journals (Sweden)

    Zhao Guangyin


    Full Text Available A 15° swept wing with dielectric barrier discharge plasma actuator is designed. Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actuation frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions.

  7. Wide and Fast Wavelength-Swept Fiber Laser Based on Dispersion Tuning for Dynamic Sensing

    Directory of Open Access Journals (Sweden)

    Shinji Yamashita


    Full Text Available We have developed a unique wide and fast wavelength-swept fiber laser for dynamic and accurate fiber sensing. The wavelength tuning is based on the dispersion tuning technique, which simply modulates the loss/gain in the dispersive laser cavity. By using wideband semiconductor optical amplifiers (SOAs, the sweep range could be as wide as ∼180 nm. Since the cavity contains no mechanical components, such as tunable filters, we could achieve very high sweep rate, as high as ∼200 kHz. We have realized the swept lasers at three wavelength bands, 1550 nm, 1300 nm, and 800 nm, using SOAs along with erbium-doped fiber amplifiers (EDFAs, and in two laser configurations, ring and linear ones. We also succeeded in applying the swept laser for a dynamic fiber-Bragg grating (FBG sensor system. In this paper, we review our researches on the wide and fast wavelength-swept fiber lasers.

  8. Recognition of spectral amplitude codes by frequency swept coherent detection for flexible optial label switching

    DEFF Research Database (Denmark)

    Cao, Yongsheng; Osadchiy, Alexey Vladimirovich; Xin, Xiangjun;


    We propose a new method of recognizing spectral amplitude code by using optical coherent detection with a frequency swept local light source oscillator. Our proposed method offer a substantial simplification in terms of required components to built optical label processing units with enhanced...

  9. Early Swept-Source Optical Coherence Tomography Angiography Findings in Unilateral Acute Idiopathic Maculopathy. (United States)

    Nicolo, Massimo; Rosa, Raffaella; Musetti, Donatella; Musolino, Maria; Traverso, Carlo Enrico


    Unilateral acute idiopathic maculopathy (UAIM) is a rare disorder presenting in young people with an acute onset of unilateral central visual loss often associated with a prodromal flu-like illness. The authors present the early anatomical findings of a 35-year-old man clinically diagnosed with UAIM using swept-source optical coherence tomography (SS-OCT) and SS-OCT angiography.

  10. Appraisal of numerical methods in predicting the aerodynamics of forward-swept wings

    CSIR Research Space (South Africa)

    Lombardi, G


    Full Text Available The capabilities of different numerical methods in evaluating the aerodynamic characteristics of a forward-swept wing in subsonic and transonic now are analyzed. The numerical results, obtained by means of potential, Euler, and Navier-Stokes solvers...

  11. Dynamic Thermal Analysis of DFIG Rotor-side Converter during Balanced Grid Fault

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede


    and the rotor voltage during the balanced grid fault is firstly addressed. By using the traditional demagnetizing control, the damping of the stator flux and the safety operation area are theoretically evaluated with various amounts of demagnetizing current. It is observed that the higher demagnetizing current...

  12. IMPER: Characterization of the wind field over a large wind turbine rotor - final report; Improved performance

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt Paulsen, U.; Wagner, R.


    A modern wind turbine rotor with a contemporary rotor size would easily with the tips penetrate the air between 116 m and 30 m and herby experience effects of different wind. With current rules on power performance measurements such as IEC 61400-121 the reference wind speed is measured at hub height, an oversimplification of the wind energy power over the rotor disk area is carried out. The project comprised a number of innovative and coordinated measurements on a full scale turbine with remote sensing technology and simulations on a 500 kW wind turbine for the effects of wind field characterization. The objective with the present report is to give a short overview of the different experiments carried out and results obtained within the final phase of this project. (Author)

  13. Detecting phase singularities and rotor center trajectories based on the Hilbert transform of intraatrial electrograms in an atrial voxel model

    Directory of Open Access Journals (Sweden)

    Unger Laura Anna


    Full Text Available This work aimed at the detection of rotor centers within the atrial cavity during atrial fibrillation on the basis of phase singularities. A voxel based method was established which employs the Hilbert transform and the phase of unipolar electrograms. The method provides a 3D overview of phase singularities at the endocardial surface and within the blood volume. Mapping those phase singularities from the inside of the atria at the endocardium yielded rotor center trajectories. We discuss the results for an unstable and a more stable rotor. The side length of the areas covered by the trajectories varied from 1.5 mm to 10 mm. These results are important for cardiologists who target rotors with RF ablation in order to cure atrial fibrillation.

  14. Experimental study on power augmentation of Savonius rotor; Savonius gata fusha no shutsuryoku zokyo ni kansuru jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S.; Kikuchi, K.; Ushiyama, I. [Ashikaga Institute of Technology, Tochigi (Japan)


    Wind power now being used is mostly for power generation, and the power generating rotor is represented by the horizontal propeller type. The vertical type, such as Savonius rotor which uses drag force, may be used for special purposes. The Savonius rotor has been used for water pumping-up and ventilation for its characteristics of low rotational speed and high torque. The authors have proposed, based on the data collected by operating a wind mill of 10W, a method for reducing resistance by deflecting wind flowing onto the return bucket to augment drag force, in an attempt to make the system more functional. The Savonius rotor is equipped with a semi-cylindrical cover, and guide and side plates, to follow their effects. It is found that these plates work to augment power without needing expansion of sweeping area. 4 refs., 12 figs.


    Institute of Scientific and Technical Information of China (English)

    Wang Leigang; Deng Dongrnei; Liu Zhubai


    Guided by developing forging technology theory,designing rules on rotor forging process are summed up.Knowledge-based CAPP system for rotor forging is created.The system gives a rational and optimum process.

  16. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation (United States)

    Duval, R. W.; Bahrami, M.


    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.


    Directory of Open Access Journals (Sweden)

    Uğur YÜCEL


    Full Text Available In various industrial applications there is a need for higher speed, yet reliably operating rotating machinery. A key factor in achieving this type of machinery continues to be the ability to accurately predict the dynamic response and stability of a rotor-bearing system. This paper introduces and explains the nature of rotordynamic phenomena from comparatively simple analytic models. Starting with the most simple rotor model that is supported in two rigid bearings at its ends, the more realistic and more involved cases are considered by incorporating the effects of flexible bearings. Knowledge of these phenomena is fundamental to an understanding of the behavior of complex models, which corresponds to the real rotors of turbomachines.

  18. Diagnosis of wind turbine rotor system

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian


    This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...... is based on available standard sensors on wind turbines. The method can be used both on-line as well as off-line. Faults or changes in the rotor system will result in asymmetries, which can be monitored and diagnosed. This can be done by using the multi-blade coordinate transformation. Changes in the rotor...... system that can be diagnosed and monitored are: actuator faults, sensor faults and internal blade changes as e.g. change in mass of a blade....

  19. Identification of helicopter rotor dynamic models (United States)

    Molusis, J. A.; Bar-Shalom, Y.; Warmbrodt, W.


    A recursive, extended Kalman-filter approach is applied to the identifiction of rotor damping levels of representative helicopter dynamic systems. The general formulation of the approach is presented in the context of a typically posed stochastic estimation problem, and the method is analytically applied to determining the damping levels of a coupled rotor-body system. The identified damping covergence characteristics are studied for sensitivity to both constant-coefficient and periodic-coefficient measurement models, process-noise covariance levels, and specified initial estimates of the rotor-system damping. A second application of the method to identifying the plant model for a highly damped, isolated flapping blade with a constant-coefficient state model (hover) and a periodic-coefficient state model (forward flight) is also investigated. The parameter-identification capability is evaluated for the effect of periodicity on the plant model coefficients and the influence of different measurement noise levels.

  20. Eigenfrequency sensitivity analysis of flexible rotors

    Directory of Open Access Journals (Sweden)

    Šašek J.


    Full Text Available This paper deals with sensitivity analysis of eigenfrequencies from the viewpoint of design parameters. The sensitivity analysis is applied to a rotor which consists of a shaft and a disk. The design parameters of sensitivity analysis are the disk radius and the disk width. The shaft is modeled as a 1D continuum using shaft finite elements. The disks of rotating systems are commonly modeled as rigid bodies. The presented approach to the disk modeling is based on a 3D flexible continuum discretized using hexahedral finite elements. The both components of the rotor are connected together by special proposed couplings. The whole rotor is modeled in rotating coordinate system with considering rotation influences (gyroscopic and dynamics stiffness matrices.

  1. Analysis on structural characteristics of rotors in twin-rotor cylinder-embedded piston engine

    Institute of Scientific and Technical Information of China (English)

    陈虎; 潘存云; 徐海军; 邓豪; 韩晨


    Twin-rotor cylinder-embedded piston engine is proposed for dealing with the sealing problems of rotors in twin-rotor piston engine where the existent mature sealing technologies for traditional reciprocating engine can be applied. The quantity and forms of its sealing surfaces are reduced and simplified, and what’s more, the advantages of twin-rotor piston engine are inherited, such as high power density and no valve mechanism. Given the motion law of two rotors, its kinematic model is established, and the general expression for some parameters related to engine performance, such as the trajectory, displacement, velocity and acceleration of the piston and centroid trajectory, angular displacement, velocity and acceleration of the rod are presented. By selecting different variation patterns of relative angle of two rotors, the relevant variables are compared. It can be concluded that by designing the relative angle function of two rotors, the volume variation of working chamber can be changed. However, a comprehensive consideration for friction and vibration is necessary because velocity and acceleration are quite different in the different functions, the swing magnitude of rod is proportional to link ratioλ, and the position of rod swing center is controlled by eccentricitye. In order to reduce the lateral force, a smaller value ofλshould be selected in the case of the structure, and the value ofe should be near 0.95. There is no relationship between the piston stroke and the variation process of relative angle of two rotors, the former is only proportional to the amplitude of relative angle of two rotors.

  2. A Study of Coaxial Rotor Performance and Flow Field Characteristics (United States)


    A Study of Coaxial Rotor Performance and Flow Field Characteristics Natasha L. Barbely Aerospace Engineer NASA Ames Research Center Moffett Field...The pressure field generated by the two airfoils aided our interpretation of the more complex coaxial rotor system flow field. The pressure fields...velocity (ft/sec) Z vertical distance between rotors (ft) αS pitch angle (deg), negative pitch down κint coaxial rotor induced power interference

  3. On aerodynamic design of the Savonius windmill rotor (United States)

    Mojola, O. O.

    This paper examines under field conditions the performance characteristics of the Savonius windmill rotor. Test data were collected on the speed, torque and power of the rotor at a large number of wind speeds for each of seven values of the rotor overlap ratio. Field testing procedures are critically appraised and a unified approach is suggested. The performance data of the Savonius rotor are also fully discussed and design criteria established.

  4. High-speed high-sensitivity infrared spectroscopy using mid-infrared swept lasers (Conference Presentation) (United States)

    Childs, David T. D.; Groom, Kristian M.; Hogg, Richard A.; Revin, Dmitry G.; Cockburn, John W.; Rehman, Ihtesham U.; Matcher, Stephen J.


    Infrared spectroscopy is a highly attractive read-out technology for compositional analysis of biomedical specimens because of its unique combination of high molecular sensitivity without the need for exogenous labels. Traditional techniques such as FTIR and Raman have suffered from comparatively low speed and sensitivity however recent innovations are challenging this situation. Direct mid-IR spectroscopy is being speeded up by innovations such as MEMS-based FTIR instruments with very high mirror speeds and supercontinuum sources producing very high sample irradiation levels. Here we explore another possible method - external cavity quantum cascade lasers (EC-QCL's) with high cavity tuning speeds (mid-IR swept lasers). Swept lasers have been heavily developed in the near-infrared where they are used for non-destructive low-coherence imaging (OCT). We adapt these concepts in two ways. Firstly by combining mid-IR quantum cascade gain chips with external cavity designs adapted from OCT we achieve spectral acquisition rates approaching 1 kHz and demonstrate potential to reach 100 kHz. Secondly we show that mid-IR swept lasers share a fundamental sensitivity advantage with near-IR OCT swept lasers. This makes them potentially able to achieve the same spectral SNR as an FTIR instrument in a time x N shorter (N being the number of spectral points) under otherwise matched conditions. This effect is demonstrated using measurements of a PDMS sample. The combination of potentially very high spectral acquisition rates, fundamental SNR advantage and the use of low-cost detector systems could make mid-IR swept lasers a powerful technology for high-throughput biomedical spectroscopy.

  5. Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Zahle, Frederik; Sørensen, Niels N.


    The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0......, thus allowing for a much broader design space than in the previous works where only the position, size and additional camber of the slat airfoil could be adjusted. The aerodynamic performance of a slatted rotor is for the first time evaluated using 3D CFD in this work, and the results are compared...

  6. Rotor Performance Enhancement Using Slats on the Inner Part of a 10MW Rotor

    DEFF Research Database (Denmark)

    The present work continues the investigations of using slats on the inner parts of wind turbine rotors by using an updated version of the 2D CFD based airfoil/slat design tool earlier used by the authors in combination with the rotor design methods from [8] to design slats for 0:1 > r=R > 0......, thus allowing for a much broader design space than in the previous works where only the position, size and additional camber of the slat airfoil could be adjusted. The aerodynamic performance of a slatted rotor is for the first time evaluated using 3D CFD in this work, and the results are compared...


    Institute of Scientific and Technical Information of China (English)

    胡超; 王岩; 王立国; 黄文虎


    Based on the mechanized mathematics and WU Wen-tsun elimination method,using oil film forces of short-bearing model and Muszynska's dynamic model, the dynamical behavior of rotor-bearing system and its stability of motion are investigated. As example,the concept of Wu characteristic set and Maple software, whirl parameters of short- bearing model, which is usually solved by the numerical method, are analyzed. At the same time,stability of zero solution of Jeffcott rotor whirl equation and stability of self-excited vibration are studied. The conditions of stable motion are obtained by using theory of nonlinear vibration.

  8. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar


    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...

  9. Fine tuning of molecular rotor function in photochemical molecular switches

    NARCIS (Netherlands)

    ter Wiel, Matthijs K. J.; Feringa, Ben L.


    Molecular switches are used as scaffolds for the construction of controlled molecular rotors. The internal position of the switching entity in the molecule controls the dynamic behaviour of the rotor moiety in the molecule. Six new molecular motors with o-xylyl rotor moieties were prepared on the ba

  10. 14 CFR 23.1461 - Equipment containing high energy rotors. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  11. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.


    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for understandi

  12. 14 CFR 33.92 - Rotor locking tests. (United States)


    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.92 Rotor locking tests. If continued rotation is prevented by a means to lock the rotor(s), the engine must be subjected to a test that...

  13. On the Classification of Universal Rotor-Routers

    CERN Document Server

    He, Xiaoyu


    The combinatorial theory of rotor-routers has connections with problems of statistical mechanics, graph theory, chaos theory, and computer science. A rotor-router network defines a deterministic walk on a digraph G in which a particle walks from a source vertex until it reaches one of several target vertices. Motivated by recent results due to Giacaglia et al., we study rotor-router networks in which all non-target vertices have the same type. A rotor type r is universal if every hitting sequence can be achieved by a homogeneous rotor-router network consisting entirely of rotors of type r. We give a conjecture that completely classifies universal rotor types. Then, this problem is simplified by a theorem we call the Reduction Theorem that allows us to consider only two-state rotors. A rotor-router network called the compressor, because it tends to shorten rotor periods, is introduced along with an associated algorithm that determines the universality of almost all rotors. New rotor classes, including boppy ro...

  14. A Recurrent Rotor-Router Configuration in Z^3

    CERN Document Server

    A, Tulasi Ram Reddy


    Rotor Router models were first introduced by James Propp in 2002. A recurrent Rotor configuration is the one in which every state is visited infinitely often. In this project we investigated whether there is a recurrent Rotor configuration in Z^d (d>2).

  15. 14 CFR 29.547 - Main and tail rotor structure. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main and tail rotor structure. 29.547 Section 29.547 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Requirements § 29.547 Main and tail rotor structure. (a) A rotor is an assembly of rotating components, which...

  16. Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device

    Institute of Scientific and Technical Information of China (English)

    胡发杰; 金鹏; 吴艳华; 王飞飞; 魏恒; 王占国


    A wide wavelength tuning range swept external-cavity laser using an InAs/GaAs quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-mW peak output power and up to 33-kHz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied.

  17. Effect of Rotor Diameter on the Thermal Stresses of a Turbine Rotor Model (United States)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Castro-Gómez, L. L.; Rodríguez, J. A.; De Santiago, O.


    Thermal stresses in a simplified steam turbine rotor model during a cold startup are analyzed using finite element analysis (FEA). In order to validate the numerical model, an experimental array is developed in which a hollow cylinder is heated with hot air in the external surface. At the thick wall of the cylinder, temperature distribution is measured in real time, while at the same time an algorithm computes thermal stresses. Additional computational fluid dynamics (CFD) calculations are made to obtain magnitudes of velocity and pressure in order to compute convective heat transfer coefficient. The experimental results show good agreement with the FEA computations. To evaluate the effect of rotor diameter size, FEA computations with variation in external and internal diameters are performed. Results show that thermal stresses are proportional to rotor diameter size. Also, zones of higher stress concentration are found in the external and internal surfaces of the rotor.

  18. Response studies of rotors and rotor blades with application to aeroelastic tailoring (United States)

    Friedmann, P. P.


    Various tools for the aeroelastic stability and response analysis of rotor blades in hover and forward flight were developed and incorporated in a comprehensive package capable of performing aeroelastic tailoring of rotor blades in forward flight. The results indicate that substantial vibration reductions, of order 15-40%, in the vibratory hub shears can be achieved by relatively small modifications of the initial design. Furthermore the optimized blade can be up to 20% lighter than the original design. Accomplishments are reported for the following tasks: (1) finite element modeling of rotary-wing aeroelastic problems in hover and forward flight; (2) development of numerical methods for calculating the aeroelastic response and stability of rotor blades in forward fight; (3) formulation of the helicopter air resonance problem in hover with active controls; and (4) optimum design of rotor blades for vibration reduction in forward flight.


    Directory of Open Access Journals (Sweden)

    Moh. Natsir


    This research is intended to apply geostatistical analysis in fish abundance estimation in the north Java waters. Geostatistical is a series of methods to examine one or more spatially distributed variables through structure analysis of the data. Trawl data obtained using the bottom trawl operated by Bawal Putih vessel. Data processing includes the standardization of catch, geographic position transformation to UTM format, variogram model fitting and abundance prediction using the model. Analysis of trawl data structure was done by using geostatistical analysis, estimation results of the experimental semi-variogram were then used to infer the characteristics of demersal fish abundance in the north of central Java waters. Results of structural analysis and models fitting using geostatistical analysis showed that the most suitable model with all data used were spherical model with different parameters from each model. The models are then used to estimate the value of fish abundance on the points that there is no abundance information through kriging interpolation process. Results of cross-validation of the estimated abundance using kriging with actual values shows that R2 values varied for each data set. Geostatistical prediction results showed smaller coefficients of variation compare to arithmetic calculations.

  20. Nonlinear Vibration of Rotor Rubbing Stator Caused by Initial Perturbation

    Institute of Scientific and Technical Information of China (English)

    张小章; 隆锦胜; 李正光


    The vibration of a rotor rubbing a stator caused by an initial perturbation was studied analytically.The analytical model consists of a simple disc shaft rotor and a fixed stator. The perturbation is aninstantaneous change of the radial velocity when the rotor is operating in its normal steady state. The analysisshowed that the rotor may continue rubbing the stator for small clearance, even if the initial perturbation nolonger exists. For the interest of engineering applications, we investigated various rotating speeds,perturbation amplitudes and clearances between the rotor and the stator. Various friction coefficients on thecontact surface were also considered. The graphical results can be used for the design of rotating machines.``

  1. Time Frequency Features of Rotor Systems with Slowly Varying Mass

    Directory of Open Access Journals (Sweden)

    Tao Yu


    Full Text Available With the analytic method and numerical method respectively, the asymptotic solutions and finite element model of rotor system with single slowly varying mass is obtained to investigate the time frequency features of such rotor system; furthermore, with given model of slowly varying mass, the rotor system with dual slowly varying mass is studied. For the first order approximate solution is used, there exists difference between the results with analytic method and numerical method. On the base of common characteristics of rotor system with dual slowly varying mass, the general rules and formula describing the frequency distribution of rotor system with multiple slowly varying mass are proposed.

  2. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor (United States)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.


    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  3. Numerical evaluation of tandem rotor for highly loaded transonic fan

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bin; LIU Bao-jie


    Transonic tandem rotor was designed for highly loaded fan at a corrected tip speed of 381 m/s and another conventional rotor was designed as a baseline to evaluate the loading superiority of tandem rotor with three-dimensional (3-D) numerical simulation. The aft blade solidity and its impact on total loading level were studied in depth. The result indicates that tandem rotor has potential to achieve higher loading level and attain favorable aerodynamic performance in a wide range of loading coefficient 0. 55 ~ 0.68, comparing with the conventional rotor which produced a total pressure ratio of 2.0 and loading coefficient of 0. 42.

  4. T700 power turbine rotor multiplane/multispeed balancing demonstration (United States)

    Burgess, G.; Rio, R.


    Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.

  5. On the flow field around a Savonius rotor (United States)

    Bergeles, G.; Athanassiadis, N.

    A model of a two-bucket Savonius rotor windmill was constructed and tested in a wind tunnel. The flow field around the rotor was examined visually and also quantitatively with the use of a hot wire. The flow visualization revealed an upstream influence on the flow field up to 3 rotor diameters away and a strong downwash downstream. Hot wire measurements showed a large velocity deficit behind the rotor and a quick velocity recovery downstream due to strong mixing; the latter was associated with high levels of turbulence. Energy spectra revealed that all turbulence was concentrated in a single harmonic corresponding to twice the rotational speed of the rotor.

  6. Rotor Design for Diffuser Augmented Wind Turbines

    Directory of Open Access Journals (Sweden)

    Søren Hjort


    Full Text Available Diffuser augmented wind turbines (DAWTs can increase mass flow through the rotor substantially, but have often failed to fulfill expectations. We address high-performance diffusers, and investigate the design requirements for a DAWT rotor to efficiently convert the available energy to shaft energy. Several factors can induce wake stall scenarios causing significant energy loss. The causality between these stall mechanisms and earlier DAWT failures is discussed. First, a swirled actuator disk CFD code is validated through comparison with results from a far wake swirl corrected blade-element momentum (BEM model, and horizontal-axis wind turbine (HAWT reference results. Then, power efficiency versus thrust is computed with the swirled actuator disk (AD code for low and high values of tip-speed ratios (TSR, for different centerbodies, and for different spanwise rotor thrust loading distributions. Three different configurations are studied: The bare propeller HAWT, the classical DAWT, and the high-performance multi-element DAWT. In total nearly 400 high-resolution AD runs are generated. These results are presented and discussed. It is concluded that dedicated DAWT rotors can successfully convert the available energy to shaft energy, provided the identified design requirements for swirl and axial loading distributions are satisfied.

  7. Eigenvalue assignment strategies in rotor systems (United States)

    Youngblood, J. N.; Welzyn, K. J.


    The work done to establish the control and direction of effective eigenvalue excursions of lightly damped, speed dependent rotor systems using passive control is discussed. Both second order and sixth order bi-axis, quasi-linear, speed dependent generic models were investigated. In every case a single, bi-directional control bearing was used in a passive feedback stabilization loop to resist modal destabilization above the rotor critical speed. Assuming incomplete state measurement, sub-optimal control strategies were used to define the preferred location of the control bearing, the most effective measurement locations, and the best set of control gains to extend the speed range of stable operation. Speed dependent control gains were found by Powell's method to maximize the minimum modal damping ratio for the speed dependent linear model. An increase of 300 percent in stable speed operation was obtained for the sixth order linear system using passive control. Simulations were run to examine the effectiveness of the linear control law on nonlinear rotor models with bearing deadband. The maximum level of control effort (force) required by the control bearing to stabilize the rotor at speeds above the critical was determined for the models with bearing deadband.

  8. 14 CFR 33.34 - Turbocharger rotors. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger rotors. 33.34 Section 33.34 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34...

  9. Flywheel system using wire-wound rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.


    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  10. Rotor Systems of Aircraft Jet Engines

    Directory of Open Access Journals (Sweden)

    Ján Kamenický


    engine's both coaxial rotors, their supports (including their hydrodynamic dampers, and its casing as well. Besides the short description of the engine design peculiarities and of its calculating model, there is also a short description of the used method of calculations, with focus on its peculiarities as well. Finally, some results of calculations and conclusions that follow from them are presented.

  11. Development of the optimum rotor theories

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær; van Kuik, Gijs A.M.

    The purpose of this study is the examination of optimum rotor theories with ideal load distributions along the blades, to analyze some of the underlying ideas and concepts, as well as to illuminate them. The book gives the historical background of the issue and presents the analysis of the proble...

  12. rotor of the SC rotating condenser

    CERN Multimedia


    The rotor of the rotating condenser was installed instead of the tuning fork as the modulating element of the radiofrequency system, when the SC accelerator underwent extensive improvements between 1973 to 1975 (see object AC-025). The SC was the first accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990.


    Directory of Open Access Journals (Sweden)

    Valentin BUTOESCU


    Full Text Available A vortex model of a helicopter rotor is presented. Each blade of the rotor has three degrees of freedom: flapping, lagging and feathering. The motions after each degree of freedom are also known for all blades. The blade is modelled as a thin vortex surface. The wakes are free fluid surfaces. A system of five equations are obtained: the first one is the integral equation of the lifting surface (rotor, the next three describe the wakes motion, and the last one relates the vortex strength on the wakes and the variation of vorticity on the rotor. A numerical solution of this system is presented. To avoid the singularities that can occur due to the complexity of vortex system, a desingularized model of the vortex core was adopted. A Mathcad worksheet containing the method has been written.The original contribution of the work. The calculation method of the motion of the wakes free vortex system, the development of the vortex cores in time and a new method to approximate the aerodynamic influence of remoted wake regions.

  14. Wind rotors and birds; Windraeder: neue Vogelperspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Loenker, O.; Jensen, D.


    Although most birds are not shy of wind rotors, authorities tend to use environmental protection arguments in their attempt to prevent wind power projects. Planners should be careful to establish ecological expert opinions for envisaged sites at an early stage. (orig.)


    Directory of Open Access Journals (Sweden)



    Full Text Available Conventional fuels which are fast depleting, have ever fluctuating price and polluting characteristic of theirs is pushing mankind towards energies which are renewable and green. Wind being one of the renewable energies among solar, geothermal, biomass, ocean and others is being more patronized in places where wind is copious by governmental and with private partnership to generate electricity. Vertical axis rotor was selected over the horizontal ones due to its simplicity and reliability. At a selected location a prototype was built and installed. The design and development process and the need of the new type of machine will be described in this paper. This paper produces an investigational exploration of a vertical axis rotor (Savonius rotor wind turbine adapted for household/domestic electricity generation. The model machine collects wind energy and generates a 12 volt output which is used to charge one heavy duty battery. As a result, the home is served simultaneously by the wind turbine and the utility. The wind turbine responds well to low wind velocities and also various materials for vanes, various transmission mechanisms were also tried to evaluate the performance of the rotor.

  16. Trailing Vortex Measurements in the Wake of a Hovering Rotor Blade with Various Tip Shapes (United States)

    Martin, Preston B.; Leishman, J. Gordon


    This work examined the wake aerodynamics of a single helicopter rotor blade with several tip shapes operating on a hover test stand. Velocity field measurements were conducted using three-component laser Doppler velocimetry (LDV). The objective of these measurements was to document the vortex velocity profiles and then extract the core properties, such as the core radius, peak swirl velocity, and axial velocity. The measured test cases covered a wide range of wake-ages and several tip shapes, including rectangular, tapered, swept, and a subwing tip. One of the primary differences shown by the change in tip shape was the wake geometry. The effect of blade taper reduced the initial peak swirl velocity by a significant fraction. It appears that this is accomplished by decreasing the vortex strength for a given blade loading. The subwing measurements showed that the interaction and merging of the subwing and primary vortices created a less coherent vortical structure. A source of vortex core instability is shown to be the ratio of the peak swirl velocity to the axial velocity deficit. The results show that if there is a turbulence producing region of the vortex structure, it will be outside of the core boundary. The LDV measurements were supported by laser light-sheet flow visualization. The results provide several benchmark test cases for future validation of theoretical vortex models, numerical free-wake models, and computational fluid dynamics results.

  17. Utilization of rotor kinetic energy storage for hybrid vehicles (United States)

    Hsu, John S.


    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  18. Rotor for a line start permanent magnet machine

    Energy Technology Data Exchange (ETDEWEB)

    Melfi, Mike; Schiferl, Rich; Umans, Stephen


    A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distance that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.

  19. Dynamical localization of coupled relativistic kicked rotors (United States)

    Rozenbaum, Efim B.; Galitski, Victor


    A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.

