Rotating shadowband radiometer development and analysis of spectral shortwave data
Michalsky, J.; Harrison, L.; Min, Q. [State Univ. of New York, Albany, NY (United States)] [and others
1996-04-01
Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.
Rotating Shadowband Spectroradiometer (RSS) Handbook
Kiedron, P; Schlemmer, J; Klassen, M
2005-01-01
The rotating shawdowband spectroradiometer (RSS) implements the same automated shadowbanding technique used by the multifilter rotating shadowband radiometer (MFRSR), and so it too provides spectrally-resolved, direct-normal, diffuse-horizontal, and total-horizontal irradiances, and can be calibrated in situ via Langley regression. The irradiance spectra are measured simultaneously at all spectral elements (pixels) in 360-nm to 1050-nm range.
Wilbert, Stefan; Kleindiek, Stefan; Nouri, Bijan; Geuder, Norbert; Habte, Aron; Schwandt, Marko; Vignola, Frank
2016-05-01
Concentrating solar power projects require accurate direct normal irradiance (DNI) data including uncertainty specifications for plant layout and cost calculations. Ground measured data are necessary to obtain the required level of accuracy and are often obtained with Rotating Shadowband Irradiometers (RSI) that use photodiode pyranometers and correction functions to account for systematic effects. The uncertainty of Si-pyranometers has been investigated, but so far basically empirical studies were published or decisive uncertainty influences had to be estimated based on experience in analytical studies. One of the most crucial estimated influences is the spectral irradiance error because Si-photodiode-pyranometers only detect visible and color infrared radiation and have a spectral response that varies strongly within this wavelength interval. Furthermore, analytic studies did not discuss the role of correction functions and the uncertainty introduced by imperfect shading. In order to further improve the bankability of RSI and Si-pyranometer data, a detailed uncertainty analysis following the Guide to the Expression of Uncertainty in Measurement (GUM) has been carried out. The study defines a method for the derivation of the spectral error and spectral uncertainties and presents quantitative values of the spectral and overall uncertainties. Data from the PSA station in southern Spain was selected for the analysis. Average standard uncertainties for corrected 10 min data of 2 % for global horizontal irradiance (GHI), and 2.9 % for DNI (for GHI and DNI over 300 W/m²) were found for the 2012 yearly dataset when separate GHI and DHI calibration constants were used. Also the uncertainty in 1 min resolution was analyzed. The effect of correction functions is significant. The uncertainties found in this study are consistent with results of previous empirical studies.
Wilbert, Stefan; Kleindiek, Stefan; Nouri, Bijan; Geuder, Norbert; Habte, Aron; Schwandt, Marko; Vignola, Frank
2016-05-31
Concentrating solar power projects require accurate direct normal irradiance (DNI) data including uncertainty specifications for plant layout and cost calculations. Ground measured data are necessary to obtain the required level of accuracy and are often obtained with Rotating Shadowband Irradiometers (RSI) that use photodiode pyranometers and correction functions to account for systematic effects. The uncertainty of Si-pyranometers has been investigated, but so far basically empirical studies were published or decisive uncertainty influences had to be estimated based on experience in analytical studies. One of the most crucial estimated influences is the spectral irradiance error because Si-photodiode-pyranometers only detect visible and color infrared radiation and have a spectral response that varies strongly within this wavelength interval. Furthermore, analytic studies did not discuss the role of correction functions and the uncertainty introduced by imperfect shading. In order to further improve the bankability of RSI and Si-pyranometer data, a detailed uncertainty analysis following the Guide to the Expression of Uncertainty in Measurement (GUM) has been carried out. The study defines a method for the derivation of the spectral error and spectral uncertainties and presents quantitative values of the spectral and overall uncertainties. Data from the PSA station in southern Spain was selected for the analysis. Average standard uncertainties for corrected 10 min data of 2% for global horizontal irradiance (GHI), and 2.9% for DNI (for GHI and DNI over 300 W/m2) were found for the 2012 yearly dataset when separate GHI and DHI calibration constants were used. Also the uncertainty in 1 min resolution was analyzed. The effect of correction functions is significant. The uncertainties found in this study are consistent with results of previous empirical studies.
Michalsky, J.; Harrison, L. [State Univ. of New York, Albany, NY (United States)
1996-04-01
Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.
Walther, Jonas; Deneke, Hartwig; Macke, Andreas; Bernhard, Germar
2015-04-01
The Maritime Aerosol Network (MAN) has been established as a sub-project of AERONET and a long-term program to collect ship-borne aerosol optical depth measurements over ocean. Its purpose is to serve as reliable reference database for the evaluation of models and satellite products. Data are currently collected by handheld Microtops II photometers, as the automated acquisition of data from sun photometers on stabilized platforms is so far too expensive for wide-spread use. A promising alternative to the sun photometer is the rotating shadowband radiometer, whose principle of operation allows the determination of the direct-beam component of solar radiation without stabilizing the instrument, if the orientation of the detector horizontal is known. OCEANET, a project to investigate the exchange fluxes of energy and matter between the atmosphere and ocean, has contributed aerosol observations to MAN on several of its cruises on RV Polarstern during the transit between the hemispheres. On the recent cruise (PS 83) from Cape Town to Bremerhaven, TROPOS has operated for the first time a 19 channel rotating shadowband radiometer (GUVis-3511) built by the company Biospherical, as a possible means to provide automated irradiance and aerosol optical depth measurements. Calibration and processing of the raw data will be described, and an initial evaluation of the instrumental performance will be given. Aerosol optical depths derived from Microtops II measurements and the rotating shadowband radiometer will be compared. We show that the standard deviation of Aerosol optical depths observed with Microtops II and the shadowband radiometer is about 0.02 for matching channels, and an aerosol type classification based on Angstrom exponent shows good agreement. Also the influence of ship smoke and ocean swell is studied. The suitability of the instrument to automate MAN observations is discussed, and an outlook to the use of the instrument to also derive cloud optical properties is
Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook
Hodges, GB; Michalsky, JJ
2011-02-07
The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using the diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere's aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.
Multifilter Rotating Shadowband Radiometer (MFRSR) Handbook
Hodges, GB; Michalsky, JJ
2011-02-07
The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using the diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere's aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.
Columnar water vapor retrievals from multifilter rotating shadowband radiometer data
Alexandrov, Mikhail; Schmid, Beat; Turner, David D.; Cairns, Brian; Oinas, Valdar; Lacis, Andrew A.; Gutman, S.; Westwater, Ed R.; Smirnov, A.; Eilers, J.
2009-01-26
The Multi-Filter Rotating Shadowband Radiometer (MFRSR) measures direct and diffuse irradiances in the visible and near IR spectral range. In addition to characteristics of atmospheric aerosols, MFRSR data also allow retrieval of precipitable water vapor (PWV) column amounts, which are determined from the direct normal irradiances in the 940 nm spectral channel. The HITRAN 2004 spectral database was used in our retrievals to model the water vapor absorption. We present a detailed error analysis describing the influence of uncertainties in instrument calibration and spectral response, as well as those in available spectral databases, on the retrieval results. The results of our PWV retrievals from the Southern Great Plains (SGP) site operated by the DOE Atmospheric Radiation Measurement (ARM) Program were compared with correlative standard measurements by Microwave Radiometers (MWRs) and a Global Positioning System (GPS) water vapor sensor, as well as with retrievals from other solar radiometers (AERONET’s CIMEL, AATS-6). Some of these data are routinely available at the SGP’s Central Facility, however, we also used measurements from a wider array of instrumentation deployed at this site during the Water Vapor Intensive Observation Period (WVIOP2000) in September – October 2000. The WVIOP data show better agreement between different solar radiometers or between different microwave radiometers (both groups showing relative biases within 4%) than between these two groups of instruments, with MWRs values being consistently higher (up to 14%) than those from solar instruments. We also demonstrate the feasibility of using MFRSR network data for creation of 2D datasets comparable with the MODIS satellite water vapor product.
Calibration methods for rotating shadowband irradiometers and evaluation of calibration duration
Jessen, W.; Wilbert, S.; Nouri, B.; Geuder, N.; Fritz, H.
2015-10-01
Resource assessment for Concentrated Solar Power (CSP) needs accurate Direct Normal Irradiance (DNI) measurements. An option for such measurement campaigns are Rotating Shadowband Irradiometers (RSIs) with a thorough calibration. Calibration of RSIs and Si-sensors in general is complex because of the inhomogeneous spectral response of such sensors and incorporates the use of several correction functions. A calibration for a given atmospheric condition and air mass might not work well for a different condition. This paper covers procedures and requirements for two calibration methods for the calibration of Rotating Shadowband Irradiometers. The necessary duration of acquisition of test measurements is examined in regard to the site specific conditions at Plataforma Solar de Almeria (PSA) in Spain. Data sets of several long-term calibration periods from PSA are used to evaluate the deviation of results from calibrations with varying duration from the long-term result. The findings show that seasonal changes of environmental conditions are causing small but noticeable fluctuation of calibration results. Certain periods (i.e. November to January and April to May) show a higher likelihood of particularly adverse calibration results. These effects can partially be compensated by increasing the inclusions of measurements from outside these periods. Consequently, the duration of calibrations at PSA can now be selected depending on the time of the year in which measurements are commenced.
Calibration methods for rotating shadowband irradiometers and evaluation of calibration duration
W. Jessen
2015-10-01
Full Text Available Resource assessment for Concentrated Solar Power (CSP needs accurate Direct Normal Irradiance (DNI measurements. An option for such measurement campaigns are Rotating Shadowband Irradiometers (RSIs with a thorough calibration. Calibration of RSIs and Si-sensors in general is complex because of the inhomogeneous spectral response of such sensors and incorporates the use of several correction functions. A calibration for a given atmospheric condition and air mass might not work well for a different condition. This paper covers procedures and requirements for two calibration methods for the calibration of Rotating Shadowband Irradiometers. The necessary duration of acquisition of test measurements is examined in regard to the site specific conditions at Plataforma Solar de Almeria (PSA in Spain. Data sets of several long-term calibration periods from PSA are used to evaluate the deviation of results from calibrations with varying duration from the long-term result. The findings show that seasonal changes of environmental conditions are causing small but noticeable fluctuation of calibration results. Certain periods (i.e. November to January and April to May show a higher likelihood of particularly adverse calibration results. These effects can partially be compensated by increasing the inclusions of measurements from outside these periods. Consequently, the duration of calibrations at PSA can now be selected depending on the time of the year in which measurements are commenced.
Improved broadband solar irradiance from the multi-filter rotating shadowband radiometer
Michalsky, J.J.; Augustine, J.A. [National Oceanic and Atmospheric Administration, Earth System Research Laboratory, 325 Broadway, Boulder, CO 80305 (United States); Kiedron, P.W. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, 325 Broadway, Boulder, CO 80305 (United States)
2009-12-15
Approximations to total and diffuse horizontal and direct normal, broadband solar irradiance (280-4000 nm) can be obtained from the multi-filter rotating shadowband radiometer (MFRSR) using the unfiltered silicon channel of this seven-channel instrument. However, the unfiltered silicon channel only responds to wavelengths between 300 and 1100 nm and does not have a uniform spectral response. In contrast, the best, more expensive, first-class, thermopile-based radiometers respond fairly uniformly to all solar wavelengths. While the total horizontal and direct normal solar irradiance measurements made with the MFRSR unfiltered silicon channel are reasonable if carefully calibrated with a thermopile radiometer, the diffuse horizontal irradiance calibrated in this way has a large bias. These issues are common to all inexpensive, silicon-cell, solar pyranometers. In this paper we use a multivariate, linear regression technique for approximating the thermopile-measured total, diffuse, and direct broadband solar irradiances using the six, narrowband filters and the open-channel of an MFRSR. The calibration of the MFRSR for broadband solar by comparing various combinations of MFRSR channels to first-class thermopile instruments is illustrated, and methods to track the instrument response during field deployments are investigated. We also suggest an approach to calibrate the open-channel for all three components that could improve measurements that are made using typical, commercial, silicon-cell pyranometers. (author)
Hodges, Gary B [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Michalsky, Joseph J [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.
2016-03-01
The visible Multifilter Rotating Shadowband Radiometer (MFRSR) is a passive instrument that measures global and diffuse components of solar irradiance at six narrowband channels and one open, or broadband, channel (Harrison et al. 1994). Direct irradiance is not a primary measurement, but is calculated using diffuse and global measurements. To collect one data record, the MFRSR takes measurements at four different shadowband positions. The first measurement is taken with the shadowband in the nadir (home) position. The next three measurements are, in order, the first side-band, sun-blocked, and second side-band. The side-band measurements are used to correct for the portion of the sky obscured by the shadowband. The nominal wavelengths of the narrowband channels are 415, 500, 615, 673, 870, and 940 nm. From such measurements, one may infer the atmosphere’s aerosol optical depth at each wavelength. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Harrison and Michalsky 1994) and other atmospheric constituents.
Witthuhn, Jonas; Deneke, Hartwig; Macke, Andreas; Bernhard, Germar
2017-03-01
The 19-channel rotating shadowband radiometer GUVis-3511 built by Biospherical Instruments provides automated shipborne measurements of the direct, diffuse and global spectral irradiance components without a requirement for platform stabilization. Several direct sun products, including spectral direct beam transmittance, aerosol optical depth, Ångström exponent and precipitable water, can be derived from these observations. The individual steps of the data analysis are described, and the different sources of uncertainty are discussed. The total uncertainty of the observed direct beam transmittances is estimated to be about 4 % for most channels within a 95 % confidence interval for shipborne operation. The calibration is identified as the dominating contribution to the total uncertainty. A comparison of direct beam transmittance with those obtained from a Cimel sunphotometer at a land site and a manually operated Microtops II sunphotometer on a ship is presented. Measurements deviate by less than 3 and 4 % on land and on ship, respectively, for most channels and in agreement with our previous uncertainty estimate. These numbers demonstrate that the instrument is well suited for shipborne operation, and the applied methods for motion correction work accurately. Based on spectral direct beam transmittance, aerosol optical depth can be retrieved with an uncertainty of 0.02 for all channels within a 95 % confidence interval. The different methods to account for Rayleigh scattering and gas absorption in our scheme and in the Aerosol Robotic Network processing for Cimel sunphotometers lead to minor deviations. Relying on the cross calibration of the 940 nm water vapor channel with the Cimel sunphotometer, the column amount of precipitable water can be estimated with an uncertainty of ±0.034 cm.
Stamnes, K.; Leontieva, E. [Univ. of Alaska, Fairbanks (United States)
1996-04-01
The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.
Slusser, J; Gibson, J; Bigelow, D; Kolinski, D; Mou, W; Koenig, G; Beaubien, A
1999-03-20
The U.S. Department of Agriculture UV-B Monitoring Program measures ultraviolet light at seven wavelengths from 300 to 368 nm with an ultraviolet multifilter rotating shadow-band radiometer (UV-MFRSR) at 25 sites across the United States, including Mauna Loa, Hawaii. Column ozone has been retrieved under all-sky conditions near Boulder, Colorado (40.177 degrees N, 105.276 degrees W), from global irradiances of the UV-MFRSR 332- and 305-nm channels (2 nm FWHM) using lookup tables generated from a multiple-scattering radiative transfer code suitable for solar zenith angles (SZA's) up to 90 degrees. The most significant sources of error for UV-MFRSR column ozone retrievals at SZA's less than 75 degrees are the spectral characterizations of the filters and the absolute calibration uncertainty, which together yield an estimated uncertainty in ozone retrievals of +/-4.0%. Using model sensitivity studies, we determined that the retrieved column ozone is relatively insensitive (calibration stability checks using Langley plots, and minimal maintenance make it a unique instrument for column ozone measurement.
Liu, Chaoshun; Chen, Maosi; Gao, Wei
2013-09-01
Aerosol optical depth (AOD), aerosol single scattering albedo (SSA), and asymmetry factor (g) at seven ultraviolet wavelengths along with total column ozone (TOC) were retrieved based on Bayesian optimal estimation (OE) from the measurements of the UltraViolet Multifilter Rotating Shadowband Radiometer (UV-MFRSR) deployed at the Southern Great Plains (SGP) site during March to November in 2009. To assess the accuracy of the OE technique, the AOD retrievals are compared to both the Beer's law derived ones and the AErosol RObotic Network (AERONET) AOD product; and the TOC retrievals are compared to both the TOC product of the U.S. Department of Agriculture UV-B Monitoring and Research Program (USDA UVMRP) and the Ozone Monitoring Instrument (OMI) satellite data. The scatterplots of the AOD estimated by the OE method with the Beer's law derived ones and the collocated AERONET AOD product both show a very good agreement: the correlation coefficients vary between 0.98 and 0.99; the slopes range from 0.95 to 1.0; and the offsets are less than 0.02 at 368 nm. The comparison of TOC also shows a promising accuracy of the OE method: the standard deviations of the difference between the OE derived TOC and other TOC products are about 5 to 6 Dobson Units (DU). The validation of the OE retrievals on the selected dates suggests the OE technique has its merits and is a supplemental tool in analyzing UVMRP data.
Liu, Chaoshun; Chen, Maosi; Shi, Runhe; Gao, Wei
2014-12-01
A Bayesian optimal estimation (OE) retrieval technique was used to retreive aerosol optical depth (AOD), aerosol single scattering albedo (SSA), and an asymmetry factor ( g) at seven ultraviolet wavelengths, along with total column ozone (TOC), from the measurements of the UltraViolet Multifilter Rotating Shadowband Radiometer (UV-MFRSR) deployed at the Southern Great Plains (SGP) site during March through November in 2009. The OE technique specifies appropriate error covariance matrices and optimizes a forward model (Tropospheric ultraviolet radiative transfer model, TUV), and thus provides a supplemental method for use across the network of the Department of Agriculture UV-B Monitoring and Research Program (USDA UVMRP) for the retrieval of aerosol properties and TOC with reasonable accuracy in the UV spectral range under various atmospheric conditions. In order to assess the accuracy of the OE technique, we compared the AOD retreivals from this method with those from Beer's Law and the AErosol RObotic Network (AERONET) AOD product. We also examine the OE retrieved TOC in comparison with the TOC from the U.S. Department of Agriculture UV-B Monitoring and Research Program (USDA UVMRP) and the Ozone Monitoring Instrument (OMI) satellite data. The scatterplots of the estimated AOD from the OE method agree well with those derived from Beer's law and the collocated AERONETAOD product, showing high values of correlation coefficients, generally 0.98 and 0.99, and large slopes, ranging from 0.95 to 1.0, as well as small offsets, less than 0.02 especially at 368 nm. The comparison of TOC retrievals also indicates the promising accuracy of the OE method in that the standard deviations of the difference between the OE derived TOC and other TOC products are about 5 to 6 Dobson Units (DU). Validation of the OE retrievals on these selected dates suggested that the OE technique has its merits and can serve as a supplemental tool in further analyzing UVMRP data.
Bartholomew M. J.; Reynolds, R. M.; Vogelmann, A. M.; Min, Q.; Edwards, R.; Smith, S.
2011-11-01
The design and operation of a Thin-Cloud Rotating Shadowband Radiometer (TCRSR) described here was used to measure the radiative intensity of the solar aureole and enable the simultaneous retrieval of cloud optical depth, drop effective radius, and liquid water path. The instrument consists of photodiode sensors positioned beneath two narrow metal bands that occult the sun by moving alternately from horizon to horizon. Measurements from the narrowband 415-nm channel were used to demonstrate a retrieval of the cloud properties of interest. With the proven operation of the relatively inexpensive TCRSR instrument, its usefulness for retrieving aerosol properties under cloud-free skies and for ship-based observations is discussed.
Denn, F. M.; Fabbri, B. E.; Schuster, G. L.