  20. Integration of a wave rotor to an ultra-micro gas turbine (UmuGT) (United States)

    Iancu, Florin


    Wave rotor technology has shown a significant potential for performance improvement of thermodynamic cycles. The wave rotor is an unsteady flow machine that utilizes shock waves to transfer energy from a high energy fluid to a low energy fluid, increasing both the temperature and the pressure of the low energy fluid. Used initially as a high pressure stage for a gas turbine locomotive engine, the wave rotor was commercialized only as a supercharging device for internal combustion engines, but recently there is a stronger research effort on implementing wave rotors as topping units or pressure gain combustors for gas turbines. At the same time, Ultra Micro Gas Turbines (UmuGT) are expected to be a next generation of power source for applications from propulsion to power generation, from aerospace industry to electronic industry. Starting in 1995, with the MIT "Micro Gas Turbine" project, the mechanical engineering research world has explored more and more the idea of "Power MEMS". Microfabricated turbomachinery like turbines, compressors, pumps, but also electric generators, heat exchangers, internal combustion engines and rocket engines have been on the focus list of researchers for the past 10 years. The reason is simple: the output power is proportional to the mass flow rate of the working fluid through the engine, or the cross-sectional area while the mass or volume of the engine is proportional to the cube of the characteristic length, thus the power density tends to increase at small scales (Power/Mass=L -1). This is the so-called "cube square law". This work investigates the possibilities of incorporating a wave rotor to an UmuGT and discusses the advantages of wave rotor as topping units for gas turbines, especially at microscale. Based on documented wave rotor efficiencies at larger scale and subsidized by both, a gasdynamic model that includes wall friction, and a CFD model, the wave rotor compression efficiency at microfabrication scale could be estimated

  1. Numerical Study on the Effect of Swept Blade on the Aerodynamic Performance of Wind Turbine at High Tip Speed Ratio (United States)

    Zuo, H. M.; Liu, C.; Yang, H.; Wang, F.


    The current situation is that the development of high speed wind energy saturates gradually, therefore, it is highly necessary to develop low speed wind energy. This paper, based on a specific straight blade and by using Isight, a kind of multidiscipline optimization software, which integrates ICEM (Integrated Computer Engineering and Manufacturing) and CFD (Computational Fluid Dynamics) software, optimizes the blade stacking line (the centers of airfoil from blade root to tip) and acquires the optimization swept blade shape. It is found that power coefficient Cp of swept blade is 3.2% higher than that of straight blade at the tip speed ratio of 9.82, that the thrust of swept blade receives is obviously less than that of straight blade. Inflow angle of attack and steam line on the suction of the swept and straight blade are also made a comparison.

  2. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 2: Run log and tabulated data (United States)

    Balch, D. T.; Lombardi, J.


    A model scale hover test was conducted in the Sikorsky Aircraft Model Rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The existence of mutual interference between hovering main rotor and a tail rotor was acknowledged in the test. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. This volume contains the test run log and tabulated data.

  3. Swept source optical coherence tomography based on non-uniform discrete fourier transform

    Institute of Scientific and Technical Information of China (English)

    Tong Wu; Zhihua Ding; Kai Wang; Chuan Wang


    A high-speed high-sensitivity swept source optical coherence tomography (SSOCT) system using a high speed swept laser source is developed.Non-uniform discrete fourier transform (NDFT) method is introduced in the SSOCT system for data processing.Frequency calibration method based on a Mach-Zender interferometer (MZI) and conventional data interpolation method is also adopted in the system for comparison.Optical coherence tomography (OCT) images from SSOCT based on the NDFT method,the MZI method,and the interpolation method are illustrated.The axial resolution of the SSOCT based on the NDFT method is comparable to that of the SSOCT system using MZI calibration method and conventional data interpolation method.The SSOCT system based on the NDFT method can achieve higher signal intensity than that of the system based on the MZI calibration method and conventional data interpolation method because of the better utilization of the power of source.

  4. Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range

    DEFF Research Database (Denmark)

    Marschall, Sebastian

    by cataract. For the 1060nm band, rapidly tunable lasers|so-called swept sources|are available which enable ultra-high speed acquisition of large three-dimensional datasets. However, these light sources require further improvements: higher output power for sufficient signal quality and wider tuning bandwidth...... of retinal imaging. Our simulation reveals a general relationship between the light source bandwidth and the optimal center wavelength, which is supported by our experimental results. This relationship constitutes an important design criterion for future development of high-speed broadband swept sources....... instrument in the biomedical eld, especially in ophthalmology, where it is used for diagnosing retinal diseases. Using light at 1060nm permits deep penetration into the retina and into the layers beneath, the choroid and the sclera. This wavelength range is also benecial for imaging in eyes affected...

  5. Adaptive Sliding Mode BTT Autopilot for Cruise Missiles with Variable-Swept Wings

    Institute of Scientific and Technical Information of China (English)

    Wei-Ming Li; Rui-Sheng Sun; Hong-Yang Bai; Peng-Yun Liu


    In this paper, an adaptive sliding mode method was proposed for BTT autopilot of cruise missiles with variable-swept wings. To realize the whole state feedback, the roll angle, normal overloads and angular rates were considered as state variables of the autopilot, and a parametric sliding mode controller was designed via feedback linearization. A novel parametric adaptation law was put forward to estimate the nonlinear time-varying parameter perturbations in real time based on Lyapunov stability theory. A sliding mode boundary layer theory was adopted to smooth the discontinuity of control variables and eliminate the control chattering. The simulation was presented for the roll angle and overload commands tracking in different configuration schemes. The results indicated that the controlled system has robust dynamic tracking performance in condition of the large-scale aerodynamic parametric variety resulted from variable-swept wings.

  6. Analysis, Synthesis, and Classification of Nonlinear Systems Using Synchronized Swept-Sine Method for Audio Effects (United States)

    Novak, Antonin; Simon, Laurent; Lotton, Pierrick


    A new method of identification, based on an input synchronized exponential swept-sine signal, is used to analyze and synthesize nonlinear audio systems like overdrive pedals for guitar. Two different pedals are studied; the first one exhibiting a strong influence of the input signal level on its input/output law and the second one exhibiting a weak influence of this input signal level. The Synchronized Swept Sine method leads to a Generalized Polynomial Hammerstein model equivalent to the pedals under test. The behaviors of both pedals are illustrated through model-based resynthesized signals. Moreover, it is also shown that this method leads to a criterion allowing the classification of the nonlinear systems under test, according to the influence of the input signal levels on their input/output law.

  7. Analysis, Synthesis, and Classification of Nonlinear Systems Using Synchronized Swept-Sine Method for Audio Effects

    Directory of Open Access Journals (Sweden)

    Novak Antonin


    Full Text Available A new method of identification, based on an input synchronized exponential swept-sine signal, is used to analyze and synthesize nonlinear audio systems like overdrive pedals for guitar. Two different pedals are studied; the first one exhibiting a strong influence of the input signal level on its input/output law and the second one exhibiting a weak influence of this input signal level. The Synchronized Swept Sine method leads to a Generalized Polynomial Hammerstein model equivalent to the pedals under test. The behaviors of both pedals are illustrated through model-based resynthesized signals. Moreover, it is also shown that this method leads to a criterion allowing the classification of the nonlinear systems under test, according to the influence of the input signal levels on their input/output law.

  8. NASA,FAA,ONERA Swept-Wing Icing and Aerodynamics: Summary of Research and Current Status (United States)

    Broeren, Andy


    NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.

  9. High-speed demodulation system of identical weak FBGs based on FDML wavelength swept laser (United States)

    Wang, Yiming; Liu, Quan; Wang, Honghai; Hu, Chenchen; Zhang, Chun; Li, Zhengying


    An identical weak reflection FBGs demodulation system based on a FDML laser is proposed. The laser is developed to output a continuous wavelength-swept spectrum in the scanning frequency of 120 kHz over a spectral range of more than 10nm at 1.54 μm. Based on this high-speed wavelength-swept light and the optical transmission delay effect, the demodulation system obtains the location and wavelength information of all identical weak FBGs by the reflected spectrum within each scanning cycle. By accessing to a high-speed FPGA processing module, continuous demodulation of 120 kHz is realized. The system breakthroughs the bandwidth of the laser to expand the sensors capacity and greatly improves the demodulation speed of a TDM sensing network. The experiments show the system can distinguish and demodulate the identical weak FBGs and measure the 4 kHz vibration at 120 kHz demodulation speed.

  10. Acoustic testing of a 1.5 pressure ratio low tip speed fan with a serrated rotor (QEP fan B scale model). [reduction of engine noise (United States)

    Kazin, S. B.; Paas, J. E.; Minzner, W. R.


    A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a serrated rotor leading edge to determine its effects on noise generation. The serrated rotor was produced by cutting teeth into the leading edge of the nominal rotor blades. The effects of speed and exhaust nozzle area on the scale models noise characteristics were investigated with both the nominal rotor and serrated rotor. Acoustic results indicate the serrations reduced front quadrant PNL's at takeoff power. In particular, the 200 foot (61.0 m) sideline noise was reduced from 3 to 4 PNdb at 40 deg for nominal and large nozzle operation. However, the rear quadrant maximum sideline PNL's were increased 1.5 to 3 PNdb at approach thust and up to 2 PNdb at takeoff thust with these serrated rotor blades. The configuration with the serrated rotor produced the lowest maximum 200 foot (61.0 m) sideline PNL for any given thust when the large nozzle (116% of design area) was employed.

  11. Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation (United States)

    Barui, Ananya; Banerjee, Provas; Patra, Rusha; Das, Raunak Kumar; Dhara, Santanu; Dutta, Pranab K.; Chatterjee, Jyotirmoy


    Direct noninvasive visualization of wound bed with depth information is important to understand the tissue repair. We correlate skin swept-source-optical coherence tomography (OCT) with histopathological and immunohistochemical evaluation on traumatic lower limb wounds under honey dressing to compare and assess the tissue repair features acquired noninvasively and invasively. Analysis of optical biopsy identifies an uppermost brighter band for stratum corneum with region specific thickness (p technology.

  12. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the GIII Swept-Wing Structure (United States)

    Lung, Shun-Fat; Ko, William L.


    The displacement transfer functions (DTFs) were applied to the GIII swept wing for the deformed shape prediction. The calculated deformed shapes are very close to the correlated finite element results as well as the measured data. The convergence study showed that using 17 strain stations, the wing-tip displacement prediction error was 1.6 percent, and that there is no need to use a large number of strain stations for G-III wing shape predictions.

  13. Instability analysis and drag coefficient prediction on a swept RAE2822 wing with constant lift coefficient

    Directory of Open Access Journals (Sweden)

    Zhenrong JING


    Full Text Available Swept wing is widely used in civil aircraft, whose airfoil is chosen, designed and optimized to increase the cruise speed and decrease the drag coefficient. The parameters of swept wing, such as sweep angle and angle of attack, are determined according to the cruise lift coefficient requirement, and the drag coefficient is expected to be predicted accurately, which involves the instability characteristics and transition position of the flow. The pressure coefficient of the RAE2822 wing with given constant lift coefficient is obtained by solving the three-dimensional Navier-Stokes equation numerically, and then the mean flow is calculated by solving the boundary layer (BL equation with spectral method. The cross-flow instability characteristic of boundary layer of swept wing in the windward and leeward is analyzed by linear stability theory (LST, and the transition position is predicted by eN method. The drag coefficient is numerically predicted by introducing a laminar/turbulent indicator. A simple approach to calculate the lift coefficient of swept wing is proposed. It is found that there is a quantitative relationship between the angle of attack and sweep angle when the lift coefficient keeps constant; when the angle of attack is small, the flow on the leeward of the wing is stable. when the angle of attack is larger than 3°, the flow becomes unstable quickly; with the increase of sweep angle or angle of attack the disturbance on the windward becomes more unstable, leading to the moving forward of the transition position to the leading edge of the wing; the drag coefficient has two significant jumping growth due to the successive occurrence of transition in the windward and the leeward; the optimal range of sweep angle for civil aircraft is suggested.

  14. Separation attenuation in swept shock wave-boundary-layer interactions using different microvortex generator geometries (United States)

    Martis, R. R.; Misra, A.


    A numerical study is conducted to determine the effectiveness of six different microvortex generator geometries in controlling swept shock wave/boundary-layer interactions. The geometries considered are base ramp, base ramp with declining angle of 45°, blunt ramp, split ramp, thick vanes, and ramped vanes. Microvortex generators with a gap were found to be better suited for delaying the separation. Thick vanes showed the largest delay in separation among the devices studied.

  15. Separation attenuation in swept shock wave-boundary-layer interactions using different microvortex generator geometries (United States)

    Martis, R. R.; Misra, A.


    A numerical study is conducted to determine the effectiveness of six different microvortex generator geometries in controlling swept shock wave/boundary-layer interactions. The geometries considered are base ramp, base ramp with declining angle of 45°, blunt ramp, split ramp, thick vanes, and ramped vanes. Microvortex generators with a gap were found to be better suited for delaying the separation. Thick vanes showed the largest delay in separation among the devices studied.

  16. Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Jonathan J Liu

    Full Text Available To describe enhanced vitreous imaging for visualization of anatomic features and microstructures within the posterior vitreous and vitreoretinal interface in healthy eyes using swept-source optical coherence tomography (SS-OCT. The study hypothesis was that long-wavelength, high-speed, volumetric SS-OCT with software registration motion correction and vitreous window display or high-dynamic-range (HDR display improves detection sensitivity of posterior vitreous and vitreoretinal features compared to standard OCT logarithmic scale display.Observational prospective cross-sectional study.Multiple wide-field three-dimensional SS-OCT scans (500×500A-scans over 12×12 mm2 were obtained using a prototype instrument in 22 eyes of 22 healthy volunteers. A registration motion-correction algorithm was applied to compensate motion and generate a single volumetric dataset. Each volumetric dataset was displayed in three forms: (1 standard logarithmic scale display, enhanced vitreous imaging using (2 vitreous window display and (3 HDR display. Each dataset was reviewed independently by three readers to identify features of the posterior vitreous and vitreoretinal interface. Detection sensitivities for these features were measured for each display method.Features observed included the bursa premacularis (BPM, area of Martegiani, Cloquet's/BPM septum, Bergmeister papilla, posterior cortical vitreous (hyaloid detachment, papillomacular hyaloid detachment, hyaloid attachment to retinal vessel(s, and granular opacities within vitreous cortex, Cloquet's canal, and BPM. The detection sensitivity for these features was 75.0% (95%CI: 67.8%-81.1% using standard logarithmic scale display, 80.6% (95%CI: 73.8%-86.0% using HDR display, and 91.9% (95%CI: 86.6%-95.2% using vitreous window display.SS-OCT provides non-invasive, volumetric and measurable in vivo visualization of the anatomic microstructural features of the posterior vitreous and vitreoretinal interface. The

  17. Artificial Neural Network Based Rotor Capacitive Reactance Control for Energy Efficient Wound Rotor Induction Motor

    Directory of Open Access Journals (Sweden)

    K. Siva Kumar


    Full Text Available Problem statement: The Rotor reactance control by inclusion of external capacitance in the rotor circuit has been in recent research for improving the performances of Wound Rotor Induction Motor (WRIM. The rotor capacitive reactance is adjusted such that for any desired load torque the efficiency of the WRIM is maximized. The rotor external capacitance can be controlled using a dynamic capacitor in which the duty ratio is varied for emulating the capacitance value. This study presents a novel technique for tracking maximum efficiency point in the entire operating range of WRIM using Artificial Neural Network (ANN. The data for ANN training were obtained on a three phase WRIM with dynamic capacitor control and rotor short circuit at different speed and load torque values. Approach: A novel neural network model based on the back-propagation algorithm has been developed and trained in determining the maximum efficiency of the motor with no prior knowledge of the machine parameters. The input variables to the ANN are stator current (Is, Speed (N and Torque (Tm and the output variable is the duty ratio (D. Results: The target is pre-set and the accuracy of the ANN model is measured using Mean Square Error (MSE and R2 parameters. The result of R2 value of the proposed ANN model is found to be 0.99980. Conclusion: The optimal duty ratio and corresponding optimal rotor capacitance for improving the performances of the motor are predicted for low, medium and full loads by using proposed ANN model.

  18. Modeling and interpreting speckle pattern formation in swept-source optical coherence tomography (Conference Presentation) (United States)

    Demidov, Valentin; Vitkin, I. Alex; Doronin, Alexander; Meglinski, Igor


    We report on the development of a unified Monte-Carlo based computational model for exploring speckle pattern formation in swept-source optical coherence tomography (OCT). OCT is a well-established optical imaging modality capable of acquiring cross-sectional images of turbid media, including biological tissues, utilizing back scattered low coherence light. The obtained OCT images include characteristic features known as speckles. Currently, there is a growing interest to the OCT speckle patterns due to their potential application for quantitative analysis of medium's optical properties. Here we consider the mechanisms of OCT speckle patterns formation for swept-source OCT approaches and introduce further developments of a Monte-Carlo based model for simulation of OCT signals and images. The model takes into account polarization and coherent properties of light, mutual interference of back-scattering waves, and their interference with the reference waves. We present a corresponding detailed description of the algorithm for modeling these light-medium interactions. The developed model is employed for generation of swept-source OCT images, analysis of OCT speckle formation and interpretation of the experimental results. The obtained simulation results are compared with selected analytical solutions and experimental studies utilizing various sizes / concentrations of scattering microspheres.

  19. Modeling and numerical investigation of the inlet circumferential fluctuations of swept and bowed blades (United States)

    Tang, Mingzhi; Jin, Donghai; Gui, Xingmin


    The circumferential fluctuation (CF) source terms induced by the inviscid blade force can affect the inlet distribution of flow parameters and radial equilibrium of swept and bowed blades. However, these phenomena cannot be adequately described by throughflow methods based on the axisymmetric assumption. A transport model for the CF stresses is proposed and correlated to the distribution of circulation to reflect the effect of the inviscid blade force. To investigate the effect of the inlet CFs on swept and bowed blades, the model is integrated into a throughflow model and applied to a series of cascades with different sweep and bow angles. For swept cascades, the CF source terms change the distributions of incidence angles, as well as the radial equilibrium at the inlet of the blade passage. And the influence is enhanced as the absolute value of the sweep angle increases. For bowed cascades, the distributions of incidence angles are also altered. For both cases, the model can offer a good prediction of the inlet CF source terms, and prove to exert a better prediction of blade design key parameters such as flow angles.

  20. Multiple laminar-turbulent transition cycles around a swept leading edge (United States)

    Mukund, R.; Narasimha, R.; Viswanath, P. R.; Crouch, J. D.


    Certain interesting flow features involving multiple transition/relaminarization cycles on the leading edge of a swept wing at low speeds are reported here. The wing geometry tested had a circular nose and a leading edge sweep of 60°. Tests were made at a chord Reynolds number of 1.3 × 106 with model incidence α varied in the range of 3°-18° in discrete steps. Measurements made included wing chord-wise surface pressure distributions and wall shear stress fluctuations (using hot-film gages) within about 10 % of the chord in the leading edge zone. Results at α = 16° and 18° showed that several (often incomplete) transition cycles between laminar-like and turbulent-like flows occurred. These rather surprising results are attributable chiefly to the fact that the Launder acceleration parameter K (appropriately modified for swept wings) can exceed a critical range more than once along the contour of the airfoil in the leading edge region. Each such crossing results in a relaminarization followed by direct retransition to turbulence as K drops to sufficiently low values. It is further shown that the extent of each observed transition zone (of either type) is consistent with earlier data acquired in more detailed studies of direct transition and relaminarization. Swept leading edge boundary layers therefore pose strong challenges to numerical modelling.

  1. [Treatment of organic waste gas by adsorption rotor]. (United States)

    Zhu, Run-Ye; Zheng, Liang-Wei; Mao, Yu-Bo; Wang, Jia-De


    The adsorption rotor is applicable to treating organic waste gases with low concentration and high air volume. The performance of adsorption rotor for purifying organic waste gases was investigated in this paper. Toluene was selected as the simulative gaseous pollutant and the adsorption rotor was packed with honeycomb modified 13X molecular sieves (M-13X). Experimental results of the fixed adsorption and the rotor adsorption were analyzed and compared. The results indicated that some information on the fixed adsorption was useful for the rotor adsorption. Integrating the characteristics of the adsorbents, waste gases and the structures of the rotor adsorption, the formulas on optimal rotor speed and cycle removal efficiency of the adsorption rotor were deduced, based on the mass and heat balances of the adsorbing process. The numerical results were in good agreement with the experimental data, which meant that the formulas on optimal rotor speed and cycle removal efficiency could be effectively applied in design and operation of the adsorption rotor.

  2. Rotor-rotor interaction for counter-rotating fans. Part 1: Three-dimensional flowfield measurements (United States)

    Shin, Hyoun-Woo; Whitfield, Charlotte E.; Wisler, David C.


    The rotor wake/vortex flowfield generated in a scale model simulator of General Electric's counter-rotating unducted fan (UDF) engine was investigated using three-dimensional hot-wire anemometry. The purpose was to obtain a set of benchmark experimental aerodynamic data defining the rotor wake and vortex structure, particularly in the tip region, and to relate this observed flow structure to its acoustic signature. The tests were conducted in a large, freejet anechoic chamber. Measurements of the three components of velocity were made at axial stations upstream and downstream of each rotor for conditions that simulate takeoff, cutback, and approach power. Two different forward blade designs were evaluated. The tip vortices, the axial velocity defect in the vortex core, and differences in the interaction of the wakes and vortices generated by the forward and aft rotor are used to explain differences in noise generated by the two different rotor designs. Part 1 presents the three-dimensional flowfield measurements. Part 2 (aeroacoustic prediction and analysis), which will be presented later, will give an acoustic prediction using the measured data.

  3. Aerodynamic design of the National Rotor Testbed.

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  4. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    are assumed to be proportional to the relative inflow angle, which also gives a linear form with equivalent stiffness and damping terms. Geometric stiffness effects including the important stiffening from tensile axial stresses in equilibrium with centrifugal forces are included via an initial stress......This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... formulation. The element provides an accurate representation of the eigenfrequencies and whirling modes of the gyroscopic system, and identifies lightly damped edge-wise modes. By adoption of a method for active, collocated resonant vibration of multi-degree-of-freedom systems it is demonstrated...

  5. The Dynamics of Rotor with Rubbing

    Directory of Open Access Journals (Sweden)

    Jerzy T. Sawicki


    characteristics of rub-induced rotor response, initial conditions, as well as appropriate ranges of system parameters. Of special interest are the changes in the apparent nonlinearity of the system dynamics as rubs are induced at different rotor speeds. In particular, starting with 2nd order sub/superharmonics, which are symptomatic of quadratic nonlinearity, progressively higher order polynomial behavior is excited, i.e., cubic, giving rise to 3rd order sub/superharmonics. As the speed is transitioned between such apparent nonlinearities, chaotic like behavior is induced because of the lack of whole or rational tone tuning between the apparent system frequency and the external source noise. The cause of such behavior will be discussed in detail along with the results of several parametric studies.

  6. CFD simulations of the MEXICO rotor

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.; Zahle, Frederik


    The wake behind a wind turbine model is investigated using Computational Fluid Dynamics (CFD), and results are compared with measurements. The turbine investigated is the three‐bladed test rotor (D = 4.5 m) used in the Model Experiments in Controlled Conditions (MEXICO) wind tunnel experiment....... During the MEXICO experiment, particle image velocimetry measurements of the induction upstream and downstream of the rotor were performed for different operating conditions, giving a unique dataset to verify theoretical models and CFD models. The present paper first describes the efforts in reproducing...... the experimental results using the Reynold‐Averaged Navier‐Stokes method. Second, three‐dimensional airfoil characteristics are extracted that allow simulations with simpler wake models. Copyright © 2011 John Wiley & Sons, Ltd....

  7. Vortex shedding by a Savonius rotor (United States)

    Botrini, M.; Beguier, C.; Chauvin, A.; Brun, R.


    A series of flow visualizations was performed to characterize the wake vortices of a Savonius rotor. The trials were undertaken in an attempt to account for discrepancies between theoretical and experimentally-derived power coefficients. The Savonius examined was two-bladed with a center offset. All tests were made in a water tunnel. Dye injection provided the visualization, and average velocities and velocity fluctuations were measured using a laser Doppler anemometer. A system of three vortices was found to be periodically shed by the rotor. Flow velocity fluctuation intensity peaked as a vortex was shed. The vortex shedding alternated from blade to blade, so that one was shed from a blade moving upstream.

  8. Simulation of flow around rotating Savonius rotors (United States)

    Ishimatsu, Katsuya; Shinohara, Toshio


    Flow around Savonius rotors was simulated by solving 2-D (two-dimensional) Navier-Stokes equations. The equations were discretized by finite volume method for space and fractional step method for time. Convection terms were specially discretized by an upwinding scheme for unstructured grid. Only rotating rotors were simulated in this report. The values of parameters were as follows: Reynolds number, 10(exp 5); overlap ratio, zero and 0.16; and tip speed ratio, 0.25 to 1.75. Results showed good agreement with experimental data for the following points: optimum tip speed ratio is 0.75 to 1.0; overlapping is effective to increase power coefficient. Moreover, simulated flow fields showed that vortex shedding occur at not only tips of bucket but back of bucket and the shed vortex decrease torque.

  9. The Development and Control of Axial Vortices over Swept Wings


    Klute, Sandra M.


    The natural unsteadiness in the post-breakdown flowfield of a 75° sweep delta wing at 40° angle of attack was studied with dual and single point hot-wire anemometry in the Engineering Science and Mechanics (ESM) Wind Tunnel at a Reynolds number Re = 210,000. Data were taken in five crossflow planes surrounding the wing's trailing edge. Results showed a dominant narrowband Strouhal frequency of St = 1.5 covering approximately 80% of the area with lower-intensity broadband secondary freque...

  10. Simplified rotor load models and fatigue damage estimates for offshore wind turbines. (United States)

    Muskulus, M


    The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations.

  11. Development of a rotor alloy for advanced ultra super critical turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Miyashita, Shigekazu; Yamada, Masayuki; Suga, Takeo; Imai, Kiyoshi; Nemoto, Kuniyoshi; Yoshioka, Youmei [Toshiba Corporation, Yokohama (Japan)


    A Ni-based superalloy ''TOS1X'', for the rotor material of the 700 class advanced ultra super critical (A-USC) turbine power generation system was developed. TOS1X is an alloy that is improved in the creep rupture strength of Inconel trademark 617 maintaining both forgeability and weldability. The 7 t weight model rotor made of TOS1X was manufactured by double melt process, vacuum induction melting and electro slag remelting, and forging. During forging process, forging cracks and any other abnormalities were not detected on the ingots. The metallurgical and the mechanical properties in this rotor were investigated. Macro and micro structure observation, and some mechanical tests were conducted. According to the metallurgical structure investigation, there was no remarkable segregation in whole area and the forging effect was reached in the center part of the rotor ingot. The results of tensile test and creep rupture test proved that proof stress and tensile stress of the TOS1X are higher than those of Inconel trademark 617 and creep rupture strength of TOS1X is much superior than that of Inconel trademark 617. (orig.)

  12. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 1. Text and figures (United States)

    Balch, D. T.; Lombardi, J.


    A model scale hover test was conducted in the Sikorsky Aircraft Model rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. The test showed that overall the tail rotor effects on the advanced tip configurations tested are not substantially different from the effects on conventional tips.

  13. Balancing of Rigid and Flexible Rotors (United States)


    converters Turbine wheels Turbinas (steam, gas , hydraulic), high speed > 10,000 rpm Turbines (steam, gas , hydraulic), medium speed 1000-10,000 rpm...MOUNTED ON CASINGD AI GA - + SIGNALS PROCESSED BY TRACKING FILTERS AND TIME-AVERAGED TO IDENTIFY PRINCIPAL FREQUENCY COMPONENTS Fig. 1.10, Noncontactlng...balanrcng of gas -turbine engines; by Little [121, whose thesis on flexible-rotor balancing contains selected refer- ences on this subject; and by Kendig

  14. Dark rotors in the late universe. (United States)

    Mayer, Frederick J


    The tresino phase-transition that took place about 300 years after the big-bang, converted most baryons into almost equal numbers of protons and tresinos. Many of these become oppositely-charged rotating pairs or "rotors". This paper examines the formation, evolution, disposition and observations of the protons and tresinos from the phase-transition to the present era. The solar corona is further examined within the same tresino phase-transition picture.

  15. Development of a model based Structural-Health-Monitoring-Systems for condition monitoring of rotor blades; Entwicklung eines modellgestuetzten Structural-Health-Monitoring-Systems zur Zustandsueberwachung von Rotorblaettern

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, C.; Friedmann, H.; Henkel, F.O. [Woelfel Beratende Ingenieure GmbH und Co.KG, Hoechberg (Germany); Frankenstein, B.; Schubert, L. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren, Dresden (Germany)


    The authors of the contribution under consideration report on a development of a Structural-Health-Monitoring-System which is to supervise the condition of the rotor blades of wind power plants and to detect in time structural changes before total failures. It is based on a combination of measuring techniques from the areas of the led rollers in the ultrasonic range and low-frequency modal analysis. The combination of both techniques was already promisingly used with past investigations of rotor blades. By means of modal analysis, statements to the total behaviour of the structure of rotor blades are possible. Endangered and strongly stressed areas additionally are supervised by led rollers within the ultrasonic range. The authors also report on the conception and execution of a fatigue test at a material rotor blade with a length by 39.1 m.

  16. Stopped-Rotor Cyclocopter for Venus Exploration (United States)

    Husseyin, Sema; Warmbrodt, William G.


    The cyclocopter system can use two or more rotating blades to create lift, propulsion and control. This system is explored for its use in a mission to Venus. Cyclocopters are not limited to speed and altitude and can provide 360 degrees of vector thrusting which is favorable for good maneuverability. The novel aspect of this study is that no other cyclocopter configuration has been previously proposed for Venus or any (terrestrial or otherwise) exploration application where the cyclocopters rotating blades are stopped, and act as fixed wings. The design considerations for this unique planetary aerial vehicle are discussed in terms of implementing the use of a cyclorotor blade system combined with a fixed wing and stopped rotor mechanism. This proposed concept avoids many of the disadvantages of conventional-rotor stopped-rotor concepts and accounts for the high temperature, pressure and atmospheric density present on Venus while carrying out the mission objectives. The fundamental goal is to find an ideal design that implements the combined use of cyclorotors and fixed wing surfaces. These design concepts will be analyzed with the computational fluid dynamics tool RotCFD for aerodynamic assessment. Aspects of the vehicle design is 3D printed and tested in a small water tunnel or wind tunnel.

  17. Turbine flowmeter for liquid helium with the rotor magnetically levitated (United States)

    Rivetti, A.; Martini, G.; Goria, R.; Lorefice, S.

    A turbine flowmeter with no mechanical contact between rotor and body is described, to be used as a reference standard in our liquid helium flow rate calibration facility. The absence of contact, zeroing the bearings friction factor, ensures a good measurement repeatability, even at very low liquid helium flow rate values. The rotor is magnetically suspended by the Meissner effect: at liquid helium temperatures two magnetic fields generate sustaining forces against the surface of the two rotor ends, which are made of niobium. Due to the repulsive nature of the acting forces, the rotor equilibrium is intrinsically stable and no external electronics are required for its levitation. A particular configuration of the superconducting windings and of the rotor ends allow the rotor to levitate and hold good axial and radial stability. A detailed description of the solutions adopted for the realization of the prototype and the operation conditions are reported. The first results, made with the absolute liquid helium calibration facility, are shown.

  18. Performance of Savonius Rotor for Environmentally Friendly Hydraulic Turbine (United States)

    Nakajima, Miyoshi; Iio, Shouichiro; Ikeda, Toshihiko

    The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine. A model of a two-bucket Savonius type hydraulic turbine was constructed and tested in a water tunnel to arrive at an optimum installation condition. Effects of two installation parameters, namely a distance between a rotor and a bottom wall of the tunnel, a rotation direction of the rotor, on the power performance were studied. A flow field around the rotor was examined visually to clarify influences of installation conditions on the flow field. The flow visualization showed differences of flow pattern around the rotor by the change of these parameters. From this study it was found that the power performances of Savonius hydraulic turbine were changed with the distance between the rotor and the bottom wall of the tunnel and with a rotation direction of the rotor.

  19. An experimental study on improvement of Savonius rotor performance

    Directory of Open Access Journals (Sweden)

    N.H. Mahmoud


    In this work different geometries of Savonius wind turbine are experimentally studied in order to determine the most effective operation parameters. It was found that, the two blades rotor is more efficient than three and four ones. The rotor with end plates gives higher efficiency than those of without end plates. Double stage rotors have higher performance compared to single stage rotors. The rotors without overlap ratio (β are better in operation than those with overlap. The results show also that the power coefficient increases with rising the aspect ratio (α. The conclusions from the measurements of the static torque for each rotor at different wind speeds verify the above summarized results of this work.

  20. Advances in transitional flow modeling applications to helicopter rotors

    CERN Document Server

    Sheng, Chunhua


    This book provides a comprehensive description of numerical methods and validation processes for predicting transitional flows based on the Langtry–Menter local correlation-based transition model, integrated with both one-equation Spalart–Allmaras (S–A) and two-equation Shear Stress Transport (SST) turbulence models. A comparative study is presented to combine the respective merits of the two coupling methods in the context of predicting the boundary-layer transition phenomenon from fundamental benchmark flows to realistic helicopter rotors. The book will of interest to industrial practitioners working in aerodynamic design and the analysis of fixed-wing or rotary wing aircraft, while also offering advanced reading material for graduate students in the research areas of Computational Fluid Dynamics (CFD), turbulence modeling and related fields.

  1. Downwind rotor horizontal axis wind turbine noise prediction (United States)

    Metzger, F. B.; Klatte, R. J.


    NASA and industry are currently cooperating in the conduct of extensive experimental and analytical studies to understand and predict the noise of large, horizontal axis wind turbines. This effort consists of (1) obtaining high quality noise data under well controlled and documented test conditions, (2) establishing the annoyance criteria for impulse noise of the type generated by horizontal axis wind turbines with rotors downwind of the support tower, (3) defining the wake characteristics downwind of the axial location of the plane of rotation, (4) comparing predictions with measurements made by use of wake data, and (5) comparing predictions with annoyance criteria. The status of work by Hamilton Standard in the above areas which was done in support of the cooperative NASA and industry studies is briefly summarized.

  2. Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo. (United States)

    Shimada, Yasushi; Nakagawa, Hisaichi; Sadr, Alireza; Wada, Ikumi; Nakajima, Masatoshi; Nikaido, Toru; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori


    The aim of this study was to determine the diagnostic accuracy of swept-source optical coherent tomography (SS-OCT) in detecting and estimating the depth of proximal caries in posterior teeth in vivo. SS-OCT images and bitewing radiographs were obtained from 86 proximal surfaces of 53 patients. Six examiners scored the locations according to a caries lesion depth scale (0-4) using SS-OCT and the radiographs. The results were compared with clinical observations obtained after the treatment. SS-OCT could detect the presence of proximal caries in tomograms that were synthesized based on the backscatter signal obtained from the proximal carious lesion through occlusal enamel. SS-OCT showed significantly higher sensitivity and larger area under the receiver operating characteristic curve than radiographs for the detection of cavitated enamel lesions and dentin caries (Student's t -test, p SS-OCT appears to be a more reliable and accurate method than bitewing radiographs for the detection and estimation of the depth of proximal lesions in the clinical environment.

  3. Abrasion Resistance Comparison between Rotor and Ring Spun Yarn

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-ping; YU Chong-wen


    On the base of literature review and the analysis of yarn properties, yarn structure and some other facts, the abrasion resistance of both rotor spun yarn and ring spun yarns are discussed. The results show that with the same raw material and twist, the rotor spun yarn has lower abrasion resistance than that of ring spun yarn, because of the higher twist employed, the abrasion resistance of rotor spun yarn is higher than that of ring spun yarn.

  4. Rotordynamics of Turbine Labyrinth Seals with Rotor Axial Shifting


    Jinxiang Xi; Rhode, David L.


    Rotors in high-performance steam turbines experience a significant axial shifting during starting and stopping processes due to thermal expansion, for example. This axial shifting could significantly alter the flow pattern and the flow-induced rotordynamic forces in labyrinth seals, which in turn, can considerably affect the rotor-seal system performance. This paper investigates the influence of the rotor axial shifting on leakage rate as well as rotordynamic forces in hi...

  5. Theoretical study on the flow about Savonius rotor (United States)

    Ogawa, T.


    A method for the two-dimensional analysis of the separated flow about Savonius rotors is presented. Calculations are performed by combining the singularity method and the discrete vortex method. The method is applied to the simulation of flows about a stationary rotor and a rotating rotor. Moreover, torque and power coefficients are computed and compared with the experimental results presented by Sheldahl et al. Theoretical and experimental results agree well qualitatively.

  6. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose


    This paper extends Hodges-Dowell's partial differential equations of blade motion, by including the effects from gravity, pitch action and varying rotor speed. New equations describing the pitch action and rotor speeds are also derived. The physical interpretation of the individual terms...... in the equations is discussed. The partial differential equations of motion are approximated by ordinary differential equations of motion using an assumed mode method. The ordinary differential equations are used to simulate a sudden pitch change of a rotating blade. This work is a part of a project on pitch blade...

  7. Experimental study on the aerodynamic performance of a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki; Gotoh, Futoshi (Gunma Univ., Kiryu (Japan). Dept. of Mechanical Engineering)


    The aerodynamic performance of a Savonius rotor has been studied by measuring the pressure distributions on the blade surfaces at various rotor angles and tip-speed ratios. It is found that the pressure distributions on the rotating rotor differ remarkably from those on the still rotor especially on the convex side of the advancing blade, where a low pressure region is formed by the moving wall effect of the blade. The torque and power performances, evaluated by integrating the pressure, are in close agreement with those by the direct torque measurement. The drag and side force performance is also studied.

  8. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft (United States)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.


    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  9. Rotor dynamic considerations for large wind power generator systems (United States)

    Ormiston, R. A.


    Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.

  10. Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors (United States)

    Lobitz, D. W.


    The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.


    Institute of Scientific and Technical Information of China (English)

    He Xiaoxia; Gao Zhongyu; Wang Yongliang


    Based on the motion equations of an unbalanced spherical rotor with contactless suspension,three methods of MUM (mass unbalance measurement) are put forward to measure the total mass unbalance,radical mass unbalance and radical mass unbalance of the rotor.Total mass unbalance is obtained when the unbalanced rotor plays as a simple pendulum in static situation.The pendulant period and pendulant midpoint indicate magnitude and direction of total mass unbalance of the rotor respectively.Analysis of the motion equations by using the averaging method yields that the rotor will do a special side oscillation when an auxiliary system makes the rotor spin about its pole axis which is orientating toward the local vertical.The radical mass unbalance can be obtained by building a proper displacement sensor to sense the amplitude of the side oscillation.Necessary analysis of the motion equations also shows that when the rotor spins at a small angular velocity and the rotary axis is perpendicular to the vertical,the pole axis of the rotor will precess slowly about the vertical by virtue of the axial mass unbalance.The axial mass unbalance can be estimated from the time history of the spin vector of the rotor.Finally,measurement precision of the three methods is compared and how the external torque affects the measurement precision for the three methods are examined.

  12. Numerical Analysis of Nonlinear Rotor-bearing-seal System

    Institute of Scientific and Technical Information of China (English)

    CHENG Mei; MENG Guang; JING Jian-ping


    The system state trajectory, Poincaré maps, largest Lyapunov exponents, frequency spectra and bifurcation diagrams were used to investigate the non-linear dynamic behaviors of a rotor-bearing-seal coupled system and to analyze the influence of the seal and bearing on the nonlinear characteristics of the rotor system. Various nonlinear phenomena in the rotor-bearing-seal system, such as periodic motion, double-periodicmotion, multi-periodic motion and quasi-periodic motion were investigated. The results may contribute to a further understanding of the non-linear dynamics of the rotor-bearing-seal coupled system.

  13. Stability of Rotor Systems: A Complex Modelling Approach

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Pommer, Christian; Stoustrup, Jakob


    A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared with the resu......A large class of rotor systems can be modelled by a complex matrix differential equation of secondorder. The angular velocity of the rotor plays the role of a parameter. We apply the Lyapunov matrix equation in a complex setting and prove two new stability results which are compared...

  14. Mechanical coupling for a rotor shaft assembly of dissimilar materials (United States)

    Shi, Jun; Bombara, David; Green, Kevin E.; Bird, Connic; Holowczak, John


    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  15. Position Sensing for Rotor in Hybrid Stepper Motor (United States)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor)


    A method and system are provided for sensing the position of a rotor in a hybrid stepper motor. First and second Hall sensors are positioned in a spaced-apart relationship with the first and second armatures of the rotor such that the first and second Hall sensors generate electrical outputs that are out of phase with one another as the rotor rotates. The electrical outputs are adjusted relative to a reference, and the amplitude of the electrical outputs is further adjusted to account for spacing differences between the rotor and each of the first and second Hall sensors.


    Institute of Scientific and Technical Information of China (English)

    LIN Fu-sheng 林富生; MENG Guang 孟光; Eric Hahn


    The nonlinear dynamics of a cracked rotor system in an aircraft maneuvering with constant velocity or acceleration was investigated. The influence of the aircraft climbing angle on the cracked rotor system response is of particular interest and the results show that the climbing angle can markedly affect the parameter range for bifurcation, for quasi-periodic response and for chaotic response as well as for system stability. Aircraft acceleration is also shown to significantly affect the nonlinear behavior of the cracked rotor system, illustrating the possibility for on-line rotor crack fault diagnosis.

  17. Coupled Thermal Field of the Rotor of Liquid Floated Gyroscope

    Directory of Open Access Journals (Sweden)

    Wang Zhengjun


    Full Text Available Inertial navigation devices include star sensor, GPS, and gyroscope. Optical fiber and laser gyroscopes provide high accuracy, and their manufacturing costs are also high. Magnetic suspension rotor gyroscope improves the accuracy and reduces the production cost of the device because of the influence of thermodynamic coupling. Therefore, the precision of the gyroscope is reduced and drift rate is increased. In this study, the rotor of liquid floated gyroscope, particularly the dished rotor gyroscope, was placed under a thermal field, which improved the measurement accuracy of the gyroscope. A dynamic theory of the rotor of liquid floated gyroscope was proposed, and the thermal field of the rotor was simulated. The maximum stress was in x, 1.4; y, 8.43; min 97.23; and max 154.34. This stress occurred at the border of the dished rotor at a high-speed rotation. The secondary flow reached 5549 r/min, and the generated heat increased. Meanwhile, the high-speed rotation of the rotor was volatile, and the dished rotor movement was unstable. Thus, nanomaterials must be added to reduce the thermal coupling fluctuations in the dished rotor and improve the accuracy of the measurement error and drift rate.

  18. Performance testing of a Savonius windmill rotor in shear flows (United States)

    Mojola, O. O.; Onasanya, O. E.

    The effects of flow shear and/or unsteady behavior on the power generation capability of a Savonius wind turbine rotor are assessed in view of measurements conducted, both in two statistically steady shear flows and in the wind, of rotor tip speed and torque at a number of streamwise stations for each of four values of the rotor bucket overlap ratio. It is found that, even in the absence of shear, the power coefficient of a Savonius wind turbine rotor is most strongly dependent on tip speed ratio.

  19. Methods for Expanding Rotary Wing Aircraft Health and Usage Monitoring Systems to the Rotating Frame through Real-time Rotor Blade Kinematics Estimation (United States)

    Allred, Charles Jefferson

    Since the advent of Health and Usage Monitoring Systems (HUMS) in the early 1990's, there has been a steady decrease in the number of component failure related helicopter accidents. Additionally, measurable cost benefits due to improved maintenance practices based on HUMS data has led to a desire to expand HUMS from its traditional area of helicopter drive train monitoring. One of the areas of greatest interest for this expansion of HUMS is monitoring of the helicopter rotor head loads. Studies of rotor head load and blade motions have primarily focused on wind tunnel testing with technology which would not be applicable for production helicopter HUMS deployment, or measuring bending along the blade, rather than where it is attached to the rotor head and the location through which all the helicopter loads pass. This dissertation details research into finding methods for real time methods of estimating rotor blade motion which could be applied across helicopter fleets as an expansion of current HUMS technology. First, there is a brief exploration of supporting technologies which will be crucial in enabling the expansion of HUMS from the fuselage of helicopters to the rotor head: wireless data transmission and energy harvesting. A brief overview of the commercially available low power wireless technology selected for this research is presented. The development of a relatively high-powered energy harvester specific to the motion of helicopter rotor blades is presented and two different prototypes of the device are shown. Following the overview of supporting technologies, two novel methods of monitoring rotor blade motion in real time are developed. The first method employs linear displacement sensors embedded in the elastomer layers of a high-capacity laminate bearing of the type commonly used in fully articulated rotors throughout the helicopter industry. The configuration of these displacement sensors allows modeling of the sensing system as a robotic parallel

  20. Study of creep-fatigue behavior in a 1000 MW rotor using a phenomenological lifetime model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nailong; Wang, Weizhe; Jiang, Jishen; Liu, Yingzheng [School of Mechanical Engineering, Shanghai (China)


    In this study, the phenomenological lifetime model was applied to part of an ultra-supercritical steam turbine rotor model to predict its lifetime as a post processing of the finite element method. To validate the accuracy and adaptation of the post processing program, stress strain hysteresis loops of a cylinderal model under service-like load cycle conditions in cycle N = 1 and 300 were constructed, and the comparison of the results with experimental data on the same cylinderal specimen showed them to be satisfactory. The temperature and von Mises stress distributions of the rotor during a startup-running-shutdown-natural cool process were numerically studied using ABAQUS and the damage caused by the interaction of creep and fatigue was subsequently computed and discussed. It was found that the maximum damage appeared at the inlet notch zone, with the blade groove areas and the front notch areas also suffering a large damage amplitude.

  1. Development of an advanced high-speed rotor - Final results from the Advanced Flight Research Rotor program (United States)

    Jenks, Mark; Haslim, Leonard


    The final results of the Advanced Flight Research Rotor (AFRR) study, a NASA sponsored research program, are summarized. First, the results of the initial phase of the AFRR program, consisting of the definition of a conventional rotor with planform and prescribed twist distributions, are briefly reviewed. The mechanism of the calculated performance benefit is then explained, and a detailed analysis of the prescribed twist distribution is presented. Recommendations are made on the practical means of approximating the prescribed twist on the actual rotor.

  2. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout

    Directory of Open Access Journals (Sweden)

    Xiangbo Xu


    Full Text Available Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs, offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.

  3. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout. (United States)

    Xu, Xiangbo; Chen, Shao


    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.

  4. Design of Low-Torque-Ripple Synchronous Reluctance Motor with External Rotor

    Directory of Open Access Journals (Sweden)

    Lavrinovicha L.


    Full Text Available The paper presents new designs for synchronous reluctance motors that have external rotor (segment-shaped rotor, rotor with additional non-magnetic space to the quadrature axis of the rotor, and rotor with several flux barriers. Impact of the external rotor configuration on the electromagnetic torque and torque ripple is analysed. Electromagnetic torque ripple factor is calculated for each studied motor using the results of magnetic field numerical calculations.

  5. Active damping of flexible rotor blade dynamics using electrorheological-fluid-based actuators (United States)

    Wereley, Norman M.


    Advanced rotor systems including hingeless and bearingless rotors have air and ground resonance instabilities due to coalescence of low-frequency rotor modes with landing gear and fuselage modes, respectively. This coalescence is of difficulty due to the direct connection of the rotor blade in these advanced rotor systems to the rotor hub using a flexure or flexbeam. We are currently exploring the mitigation of this modal coalescence through the use of active damping techniques and electro-rheological fluid technology.

  6. Experimental Investigation of High-Pressure Steam Induced Stall of a Transonic Rotor (United States)


    disturbance can occur anywhere in a turbomachine and may be present during typical operation in small areas. When localized disturbances expand, stall...describe the flow breakdown over a particular stage of a turbomachine . Stall, however, often leads to a more damaging phenomenon known as surge. 3...Surge The cyclic stalling of a stage in a turbomachine is referred to as surge. Surge occurs when both the rotor and stator in a certain stage

  7. Transonic test of a forward swept wing configuration exhibiting Body Freedom Flutter (United States)

    Chipman, R.; Rauch, F.; Rimer, M.; Muniz, B.; Ricketts, R. H.


    The aeroelastic dynamic instability designated Body Freedom Flutter (BFF) involves aircraft pitch and wing bending motions characteristic of forward swept wing (FSW) aircraft. Attention is presently given to the results of tests conducted on a 1/2-scale cable-mounted FSW wind tunnel model, with and without relaxed static stability (RSS) control conditions. BFF instability boundaries were found to occur at significantly lower air speeds than those associated with aeroelastic wing divergence on the same model. Servoaeroelastic stability analyses have been conducted which proved capable of predicting the measured onset of BFF, in both the statically stable and RSS configurations tested.

  8. Aerodynamic effects of simulated ice shapes on two-dimensional airfoils and a swept finite tail (United States)

    Alansatan, Sait

    An experimental study was conducted to investigate the effect of simulated glaze ice shapes on the aerodynamic performance characteristics of two-dimensional airfoils and a swept finite tail. The two dimensional tests involved two NACA 0011 airfoils with chords of 24 and 12 inches. Glaze ice shapes computed with the LEWICE code that were representative of 22.5-min and 45-min ice accretions were simulated with spoilers, which were sized to approximate the horn heights of the LEWICE ice shapes. Lift, drag, pitching moment, and surface pressure coefficients were obtained for a range of test conditions. Test variables included Reynolds number, geometric scaling, control deflection and the key glaze ice features, which were horn height, horn angle, and horn location. For the three-dimensional tests, a 25%-scale business jet empennage (BJE) with a T-tail configuration was used to study the effect of ice shapes on the aerodynamic performance of a swept horizontal tail. Simulated glaze ice shapes included the LEWICE and spoiler ice shapes to represent 9-min and 22.5-min ice accretions. Additional test variables included Reynolds number and elevator deflection. Lift, drag, hinge moment coefficients as well as boundary layer velocity profiles were obtained. The experimental results showed substantial degradation in aerodynamic performance of the airfoils and the swept horizontal tail due to the simulated ice shapes. For the two-dimensional airfoils, the largest aerodynamic penalties were obtained when the 3-in spoiler-ice, which was representative of 45-min glaze ice accretions, was set normal to the chord. Scale and Reynolds effects were not significant for lift and drag. However, pitching moments and pressure distributions showed great sensitivity to Reynolds number and geometric scaling. For the threedimensional study with the swept finite tail, the 22.5-min ice shapes resulted in greater aerodynamic performance degradation than the 9-min ice shapes. The addition of 24

  9. Colorectal neoplasm characterization based on swept-source optical coherence tomography (United States)

    Lu, Chih-Wei; Chiu, Han-Mo; Sun, Chia-Wei


    Most of the colorectal cancer has grown from the adenomatous polyp. Adenomatous lesions have a well-documented relationship to colorectal cancer in previous studies. Thus, to detect the morphological changes between polyp and tumor can allow early diagnosis of colorectal cancer and simultaneous removal of lesions. In this paper, the various adenoma/carcinoma in-vitro samples are monitored by our swept-source optical coherence tomography (SS-OCT) system. The significant results indicate a great potential for early detection of colorectal adenomas based on the SS-OCT imaging.

  10. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang;


    While swept source optical coherence tomography (OCT) in the 1050 nm range is promising for retinal imaging, there are certain challenges. Conventional semiconductor gain media have limited output power, and the performance of high-speed Fourier domain mode-locked (FDML) lasers suffers from...... achieved stable FDML operation, exploiting the full bandwidth of the tapered amplifier despite high dispersion. The light source operates at a repetition rate of 116 kHz with an effective average output power in excess of 30 mW. With a total sweep range of 70 nm, we achieved an axial resolution of 15 μm...

  11. Swept-Source OCT Angiography Shows Sparing of the Choriocapillaris in Multiple Evanescent White Dot Syndrome. (United States)

    Yannuzzi, Nicolas A; Swaminathan, Swarup S; Zheng, Fang; Miller, Andrew; Gregori, Giovanni; Davis, Janet L; Rosenfeld, Philip J


    Two women with unilateral vision loss from multiple evanescent white dot syndrome were imaged serially with swept-source optical coherence tomography (SS-OCT). En face wide-field structural images revealed peripapillary outer photoreceptor disruption better than conventional fundus autofluorescence imaging. OCT angiography (OCTA) imaging showed preservation of flow within the retinal vasculature and choriocapillaris. As OCTA imaging of the choriocapillaris continues to evolve, these images may lay the groundwork for future investigation. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:69-74.].

  12. Spectral-domain and swept-source OCT imaging of asteroid hyalosis: a case report. (United States)

    Alasil, Tarek; Adhi, Mehreen; Liu, Jonathan J; Fujimoto, James G; Duker, Jay S; Baumal, Caroline R


    A 72-year-old man with diabetes was referred to the retina clinic for diabetic retinopathy. Detailed funduscopic examination of the left eye was limited by prominent asteroid hyalosis. Spectral-domain (SD) and swept-source (SS) optical coherence tomography (OCT) were utilized to examine the vitreous, vitreoretinal interface, and the morphology of the retina. Asteroid hyalosis induced artifacts of the OCT images, which resolved when the appropriate imaging protocols were applied. SS-OCT may show superior diagnostic and preoperative capabilities when compared to SD-OCT in the settings of asteroid hyalosis-induced media opacity.

  13. Development and Analysis of a Swept Blade Aeroelastic Model for a Small Wind Turbine (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Preus, R.; Damiani, R.; Lee, S.; Larwood, S.


    As part of the U.S. Department-of-Energy-funded Competitiveness Improvement Project, the National Renewable Energy Laboratory (NREL) developed new capabilities for aeroelastic modeling of precurved and preswept blades for small wind turbines. This presentation covers the quest for optimized rotors, computer-aided engineering tools, a case study, and summary of the results.

  14. Improved estimation of rotor position for sensorless control of a PMSM based on a sliding mode observer

    Institute of Scientific and Technical Information of China (English)

    Wahyu Kunto Wibowo; Seok-Kwon Jeong


    This work proposes a new strategy to improve the rotor position estimation of a permanent magnet synchronous motor (PMSM) over wide speed range. Rotor position estimation of a PMSM is performed by using sliding mode observer (SMO). An adaptive observer gain was designed based on Lyapunov function and applied to solve the chattering problem caused by the discontinuous function of the SMO in the wide speed range. The cascade low-pass filter (LPF) with variable cut-off frequency was proposed to reduce the chattering problem and to attenuate the filtering capability of the SMO. In addition, the phase shift caused by the filter was counterbalanced by applying the variable phase delay compensation for the whole speed area. High accuracy estimation result of the rotor position was obtained in the experiment by applying the proposed estimation strategy.

  15. Automated detection of inflammatory cells in whole anterior chamber of a uveitis mouse from swept-source optical coherence tomography images (United States)

    Choi, Woo June; Pepple, Kathryn L.; Wang, Ruikang K.


    Cell grading in a rodent anterior chamber is essential for anterior inflammation evaluation in preclinical vision research. This paper describes a computerized method for detection and counting of the anterior chamber cells from swept-source optical coherence tomography (SS-OCT) images of a experimental rodent model of uveitis. The volumetric anterior segment OCT data is obtained from 100 kHz SS-OCT imaging of mouse eye in vivo. For the OCT cross-sections, each OCT structural image is de-speckled and binarized. After removal of cornea, iris, and crystalline lens structures connected to the binary image border, an area thresholding is then employed for each labeled region to isolate only celllike objects in the anterior chamber, followed by roundness estimation of the objects to identify potential cell candidates in the data. Eventually, the cell candidates are counted and graded as total number of cells in the anterior chamber.

  16. Porphyrin and bodipy molecular rotors as microviscometers (United States)

    Kimball, Joseph Daniel, III

    Viscosity, a fluid's internal resistance to flow and resist molecular diffusion, is a fundamental property of fluid media. Determining the bulk viscosity of a fluid has been easy to relatively simple to accomplish for many years, yet in the recent decade there has been a focus on techniques to measure a fluid's microviscosity. Microviscosity differs from bulk viscosity such that microviscosity is the friction experienced by a single particle interacting with its micron-sized local environment. Macroscopic methods to evaluate the viscosity are well established, but methods to determine viscosity on the microscale level remains unclear. This work determines the viability of three molecular rotors designed as probes for microviscosity in organic media, ionic liquids, and in the cellular microenvironment. Understanding microviscosity is important because it one of the main properties of any fluid and thus has an effect on any diffusion related processes. A variety of mass and signal transport phenomena as well as intermolecular interactions are often governed by viscosity. Molecular rotors are a subclass of intramolecular charge transfer fluorophores which form a lower energy twisted state. This results in a charge separated species which is highly sensitive to its surrounding microenviroment's viscosity as high viscosity limits its ability to form this twisted state. Once excited, there are deactivation routes which the excited fluorophore can undergo: radiative and non-radiative. Both were studied in this work. In the case of a radiative decay, as seen in porphyrin dimer, the energy is released in the form of a photon and is seen as a shifted band in the emission structure. The conformation of the porphyrin dimer was found to be influenced differently by ionic liquids as compared to molecular solvents, indicating the microheterogenous nature of ionic liquids play a role in the conformation. For non-radiative decays, BODIPY dyads and triads were investigated. The

  17. Design optimization for active twist rotor blades (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  18. Several rotor noise sources and treatments

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J. [National Renewable Energy Laboratory, Golden, CO (United States)


    Noise has been a design consideration in the development of advanced blades and turbines at the National Renewable Energy Laboratory. During atmospheric testing associated with these efforts various types of aeroacoustic noise have been encountered. This presentation discusses several of these noise sources and treatments used to mitigate or eliminate the noise. Tonal noise resulting from tip-vortex/trailing-edge interaction and laminar separation bubbles was found to be easily eliminated. Impulsive noise resulting from blade/vortex interaction for rotors that furl and that due to tower shadow can be mitigated by various means. (au)

  19. Rotor-Router Walks on Directed Covers of Graphs

    CERN Document Server

    Huss, Wilfried


    The aim of this paper is to study the behaviour of rotor-router walks on directed covers of finite graphs. The latter are also called in the literature trees with finitely many cone types or periodic trees. A rotor-router walk is a deterministic version of a random walk, in which the walker is routed to each of the neighbouring vertices in some fixed cyclic order. We study several quantities related to rotor-router walks such as: order of the rotor-router group, order of the root element in the rotor-router group and the connection with random walks. For random initial configurations of rotors, we also address the question of recurrence and transience of transfinite rotor-router walks. On homogeneous trees, the recurrence/transience was studied by Angel and Holroyd. We extend their theory and provide an example of a directed cover such that the rotor-router walk can be either recurrent or transient, depending only on the planar embedding of the periodic tree.

  20. 14 CFR 27.661 - Rotor blade clearance. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 27.661 Section 27.661 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  1. 14 CFR 29.661 - Rotor blade clearance. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 29.661 Section 29.661 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  2. PIV in a model wind turbine rotor wake

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Naumov, Igor; Karbadin, Ivan


    Stereoscopic particle image velocimetry (PIV) measurements of the flow in the wake of scale model of a horizontal axis wind turbine is presented Near the rotor, measurements are made in vertical planes intersecting the rotor axis These planes capture flow effect from the tip and root vortices...

  3. Experimental Study on a Rotor for WEPTOS Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Marchalot, Tanguy

    This report presents the results of an experimental study of the power conversion capabilities of one single rotor of the WEPTOS wave energy converter. The investigation focuses mainly on defining the optimal weight distribution in the rotor in order to improve the hydraulic performance through...

  4. Induction Motor Speed Estimator Using Rotor Slot Harmonics

    Directory of Open Access Journals (Sweden)

    RATA, G.


    Full Text Available This paper presents a solution for the estimation of induction machine rotor speed utilizing harmonic saliencies created by rotor and stator slotting. This solution purposes to add a carrier-signal voltage at the fundamental excitation. We obtain a carrier-signal current that contains the spatial information. The PWM reference voltage is calculated with DSP - ADMC401, from Analog Device.