2012-12-01
Direct and indirect aerosol effects are identified among the largest sources of uncertainty in model projections of climate change (IPCC AR-4). Even though aerosol optical depths (AODs) are currently derived on a global scale from satellite measurements as well as within data assimilation models, ground-based sun photometer measurements of AOD are extremely important for validating these indirect retrievals. Calibration of surface sun photometers requires knowledge of the instrument-specific solar signal at each measurement channel (V0), determined by doing Langley extrapolations. V0s are often difficult to determine at ground sites, and are very difficult to obtain at the Clouds and the Earth's Radiant Energy (CERES) Ocean Validation Experiment (COVE) site. Some reasons for this difficulty are varying humidity, aerosol loading, and generally unstable atmospheric conditions. For these reasons, many researchers prefer to determine instrument V0s at pristine mountain sites, such as Mauna Loa Observatory (MLO) Hawaii, where these problems are greatly reduced. However, taking an instrument to a mountain top location can introduce a new set of problems, such as shipping damage and potential environmental influences on the instrument (temperature). For instruments with an exposed Spectralon diffuser such as the Multifilter Rotating Shadowband radiometer (MFRSR), diffuser bleaching by ultraviolet radiation and possible distortion of the diffuser by changes in atmospheric pressure can occur. For these reasons, our goal is to determine AODs for our MFRSR using V0s determined in-place at the COVE site. The reference AOD data is from a co-located CIMEL sun photometer, which is part of NASA's Aerosol Robotic NETwork (AERONET). We show that in-place V0s can be determined with nearly the same precision as at a mountain site, and that the resultant AODs obtained using these in-place V0s agree better with AERONET than the AODs determined using the mountain derived V0s. The
Chen, Maosi; Zempila, Melina-Maria; Davis, John M.; King, Robert W.; Gao, Wei
2016-09-01
The difficulty of in-situ calibration on the 940 nm channel of Multi-Filter Rotating Shadowband Radiometer (MFRSR) stems from the distinctive non-linear relationship between the amount of precipitable water vapor (PW) and its optical depth (i.e. curve of growth) compared to the counterpart of aerosols. Previous approaches, the modified Langley methods (MLM), require exact aerosol optical depth (AOD) values and a constant PW value at all points participating the regression. Instead, we propose a new method that substitutes the PW optical depth derived from collocated GPS zenith wet delay retrieval in conjunction with meteorology data and requires a constant AOD value at all points participating the regression. The main benefits of the new method include: (1) Aerosol stability is easier to fulfill than PW stability; (2) AOD stability could be inferred from adjacent channels (e.g. 672 and 870 nm) of MFRSR itself without measurements of a collocated AERONET sun photometer; and (3) When applicable, the time interval of GPS derived PW (i.e. 3 minutes) is more compatible with the MFRSR sampling interval (i.e. 3 minutes) than AERONET interpolated AOD (i.e. 15 minutes). Both MLM and the new method were applied to the MFRSR of USDA UV-B Monitoring and Research Program at the station in Billings, Oklahoma (active for 18 years so far) on July 28, 2015. The performances of the two methods are compared in order to assess their accuracy and the advantages and disadvantages.
Gao, W; Slusser, J; Gibson, J; Scott, G; Bigelow, D; Kerr, J; McArthur, B
2001-07-01
A methodology for direct-Sun ozone retrieval using the ultraviolet multifilter rotating shadow-band radiometer (UV-MFRSR) is presented. Total vertical column ozone was retrieved in three stations: Mauna Loa, Hawaii, in the U.S., and Regina, Saskatchewan, and Toronto, Ontario, in Canada, from direct solar irradiances of the UV-MFRSR at 325-, 305-, 332-, and 311-nm channels (2-nm FWHM). The total uncertainty of ozone retrievals in this study is +/-2.0%. For Mauna Loa the mean ratios of the UV-MFRSR column ozone retrievals to the collocated Dobson and Brewer were 0.998 and 0.986 between May and September of 1999. The mean ratio of UV-MFRSR retrievals to the collocated Brewer retrievals was 1.012 in Toronto between April and August of 1999, and the mean ratio of retrievals of the UV-MFRSR to the collocated Brewer was 0.988 in Regina between June and September of 1999. Total vertical column ozone values for solar zenith angles of >70 degrees were not considered, because of the signal-to-noise ratio and the angular response of the instruments, and were not used in the evaluation. The advantages of total vertical column ozone retrieval using UV-MFRSR include relatively low cost, computer-controlled operation, automated calibration stability checks, and minimal maintenance. It allows for the real-time measurement of total vertical column ozone. The UV-MFRSR is being used at 28 sites across the United States and 2 sites in Canada that form the U.S. Department of Agriculture UV-B Radiation Monitoring and Research Program. This constitutes a unique network of total vertical colunm ozone measurement.
Myers, D. R.
2009-03-01
The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.
Spectral Modulation by Rotational Wave Packets
Baertschy, Mark; Hartinger, Klaus
2005-05-01
Periodic rephasing of molecular rotational wave packets can create rapid fluctuations in the optical properties of a molecular gas which can be used to manipulate the temporal phase and spectral content of ultrashort light pulses. We have demonstrated spectral control of a time-delayed ultrafast probe pulse propagating through the rotational wave packet prepared by a pump laser pulse. The spectrum of the probe pulse can be either broadened or compressed, depending on the relative sign of the temporal phase modulation and the initial chirp of the probe pulse. Adjustment of the spectral phase at the output of the interaction region allows controlled temporal pulse streching^1 and compression^2. The degree to which the spectrum of an ultrafast pulse can be modified depends on the strength and shape of the rotational wavepacket. We are studying the optimization of the rotational wave packet excitation with complex, shaped pump laser pulses for the purpose of optimizing probe pulse spectra modulation. ^1 Klaus Hartinger and Randy A. Bartels, Opt. Lett., submitted (2005). ^2 R.A. Bartels, T.C. Weinacht, N. Wagner, M. Baertschy, Chris H. Greene, M.M. Murnane, and H.C. Kapteyn , Phys. Rev. Lett., 88, 013903 (2002). This work was supported by the NSF.
Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.
2013-09-11
Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.
di Sarra, Alcide; Sferlazzo, Damiano; Meloni, Daniela; Anello, Fabrizio; Bommarito, Carlo; Corradini, Stefano; De Silvestri, Lorenzo; Di Iorio, Tatiana; Monteleone, Francesco; Pace, Giandomenico; Piacentino, Salvatore; Pugnaghi, Sergio
2015-04-01
Aerosol optical properties have been measured on the island of Lampedusa (35.5°N, 12.6°E) with seven-band multifilter rotating shadowband radiometers (MFRSRs) and a CE 318 Cimel sunphotometer (part of the AERONET network) since 1999. Four different MFRSRs have operated since 1999. The Cimel sunphotometer has been operational for a short period in 2000 and in 2003-2006 and 2010-present. Simultaneous determinations of the aerosol optical depth (AOD) from the two instruments were compared over a period of almost 4 years at several wavelengths between 415 and 870 nm. This is the first long-term comparison at a site strongly influenced by desert dust and marine aerosols and characterized by frequent cases of elevated AOD. The datasets show a good agreement, with MFRSR underestimating the Cimel AOD in cases with low Ångström exponent; the underestimate decreases for increasing wavelength and increases with AOD. This underestimate is attributed to the effect of aerosol forward scattering on the relatively wide field of view of the MFRSR. An empirical correction of the MFRSR data was implemented. After correction, the mean bias (MB) between MFRSR and Cimel simultaneous AOD determinations is always smaller than 0.004, and the root mean square difference is ≤0.031 at all wavelengths. The MB between MFRSR and Cimel monthly averages (for months with at least 20 days with AOD determinations) is 0.0052. Thus, by combining the MFRSR and Cimel observations, an integrated long-term series is obtained, covering the period 1999-present, with almost continuous measurements since early 2002. The long-term data show a small (nonstatistically significant) decreasing trend over the period 2002-2013, in agreement with independent observations in the Mediterranean. The integrated Lampedusa dataset will be used for aerosol climatological studies and for verification of satellite observations and model analyses.
Optical depth measurements by shadow-band radiometers and their uncertainties.
Alexandrov, Mikhail D; Kiedron, Peter; Michalsky, Joseph J; Hodges, Gary; Flynn, Connor J; Lacis, Andrew A
2007-11-20
Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the United States include the Department of Energy Atmospheric Radiation Measurement (ARM) Program, U.S. Department of Agriculture UV-B Monitoring and Research Program, National Oceanic and Atmospheric Administration Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). We discuss a number of technical issues specific to shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.
Turner, D. D. [DOE ARM Climate Research Facility, Washington, DC (United States); McFarlane, S. A. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. [DOE ARM Climate Research Facility, Washington, DC (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Y. [DOE ARM Climate Research Facility, Washington, DC (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lo, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Min, Q. [State University of New York, Albany; DOE ARM Climate Research Facility, Washington, DC (United States)
2014-02-01
The microphysical properties of clouds play an important role in studies of global climate change. Observations from satellites and surface-based systems have been used to infer cloud optical depth and effective radius. Min and Harrison (1996) developed an inversion method to infer the optical depth of liquid water clouds from narrow band spectral Multifilter Rotating Shadowband Radiometer (MFRSR) measurements (Harrison et al. 1994). Their retrieval also uses the total liquid water path (LWP) measured by a microwave radiometer (MWR) to obtain the effective radius of the warm cloud droplets. Their results were compared with Geostationary Operational Environmental Satellite (GOES) retrieved values at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site (Min and Harrison 1996). Min et al. (2003) also validated the retrieved cloud optical properties against in situ observations, showing that the retrieved cloud effective radius agreed well with the in situ forward scattering spectrometer probe observations. The retrieved cloud optical properties from Min et al. (2003) were used also as inputs to an atmospheric shortwave model, and the computed fluxes were compared with surface pyranometer observations.
SPECTRAL MORPHOLOGY AND ROTATION IN THE OPEN CLUSTER NGC 6025
Mónica Grosso
2011-01-01
Full Text Available We have performed spectral classification and measurements of the axial rotation velocity for the brightest stars in the region of the open cluster NGC 6025. A distance modulus of 9.80±0.06 (pe and an age of 84 million years were derived. The brightest star of the cluster, HD 143448 was classified as B1Ve and it is a blue straggler as proposed by other authors (see Mermilliod 1982. We found three peculiar stars (two Si and one Hg-Mn. Another star in the field shows emission but is probably a non-member. We also found two SB2 binaries. The average axial rotation for the cluster members seems to be 73% of the average rotation of the field stars with the same temperature.
James Barnard
2013-09-01
Full Text Available Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD from Multifilter Rotating Shadowband Radiometer (MFRSR and Normal Incidence Multifilter Radiometer (NIMFR measurements, have exhibited excellent performance at many middle-to-low latitude sites around world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon and when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM North Slope of Alaska (NSA sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported MFRSR and NIMFR data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999–2012 aerosol product (AOD and its Angstrom exponent is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.
Spectral Properties of Grain Boundaries at Small Angles of Rotation
Hempel, Rainer
2010-01-01
We study some spectral properties of a simple two-dimensional model for small angle defects in crystals and alloys. Starting from a periodic potential $V \\colon \\R^2 \\to \\R$, we let $V_\\theta(x,y) = V(x,y)$ in the right half-plane $\\{x \\ge 0\\}$ and $V_\\theta = V \\circ M_{-\\theta}$ in the left half-plane $\\{x < 0\\}$, where $M_\\theta \\in \\R^{2 \\times 2}$ is the usual matrix describing rotation of the coordinates in $\\R^2$ by an angle $\\theta$. As a main result, it is shown that spectral gaps of the periodic Schr\\"odinger operator $H_0 = -\\Delta + V$ fill with spectrum of $R_\\theta = -\\Delta + V_\\theta$ as $0 \
Spectrally tunable linear polarization rotation using stacked metallic metamaterials
Romain, Xavier; Baida, Fadi I.; Boyer, Philippe
2017-08-01
We make a theoretical study of the transmission properties of a stack of metallic metamaterials and show that is able to achieve a perfect transmission selectively exhibiting broadband (Q {10}5) polarization rotation. We especially highlight how the arrangement of the stacked structure, as well as the metamaterial unit cell geometry, has a large influence on transmission in the spectral domain. For this purpose, we use an extended analytical Jones formalism that allows us to obtain a rigorous and analytical expression of the transmission. Such versatile structures could find potential applications in polarimetry or in the control of light polarization for THz waves.
A rotated transmission grating spectrometer for detecting spectral separation of doublet Na
Santosa, Ignatius Edi [Department of Physics Education, Sanata Dharma University, Paingan Maguwohardjo Depok Sleman, Yogyakarta 55281, Indonesia edi@usd.ac.id (Indonesia)
2015-04-16
Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold.
A fast stroboscopic spectral method for rotating systems in numerical relativity
Bonazzola, S; Novák, J; Bonazzola, Silvano; Jaramillo, Jos{\\'e}-Luis; Novak, Jerome
2007-01-01
We present a numerical technique for solving evolution equations, as the wave equation, in the description of rotating astrophysical compact objects in comoving coordinates, which avoids the problems associated with the light cylinder. The technique implements a fast spectral matching between two domains in relative rotation: an inner spherical domain, comoving with the sources and lying strictly inside the light cylinder, and an outer inertial spherical shell. Even though the emphasis is placed on spectral techniques, the matching is independent of the specific manner in which equations are solved inside each domain, and can be adapted to different schemes. We illustrate the strategy with some simple but representative examples.
Spectral characterization and differential rotation study of active CoRoT stars
Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.
2016-05-01
The CoRoT space telescope observed nearly 160 000 light curves. Among the most outstanding is that of the young, active planet host star CoRoT-2A. In addition to deep planetary transits, the light curve of CoRoT-2A shows strong rotational variability and a superimposed beating pattern. To study the stars that produce such an intriguing pattern of photometric variability, we identified a sample of eight stars with rotation periods between 0.8 and 11 days and photometric variability amplitudes of up to 7.5%, showing a similar CoRoT light curve. We also obtained high-resolution follow-up spectroscopy with TNG/SARG and carried out a spectral analysis with SME and MOOG. We find that the color dependence of the light curves is consistent with rotational modulation due to starspots and that latitudinal differential rotation provides a viable explanation for the light curves, although starspot evolution is also expected to play an important role. Our MOOG and SME spectral analyses provide consistent results, showing that the targets are dwarf stars with spectral types between F and mid-K. Detectable Li i absorption in four of the targets confirms a low age of 100-400 Myr also deduced from gyrochronology. Our study indicates that the photometric beating phenomenon is likely attributable to differential rotation in fast-rotating stars with outer convection zones.
Spectral Variations of Of?p Oblique Magnetic Rotator Candidates in the Magellanic Clouds
Walborn, Nolan R; Naze, Yael; Wade, Gregg A; Bagnulo, Stefano; Barba, Rodolfo H; Apellaniz, Jesus Maiz; Howarth, Ian D; Evans, Christopher J; Sota, Alfredo
2015-01-01
Optical spectroscopic monitoring has been conducted of two O stars in the Small and one in the Large Magellanic Cloud, the spectral characteristics of which place them in the Of?p category, which has been established in the Galaxy to consist of oblique magnetic rotators. All of these Magellanic stars show systematic spectral variations typical of the Of?p class, further strengthening their magnetic candidacy to the point of virtual certainty. The spectral variations are related to photometric variations derived from OGLE data by Naze et al. (2015) in a parallel study, which yields rotational periods for two of them. Now circular spectropolarimetry is required to measure their fields, and ultraviolet spectroscopy to further characterize their low-metallicity, magnetically confined winds, in support of hydrodynamical analyses.
SPECTRAL VARIATIONS OF Of?p OBLIQUE MAGNETIC ROTATOR CANDIDATES IN THE MAGELLANIC CLOUDS
Walborn, Nolan R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Morrell, Nidia I. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Nazé, Yaël [GAPHE, Département AGO, Université de Liège, Allée du 6 Août 19c, Bat. B5C, B-4000-Liège (Belgium); Wade, Gregg A. [Department of Physics, Royal Military College of Canada, P.O. Box 17000 Station Forces, Kingston, ON, Canada K7K 7B4 (Canada); Bagnulo, Stefano [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Barbá, Rodolfo H. [Departamento de Física y Astronomía, Universidad de La Serena, Cisternas 1200 Norte, La Serena (Chile); Apellániz, Jesús Maíz [Centro de Astrobiología, CSIC-INTA, Campus ESAC, Apartado Postal 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Howarth, Ian D. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Evans, Christopher J. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Sota, Alfredo, E-mail: walborn@stsci.edu, E-mail: nmorrell@lco.cl, E-mail: naze@astro.ulg.ac.be, E-mail: wade-g@rmc.ca, E-mail: sba@arm.ac.uk, E-mail: rbarba@dfuls.cl, E-mail: jmaiz@cab.inta-csic.es, E-mail: idh@star.ucl.ac.uk [Instituto de Astrofísica de Andalucía—CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain)
2015-10-15
Optical spectroscopic monitoring has been conducted of two O stars in the SMC and one in the LMC, the spectral characteristics of which place them in the Of?p category, which has been established in the Galaxy to consist of oblique magnetic rotators. All of these Magellanic stars show systematic spectral variations typical of the Of?p class, further strengthening their magnetic candidacy to the point of virtual certainty. The spectral variations are related to photometric variations derived from Optical Gravitational Lensing Experiment data by Nazé et al. in a parallel study, which yields rotational periods for two of them. Now circular spectropolarimetry is required to measure their fields, and ultraviolet spectroscopy to further characterize their low-metallicity, magnetically confined winds, in support of hydrodynamical analyses.
Spectral and Spin Measurement of Two Small and Fast-Rotating Near-Earth Asteroids
Polishook, D; Lockhart, M; DeMeo, F E; Golisch, W; Bus, S J; Gulbis, A A S
2012-01-01
In May 2012 two asteroids made near-miss "grazing" passes at distances of a few Earth-radii: 2012 KP24 passed at nine Earth-radii and 2012 KT42 at only three Earth-radii. The latter passed inside the orbital distance of geosynchronous satellites. From spectral and imaging measurements using NASA's 3-m Infrared Telescope Facility (IRTF), we deduce taxonomic, rotational, and physical properties. Their spectral characteristics are somewhat atypical among near-Earth asteroids: C-complex for 2012 KP24 and B-type for 2012 KT42, from which we interpret the albedos of both asteroids to be between 0.10 and 0.15 and effective diameters of 20+-2 and 6+-1 meters, respectively. Among B-type asteroids, the spectrum of 2012 KT42 is most similar to 3200 Phaethon and 4015 Wilson-Harrington. Not only are these among the smallest asteroids spectrally measured, we also find they are among the fastest-spinning: 2012 KP24 completes a rotation in 2.5008+-0.0006 minutes and 2012 KT42 rotates in 3.634+-0.001 minutes.
Spectral characterization and differential rotation study of active CoRoT stars
Nagel, Evangelos; Schmitt, Jürgen H M M
2016-01-01
The CoRoT space telescope observed nearly 160 000 light curves. Among the most outstanding is that of the young, active planet host star CoRoT-2A. In addition to deep planetary transits, the light curve of CoRoT-2A shows strong rotational variability and a superimposed beating pattern. To study the stars that produce such an intriguing pattern of photometric variability, we identified a sample of eight stars with rotation periods between 0.8 and 11 days and photometric variability amplitudes of up to 7.5 %, showing a similar CoRoT light curve. We also obtained high-resolution follow-up spectroscopy with TNG/SARG and carried out a spectral analysis with SME and MOOG. We find that the color dependence of the light curves is consistent with rotational modulation due to starspots and that latitudinal differential rotation provides a viable explanation for the light curves, although starspot evolution is also expected to play an important role. Our MOOG and SME spectral analyses provide consistent results, showing...
Wang, Junfeng; Miesch, Mark S
2015-01-01
We present a novel and powerful Compressible High-ORder Unstructured Spectral-difference (CHORUS) code for simulating thermal convection and related fluid dynamics in the interiors of stars and planets. The computational geometries are treated as rotating spherical shells filled with stratified gas. The hydrodynamic equations are discretized by a robust and efficient high-order Spectral Difference Method (SDM) on unstructured meshes. The computational stencil of the spectral difference method is compact and advantageous for parallel processing. CHORUS demonstrates excellent parallel performance for all test cases reported in this paper, scaling up to 12,000 cores on the Yellowstone High-Performance Computing cluster at NCAR. The code is verified by defining two benchmark cases for global convection in Jupiter and the Sun. CHORUS results are compared with results from the ASH code and good agreement is found. The CHORUS code creates new opportunities for simulating such varied phenomena as multi-scale solar co...
Detection of Rotational Spectral Variation on the M-type Asteroid (16) Psyche
Sanchez, Juan A.; Reddy, Vishnu; Shepard, Michael K.; Thomas, Cristina; Cloutis, Edward A.; Takir, Driss; Conrad, Albert; Kiddell, Cain; Applin, Daniel
2017-01-01
The asteroid (16) Psyche is of scientific interest because it contains ∼1% of the total mass of the asteroid belt and is thought to be the remnant metallic core of a protoplanet. Radar observations have indicated the significant presence of metal on the surface with a small percentage of silicates. Prior ground-based observations showed rotational variations in the near-infrared (NIR) spectra and radar albedo of this asteroid. However, no comprehensive study that combines multi-wavelength data has been conducted so far. Here we present rotationally resolved NIR spectra (0.7–2.5 μm) of (16) Psyche obtained with the NASA Infrared Telescope Facility. These data have been combined with shape models of the asteroid for each rotation phase. Spectral band parameters extracted from the NIR spectra show that the pyroxene band center varies from ∼0.92 to 0.94 μm. Band center values were used to calculate the pyroxene chemistry of the asteroid, whose average value was found to be Fs30En65Wo5. Variations in the band depth (BD) were also observed, with values ranging from 1.0% to 1.5%. Using a new laboratory spectral calibration method, we estimated an average orthopyroxene content of 6% ± 1%. The mass-deficit region of Psyche, which exhibits the highest radar albedo, also shows the highest value for the spectral slope and the minimum BD. The spectral characteristics of Psyche suggest that its parent body did not have the typical structure expected for a differentiated body or that the sequence of events that led to its current state was more complex than previously thought.