  5. Coupled Thermodynamic Behavior of New Screw Compressors Rotors Profile

    Directory of Open Access Journals (Sweden)

    Arístides Rivera Torres


    Full Text Available The article displays an evaluation of the thermodynamic behavior of screw compressor rotors with new profiles, obtained with the help of the Scorpath 2000 software. This allows predicting precisely the operation of the compressor, as well as its thermodynamic evaluation, under equal conditions, with the work of other compressors fitted with rotor profiles of other kinds.

  6. Study to Improve Turbine Engine Rotor Blade Containment (United States)


    compressor stages, two low turbine stages, two high turbine stages, and two intershaft locations. The clearance at each possible ub location was aet to...for a fan rotor failure which were: engine mounts, low rotor bearings and bearing supports, fan coupling nut, low shaft, low turbine tierods, and all

  7. Topology Optimisation of PMSM rotor for pump application

    DEFF Research Database (Denmark)

    Hermann, Alexander Niels August; Mijatovic, Nenad; Henriksen, Matthew Lee


    This paper proposes a design optimization procedure of a PMSM rotor. In the process of optimization, the shape and the size of the permanent magnet is considered constant while the distribution of electric steel and voids (air) in the rotor are variables contributing to the final objective. For t...

  8. The rotor theories by Professor Joukowsky: Vortex theories

    DEFF Research Database (Denmark)

    Okulov, Valery L.; Sørensen, Jens Nørkær; Wood, David H.


    This is the second of two articles with the main, and largely self-explanatory, title "Rotor theories by Professor Joukowsky". This article considers rotors with finite number of blades and is subtitled "Vortex theories". The first article with subtitle "Momentum theories", assessed the starring ...

  9. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...

  10. Simulations of wind turbine rotor with vortex generators

    DEFF Research Database (Denmark)

    Zahle, Frederik; Sørensen, Niels N.


    This work presents simulations of the DTU 10MW wind turbine rotor equipped with vortex generators (VGs) on the inner part of the blades. The objective is to study the influence of different VG configurations on rotor performance and in particular to investigate the radial dependence of VGs, i...

  11. Fault detection in rotor bearing systems using time frequency techniques (United States)

    Chandra, N. Harish; Sekhar, A. S.


    Faults such as misalignment, rotor cracks and rotor to stator rub can exist collectively in rotor bearing systems. It is an important task for rotor dynamic personnel to monitor and detect faults in rotating machinery. In this paper, the rotor startup vibrations are utilized to solve the fault identification problem using time frequency techniques. Numerical simulations are performed through finite element analysis of the rotor bearing system with individual and collective combinations of faults as mentioned above. Three signal processing tools namely Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT) and Hilbert Huang Transform (HHT) are compared to evaluate their detection performance. The effect of addition of Signal to Noise ratio (SNR) on three time frequency techniques is presented. The comparative study is focused towards detecting the least possible level of the fault induced and the computational time consumed. The computation time consumed by HHT is very less when compared to CWT based diagnosis. However, for noisy data CWT is more preferred over HHT. To identify fault characteristics using wavelets a procedure to adjust resolution of the mother wavelet is presented in detail. Experiments are conducted to obtain the run-up data of a rotor bearing setup for diagnosis of shaft misalignment and rotor stator rubbing faults.

  12. Thermal modeling of a mini rotor-stator system

    NARCIS (Netherlands)

    Dikmen, Emre; Hoogt, van der Peter; Boer, de André; Aarts, Ronald; Jonker, Ben


    In this study the temperature increase and heat dissipation in the air gap of a cylindrical mini rotor stator system has been analyzed. A simple thermal model based on lumped parameter thermal networks has been developed. With this model the temperature dependent air properties for the fluid-rotor i

  13. 14 CFR 27.547 - Main rotor structure. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main rotor structure. 27.547 Section 27.547 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Main Component Requirements § 27.547 Main rotor...

  14. Composite rotor blades for large wind energy installations (United States)

    Kussmann, A.; Molly, J.; Muser, D.


    The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.

  15. Effects of increasing tip velocity on wind turbine rotor design.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, Phillip William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  16. Brownian molecular rotors: Theoretical design principles and predicted realizations (United States)

    Schönborn, Jan Boyke; Herges, Rainer; Hartke, Bernd


    We propose simple design concepts for molecular rotors driven by Brownian motion and external photochemical switching. Unidirectionality and efficiency of the motion is measured by explicit simulations. Two different molecular scaffolds are shown to yield viable molecular rotors when decorated with suitable substituents.

  17. Performance of meta power rotor shaft torque meter

    DEFF Research Database (Denmark)

    Schmidt Paulsen, U.


    The present report describes the novel experimental facility in detecting shaft torque in the transmission system (main rotor shaft, exit stage of gearbox) of a wind turbine, the results and the perspectives in using this concept. The measurements arecompared with measurements, based on existing ...... strain gauges and transducers mounted on the main rotor shaft and controller....

  18. Modeling of high speed micro rotors in moderate flow confinement

    NARCIS (Netherlands)

    Dikmen, E.; Hoogt, van der P.J.M.; Aarts, R.G.K.M.


    The recent developments in high speed micro rotating machinery lead to the need for multiphysical modeling of the rotor and the surrounding medium. In this study, thermal and flow induced effects on rotor dynamics of geometries with moderate flow confinement are studied. The structure is modeled via

  19. Control of rotor function in light-driven molecular motors

    NARCIS (Netherlands)

    Lubbe, Anouk S.; Ruangsupapichat, Nopporn; Caroli, Giuseppe; Feringa, Ben L.


    A study is presented on the control of rotary motion of an appending rotor unit in a light-driven molecular motor. Two new light driven molecular motors were synthesized that contain aryl groups connected to the stereogenic centers. The aryl groups behave as bidirectional free rotors in three of the

  20. Experimental investigations on single stage modified Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Kamoji, M.A.; Kedare, S.B. [Energy Science and Engineering Department, Indian Institute of Technology, Bombay, Powai, Mumbai - 4000 76 (India); Prabhu, S.V. [Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai - 4000 76 (India)


    Conventional Savonius or modified forms of the conventional Savonius rotors are being investigated in an effort to improve the coefficient of power and to obtain uniform coefficient of static torque. To achieve these objectives, the rotors are being studied with and without central shaft between the end plates. Tests in a closed jet wind tunnel on modified form of the conventional Savonius rotor with the central shaft is reported to have a coefficient of power of 0.32. In this study, modified Savonius rotor without central shaft between the two end plates is tested in an open jet wind tunnel. Investigation is undertaken to study the effect of geometrical parameters on the performance of the rotors in terms of coefficient of static torque, coefficient of torque and coefficient of power. The parameters studied are overlap ratio, blade arc angle, aspect ratio and Reynolds number. The modified Savonius rotor with an overlap ratio of 0.0, blade arc angle of 124 and an aspect ratio of 0.7 has a maximum coefficient of power of 0.21 at a Reynolds number of 1,50,000, which is higher than that of conventional Savonius rotor (0.19). Correlation is developed for a single stage modified Savonius rotor for a range of Reynolds numbers studied. (author)

  1. Hydrogen film cooling with incident and swept-shock interactions in a Mach 6.4 nitrogen free stream (United States)

    Olsen, George C.; Nowak, Robert J.


    The effectiveness of slot film cooling of a flat plate in a Mach 6.4 flow with and without incident and swept oblique shock interactions was experimentally investigated. Hydrogen was the primary coolant gas, although some tests were conducted using helium as the coolant. Tests were conducted in the Calspan 48-Inch Shock Tunnel with a nitrogen flow field to preclude combustion of the hydrogen coolant gas. A two-dimensional highly instrumented model developed in a previous test series was used. Parameters investigated included coolant mass flow rate, coolant gas, local free-stream Reynolds number, incident oblique shock strength, and a swept oblique shock. Both gases were highly effective coolants in undisturbed flow; however, both incident and swept shocks degraded that effectiveness.

  2. Wide-angle KTa1- x Nb x O3 deflector for swept light source using DC charge technique (United States)

    Akiyama, Tatsuhiro; Shinagawa, Mitsuru; Ueno, Masahiro; Sasaki, Yuzo; Toyoda, Seiji; Sakamoto, Tadashi


    A 5-pass KTa1- x Nb x O3 (KTN) deflector based on a DC charge technique for the swept light source of an optical coherence tomography system is proposed. The DC charge technique used in a 3-pass KTN deflector enables us to obtain the long-term stability of the optical power without any degradation of the important features of the swept light source. Experimental results confirm that the coherence length of a swept light source with the 5-pass KTN deflector using the DC charge technique is almost equal to that using a precharge technique reported previously. This means that the DC charge technique does not degrade the coherence length. There are limitation values for applied voltage, the KTN electrode gap, relative dielectric constant, and sweep frequency of the KTN deflector in terms of obtaining long coherence length. We believe that a 7-pass KTN deflector is effective for obtaining a longer coherence length.

  3. Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device (United States)

    Hu, Fa-Jie; Jin, Peng; Wu, Yan-Hua; Wang, Fei-Fei; Wei, Heng; Wang, Zhan-Guo


    A wide wavelength tuning range swept external-cavity laser using an InAs/GaAs quantum-dot superluminescent diode as a gain device is demonstrated. The tunable filter consists of a polygon scanner and a grating in Littrow telescope-less configuration. The swept laser generates greater than 54-mW peak output power and up to 33-kHz sweep rate with a sweep range of 150 nm centered at 1155 nm. The effects of injection current and sweep rate on the sweep performance of the swept laser are studied. Project supported by the National Natural Science Foundation of China (Grant No. 61274072) and the National High Technology Research and Development Program of China (Grant No. 2013AA014201).

  4. Complete control, direct observation and study of molecular super rotors

    CERN Document Server

    Korobenko, Aleksey; Milner, Valery


    Extremely fast rotating molecules carrying significantly more energy in their rotation than in any other degree of freedom are known as "super rotors". It has been speculated that super rotors may exhibit a number of unique and intriguing properties. Theoretical studies showed that ultrafast molecular rotation may change the character of molecular scattering from solid surfaces, alter molecular trajectories in external fields, make super rotors surprisingly stable against collisions, and lead to the formation of gas vortices. New ways of molecular cooling and selective chemical bond breaking by ultrafast spinning have been proposed. Owing to the fundamental laws of nature, bringing a large number of molecules to fast, directional and synchronous rotation is rather challenging. As a result, only indirect evidence of super rotors has been reported to date. Here we demonstrate the first controlled creation, direct observation and study of molecular super rotors. Using intense laser pulses tailored to produce an ...

  5. A Brief Review on Dynamics of a Cracked Rotor

    Directory of Open Access Journals (Sweden)

    Chandan Kumar


    Full Text Available Fatigue crack is an important rotor fault, which can lead to catastrophic failure if undetected properly and in time. Study and Investigation of dynamics of cracked shafts are continuing since last four decades. Some review papers were also published during this period. The aim of this paper is to present a review on recent studies and investigations done on cracked rotor. It is not the intention of the authors to provide all literatures related with the cracked rotor. However, the main emphasis is to provide all the methodologies adopted by various researchers to investigate a cracked rotor. The paper incorporates a candid commentary on various methodologies. The paper further deals an extended Lagrangian formulation to investigate dynamics of cracked rotor.

  6. Effect of Bearing Housings on Centrifugal Pump Rotor Dynamics (United States)

    Yashchenko, A. S.; Rudenko, A. A.; Simonovskiy, V. I.; Kozlov, O. M.


    The article deals with the effect of a bearing housing on rotor dynamics of a barrel casing centrifugal boiler feed pump rotor. The calculation of the rotor model including the bearing housing has been performed by the method of initial parameters. The calculation of a rotor solid model including the bearing housing has been performed by the finite element method. Results of both calculations highlight the need to add bearing housings into dynamic analyses of the pump rotor. The calculation performed by modern software packages is more a time-taking process, at the same time it is a preferred one due to a graphic editor that is employed for creating a numerical model. When it is necessary to view many variants of design parameters, programs for beam modeling should be used.

  7. Design, analysis and testing of small, affordable HAWT rotors (United States)

    Pricop, Mihai V.; Niculescu, Mihai L.; Cojocaru, Marius G.; Barsan, Dorin


    The paper presents affordable technologies dedicated to design, CAD modelling and manufacturing of the small-medium HAWT rotors. Three numerical tools are developed: blade/rotor design, blade modelling for industry CATIA(CATScript) and blade modelling for small scale developers. Numerical analysis of the rotors is accomplished for both performance and noise level estimation using XFLOW (LES) and an in-house code (URANS). Results are presented for a 5KW rotor at the design point only, since computations are expensive. Developement examples are included as two rotors are designed, manufactured and tested for 1.5 and 5KW. A third one, rated for 20KW is under developement. Basic testing results are also included.

  8. The application of advanced rotor (performance) methods for design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)


    The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.

  9. Applications of Fluorogens with Rotor Structures in Solar Cells. (United States)

    Ong, Kok-Haw; Liu, Bin


    Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  10. SMART wind turbine rotor. Data analysis and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Barone, Matthew Franklin; Yoder, Nathanael C.


    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the data post-processing and analysis performed to date on the field test data. Results include the control capability of the trailing edge flaps, the combined structural and aerodynamic damping observed through application of step actuation with ensemble averaging, direct observation of time delays associated with aerodynamic response, and techniques for characterizing an operating turbine with active rotor control.

  11. Applications of Fluorogens with Rotor Structures in Solar Cells

    Directory of Open Access Journals (Sweden)

    Kok-Haw Ong


    Full Text Available Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  12. Local-to-global principles for rotor walk

    CERN Document Server

    Giacaglia, Giuliano Pezzolo; Propp, James; Zayas-Palmer, Linda


    In rotor walk on a finite directed graph, the exits from each vertex follow a prescribed periodic sequence. Here we consider the case of rotor walk where a particle starts from a designated source vertex and continues until it hits a designated target set, at which point the walk is restarted from the source. We show that the sequence of successively hit targets, which is easily seen to be eventually periodic, is in fact periodic. We show moreover that reversing the periodic patterns of all rotor sequences causes the periodic pattern of the hitting sequence to be reversed as well. The proofs involve a new notion of equivalence of rotor configurations, and an extension of rotor walk incorporating time-reversed particles.

  13. Analysis of Permanent Magnets Bearings in Flywheel Rotor Designs

    Directory of Open Access Journals (Sweden)

    Prince Owusu-Ansah


    Full Text Available This paper discusses analysis of permanent magnet bearing in flywheel rotor designs. This work focuses on the advantages of using permanent magnets in flywheel rotor design as compared to that of the convectional mode of levitating the rotor position. The use of permanent magnet in magnetic bearing design to generate the steady state position of the magnetic field results in less variation of the force exerted on the rotor when it deviates from the nominal position than when an electrical coil is used for the same purpose. Theresults of the analysis shows that the magnetic bearing dynamics as well as its load carryingcapacity improves when the rotor is offset from its central position. The use of permanent magnet compared to current-carrying coils results in smaller overall size of magnetic bearing leading to a more compact system design resulting in improved rotordynamic performance

  14. SMART wind turbine rotor. Design and field test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall


    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  15. Frequency and phase swept holograms in spectral hole-burning materials. (United States)

    Bernet, S; Altner, S B; Graf, F R; Maniloff, E S; Renn, A; Wild, U P


    A new hologram type in spectral hole-burning systems is presented. During exposure, the frequency of narrow-band laser light is swept over a spectral range that corresponds to a few homogeneous linewidths of the spectrally selective recording material. Simultaneously the phase of the hologram is adjusted as a function of frequency-the phase sweep function. Because of the phase-reconstructing properties of holography, this recording technique programs the sample as a spectral amplitude and phase filter. We call this hologram type frequency and phase swept (FPS) holograms. Their properties and applications are summarized, and a straightforward theory is presented that describes all the diffraction phenomena observed to date. Thin FPS holograms show strongly asymmetric diffraction into conjugated diffraction orders, which is an unusual behavior for thin transmission holograms. Investigations demonstrate the advantages of FPS holograms with respect to conventional cw recording techniques in freq ncymultiplexed data storage. By choosing appropriate phase sweep functions, various features of holographic data storage can be optimized. Examples for cross-talk reduction, highest diffraction efficiency, and maximal readout stability are demonstrated. The properties of these FPS hologram types are deduced from theoretical considerations and confirmed by experiments.

  16. Observations of Traveling Crossflow Resonant Triad Interactions on a Swept Wing (United States)

    Eppink, Jenna L.; Wlezien, Richard


    Experimental evidence indicates the presence of a triad resonance interaction between traveling crossflow modes in a swept wing flow. Results indicate that this interaction occurs when the stationary and traveling crossflow modes have similar and relatively low amplitudes (approx.1% to 6% of the total freestream velocity). The resonant interaction occurs at instability amplitudes well below those typically known to cause transition, yet transition is observed to occur just downstream of the resonance. In each case, two primary linearly unstable traveling crossflow modes are nonlinearly coupled to a higher frequency linearly stable mode at the sum of their frequencies. The higher-frequency mode is linearly stable and presumed to exist as a consequence of the interaction of the two primary modes. Autoand cross-bicoherence are used to determine the extent of phase-matching between the modes, and wavenumber matching confirms the triad resonant nature of the interaction. The bicoherence results indicate a spectral broadening mechanism and the potential path to early transition. The implications for laminar flow control in swept wing flows are significant. Even if stationary crossflow modes remain subcritical, traveling crossflow interactions can lead to early transition.

  17. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers. (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert


    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  18. Ice Roughness and Thickness Evolution on a Swept NACA 0012 Airfoil (United States)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching


    Several recent studies have been performed in the Icing Research Tunnel (IRT) at NASA Glenn Research Center focusing on the evolution, spatial variations, and proper scaling of ice roughness on airfoils without sweep exposed to icing conditions employed in classical roughness studies. For this study, experiments were performed in the IRT to investigate the ice roughness and thickness evolution on a 91.44-cm (36-in.) chord NACA 0012 airfoil, swept at 30-deg with 0deg angle of attack, and exposed to both Appendix C and Appendix O (SLD) icing conditions. The ice accretion event times used in the study were less than the time required to form substantially three-dimensional structures, such as scallops, on the airfoil surface. Following each ice accretion event, the iced airfoils were scanned using a ROMER Absolute Arm laser-scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger to determine the spatial roughness variations along the surfaces of the iced airfoils. The resulting measurements demonstrate linearly increasing roughness and thickness parameters with ice accretion time. Further, when compared to dimensionless or scaled results from unswept airfoil investigations, the results of this investigation indicate that the mechanisms for early stage roughness and thickness formation on swept wings are similar to those for unswept wings.

  19. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier. (United States)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin R; Hsu, Kevin; Hansen, Kim P; Sumpf, Bernd; Hasler, Karl-Heinz; Erbert, Götz; Jensen, Ole B; Pedersen, Christian; Huber, Robert; Andersen, Peter E


    While swept source optical coherence tomography (OCT) in the 1050 nm range is promising for retinal imaging, there are certain challenges. Conventional semiconductor gain media have limited output power, and the performance of high-speed Fourier domain mode-locked (FDML) lasers suffers from chromatic dispersion in standard optical fiber. We developed a novel light source with a tapered amplifier as gain medium, and investigated the FDML performance comparing two fiber delay lines with different dispersion properties. We introduced an additional gain element into the resonator, and thereby achieved stable FDML operation, exploiting the full bandwidth of the tapered amplifier despite high dispersion. The light source operates at a repetition rate of 116 kHz with an effective average output power in excess of 30 mW. With a total sweep range of 70 nm, we achieved an axial resolution of 15 microm in air (approximately 11 microm in tissue) in OCT measurements. As our work shows, tapered amplifiers are suitable gain media for swept sources at 1050 nm with increased output power, while high gain counteracts dispersion effects in an FDML laser.

  20. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit (United States)

    Lee, Kenneth K. C.; Mariampillai, Adrian; Yu, Joe X. Z.; Cadotte, David W.; Wilson, Brian C.; Standish, Beau A.; Yang, Victor X. D.


    Abstract: Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second. PMID:22808428

  1. Field-swept pulsed electron paramagnetic resonance of Cr{sup 3+}-doped ZBLAN fluoride glass

    Energy Technology Data Exchange (ETDEWEB)

    Drew, S.C. [School of Physics and Materials Engineering, Monash University, VIC (Australia)]. E-mail:; Pilbrow, J.R. [School of Physics and Materials Engineering, Monash University, VIC (Australia); Newman, P.J.; MacFarlane, D.R. [Department of Chemistry, Monash University, VIC (Australia)


    Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr{sup 3+} are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr{sup 3+}-doped ZBLAN reveals that much of the broad resonance extending from g{sup eff}=5.1 to g{sup eff}=1.97, characteristic of X-band continuous wave EPR of Cr{sup 3+} in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra. (author)

  2. Generation of Fullspan Leading-Edge 3D Ice Shapes for Swept-Wing Aerodynamic Testing (United States)

    Camello, Stephanie C.; Lee, Sam; Lum, Christopher; Bragg, Michael B.


    The deleterious effect of ice accretion on aircraft is often assessed through dry-air flight and wind tunnel testing with artificial ice shapes. This paper describes a method to create fullspan swept-wing artificial ice shapes from partial span ice segments acquired in the NASA Glenn Icing Reserch Tunnel for aerodynamic wind-tunnel testing. Full-scale ice accretion segments were laser scanned from the Inboard, Midspan, and Outboard wing station models of the 65% scale Common Research Model (CRM65) aircraft configuration. These were interpolated and extrapolated using a weighted averaging method to generate fullspan ice shapes from the root to the tip of the CRM65 wing. The results showed that this interpolation method was able to preserve many of the highly three dimensional features typically found on swept-wing ice accretions. The interpolated fullspan ice shapes were then scaled to fit the leading edge of a 8.9% scale version of the CRM65 wing for aerodynamic wind-tunnel testing. Reduced fidelity versions of the fullspan ice shapes were also created where most of the local three-dimensional features were removed. The fullspan artificial ice shapes and the reduced fidelity versions were manufactured using stereolithography.

  3. Structural characterization of rotor blades through photogrammetry (United States)

    Bernardini, Giovanni; Serafini, Jacopo; Enei, Claudio; Mattioni, Luca; Ficuciello, Corrado; Vezzari, Valerio


    This paper deals with the use of photogrammetry for the experimental identification of structural and inertial properties of helicopter rotor blades4. The identification procedure is based upon theoretical/numerical algorithms for the evaluation of mass and flexural stiffness distributions which are an extension of those proposed in the past by Larsen, whereas the torsional properties (stiffness and shear center position) are determined through the Euler-Bernoulli beam theory. The identification algorithms require the knowledge of the blade displacement field produced by known steady loads. These data are experimentally obtained through photogrammetric detection technique, which allows the identification of 3D coordinates of labeled points (markers) on the structure through the correlation of 2D digital photos. Indeed, the displacement field is simply evaluated by comparing the markers positions on the loaded configuration with those on the reference one. The proposed identification procedure, numerically and experimentally validated in the past by the authors, has been here applied to the structural characterization of two main rotor blades, designed for ultra-light helicopters. Strain gauges measurements have been used to assess the accuracy of the identified properties through natural frequencies comparison as well as to evaluate the blades damping characteristics.

  4. Longitudinal Evaluation of Cornea With Swept-Source Optical Coherence Tomography and Scheimpflug Imaging Before and After Lasik. (United States)

    Chan, Tommy C Y; Biswas, Sayantan; Yu, Marco; Jhanji, Vishal


    Swept-source optical coherence tomography (OCT) is the latest advancement in anterior segment imaging. There are limited data regarding its performance after laser in situ keratomileusis (LASIK). We compared the reliability of swept-source OCT and Scheimpflug imaging for evaluation of corneal parameters in refractive surgery candidates with myopia or myopic astigmatism. Three consecutive measurements were obtained preoperatively and 1 year postoperatively using swept-source OCT and Scheimpflug imaging. The study parameters included central corneal thickness (CCT), thinnest corneal thickness (TCT), keratometry at steep (Ks) and flat (Kf) axes, mean keratometry (Km), and, anterior and posterior best fit spheres (Ant and Post BFS). The main outcome measures included reliability of measurements before and after LASIK was evaluated using intraclass correlation coefficient (ICC) and reproducibility coefficients (RC). Association between the mean value of corneal parameters with age, spherical equivalent (SEQ), and residual bed thickness (RBT) and association of variance heterogeneity of corneal parameters and these covariates were analyzed. Twenty-six right eyes of 26 participants (mean age, 32.7 ± 6.9 yrs; mean SEQ, -6.27 ± 1.67 D) were included. Preoperatively, swept-source OCT demonstrated significantly higher ICC for Ks, CCT, TCT, and Post BFS (P ≤ 0.016), compared with Scheimpflug imaging. Swept-source OCT demonstrated significantly smaller RC values for CCT, TCT, and Post BFS (P ≤ 0.001). After LASIK, both devices had significant differences in measurements for all corneal parameters (P ≤ 0.015). Swept-source OCT demonstrated a significantly higher ICC and smaller RC for all measurements, compared with Scheimpflug imaging (P ≤ 0.001). Association of variance heterogeneity was only found in pre-LASIK Ant BFS and post-LASIK Post BFS for swept-source OCT, whereas significant association of variance heterogeneity was noted for all measurements except Ks and

  5. Vibration sensing in smart machine rotors using internal MEMS accelerometers (United States)

    Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.


    This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.

  6. Numerical Simulation of Tower Rotor Interaction for Downwind Wind Turbine

    Directory of Open Access Journals (Sweden)

    Isam Janajreh


    Full Text Available Downwind wind turbines have lower upwind rotor misalignment, and thus lower turning moment and self-steered advantage over the upwind configuration. In this paper, numerical simulation to the downwind turbine is conducted to investigate the interaction between the tower and the blade during the intrinsic passage of the rotor in the wake of the tower. The moving rotor has been accounted for via ALE formulation of the incompressible, unsteady, turbulent Navier-Stokes equations. The localized CP, CL, and CD are computed and compared to undisturbed flow evaluated by Panel method. The time history of the CP, aerodynamic forces (CL and CD, as well as moments were evaluated for three cross-sectional tower; asymmetrical airfoil (NACA0012 having four times the rotor's chord length, and two circular cross-sections having four and two chords lengths of the rotor's chord. 5%, 17%, and 57% reductions of the aerodynamic lift forces during the blade passage in the wake of the symmetrical airfoil tower, small circular cross-section tower and large circular cross-section tower were observed, respectively. The pronounced reduction, however, is confined to a short time/distance of three rotor chords. A net forward impulsive force is also observed on the tower due to the high speed rotor motion.

  7. Reference Model 2: %22Rev 0%22 Rotor Design.

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew F.; Berg, Jonathan Charles; Griffith, Daniel


    The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

  8. Effects of injection frequency on the rotor stall margin

    Institute of Scientific and Technical Information of China (English)


    The stall margin of compressor could be improved effectively by rotor tip injection,and the periodic injection is commonly used in the research.The purpose of this work is to investigate the influence of injection frequency on the rotor stall margin.An unsteady CFD code was employed to simulate the flow field of the rotor with injections of different frequencies.Comparing the stall margin of the rotor with injections of different frequencies,it is shown that there is an optimal injection frequency,around which the rotor stability enhancement is the largest.When the injection frequency is away form the optimal frequency,the improvement in stable flow range decreases correspondingly.For the rotor in this paper,the optimal frequency was 1.5 times the frequency of tip leakage vortex(for short,TLV) fluctuation.Time-averaged loading distribution at 98.5% span indicates that the loading of the rotor near the leading edge is decreased through injection with the optimal frequency,and therefore,the stall could be delayed.

  9. Flettner Rotor Concept for Marine Applications: A Systematic Study

    Directory of Open Access Journals (Sweden)

    A. De Marco


    Full Text Available The concept of Flettner rotor, a rotating cylinder immersed in a fluid current, with a top-mounted disk, has been analyzed by means of unsteady Reynolds averaged Navier-Stokes simulations, with the aim of creating a suitable tool for the preliminary design of the Flettner rotor as a ship’s auxiliary propulsion system. The simulation has been executed to evaluate the performance sensitivity of the Flettner rotor with respect to systematic variations of several parameters, that is, the spin ratio, the rotor aspect ratio, the effect of the end plates, and their dimensions. The Flettner rotor device has been characterized in terms of lift and drag coefficients, and these data were compared with experimental trends available in literature. A verification study has been conducted in order to evaluate the accuracy of the simulation results and the main sources of numerical uncertainty. All the simulation results were used to achieve a surrogate model of lift and drag coefficients. This model is an effective mathematical tool for the preliminary design of Flettner rotor. Finally, an example of assessment of the Flettner rotor performance as an auxiliary propulsion device on a real tanker ship is reported.

  10. The Effect of Rotor Tip Markings on Judgements of Rotor Sweep Extent (United States)


    conditions. It was included to determine if the high contrast would lead to improved depth perception . In the other two conditions the rotor was...available to participants made this a very difficult task. Although motion parallax is a monocular cue that is usually available to make depth ...cues to depth . In this situation, the accommodative state of the eyes might account for the paradoxical result that under high contrast conditions

  11. Rotor Dynamic Analysis of RM12 Jet Engine Rotor using ANSYS


    Srikrishnanivas, Deepak


    Rotordynamics is a field under mechanics, mainly deals with the vibration of rotating structures. In recent days, the study about rotordynamics has gained more importance within Jet engine industries. The main reason is Jet engine consists of many rotating parts constitutes a complex dynamic system. While designing rotors of high speed turbo machineries, it is of prime importance to consider rotordynamics characteristics in to account. Considering these characteristics at the design phase may...

  12. Effect of the Rotor Crank System on Cycling Performance (United States)

    Jobson, Simon A.; Hopker, James; Galbraith, Andrew; Coleman, Damian A.; Nevill, Alan M.


    The aim of this study was to evaluate the impact of a novel crank system on laboratory time-trial cycling performance. The Rotor system makes each pedal independent from the other so that the cranks are no longer fixed at 180°. Twelve male competitive but non-elite cyclists (mean ± s: 35 ± 7 yr, Wmax = 363 ± 38 W, VO2peak = 4.5 ± 0.3 L·min-1) completed 6-weeks of their normal training using either a conventional (CON) or the novel Rotor (ROT) pedal system. All participants then completed two 40.23-km time-trials on an air-braked ergometer, one using CON and one using ROT. Mean performance speeds were not different between trials (CON = 41.7 km·h-1 vs. ROT = 41.6 km·h-1, P > 0.05). Indeed, the pedal system used during the time-trials had no impact on any of the measured variables (power output, cadence, heart rate, VO2, RER, gross efficiency). Furthermore, the ANOVA identified no significant interaction effect between main effects (Time-trial crank system*Training crank system, P > 0.05). To the authors’ knowledge, this is the first study to examine the effects of the Rotor system on endurance performance rather than endurance capacity. These results suggest that the Rotor system has no measurable impact on time-trial performance. However, further studies should examine the importance of the Rotor ‘regulation point’ and the suggestion that the Rotor system has acute ergogenic effects if used infrequently. Key points The Rotor crank system does not improve gross efficiency in well-trained cyclists. The Rotor crank system has no measurable impact on laboratory 40.23-km time-trial performance. A 6-week period of familiarisation does not increase the effectiveness of the Rotor crank system. PMID:24150012

  13. An experimental study on improvement of a Savonius rotor performance with curtaining

    Energy Technology Data Exchange (ETDEWEB)

    Altan, Burcin Deda; Atilgan, Mehmet [Department of Mechanical Engineering, Faculty of Engineering, Pamukkale University, Kinikli 20070 Denizli (Turkey); Oezdamar, Aydogan [Department of Mechanical Engineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir (Turkey)


    This study introduces a new curtaining arrangement to improve the performance of Savonius wind rotors. The curtain arrangement was placed in front of the rotor preventing the negative torque opposite the rotor rotation. The geometrical parameters of the curtain arrangement were optimized to generate an optimum performance. The rotor with different curtain arrangements was tested out of a wind tunnel, and its performance was compared with that of the conventional rotor. The maximum power coefficient of the Savonius wind rotor is increased to about 38.5% with the optimum curtain arrangement. The experimental results showed that the performance of Savonius wind rotors could be improved with a suitable curtain arrangement. (author)

  14. Vibration analysis to characterize the behavior of fracture rotors operating in line; Analisis de vibracion para caracterizar el comportamiento de rotores fracturados operando en linea

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Illescas, Rafael


    , in other words. Unstable response behavior is quite sensitive to such nonlinear parameters. A general overview in this area is presented as a part of a multidisciplinary study. [Spanish] En este trabajo se presenta un analisis en tres enfoques: teorico, numerico y experimental, del comportamiento dinamico y de la estabilidad vibratoria de un sistema rotor chumacera conteniendo una grieta transversal localizada a medio tramo de la longitud axial del eje. La presencia de una grieta transversal es considerada mediante la modelacion de la variacion periodica de la rigidez estructural del rotor, la cual se expresa en funcion del tiempo (o posicion angular). El amortiguamiento del sistema incluye un amortiguamiento externo debido al fluido dentro del cual se encuentra el rotor girando y, el mas significativamente, un amortiguamiento viscoso originado por la pelicula de aceite en las chumaceras. El problema en estudio consiste en un rotor extendido del tipo Jeffcott, el cual tiene un disco al centro y chumaceras hidrodinamicas identicas en los dos extremos. Un aspecto innovador que aumenta la complejidad del analisis es que se incluye el efecto que tiene la masa del eje en cada una de las chumaceras en los extremos, ademas del efecto obvio de la masa del disco. Se hace una analisis numerico de la estabilidad lineal del sistema incluyendo todos los aspectos mencionados mediante la teoria de Floquet. Algunos resultados son comparados con los obtenidos por otros investigadores en este campo como Gasch, Meng y otros. El sistema parametricamente excitado resultante es analizado utilizado una solucion de perturbacion lineal del sistema. El sistema de ecuaciones se encuentra utilizando terminos complejos y ha sido representado y escrito en programas de computo en MATLAB desarrollados por el autor de la tesis para calcular la estabilidad lineal del problema. Varias configuraciones de rotores simples y reales son estudiados con el fin de ilustrar las propiedades basicas de rotores

  15. Effects of Hot Streak Shape on Rotor Heating in a High-Subsonic Single-Stage Turbine (United States)

    Dorney, Daniel J.; Gundy-Burlet, Karen L.; Norvig, Peter (Technical Monitor)


    Experimental data have shown that combustor temperature non-uniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location (clocking) of the hot streak relative to the first-stage vane airfoils can be used to minimize the adverse effects of the hot streak. The effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have also been evaluated. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a single-stage high-pressure turbine operating in high subsonic flow. In addition to a simulation of the baseline turbine, simulations have been performed for circular and elliptical hot streaks of varying sizes in an effort to represent different combustor designs. The predicted results for the baseline simulation show good agreement with the available experimental data. The results of the hot streak simulations indicate: that a) elliptical hot streaks mix more rapidly than circular hot streaks, b) for small hot streak surface area the average rotor temperature is not a strong function of hot streak temperature ratio or shape, and c) hot streaks with larger surface area interact with the secondary flows at the rotor hub endwall, generating an additional high temperature region.

  16. System and method for smoothing a salient rotor in electrical machines

    Energy Technology Data Exchange (ETDEWEB)

    Raminosoa, Tsarafidy; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Torrey, David A.


    An electrical machine exhibiting reduced friction and windage losses is disclosed. The electrical machine includes a stator and a rotor assembly configured to rotate relative to the stator, wherein the rotor assembly comprises a rotor core including a plurality of salient rotor poles that are spaced apart from one another around an inner hub such that an interpolar gap is formed between each adjacent pair of salient rotor poles, with an opening being defined by the rotor core in each interpolar gap. Electrically non-conductive and non-magnetic inserts are positioned in the gaps formed between the salient rotor poles, with each of the inserts including a mating feature formed an axially inner edge thereof that is configured to mate with a respective opening being defined by the rotor core, so as to secure the insert to the rotor core against centrifugal force experienced during rotation of the rotor assembly.

  17. Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor (United States)

    Raja, T.; Mathiselvan, G.; Sreenivasulureddy, M.; Goldwin Xavier, X.


    safety in automotive engineering has been considered as a number one priority in development of new vehicle. A brake system is one of the most critical systems in the vehicle, without which the vehicle will put a passenger in an unsafe position. Temperature distribution on disc rotor brake and the performance brake of disc rotor is influenced by the air flow around the disc rotor. In this paper, the effect of air flow over the disc rotor is analyzed using the CFD software. The air flow over the disc rotor is increased by using a duct to supply more air flow over the disc rotor. The duct is designed to supply more air to the rotor surface and it can be placed in front of the vehicle for better performance. Increasing the air flow around the rotor will maximize the heat convection from the rotor surface. The rotor life and the performance can be improved.

  18. Finite element analysis of two disk rotor system (United States)

    Dixit, Harsh Kumar


    A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.

  19. Power Properties of Two Interacting Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær


    In the current experiments, two identical wind turbine models were placed in uniform flow conditions in a water flume. The initial flow in the flume was subject to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. Both...... rotors are threebladed and designed using blade element/lifting line (BE/LL) optimum theory at a tip speed ratio, λ, of 5 with a constant design lift coefficient along the span, CL= 0.8. Measurements of the rotor characteristics were conducted by strain sensors installed in the rotor mounting...

  20. Power Properties of Two Interacting Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Okulov, Valery; Mikkelsen, Robert Flemming; Sørensen, Jens Nørkær


    In the current experiments, two identical wind turbine models were placed in uniform flow conditions in a water flume. The initial flow in the flume was subject to a very low turbulence level, limiting the influence of external disturbances on the development of the inherent wake instability. Both...... rotors are three-bladed and designed using blade element/lifting line (BE/LL) optimum theory at a tip-speed ratio, λ, of 5 with a constant design lift coefficient along the span, CL = 0.8. Measurements of the rotor characteristics were conducted by strain sensors installed in the rotor mounting...

  1. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker


    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... to influence of other nonresonant modes. The efficiency of the method isdemonstrated byapplication to a rotor with 42 m blades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional...

  2. Computations of Torque-Balanced Coaxial Rotor Flows (United States)

    Yoon, Seokkwan; Chan, William M.; Pulliam, Thomas H.


    Interactional aerodynamics has been studied for counter-rotating coaxial rotors in hover. The effects of torque balancing on the performance of coaxial-rotor systems have been investigated. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. Computational results for an experimental model are compared to available data. The results for a coaxial quadcopter vehicle with and without torque balancing are discussed. Understanding interactions in coaxial-rotor flows would help improve the design of next-generation autonomous drones.

  3. Analyzing Rotor Rotating Error by Using Fractal Theory

    Institute of Scientific and Technical Information of China (English)

    WANG Kai; LI Yan


    Based on the judgement of fractional Brownian motion, this paper analyzes the radial rotating error of a precision rotor. The results indicate that the rotating error motion of the precision rotor is characterized by basic fractional Brownian motions, i. e. randomicity, non-sequencity, and self-simulation insinuation to some extent. Also, this paper calculates the fractal box counting dimension of radial rotating error and judges that the rotor error motion is of stability, indicating that the motion range of the future track of the axes is relatively stable.

  4. Further development of the swinging-blade Savonius rotor (United States)

    Aldoss, T. K.; Najjar, Y. S. H.

    Savonius rotor performance is improved by allowing both downwind and upwind rotor blades to swing back through an optimum angle. This will minimize the drag on the upwind blade and maximize the drag on the down-wind blade. A combination of 50 degrees upwind blade swing angle and 13.5 degrees downwind blade swing angle have been found experimentally to be the optimum swing angles that increased the rotor maximum power coefficient to about 23.5 percent compared with 18 percent with optimum upwind blade swing alone.

  5. Tip cap for a turbine rotor blade (United States)

    Kimmel, Keith D


    A turbine rotor blade with a spar and shell construction, and a tip cap that includes a row of lugs extending from a bottom side that form dovetail grooves that engage with similar shaped lugs and grooves on a tip end of the spar to secure the tip cap to the spar against radial displacement. The lug on the trailing edge end of the tip cap is aligned perpendicular to a chordwise line of the blade in the trailing edge region in order to minimize stress due to the lugs wanting to bend under high centrifugal loads. A two piece tip cap with lugs at different angles will reduce the bending stress even more.

  6. Preliminary analysis of turbochargers rotors dynamic behaviour (United States)

    Monoranu, R.; Ştirbu, C.; Bujoreanu, C.


    Turbocharger rotors for the spark and compression ignition engines are resistant steels manufactured in order to support the exhaust gas temperatures exceeding 1200 K. In fact, the mechanical stress is not large as the power consumption of these systems is up to 10 kW, but the operating speeds are high, ranging between 30000 ÷ 250000 rpm. Therefore, the correct turbochargers functioning involves, even from the design stage, the accurate evaluation of the temperature effects, of the turbine torque due to the engine exhaust gases and of the vibration system behaviour caused by very high operating speeds. In addition, the turbocharger lubrication complicates the model, because the classical hydrodynamic theory cannot be applied to evaluate the floating bush bearings. The paper proposes a FEM study using CATIA environment, both as modeling medium and as tool for the numerical analysis, in order to highlight the turbocharger complex behaviour. An accurate design may prevent some major issues which can occur during its operation.

  7. Prediction of aerodynamic performance for MEXICO rotor

    DEFF Research Database (Denmark)

    Hong, Zedong; Yang, Hua; Xu, Haoran


    The aerodynamic performance of the MEXICO (Model EXperiments In Controlled cOnditions) rotor at five tunnel wind speeds is predicted by making use of BEM and CFD methods, respectively, using commercial MATLAB and CFD software. Due to the pressure differences on both sides of the blade, the tip...... the reliability of the MEXICO data. Second, the SST turbulence model can better capture the flow separation on the blade and has high aerodynamic performance prediction accuracy for a horizontal axis wind turbine in axial inflow conditions. Finally, the comparisons of the axial and tangential forces as well...... as the contrast of the angle of attack indicate that the prediction accuracy of BEM method is high when the blade is not in the stall condition. However, the airfoil characteristic becomes unstable in the stall condition, and the maximum relative error of tangential force calculated by BEM is -0.471. As a result...

  8. Relaxation and Diffusion for the Kicked Rotor

    CERN Document Server

    Khodas, M A


    The dynamics of the kicked-rotor, that is a paradigm for a mixed system, where the motion in some parts of phase space is chaotic and in other parts is regular is studied statistically. The evolution (Frobenius-Perron) operator of phase space densities in the chaotic component is calculated in presence of noise, and the limit of vanishing noise is taken is taken in the end of calculation. The relaxation rates (related to the Ruelle resonances) to the invariant equilibrium density are calculated analytically within an approximation that improves with increasing stochasticity. The results are tested numerically. The global picture of relaxation to the equilibrium density in the chaotic component when the system is bounded and of diffusive behavior when it is unbounded is presented.

  9. Dynamic behavior of dissymmetric rotor bearings modelled with a periodic coefficient large system (United States)

    Guilhen, P. M.; Berthier, P.; Ferraris, G.; Lalanne, M.


    The instability and unbalance response of dissymmetric rotor-bearing systems containing periodic coefficients when modeling produces matrices with a large number of degrees of freedom are discussed. It is important to solve the equations and then predict the dynamic behavior of the system. This can be done knowing the instability areas and the unbalance response in the stable areas. One deals here with a large number of equations and a reduction of the number of degrees of freedom of the system is achieved through a pseudo modal method. This method is shown to give satisfactory results.

  10. Repeatability of swept-source optical coherence tomography retinal and choroidal thickness measurements in neovascular age-related macular degeneration

    DEFF Research Database (Denmark)

    Hanumunthadu, Daren; Ilginis, Tomas; Restori, Marie


    BACKGROUND: The aim was to determine the intrasession repeatability of swept-source optical coherence tomography (SS-OCT)-derived retinal and choroidal thickness measurements in eyes with neovascular age-related macular degeneration (nAMD). METHODS: A prospective study consisting of patients with...

  11. Unsteady Tip Clearance Flow Pattern in an Isolated Axial Compressor Rotor with Micro Tip Injection

    Institute of Scientific and Technical Information of China (English)

    Shaojuan Geng; Hongwu Zhang; Jingyi Chen; Weiguang Huang


    A numerical study of the effect of discrete micro tip injection on unsteady tip clearance flow pattern in an isolated axial compressor rotor is presented, intending to better understand the flow mechanism behind stall control measures that act on tip clearance flow. Under the influence of injection the unsteadiness of self-induced tip clearance flow could be weakened. Also the radial migration of tip clearance vortex is confined to a smaller radial extent near the rotor tip and the trajectory of tip clearance flow is pushed more downstream. So the injection is beneficial to improve compressor stability and increase static pressure rise near rotor tip region. The results of injection with different injected mass flow rates show that for the special type of injector adopted in the paper the effect of injection on tip clearance flow may be different according to the relative strength between these two streams of flow. For a fixed injected mass flow rate, reducing the injector area to increase injection velocity can improve the effect of injection on tip clearance flow and thus the compressor stability. A comparison of calculations between single blade passage and multiple blade passages validates the utility of single passage computations to investigate the tip clearance flow for the case without injection and its interaction with injected flow for the case with tip injection.

  12. Coherent dynamics in the rotor tip shear layer of utility scale wind turbines

    CERN Document Server

    Yang, Xiaolei; Barone, Matthew; Sotiropoulos, Fotis


    Recent field experiments conducted in the near-wake (up to 0.5 rotor diameters downwind of the rotor) of a 2.5 MW wind turbine using snow-based super-large-scale particle image velocimetery (SLPIV) (Hong et al., Nature Comm., vol. 5, 2014, no. 4216) were successful in visualizing tip vortex cores as areas devoid of snowflakes. The so-visualized snow voids, however, suggested tip vortex cores of complex shape consisting of circular cores with distinct elongated comet-like tails. We employ large-eddy simulation (LES) to elucidate the structure and dynamics of the complex tip vortices identified experimentally. The LES is shown to reproduce vortex cores in good qualitative agreement with the SLPIV results, essentially capturing all vortex core patterns observed in the field in the tip shear layer. We show that the visualized vortex patterns are the result of energetic coherent dynamics in the rotor tip shear layer driven by interactions between the tip vortices and a second set of counter-rotating spiral vortice...

  13. Determination of Stress Intensity Factors in Low Pressure Turbine Rotor Discs

    Directory of Open Access Journals (Sweden)

    Ivana Vasovic


    Full Text Available An attention in this paper is focused on the stress analysis and the determination of fracture mechanics parameters in low pressure (LP turbine rotor discs and on developing analytic expressions for stress intensity factors at the critical location of LP steam turbine disc. Critical locations such as keyway and dovetail area experienced stress concentration leading to crack initiation. Major concerns for the power industry are determining the critical locations with one side and fracture mechanics parameters with the other side. For determination of the critical locations in LP turbine rotor disc conventional finite elements are used here. For this initial crack length and during crack growth it is necessary to determine SIFs. In fatigue crack growth process it is necessary to have analytic formulas for the stress intensity factor. To determine analytic formula for stress intensity factor (SIF of cracked turbine rotor disc special singular finite elements are used. Using discrete values of SIFs which correspond to various crack lengths analytic formula of SIF in polynomial forms is derived here. For determination of SIF in this paper, combined J-integral approach and singular finite elements are used. The interaction of mechanical and thermal effects was correlated in terms of the fracture toughness.


    Directory of Open Access Journals (Sweden)

    Edgar Estupiñán P


    Full Text Available El presente trabajo resalta la importancia del balanceamiento de rotores como principal herramienta dentro de las tareas correctivas del mantenimiento predictivo, con el fin de que se reduzcan las vibraciones y sus efectos secundarios en las máquinas rotatorias. Se ha desarrollado un instrumento virtual para el balanceamiento dinámico de rotores, basado en un sistema de adquisición de datos (SAD. El instrumento tiene incluidos todos los cálculos necesarios para balancear rotores en un plano y en dos planos, a partir de la medición de los datos de vibración, utilizando el procedimiento de los coeficientes de influencia o utilizando un procedimiento de medición sin fase. También se ha incluido un módulo para determinar la severidad vibratoria del rotor y un módulo de análisis de vibraciones, que incluye análisis espectral y de la forma de onda. Este instrumento virtual es una herramienta útil para el balanceamiento de rotores en laboratorio así como también en la industria.This article highlights the importance of rotor balancing like the most important corrective action included in a predictive maintenance program, whose main objective is reducing the vibrations level and its secondary effect in rotary machines. A virtual instrument, based in a data acquisition system has been developed for rotor balancing. With this instrument it is possible to balance rotors in a single or two-plane, using the influence coefficient method or a no phase method. Also the instrument includes a function to determine the vibration severity and a function of vibration analysis with spectral and waveform analysis included. This virtual instrument is useful for rotor balancing in the laboratory as well as in the industry.

  15. DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan


    Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.

  16. Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan


    Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.

  17. Low-temperature magnetization dynamics of magnetic molecular solids in a swept field

    Energy Technology Data Exchange (ETDEWEB)

    Lenferink, Erik; Vijayaraghavan, Avinash; Garg, Anupam, E-mail:


    The swept-field experiments on magnetic molecular solids such as Fe{sub 8} are studied using Monte Carlo simulations, and a kinetic equation developed to understand collective magnetization phenomena in such solids, where the collective aspects arise from dipole–dipole interactions between different molecules. Because of these interactions, the classic Landau–Zener–Stückelberg theory proves inadequate, as does another widely used model constructed by Kayanuma. It is found that the simulations provide a quantitatively accurate account of the experiments. The kinetic equation provides a similarly accurate account except at very low sweep velocities, where it fails modestly. This failure is attributed to the neglect of short-range correlations between the dipolar magnetic fields seen by the molecular spins. The simulations and the kinetic equation both provide a good understanding of the distribution of these dipolar fields, although analytic expressions for the final magnetization remain elusive.

  18. Low-temperature magnetization dynamics of magnetic molecular solids in a swept field (United States)

    Lenferink, Erik; Vijayaraghavan, Avinash; Garg, Anupam


    The swept-field experiments on magnetic molecular solids such as Fe8 are studied using Monte Carlo simulations, and a kinetic equation developed to understand collective magnetization phenomena in such solids, where the collective aspects arise from dipole-dipole interactions between different molecules. Because of these interactions, the classic Landau-Zener-Stückelberg theory proves inadequate, as does another widely used model constructed by Kayanuma. It is found that the simulations provide a quantitatively accurate account of the experiments. The kinetic equation provides a similarly accurate account except at very low sweep velocities, where it fails modestly. This failure is attributed to the neglect of short-range correlations between the dipolar magnetic fields seen by the molecular spins. The simulations and the kinetic equation both provide a good understanding of the distribution of these dipolar fields, although analytic expressions for the final magnetization remain elusive.

  19. Numerical correction of coherence gate in full-field swept-source interference microscopy. (United States)

    Grebenyuk, Anton A; Ryabukho, Vladimir P


    A big problem in low-coherence interference microscopy is the degradation of the coherence signal caused by shift of the angular and temporal spectrum gates. It limits the depth of field in confocal optical coherence microscopy and degrades images of sample inner structure in most interference microscopy techniques. To overcome this problem we propose numerical correction of the coherence gate in application to full-field swept-source interference microscopy. The proposed technique allows three-dimensional sample imaging without mechanical movement of the microscope components and is also capable of determining separately the geometrical thickness and the refractive index of the sample layers, when the sample contains a transversal pattern. The applicability of the proposed technique is verified with numerical simulation.

  20. Swept shock/boundary-layer interactions: Scaling laws, flowfield structure, and experimental methods (United States)

    Settles, Gary S.


    A general review is given of several decades of research on the scaling laws and flowfield structures of swept shock wave/turbulent boundary layer interactions. Attention is further restricted to the experimental study and physical understanding of the steady-state aspects of these flows. The interaction produced by a sharp, upright fin mounted on a flat plate is taken as an archetype. An overall framework of quasiconical symmetry describing such interactions is first developed. Boundary-layer separation, the interaction footprint, Mach number scaling, and Reynolds number scaling are then considered, followed by a discussion of the quasiconical similarity of interactions produced by geometrically-dissimilar shock generators. The detailed structure of these interaction flowfields is next reviewed, and is illustrated by both qualitative visualizations and quantitative flow images in the quasiconical framework. Finally, the experimental techniques used to investigate such flows are reviewed, with emphasis on modern non-intrusive optical flow diagnostics.

  1. Wind-tunnel experiments on divergence of forward-swept wings (United States)

    Ricketts, R. H.; Doggett, R. V., Jr.


    An experimental study to investigate the aeroelastic behavior of forward-swept wings was conducted in the Langley Transonic Dynamics Tunnel. Seven flat-plate models with varying aspect ratios and wing sweep angles were tested at low speeds in air. Three models having the same planform but different airfoil sections (i.e., flat-plate, conventional, and supercritical) were tested at transonic speeds in Freon 12. Linear analyses were performed to provide predictions to compare with the measured aeroelastic instabilities which include both static divergence and flutter. Six subcritical response testing techniques were formulated and evaluated at transonic speeds for accuracy in predicting static divergence. Two "divergence stoppers" were developed and evaluated for use in protecting the model from structural damage during tests.

  2. Effects of wind-tunnel noise on swept-cylinder transition at Mach 3.5 (United States)

    Creel, T. R., Jr.; Beckwith, I. E.; Chen, F.-J.


    Transition data are reported for circular cylinders at swept angles of 45 and 60 degrees in the Mach 3.5 pilot-low-disturbance tunnel where free-stream noise levels are varied from approximately .05-0.5 percent in terms of the rms fluctuating pressure normalized by the mean static pressure. Results indicate that end plate or boundary layer trip disturbances at the upstream end of the cylinders cause turbulent flow along the entire test Reynolds number range of 10-170 thousand per inch. With all end plate and trip disturbances removed, transition at the attachment lines occurred at free-stream Reynolds numbers based on diameters of about 70-80 thousand, independent of stream noise levels. The installation of small trips on the attachement lines caused transition at lower Reynolds numbers, depending on both the roughness height and the wind tunnel noise level.

  3. Simulating charge transport to understand the spectral response of Swept Charge Devices

    CERN Document Server

    Athiray, P S; Narendranath, S; Gow, J P D


    Swept Charge Devices (SCD) are novel X-ray detectors optimized for improved spectral performance without any demand for active cooling. The Chandrayaan-1 X-ray Spectrometer (C1XS) experiment onboard the Chandrayaan-1 spacecraft used an array of SCDs to map the global surface elemental abundances on the Moon using the X-ray fluorescence (XRF) technique. The successful demonstration of SCDs in C1XS spurred an enhanced version of the spectrometer on Chandrayaan-2 using the next-generation SCD sensors. The objective of this paper is to demonstrate validation of a physical model developed to simulate X-ray photon interaction and charge transportation in a SCD. The model helps to understand and identify the origin of individual components that collectively contribute to the energy-dependent spectral response of the SCD. Furthermore, the model provides completeness to various calibration tasks, such as generating spectral response matrices (RMFs - redistribution matrix files), estimating efficiency, optimizing event...

  4. Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror (United States)

    Wang, Donglin; Fu, Linlai; Wang, Xin; Gong, Zhongjian; Samuelson, Sean; Duan, Can; Jia, Hongzhi; Ma, Jun Shan; Xie, Huikai


    A microelectromechanical system (MEMS) mirror based endoscopic swept-source optical coherence tomography (SS-OCT) system that can perform three-dimensional (3-D) imaging at high speed is reported. The key component enabling 3-D endoscopic imaging is a two-axis MEMS scanning mirror which has a 0.8×0.8 mm2 mirror plate and a 1.6×1.4 mm2 device footprint. The diameter of the endoscopic probe is only 3.5 mm. The imaging rate of the SS-OCT system is 50 frames/s. OCT images of both human suspicious oral leukoplakia tissue and normal buccal mucosa were taken in vivo and compared. The OCT imaging result agrees well with the histopathological analysis.

  5. C-band wavelength-swept single-longitudinalmode erbium-doped fiber ring laser. (United States)

    Zhang, Kang; Kang, Jin U


    A wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser capable of operating at sweeping frequency in the order of a few kHz is designed and demonstrated by using a fiber Fabry-Perot tunable filter and a Sagnac loop incorporated with a 3.5-meter unpumped erbium-doped fiber. The laser operates in continuous-wave (CW) mode and can sweep approximately 45 nm over the entire C-band (1520nm-1570nm) window with linewidth less than 0.7 kHz. The optimum wavelength sweeping frequency in order to achieve the best output power stability was found to be approximately20Hz with sweeping-induced power fluctuation of only 0.1%.

  6. Steady, subsonic, lifting surface theory for wings with swept, partial span, trailing edge control surfaces (United States)

    Medan, R. T.


    A method for computing the lifting pressure distribution on a wing with partial span, swept control surfaces is presented. This method is valid within the framework of linearized, steady, potential flow theory and consists of using conventional lifting surface theory in conjuction with a flap pressure mode. The cause of a numerical instability that can occur during the quadrature of the flap pressure mode is discussed, and an efficient technique to eliminate the instability is derived. This technique is valid for both the flap pressure mode and regular pressure modes and could be used to improve existing lifting surface methods. Examples of the use of the flap pressure mode and comparisons among this method, other theoretical methods, and experiments are given. Discrepancies with experiment are indicated and candidate causes are presented. It is concluded that the method can lead to an efficient and accurate solution of the mathematical problem when a partial span, trailing edge flap is involved.

  7. Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems (United States)

    Ratheesh, K. M.; Seah, L. K.; Murukeshan, V. M.


    The automatic calibration in Fourier-domain optical coherence tomography (FD-OCT) systems allows for high resolution imaging with precise depth ranging functionality in many complex imaging scenarios, such as microsurgery. However, the accuracy and speed of the existing automatic schemes are limited due to the functional approximations and iterative operations used in their procedures. In this paper, we present a new real-time automatic calibration scheme for swept source-based optical coherence tomography (SS-OCT) systems. The proposed automatic calibration can be performed during scanning operation and does not require an auxiliary interferometer for calibration signal generation and an additional channel for its acquisition. The proposed method makes use of the spectral component corresponding to the sample surface reflection as the calibration signal. The spectral phase function representing the non-linear sweeping characteristic of the frequency-swept laser source is determined from the calibration signal. The phase linearization with improved accuracy is achieved by normalization and rescaling of the obtained phase function. The fractional-time indices corresponding to the equidistantly spaced phase intervals are estimated directly from the resampling function and are used to resample the OCT signals. The proposed approach allows for precise calibration irrespective of the path length variation induced by the non-planar topography of the sample or galvo scanning. The conceived idea was illustrated using an in-house-developed SS-OCT system by considering the specular reflection from a mirror and other test samples. It was shown that the proposed method provides high-performance calibration in terms of axial resolution and sensitivity without increasing computational and hardware complexity.