Wideband VLA Observations of Abell 2256 I: Continuum, Rotation Measure and Spectral Imaging
Owen, Frazer; Eilek, Jean; Rau, Urvashi; Bhatnagar, Sanjay; Kogan, Leonid
2014-01-01
We report new observations of Abell 2256 with the Karl G. Jansky Very Large Array (VLA) at frequencies between 1 and 8 GHz. These observations take advantage of the 2:1 bandwidths available for a single observation to study the spectral index, polarization and Rotation Measure as well as using the associated higher sensitivity to image total intensity features down to ~0.5" resolution. We find the Large Relic, which dominates the cluster, is made up of a complex of filaments which show correlated distributions in intensity, spectral index, and fractional polarization. The Rotation Measure varies across the face of the Large Relic but is not well correlated with the other properties of the source. The shape of individual filaments suggests that the Large Relic is at least 25 kpc thick. We detect a low surface brightness arc connecting the Large Relic to the Halo and other radio structures suggesting a physical connection between these features. The center of the F-complex is dominated by a very steep-spectrum,...
Wang, Shu-min; Zhang, Ai-wu; Hu, Shao-xing; Wang, Jing-meng; Meng, Xian-gang; Duan, Yi-hao; Sun, Wei-dong
2015-02-01
As the rotation speed of ground based hyperspectral imaging system is too fast in the image collection process, which exceeds the speed limitation, there is data missed in the rectified image, it shows as the_black lines. At the same time, there is serious distortion in the collected raw images, which effects the feature information classification and identification. To solve these problems, in this paper, we introduce the each component of the ground based hyperspectral imaging system at first, and give the general process of data collection. The rotation speed is controlled in data collection process, according to the image cover area of each frame and the image collection speed of the ground based hyperspectral imaging system, And then the spatial orientation model is deduced in detail combining with the star scanning angle, stop scanning angle and the minimum distance between the sensor and the scanned object etc. The oriented image is divided into grids and resampled with new spectral. The general flow of distortion image corrected is presented in this paper. Since the image spatial resolution is different between the adjacent frames, and in order to keep the highest image resolution of corrected image, the minimum ground sampling distance is employed as the grid unit to divide the geo-referenced image. Taking the spectral distortion into account caused by direct sampling method when the new uniform grids and the old uneven grids are superimposed to take the pixel value, the precise spectral sampling method based on the position distribution is proposed. The distortion image collected in Lao Si Cheng ruin which is in the Zhang Jiajie town Hunan province is corrected through the algorithm proposed on above. The features keep the original geometric characteristics. It verifies the validity of the algorithm. And we extract the spectral of different features to compute the correlation coefficient. The results show that the improved spectral sampling method is
Spectral-Kinetic Coupling and Effect of Microfield Rotation on Stark Broadening in Plasmas
Alexander V. Demura
2014-07-01
Full Text Available The study deals with two conceptual problems in the theory of Stark broadening by plasmas. One problem is the assumption of the density matrix diagonality in the calculation of spectral line profiles. This assumption is closely related to the definition of zero wave functions basis within which the density matrix is assumed to be diagonal, and obviously violated under the basis change. A consistent use of density matrix in the theoretical scheme inevitably leads to interdependence of atomic kinetics, describing the population of atomic states with the Stark profiles of spectral lines, i.e., to spectral-kinetic coupling. The other problem is connected with the study of the influence of microfield fluctuations on Stark profiles. Here the main results of the perturbative approach to ion dynamics, called the theory of thermal corrections (TTC, are presented, within which the main contribution to effects of ion dynamics is due to microfield fluctuations caused by rotations. In the present study the qualitative behavior of the Stark profiles in the line center within predictions of TTC is confirmed, using non-perturbative computer simulations.
Rotation in Jets from Young Stars: investigating NUV lines with very high Spectral Resolution
Bacciotti, Francesca
2003-07-01
Optical STIS spectra of the jets from DG Tau, RW Aur, TH 28 and LkHa 231 obtained by us {prop IDs. 7311, 9435} show systematic transverse radial velocity shifts in the region where the flow has just been accelerated and collimated {Bacciotti et al, 2002}, i.e. within about 100 AU from the source. We interpret such shifts as evidence for jet rotation. Whether YSO jets rotate is a fundamental question in star formation because it has been suggested that jets might be the way excess angular momentum is removed from the star/disk system, thereby allowing the star to accrete. In particular it is important to know if observed toroidal velocities are in agreement with predictions of magneto-centrifugal jet launching models. The limited spatial and spectral resolution of STIS in the optical however, only allows one to say qualitatively that the observed rotational velocities are in rough agreement with theory. Moreover only the resolved peripheral regions of the flow can be studied. We are proposing here to exploit the higher spatial and spectral resolution of STIS in the NUV to measure transverse jet velocity profiles.This is a task which can only be undertaken by the HST and which is ideally suited to the STIS. To measure the velocity profiles, we will observe the Mg II doublet at 2800 Angstrom {using the E230M echelle and the 6 X 0.2 slit transverse to the flow}. In comparison to the optical, the NUV affords us double the spatial resolution and we will be able to detect velocity differences across the jet down to 2 km/s. Not only should we be able to determine for the first time the detailed rotational velocity profile across a jet but we also expect to spatially resolve the high velocity axial core of the jet in the NUV. Finally we add that as very few NUV observations of the initial jet beam of YSO jets are available, our datasets should be a valuable contribution to the HST archive.
Christmann, Corinna A; Lachmann, Thomas; Berti, Stefan
2014-10-03
Harmonically rich sounds have been shown to be processed more efficiently by the human brain compared to single sinusoidal tones. To control for stimulus complexity as a potentially confounding factor, tones and equally complex spectrally rotated sounds, have been used in the present study to investigate the role of the overtone series in sensory auditory processing in non-musicians. Timbre differences in instrumental tones with equal pitch elicited a MMN which was earlier compared to that elicited by the spectrally rotated sounds, indicating that harmonically rich tones are processed faster compared to non-musical sounds without an overtone series, even when pitch is not the relevant information.
Rotation, spectral variability, magnetic geometry and magnetosphere of the Of?p star CPD -28 2561
Wade, G A; Grunhut, J; Martins, F; Petit, V; Sundqvist, J O; Townsend, R H D; Walborn, N R; Alecian, E; Alfaro, E J; Apellániz, J Ma\\' iz; Arias, J I; Gamen, R; Morrell, N; Nazé, Y; ud-Doula, A
2014-01-01
We report magnetic and spectroscopic observations and modeling of the Of?p star CPD -28 2561. Using more than 75 new spectra, we have measured the equivalent width variations and examined the dynamic spectra of photospheric and wind-sensitive spectral lines. A period search results in an unambiguous 73.41 d variability period. High resolution spectropolarimetric data analyzed using Least-Squares Deconvolution yield a Zeeman signature detected in the mean Stokes V profile corresponding to phase 0.5 of the spectral ephemeris. Interpreting the 73.41 d period as the stellar rotational period, we have phased the equivalent widths and inferred longitudinal field measurements. The phased magnetic data exhibit a weak sinusoidal variation, with maximum of about 565 G at phase 0.5, and a minimum of about -335 G at phase 0.0, with extrema approximately in phase with the (double-wave) Halpha equivalent width variation. Modeling of the Halpha equivalent width variation assuming a quasi-3D magnetospheric model produces a u...
Haschberger, P.; Tank, V. [Institut fuer Optoelektronik, Oberpfaffenhofen (Germany)
1993-11-01
A newly designed Michelson interferometer for Fourier spectroscopy utilizes a nutating retroreflector (cube corner mirror) to generate alterations in geometrical and optical paths. The practical optomechanical design of a Fourier-transform spectrometer incorporating a rotating retroreflector for path-length alteration is considered. (The instrument has been given the name MIROR, for Michelson Interferometer with a Rotating Retroreflector.) Two parameters of the instrument are essential: the maximum optical path difference, which yields the spectral resolution of the instrument, and the diameter of the transmitted beam, which determines the throughput and hence the achievable signal-to-noise ratio. The maximum allowable beam diameter is calculated as a function of the geometry and the orientation of the rotating retroreflector and the other optical components. The geometrical configuration and the orientation of all the optical components with respect to one another are also optimized for the maximum transmitted beam diameter when the required path difference is given. A principal investigation of different possible configurations of the optical components is presented. Then a quantitative optimization for an interferometer employing a retroreflector having a 5-in. (12.7-cm) aperture diameter requiring an optical path difference of more than 10 cm (spectral resolution better than 0.1 cm{sup -1}) is performed. Finally a simplified but enhanced design is described. 10 refs., 15 figs.
Yeh, Yi-Jou; Black, Adam J; Akkin, Taner
2013-10-10
We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.
Spectral imbalance in the inertial range dynamics of decaying rotating turbulence
Valente, Pedro C
2016-01-01
Direct numerical simulations of homogeneous decaying turbulence with mild background rotation show the existence of a systematic and significant imbalance between the non-linear energy cascade to small scales and its dissipation. By starting the decay from a statistically stationary and fully developed rotating turbulence state, where the dissipation and the energy flux are approximately equal, the data shows a growing imbalance between the two until a maximum is reached when the dissipation is about twice the energy flux. This dichotomy of behaviours during decay is reminiscent of the non-equilibrium and the equilibrium regions previously reported for non-rotating turbulence [P.C. Valente, J.C. Vassilicos, Phys. Rev. Lett. {\\bf 108} 214503 (2012)]. Note, however, that for decaying rotating turbulence the classical scaling of the dissipation rate $\\epsilon \\propto u'^3/L$ (where $u'$ and $L$ are the root mean square fluctuating velocity and the integral length scale, respectively) does not appear to hold duri...
Pétri, J
2014-01-01
Pulsars are believed to loose their rotational kinetic energy primarily by a large amplitude low frequency electromagnetic wave which is eventually converted into particle creation, acceleration and followed by a broad band radiation spectrum. To date, there exist no detailed calculation of the exact spin-down luminosity with respect to the neutron star magnetic moment and spin frequency, including general-relativistic effects. Estimates are usually given according to the flat spacetime magnetodipole formula. The present paper pursue our effort to look for accurate solutions of the general-relativistic electromagnetic field around a slowly rotating magnetized neutron star. In a previous work, we already found approximate stationary solutions to this problem. Here we address again this problem but using a more general approach. We indeed solve the full set of time-dependent Maxwell equations in a curved vacuum space-time following the 3+1 formalism. The numerical code is based on our pseudo-spectral method exp...
PENG Zhi-Min; DING Yan-Jun; ZHAI Xiao-Doug; YANG Qian-Suo; JIANG Zong-Lin
2011-01-01
The aim is to resolve the difficulties of measurement of temperature at several thousands of Celsius degrees for some unstable non-equilibrium gas flows. Based on the molecular spectroscopy theory and inherent molecular structure characteristics of the CN radical, the dependence of the spectral profile on the rotational temperature (RT), vibrational temperature (VT) and optical apparatus function are numerically explored within some certain ranges. Meanwhile, by comparing the numerically calculated spectra with the experimental spectra of the CN radical, the corresponding RT and VT of the plasma induced by the interaction of the laser pulse from an oscillated Nd: YAG laser with the coal target are determined, respectively. In addition, a short discussion on the thermodynamic state and the energy transfer process of the CN radical is also given.%@@ The aim is to resolve the difficulties of measurement of temperature at several thousands of Celsius degrees for some unstable non-equilibrium gas flows.Based on the molecular spectroscopy theory and inherent molecular structure characteristics of the CN radical, the dependence of the spectral profile on the rotational temperature (RT), vibrational temperature(VT)and optical apparatus function are numerically explored within some certain ranges.Meanwhile, by comparing the numerically calculated spectra with the experimental spectra of the CN radical, the corresponding RT and VT of the plasma induced by the interaction of the laser pulse from an oscillated Nd:YAG laser with the coal target are determined, respectively.In addition, a short discussion on the thermodynamic state and the energy transfer process of the CN radical is also given.
Multi-spectral simultaneous diagnosis of Saturns aurorae throughout a planetary rotation
Lamy, L; Pryor, W; Gustin, J; Badman, S V; Melin, H; Stallard, T; Mitchell, D G; Brandt, P C
2013-01-01
From the 27th to the 28th January 2009, the Cassini spacecraft remotely acquired combined observations of Saturns southern aurorae at radio, ultraviolet and infrared wavelengths, while monitoring ion injections in the middle magnetosphere from energetic neutral atoms. Simultaneous measurements included the sampling of a full planetary rotation, a relevant timescale to investigate auroral emissions driven by processes internal to the magnetosphere. In addition, this interval coincidently matched a powerful substorm-like event in the magnetotail, which induced an overall dawnside intensification of the magnetospheric and auroral activity. We comparatively analyze this unique set of measurements to reach a comprehensive view of kronian auroral processes over the investigated timescale. We identify three source regions in atmospheric aurorae, including a main oval associated with the bulk of Saturn Kilometric Radiation (SKR), together with polar and equatorward emissions. These observations reveal the co-existenc...
Feng, Jianchao; Lu, Ru-Sen
2016-01-01
M87 is arguably the best supermassive black hole (BH) to explore the jet and/or accretion physics due to its proximity and fruitful high-resolution multi-waveband observations. We model the multi-wavelength spectral energy distribution (SED) of M87 core that observed at a scale of 0.4 arcsec ($\\sim 10^5R_{\\rm g}$, $R_{\\rm g}$ is gravitational radius) as recently presented by Prieto et al. Similar to Sgr A*, we find that the millimeter bump as observed by Atacama Large Millimeter/submillimeter Array (ALMA) can be modeled by the synchrotron emission of the thermal electrons in advection dominated accretion flow (ADAF), while the low-frequency radio emission and X-ray emission may dominantly come from the jet. The millimeter radiation from ADAF dominantly come from the region within $10R_{\\rm g}$, which is roughly consistent with the recent very long baseline interferometry observations at 230\\,GHz. We further calculate the Faraday rotation measure (RM) from both ADAF and jet models, and find that the RM predict...
Evgueni Kassianov
2014-08-01
Full Text Available We present here a simple retrieval of the areal-averaged spectral surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation. The feasibility of our retrieval for routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements: (1 spectral atmospheric transmission from the Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (415, 500, 615, 673, and 870 nm; (2 tower-based measurements of local surface albedo at the same wavelengths; and (3 areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS observations. These integrated datasets cover both temporally long (2008–2013 and short (April–May 2010 periods at the Atmospheric Radiation Measurement (ARM Southern Great Plains site and the National Oceanic and Atmospheric Administration (NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE, defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved areal-averaged albedo, is quite small (RMSE ≤ 0.015 and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between tower-based measurements of daily-averaged surface albedo for completely overcast and non-overcast conditions is also demonstrated.
Evgueni Kassianov
2017-07-01
Full Text Available Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here, we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during a 19-month period (June 2009–December 2010 by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm at the Department of Energy’s Atmospheric Radiation Measurement (ARM Mobile Facility (AMF site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS observations, and also a composite-based albedo. We demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04 than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.
J. J. Michalsky
2007-11-01
Full Text Available The first successful deployment of the fully-operational ultraviolet rotating shadow-band spectroradiometer occurred during the May 2003 U.S. Department of Energy's Atmospheric Radiation Measurement program's Aerosol Intensive Observation Period. The aerosol properties in the visible range were characterized using redundant measurements with several instruments to determine the column aerosol optical depth, the single scattering albedo, and the asymmetry parameter needed as input for radiative transfer calculations of the downwelling direct normal and diffuse horizontal solar irradiance in clear-sky conditions. The Tropospheric Ultraviolet and Visible (TUV radiative transfer model developed by Madronich and his colleagues at the U.S. National Center for Atmospheric Research was used for the calculations of the spectral irradiance between 300–360 nm. Since there are few ultraviolet measurements of aerosol properties, most of the input aerosol data for the radiative transfer model are based on the assumption that UV input parameters can be extrapolated from the visible portion of the spectrum. Disagreements between available extraterrestrial spectra, which are discussed briefly, suggested that instead of comparing irradiances that measured and modeled spectral transmittances between 300–360 nm should be compared for the seven cases studied. These cases included low to moderate aerosol loads and low to high solar-zenith angles. A procedure for retrieving single scattering albedo in the ultraviolet based on the comparisons of direct and diffuse transmittance is outlined.
Ivanov, Sergey V.
2016-07-01
Stable bimolecular complexes (tightly bound dimers) in the gas phase are usually created during third body stabilization of their unstable precursors-quasi-bound complexes (QCs). The latter can arise under the condition that at least one of the colliding partners has an internal degree of freedom. In this article, the principal difference between "orbitings" and QCs is demonstrated in the classical nonreactive scattering picture. Additionally, fractions of QCs in binary collisions of different linear molecules are compared. Also in the article the influence of QCs on rotational R-T relaxation and on vibration-rotational spectral line broadening is discussed. Explicit formulae shedding light on the QCs contribution to the R-T relaxation cross section and the line width and shift are presented. The obtained results emphasize the need for including QCs in every theoretical modeling of spectroscopic manifestation of intermolecular interactions. Besides the topics above, the possible manifestation of non-impact effects in the central regions of spectral lines due to QCs is stated. And finally, special consideration is given to the problem of adequate simulation of QCs formation at different pressures.
Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.
2014-08-22
We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-based measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.
Liu Yusi
2015-06-01
Full Text Available The continuously rotating detonation engine (CRDE is a new concept of engines for aircraft and spacecraft. Quasi-stable continuously rotating detonation (CRD can be observed in an annular combustion chamber, but the sustaining, stabilizing and adjusting mechanisms are not yet clear. To learn more deeply into the CRDE, experimental studies have been carried out to investigate hydrogen-oxygen CRDE. Pressure histories are obtained during each shot, which show that stable CRD waves are generated in the combustor, when feeding pressures are higher than 0.5 MPa for fuel and oxidizer, respectively. Each shot can keep running as long as fresh gas feeding maintains. Close-up of the pressure history shows the repeatability of pressure peaks and indicates the detonation velocity in hydrogen–oxygen CRD, which proves the success of forming a stable CRD in the annular chamber. Spectrum of the pressure history matches the close-up analysis and confirms the CRD. It also shows multi-wave phenomenon and affirms the fact that in this case a single detonation wave is rotating in the annulus. Moreover, oscillation phenomenon is found in pressure peaks and a self-adjusting mechanism is proposed to explain the phenomenon.
Perna, D.; Barucci, M. A.; Ishiguro, M.; Alvarez-Candal, A.; Kuroda, D.; Yoshikawa, M.; Kim, M.-J.; Fornasier, S.; Hasegawa, S.; Roh, D.-G.; Müller, T. G.; Kim, Y.
2017-02-01
Context. The JAXA Hayabusa2 mission will perform the first ever sample return from a primitive asteroid. The target near-Earth asteroid (162173) Ryugu will be reached in mid-2018 and its samples will be returned to the Earth by the end of 2020. Aims: We want to improve the current knowledge of the compositional and rotational properties of Ryugu, which are still presenting some uncertainties that might affect the mission operations and scientific return. Methods: We acquired high-quality photometric time-series data with the FORS2 instrument at the Very Large Telescope of the European Southern Observatory (ESO-VLT, Chile). We also acquired four FORS2 visible spectra and three X-shooter spectra in the 0.35-2.15 μm range, at different rotational phases. Results: We obtained the currently highest-quality visual light-curve of Ryugu. A best solution of 7.63 h is found for the rotational period, while a short-period solution (i.e., P ≈ 3.8 h) is ruled out by the clearly non-symmetric light-curve. The obtained spectra are generally similar and featureless, but present a drop-off of the reflectance at team for the mission preparation and implementation, improving our knowledge of Ryugu's spin properties. Our new spectra constrain the compositional and geological context of the Ryugu's surface in order to prepare the planning of mission observations and support the working group for the selection of possible landing and sampling sites. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 097.C-0248.