  8. Swept Source Optical Coherence Tomography Angiography for Contact Lens-Related Corneal Vascularization

    Directory of Open Access Journals (Sweden)

    Marcus Ang


    Full Text Available Purpose. To describe a novel technique of adapting a swept-source optical coherence tomography angiography (OCTA to image corneal vascularization. Methods. In this pilot cross-sectional study, we obtained 3 × 3 mm scans, where 100,000 A-scans are acquired per second with optical axial resolution of 8 μm and lateral resolution of 20 μm. This was performed with manual “XYZ” focus without the anterior segment lens, until the focus of the corneoscleral surface was clearly seen and the vessels of interest were in focus on the corresponding red-free image. En face scans were evaluated based on image quality score and repeatability. Results. We analyzed scans from 10 eyes (10 patients with corneal vascularization secondary to contact lens use in 4 quadrants, with substantial repeatability of scans in all quadrants (mean image quality score 2.7 ± 0.7; κ=0.75. There was no significant difference in image quality scores comparing quadrants (superior temporal: 2.9 ± 0.6, superior nasal: 2.8 ± 0.4, inferior temporal: 2.5 ± 0.9, and inferior nasal: 2.4 ± 1.0; P=0.276 and able to differentiate deep and superficial corneal vascularization. Conclusion. This early clinical study suggests that the swept-source OCTA used may be useful for examining corneal vascularization, which may have potential for clinical applications such as detecting early limbal stem cell damage.

  9. Demonstration of a rapidly-swept external cavity quantum cascade laser for atmospheric sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.; Suter, Jonathan D.


    The application of quantum cascade lasers (QCLs) in atmospheric science for trace detection of gases has been demonstrated using sensors in point or remote sensing configurations. Many of these systems utilize single narrowly-tunable (~10 cm-1) distributed feedback (DFB-) QCLs that limit simultaneous detection to a restricted number of small chemical species like H2O or N2O. The narrow wavelength range of DFB-QCLs precludes accurate quantification of large chemical species with broad rotationally-unresolved vibrational spectra, such as volatile organic compounds, that play an important role in the chemistry of the atmosphere. External-cavity (EC-) QCL systems are available that offer tuning ranges >100 cm-1, making them excellent IR sources for measuring multiple small and large chemical species in the atmosphere. While the broad wavelength coverage afforded by an EC system enables measurements of large chemical species, most commercial systems can only be swept over their entire wavelength range at less than 10 Hz. This prohibits broadband simultaneous measurements of multiple chemicals in plumes from natural or industrial sources where turbulence and/or chemical reactivity are resulting in rapid changes in chemical composition on sub-1s timescales. At Pacific Northwest National Laboratory we have developed rapidly-swept EC-QCL technology that acquires broadband absorption spectra (~100 cm-1) on ms timescales. The spectral resolution of this system has enabled simultaneous measurement of narrow rotationally-resolved atmospherically-broadened lines from small chemical species, while offering the broad tuning range needed to measure broadband spectral features from multiple large chemical species. In this talk the application of this technology for open-path atmospheric measurements will be discussed based on results from laboratory measurements with simulated plumes of chemicals. The performance offered by the system for simultaneous detection of multiple chemical

  10. Flight Adaptive Blade for Optimum Rotor Response (FABFORR) Project (United States)

    National Aeronautics and Space Administration — While past research has demonstrated the utility and benefits to be gained with the application of advanced rotor system control concepts, none have been implemented...

  11. Usage of modal synthesis method with condensation in rotor

    Directory of Open Access Journals (Sweden)

    Zeman V.


    Full Text Available The paper deals with mathematical modelling of vibration and modal analysis of rotors composed of a flexible shaft and several flexible disks. The shaft is modelled as a one dimensional continuum whereon flexible disks modelled as a three dimensional continuum are rigid mounted to shaft. The presented approach allows to introduce continuously distributed centrifugal and gyroscopic effects. The finite element method was used for shaft and disks discretization. The modelling of such flexible multi-body rotors with large DOF number is based on the system decomposition into subsystems and on the modal synthesis method with condensation. Lower vibration mode shapes of the mutually uncoupled and non-rotating subsystems are used for creation of the rotor condensed mathematical model. An influence of the different level of a rotor condensation model on the accuracy of calculated eigenfrequencies and eigenvectors is discussed.

  12. Rotor position sensor switches currents in brushless dc motors (United States)


    Reluctance switch incorporated in an induction motor is used for sensing rotor position and switching armature circuits in a brushless dc motor. This device drives the solar array system of an unmanned space satellite.

  13. Towards More Efficient Comprehensive Rotor Noise Simulation Project (United States)

    National Aeronautics and Space Administration — Rotorcraft design and optimization currently still rely largely on simplified (low-fidelity) models, such as rotor disk or wake models to reduce the turn-around time...

  14. Flight Adaptive Blade for Optimum Rotor Response (FABFORR) Project (United States)

    National Aeronautics and Space Administration — While past research has demonstrated the utility and benefits to be gained with the application of advanced rotor system control concepts, none have been...

  15. 9th IFToMM International Conference on Rotor Dynamics

    CERN Document Server


    This book presents the proceedings of the 9th IFToMM International Conference on Rotor Dynamics. This conference is a premier global event that brings together specialists from the university and industry sectors worldwide in order to promote the exchange of knowledge, ideas, and information on the latest developments and applied technologies in the dynamics of rotating machinery. The coverage is wide ranging, including, for example, new ideas and trends in various aspects of bearing technologies, issues in the analysis of blade dynamic behavior,  condition monitoring of different rotating machines, vibration control, electromechanical and fluid-structure interactions in rotating machinery, rotor dynamics of micro, nano, and cryogenic machines, and applications of rotor dynamics in transportation engineering. Since its inception 32 years ago, the IFToMM International Conference on Rotor Dynamics has become an irreplaceable point of reference for those working in the field, and this book reflects the high qua...

  16. A Computational Model for Rotor-Fuselage Interactional Aerodynamics (United States)

    Boyd, D. Douglas, Jr.; Barnwell, Richard W.; Gorton, Susan Althoff


    A novel unsteady rotor-fuselage interactional aerodynamics model has been developed. This model loosely couples a Generalized Dynamic Wake Theory (GDWT) to a thin-layer Navier-Stokes solution procedure. This coupling is achieved using an unsteady pressure jump boundary condition in the Navier-Stokes model. The new unsteady pressure jump boundary condition models each rotor blade as a moving pressure jump which travels around the rotor azimuth and is applied between two adjacent planes in a cylindrical, non-rotating grid. Comparisons are made between measured and predicted time-averaged and time-accurate rotor inflow ratios. Additional comparisons are made between measured and predicted unsteady surface pressures on the top centerline and sides of the fuselage.

  17. Fuzzy Logic Based Rotor Health Index of Induction Motor (United States)

    Misra, Rajul; Pahuja, G. L.


    This paper presents an experimental study on detection and diagnosis of broken rotor bars in Squirrel Cage Induction Motor (SQIM). The proposed scheme is based on Motor Current Signature Analysis (MCSA) which uses amplitude difference of supply frequency to upper and lower side bands. Initially traditional MCSA has been used for rotor fault detection. It provides rotor health index on full load conditions. However in real practice if a fault occurs motor can not run at full load. To overcome the issue of reduced load condition a Fuzzy Logic based MCSA has been designed, implemented, tested and compared with traditional MCSA. A simulation result shows that proposed scheme is not only capable of detecting the severity of rotor fault but also provides remarkable performance at reduced load conditions.

  18. Rotation of artificial rotor axles in rotary molecular motors

    National Research Council Canada - National Science Library

    Baba, Mihori; Iwamoto, Kousuke; Iino, Ryota; Ueno, Hiroshi; Hara, Mayu; Nakanishi, Atsuko; Kishikawa, Jun-ichi; Noji, Hiroyuki; Yokoyama, Ken


    [F.sub.1]- and [V.sub.1]-ATPase are rotary molecular motors that convert chemical energy released upon ATP hydrolysis into torque to rotate a central rotor axle against the surrounding catalytic stator cylinder with high efficiency...

  19. Spectral Analysis of Two Coupled Diatomic Rotor Molecules

    Directory of Open Access Journals (Sweden)

    Horace T. Crogman


    Full Text Available In a previous article the theory of frame transformation relation between Body Oriented Angular (BOA states and Lab Weakly Coupled states (LWC was developed to investigate simple rotor–rotor interactions. By analyzing the quantum spectrum for two coupled diatomic molecules and comparing it with spectrum and probability distribution of simple models, evidence was found that, as we move from a LWC state to a strongly coupled state, a single rotor emerges in the strong limit. In the low coupling, the spectrum was quadratic which indicates the degree of floppiness in the rotor–rotor system. However in the high coupling behavior it was found that the spectrum was linear which corresponds to a rotor deep in a well.

  20. Effects of Factors on Open-End Rotor Yarn Properties

    Directory of Open Access Journals (Sweden)

    Gözde BUHARALI


    Full Text Available Open-end rotor spinning system, which was begun to be used commercially during late 1960s, is now used as successfully as the conventional ring spinning system. Thanks to open-end rotor yarn spinning machines are very suitable to automation and have high production speeds, use of these machines have increased permanently and today open-end rotor yarn spinning in the world has a share of about 30%. In open-end rotor spinning system yarn properties and production are effected from three main parameters. They are material, sliver preparing process and machine parameters. In this system which manufacture with very high-speed and uses a high-tech, parameters must be selected carefully to ensure best yarn quality with high performance in yarn production

  1. Light Rotor: The 10-MW reference wind turbine

    DEFF Research Database (Denmark)

    Bak, Christian; Bitsche, Robert; Yde, Anders;


    design show a rather well performing wind turbine both in terms of power and loads, but in the further work towards the final design the challenges in the control needs to be solved and the balance between power performance and loads and between structural performance and mass will be investigated......This paper describes the design of a rotor and a wind turbine for an artificial 10-MW wind turbine carried out in the Light Rotor project. The turbine called the Light Rotor 10-MW Reference Wind Turbine (LR10-MW RWT), is designed with existing methods and techniques and serves as a reference...... like the determination of the specific power and upscaling of the turbine. The design of Iteration #2 of the LR10-MW RWT is carried out in a sequence between aerodynamic rotor design, structural design and aero-servo-elastic design. Each of these topics is described. The results from the Iteration #2...

  2. Controllability Analysis for Multirotor Helicopter Rotor Degradation and Failure (United States)

    Du, Guang-Xun; Quan, Quan; Yang, Binxian; Cai, Kai-Yuan


    This paper considers the controllability analysis problem for a class of multirotor systems subject to rotor failure/wear. It is shown that classical controllability theories of linear systems are not sufficient to test the controllability of the considered multirotors. Owing to this, an easy-to-use measurement index is introduced to assess the available control authority. Based on it, a new necessary and sufficient condition for the controllability of multirotors is derived. Furthermore, a controllability test procedure is approached. The proposed controllability test method is applied to a class of hexacopters with different rotor configurations and different rotor efficiency parameters to show its effectiveness. The analysis results show that hexacopters with different rotor configurations have different fault-tolerant capabilities. It is therefore necessary to test the controllability of the multirotors before any fault-tolerant control strategies are employed.

  3. Assessment of Scaled Rotors for Wind Tunnel Experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chiu, Phillip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Rotor design and analysis work has been performed to support the conceptualization of a wind tunnel test focused on studying wake dynamics. This wind tunnel test would serve as part of a larger model validation campaign that is part of the Department of Energy Wind and Water Power Program’s Atmosphere to electrons (A2e) initiative. The first phase of this effort was directed towards designing a functionally scaled rotor based on the same design process and target full-scale turbine used for new rotors for the DOE/SNL SWiFT site. The second phase focused on assessing the capabilities of an already available rotor, the G1, designed and built by researchers at the Technical University of München.

  4. TORNADO concept and realisation of a rotor for small VAWTs

    Directory of Open Access Journals (Sweden)



    Full Text Available The concept of a three-tier configuration for a vertical axis rotor was successfully developed into a experimental model. The rotor assembly is divided into three tiers with three straight blades in each tier. The three-tiers are shifted by an angle of 400 generating a full helical flow field inside the rotor. Thereby the new configuration has some different mechanism of torque generation as other Darrieus rotors. The three-tier configuration facilitates the operation by enabling the turbine to self-start at wind velocity as low as 2 m/s with good performance and a smoother driving torque. At the same time the design couples an esthetic appearance with low noise level.

  5. Surface-Mount Rotor Motion Sensing System Project (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  6. Hollow Rotor Progressing Cavity Pump Technique for Oil Production

    Institute of Scientific and Technical Information of China (English)

    Cao Gang


    @@ Features of Hollow RotorProgressing Cavity Pump(HRPCP) (1) Keep the path forPCP well-flushing.Clean over the producing wells quickly without shutting off the wells. Heat loss is low while the efficiency is high.

  7. A Computational Tool for Helicopter Rotor Noise Prediction Project (United States)

    National Aeronautics and Space Administration — This SBIR project proposes to develop a computational tool for helicopter rotor noise prediction based on hybrid Cartesian grid/gridless approach. The uniqueness of...

  8. SMART Wind Turbine Rotor: Design and Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, Jonathan R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  9. A Surface-Mounted Rotor State Sensing System Project (United States)

    National Aeronautics and Space Administration — A surface-mounted instrumentation system for measuring rotor blade motions on rotorcraft, for use both in flight and in wind tunnel testing, is proposed for...

  10. Aero dynamical and mechanical behaviour of the Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z. [Batna Univ., (Algeria). Applied Energetic Physics Laboratory


    Although the Savonius wind turbine is not as efficient as the traditional Darrieus wind turbine, its rotor design has many advantages such as simple construction; acceptance of wind from all directions; high starting torque; operation at relatively low speed; and easy adaptation to urban sites. These advantages may outweigh its low efficiency and make it suitable for small-scale power requirements such as pumping and rural electrification. This paper presented a study of the aerodynamic behaviour of a Savonius rotor, based on blade pressure measurements. A two-dimensional analysis method was used to determine the aerodynamic strengths, which leads to the Magnus effect and the generation of the vibrations on the rotor. The study explained the vibratory behaviour of the rotor and proposed an antivibration system to protect the machine. 14 refs., 1 tab., 9 figs.

  11. On the performance analysis of Savonius rotor with twisted blades

    Energy Technology Data Exchange (ETDEWEB)

    Saha, U.K.; Rajkumar, M. Jaya [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781 039 (India)


    The present investigation is aimed at exploring the feasibility of twisted bladed Savonius rotor for power generation. The twisted blade in a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0{sup o}). Performance analysis has been made on the basis of starting characteristics, static torque and rotational speed. Experimental evidence shows the potential of the twisted bladed rotor in terms of smooth running, higher efficiency and self-starting capability as compared to that of the conventional bladed rotor. Further experiments have been conducted in the same setup to optimize the twist angle. (author)

  12. The properties of isolated and coupled Savonius rotors (United States)

    Bowden, G. J.; McAleese, S. A.

    Some measurments on the Queensland optimum S-shaped rotor are presented. In particular it is shown that the efficiency of the turbine is about 18 percent, which is lower than the figure of about 23 percent given by earlier workers. In addition, detailed measurements of the pulsating wind-flow around a Savonius rotor are presented. These results were obtained using (1) tell-tales and a stroboscope, (2) a hot-wire anemometer (0-5 kHz response), and (3) a turbulence meter. This data can be used to suggest that 'active coupling' between Savonius rotors might be useful in 'redirecting' the wind-flow more efficiently. In particular, it is shown that if two counter-rotating rotors are placed side by side in a wind-tunnel, a natural phase locking occurs.

  13. Robust stabilization of rotor-active magnetic bearing systems (United States)

    Li, Guoxin

    Active magnetic bearings (AMBs) are emerging as a beneficial technology for high-speed and high-performance suspensions in rotating machinery applications. A fundamental feedback control problem is robust stabilization in the presence of uncertain destabilizing mechanisms in aeroelastic, hydroelastic dynamics, and AMB feedback. As rotating machines are evolving in achieving high speed, high energy density, and high performance, the rotor and the support structure become increasingly flexible, and highly coupled. This makes rotor-AMB system more challenging to stabilize. The primary objective of this research is to develop a systematic control synthesis procedure for achieving highly robust stabilization of rotor-AMB systems. Of special interest is the stabilization of multivariable systems such as the AMB supported flexible rotors and gyroscopic rotors, where the classical control design may encounter difficulties. To this end, we first developed a systematic modeling procedure. This modeling procedure exploited the best advantages of technology developed in rotordynamics and the unique system identification tool provided by the AMBs. A systematic uncertainty model for rotor-AMB systems was developed, eliminating the iterative process of selecting uncertainty structures. The consequences of overestimation or underestimation of uncertainties were made transparent to control engineers. To achieve high robustness, we explored the fundamental performance/robustness limitations due to rotor-AMB system unstable poles. We examined the mixed sensitivity performance that is closely related to the unstructured uncertainty. To enhance transparency of the synthesis, we analyzed multivariable controllers from classical control perspectives. Based on these results, a systematic robust control synthesis procedure was established. For a strong gyroscopic rotor over a wide speed range, we applied the advanced gain-scheduled synthesis, and compared two synthesis frameworks in

  14. Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius-three-bladed Darrieus rotor

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.; Biswas, A.; Sharma, K.K. [Department of Mechanical Engineering, National Institute of Technology (NIT), Silchar 788 010, Assam (India)


    The vertical axis wind turbines are simple in construction, self-starting, inexpensive and can accept wind from any direction without orientation. A combined Savonius-Darrieus type vertical axis wind rotor has got many advantages over individual Savonius or individual Darrieus wind rotor, such as better efficiency than Savonius rotor and high starting torque than Darrieus rotor. But works on the combined Savonius-Darrieus wind rotor are very scare. In view of the above, two types of models, one simple Savonius and the other combined Savonius-Darrieus wind rotors were designed and fabricated. The Savonius rotor was a three-bucket system having provisions for overlap variations. The Savonius-Darrieus rotor was a combination of three-bucket Savonius and three-bladed Darrieus rotors with the Savonius placed on top of the Darrieus rotor. The overlap variation was made in the upper part, i.e. the Savonius rotor only. These were tested in a subsonic wind tunnel available in the department. The various parameters namely, power coefficients and torque coefficients were calculated for both overlap and without overlap conditions. From the present investigation, it is seen that with the increase of overlap, the power coefficients start decreasing. The maximum power coefficient of 51% is obtained at no overlap condition. However, while comparing the power coefficients (C{sub p}) for simple Savonius-rotor with that of the combined configuration of Savonius-Darrieus rotor, it is observed that there is a definite improvement in the power coefficient for the combined Savonius-Darrieus rotor without overlap condition. Combined rotor without overlap condition provided an efficiency of 0.51, which is higher than the efficiency of the Savonius rotor at any overlap positions under the same test conditions. (author)

  15. Spatial Disorientation Training in the Rotor Wing Flight Simulator. (United States)

    Powell-Dunford, Nicole; Bushby, Alaistair; Leland, Richard A

    This study is intended to identify efficacy, evolving applications, best practices, and challenges of spatial disorientation (SD) training in flight simulators for rotor wing pilots. Queries of a UK Ministry of Defense research database and Pub Med were undertaken using the search terms 'spatial disorientation,' 'rotor wing,' and 'flight simulator.' Efficacy, evolving applications, best practices, and challenges of SD simulation for rotor wing pilots were also ascertained through discussion with subject matter experts and industrial partners. Expert opinions were solicited at the aeromedical physiologist, aeromedical psychologist, instructor pilot, aeromedical examiner, and corporate executive levels. Peer review literature search yielded 129 articles, with 5 relevant to the use of flight simulators for the spatial disorientation training of rotor wing pilots. Efficacy of such training was measured subjectively and objectively. A preponderance of anecdotal reports endorse the benefits of rotor wing simulator SD training, with a small trial substantiating performance improvement. Advancing technologies enable novel training applications. The mobile nature of flight students and concurrent anticollision technologies can make long-range assessment of SD training efficacy challenging. Costs of advanced technologies could limit the extent to which the most advanced simulators can be employed across the rotor wing community. Evidence suggests the excellent training value of rotor wing simulators for SD training. Objective data from further research, particularly with regards to evolving technologies, may justify further usage of advanced simulator platforms for SD training and research. Powell-Dunford N, Bushby A, Leland RA. Spatial disorientation training in the rotor wing flight simulator. Aerosp Med Hum Perform. 2016; 87(10):890-893.

  16. On the Spectrum of the Resonant Quantum Kicked Rotor

    CERN Document Server

    Guarneri, Italo


    It is proven that none of the bands in the quasi-energy spectrum of the Quantum Kicked Rotor is flat at any primitive resonance of any order. Perturbative estimates of bandwidths at small kick strength are established for the case of primitive resonances of prime order. Different bands scale with different powers of the kick strength, due to degeneracies in the spectrum of the free rotor.

  17. Suppression of Base Excitation of Rotors on Magnetic Bearings



    This paper deals with rotor systems that suffer harmonic base excitation when supported on magnetic bearings. Magnetic bearings using conventional control techniques perform poorly in such situations mainly due to their highly nonlinear characteristics. The compensation method presented here is a novel optimal control procedure with a combination of conventional, proportional, and differential feedback control. A four-degree-of-freedom model is used for the rotor system, and the bearings a...

  18. Numerical and Analytical Analysis of Elastic Rotor Natural Frequency

    Directory of Open Access Journals (Sweden)

    Adis J. Muminovic


    Full Text Available In this paper simulation model which enables quick analysis of elastic rotor natural frequency modes is developed using Matlab. This simulation model enables users to get dependency diagram of natural frequency in relation to diameter and length of the rotor,density of the material or modulus of elasticity. Testing of the model is done using numerical analysis in SolidWorks software.

  19. Design and Test of a Transonic Axial Splittered Rotor (United States)


    AXIAL SPLITTERED ROTOR A new design procedure was developed that uses commercial-off-the-shelf software (MATLAB, SolidWorks , and ANSYS-CFX) for the...TRANSONIC AXIAL SPLITTERED ROTOR Report Title A new design procedure was developed that uses commercial-off-the-shelf software (MATLAB, SolidWorks , and...that uses commercial-off-the-shelf software (MATLAB, SolidWorks , and ANSYS-CFX) for the geometric rendering and analysis of a transonic axial

  20. Bohmian quantum mechanical and classical Lyapunov exponents for kicked rotor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yindong [Department of Physics, University of North Texas, Denton, TX 76203-1427 (United States); Kobe, Donald H. [Department of Physics, University of North Texas, Denton, TX 76203-1427 (United States)], E-mail:


    Using de Broglie-Bohm approach to quantum theory, we show that the kicked rotor at quantum resonance exhibits quantum chaos for the control parameter K above a threshold. Lyapunov exponents are calculated from the method of Benettin et al. for bounded systems for both the quantum and classical kicked rotor. In the chaotic regime we find stability regions for control parameters equal to even and odd multiples of {pi}, but the quantum regions are only remnants of the classical ones.

  1. Energy shaping and dissipation: Underwater vehicle stabilization using internal rotors (United States)

    Woolsey, Craig Arthur

    This dissertation concerns nonlinear feedback stabilization of mechanical systems using energy-based methods. Nonlinear techniques are appealing because they can yield large regions of attraction for feedback-stabilized equilibria. Energy-based methods are particularly attractive for mechanical systems because these methods preserve a physical view of a system's dynamics and because they yield Lyapunov functions. For conservative systems, proof of stability typically requires the existence of a Lyapunov function. For systems with damping, Lyapunov functions can be used to design feedback dissipation to ensure or enhance asymptotic stability and to obtain more global conclusions. Both as a case study of a particular control methodology and as a practical contribution in the area of underwater vehicle control, we consider stabilization of an underwater vehicle using internal rotors as actuators. The methodology used to develop stabilizing control laws consists of three steps. The first step involves shaping the kinetic energy of the conservative dynamics. For the underwater vehicle, the control term in this step may be interpreted as modifying the system inertia. In the second step, feedback dissipation is designed based on a Lyapunov function developed in the first step. In the third step, it is verified that the effect of external damping due to viscous forces does not destroy the stability results. This method is applied first to a vehicle whose centers of gravity and buoyancy coincide and then to a vehicle with noncoincident centers of gravity and buoyancy. The method of controlled Lagrangians, developed in recent years, is a generalization of the idea of kinetic energy shaping. The method applies to underactuated mechanical systems (systems with more degrees of freedom than independent actuators). Motivated by the results of the investigation into the effect of external damping on an underwater vehicle with internal rotors, we study the effect of damping on more

  2. Dynamic Analysis of a Helicopter Rotor by Dymore Program (United States)

    Doğan, Vedat; Kırca, Mesut

    The dynamic behavior of hingeless and bearingless blades of a light commercial helicopter which has been under design process at ITU (İstanbul Technical University, Rotorcraft Research and Development Centre) is investigated. Since the helicopter rotor consists of several parts connected to each other by joints and hinges; rotors in general can be considered as an assembly of the rigid and elastic parts. Dynamics of rotor system in rotation is complicated due to coupling of elastic forces (bending, torsion and tension), inertial forces, control and aerodynamic forces on the rotor blades. In this study, the dynamic behavior of the rotor for a real helicopter design project is analyzed by using DYMORE. Blades are modeled as elastic beams, hub as a rigid body, torque tubes as rigid bodies, control links as rigid bodies plus springs and several joints. Geometric and material cross-sectional properties of blades (Stiffness-Matrix and Mass-Matrix) are calculated by using VABS programs on a CATIA model. Natural frequencies and natural modes of the rotating (and non-rotating) blades are obtained by using DYMORE. Fan-Plots which show the variation of the natural frequencies for different modes (Lead-Lag, Flapping, Feathering, etc.) vs. rotor RPM are presented.

  3. Dipolar rotors orderly aligned in mesoporous fluorinated organosilica architectures

    KAUST Repository

    Bracco, Silvia


    New mesoporous covalent frameworks, based on hybrid fluorinated organosilicas, were prepared to realize a periodic architecture of fast molecular rotors containing dynamic dipoles in their structure. The mobile elements, designed on the basis of fluorinated p-divinylbenzene moieties, were integrated into the robust covalent structure through siloxane bonds, and showed not only the rapid dynamics of the aromatic rings (ca. 108 Hz at 325 K), as detected by solid-state NMR spectroscopy, but also a dielectric response typical of a fast dipole reorientation under the stimuli of an applied electric field. Furthermore, the mesochannels are open and accessible to diffusing in gas molecules, and rotor mobility could be individually regulated by I2 vapors. The iodine enters the channels of the periodic structure and reacts with the pivotal double bonds of the divinyl-fluoro-phenylene rotors, affecting their motion and the dielectric properties. Oriented molecular rotors: Fluorinated molecular rotors (see picture) were engineered in mesoporous hybrid organosilica architectures with crystalline order in their walls. The rotor dynamics was established by magic angle spinning NMR and dielectric measurements, indicating a rotational correlation time as short as 10-9 s at 325 K. The dynamics was modulated by I2 vapors entering the pores.

  4. Offline detection of broken rotor bars in AC induction motors (United States)

    Powers, Craig Stephen

    ABSTRACT. OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS. The detection of the broken rotor bar defect in medium- and large-sized AC induction machines is currently one of the most difficult tasks for the motor condition and monitoring industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a prototype instrument that has been highly successful in correctly detecting the broken rotor bar defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea University have been using this prototype instrument to help the industry save money in the successful detection of the BRB defect. A review of the current state of motor conditioning and monitoring technology for detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still relevant. An analysis of previous work in the creation of this prototype instrument leads into the refactoring of the software and hardware into something more deployable, cost effective and commercially viable.

  5. Fuzzy control of attitude of four - rotor UAV (United States)

    Zhang, Zexiang; Hu, Shengbin


    The four - rotor unmanned aerial vehicle (UAV) is the object of study, in this paper. In order to solve the problem of poor robustness and low control precision of the four-rotor unmanned aerial vehicle (UAV) control system, and realized the stability control problem of the four-rotor UAV attitude. First, the dynamic model of the four-rotor unmanned aerial vehicle is established. And on this basis, a fuzzy controller is designed, and used to control the channel. Then, the simulation platform is built by Matlab / Simulink simulation software, and the performance of the designed fuzzy controller is analyzed comprehensively. It is also determined whether the algorithm can control the attitude of the four rotor unmanned aerial vehicle. The simulation results fully verify the accuracy of the model, and proved fuzzy controller has better dynamic performance and robustness under appropriate parameters so that UAVs can fly stable. The algorithm can improve the anti-jamming performance and control accuracy of the system, it has a certain significance for the actual four-rotor aircraft attitude control.

  6. Numerical Study of Stratified Charge Combustion in Wave Rotors (United States)

    Nalim, M. Razi


    A wave rotor may be used as a pressure-gain combustor effecting non-steady flow, and intermittent, confined combustion to enhance gas turbine engine performance. It will be more compact and probably lighter than an equivalent pressure-exchange wave rotor, yet will have similar thermodynamic and mechanical characteristics. Because the allowable turbine blade temperature limits overall fuel/air ratio to sub-flammable values, premixed stratification techniques are necessary to burn hydrocarbon fuels in small engines with compressor discharge temperature well below autoignition conditions. One-dimensional, unsteady numerical simulations of stratified-charge combustion are performed using an eddy-diffusivity turbulence model and a simple reaction model incorporating a flammability limit temperature. For good combustion efficiency, a stratification strategy is developed which concentrates fuel at the leading and trailing edges of the inlet port. Rotor and exhaust temperature profiles and performance predictions are presented at three representative operating conditions of the engine: full design load, 40% load, and idle. The results indicate that peak local gas temperatures will result in excessive temperatures within the rotor housing unless additional cooling methods are used. The rotor itself will have acceptable temperatures, but the pattern factor presented to the turbine may be of concern, depending on exhaust duct design and duct-rotor interaction.

  7. Balancing of machinery with a flexible variable-speed rotor (United States)

    Sève, F.; Andrianoely, M. A.; Berlioz, A.; Dufour, R.; Charreyron, M.


    The balancing procedure of machines composed of a flexible rotating part (rotor) and a non-rotating part (stator) mounted on suspensions is presented. The rotating part runs at a variable speed of rotation and is mounted on bearings with variable-speed-dependent characteristics. Assuming that the unbalance masses are relatively well defined, such as in the case of a crank-shaft, the procedure is based on a numerical approach using rotordynamics theory coupled with the Finite Element and Influence Coefficient Methods. An academic rotor/stator model illustrates the procedure. Moreover, the industrial application concerns a refrigerant rotary compressor whose experimental investigation permits validating the model. Assuming that the balancing planes are located on the rotor, it is shown that reducing the vibration level of both rotor and stator requires a balancing procedure using target planes on the rotor and on the stator. In the case of the rotary compressor, this avoids rotor-to-stator rubs and minimizes vibration transmission through pipes and grommets.

  8. Theoretical analysis of the flow around a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Aouachria, Z.; Djoumati, D. [Batna Univ., Batna (Algeria). Laboratoire de Physique Energetique Appliquee; Djamel, H. [Batna Univ., Batna (Algeria). Dept. de Mecanique Energetique


    While Savonius rotors do not perform as well as Darrieus wind turbine rotors, Savonius rotors work in all wind directions, do not require a rudder, and are capable of operating at relatively low speeds. A discrete vortex method was used to analyze the complex flow around a Savonius rotor. Velocity and pressure fields obtained in the analysis were used to determine both mechanical and energetic rotor performance. Savonius rotor bi-blades were considered in relation to 4 free eddies, the leakage points of each blade, and the distribution of basic eddies along the blades. Each blade was divided into equal elementary arcs. Linear equations and Kelvin theorem were reduced to a single equation. Results showed good agreement with data obtained in previous experimental studies. The study demonstrated that vortice emissions were unbalanced. The resistant blade had 2 vortice emissions, while the driving blade had only a single vortex. The results of the study will be used to clarify the mechanical and aerodynamic functions as well as to determine the different values between the blades and the speed of the turbine's engine. 9 refs., 4 figs.


    Energy Technology Data Exchange (ETDEWEB)

    Aaron Koopman


    The research and development of a unique combustion engine is presented. The engine converts the thrust from ramjet modules located on the rim of a disk into shaft torque, which in turn can be used for electrical power generation or mechanical drive applications. A test program was undertaken that included evaluation of the pre-prototype engine and incorporation of improvements to the thrust modules and supporting systems. Fuel mixing studies with vortex generators and bluff body flame holders demonstrated the importance of increasing the shear-layer area and spreading angle to augment flame volume. Evaluation of flame-holding configurations (with variable fuel injection methods) concluded that the heat release zone, and therefore combustion efficiency, could be manipulated by judicious selection of bluff body geometry, and is less influenced by fuel injection distribution. Finally, successful operation of novel fuel and cooling air delivery systems have resolved issues of gas (fuel and air) delivery to the individual rotor segments. The lessons learned from the pre-prototype engine are currently being applied to the development of a 2.8MW engine.

  10. An experimental and analytical method for approximate determination of the tilt rotor research aircraft rotor/wing download (United States)

    Jordon, D. E.; Patterson, W.; Sandlin, D. R.


    The XV-15 Tilt Rotor Research Aircraft download phenomenon was analyzed. This phenomenon is a direct result of the two rotor wakes impinging on the wing upper surface when the aircraft is in the hover configuration. For this study the analysis proceeded along tow lines. First was a method whereby results from actual hover tests of the XV-15 aircraft were combined with drag coefficient results from wind tunnel tests of a wing that was representative of the aircraft wing. Second, an analytical method was used that modeled that airflow caused gy the two rotors. Formulas were developed in such a way that acomputer program could be used to calculate the axial velocities were then used in conjunction with the aforementioned wind tunnel drag coefficinet results to produce download values. An attempt was made to validate the analytical results by modeling a model rotor system for which direct download values were determinrd..

  11. Evaluation of the useful life of steam turbine rotors; Evaluacion de vida util de rotores de turbinas de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Carnero Parra, Antonio; Garcia Illescas, Rafael; Kubiak Szyszka, Janusz [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)


    This article presents the methodology applied by the Management of Turbomachinery of the Institute of Investigaciones Electricas (IIE), for the evaluation of the remaining useful life of steam turbine rotors in the phase of initiation of fissures. The evaluation of the remaining useful life of turbines, will reveal the real state of health of the rotor and will serve as a base for the future decision making that guarantees their structural integrity. [Spanish] El presentes articulo presenta la metodologia aplicada por la Gerencia de Turbomaquinaria del Instituto de Investigaciones Electricas (IIE), para la evaluacion de la vida util remanente de rotores de turbinas de vapor en la fase de iniciacion de fisuras. La evaluacion de la vida util de turbinas, revelar el estado real de salud del rotor y servira de base para la toma de decisiones futuras que garanticen su integridad estructural.

  12. Smart Rotor Modeling: Aero-Servo-Elastic Modeling of a Smart Rotor with Adaptive Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    This book presents the formulation of an aero-servo-elastic model for a wind turbine rotor equipped with Adaptive Trailing Edge Flaps (ATEF), a smart rotor configuration. As the name suggests, an aero-servo-elastic model consists of three main components: an aerodynamic model, a structural model......, and a control model. The book first presents an engineering type of aerodynamic model that accounts for the dynamic effects of flap deflection. The aerodynamic model is implemented in a Blade Element Momentum framework, and coupled with a multi-body structural model in the aero-servoelastic simulation code HAWC...... the trailing edge flap deflection to actively reduce the fatigue loads on the structure. The performance of the smart rotor configuration and its control algorithms are finally quantified by aero-servo-elastic simulations of the smart rotor turbine operating in a standard turbulent wind field....

  13. Large-eddy simulation analysis of turbulent flow over a two-blade horizontal wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Young [Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh (United States); You, Dong Hyun [Dept. of Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)


    Unsteady turbulent flow characteristics over a two-blade horizontal wind turbine rotor is analyzed using a large-eddy simulation technique. The wind turbine rotor corresponds to the configuration of the U.S. National Renewable Energy Laboratory (NREL) phase VI campaign. The filtered incompressible Navier-Stokes equations in a non-inertial reference frame fixed at the centroid of the rotor, are solved with centrifugal and Coriolis forces using an unstructured-grid finite-volume method. A systematic analysis of effects of grid resolution, computational domain size, and time-step size on simulation results, is carried out. Simulation results such as the surface pressure coefficient, thrust coefficient, torque coefficient, and normal and tangential force coefficients are found to agree favorably with experimental data. The simulation showed that pressure fluctuations, which produce broadband flow-induced noise and vibration of the blades, are especially significant in the mid-chord area of the suction side at around 70 to 95 percent spanwise locations. Large-scale vortices are found to be generated at the blade tip and the location connecting the blade with an airfoil cross section and the circular hub rod. These vortices propagate downstream with helical motions and are found to persist far downstream from the rotor.

  14. The Repeatability Assessment of Three-Dimensional Capsule-Intraocular Lens Complex Measurements by Means of High-Speed Swept-Source Optical Coherence Tomography (United States)

    Chang, Pingjun; Li, Jin; Savini, Giacomo; Huang, Jinhai; Huang, Shenghai; Zhao, Yinying; Liao, Na; Lin, Lei; Yu, Xiaoyu; Zhao, Yun-e


    Purpose To rebuild the three-dimensional (3-D) model of the anterior segment by high-speed swept-source optical coherence tomography (SSOCT) and evaluate the repeatability of measurement for the parameters of capsule-intraocular lens (C-IOL) complex. Methods Twenty-two pseudophakic eyes from 22 patients were enrolled. Three continuous SSOCT measurements were performed in all eyes and the tomograms obtained were used for 3-D reconstruction. The output data were used to evaluate the measurement repeatability. The parameters included postoperative aqueous depth (PAD), the area and diameter of the anterior capsule opening (Area and D), IOL tilt (IOL-T), horizontal, vertical, and space decentration of the IOL, anterior capsule opening, and IOL-anterior capsule opening. Results PAD, IOL-T, Area, D, and all decentration measurements showed high repeatability. Repeated measure analysis showed there was no statistically significant difference among the three continuous measurements (all P > .05). Pearson correlation analysis showed high correlation between each pair of them (all r >0.90, P<0.001). ICCs were all more than 0.9 for all parameters. The 95% LoAs of all parameters were narrow for comparison of three measurements, which showed high repeatability for three measurements. Conclusion SSOCT is available to be a new method for the 3-D measurement of C-IOL complex after cataract surgery. This method presented high repeatability in measuring the parameters of the C-IOL complex. PMID:26600254

  15. Technology transfer between aircraft and rotor blade manufacturing; Technologietransfer zwischen Flugzeugbau und Rotorblattbau

    Energy Technology Data Exchange (ETDEWEB)

    Apmann, H. [Premium Aerotec GmbH (Germany)


    Aircraft construction and rotor blade production do have some basic things in common. Among these are the material to be processed, the dimensions, as well as the component requirements. Therefore, a possible technology exchange is obvious. Common points like the application of tools and handling units for fibre material, self-tempering systems, tolerance management, component and process development as well as transport assignments, demonstrate the common subjects, but also the differences of both areas. Therefore, both branches can learn from each other and profit from the respective experiences. An example of a successful cross-sectoral cooperation is shown. Curing tools made of steel for the production of rotor blade components have been generated on the basis of the experience and the existent know-how in the production systems area of Premium Aerotec GmbH (a worldwide leading supplier of aircraft structures). The essential advantages of such a steel-curing tool, like the faster heat transfer between heat- and cooling medium and component, higher stability time of the mould, more robust characteristics compared with loads etc. are shown in the production result. By the application of this tool, the production time of the components could be nearly halved. The given tolerances are kept and the process security is raised substantially. Due to the shorter production time the productivity is increased considerably and the growing requirements of the market can be met. Based on the example of this tool, which is used successfully in the serial production for rotor blade components, it's obvious how fast cross-sectoral experiences can lead to a common aim and success. On the basis of this experience further developments in the areas of tools, handling systems and process development are currently carried out. Among others, a new system for tempering of steel moulds, which at the same time will be equipped with a surface coating of the cover sheets, is being

  16. Numerical Simulation of Unsteady Flow Around Forward Flight Helicopter with Coaxial Rotors

    Institute of Scientific and Technical Information of China (English)

    XU Heyong; YE Zhengyin


    Three-dimensional unsteady Euler equations are numerically solved to simulate the unsteady flows around forward flight helicopter with coaxial rotors based on unstructured dynamic overset grids. The performances of the two coaxial rotors both become worse because of the aerodynamic interaction between them, and the influence of the top rotor on the bottom rotor is greater than that of the bottom rotor on the top rotor. The downwash velocity at the bottom rotor plane is much larger than that at the top rotor plane, and the downwash velocity at the top rotor plane is a little larger than that at an individual rotor plane. The downwash velocity and thrust coefficient both become larger when the collective angle of blades is added. When the spacing between the two coaxial rotors increases, the thrust coefficient of the top rotor increases, but the total thrust coefficient reduces a little,because the decrease of the bottom rotor thrust coefficient is larger than the increase of the top rotor thrust coefficient.

  17. Select Features of Diabetic Retinopathy on Swept-Source Optical Coherence Tomographic Angiography Compared With Fluorescein Angiography and Normal Eyes (United States)

    Salz, David A.; de Carlo, Talisa E.; Adhi, Mehreen; Moult, Eric; Choi, WhooJhon; Baumal, Caroline R.; Witkin, Andre J.; Duker, Jay S.; Fujimoto, James G.; Waheed, Nadia K.


    IMPORTANCE Optical coherence tomographic angiography (OCTA) is a recently developed noninvasive imaging technique that can visualize the retinal and choroidal microvasculature without the injection of exogenous dyes. OBJECTIVE To evaluate the potential clinical utility of OCTA using a prototype swept-source OCT (SS-OCT) device and compare it with fluorescein angiography (FA) for analysis of the retinal microvasculature in diabetic retinopathy. DESIGN, SETTING, AND PARTICIPANTS Prospective, observational cross-sectional study conducted at a tertiary care academic retina practice from November 2013 through November 2014. A cohort of diabetic and normal control eyes were imaged with a prototype SS-OCT system. The stage of diabetic retinopathy was determined by clinical examination. Imaging was performed using angiographic 3 × 3-mm and 6 × 6-mm SS-OCT scans to generate 3-dimensional en-face OCT angiograms for each eye. Two trained Boston Image Reading Center readers reviewed and graded FA and OCTA images independently. MAIN OUTCOMES AND MEASURES The size of the foveal nonflowzone and the perifoveal intercapillary area on OCTA were measured in both normal and diabetic eyes using Boston Image Reading Center image analysis software. RESULTS The study included 30 patients with diabetes (mean [SD] age, 55.7 [10] years) and 6 control individuals (mean [SD] age, 55.1 [6.4] years). A total of 43 diabetic and 11 normal control eyes were evaluated with OCTA. Fluorescein angiography was performed in 17 of 43 diabetic eyes within 8 weeks of the OCTA. Optical coherence tomographic angiography was able to identify a mean (SD) of 6.4 (4.0) microaneurysms (95% CI, 4.4–8.5), while FA identified a mean (SD) of 10 (6.9) microaneurysms (95% CI, 6.4–13.5). The exact intraretinal depth of microaneurysms on OCTA was localized in all cases (100%). The sensitivity of OCTA in detecting microaneuryms when compared with FA was 85% (95% CI, 53–97), while the specificity was 75% (95% CI, 21

  18. 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma.

    Directory of Open Access Journals (Sweden)

    Kazuko Omodaka

    Full Text Available Although the lamina cribrosa (LC is the primary site of axonal damage in glaucoma, adequate methods to image and measure it are currently lacking. Here, we describe a noninvasive, in vivo method of evaluating the LC, based on swept-source optical coherence tomography (SS-OCT, and determine this method's ability to quantify LC thickness.This study comprised 54 eyes, including normal (n = 18, preperimetric glaucoma (PPG; n = 18, and normal tension glaucoma (NTG; n = 18 eyes. We used SS-OCT to obtain 3 x 3 mm cube scans of an area centered on the optic disc, and then synchronized reconstructed B- and en-face images from this data. We identified the LC in these B-scan images by marking the visible borders of the LC pores. We marked points on the anterior and posterior borders of the LC in 12 B-scan images in order to create a skeleton model of the LC. Finally, we used B-spline interpolation to form a 3D model of the LC, including only reliably measured scan areas. We calculated the average LC thickness (avgLCT in this model and used Spearman's rank correlation coefficient to compare it with circumpapillary retinal nerve fiber layer thickness (cpRNFLT.We found that the correlation coefficient of avgLCT and cpRNFLT was 0.64 (p < 0.01. The coefficient of variation for avgLCT was 5.1%. AvgLCT differed significantly in the groups (normal: 282.6 ± 20.6 μm, PPG: 261.4 ± 15.8 μm, NTG: 232.6 ± 33.3 μm. The normal, PPG and NTG groups did not significantly differ in age, sex, refractive error or intraocular pressure (IOP, although the normal and NTG groups differed significantly in cpRNFLT and Humphrey field analyzer measurements of mean deviation.Thus, our results indicate that the parameters of our newly developed method of measuring LC thickness with SS-OCT may provide useful and important data for glaucoma diagnosis and research.

  19. Large Eddy Simulation of Transonic Flow Field in NASA Rotor 37 (United States)

    Hah, Chunill


    The current paper reports on numerical investigations on the flow characteristics in a transonic axial compressor, NASA Rotor 37. The flow field was used previously as a CFD blind test case conducted by American Society of Mechanical Engineers in 1994. Since the CFD blind-test exercise, many numerical studies on the flow field in the NASA Rotor 37 have been reported. Although steady improvements have been reported in both numerical procedure and turbulence closure, it is believed that all the important aspects of the flow field have not been fully explained with numerical studies based on the Reynolds Averaged Navier-Stokes (RANS) solution. Experimental data show large dip in total pressure distribution near the hub at downstream of the rotor at 100% rotor speed. Most original numerical solutions from the blind test exercise did not predict this total pressure deficit correctly. This total pressure deficit at the rotor exit was attributed to a hub corner flow separation by the author. Several subsequent numerical studies with different turbulence closure model also calculated this dip in total pressure rise. Also, several studies attributed this total pressure deficit to a small leakage flow coming from the hub in the test article. As the experimental study cannot be repeated, either explanation cannot be validated. The primary purpose of the current investigation is to investigate the transonic flow field with both RANS and a Large Eddy Simulation (LES). The RANS approach gives similar results presented at the original blind test exercise. Although the RANS calculates higher overall total pressure rise, the total pressure deficit near the hub is calculated correctly. The numerical solution shows that the total pressure deficit is due to a hub corner flow separation. The calculated pressure rise from the LES agrees better with the measured total pressure rise especially near the casing area where the passage shock interacts with the tip clearance vortex and flow

  20. Passive vibration control in rotor dynamics: Optimization of composed support using viscoelastic materials (United States)

    Ribeiro, Eduardo Afonso; Pereira, Jucélio Tomás; Alberto Bavastri, Carlos


    One of the major reasons for inserting damping into bearings is that rotating machines are often requested in critical functioning conditions having sometimes to function under dynamic instability or close to critical speeds. Hydrodynamic and magnetic bearings have usually been used for this purpose, but they present limitations regarding costs and operation, rendering the use of viscoelastic supports a feasible solution for vibration control in rotating machines. Most papers in the area use simple analytic or single degree of freedom models for the rotor as well as classic mechanical models of linear viscoelasticity for the support - like Maxwell, Kelvin-Voigt, Zenner, four-element, GHM models and even frequency independent models - but they lack the accuracy of fractional models in a large range of frequency and temperature regarding the same number of coefficients. Even in those works, the need to consider the addition of degrees of freedom to the support is evident. However, so far no paper has been published focusing on a methodology to determine the optimal constructive form for any viscoelastic support in which the rotor is discretized by finite elements associated to an accurate model for characterizing the viscoelastic material. In general, the support is meant to be a simple isolation system, and the fact the stiffness matrix is complex and frequency-temperature dependent - due to its viscoelastic properties - forces the traditional methods to require an extremely long computing time, thus rendering them too time consuming in an optimization environment. The present work presents a robust methodology based mainly on generalized equivalent parameters (GEP) - for an optimal design of viscoelastic supports for rotating machinery - aiming at minimizing the unbalance frequency response of the system using a hybrid optimization technique (genetic algorithms and Nelder-Mead method). The rotor is modeled based on the finite element method using Timoshenko's thick

  1. Radial Flow Effects On A Retreating Rotor Blade (United States)


    estimate of the structural loading on horizontal axis wind turbines [52]. Studies have showed that such data consistently under predict actual loading...Oscillating Airfoil Experiments,” 1977. [18] Carta , F., “Dynamic Stall of Swept and Unswept Oscillating Wings,” tech. rep., DTIC Document, 1985. [19... Carta , F. O., A comparison of the pitching and plunging response of an oscillating airfoil, vol. 3172. National Aeronautics and Space Administration

  2. Transverse vibration of a rotor system driven by two cardan joints (United States)

    Saigo, M.; Iwatsubo, T.


    The torque-induced transverse vibration of a rotor system driven by two Cardan joints is analyzed and the effects of the stiffness asymmetry of the rotor shaft supports, the damping force in the joints and the gyroscopic moment of the rotor on the dynamic stability of the system are evaluated. The analysis proves that both parametric and self-excited vibrations can occur due to the transmitted torque when the driving shaft and the driven shaft (rotor shaft) are inclined; the stiffness asymmetry of rotor supports does not always have the stabilizing effect which has been observed in a rotor system driven by a single Cardan joint [1

  3. Wind tunnel tests on slow-running vertical-axis wind-rotors (United States)

    Sivasegaram, S.


    This paper summarizes the results of investigations on the Savonius-type, slow-running, vertical-axis wind-rotors as well as on rotor designs on different subclasses under comparable design and test conditions. It is seen that the performance of the conventional Savonius rotor could be considerably improved upon and the best results are achieved by using two-bladed rotors with a more sophisticated sectional profile than in the conventional design. Rotors with several blades, although capable of considerably higher performance than the Savonius rotor, do not appear to be as good as those with two blades and improved sectional geometry.

  4. Off-design performance loss model for radial turbines with pivoting, variable-area stators (United States)

    Meitner, P. L.; Glassman, A. J.


    An off-design performance loss model was developed for variable stator (pivoted vane), radial turbines through analytical modeling and experimental data analysis. Stator loss is determined by a viscous loss model; stator vane end-clearance leakage effects are determined by a clearance flow model. Rotor loss coefficient were obtained by analyzing the experimental data from a turbine rotor previously tested with six stators having throat areas from 20 to 144 percent of design area and were correlated with stator-to-rotor throat area ratio. An incidence loss model was selected to obtain best agreement with experimental results. Predicted turbine performance is compared with experimental results for the design rotor as well as with results for extended and cutback versions of the rotor. Sample calculations were made to show the effects of stator vane end-clearance leakage.

  5. A computational investigation of vibration attenuation of a rigid rotor turning at a variable speed by means of short magnetorheological dampers

    Directory of Open Access Journals (Sweden)

    Zapoměl J.


    Full Text Available Rotors of all rotating machines are always slightly imbalanced. When they rotate, the imbalance induces their lateral vibration and forces that are transmitted via the bearings into the foundations. These phenomena are significant if the rotor accelerates or decelerates and especially if it passes over the critical speeds. The vibration can be reduced if the rotor supports are equipped with damping elements. To achieve optimum performance of the damper, the damping effect must be controllable. At present time, semiactive magnetorheological squeeze film dampers are a subject of intensive research. They work on a principle of squeezing a thin film of magnetorheological liquid. If magnetic field is applied, the magnetorheological liquid starts to flow only if the shear stress between two neighbourhood layers exceeds a limit value which depends on intensity of the magnetic field. Its change enables to control the damping force. In the mathematical models, the magnetorheological liquid is usually considered as Bingham one. Application of the computer modelling method for analysis of rotors supported by rolling element bearings and magnetorheological squeeze film dampers and turning at variable angular speed requires to set up the equations of motion of the rotor and to develop a procedure for calculation of the damping force. Derivation of the equations of motion starts from the first and second impulse theorems. The pressure distribution in the thin lubricating film can be described by a Reynolds equation modified for the case of Bingham liquid. In cavitated areas, it is assumed that pressure of the medium remains constant. The hydraulic force acting on the rotor journal is then obtained by integration of the pressure distribution around the circumference and along the length of the damper. Applicability of the developed procedures was tested by means of computer simulations and influence of the control of the damping force on vibration of the rotor

  6. Extension-twist coupling optimization in composite rotor blades (United States)

    Ozbay, Serkan


    For optimal rotor performance in a tiltrotor aircraft the difference in the inflow and the rotor speeds between the hover and cruise flight modes suggests different blade twist and chord distributions. The blade twist rates in current tiltrotor applications are defined based upon a compromise between the figure of merit in hover and propeller efficiency in airplane mode. However, when each operation mode is considered separately the optimum blade distributions are found to be considerably different. Passive blade twist control, which uses the inherent variation in centrifugal forces on a rotor blade to achieve optimum blade twist distributions in each flight mode through the use of extension-twist coupled composite rotor blades, has been considered for performance improvement of tiltrotor aircraft over the last two decades. The challenge for this concept is to achieve the desired twisting deformations in the rotor blade without altering the aeroelastic characteristics of the vehicle. A concept referred to as the sliding mass concept is proposed in this work in order to increase the twist change with rotor speed for a closed-cell composite rotor blade cross-section to practical levels for performance improvement in a tiltrotor aircraft. The concept is based on load path changes for the centrifugal forces by utilizing non-structural masses readily available on a conventional blade, such as the leading edge balancing mass. A multilevel optimization technique based on the simulated annealing method is applied to improve the performance of the XV15 tiltrotor aircraft. A cross-sectional analysis tool, VABS together with a multibody dynamics code, DYMORE are integrated into the optimization process. The optimization results revealed significant improvements in the power requirement in hover while preserving cruise efficiency. It is also shown that about 21% of the improvement is provided through the sliding mass concept pointing to the additional flexibility the concept

  7. Aeromechanical Evaluation of Smart-Twisting Active Rotor (United States)

    Lim, Joon W.; Boyd, D. Douglas, Jr.; Hoffman, Frauke; van der Wall, Berend G.; Kim, Do-Hyung; Jung, Sung N.; You, Young H.; Tanabe, Yasutada; Bailly, Joelle; Lienard, Caroline; Delrieux, Yves


    An investigation of Smart-Twisting Active Rotor (STAR) was made to assess potential benefits of the current active twist rotor concept for performance improvement, vibration reduction, and noise alleviation. The STAR rotor is a 40% Mach-scaled, Bo105 rotor with an articulated flap-lag hinge at 3.5%R and no pre-cone. The 0-5 per rev active twist harmonic inputs were applied for various flight conditions including hover, descent, moderate to high speed level flights, and slowed rotor high advance ratio. For the analysis, the STAR partners used multiple codes including CAMRAD II, S4, HOST, rFlow3D, elsA, and their associated software. At the high thrust level in hover, the 0 per rev active twist with 80% amplitude increased figure of merit (FM) by 0.01-0.02 relative to the baseline. In descent, the largest BVI noise reduction was on the order of 2 to 5 dB at the 3 per rev active twist. In the high speed case (mu = 0.35), the 2 per rev actuation was found to be the most effective in achieving a power reduction as well as a vibration reduction. At the 2 per rev active twist, total power was reduced by 0.65% at the 60 deg active twist phase, and vibration was reduced by 47.6% at the 45 deg active twist phase. The use of the 2 per rev active twist appears effective for vibration reduction. In the high advance ratio case (mu = 0.70), the 0 per rev actuation appeared to have negligible impact on performance improvement. In summary, computational simulations successfully demonstrated that the current active twist concept provided a significant reduction of the maximum BVI noise in descent, a significant reduction of the vibration in the high speed case, a small improvement on rotor performance in hover, and a negligible impact on rotor performance in forward flight.

  8. Effect of fluid damping on vibration response of immersed rotors

    Directory of Open Access Journals (Sweden)

    Mahmud Rasheed Ismail, Mustafa Asaad Hussein


    Full Text Available As immersed rotors vibrate in a viscous media such as fluid, a considerable amount of damping may be generated due to the interaction phenomena between the rotor components and the fluid media.Such damping is depending on many factors such as; fluid drag,fluid friction,turbulence, vortex and so on. Immersed rotors find their application in many engineering fields such as Marines machines, gear box, turbine and pumps.In the presentwork, a mathematical modelis attempted to investigate the dynamical behaviorimmersed rotor.The model takes into account the effects of the most rotordynamic parameters, namely; fluid drag,damping and stiffness of bearing,unbalance and gyroscopic effects of the attacheddisc, and elastic bending and internal damping of rotor shaft.Four types of fluid are employed as a fluid immersing media which are; Air, Water, SAE 20 andSAE 40oils.The experimental apparatus includes a sample rotor with single disc and plastic fluid container.Two proximate sensors are employed for measuring the unbalance response and orbits shapes under different rotor speeds, and discs size and locations.Modal analysis is employed for solving the governing equation of vibration motion. To check the validity of the mathematical model the theoretical results are compared with the experimental results. It is found that; the theoretical results are in a good agreement with the experimental ones, where the maximum error is not exceeded (6.8 %, and that;the fluid damping can highly reduce the peak amplitude of the unbalance response (up to 60 % however, it has slight effect on the critical speeds which are highly affected by the size and location of the attached disc.

  9. Wind Tunnel Testing of a 120th Scale Large Civil Tilt-Rotor Model in Airplane and Helicopter Modes (United States)

    Theodore, Colin R.; Willink, Gina C.; Russell, Carl R.; Amy, Alexander R.; Pete, Ashley E.


    In April 2012 and October 2013, NASA and the U.S. Army jointly conducted a wind tunnel test program examining two notional large tilt rotor designs: NASA's Large Civil Tilt Rotor and the Army's High Efficiency Tilt Rotor. The approximately 6%-scale airframe models (unpowered) were tested without rotors in the U.S. Army 7- by 10-foot wind tunnel at NASA Ames Research Center. Measurements of all six forces and moments acting on the airframe were taken using the wind tunnel scale system. In addition to force and moment measurements, flow visualization using tufts, infrared thermography and oil flow were used to identify flow trajectories, boundary layer transition and areas of flow separation. The purpose of this test was to collect data for the validation of computational fluid dynamics tools, for the development of flight dynamics simulation models, and to validate performance predictions made during conceptual design. This paper focuses on the results for the Large Civil Tilt Rotor model in an airplane mode configuration up to 200 knots of wind tunnel speed. Results are presented with the full airframe model with various wing tip and nacelle configurations, and for a wing-only case also with various wing tip and nacelle configurations. Key results show that the addition of a wing extension outboard of the nacelles produces a significant increase in the lift-to-drag ratio, and interestingly decreases the drag compared to the case where the wing extension is not present. The drag decrease is likely due to complex aerodynamic interactions between the nacelle and wing extension that results in a significant drag benefit.

  10. Frequency-swept laser light source at 1050 nm with higher bandwidth due to multiple semiconductor optical amplifiers in series

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Thrane, Lars; Andersen, Peter E.;


    We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated that even two SOAs with nearly equal gain spectra can improve the performance......Hz) the SSOA configuration can maintain a significantly higher bandwidth (~50% higher) compared to the MOPA architecture. Correspondingly narrower point spread functions can be generated in a Michelson interferometer.......We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated that even two SOAs with nearly equal gain spectra can improve the performance...

  11. Widely tunable/wavelength-swept SLM fiber laser with ultra-narrow linewidth and ultra-high OSNR (United States)

    Feng, Ting; Ding, Dong-liang; Liu, Peng; Su, Hong-xin; Yao, X. Steve


    We propose and demonstrate a novel single-longitudinal-mode (SLM) erbium-doped fiber laser (EDFL) capable of operating at fixed-wavelength lasing mode with a tunable range more than 54 nm, an ultra-narrow linewidth of 473 Hz and an ultra-high optical signal-to-noise ratio ( OSNR) more than 72 dB, or operating at wavelength-swept mode with tunable sweep rate of 10—200 Hz and a sweep range more than 50 nm. The excellent features mainly benefit from a triple-ring subring cavity constructed by three optical couplers nested one another and a fiber Fabry-Pérot tunable filter which can be driven by a constant voltage or a periodic sweep voltage for fixed or wavelength- swept operation, respectively. The proposed EDFL has potential applications in high-resolution spectroscopy and fiber optic sensing.