Badawi, Hassan M
2009-04-01
The structural stability and C-N internal rotations of phenylurea and phenylthiourea were investigated by DFT-B3LYP and ab initio MP2 and MP4//MP2 calculations with 6-311G** and/or 6-311+G** basis sets. The complex multirotor internal rotations in phenylurea and phenylthiourea were investigated at the B3LYP/6-311+G** level of theory from which several clear minima were predicted in the calculated potential energy scans of both molecules. For phenylurea two minima that correspond to non-planar- (CNCC dihedral angle of about 45 degrees ) cis (CNCO dihedral angle is near 0 degrees ) and trans (CNCO dihedral angle is near 180 degrees ) structures were predicted to have real frequency. For phenylthiourea only the non-planar-trans structure was predicted to be the low energy minimum for the molecule. The vibrational frequencies of the lowest energy non-planar-trans conformer of each of the two molecules were computed at the B3LYP level and tentative vibrational assignments were provided on the basis of normal coordinate analysis and experimental infrared and Raman data.
Badawi, Hassan M.
2009-04-01
The structural stability and C-N internal rotations of phenylurea and phenylthiourea were investigated by DFT-B3LYP and ab initio MP2 and MP4//MP2 calculations with 6-311G** and/or 6-311+G** basis sets. The complex multirotor internal rotations in phenylurea and phenylthiourea were investigated at the B3LYP/6-311+G** level of theory from which several clear minima were predicted in the calculated potential energy scans of both molecules. For phenylurea two minima that correspond to non-planar- (CNCC dihedral angle of about 45°) cis (CNCO dihedral angle is near 0°) and trans (CNCO dihedral angle is near 180°) structures were predicted to have real frequency. For phenylthiourea only the non- planar- trans structure was predicted to be the low energy minimum for the molecule. The vibrational frequencies of the lowest energy non-planar-trans conformer of each of the two molecules were computed at the B3LYP level and tentative vibrational assignments were provided on the basis of normal coordinate analysis and experimental infrared and Raman data.
Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.
2014-10-25
We introduce and evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone at five wavelengths (415, 500, 615, 673 and 870nm), under fully overcast conditions. Our retrieval is based on a one-line semi-analytical equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties, such as cloud optical depth and asymmetry parameter, in the visible and near-infrared spectral range. To illustrate the performance of our retrieval, we use as input measurements of spectral atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR). These MFRSR data are collected at two well-established continental sites in the United States supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program and National Oceanic and Atmospheric Administration (NOAA). The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo. In particular, these comparisons are made at four MFRSR wavelengths (500, 615, 673 and 870nm) and for four seasons (winter, spring, summer and fall) at the ARM site using multi-year (2008-2013) MFRSR and MODIS data. Good agreement, on average, for these wavelengths results in small values (≤0.01) of the corresponding root mean square errors (RMSEs) for these two sites. The obtained RMSEs are comparable with those obtained previously for the shortwave albedos (MODIS-derived versus tower-measured) for these sites during growing seasons. We also demonstrate good agreement between tower-based daily-averaged surface albedos measured for “nearby” overcast and non-overcast days. Thus, our retrieval originally developed for overcast conditions likely can be extended for non-overcast days by interpolating between overcast retrievals.
Lazzarin, M.; Magrin, S.; Marchi, S.; Dotto, E.; Perna, D.; Barbieri, C.; Barucci, M. A.; Fulchignoni, M.
2010-11-01
The ESA Rosetta mission, launched in 2004 March, will flyby the second asteroid target (21) Lutetia in 2010 July. This asteroid is quite different from (2867) Steins, encountered by Rosetta in 2008 September. Lutetia is in fact a much larger asteroid, approximately 100km of diameter, as compared to the 5 km of Steins and also its surface composition seems fairly different. A wide international ground-based observational campaign has been carried out and is still going on to obtain information on the object. In this context, we observed Lutetia four times spectroscopically in the visible region totally covering its rotational period. In this paper we have compared all our observations, in order to try to shed more light on its nature. Moreover, an analysis of the geometric configuration of Lutetia during the several observations has also been performed. Our paper points out small variations of reflectance over the surface, possibly due to a large crater. However, the nature of Lutetia remains still elusive, probably because it could be a transition object between X and C taxonomic classes, pointing out to the crucial values of the forthcoming flyby to clarify the situation. Therefore, all the information we have gathered and here discussed have been very useful also to better define the observational strategy of the asteroid by Rosetta.
Enoto, Teruaki; Corbet, Robin H. D. [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 662, Greenbelt, MD 20771 (United States); Sasano, Makoto [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamada, Shin' ya; Tamagawa, Toru; Makishima, Kazuo [High Energy Astrophysics Laboratory, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Pottschmidt, Katja; Marcu, Diana [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Fuerst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Wilms, Jörn, E-mail: teruaki.enoto@nasa.gov [Dr. Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, Sternwartstr. 7, D-96049 Bamberg (Germany)
2014-05-10
The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ∼5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (∼7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-Kα line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (∼60%-80%), and the location in the Corbet diagram favor high B-field (≳ 10{sup 12} G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10{sup 33}-10{sup 35} erg s{sup –1}), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ∼10{sup 13} G NS, this scheme can explain the ∼5.4 hr equilibrium rotation without employing the magnetar-like field (∼10{sup 16} G) required in the disk accretion case. The timescales of multiple irregular flares (∼50 s) can also be attributed to the free-fall time from the Alfvén shell for a ∼10{sup 13} G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.
Yang, Hao; Apai, Dániel; Karalidi, Theodora [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Marley, Mark S. [NASA Ames Research Center, Naval Air Station, Moffett Field, Mountain View, CA 94035 (United States); Saumon, Didier [Los Alamos National Lab, Los Alamos, NM 87545 (United States); Morley, Caroline V. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Buenzli, Esther [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Artigau, Étienne [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Radigan, Jacqueline [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Metchev, Stanimir [Department of Physics and Astronomy, Western University, 1151 Richmond Street, London, ON N6A 3K7 (Canada); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Mohanty, Subhanjoy [Imperial College London, 1010 Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom); Lowrance, Patrick J. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Showman, Adam P.; Flateau, Davin [Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Heinze, Aren N., E-mail: haoyang@email.arizona.edu [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 (United States)
2015-01-01
We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759–1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon and Marley and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers—the driver of the variability—must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.
Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn
2014-01-01
The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.
Wu Zhenwei; Wan Baonian; Zhou Qian; Huang Juan
2005-01-01
By using a rotating hexahedral mirror placed in front of the objective lens and two sets of visible and ultraviolet monochromators coupled with a branchy quartz fiber bundle, a spacetime resolved spectroscopic system has been developed on the HT-7 superconducting tokamak. A center monitoring system has been used including a Helium-Neon laser and a photodiode detector to indicate the absolute position of the measurement in order to reduce the error caused by the uncertain emissive position of the plasma. By using the asymmetric Abel inversion, the spacetime resolved local emission coefficients of the spectroscopic line emissions have been obtained.Presented in this article are simultaneous measurements of two spectral line emissions such as CV ～ 227.1 nm and OV ～ 278.1 nm during a single plasma discharge on the HT-7. Experimental results indicate that the time resolution is better than 3 ms, the space resolution is better than 1.5 cm, the ratio of signal to background is better than 10:1, and the relative error of chord-integrated emission profile is less than 10%. Compared to traditional multichannel detecting systems, this system has considerably improved measurement efficiency, reduced uncertainty, and is therefore suitable for transport studies of global particles and impurities.
P. W. Kiedron
2008-03-01
Full Text Available The first successful deployment of the fully-operational ultraviolet rotating shadow-band spectroradiometer occurred during the May 2003 US Department of Energy's Atmospheric Radiation Measurement program's Aerosol Intensive Observation Period. The aerosol properties in the visible range were characterized using redundant measurements with several instruments to determine the column aerosol optical depth, the single scattering albedo, and the asymmetry parameter needed as input for radiative transfer calculations of the downwelling direct normal and diffuse horizontal solar irradiance in clear-sky conditions. The Tropospheric Ultraviolet and Visible (TUV radiative transfer model developed by Madronich and his colleagues at the US National Center for Atmospheric Research was used for the calculations of the spectral irradiance between 300–360 nm. Since there are few ultraviolet measurements of aerosol properties, most of the input aerosol data for the radiative transfer model are based on the assumption that UV input parameters can be extrapolated from the visible portion of the spectrum. Disagreements among available extraterrestrial spectra, which are discussed briefly, suggested that instead of comparing irradiances, measured and modeled spectral transmittances between 300–360 nm should be compared for the seven cases studied. Transmittance was calculated by taking the ratios of the measured irradiances to the Langley-derived, top-of-the-atmosphere irradiances. The cases studied included low to moderate aerosol loads and low to high solar-zenith angles. A procedure for retrieving single scattering albedo in the ultraviolet based on the comparisons of direct and diffuse transmittance is outlined.
Spectral Measurements of Aerosol Absorption from UV to VISIBLE
Krotkov, N. A.; Labow, G.; Herman, J.; Bhartia, P. K.; Slusser, J.; Durham, B.; Janson, G.; Wilson, C.; Disterhoft, P.; Cede, A.; Abuhassan, N.; Eck, T. F.; Holben, B.; Bais, A.; Rapsomanikis, S.
2007-05-01
Amount of solar radiation reaching the Earth's surface can be strongly influenced by aerosol absorption. The aerosol absorption optical thickness (AAOT) in the visible and near IR (440 nm- 1020nm) is routinely produced from almucantar measurements made by the CIMEL instruments in the AERONET network. AAOT in the UV (300nm- 368nm) have been derived from the total and diffuse hemispherical flux measurements made by UV- Multifilter Rotating Shadowband Radiometer (UV-MFRSR, Yankee Environmental Systems, Inc.) instruments. However, no direct comparisons between these two methods exist because the CIMEL wavelengths (used in almucantar retrievals) do not overlap with the UV-MFRSR wavelengths. To enable direct comparisons between the two techniques, we have modified our UV-MFRSR, part of USDA UVB Monitoring and Research Network, by replacing standard 300nm filter with 440nm filter used in AERONET network. The instrument has been deployed at Mauna Loa Observatory, at NASA GSFC in Greenbelt, MD (July 2005 - June 2006) and during SCOUT-03 field campaign in Thessaloniki, Greece in July 2006. During these deployments the instrument's calibration was monitored daily using co-located AERONET and BREWER direct sun measurements of aerosol extinction optical thickness (AOT). Between the deployments the instrument was thoroughly calibrated at the NOAA Central UV Calibration Facility in Boulder, Colorado. We find that the UV-MSFRSR instrument is highly susceptible to calibration drifts. However, these drifts can be accurately assessed using AERONET and BREWER direct sun data. After correcting for these calibration changes, the AAOT was inferred by fitting the measurements of global and diffuse atmospheric transmittances with the forward RT model independently at each spectral channel. The AOT data and ancillary measurements of aerosol column particle size distribution and refractive index in the visible wavelengths (by CIMEL sun-sky almucantar inversions), direct -sun column NO2 and
SRD 115 Hydrocarbon Spectral Database (Web, free access) All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.
Manos, Thanos; Robnik, Marko
2013-06-01
We study the kicked rotator in the classically fully chaotic regime using Izrailev's N-dimensional model for various N≤4000, which in the limit N→∞ tends to the quantized kicked rotator. We do treat not only the case K=5, as studied previously, but also many different values of the classical kick parameter 5≤K≤35 and many different values of the quantum parameter kε[5,60]. We describe the features of dynamical localization of chaotic eigenstates as a paradigm for other both time-periodic and time-independent (autonomous) fully chaotic or/and mixed-type Hamilton systems. We generalize the scaling variable Λ=l(∞)/N to the case of anomalous diffusion in the classical phase space by deriving the localization length l(∞) for the case of generalized classical diffusion. We greatly improve the accuracy and statistical significance of the numerical calculations, giving rise to the following conclusions: (1) The level-spacing distribution of the eigenphases (or quasienergies) is very well described by the Brody distribution, systematically better than by other proposed models, for various Brody exponents β(BR). (2) We study the eigenfunctions of the Floquet operator and characterize their localization properties using the information entropy measure, which after normalization is given by β(loc) in the interval [0,1]. The level repulsion parameters β(BR) and β(loc) are almost linearly related, close to the identity line. (3) We show the existence of a scaling law between β(loc) and the relative localization length Λ, now including the regimes of anomalous diffusion. The above findings are important also for chaotic eigenstates in time-independent systems [Batistić and Robnik, J. Phys. A: Math. Gen. 43, 215101 (2010); arXiv:1302.7174 (2013)], where the Brody distribution is confirmed to a very high degree of precision for dynamically localized chaotic eigenstates, even in the mixed-type systems (after separation of regular and chaotic eigenstates).
Yang, Hao; Marley, Mark S; Saumon, Didier; Morley, Caroline V; Buenzli, Esther; Artigau, Etienne; Radigan, Jacqueline; Metchev, Stanimir; Burgasser, Adam J; Mohanty, Subhanjoy; Lowrance, Patrick L; Showman, Adam P; Karalidi, Theodora; Flateau, Davin; Heinze, Aren N
2014-01-01
We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 $\\mu$m and 1.7 $\\mu$m. We find that the water absorption bands of the two L5 dwarfs at 1.15 $\\mu$m and 1.4 $\\mu$m vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 $\\mu$m displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altit...
Spectral representation of fingerprints
Xu, Haiyun; Bazen, Asker M.; Veldhuis, Raymond N.J.; Kevenaar, Tom A.M.; Akkermans, Anton H.M.
2007-01-01
Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and directions suffering from various deformations such as translation, rotation and scaling. The spectral minutiae representation introduced in this paper is a novel m
王书民; 张爱武; 胡少兴; 王京萌; 孟宪刚; 段乙好; 孙卫东
2015-01-01
As the rotation speed of ground based hyperspectral imaging system is too fast in the image collection process,which exceeds the speed limitation,there is data missed in the rectified image,it shows as the black lines.At the same time,there is serious distortion in the collected raw images,which effects the feature information classification and identification.To solve these problems,in this paper,we introduce the each component of the ground based hyperspectral imaging system at first,and give the general process of data collection.The rotation speed is controlled in data collection process,according to the image cov-er area of each frame and the image collection speed of the ground based hyperspectral imaging system,And then the spatial ori-entation model is deduced in detail combining with the star scanning angle,stop scanning angle and the minimum distance be-tween the sensor and the scanned object etc.The oriented image is divided into grids and resampled with new spectral.The gen-eral flow of distortion image corrected is presented in this paper.Since the image spatial resolution is different between the adja-cent frames,and in order to keep the highest image resolution of corrected image,the minimum ground sampling distance is em-ployed as the grid unit to divide the geo-referenced image.Taking the spectral distortion into account caused by direct sampling method when the new uniform grids and the old uneven grids are superimposed to take the pixel value,the precise spectral sam-pling method based on the position distribution is proposed.The distortion image collected in Lao Si Cheng ruin which is in the Zhang Jiajie town Hunan province is corrected through the algorithm proposed on above.The features keep the original geomet-ric characteristics.It verifies the validity of the algorithm.And we extract the spectral of different features to compute the corre-lation coefficient.The results show that the improved spectral sampling method is better than the
Shen, Jie; Wang, Li-Lian
2011-01-01
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large
Information Retrieval from SAGE II and MFRSR Multi-Spectral Extinction Measurements
Lacis, Andrew A.; Hansen, James E. (Technical Monitor)
2001-01-01
Direct beam spectral extinction measurements of solar radiation contain important information on atmospheric composition in a form that is essentially free from multiple scattering contributions that otherwise tend to complicate the data analysis and information retrieval. Such direct beam extinction measurements are available from the solar occultation satellite-based measurements made by the Stratospheric and Aerosol Gas Experiment (SAGE II) instrument and by ground-based Multi-Filter Shadowband Radiometers (MFRSRs). The SAGE II data provide cross-sectional slices of the atmosphere twice per orbit at seven wavelengths between 385 and 1020 nm with approximately 1 km vertical resolution, while the MFRSR data provide atmospheric column measurements at six wavelengths between 415 and 940 nm but at one minute time intervals. We apply the same retrieval technique of simultaneous least-squares fit to the observed spectral extinctions to retrieve aerosol optical depth, effective radius and variance, and ozone, nitrogen dioxide, and water vapor amounts from the SAGE II and MFRSR measurements. The retrieval technique utilizes a physical model approach based on laboratory measurements of ozone and nitrogen dioxide extinction, line-by-line and numerical k-distribution calculations for water vapor absorption, and Mie scattering constraints on aerosol spectral extinction properties. The SAGE II measurements have the advantage of being self-calibrating in that deep space provides an effective zero point for the relative spectral extinctions. The MFRSR measurements require periodic clear-day Langley regression calibration events to maintain accurate knowledge of instrument calibration.
Childs, Peter R N
2010-01-01
Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics
Lekner, John
2008-01-01
Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…
Vassiliev, Dmitri
2017-04-01
We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833
Spectral Animation Compression
Chao Wang; Yang Liu; Xiaohu Guo; Zichun Zhong; Binh Le; Zhigang Deng
2015-01-01
This paper presents a spectral approach to compress dynamic animation consisting of a sequence of homeomor-phic manifold meshes. Our new approach directly compresses the field of deformation gradient defined on the surface mesh, by decomposing it into rigid-body motion (rotation) and non-rigid-body deformation (stretching) through polar decompo-sition. It is known that the rotation group has the algebraic topology of 3D ring, which is different from other operations like stretching. Thus we compress these two groups separately, by using Manifold Harmonics Transform to drop out their high-frequency details. Our experimental result shows that the proposed method achieves a good balance between the reconstruction quality and the compression ratio. We compare our results quantitatively with other existing approaches on animation compression, using standard measurement criteria.
Cecconi, Jaures
2011-01-01
G. Bottaro: Quelques resultats d'analyse spectrale pour des operateurs differentiels a coefficients constants sur des domaines non bornes.- L. Garding: Eigenfuction expansions.- C. Goulaouic: Valeurs propres de problemes aux limites irreguliers: applications.- G. Grubb: Essential spectra of elliptic systems on compact manifolds.- J.Cl. Guillot: Quelques resultats recents en Scattering.- N. Schechter: Theory of perturbations of partial differential operators.- C.H. Wilcox: Spectral analysis of the Laplacian with a discontinuous coefficient.
Differential rotation on early G dwarfs
Jeffers, S.V.; Donati, J.F.
2007-01-01
In this paper we present the latest results in our long-term program to understand how differential rotation depends on fundamental stellar parameters such as spectral type, mass and radius. In this paper we focus on early G dwarf spectral types by presenting our latest surface brightness image and
Vigna, Sebastiano
2009-01-01
This note tries to attempt a sketch of the history of spectral ranking, a general umbrella name for techniques that apply the theory of linear maps (in particular, eigenvalues and eigenvectors) to matrices that do not represent geometric transformations, but rather some kind of relationship between entities. Albeit recently made famous by the ample press coverage of Google's PageRank algorithm, spectral ranking was devised more than fifty years ago, almost exactly in the same terms, and has been studied in psychology and social sciences. I will try to describe it in precise and modern mathematical terms, highlighting along the way the contributions given by previous scholars.
Smartt, Heidi A. [Sandia National Laboratories (United States)
2003-05-01
This research examines the feasibility of spectral tagging, which involves modifying the spectral signature of a target, e.g. by mixing an additive with the target's paint. The target is unchanged to the human eye, but the tag is revealed when viewed with a spectrometer. This project investigates a layer of security that is not obvious, and therefore easy to conceal. The result is a tagging mechanism that is difficult to counterfeit. Uniquely tagging an item is an area of need in safeguards and security and non-proliferation. The powdered forms of the minerals lapis lazuli and olivine were selected as the initial test tags due to their availability and uniqueness in the visible to near-infrared spectral region. They were mixed with paints and applied to steel. In order to verify the presence of the tags quantitatively, the data from the spectrometer was input into unmixing models and signal detection algorithms. The mixture with the best results was blue paint mixed with lapis lazuli and olivine. The tag had a 0% probability of false alarm and a 100% probability of detection. The research proved that spectral tagging is feasible, although certain tag/paint mixtures are more detectable than others.
Current status of quantitative rotational spectroscopy for atmospheric research
Drouin, Brian J.; Wlodarczak, Georges; Colmont, Jean-Marcel; Rohart, Francois
2004-01-01
Remote sensing of rotational transitions in the Earth's atmosphere has become an important method for the retrieval of geophysical temperatures, pressures and chemical composition profiles that requires accurate spectral information. This paper highlights the current status of rotational data that are useful for atmospheric measurements, with a discussion of the types the rotational lineshape measurements that are not generally available in either online repository.