  12. Gust Acoustic Response of a Swept Rectilinear Cascade Using The Space-Time CE/SE Method (United States)

    Wang, X. Y.; Himansu, A.; Jorgenson, P. C.; Chang, S. C.


    The benchmark problem 3 in Category 3 of the third Computational Aero-Acoustics (CAA) Workshop sponsored by NASA Glenn Research Center is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of a rectilinear swept cascade to an incident gust. The acoustic field generated by the interaction of the gust with swept at plates in the cascade is computed by solving the 3D nonlinear Euler equations using the space-time CE/SE method. A parallel version of the 3D CE/SE Euler solver is employed to obtain numerical solutions for several sweep angles. Numerical solutions are presented and compared with the analytical solutions.

  13. Demonstration of a rapidly-swept external cavity quantum cascade laser for rapid and sensitive quantification of chemical mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.


    A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.

  14. Non-contact investigation of the corneal biomechanics with air-puff swept source optical coherence tomography (United States)

    Maczynska, Ewa; Karnowski, Karol; Kaluzny, Bartlomiej; Grulkowski, Ireneusz; Wojtkowski, Maciej


    In this paper, we use swept source optical coherence tomography combined with air-puff module (air-puff SS-OCT) to investigate the properties of the cornea. During OCT measurement the cornea was stimulated by short, air pulse, and corneal response was recorded. In this preliminary study, the air-puff SS-OCT instrument was applied to measure behavior of the porcine corneas under varied, well-controlled intraocular pressure conditions. Additionally, the biomechanical response of the corneal tissue before, during and after crosslinking procedure (CXL) was assessed. Air-puff swept source OCT is a promising tool to extract information about corneal behavior as well as to monitor and assess the effect of CXL.

  15. Viscous/potential flow about multi-element two-dimensional and infinite-span swept wings - Theory and experiment (United States)

    Olson, L. E.; Dvorak, F. A.


    The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary-layer and potential-flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary-layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible.

  16. Viscous/potential flow about multi-element two-dimensional and infinite-span swept wings: Theory and experiment (United States)

    Olson, L. E.; Dvorak, F. A.


    The viscous subsonic flow past two-dimensional and infinite-span swept multi-component airfoils is studied theoretically and experimentally. The computerized analysis is based on iteratively coupled boundary layer and potential flow analysis. The method, which is restricted to flows with only slight separation, gives surface pressure distribution, chordwise and spanwise boundary layer characteristics, lift, drag, and pitching moment for airfoil configurations with up to four elements. Merging confluent boundary layers are treated. Theoretical predictions are compared with an exact theoretical potential flow solution and with experimental measures made in the Ames 40- by 80-Foot Wind Tunnel for both two-dimensional and infinite-span swept wing configurations. Section lift characteristics are accurately predicted for zero and moderate sweep angles where flow separation effects are negligible.

  17. Performance and Internal Flow of Sirocco Fan Using Contra-Rotating Rotors

    Institute of Scientific and Technical Information of China (English)

    J. Fukutomi; T.Shigemitsu; T. Yasunobu


    A sirocco fan using contra-rotating rotors in which an inner rotor is settled inside the sirocco fan rotor end each rotor rotates in an opposite direction was proposed for the purpose of getting the higher pressure and making the structure of a sirocco fan more compact. If the high discharge pressure is obtained with the adoption of the contra-rotating rotors, it could be used for various purposes. Pressure coefficient of a sirocco fan with contra-rotating rotors is 2.5 times as high as the conventional sirocco fan and the maximum efficiency point of contra-rotating rotors shifts to larger flow rate than a conventional sirocco fan. On the other hand, it was clarified from the flow measurement results that circumferential velocity component at the outlet of the outer rotor of contra-rotating rotors becomes larger than a conventional one. In the present paper, the performance of a conventional sirocco fan and a sirocco fan with contra-rotating rotors are shown and the internal flow field at the outlet of outer rotor of both cases is clarified. Then, the effect of different kind of contra-rotating rotors on the performance and internal flow field is investigated and the rotor design with higher performanco would be discussed.

  18. Phase-sensitive optical coherence tomography-based vibrometry using a highly phase-stable akinetic swept laser source

    Energy Technology Data Exchange (ETDEWEB)

    Applegate, Brian E.; Park, Jesung; Carbajal, Esteban [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States); Oghalai, John S. [Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, California (United States)


    Phase-sensitive Optical Coherence Tomography (PhOCT) is an emerging tool for in vivo investigation of the vibratory function of the intact middle and inner ear. PhOCT is able to resolve micron scale tissue morphology in three dimensions as well as measure picometer scale motion at each spatial position. Most PhOCT systems to date have relied upon the phase stability offered by spectrometer detection. On the other hand swept laser source based PhOCT offers a number of advantages including balanced detection, long imaging depths, and high imaging speeds. Unfortunately the inherent phase instability of traditional swept laser sources has necessitated complex user developed hardware/software solutions to restore phase sensitivity. Here we present recent results using a prototype swept laser that overcomes these issues. The akinetic swept laser is electronically tuned and precisely controls sweeps without any mechanical movement, which results in high phase stability. We have developed an optical fiber based PhOCT system around the akinetic laser source that had a 1550 nm center wavelength and a sweep rate of 140 kHz. The stability of the system was measured to be 4.4 pm with a calibrated reflector, thus demonstrating near shot noise limited performance. Using this PhOCT system, we have acquired structural and vibratory measurements of the middle ear in a mouse model, post mortem. The quality of the results suggest that the akinetic laser source is a superior laser source for PhOCT with many advantages that greatly reduces the required complexity of the imaging system.

  19. 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma


    Kazuko Omodaka; Takaaki Horii; Seri Takahashi; Tsutomu Kikawa; Akiko Matsumoto; Yukihiro Shiga; Kazuichi Maruyama; Tetsuya Yuasa; Masahiro Akiba; Toru Nakazawa


    Purpose Although the lamina cribrosa (LC) is the primary site of axonal damage in glaucoma, adequate methods to image and measure it are currently lacking. Here, we describe a noninvasive, in vivo method of evaluating the LC, based on swept-source optical coherence tomography (SS-OCT), and determine this method’s ability to quantify LC thickness. Methods This study comprised 54 eyes, including normal (n = 18), preperimetric glaucoma (PPG; n = 18), and normal tension glaucoma (NTG; n = 18) eye...

  20. Technical and economic assessment of swept-wing span-distributed load concepts for civil and military air cargo transports (United States)


    The feasibility of large freighter aircraft was assessed, including the impact of military requirements on the performance, economics, and fuel consumption characteristics. Only configurations having net payloads of 272,155 to 544,311 kilograms contained within swept wings of constant chord were studied. These configurations were of advanced composite construction with controllable winglets and full-span digitally-controlled trailing-edge surfaces. Civil, military, and joint civil/military production programs were considered.

  1. En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. (United States)

    Ferrara, Daniela; Mohler, Kathrin J; Waheed, Nadia; Adhi, Mehreen; Liu, Jonathan J; Grulkowski, Ireneusz; Kraus, Martin F; Baumal, Caroline; Hornegger, Joachim; Fujimoto, James G; Duker, Jay S


    To characterize en face features of the retinal pigment epithelium (RPE) and choroid in eyes with chronic central serous chorioretinopathy (CSCR) using a high-speed, enhanced-depth swept-source optical coherence tomography (SS-OCT) prototype. Consecutive patients with chronic CSCR were prospectively examined with SS-OCT. Fifteen eyes of 13 patients. Three-dimensional 6×6 mm macular cube raster scans were obtained with SS-OCT operating at 1050 nm wavelength and 100000 A-lines/sec with 6 μm axial resolution. Segmentation of the RPE generated a reference surface; en face SS-OCT images of the RPE and choroid were extracted at varying depths every 3.5 μm (1 pixel). Abnormal features were characterized by systematic analysis of multimodal fundus imaging, including color photographs, fundus autofluorescence, fluorescein angiography, and indocyanine-green angiography (ICGA). En face SS-OCT morphology of the RPE and individual choroidal layers. En face SS-OCT imaging at the RPE level revealed absence of signal corresponding to RPE detachment or RPE loss in 15 of 15 (100%) eyes. En face SS-OCT imaging at the choriocapillaris level showed focally enlarged vessels in 8 of 15 eyes (53%). At the level of Sattler's layer, en face SS-OCT documented focal choroidal dilation in 8 of 15 eyes (53%) and diffuse choroidal dilation in 7 of 15 eyes (47%). At the level of Haller's layer, these same features were observed in 3 of 15 eyes (20%) and 12 of 15 eyes (80%), respectively. In all affected eyes, these choroidal vascular abnormalities were seen just below areas of RPE abnormalities. In 2 eyes with secondary choroidal neovascularization (CNV), distinct en face SS-OCT features corresponded to the neovascular lesions. High-speed, enhanced-depth SS-OCT at 1050 nm wavelength enables the visualization of pathologic features of the RPE and choroid in eyes with chronic CSCR not usually appreciated with standard spectral domain (SD) OCT. En face SS-OCT imaging seems to be a useful tool in

  2. Three-dimensional flows in a transonic compressor rotor (United States)

    Reid, Lonnie; Celestina, Mark L.; Dewitt, Kenneth; Keith, Theo


    This study involves an experimental and numerical investigation of the three-dimensional flows in a transonic compressor rotor. A variety of data which could be used, in a complementary fashion, to validate/calibrate the computational fluid dynamics turbomachinery code and improve understanding of the flow physics, were acquired. Detailed radial survey data which consisted of total pressure, total temperature, static pressure and flow angle were obtained at stations upstream and downstream of the rotor blade. Detailed velocity and turbulence profiles were obtained upstream of the rotor and used as the upstream boundary conditions for the numerical analysis. Calibrated flush-mounted hot film probes were used to measure wall shear stress on the hub and casing walls upstream of the rotor. The blade-to-blade shear-stress angle distributions were obtained at two axial locations on the rotor casing, using flush-mounted hot film probes. A numerical analysis conducted using a three-dimensional Navier-Stokes code was compared with the experimental results.

  3. Prospects for Brushless ac Motors with HTS Rotors (United States)

    McCulloch, M. D.; Jim, K.; Kawai, Y.; Dew-Hughes, D.; Morgan, C.; Goringe, M. J.; Grovenor, C. R. M.


    There is a superconducting equivalent for every type of brushless ac motor; permanent magnet, reluctance, hysteresis and induction (squirrel cage) motor. The particular advantage of superconducting versions of these machines is that they are expected to provide much higher power densities than their conventional equivalents. The behaviour of superconducting rotors fabricated in the form of (a) squirrell cages from silver coated with melt-processed Bi-2212, (b) tubes cast centifugally from Bi-2212, and (c) small cylinders of melt-processed and seeded YBCO has been studied in rotating magnetic fields provided by conventional motor coils. Measurements of static torque, and values of dynamic torque deduced from angular velocity and acceleration have been used to characterise the potential performance of these embryonic machines. Two broad types of behaviour have been observed. In the Bi-2212 rotors the torque decreases with increasing rotor speed; this behaviour is believed due to flux creep. By contrast the strong-pinning YBCO rotors maintain a constant torque up to synchronous speed. Mathematical modelling of flux penetration and distribution within the rotors is able to reproduce both types of the observed behaviour. Power densities some 5 to 10 times that of conventional machines are predicted to be achievable in optimised prototype machines.

  4. Broken-Rotor-Bar Diagnosis for Induction Motors (United States)

    Wang, Jinjiang; Gao, Robert X.; Yan, Ruqiang


    Broken rotor bar is one of the commonly encountered induction motor faults that may cause serious motor damage to the motor if not detected timely. Past efforts on broken rotor bar diagnosis have been focused on current signature analysis using spectral analysis and wavelet transform. These methods require accurate slip estimation to localize fault-related frequency. This paper presents a new approach to broken rotor bar diagnosis without slip estimation, based on the ensemble empirical mode decomposition (EEMD) and the Hilbert transform. Specifically, the Hilbert transform first extracts the envelope of the motor current signal, which contains broken rotor fault-related frequency information. Subsequently, the envelope signal is adaptively decomposed into a number of intrinsic mode functions (IMFs) by the EEMD algorithm. Two criteria based on the energy and correlation analyses have been investigated to automate the IMF selection. Numerical and experimental studies have confirmed that the proposed approach is effective in diagnosing broken rotor bar faults for improved induction motor condition monitoring and damage assessment.

  5. Active control for performance enhancement of electrically controlled rotor

    Institute of Scientific and Technical Information of China (English)

    Lu Yang; Wang Chao


    Electrically controlled rotor (ECR) system has the potential to enhance the rotor perfor-mance by applying higher harmonic flap inputs. In order to explore the feasibility and effectiveness for ECR performance enhancement using closed-loop control method, firstly, an ECR rotor perfor-mance analysis model based on helicopter flight dynamic model is established, which can reflect the performance characteristics of ECR helicopter at high advance ratio. Based on the simulation platform, an active control method named adaptive T-matrix algorithm is adopted to explore the feasibility and effectiveness for ECR performance enhancement. The simulation results verify the effectiveness of this closed-loop control method. For the sample ECR helicopter, about 3%rotor power reduction is obtained with the optimum 2/rev flap inputs at the advance ratio of 0.34. And through analyzing the distributions of attack of angle and drag in rotor disk, the underlying physical essence of ECR power reduction is cleared. Furthermore, the influence of the key control parameters, including convergence factor and weighting matrix, on the effectiveness of closed-loop control for ECR performance enhancement is explored. Some useful results are summarized, which can be used to direct the future active control law design of ECR performance enhancement.

  6. Automatic magnetic flux measurement of micro plastic-magnetic rotors (United States)

    Wang, Qingdong; Lin, Mingxing; Song, Aiwei


    Micro plastic-magnetic rotors of various sizes and shapes are widely used in industry, their magnetic flux measurement is one of the most important links in the production process, and therefore some technologies should be adopted to improve the measurement precision and efficiency. In this paper, the automatic measurement principle of micro plastic-magnetic rotors is proposed and the integration time constant and the integrator drift’s suppression and compensation in the measurement circuit are analyzed. Two other factors influencing the measurement precision are also analyzed, including the relative angles between the rotor magnetic poles and the measurement coil, and the starting point of the rotors in the coil where the measurement begins. An instrument is designed to measure the magnetic flux of the rotors. Measurement results show that the measurement error is within  ±1%, which meets the basic requirements in industry application, and the measurement efficiency is increased by 10 times, which can cut down labor cost and management cost when compared with manual measurement.

  7. Empennage Noise Shielding Benefits for an Open Rotor Transport (United States)

    Berton, Jeffrey J.


    NASA sets aggressive, strategic, civil aircraft performance and environmental goals and develops ambitious technology roadmaps to guide its research efforts. NASA has adopted a phased approach for community noise reduction of civil aircraft. While the goal of the near-term first phase focuses primarily on source noise reduction, the goal of the second phase relies heavily on presumed architecture changes of future aircraft. The departure from conventional airplane configurations to designs that incorporate some type of propulsion noise shielding is anticipated to provide an additional 10 cumulative EPNdB of noise reduction. One candidate propulsion system for these advanced aircraft is the open rotor engine. In some planned applications, twin open rotor propulsors are located on the aft fuselage, with the vehicle s empennage shielding some of their acoustic signature from observers on the ground. This study focuses on predicting the noise certification benefits of a notional open rotor aircraft with tail structures shielding a portion of the rotor noise. The measured noise of an open rotor test article--collected with and without an acoustic barrier wall--is the basis of the prediction. The results are used to help validate NASA s reliance on acoustic shielding to achieve the second phase of its community noise reduction goals. The noise measurements are also compared to a popular empirical diffraction correlation often used at NASA to predict acoustic shielding.

  8. Field Balancing of Magnetically Levitated Rotors without Trial Weights

    Directory of Open Access Journals (Sweden)

    Jiancheng Fang


    Full Text Available Unbalance in magnetically levitated rotor (MLR can cause undesirable synchronous vibrations and lead to the saturation of the magnetic actuator. Dynamic balancing is an important way to solve these problems. However, the traditional balancing methods, using rotor displacement to estimate a rotor’s unbalance, requiring several trial-runs, are neither precise nor efficient. This paper presents a new balancing method for an MLR without trial weights. In this method, the rotor is forced to rotate around its geometric axis. The coil currents of magnetic bearing, rather than rotor displacement, are employed to calculate the correction masses. This method provides two benefits when the MLR’s rotation axis coincides with the geometric axis: one is that unbalanced centrifugal force/torque equals the synchronous magnetic force/torque, and the other is that the magnetic force is proportional to the control current. These make calculation of the correction masses by measuring coil current with only a single start-up precise. An unbalance compensation control (UCC method, using a general band-pass filter (GPF to make the MLR spin around its geometric axis is also discussed. Experimental results show that the novel balancing method can remove more than 92.7% of the rotor unbalance and a balancing accuracy of 0.024 g mm kg−1 is achieved.

  9. Liquid Self-Balancing Device Effects on Flexible Rotor Stability

    Directory of Open Access Journals (Sweden)

    Leonardo Urbiola-Soto


    Full Text Available Nearly a century ago, the liquid self-balancing device was first introduced by M. LeBlanc for passive balancing of turbine rotors. Although of common use in many types or rotating machines nowadays, little information is available on the unbalance response and stability characteristics of this device. Experimental fluid flow visualization evidences that radial and traverse circulatory waves arise due to the interaction of the fluid backward rotation and the baffle boards within the self-balancer annular cavity. The otherwise destabilizing force induced by trapped fluids in hollow rotors, becomes a stabilizing mechanism when the cavity is equipped with adequate baffle boards. Further experiments using Particle Image Velocimetry (PIV enable to assess the active fluid mass fraction to be one-third of the total fluid mass. An analytical model is introduced to study the effects of the active fluid mass fraction on a flexible rotor supported by flexible supports excited by bwo different destabilizing mechanisms; rotor internal friction damping and aerodynamic cross-coupling. It is found that the fluid radial and traverse forces contribute to the balancing action and to improve the rotor stability, respectively.

  10. Driving corrugated donut rotors with Laguerre-Gauss beams. (United States)

    Loke, Vincent L Y; Asavei, Theodor; Stilgoe, Alexander B; Nieminen, Timo A; Rubinsztein-Dunlop, Halina


    Tightly-focused laser beams that carry angular momentum have been used to trap and rotate microrotors. In particular, a Laguerre-Gauss mode laser beam can be used to transfer its orbital angular momentum to drive microrotors. We increase the torque efficiency by a factor of about 2 by designing the rotor such that its geometry is compatible with the driving beam, when driving the rotation with the optimum beam, rather than beams of higher or lower orbital angular momentum. Based on Floquet's theorem, the order of discrete rotational symmetry of the rotor can be made to couple with the azimuthal mode of the Laguerre-Gauss beam. We design corrugated donut rotors, that have a flat disc-like profile, with the help of the discrete dipole approximation and the T-matrix methods in parallel with experimental demonstrations of stable trapping and torque measurement. We produce and test such a rotor using two-photon photopolymerization. With a rotor that has 8-fold discrete rotational symmetry, an outer radius of 1.85 μm and a hollow core radius of 0.5 μm, we were able to transfer approximately 0.3 h̄ per photon of the orbital angular momentum from an LG04 beam.


    Institute of Scientific and Technical Information of China (English)

    ZHENG Hui-ping; XUE Yu-sheng; CHEN Yu-shu


    Rotor-bearings systems applied widely in industry are nonlinear dynamic systems of multi-degree-of-freedom. Modem concepts on design and maintenance call for quantitative stability analysis. Using trajectory based stability-preserving and dimensional-reduction, a quanttative stability analysis method for rotor systems is presented. At first, an n-dimensional nonlinear non-autonomous rotor system is decoupled into n subsystems after numerical integration. Each of them has only onedegree-of-freedom and contains time-varying parameters to represent all other state variables. In this way, n-dimensional trajectory is mapped into a set of one-dimensional trajectories. Dynamic central point (DCP) of a subsystem is then defined on the extended phase plane, namely, force-position plane. Characteristics of curves on the extended phase plane and the DCP's kinetic energy difference sequence for general motion in rotor systems are studied. The corresponding stability margins of trajectory are evaluated quantitatively. By means of the margin and its sensitivity analysis, the critical parameters of the period doubling bifurcation and the Hopf bifurcation in a flexible rotor supported by two short journal beatings with nonlinear suspensionare are determined.

  12. Control of flexible rotor systems with active magnetic bearings (United States)

    Lei, Shuliang; Palazzolo, Alan


    An approach is presented for the analysis and design of magnetic suspension systems with large flexible rotordynamics models including dynamics, control, and simulation. The objective is to formulate and synthesize a large-order, flexible shaft rotordynamics model for a flywheel supported with magnetic bearings. A finite element model of the rotor system is assembled and then employed to develop a magnetic suspension compensator to provide good reliability and disturbance rejection. Stable operation over the complete speed range and optimization of the closed-loop rotordynamic properties are obtained via synthesis of eigenvalue analysis, Campbell plots, waterfall plots, and mode shapes. The large order of the rotor model and high spin speed of the rotor present a challenge for magnetic suspension control. A flywheel system is studied as an example for realizing a physical controller that provides stable rotor suspension and good disturbance rejection in all operating states. The baseline flywheel system control is determined from extensive rotordynamics synthesis and analysis for rotor critical speeds, mode shapes, frequency responses, and time responses.

  13. Using swept source optical coherence tomography to monitor wound healing in tissue engineered skin (United States)

    Smith, L. E.; Lu, Z.; Bonesi, M.; Smallwood, R.; Matcher, S. J.; MacNeil, S.


    There is an increasing need for a robust simple to use non-invasive imaging technology for monitoring tissue engineered constructs as they develop. We have applied optical coherence tomography (OCT), a relatively new optical technique, to image tissue engineered constructs. Our aim was to evaluate the use of swept-source optical coherence tomography (SSOCT) to non-invasively image reconstructed skin as it developed over several weeks. The epidermis of the reconstructed skin was readily distinguished from the neodermis when examined with standard histology - a destructive imaging technique - of samples. The development of reconstructed skin based on deepithelialised acellular dermis (DED) was accurately monitored with SS-OCT over three weeks and confirmed with conventional histology. It was also possible to image changes in the epidermis due to the presence of melanoma and the healing of these 3D models after wounding with a scalpel, with or without the addition of a fibrin clot. SS-OCT is proving to be a valuable tool in tissue engineering, showing great promise for the non-invasive imaging of optically turbid tissue engineered constructs, including tissue engineered skin.

  14. Vortex lift augmentation by suction on a 60 deg swept Gothic wing (United States)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.


    An experimental investigation was conducted in the Langley high-speed 7- by 10-foot wind tunnel to determine the aerodynamic performance of suction applied near the wing tips above the trailing edge of a 60 deg swept Gothic wing. Moveable suction inlets were symmetrically mounted in the proximity of the trailing edge, and the amount of suction was varied to maximize wing lift. Tests were conducted at Mach 0.15, 0.30, and 0.45, and the angle of attack was varied from -4 to 50 deg. The suction augmentation increases the lift coefficient over the entire range of angle of attack. The lift improvement exceeds the unaugmented wing lift by over 20%. Moreover, the augmented lift exceeds the lift predicted by vortex lattice theory to 30 deg angle of attack. Suction augmentation is postulated to strengthen the vortex system by increasing its velocity and making it more concentrated. This causes the vortex breakdown to be delayed to a higher angle of attack

  15. Evaluation of Anterior Chamber Volume in Cataract Patients with Swept-Source Optical Coherence Tomography. (United States)

    He, Wenwen; Zhu, Xiangjia; Wolff, Don; Zhao, Zhennan; Sun, Xinghuai; Lu, Yi


    Purpose. To evaluate the anterior chamber volume in cataract patients with Swept-Source Optical Coherence Tomography (SS-OCT) and its influencing factors. Methods. Anterior chamber volume of 92 cataract patients was evaluated with SS-OCT in this cross-sectional study. Univariate analyses and multiple linear regression were used to investigate gender, age, operated eye, posterior vitreous detachment, lens opacity grading, and axial length (AXL) related variables capable of influencing the ACV. Results. The average ACV was 139.80 ± 38.21 mm(3) (range 59.41 to 254.09 mm(3)). The average ACV was significantly larger in male patients than in female patients (P = 0.001). ACV was negatively correlated with age and LOCS III cortical (C) grading of the lens (Pearson's correlation analysis, r = -0.443, P ACV was also increased with AXL (Pearson's correlation analysis, r = 0.552, P ACV (F = 10.252  P ACV varied significantly among different subjects. Influencing factors that contribute to reduced ACV were female gender, increased age, LOCS III C grade, and shorter AXL.

  16. Imaging pulse wave velocity in mouse retina using swept-source OCT (Conference Presentation) (United States)

    Song, Shaozhen; Wei, Wei; Wang, Ruikang K.


    Blood vessel dynamics has been a significant subject in cardiology and internal medicine, and pulse wave velocity (PWV) on artery vessels is a classic evaluation of arterial distensibility, and has never been ascertained as a cardiovascular risk marker. The aim of this study is to develop a high speed imaging technique to capture the pulsatile motion on mouse retina arteries with the ability to quantify PWV on any arterial vessels. We demonstrate a new non-invasive method to assess the vessel dynamics on mouse retina. A Swept-source optical coherence tomography (SS-OCT) system is used for imaging micro-scale blood vessel motion. The phase-stabilized SS-OCT provides a typical displacement sensitivity of 20 nm. The frame rate of imaging is ~16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of transient pulse waves with adequate temporal resolution. Imaging volumes with repeated B-scans are obtained on mouse retina capillary bed, and the mouse oxymeter signal is recorded simultaneously. The pulse wave on artery and vein are resolved, and with the synchronized heart beat signal, the temporal delay on different vessel locations is determined. The vessel specific measurement of PWV is achieved for the first time with SS-OCT, for pulse waves propagating more than 100 cm/s. Using the novel methodology of retinal PWV assessment, it is hoped that the clinical OCT scans can provide extended diagnostic information of cardiology functionalities.

  17. Numerical calculation of the transonic flow past a swept wing. [FLO 22

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, A; Caughey, D A


    A numerical method is presented for analyzing the transonic potential flow past a lifting, swept wing. A finite-difference approximation to the full potential equation is solved in a coordinate system which is nearly conformally mapped from the physical space in planes parallel to the symmetry plane, and reduces the wing surface to a portion of one boundary of the computational grid. A coordinate invariant, rotated difference scheme is used, and the difference equations are solved by relaxation. The method is capable of treating wings of arbitrary planform and dihedral, although approximations in treating the tips and vortex sheet make its accuracy suspect for wings of small aspect ratio. Comparisons of calculated results with experimental data are shown for examples of both conventional and supercritical transport wings. Agreement is quite good for both types, but it was found necessary to account for the displacement effect of the boundary layer for the supercritical wing, presumably because of its greater sensitivity to changes in effective geometry.

  18. Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Woo June Choi; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)


    We demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilises 1.3-μm high-speed sweptsource optical coherence tomography (SS-OCT). The swept source is based on a micro-electro-mechanical (MEMS)-tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth, which enables the visualisation of microstructures within a few mm from the skin surface. We show that the skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with capillary flow sensitivity. 3D microangiograms of a healthy human finger are shown with distinct cutaneous vessel architectures from different dermal layers and even within hypodermis. These findings suggest that the OCT microangiography could be a beneficial biomedical assay to assess cutaneous vascular functions in clinic. (laser biophotonics)

  19. Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography (United States)

    Su, Johnny P.; Li, Yan; Tang, Maolong; Liu, Liang; Pechauer, Alex D.; Huang, David; Liu, Gangjun


    A custom-built dynamic-focus swept-source optical coherence tomography (SS-OCT) system with a central wavelength of 1310 nm was used to image the anterior eye from the cornea to the lens. An electrically tunable lens was utilized to dynamically control the positions of focusing planes over the imaging range of 10 mm. The B-scan images were acquired consecutively at the same position but with different focus settings. The B-scan images were then registered and averaged after filtering the out-of-focus regions using a Gaussian window. By fusing images obtained at different depth focus locations, high-resolution and high signal-strength images were obtained over the entire imaging depth. In vivo imaging of human anterior segment was demonstrated. The performance of the system was compared with two commercial OCT systems. The human eye ciliary body was better visualized with the dynamic-focusing SS-OCT system than using the commercial 840 and 1310 nm OCT systems. The sulcus-to-sulcus distance was measured, and the result agreed with that acquired with ultrasound biomicroscopy.

  20. Frequency-swept coherently detected spectral amplitude code for flexible implicit optical label switching

    Institute of Scientific and Technical Information of China (English)

    Yongsheng Cao; Fushen Chen; Zhigao Yang


    A new optical label switching system with coherently detected implicit spectral amplitude code(SAC)labels is proposed in this letter.The implicit SAC labels are recognized using a frequency-swept local light source oscillator.Intensity modulation payloads of 625 Mb/s and 1.25 Gb/s are considered.Label and pavload bit error rate(BER) performances are assessed and compared by simulations.The results reveal that,at a BER value of 10-9,-32.4dBm label received power can be obtained.In addition,8.3-dB optical signal-to-noise ratio(OSNR) is obtained when carrying a payload of 625 Mb/s.The label BER value hardly reaches 10-9 if the payload bit rate is at 1.25 Gb/s; however,a high payload bit rate only has little influence on received payload quality at a BER value of 10-9.Finally,a payload of 1.25 Gb/s could obtain-28.2 dBm received power and 9.5-dB OSNR.