Measuring stellar rotation periods with Kepler
Nielsen, M B; Schunker, H; Karoff, C
2015-01-01
We measure rotation periods for 12151 stars in the Kepler field, based on the photometric variability caused by stellar activity. Our analysis returns stable rotation periods over at least six out of eight quarters of Kepler data. This large sample of stars enables us to study the rotation periods as a function of spectral type. We find good agreement with previous studies and vsini measurements for F, G and K stars. Combining rotation periods, B-V color, and gyrochronology relations, we find that the cool stars in our sample are predominantly younger than ~1Gyr.
Ibarria, L; Lindstrom, P; Rossignac, J
2006-11-17
Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.
Energy Transfer in Rotating Turbulence
Cambon, Claude; Mansour, Nagi N.; Godeferd, Fabien S.; Rai, Man Mohan (Technical Monitor)
1995-01-01
The influence or rotation on the spectral energy transfer of homogeneous turbulence is investigated in this paper. Given the fact that linear dynamics, e.g. the inertial waves regime tackled in an RDT (Rapid Distortion Theory) fashion, cannot Affect st homogeneous isotropic turbulent flow, the study of nonlinear dynamics is of prime importance in the case of rotating flows. Previous theoretical (including both weakly nonlinear and EDQNM theories), experimental and DNS (Direct Numerical Simulation) results are gathered here and compared in order to give a self-consistent picture of the nonlinear effects of rotation on tile turbulence. The inhibition of the energy cascade, which is linked to a reduction of the dissipation rate, is shown to be related to a damping due to rotation of the energy transfer. A model for this effect is quantified by a model equation for the derivative-skewness factor, which only involves a micro-Rossby number Ro(sup omega) = omega'/(2(OMEGA))-ratio of rms vorticity and background vorticity as the relevant rotation parameter, in accordance with DNS and EDQNM results fit addition, anisotropy is shown also to develop through nonlinear interactions modified by rotation, in an intermediate range of Rossby numbers (Ro(omega) = (omega)' and Ro(omega)w greater than 1), which is characterized by a marco-Rossby number Ro(sup L) less than 1 and Ro(omega) greater than 1 which is characterized by a macro-Rossby number based on an integral lengthscale L and the micro-Rossby number previously defined. This anisotropy is mainly an angular drain of spectral energy which tends to concentrate energy in tile wave-plane normal to the rotation axis, which is exactly both the slow and the two-dimensional manifold. In Addition, a polarization of the energy distribution in this slow 2D manifold enhances horizontal (normal to the rotation axis) velocity components, and underlies the anisotropic structure of the integral lengthscales. Finally is demonstrated the
Identifying Broadband Rotational Spectra with Neural Networks
Zaleski, Daniel P.; Prozument, Kirill
2017-06-01
A typical broadband rotational spectrum may contain several thousand observable transitions, spanning many species. Identifying the individual spectra, particularly when the dynamic range reaches 1,000:1 or even 10,000:1, can be challenging. One approach is to apply automated fitting routines. In this approach, combinations of 3 transitions can be created to form a "triple", which allows fitting of the A, B, and C rotational constants in a Watson-type Hamiltonian. On a standard desktop computer, with a target molecule of interest, a typical AUTOFIT routine takes 2-12 hours depending on the spectral density. A new approach is to utilize machine learning to train a computer to recognize the patterns (frequency spacing and relative intensities) inherit in rotational spectra and to identify the individual spectra in a raw broadband rotational spectrum. Here, recurrent neural networks have been trained to identify different types of rotational spectra and classify them accordingly. Furthermore, early results in applying convolutional neural networks for spectral object recognition in broadband rotational spectra appear promising. Perez et al. "Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer." Chem. Phys. Lett., 2013, 571, 1-15. Seifert et al. "AUTOFIT, an Automated Fitting Tool for Broadband Rotational Spectra, and Applications to 1-Hexanal." J. Mol. Spectrosc., 2015, 312, 13-21. Bishop. "Neural networks for pattern recognition." Oxford university press, 1995.
Stringfellow, Guy
2004-01-01
This program intended to test whether the lowest mass stars at the bottom end of the main sequence and the lower mass brown dwarfs have coronae. If they have coronae, what are the coronal characteristics and what drives them? In the classical dynamo picture, the closed magnetic loop structure is generated near the boundary of the convective envelope and the radiative core. Stars with mass below 0.30 Msun however are fully convective, and the nature of the dynamo responsible for the generation of the coronae in this regime is poorly understood. Previous results from the ROSAT mission (e.g., Fleming et al. 1993, 1995; Schmitt et al. 1995) had confirmed three very important characteristics of M-star coronae: (1) a very high percentage of all M dwarfs have coronae (of order 85% in the local 7 pc sample), (2) those M dwarfs showing high chromospheric activity, such as having the Balmer series in emission or large/numerous optical flaring, indeed exhibit the highest coronal activity, and (3) that the maximum saturation boundary in X-ray luminosity, which amounts to 0.0001-0.001 for Lx/Lbol for the dMe stars, extends down to the current detection limit, through spectral types M7. It was likely that the incompleteness noted for result (1) above was simply a detection limit problem; for more distant sources, the X-ray fainter dM stars will drop below detection thresholds before the more X-ray luminous dMe stars. The latest stars for which direct detection of the corona had been successful were of spectral type dM7 (e.g., VB8, LHS 3003). This program proposed to obtain ROSAT HRI observations for a large number of the coolest known (at that time) stars at the bottom of the main-sequence, which had spectral types of M9 or later. Three stars were approved for observations with ROSAT-HRI totaling 180 ksec. The goal was to obtain X-ray detections or low upper limits for the three approved stars.
Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer
2016-11-01
For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.
Spectral Representations of Fingerprint Minutiae Subsets
Xu, Haiyun; Veldhuis, Raymond N.J.
2009-01-01
The investigation of the privacy protection of biometric templates gains more and more attention. The spectral minutiae representation is a novel method to represent a minutiae set as a fixed-length feature vector, which is invariant to translation, and in which rotation and scaling become translati
A spectral invariant representation of spectral reflectance
Ibrahim, Abdelhameed; Tominaga, Shoji; Horiuchi, Takahiko
2011-03-01
Spectral image acquisition as well as color image is affected by several illumination factors such as shading, gloss, and specular highlight. Spectral invariant representations for these factors were proposed for the standard dichromatic reflection model of inhomogeneous dielectric materials. However, these representations are inadequate for other characteristic materials like metal. This paper proposes a more general spectral invariant representation for obtaining reliable spectral reflectance images. Our invariant representation is derived from the standard dichromatic reflection model for dielectric materials and the extended dichromatic reflection model for metals. We proof that the invariant formulas for spectral images of natural objects preserve spectral information and are invariant to highlights, shading, surface geometry, and illumination intensity. It is proved that the conventional spectral invariant technique can be applied to metals in addition to dielectric objects. Experimental results show that the proposed spectral invariant representation is effective for image segmentation.
Seismic diagnosis from gravity modes strongly affected by rotation
Prat, Vincent; Lignières, François; Ballot, Jérôme; Culpin, Pierre-Marie
2016-01-01
Most of the information we have about the internal rotation of stars comes from modes that are weakly affected by rotation, for example by using rotational splittings. In contrast, we present here a method, based on the asymptotic theory of Prat et al. (2016), which allows us to analyse the signature of rotation where its effect is the most important, that is in low-frequency gravity modes that are strongly affected by rotation. For such modes, we predict two spectral patterns that could be confronted to observed spectra and those computed using fully two-dimensional oscillation codes.
... this page: //medlineplus.gov/ency/patientinstructions/000357.htm Rotator cuff exercises To use the sharing features on this ... gov/pubmed/25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder ...
Rotating Cavitation Supression Project
National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating...
Spectral Methods for Numerical Relativity
Grandclément Philippe
2009-01-01
Full Text Available Equations arising in general relativity are usually too complicated to be solved analytically and one must rely on numerical methods to solve sets of coupled partial differential equations. Among the possible choices, this paper focuses on a class called spectral methods in which, typically, the various functions are expanded in sets of orthogonal polynomials or functions. First, a theoretical introduction of spectral expansion is given with a particular emphasis on the fast convergence of the spectral approximation. We then present different approaches to solving partial differential equations, first limiting ourselves to the one-dimensional case, with one or more domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. We then present results obtained by various groups in the field of general relativity by means of spectral methods. Work, which does not involve explicit time-evolutions, is discussed, going from rapidly-rotating strange stars to the computation of black-hole–binary initial data. Finally, the evolution of various systems of astrophysical interest are presented, from supernovae core collapse to black-hole–binary mergers.
Spectral Decomposition Algorithm (SDA)
National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...
Decoding Pure Rotational Molecular Spectra for Asymmetric Molecules
Cooke, S A
2012-01-01
In this paper we demonstrate how asymmetric molecular rotational spectra may be introduced to students both "pictorially" and with simple formulae. It is shown that the interpretation of such spectra relies heavily upon pattern recognition. The presentation of some common spectral patterns in near-prolate asymmetric rotational spectra provides a means by which spectral assignment, and approximate rotational constant determination, may be usefully explored in the physics and chemistry classrooms. To aid in this endeavor we have created a supporting, free, web page and mobile web page.
Hamhalter, Jan; Turilova, Ekaterina
2017-02-01
Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.
The Spectral Shift Function and Spectral Flow
Azamov, N. A.; Carey, A. L.; Sukochev, F. A.
2007-11-01
At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and D + V with D having compact resolvent belonging to a general semifinite von Neumann algebra {mathcal{N}} and the perturbation V in {mathcal{N}} . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to {mathcal{N}} and V is any bounded self-adjoint operator in {mathcal{N}} . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non
Multiple snapshot colored compressive spectral imager
Correa, Claudia V.; Hinojosa, Carlos A.; Arce, Gonzalo R.; Arguello, Henry
2017-04-01
The snapshot colored compressive spectral imager (SCCSI) is a recent compressive spectral imaging (CSI) architecture that senses the spatial and spectral information of a scene in a single snapshot by means of a colored mosaic FPA detector and a dispersive element. Commonly, CSI architectures allow multiple snapshot acquisition, yielding improved reconstructions of spatially detailed and spectrally rich scenes. Each snapshot is captured employing a different coding pattern. In principle, SCCSI does not admit multiple snapshots since the pixelated tiling of optical filters is directly attached to the detector. This paper extends the concept of SCCSI to a system admitting multiple snapshot acquisition by rotating the dispersive element, so the dispersed spatio-spectral source is coded and integrated at different detector pixels in each rotation. Thus, a different set of coded projections is captured using the same optical components of the original architecture. The mathematical model of the multishot SCCSI system is presented along with several simulations. Results show that a gain up to 7 dB of peak signal-to-noise ratio is achieved when four SCCSI snapshots are compared to a single snapshot reconstruction. Furthermore, a gain up to 5 dB is obtained with respect to state-of-the-art architecture, the multishot CASSI.
Barnard, J.C.; Volkamer, R.; E. I. Kassianov
2008-01-01
Data taken from the MCMA-2003 and the 2006 MILAGRO field campaigns are used to examine the absorption of solar radiation by the organic component of aerosols. Using irradiance data from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and an actinic flux spectroradiometer (SR), we derive aerosol single scattering albedo, π_{0,λ}, as a function of wavelength, λ. We find that in the near-UV spectral range (250 to 400 nm) π_{0,&lambd...}
Rotator cuff repair - slideshow
... this page: //medlineplus.gov/ency/presentations/100229.htm Rotator cuff repair - series—Normal anatomy To use the sharing ... to slide 4 out of 4 Overview The rotator cuff is a group of muscles and tendons that ...
Gramkow, Claus
1999-01-01
In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...
Rotations with Rodrigues' Vector
Pina, E.
2011-01-01
The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…
Gramkow, Claus
2001-01-01
In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...
Stochl, Jan; Croudace, Tim
2013-01-01
Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.
Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard
2013-01-01
to identify the specific tissue region under study. In order to use the spatial rotator in practice, however, it is necessary to be able to identify intersection points between cell boundaries and test rays in a series of parallel focal planes, also at the peripheral parts of the cell boundaries. In cases......This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...... the spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient...
The Activity and Rotation Limit in the Hyades
Seemann, U.; Reiners, A.; Seifahrt, A.; Kürster, M.
2011-12-01
We conduct a study of K to M type stars to investigate the activity and the rotation limit in the Hyades. We use a sample of 40 stars in this intermediate-age cluster (≍625 Myr) to probe stellar rotation in the threshold region where stellar activity becomes prevalent. Here we present projected equatorial velocities (vrotsin i) and chromospheric activity measurements (Hα) that indicate the existence of fast rotators in the Hyades at spectral types where also the fraction of stars with Hα emission shows a rapid increase ("Hα limit"). The locus of enhanced rotation (and activity) thus seems to be shifted to earlier types in contrast to what is seen as the rotation limit in field stars. The relation between activity and rotation appears to be similar to the one observed in field stars.
The activity and rotation limit in the Hyades
Seemann, U; Seifahrt, A; Kürster, M
2010-01-01
We conduct a study of K to M type stars to investigate the activity and the rotation limit in the Hyades. We use a sample of 40 stars in this intermediate-age cluster (~625 Myr) to probe stellar rotation in the threshold region where stellar activity becomes prevalent. Here we present projected equatorial velocities (vsin i) and chromospheric activity measurements (H{\\alpha}) that indicate the existence of fast rotators in the Hyades at spectral types where also the fraction of stars with H{\\alpha} emission shows a rapid increase ("H{\\alpha} limit"). The locus of enhanced rotation (and activity) thus seems to be shifted to earlier types in contrast to what is seen as the rotation limit in field stars. The relation between activity and rotation appears to be similar to the one observed in fields stars.
The rotational spectrum of perfluoropropionic acid
Grubbs, G. S.; Serrato, Agapito; Obenchain, Daniel A.; Cooke, S. A.; Novick, Stewart E.; Lin, Wei
2012-05-01
The pure rotational spectrum of perfluoropropionic acid, CF3CF2COOH, has been studied by a pulsed nozzle, chirped-pulse Fourier transform microwave spectrometer in the frequency range of 8-14 GHz. A total of 81 transitions, including a-type, b-type, and c-type transitions have been observed and analyzed. The rotational constants and the five quartic centrifugal distortion constants were determined for the first time. The rotational constants are A = 1893.5299(4) MHz, B = 1175.7031(4) MHz, and C = 1118.2017(5) MHz. Quantum chemical calculations and the spectral analysis indicate that the observed conformer is the gauche form of perfluoropropionic acid with calculated dihedral angles ∠CCCO = 106° and 107° from MP2/6-311G++(3df, 3pd) and MP2/Aug-CC-pVDZ calculations, respectively. The experimental spectroscopic constants are compared to those obtained from ab initio calculations.
Emission from Pair-Instability Supernovae with Rotation
Chatzopoulos, Emmanouil; Wheeler, J Craig; Whalen, Daniel J; Smidt, Joseph; Wiggins, Brandon
2014-01-01
Pair Instability Supernovae have been suggested as candidates for some Super Luminous Supernovae, such as SN 2007bi, and as one of the dominant types of explosion occurring in the early Universe from massive, zero-metallicity Population III stars. The progenitors of such events can be rapidly rotating, therefore exhibiting different evolutionary properties due to the effects of rotationally-induced mixing and mass-loss. Proper identification of such events requires rigorous radiation hydrodynamics and radiative transfer calculations that capture not only the behavior of the light curve but also the spectral evolution of these events. We present radiation hydrodynamics and radiation transport calculations for 90-300 Msun rotating pair-instability supernovae covering both the shock break-out and late light curve phases. We also investigate cases of different initial metallicity and rotation rate to determine the impact of these parameters on the detailed spectral characteristics of these events. In agreement wi...
Manolopoulou, Maria
2016-01-01
We study the possible rotation of cluster galaxies, developing, testing and applying a novel algorithm which identifies rotation, if such does exits, as well as its rotational centre, its axis orientation, rotational velocity amplitude and, finally, the clockwise or counterclockwise direction of rotation on the plane of the sky. To validate our algorithms we construct realistic Monte-Carlo mock rotating clusters and confirm that our method provides robust indications of rotation. We then apply our methodology on a sample of Abell clusters with z<~0.1 with member galaxies selected from the SDSS DR10 spectroscopic database. We find that ~35% of our clusters are rotating when using a set of strict criteria, while loosening the criteria we find this fraction increasing to ~48%. We correlate our rotation indicators with the cluster dynamical state, provided either by their Bautz-Morgan type or by their X-ray isophotal shape and find for those clusters showing rotation that the significance and strength of their...
Ultra-thin, single-layer polarization rotator
Son, T. V.; Truong, V. V., E-mail: Truong.Vo-Van@Concordia.Ca [Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6 (Canada); Do, P. A.; Haché, A. [Département de Physique et d’Astronomie, Université de Moncton, Moncton, New Brunswick, E1A 3E9 (Canada)
2016-08-15
We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 10{sup 3} when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.
Compressive Spectral Renormalization Method
Bayindir, Cihan
2016-01-01
In this paper a novel numerical scheme for finding the sparse self-localized states of a nonlinear system of equations with missing spectral data is introduced. As in the Petviashivili's and the spectral renormalization method, the governing equation is transformed into Fourier domain, but the iterations are performed for far fewer number of spectral components (M) than classical versions of the these methods with higher number of spectral components (N). After the converge criteria is achieved for M components, N component signal is reconstructed from M components by using the l1 minimization technique of the compressive sampling. This method can be named as compressive spectral renormalization (CSRM) method. The main advantage of the CSRM is that, it is capable of finding the sparse self-localized states of the evolution equation(s) with many spectral data missing.
Differential rotation, flares and coronae in A to M stars
Balona, L. A.; Švanda, M.; Karlický, M.
2016-08-01
Kepler data are used to investigate flares in stars of all spectral types. There is a strong tendency across all spectral types for the most energetic flares to occur among the most rapidly rotating stars. Differential rotation could conceivably play an important role in enhancing flare energies. This idea was investigated, but no correlation could be found between rotational shear and the incidence of flares. Inspection of Kepler light curves shows that rotational modulation is very common over the whole spectral type range. Using the rotational light amplitude, the size distribution of starspots was investigated. Our analysis suggests that stars with detectable flares have spots significantly larger than non-flare stars, indicating that flare energies are correlated with the size of the active region. Further evidence of the existence of spots on A stars is shown by the correlation between the photometric period and the projected rotational velocity. The existence of spots indicates the presence of magnetic fields, but the fact that A stars lack coronae implies that surface convection is a necessary condition for the formation of the corona.
Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio
1995-01-01
Recently we showed that the spectral flow acting on the N=2 twisted topological theories gives rise to a topological algebra automorphism. Here we point out that the untwisting of that automorphism leads to a spectral flow on the untwisted N=2 superconformal algebra which is different from the usual one. This "other" spectral flow does not interpolate between the chiral ring and the antichiral ring. In particular, it maps the chiral ring into the chiral ring and the antichiral ring into the antichiral ring. We discuss the similarities and differences between both spectral flows. We also analyze their action on null states.
Relativistic Rotating Vector Model
Lyutikov, Maxim
2016-01-01
The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.
An integrated approach to fingerprint indexing using spectral clustering based on minutiae points
Mngenge, NA
2015-07-01
Full Text Available this problem by constructing a rotational, scale and translation (RST) invariant fingerprint descriptor based on minutiae points. The proposed RST invariant descriptor dimensions are then reduced and passed to a spectral clustering algorithm which automatically...
Bao, Weizhu
2013-01-01
We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an angular momentum rotation term and/or long-range DDI, state the twodimensional (2D) GPE obtained from the 3D GPE via dimension reduction under anisotropic external potential, and review some dynamical laws related to the 2D and 3D GPEs. By introducing a rotating Lagrangian coordinate system, the original GPEs are reformulated to GPEs without the angular momentum rotation, which is replaced by a time-dependent potential in the new coordinate system. We then cast the conserved quantities and dynamical laws in the new rotating Lagrangian coordinates. Based on the new formulation of the GPE for rotating BECs in the rotating Lagrangian coordinates, a time-splitting spectral method is presented for computing the dynamics of rotating BECs. The new numerical method is explicit, simple to implement, unconditionally stable, and very efficient in computation. It is spectral-order accurate in space and second-order accurate in time and conserves the mass on the discrete level. We compare our method with some representative methods in the literature to demonstrate its efficiency and accuracy. In addition, the numerical method is applied to test the dynamical laws of rotating BECs such as the dynamics of condensate width, angular momentum expectation, and center of mass, and to investigate numerically the dynamics and interaction of quantized vortex lattices in rotating BECs without or with the long-range DDI.Copyright © by SIAM.
Solar spectral irradiance variability in cycle 24: observations and models
Marchenko Sergey V.
2016-01-01
Full Text Available Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI, we characterize both short-term (solar rotation and long-term (solar cycle changes of the solar spectral irradiance (SSI between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2 and Solar Radiation and Climate Experiment (SORCE instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2 and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S models.
On Longitudinal Spectral Coherence
Kristensen, Leif
1979-01-01
It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between...
Spectral geometry of spacetime
Kopf, T
2000-01-01
Spacetime, understood as a globally hyperbolic manifold, may be characterized by spectral data using a 3+1 splitting into space and time, a description of space by spectral triples and by employing causal relationships, as proposed earlier. Here, it is proposed to use the Hadamard condition of quantum field theory as a smoothness principle.
Deconstructing Mental Rotation
Larsen, Axel
2014-01-01
A random walk model of the classical mental rotation task is explored in two experiments. By assuming that a mental rotation is repeated until sufficient evidence for a match/mismatch is obtained, the model accounts for the approximately linearly increasing reaction times (RTs) on positive trials...... alignment take place during fixations at very high speed....
Philip E. Pope; Jeffery O. Dawson
1989-01-01
Short-rotation plantations offer several advantages over longer, more traditional rotations. They enhance the natural productivity of better sites and of tree species with rapid juvenile growth. Returns on investment are realized in a shorter period and the risk of loss is reduced compared with long term investments. Production of wood and fiber can be maximized by...
Faraday rotation measure synthesis
Brentjens, MA; de Bruyn, AG
2005-01-01
We extend the rotation measure work of Burn ( 1966, MNRAS, 133, 67) to the cases of limited sampling of lambda(2) space and non-constant emission spectra. We introduce the rotation measure transfer function (RMTF), which is an excellent predictor of n pi ambiguity problems with the lambda(2) coverag
Le Vine, David
2016-01-01
Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).
Solar spectral irradiance changes during cycle 24
Marchenko, S. V.; DeLand, M. T. [Also at NASA/Goddard Space Flight Center, Greenbelt, MD, USA. (United States)
2014-07-10
We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by ∼0.6% ± 0.2% around 265 nm. These changes gradually diminish to 0.15% ± 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar 'continuum'. Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar 'continuum', the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at λ ≳ 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.
Spectral Geometry and Causality
Kopf, T
1996-01-01
For a physical interpretation of a theory of quantum gravity, it is necessary to recover classical spacetime, at least approximately. However, quantum gravity may eventually provide classical spacetimes by giving spectral data similar to those appearing in noncommutative geometry, rather than by giving directly a spacetime manifold. It is shown that a globally hyperbolic Lorentzian manifold can be given by spectral data. A new phenomenon in the context of spectral geometry is observed: causal relationships. The employment of the causal relationships of spectral data is shown to lead to a highly efficient description of Lorentzian manifolds, indicating the possible usefulness of this approach. Connections to free quantum field theory are discussed for both motivation and physical interpretation. It is conjectured that the necessary spectral data can be generically obtained from an effective field theory having the fundamental structures of generalized quantum mechanics: a decoherence functional and a choice of...
De Lorenci, V A
1996-01-01
We investigate which mapping we have to use to compare measurements made in a rotating frame to those made in an inertial frame. Using a "Lorentz-like" coordinate transformation we obtain that creation-anihilation operators of a massless scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state (a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. After this, introducing an apparatus device coupled linearly with the field we obtain that there is a strong correlation between number of rotating particles (in a given state) obtained via canonical quantization and via response function of the rotating detector. Finally, we analyse polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view.
Uniformly rotating neutron stars
Boshkayev, Kuantay
2016-01-01
In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...
Rapid Rotation Above and Below the Substellar Boundary
Basri, G.
1999-05-01
I present the results of a multiyear survey of very low mass stars and brown dwarfs, at high spectral resolution. The echelle spectra were gathered with the HIRES spectrometer at the Keck Observatory. One primary purpose was to determine rotational velocities for many objects of the late M and L spectral classes. Some of these objects are confirmed brown dwarfs, others are stars near the bottom of the main sequence, and some might be either. I show that the initial indication provided by BRI 0021, that such objects tend to be rapidly rotating and display little H-alpha emission, proves to be a common characteristic. There is a general trend to higher rotation velocities as one looks to objects of lower luminosity; the fastest rotator found so far is the brown dwarf Kelu-1 at 80 km/s (which implies a rotation period of about 90 minutes!). The most active object, PC 0025 (which may well be a brown dwarf), is a relatively slow rotator and probably very young. I discuss a possible explanation for these results: the dynamos for these objects are fully turbulent, driven by convection (and therefore indirectly by the object's luminosity), and quenched when the rotational velocities become too fast in comparison to the convective velocities. I thank the NSF for its support through grant AST96-18439.
Snapshot spectral imaging system
Arnold, Thomas; De Biasio, Martin; McGunnigle, Gerald; Leitner, Raimund
2010-02-01
Spectral imaging is the combination of spectroscopy and imaging. These fields are well developed and are used intensively in many application fields including industry and the life sciences. The classical approach to acquire hyper-spectral data is to sequentially scan a sample in space or wavelength. These acquisition methods are time consuming because only two spatial dimensions, or one spatial and the spectral dimension, can be acquired simultaneously. With a computed tomography imaging spectrometer (CTIS) it is possible to acquire two spatial dimensions and a spectral dimension during a single integration time, without scanning either spatial or spectral dimensions. This makes it possible to acquire dynamic image scenes without spatial registration of the hyperspectral data. This is advantageous compared to tunable filter based systems which need sophisticated image registration techniques. While tunable filters provide full spatial and spectral resolution, for CTIS systems there is always a tradeoff between spatial and spectral resolution as the spatial and spectral information corresponding to an image cube is squeezed onto a 2D image. The presented CTIS system uses a spectral-dispersion element to project the spectral and spatial image information onto a 2D CCD camera array. The system presented in this paper is designed for a microscopy application for the analysis of fixed specimens in pathology and cytogenetics, cell imaging and material analysis. However, the CTIS approach is not limited to microscopy applications, thus it would be possible to implement it in a hand-held device for e.g. real-time, intra-surgery tissue classification.
ON THE NATURE OF RAPIDLY ROTATING SINGLE EVOLVED STARS
Da Silva, R. Rodrigues; Canto Martins, B. L.; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)
2015-03-01
We present an analysis of the nature of the rapidly rotating, apparently single giant based on rotational and radial velocity measurements carried out by the CORAVEL spectrometers. From the analyzed sample, composed of 2010 spectroscopic, apparently single, evolved stars of luminosity classes IV, III, II, and Ib with spectral types G and K, we classified 30 stars that presented unusual, moderate to rapid rotation. This work reports, for the first time, the presence of these abnormal rotators among subgiant, bright giant, and Ib supergiant stars. To date, this class of stars was reported only among giant stars of luminosity class III. Most of these abnormal rotators present an IRAS infrared excess, which, in principle, can be related to dust around these stars.
Coccato, L; Pizzella, A; Corsini, E M; Bonta', E Dalla; Buson, L M
2014-01-01
We present a spectral decomposition technique and its applications to a sample of galaxies hosting large-scale counter-rotating stellar disks. Our spectral decomposition technique allows to separate and measure the kinematics and the properties of the stellar populations of both the two counter-rotating disks in the observed galaxies at the same time. Our results provide new insights on the epoch and mechanism of formation of these galaxies.
A Circular Statistical Method for Extracting Rotation Measures
S. Sarala; Pankaj Jain
2002-03-01
We propose a new method for the extraction of Rotation Measures from spectral polarization data. The method is based on maximum likelihood analysis and takes into account the circular nature of the polarization data. The method is unbiased and statistically more efficient than the standard 2 procedure.
Stevanovic, Dragan
2015-01-01
Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the
Time frequency analysis of Jovian and Saturnian radio spectral patterns
Boudjada, Mohammed Y.; Galopeau, Patrick H. M.; Al-Haddad, Emad; Lammer, Helmut
2016-04-01
Prominent radio spectral patterns were observed by the Cassini Radio and Plasma Wave Science experiment (RPWS) principally at Jupiter and Saturn. The spectral shapes are displayed in the usual dynamic spectra showing the flux density versus the time and the frequency. Those patterns exhibit well-organized shapes in the time-frequency plane connected with the rotation of the planet. We consider in this analysis the auroral emissions which occurred in the frequency range between 10 kHz and approximately 3 MHz. It concerns the Jovian hectometric emission (HOM) and the Saturnian kilometric radiation (SKR). We show in the case of Jupiter's HOM that the spectral patterns are well-arranged arc structures with curvatures depending on the Jovian rotation. Regarding the SKR emission, the spectral shapes exhibit generally complex patterns, and only sometimes arc structures are observed. We emphasize the curve alterations from vertex-early to vertex-late arcs (and vice versa) and we study their dependences, or not, on the planetary rotations. We also discuss the common physical process at the origin of the HOM and SKR emissions, specifically the spectral patterns created by the interaction between planetary satellites (e.g. Io or Dione) and the Jovian and Saturnian magnetospheres.
Binzel, R. P.; Green, J. R.; Opal, C. B.
1986-01-01
Thomas et al. (1984) analyzed 14 Voyager 2 images of Saturn's satellite Hyperion and interpreted them to be consistent with a coherent (nonchaotic) rotation period of 13.1 days. This interpretation was criticized by Peale and Wisdom (1984), who argued that the low sampling frequency of Voyager data does not allow chaotic or nonchaotic rotation to be distinguished. New observations obtained with a higher sampling frequency are reported here which conclusively show that the 13.1 day period found by Thomas et al. was not due to coherent rotation.
Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1996-11-01
It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.
Lajevardipour, Alireza; Chon, James W. M.; Chattopadhyay, Amitabha; Clayton, Andrew H. A.
2016-11-01
Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C6-NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics.
Lajevardipour, Alireza; Chon, James W M; Chattopadhyay, Amitabha; Clayton, Andrew H A
2016-11-22
Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C6-NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics.
Unmixing of spectrally similar minerals
Debba, Pravesh
2009-01-01
Full Text Available -bearing oxide/hydroxide/sulfate minerals in complex mixtures be obtained using hyperspectral data? Debba (CSIR) Unmixing of spectrally similar minerals MERAKA 2009 3 / 18 Method of spectral unmixing Old method: problem Linear Spectral Mixture Analysis (LSMA...
Vowel Inherent Spectral Change
Assmann, Peter
2013-01-01
It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...
Temporal Lorentzian spectral triples
Franco, Nicolas
2014-09-01
We present the notion of temporal Lorentzian spectral triple which is an extension of the notion of pseudo-Riemannian spectral triple with a way to ensure that the signature of the metric is Lorentzian. A temporal Lorentzian spectral triple corresponds to a specific 3 + 1 decomposition of a possibly noncommutative Lorentzian space. This structure introduces a notion of global time in noncommutative geometry. As an example, we construct a temporal Lorentzian spectral triple over a Moyal-Minkowski spacetime. We show that, when time is commutative, the algebra can be extended to unbounded elements. Using such an extension, it is possible to define a Lorentzian distance formula between pure states with a well-defined noncommutative formulation.
Spectral recognition of graphs
Cvetković Dragoš
2012-01-01
Full Text Available At some time, in the childhood of spectral graph theory, it was conjectured that non-isomorphic graphs have different spectra, i.e. that graphs are characterized by their spectra. Very quickly this conjecture was refuted and numerous examples and families of non-isomorphic graphs with the same spectrum (cospectral graphs were found. Still some graphs are characterized by their spectra and several mathematical papers are devoted to this topic. In applications to computer sciences, spectral graph theory is considered as very strong. The benefit of using graph spectra in treating graphs is that eigenvalues and eigenvectors of several graph matrices can be quickly computed. Spectral graph parameters contain a lot of information on the graph structure (both global and local including some information on graph parameters that, in general, are computed by exponential algorithms. Moreover, in some applications in data mining, graph spectra are used to encode graphs themselves. The Euclidean distance between the eigenvalue sequences of two graphs on the same number of vertices is called the spectral distance of graphs. Some other spectral distances (also based on various graph matrices have been considered as well. Two graphs are considered as similar if their spectral distance is small. If two graphs are at zero distance, they are cospectral. In this sense, cospectral graphs are similar. Other spectrally based measures of similarity between networks (not necessarily having the same number of vertices have been used in Internet topology analysis, and in other areas. The notion of spectral distance enables the design of various meta-heuristic (e.g., tabu search, variable neighbourhood search algorithms for constructing graphs with a given spectrum (spectral graph reconstruction. Several spectrally based pattern recognition problems appear in many areas (e.g., image segmentation in computer vision, alignment of protein-protein interaction networks in bio
... cuff are common. They include tendinitis, bursitis, and injuries such as tears. Rotator cuff tendons can become ... cuff depends on age, health, how severe the injury is, and how long you've had the ...
Fractal Aggregation Under Rotation
WU Feng-Min; WU Li-Li; LU Hang-Jun; LI Qiao-Wen; YE Gao-Xiang
2004-01-01
By means of the Monte Carlo simulation, a fractal growth model is introduced to describe diffusion-limited aggregation (DLA) under rotation. Patterns which are different from the classical DLA model are observed and the fractal dimension of such clusters is calculated. It is found that the pattern of the clusters and their fractal dimension depend strongly on the rotation velocity of the diffusing particle. Our results indicate the transition from fractal to non-fractal behavior of growing cluster with increasing rotation velocity, i.e. for small enough angular velocity ω the fractal dimension decreases with increasing ω, but then, with increasing rotation velocity, the fractal dimension increases and the cluster becomes compact and tends to non-fractal.
Fractal Aggregation Under Rotation
WUFeng-Min; WULi-Li; LUHang-Jun; LIQiao-Wen; YEGao-Xiang
2004-01-01
By means of the Monte Carlo simulation, a fractal growth model is introduced to describe diffusion-limited aggregation (DLA) under rotation. Patterns which are different from the classical DLA model are observed and the fractal dimension of such clusters is calculated. It is found that the pattern of the clusters and their fractal dimension depend strongly on the rotation velocity of the diffusing particle. Our results indicate the transition from fractal to non-fractal behavior of growing cluster with increasing rotation velocity, i.e. for small enough angular velocity ω; thefractal dimension decreases with increasing ω;, but then, with increasing rotation velocity, the fractal dimension increases and the cluster becomes compact and tends to non-fractal.
Solar rotation gravitational moments
A. Ajabshirizadeh
2005-09-01
Full Text Available Gravitational multipole moments of the Sun are still poorly known. Theoretically, the difficulty is mainly due to the differential rotation for which the velocity rate varies both on the surface and with the depth. From an observational point of view, the multipole moments cannot be directly measured. However, recent progresses have been made proving the existence of a strong radial differential rotation in a thin layer near the solar surface (the leptocline. Applying the theory of rotating stars, we will first compute values of J2 and J4 taking into account the radial gradient of rotation, then we will compare these values with the existing ones, giving a more complete review. We will explain some astrophysical outcomes, mainly on the relativistic Post Newtonian parameters. Finally we will conclude by indicating how space experiments (balloon SDS flights, Golf NG, Beppi-Colombo, Gaia... will be essential to unambiguously determine these parameters.
NONE
1998-08-01
Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.
Thermophotovoltaic Spectral Control
DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman
2004-06-09
Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.
Electromagnetic rotational actuation.
Hogan, Alexander Lee
2010-08-01
There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.
Rotational spectrum of phenylglycinol
Simão, Alcides; Peña, Isabel; Cabezas, Carlos; Alonso, José L.
2014-11-01
Solid samples of phenylglycinol were vaporized by laser ablation and investigated through rotational spectroscopy in a supersonic expansion using two different techniques: chirped pulse Fourier transform microwave spectroscopy and narrow band molecular beam Fourier transform microwave spectroscopy. One conformer, bearing an O-H···N and an N-H···π intramolecular hydrogen bonds, could be successfully identified by comparison of the experimental rotational and 14N nuclear quadruple coupling constants with those predicted theoretically.
Earth rotation and geodynamics
Bogusz Janusz; Brzezinski Aleksander; Kosek Wieslaw; Nastula Jolanta
2015-01-01
This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals wit...
Strongly magnetized rotating dipole in general relativity
Petri, J
2016-01-01
Electromagnetic waves arise in many area of physics. Solutions are difficult to find in the general case. In this paper, we numerically integrate Maxwell equations in a 3D spherical polar coordinate system. Straightforward finite difference methods would lead to a coordinate singularity along the polar axis. Spectral methods are better suited to deal with such artificial singularities related to the choice of a coordinate system. When the radiating object is rotating like for instance a star, special classes of solutions to Maxwell equations are worthwhile to study such as quasi-stationary regimes. Moreover, in high-energy astrophysics, strong gravitational and magnetic fields are present especially around rotating neutron stars. In order to study such systems, we designed an algorithm to solve the time-dependent Maxwell equations in spherical polar coordinates including general relativity as well as quantum electrodynamical corrections to leading order. As a diagnostic, we compute the spindown luminosity exp...
Rotating Radio Transients: X-ray observations
Rea, Nanda
2007-01-01
Rotating Radio Transients (RRATs) are a new class of neutron stars discovered through the emission of radio bursts. Eleven sources are known up to now, but population studies predict these objects to be more numerous than the normal radio pulsar population. Multiwavelength observations of these peculiar objects are in progress to disentangle their spectral energy distribution, and then study in detail their nature. In this review I report on the current state of the art on these objects, and in particular on the results of new X-ray observations.
Rapid spectral analysis for spectral imaging.
Jacques, Steven L; Samatham, Ravikant; Choudhury, Niloy
2010-07-15
Spectral imaging requires rapid analysis of spectra associated with each pixel. A rapid algorithm has been developed that uses iterative matrix inversions to solve for the absorption spectra of a tissue using a lookup table for photon pathlength based on numerical simulations. The algorithm uses tissue water content as an internal standard to specify the strength of optical scattering. An experimental example is presented on the spectroscopy of portwine stain lesions. When implemented in MATLAB, the method is ~100-fold faster than using fminsearch().
EMISSION FROM PAIR-INSTABILITY SUPERNOVAE WITH ROTATION
Chatzopoulos, E.; Van Rossum, Daniel R. [Department of Astronomy and Astrophysics, Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States); Craig, Wheeler J. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Whalen, Daniel J. [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse. 2, D-69120 Heidelberg (Germany); Smidt, Joseph [T-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wiggins, Brandon, E-mail: manolis@flash.uchicago.edu [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2015-01-20
Pair-instability supernovae (PISNe) have been suggested as candidates for some superluminous supernovae, such as SN 2007bi, and as one of the dominant types of explosion occurring in the early universe from massive, zero-metallicity Population III stars. The progenitors of such events can be rapidly rotating, therefore exhibiting different evolutionary properties due to the effects of rotationally induced mixing and mass-loss. Proper identification of such events requires rigorous radiation hydrodynamics and radiative transfer calculations that capture not only the behavior of the light curve but also the spectral evolution of these events. We present radiation hydrodynamics and radiation transport calculations for 90-300 M {sub ☉} rotating PISNe covering both the shock breakout and late light curve phases. We also investigate cases of different initial metallicity and rotation rate to determine the impact of these parameters on the detailed spectral characteristics of these events. In agreement with recent results on non-rotating PISNe, we find that for a range of progenitor masses and rotation rates these events have intrinsically red colors in contradiction with observations of superluminous supernovae. The spectroscopic properties of rotating PISNe are similar to those of non-rotating events with stripped hydrogen and helium envelopes. We find that the progenitor metallicity and rotation rate properties are erased after the explosion and cannot be identified in the resulting model spectra. It is the combined effects of pre-supernova mass-loss and the basic properties of the supernova ejecta such as mass, temperature, and velocity that have the most direct impact in the model spectra of PISNe.
Rotating superconductor magnet for producing rotating lobed magnetic field lines
Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.
1978-01-01
This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.
Bipolar spectral associative memories.
Spencer, R G
2001-01-01
Nonlinear spectral associative memories are proposed as quantized frequency domain formulations of nonlinear, recurrent associative memories in which volatile network attractors are instantiated by attractor waves. In contrast to conventional associative memories, attractors encoded in the frequency domain by convolution may be viewed as volatile online inputs, rather than nonvolatile, off-line parameters. Spectral memories hold several advantages over conventional associative memories, including decoder/attractor separability and linear scalability, which make them especially well suited for digital communications. Bit patterns may be transmitted over a noisy channel in a spectral attractor and recovered at the receiver by recurrent, spectral decoding. Massive nonlocal connectivity is realized virtually, maintaining high symbol-to-bit ratios while scaling linearly with pattern dimension. For n-bit patterns, autoassociative memories achieve the highest noise immunity, whereas heteroassociative memories offer the added flexibility of achieving various code rates, or degrees of extrinsic redundancy. Due to linear scalability, high noise immunity and use of conventional building blocks, spectral associative memories hold much promise for achieving robust communication systems. Simulations are provided showing bit error rates for various degrees of decoding time, computational oversampling, and signal-to-noise ratio.
Teutsch, J
2007-01-01
It is possible to enumerate all computer programs. In particular, for every partial computable function, there is a shortest program which computes that function. f-MIN is the set of indices for shortest programs. In 1972, Meyer showed that f-MIN is Turing equivalent to 0'', the halting set with halting set oracle. This paper generalizes the notion of shortest programs, and we use various measures from computability theory to describe the complexity of the resulting "spectral sets." We show that under certain Godel numberings, the spectral sets are exactly the canonical sets 0', 0'', 0''', ... up to Turing equivalence. This is probably not true in general, however we show that spectral sets always contain some useful information. We show that immunity, or "thinness" is a useful characteristic for distinguishing between spectral sets. In the final chapter, we construct a set which neither contains nor is disjoint from any infinite arithmetic set, yet it is 0-majorized and contains a natural spectral set. Thus ...
Gehan, Charlotte; Michel, Eric
2016-01-01
Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, which behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the id...
Parametric Explosion Spectral Model
Ford, S R; Walter, W R
2012-01-19
Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.
Photovoltaic spectral responsivity measurements
Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)
1998-09-01
This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.
Vibrations of rotating machinery
Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick
2017-01-01
This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...
Chiral Rotational Spectroscopy
Cameron, Robert P; Barnett, Stephen M
2015-01-01
We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.
Chiral rotational spectroscopy
Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.
2016-09-01
We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.
Dorbolo, Stephane; Adami, Nicolas; Grasp Team
2014-11-01
The motion of ice discs released at the surface of a thermalized bath was investigated. As observed in some rare events in the Nature, the discs start spinning spontaneously. The motor of this motion is the cooling of the water close to the ice disc. As the density of water is maximum at 4°C, a downwards flow is generated from the surface of the ice block to the bottom. This flow generates the rotation of the disc. The speed of rotation depends on the mass of the ice disc and on the temperature of the bath. A model has been constructed to study the influence of the temperature of the bath. Finally, ice discs were put on a metallic plate. Again, a spontaneous rotation was observed. FNRS is thanked for financial support.
Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel
1997-01-01
The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...
Rotation of cometary meteoroids
Capek, David
2014-01-01
The aim of this study is to estimate the rotational characteristics of meteoroids after their release from a comet during normal activity. The results can serve as initial conditions for further analyses of subsequent evolution of rotation in the interplanetary space. A sophisticated numerical model was applied to meteoroids ejected from 2P/Encke comet. The meteoroid shapes were approximated by polyhedrons with several thousands of surface elements, which have been determined by 3D laser scanning method of 36 terrestrial rock samples. These samples came from three distinct sets with different origin and shape characteristics. Two types of gas-meteoroid interactions (diffuse and specular reflection of gas molecules from the surface of meteoroid) and three gas ejection models (leading to very different ejection velocities) were assumed. The rotational characteristics of ejected meteoroid population were obtained by numerical integration of equations of motion with random initial conditions and random shape sele...
Gaiotto, Davide; Neitzke, Andrew
2012-01-01
We apply and illustrate the techniques of spectral networks in a large collection of A_{K-1} theories of class S, which we call "lifted A_1 theories." Our construction makes contact with Fock and Goncharov's work on higher Teichmuller theory. In particular we show that the Darboux coordinates on moduli spaces of flat connections which come from certain special spectral networks coincide with the Fock-Goncharov coordinates. We show, moreover, how these techniques can be used to study the BPS spectra of lifted A_1 theories. In particular, we determine the spectrum generators for all the lifts of a simple superconformal field theory.
Spectral library searching in proteomics.
Griss, Johannes
2016-03-01
Spectral library searching has become a mature method to identify tandem mass spectra in proteomics data analysis. This review provides a comprehensive overview of available spectral library search engines and highlights their distinct features. Additionally, resources providing spectral libraries are summarized and tools presented that extend experimental spectral libraries by simulating spectra. Finally, spectrum clustering algorithms are discussed that utilize the same spectrum-to-spectrum matching algorithms as spectral library search engines and allow novel methods to analyse proteomics data.
Rotational Velocities of Individual Components in Very Low Mass Binaries
Konopacky, Q. M.; Ghez, A. M.; Fabrycky, D. C.; Macintosh, B. A.; White, R. J.; Barman, T. S.; Rice, E. L.; Hallinan, G.; Duchêne, G.
2012-05-01
We present rotational velocities for individual components of 11 very low mass (VLM) binaries with spectral types between M7 and L7.5. These results are based on observations taken with the near-infrared spectrograph, NIRSPEC, and the Keck II laser guide star adaptive optics system. We find that the observed sources tend to be rapid rotators (v sin i > 10 km s-1), consistent with previous seeing-limited measurements of VLM objects. The two sources with the largest v sin i, LP 349-25B and HD 130948C, are rotating at ~30% of their break-up speed, and are among the most rapidly rotating VLM objects known. Furthermore, five binary systems, all with orbital semimajor axes lsim3.5 AU, have component v sin i values that differ by greater than 3σ. To bring the binary components with discrepant rotational velocities into agreement would require the rotational axes to be inclined with respect to each other, and that at least one component is inclined with respect to the orbital plane. Alternatively, each component could be rotating at a different rate, even though they have similar spectral types. Both differing rotational velocities and inclinations have implications for binary star formation and evolution. We also investigate possible dynamical evolution in the triple system HD 130948A-BC. The close binary brown dwarfs B and C have significantly different v sin i values. We demonstrate that components B and C could have been torqued into misalignment by the primary star, A, via orbital precession. Such a scenario can also be applied to another triple system in our sample, GJ 569A-Bab. Interactions such as these may play an important role in the dynamical evolution of VLM binaries. Finally, we note that two of the binaries with large differences in component v sin i, LP 349-25AB and 2MASS 0746+20AB, are also known radio sources.
ROTATIONAL VELOCITIES OF INDIVIDUAL COMPONENTS IN VERY LOW MASS BINARIES
Konopacky, Q. M.; Macintosh, B. A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Ghez, A. M. [UCLA Division of Astronomy and Astrophysics, Los Angeles, CA 90095-1562 (United States); Fabrycky, D. C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); White, R. J. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Barman, T. S. [Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff, AZ 86001 (United States); Rice, E. L. [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (United States); Hallinan, G. [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Duchene, G., E-mail: macintosh1@llnl.gov, E-mail: konopacky@di.utoronto.ca, E-mail: ghez@astro.ucla.edu, E-mail: fabrycky@ucolick.org, E-mail: white@chara.gsu.edu, E-mail: barman@lowell.edu, E-mail: erice@amnh.org, E-mail: gh@astro.caltech.edu, E-mail: gduchene@berkeley.edu [Astronomy Department, University of California, Berkeley, Hearst Field Annex B-20, CA 94720-3411 (United States)
2012-05-01
We present rotational velocities for individual components of 11 very low mass (VLM) binaries with spectral types between M7 and L7.5. These results are based on observations taken with the near-infrared spectrograph, NIRSPEC, and the Keck II laser guide star adaptive optics system. We find that the observed sources tend to be rapid rotators (v sin i > 10 km s{sup -1}), consistent with previous seeing-limited measurements of VLM objects. The two sources with the largest v sin i, LP 349-25B and HD 130948C, are rotating at {approx}30% of their break-up speed, and are among the most rapidly rotating VLM objects known. Furthermore, five binary systems, all with orbital semimajor axes {approx}<3.5 AU, have component v sin i values that differ by greater than 3{sigma}. To bring the binary components with discrepant rotational velocities into agreement would require the rotational axes to be inclined with respect to each other, and that at least one component is inclined with respect to the orbital plane. Alternatively, each component could be rotating at a different rate, even though they have similar spectral types. Both differing rotational velocities and inclinations have implications for binary star formation and evolution. We also investigate possible dynamical evolution in the triple system HD 130948A-BC. The close binary brown dwarfs B and C have significantly different v sin i values. We demonstrate that components B and C could have been torqued into misalignment by the primary star, A, via orbital precession. Such a scenario can also be applied to another triple system in our sample, GJ 569A-Bab. Interactions such as these may play an important role in the dynamical evolution of VLM binaries. Finally, we note that two of the binaries with large differences in component v sin i, LP 349-25AB and 2MASS 0746+20AB, are also known radio sources.
Effect of rotation on a rotating hot-wire sensor
Hah, C.; Lakshminarayana, B.
1978-01-01
An investigation was conducted to discern the effects of centrifugal and Coriolis forces on a rotating hot-wire. The probe was calibrated in a wind tunnel as well as in a rotating mode. The effect of rotation was found to be negligibly small. A small change in cold resistance (1.5%) was observed in the rotating wire. The rotation seems to have a negligible effect on the fluid mechanics, heat transfer and material characteristics of the wire. This is a significant conclusion in view of the potential application of the hot-wire probe in a rotating passage (such as turbomachinery).
Schunck, Franz E
2008-01-01
We reconsider the nonlinear second order Abel equation of Stewart and Lyth, which follows from a nonlinear second order slow-roll approximation. We find a new eigenvalue spectrum in the blue regime. Some of the discrete values of the spectral index n_s have consistent fits to the cumulative COBE data as well as to recent ground-base CMB experiments.
Large Spectral Library Problem
Chilton, Lawrence K.; Walsh, Stephen J.
2008-10-03
Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra can be used to identify materials present in the image. In some cases, spectral libraries representing atmospheric chemicals or ground materials are available. The challenge is to determine if any of the library chemicals or materials exist in the hyperspectral image. The number of spectra in these libraries can be very large, far exceeding the number of spectral channels collected in the ¯eld. Suppose an image pixel contains a mixture of p spectra from the library. Is it possible to uniquely identify these p spectra? We address this question in this paper and refer to it as the Large Spectral Library (LSL) problem. We show how to determine if unique identi¯cation is possible for any given library. We also show that if p is small compared to the number of spectral channels, it is very likely that unique identi¯cation is possible. We show that unique identi¯cation becomes less likely as p increases.
Mocsy, Agnes [Department of Mathematics and Science, Pratt Institute, Brooklyn, NY 11205 (United States)
2009-11-01
In this talk I summarize the progress achieved in recent years on the understanding of quarkonium properties at finite temperature. Theoretical studies from potential models, lattice QCD, and effective field theories are discussed. I also highlight a bridge from spectral functions to experiment.
Rasmusson, Allan
2009-01-01
The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest befo...
Connors, G. Patrick
Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…
Connors, G. Patrick
Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…
Compact rotating cup anemometer
Wellman, J. B.
1968-01-01
Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.
Davies, Paul Charles William; Manogue, C A; Davies, Paul C W; Dray, Tevian; Manogue, Corinne A
1996-01-01
We derive conditions for rotating particle detectors to respond in a variety of bounded spacetimes and compare the results with the folklore that particle detectors do not respond in the vacuum state appropriate to their motion. Applications involving possible violations of the second law of thermodynamics are briefly addressed.
Rotationally Actuated Prosthetic Hand
Norton, William E.; Belcher, Jewell G., Jr.; Carden, James R.; Vest, Thomas W.
1991-01-01
Prosthetic hand attached to end of remaining part of forearm and to upper arm just above elbow. Pincerlike fingers pushed apart to degree depending on rotation of forearm. Simpler in design, simpler to operate, weighs less, and takes up less space.
Spectral-collocation variational integrators
Li, Yiqun; Wu, Boying; Leok, Melvin
2017-03-01
Spectral methods are a popular choice for constructing numerical approximations for smooth problems, as they can achieve geometric rates of convergence and have a relatively small memory footprint. In this paper, we introduce a general framework to convert a spectral-collocation method into a shooting-based variational integrator for Hamiltonian systems. We also compare the proposed spectral-collocation variational integrators to spectral-collocation methods and Galerkin spectral variational integrators in terms of their ability to reproduce accurate trajectories in configuration and phase space, their ability to conserve momentum and energy, as well as the relative computational efficiency of these methods when applied to some classical Hamiltonian systems. In particular, we note that spectrally-accurate variational integrators, such as the Galerkin spectral variational integrators and the spectral-collocation variational integrators, combine the computational efficiency of spectral methods together with the geometric structure-preserving and long-time structural stability properties of symplectic integrators.
Artificial spectral filtering in dissipative soliton fiber lasers with invisible bandpass filters
Kong Ling-Jie; Xiao Xiao-Sheng; Yang Chang-Xi
2012-01-01
We numerically study the artificial spectral-filtering effect in dissipative soliton fiber lasers without intracavity spectral filters.It is found that in dissipative soliton lasers with real saturable absorbers (SAs),the dynamic spectral filtering of the real SAs serves as an artificial spectral filter and contributes to the pulse shaping.While in the dissipative soliton lasers with artificial SAs,such as nonlinear polarization rotation,the spectral filtering introduced by the intracavity polarization-dependent components acts as an artificial spectral filter and shapes the pulses to obtain modelocking. An investigation of the artificial spectral-filtering effect reveals the operating mechanisms of the dissipative soliton fiber lasers without visible bandpass filters.
The Radio Activity-Rotation Relation of Ultracool Dwarfs
McLean, M; Reiners, A
2011-01-01
[Abridged] We present a new radio survey of about 100 late-M and L dwarfs undertaken with the VLA. The sample was chosen to explore the role of rotation in the radio activity of ultracool dwarfs. Combining the new sample with results from our previous studies and from the literature, we compile the largest sample to date of ultracool dwarfs with radio observations and measured rotation velocities (167 objects). In the spectral type range M0-M6 we find a radio activity-rotation relation, with saturation at log(L_rad/L_bol) 10^(-7.5) above vsini~5 km/s, similar to the relation in H-alpha and X-rays. However, at spectral types >M7 the ratio of radio to bolometric luminosity increases regardless of rotation velocity, and the scatter in radio luminosity increases. In particular, while the most rapid rotators (vsini>20 km/s) exhibit "super-saturation" in X-rays and H-alpha, this effect is not seen in the radio. We also find that ultracool dwarfs with vsini>20 km/s have a higher radio detection fraction by about a f...
Rotationally resolved spectroscopy of dwarf planet (136472) Makemake
Lorenzi, V; Licandro, J
2015-01-01
Context. Icy dwarf planets are key for studying the chemical and physical states of ices in the outer solar system. The study of secular and rotational variations gives us hints of the processes that contribute to the evolution of their surface. Aims. The aim of this work is to search for rotational variability on the surface composition of the dwarf planet (136472) Makemake Methods. We observed Makemake in April 2008 with the medium-resolution spectrograph ISIS, at the William Herschel Telescope (La Palma, Spain) and obtained a set of spectra in the 0.28 - 0.52 {\\mu}m and 0.70 - 0.95 {\\mu}m ranges, covering 82% of its rotational period. For the rotational analysis, we organized the spectra in four different sets corresponding to different rotational phases, and after discarding one with low signal to noise, we analyzed three of them that cover 71% of the surface. For these spectra we computed the spectral slope and compared the observed spectral bands of methane ice with reflectances of pure methane ice to s...
Applicability of spectral indices on thickness identification of oil slick
Niu, Yanfei; Shen, Yonglin; Chen, Qihao; Liu, Xiuguo
2016-10-01
Hyperspectral remote sensing technology has played a vital role in the identification and monitoring of oil spill events, and amount of spectral indices have been developed. In this paper, the applicability of six frequently-used indices is analyzed, and a combination of spectral indices in aids of support vector machine (SVM) algorithm is used to identify the oil slicks and corresponding thickness. The six spectral indices are spectral rotation (SR), spectral absorption depth (HI), band ratio of blue and green (BG), band ratio of BG and shortwave infrared index (BGN), 555nm and 645nm normalized by the blue band index (NB) and spectral slope (ND). The experimental study is conducted in the Gulf of Mexico oil spill zone, with Airborne Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery captured in May 17, 2010. The results show that SR index is the best in all six indices, which can effectively distinguish the thickness of the oil slick and identify it from seawater; HI index and ND index can obviously distinguish oil slick thickness; BG, BGN and NB are more suitable to identify oil slick from seawater. With the comparison among different kernel functions of SVM, the classify accuracy show that the polynomial and RBF kernel functions have the best effect on the separation of oil slick thickness and the relatively pure seawater. The applicability of spectral indices of oil slick and the method of oil film thickness identification will in aids of oil/gas exploration and oil spill monitoring.
A new approach to the study of quasi-normal modes of rotating stars
Ferrari, V; Marassi, S
2007-01-01
We propose a new method to study the quasi-normal modes of rotating relativistic stars. Oscillations are treated as perturbations in the frequency domain of the stationary, axisymmetric background describing a rotating star. The perturbed quantities are expanded in circular harmonics, and the resulting 2D-equations they satisfy are integrated using spectral methods in the (r,theta)-plane. The asymptotic conditions at infinity, needed to find the mode frequencies, are implemented by generalizing the standing wave boundary condition commonly used in the non rotating case. As a test, the method is applied to find the quasi-normal mode frequencies of a slowly rotating star.
Vega is a rapidly rotating star
Peterson, D M; Pauls, T A; Armstrong, J T; Benson, J A; Gilbreath, G C; Hindsley, R B; Hutter, D J; Johnston, K J; Mozurkewich, D; Schmitt, H R
2006-01-01
Vega, the second brightest star in the northern hemisphere, serves as a primary spectral type standard. While its spectrum is dominated by broad hydrogen lines, the narrower lines of the heavy elements suggested slow to moderate rotation, giving confidence that the ground-based calibration of its visibile spectrum could be safely extrapolated into the ultraviolet and near-infrared (through atmosphere models), where it also serves as the primary photometric calibrator. But there have been problems: the star is too bright compared to its peers and it has unusually shaped absorption line profiles, leading some to suggest that it is a distorted, rapidly rotating star seen pole-on. Here we report optical interferometric observations of Vega which detect the asymmetric brightness distribution of the bright, slightly offset polar axis of a star rotating at 93% of breakup speed. In addition to explaining the unusual brightness and line shape pecularities, this result leads to the prediction of an excess of near-infra...
Wavelength conversion based spectral imaging
Dam, Jeppe Seidelin
There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....
Wave-driven Rotation in Supersonically Rotating Mirrors
A. Fetterman and N.J. Fisch
2010-02-15
Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.
Analysis of Saturnian planetary rotation following the knowledge on Jovian radio emission
Boudjada, Mohammed Y.; Galopeau, Patrick H. M.; Sawas, Sami; Lammer, Helmut
2017-04-01
We report on the Saturnian Radio Emission (SRE) recorded at Saturn by the Cassini Radio and Plasma Wave Science experiment (RPWS). We attempt to estimate the planetary rotation by applying the spectral method previously considered for the Jupiter radio emissions. This technique consists to distinguish between the spectral patterns occurring during one full Jovian rotation. Hence symmetrical features act around the axis of the planetary magnetic field due to the hollow cone beam. Therefore arc shapes appear with different orientations, i.e. vertex-early and -late arcs. This spectral 'symmetry' is fortified by the inclination between the geographical and the magnetic axes. The Saturnian radio emissions exhibit more spectral complexity because both axes (.i.e. magnetic and geographic) are quasi-aligned. Arc shapes are not frequently observed as in the case of Jupiter. We illustrate in our analysis that there is possibility to separate between Saturnian planetary rotations. Their occurrences are compared to the classic technique based on the variation of the Saturnian Kilometric Radiation (SKR) versus the sub-solar phase and the observation time (Kurth et al., JGR, 113, 2008). We discuss and we show that in several cases the planetary rotation accuracy is less than few minutes when combining both methods. We emphasize on spectral features by showing that the SRE and the SKR exhibit similar planetary rotation despite a difference in the emission frequency range.
Context Dependent Spectral Unmixing
2014-08-01
International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa , July 2009. HONORS AND AWARDS: 1. IEEE Outstanding CECS Student Award...COMMEND on the Usgs1C2M3 data across the 25 runs and at all noise levels: (a) SME , (b) SMAE, (c) AME. . . . . . . . . . . . . . 59 6.10 True (solid lines...identifying multiple sets of endmembers. In other words, the unmixing process is adapted to different regions of the spectral space. Another challenge with most
Rotator Cuff Injuries - Multiple Languages
... Are Here: Home → Multiple Languages → All Health Topics → Rotator Cuff Injuries URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotator Cuff Injuries - Multiple Languages To use the sharing features ...
Spectral Representation Theory for Dielectric Behavior of Nonspherical Cell Suspensions
HUANG Ji-Ping; YU Kin-Wah; LEI Jun; SUN Hong
2002-01-01
Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, while the high-frequency one was independent of it. The cell shape effect was simulated by an ellipsoidal cell model but the comparison between theory and experiment was far from being satisfactory. Prompted by the discrepancy, we proposed the use of spectral representation to analyze more realistic cell models. We adopted a shell-spheroidal model to analyze the effects of the cell membrane. It is found that the dielectric property of the cell membrane has only a minor effect on the dispersion magnitude ratio and the characteristic frequency ratio. We further included the effect of rotation of dipole induced by an external electric field, and solved the dipole-rotation spheroidal model in the spectral representation.Good agreement between theory and experiment has been obtained.
[Full-field and automatic methodology of spectral calibration for PGP imaging spectrometer].
Sun, Ci; Bayanheshig; Cui, Ji-cheng; Pan, Ming-zhong; Li, Xiao-tian; Tang, Yu-guo
2014-08-01
In order to analyze spectral data quantitatively which is obtained by prism-grating-prism imaging spectrometer, spectral calibration is required in order to determine spectral characteristics of PGP imaging spectrometer, such as the center wavelength of every spectral channel, spectral resolution and spectral bending. A spectral calibration system of full field based on collimated monochromatic light method is designed. Spherical mirror is used to provide collimated light, and a freely sliding and rotating folding mirror is adopted to change the angle of incident light in order to realize full field and automatic calibration of imaging spectrometer. Experiments of spectral calibration have been done for PGP imaging spectrometer to obtain parameters of spectral performance, and accuracy analysis combined with the structural features of the entire spectral calibration system have been done. Analysis results indicate that spectral calibration accuracy of the calibration system reaches 0.1 nm, and the bandwidth accuracy reaches 1.3%. The calibration system has merits of small size, better commonality, high precision and so on, and because of adopting the control of automation, the additional errors which are caused by human are avoided. The calibration system can be used for spectral calibration of other imaging spectrometers whose structures are similar to PGP.
S. Wittig
1998-01-01
Full Text Available Cooling of high speed rotating components is a typical situation found in turbomachinery as well as in automobile engines. Accurate knowledge of discharge coefficients and heat transfer of related components is essential for the high performance of the whole engine. This can be achieved by minimized cooling air flows and avoidance of hot spots. In high speed rotating clutches for example aerodynamic investigations improving heat transfer have not been considered in the past. Advanced concepts of modern plate design try to reduce thermal loads by convective cooling methods. Therefore, secondary cooling air flows have to be enhanced by an appropriate design of the rotor stator system with orifices. CFD modelling is used to improve the basic understanding of the flow field in typical geometries used in these systems.
Rasmusson, Allan
2009-01-01
is obeyed by randomizing the orientation of the virtual probe itself within the thick section. Overall, the benefit is that positional information is kept for any block and section of the specimen. As the Spatial Rotator is a 3D probe, data must be gathered from sections thicker than 25 micro meters to form......The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...... it is embedded and sectioned. This has the unfortunate side effect that all information about positioning within the object is lost for blocks and sections. For complex tissue, like the mammalian brain, this information is of utmost importance to ensure measurements are performed in the correct region...
Earth rotation and geodynamics
Bogusz, Janusz; Brzezinski, Aleksander; Kosek, Wieslaw; Nastula, Jolanta
2015-12-01
This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals with monitoring of geodynamic phenomena. It contains analysis of geodynamic networks of local, and regional scale using space (GNSS and SLR) techniques, Earth tides monitoring with gravimeters and water-tube hydrostatic clinometer, and the determination of secular variation of the Earth' magnetic field.
Rotational spectrum of tryptophan
Sanz, M. Eugenia, E-mail: maria.sanz@kcl.ac.uk; Cabezas, Carlos, E-mail: ccabezas@qf.uva.es; Mata, Santiago, E-mail: santiago.mata@uva.es; Alonso, Josè L., E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)
2014-05-28
The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.
Rotational Spectrum of Tryptophan
Sanz, M. Eugenia; Cabezas, Carlos; Mata, Santiago; Alonso, José L.
2014-06-01
The rotational spectrum of the natural amino acid tryptophan has been observed using a recently constructed LA-MB-FTMW spectrometer, specifically designed to optimize the detection of heavier molecules at a lower frequency range. Independent analyses of the rotational spectra of individual conformers have conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The experimental values of the 14N nuclear quadrupole coupling constants have been found capital in the discrimination of the conformers. Both observed conformers are stabilized by a O-H\\cdotsN hydrogen bond in the side chain and a N-H\\cdotsπ interaction forming a chain that reinforces the strength of hydrogen bonds through cooperative effects.
A Translational Polarization Rotator
Chuss, David T; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah
2012-01-01
We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident linear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.
Costella, J P; Rawlinson, A A; Costella, John P.; Kellar, Bruce H. J. Mc; Rawlinson, Andrew A.
2001-01-01
We review why the Thomas rotation is a crucial facet of special relativity, that is just as fundamental, and just as "unintuitive" and "paradoxical", as such traditional effects as length contraction, time dilation, and the ambiguity of simultaneity. We show how this phenomenon can be quite naturally introduced and investigated in the context of a typical introductory course on special relativity, in a way that is appropriate for, and completely accessible to, undergraduate students. We also demonstrate, in a more advanced section aimed at the graduate student studying the Dirac equation and relativistic quantum field theory, that careful consideration of the Thomas rotation will become vital as modern experiments in particle physics continue to move from unpolarized to polarized cross-sections.
Rotator cuff tendon connections with the rotator cable.
Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo
2017-07-01
The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.
Properties of Rotating Neutron Star
Shailesh K. Singh
2015-08-01
Full Text Available Using the nuclear equation of states for a large variety of relativistic and non-relativistic force parameters, we calculate the static and rotating masses and radii of neutron stars. From these equation of states, we evaluate the properties of rotating neutron stars, such as rotational frequencies, moment of inertia, quadrupole deformation parameter, rotational ellipticity and gravitational wave strain amplitude. The estimated gravitational wave strain amplitude of the star is found to be~sim 10-23.
Broadband Rotational Spectroscopy
Pate, Brooks
2014-06-01
The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De
Allouche, Erez; Jaganathan, Arun P.
2016-10-11
The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.
Dobrovolskis, Anthony R.; Cuzzi, Jeffrey N. (Technical Monitor)
1995-01-01
The shape and spin of Neptune's outermost satellite Nereid are still unknown. Ground-based photometry indicates large brightness variations, but different observers report very different lightcurve amplitudes and periods. On the contrary, Voyager 2 images spanning 12 days show no evidence of variations greater than 0.1 mag. The latter suggest either that Nereid is nearly spherical, or that it is rotating slowly. We propose that tides have already despun Nereid's rotation to a period of a few weeks, during the time before the capture of Triton when Nereid was closer to Neptune. Since Nereid reached its present orbit, tides have further despun Nereid to a period on the order of a month. For Nereid's orbital eccentricity of 0.75, tidal evolution ceases when the spin period is still approximately 1/8 of the orbital period. Furthermore, the synchronous resonance becomes quite weak for such high eccentricities, along with other low-order spin orbit commensurabilities. In contrast, high-order resonances become very strong particularly the 6:1, 6.5:1, 7:1, 7.5:1, and 8:1 spin states. If Nereid departs by more than approximately 1% from a sphere, however, these resonances overlap, generating chaos. Our simulations show that Nereid is likely to be in chaotic rotation for any spin period longer than about 2 weeks.
Lee, S.Y.
1990-06-18
The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10{sup {minus}4} will be significant. 2 refs., 5 figs.
Bioreactor rotating wall vessel
2001-01-01
The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.
Bambi, Cosimo, E-mail: bambi@fudan.edu.cn; Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn
2013-04-25
The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this Letter, we apply the Newman–Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer–Lindquist coordinates. These special solutions are of Petrov type D, they are singularity free, but they violate the weak energy condition for a non-vanishing spin and their curvature invariants have different values at r=0 depending on the way one approaches the origin. We propose a natural prescription to have rotating solutions with a minimal violation of the weak energy condition and without the questionable property of the curvature invariants at the origin.
Bioreactor rotating wall vessel
2001-01-01
The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.
Coordinate-Free Rotation Operator.
Leubner, C.
1979-01-01
Suggests the use of a coordinate-free rotation operator for the teaching of rotations in Euclidean three space because of its twofold didactic advantage. Illustrates the potentialities of the coordinate-free rotation operator approach by a number of examples. (Author/GA)
Trenkler, G.; Trenkler, D.
2008-01-01
Using the elementary tools of matrix theory, we show that the product of two rotations in the three-dimensional Euclidean space is a rotation again. For this purpose, three types of rotation matrices are identified which are of simple structure. One of them is the identity matrix, and each of the other two types can be uniquely characterized by…
Solar Spectral Irradiance Variability in Cycle 24: Observations and Models
Marchenko, S V; Lean, J L
2016-01-01
Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265-500 nm during the on-going Cycle 24. We supplement the OMI data with concurrent observations from the GOME-2 and SORCE instruments and find fair-to-excellent, depending on wavelength, agreement among the observations and predictions of the NRLSSI2 and SATIRE-S models.
Differentially Rotating White Dwarfs I: Regimes of Internal Rotation
Ghosh, Pranab; Wheeler, J. Craig
2017-01-01
Most viable models of Type Ia supernovae (SNe Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SNe Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. Differential rotation is specifically invoked in attempts to account for the apparent excess mass in the super-Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly uniform rotation and strongly differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri ≤slant 0.1, we find both the low-viscosity Zahn regime with a nonmonotonic angular velocity profile and a new differential rotation regime for which the viscosity is high and scales linearly with the shear, σ. Employment of Kelvin–Helmholtz viscosity alone yields differential rotation. Large values of Ri ≫ 1 produce a regime of nearly uniform rotation for which the baroclinic viscosity is of intermediate value and scales as {σ }3. We discuss the gap in understanding of the behavior at intermediate values of Ri and how observations may constrain the rotation regimes attained by nature.
Rotation of cometary meteoroids
Čapek, D.
2014-08-01
Aims: The rotation of meteoroids caused by gas drag during the ejection from a cometary nucleus has not been studied yet. The aim of this study is to estimate the rotational characteristics of meteoroids after their release from a comet during normal activity. Methods: The basic dependence of spin rate on ejection velocity and meteoroid size is determined analytically. A sophisticated numerical model is then applied to meteoroids ejected from the 2P/Encke comet. The meteoroid shapes are approximated by polyhedrons, which have been determined by a 3D laser scanning method of 36 terrestrial rock samples. These samples come from three distinct sets with different origins and characteristics, such as surface roughness or angularity. Two types of gas-meteoroid interactions and three gas ejection models are assumed. The rotational characteristics of ejected meteoroid population are obtained by numerical integration of equations of motion with random initial conditions and random shape selection. Results: It is proved that the results do not depend on a specific set of shape models and that they are applicable to the (unknown) shapes of real meteoroids. A simple relationship between the median of meteoroid spin frequencies bar{f} (Hz), ejection velocities vej (m s-1), and sizes D (m) is determined. For diffuse reflection of gas molecules from meteoroid's surface it reads as bar{f≃ 2× 10-3 v_ej D-0.88}, and for specular reflection of gas molecules from meteoroid's surface it is bar{f≃ 5× 10-3 v_ej D-0.88}. The distribution of spin frequencies is roughly normal on log scale, and it is relatively wide: a 2σ-interval can be described as (0.1, 10)× bar{f}. Most of the meteoroids are non-principal axis rotators. The median angle between angular momentum vector and spin vector is 12°. About 60% of meteoroids rotate in long-axis mode. The distribution of angular momentum vectors is not random. They are concentrated in the perpendicular direction with respect to the gas
Age-rotation relationship for late-type main-sequence stars
Rengarajan, T. N.
1984-01-01
With advancing spectral type and increasing age, late main-sequence stars exhibit monotonic decrease in rotational velocity. It is of great interest to extend the rotation-age relationship to stars of later spectral type. In recent times it has become possible to measure directly the rotational periods from the photometric modulation by Ca II H and K line emission. There have also been successful attempts to relate the chromospheric activity as manifested through Ca II H and K lines to the rotation period, and it was shown that the fraction of total stellar luminosity in Ca II H and K lines, corrected for photospheric contribution, is a function of a single parameter related to P and B-V. In the present investigation, this rotation-activity relation is utilized to infer the rotation periods as a function of spectral type. The period versus B-V plot is employed as a basis to infer that the rotational period of main-sequence stars is a single-valued function of mass (B-V color) and age.
CISM Course on Rotating Fluids
1992-01-01
The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.
Counter-Rotating Accretion Discs
Dyda, Sergei; Lovelace, Richard V. E.; Ustyugova, Galina V.; Romanova, Marina M.; Koldoba, Alexander V.
2014-01-01
Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud onto the surface of an existing co-rotating disc or from the counter-rotating gas moving radially inward to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc center. We discuss high-resolution axisymmetric hydrodynamic simulations of a viscous counter-rotating disc for cases where the tw...
Rotation and surface abundance peculiarities in A-type stars
Takeda, Yoichi; Kang, Dong-Il; Lee, Byeong-Cheol; Kim, Kang-Min
2008-01-01
In an attempt of clarifying the connection between the photospheric abundance anomalies and the stellar rotation as well as of exploring the nature of "normal A" stars, the abundances of seven elements (C, O, Si, Ca, Ti, Fe, and Ba) and the projected rotational velocity for 46 A-type field stars were determined by applying the spectrum-fitting method to the high-dispersion spectral data obtained with BOES at BOAO. We found that the peculiarities (underabundances of C, O, and Ca; an overabundance of Ba) seen in slow rotators efficiently decrease with an increase of rotation, which almost disappear at v_e sin i > 100 km s^-1. This further suggests that stars with sufficiently large rotational velocity may retain the original composition at the surface without being altered. Considering the subsolar tendency (by several tenths dex below) exhibited by the elemental abundances of such rapidly-rotating (supposedly normal) A stars, we suspect that the gas metallicity may have decreased since our Sun was born, contra...
Rotational Velocities of Individual Components in Very Low Mass Binaries
Konopacky, Q M; Fabrycky, D C; Macintosh, B A; White, R J; Barman, T S; Rice, E L; Hallinan, G; Duchene, G
2012-01-01
We present rotational velocities for individual components of eleven very low mass (VLM) binaries with spectral types between M7 and L7.5. These results are based on observations taken with the near-infrared spectrograph, NIRSPEC, and the Keck II laser guide star adaptive optics (LGS AO) system. We find that the observed sources tend to be rapid rotators (vsini > 10 km/s), consistent with previous seeing-limited measurements of VLM objects. The two sources with the largest vsini, LP 349-25B and HD 130948C, are rotating at ~30% of their break up speed, and are among the most rapidly rotating VLM objects known. Furthermore, five binary systems, all with orbital semi-major axes <3.5 AU, have component vsini values that differ by greater than 3sigma. To bring the binary components with discrepant rotational velocities into agreement would require the rotational axes to be inclined with respect to each other, and that at least one component is inclined with respect to the orbital plane. Alternatively, each comp...
Spectral signatures of chirality
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...
Minfeng Gu; Y. L. Ai
2011-03-01
The optical variability of 29 flat spectrum radio quasars in SDSS Stripe 82 region are investigated by using DR7 released multi-epoch data. All FSRQs show variations with overall amplitude ranging from 0.24 mag to 3.46 mag in different sources. About half of FSRQs show a bluer-when-brighter trend, which is commonly observed for blazars. However, only one source shows a redder-when-brighter trend, which implies it is rare in FSRQs. In this source, the thermal emission may be responsible for the spectral behaviour.
Spectrally encoded confocal microscopy
Tearney, G.J.; Webb, R.H.; Bouma, B.E. [Wellman Laboratories of Photomedicine, Massachusetts General Hospital, 50 Blossom Street, BAR 703, Boston, Massachusetts 02114 (United States)
1998-08-01
An endoscope-compatible, submicrometer-resolution scanning confocal microscopy imaging system is presented. This approach, spectrally encoded confocal microscopy (SECM), uses a quasi-monochromatic light source and a transmission diffraction grating to detect the reflectivity simultaneously at multiple points along a transverse line within the sample. Since this method does not require fast spatial scanning within the probe, the equipment can be miniaturized and incorporated into a catheter or endoscope. Confocal images of an electron microscope grid were acquired with SECM to demonstrate the feasibility of this technique. {copyright} {ital 1998} {ital Optical Society of America}
Simultaneous measurement of mass and rotation of trapped absorbing particles in air
Bera, Sudipta K; Sil, Souvik; Saha, Tushar Kanti; Saha, Tanumoy; Banerjee, Ayan
2016-01-01
We trap absorbing micro-particles in air by photophoretic forces generated using a single loosely focused Gaussian trapping beam. We measure a component of the radial Brownian motion of a trapped particle cluster and determine the power spectral density, mean squared displacement, and normalized position and velocity autocorrelation functions in order to characterize the photophoretic body force in a quantitative fashion for the first time. The trapped particles also undergo spontaneous rotation due to the action of this force. This is evident from the spectral density that displays clear peaks at the rotation and the particles' inertial resonance frequencies. We fit the spectral density to the well-known analytical function derived from the Langevin equation, measure the resonance and rotation frequencies and determine values for particle mass that we verify at different trapping laser powers with reasonable accuracy.
Optically induced rotation of a quantum dot exciton spin
Poem, E; Kodriano, Y; Benny, Y; Khatsevich, S; Avron, J E; Gershoni, D
2011-01-01
We demonstrate control over the spin state of a semiconductor quantum dot exciton using a polarized picosecond laser pulse slightly detuned from a biexciton resonance. The control pulse follows an earlier pulse, which generates an exciton and initializes its spin state as a coherent superposition of its two non-degenerate eigenstates. The control pulse preferentially couples one component of the exciton state to the biexciton state, thereby rotating the exciton's spin direction. We detect the rotation by measuring the polarization of the exciton spectral line as a function of the time-difference between the two pulses. We show experimentally and theoretically how the angle of rotation depends on the detuning of the second pulse from the biexciton resonance.
Fabry-Perot enhanced Faraday rotation in graphene.
Ubrig, Nicolas; Crassee, Iris; Levallois, Julien; Nedoliuk, Ievgeniia O; Fromm, Felix; Kaiser, Michl; Seyller, Thomas; Kuzmenko, Alexey B
2013-10-21
We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of epitaxial multilayer graphene grown on the C-face of 6H-SiC, where the interference fringes are spectrally resolved and a Faraday rotation up to 0.15 radians (9°) is attained. Further, we discuss and compare other ways to increase the Faraday rotation using the principle of an optical cavity.
SHIELD II: WSRT HI Spectral Line Observations
Gordon, Alex Jonah Robert; Cannon, John M.; Adams, Elizabeth A.; SHIELD II Team
2016-01-01
The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We present new results from WSRT HI spectral line observations of 22 galaxies in the SHIELD II sample. We explore the morphology and kinematics by comparing images of the HI surface densities and the intensity weighted velocity fields with optical images from HST, SDSS, and WIYN. In most cases the HI and stellar populations are cospatial; projected rotation velocities range from less than 10 km/s to roughly 30 km/s.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College, and by NASA through grant GO-13750 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.
Le Doeuff, René
2013-01-01
In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives). General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I
Optical fiber rotation sensing
Burns, William K; Kelley, Paul
1993-01-01
Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t
Zeps, Dainis
2009-01-01
Using a notation of corner between edges when graph has a fixed rotation, i.e. cyclical order of edges around vertices, we define combinatorial objects - combinatorial maps as pairs of permutations, one for vertices and one for faces. Further, we define multiplication of these objects, that coincides with the multiplication of permutations. We consider closed under multiplication classes of combinatorial maps that consist of closed classes of combinatorial maps with fixed edges where each such class is defined by a knot. One class among them is special, containing selfconjugate maps.
Stellar counter-rotation in lenticular galaxy NGC 448
Katkov, Ivan Yu; Chilingarian, Igor V; Uklein, Roman I; Egorov, Oleg V
2016-01-01
The counter-rotation phenomenon in disc galaxies directly indicates a complex galaxy assembly history which is crucial for our understanding of galaxy physics. Here we present the complex data analysis for a lenticular galaxy NGC 448, which has been recently suspected to host a counter-rotating stellar component. We collected deep long-slit spectroscopic observations using the Russian 6-m telescope and performed the photometric decomposition of Sloan Digital Sky Survey (SDSS) archival images. We exploited (i) a non-parametric approach in order to recover stellar line-of-sight velocity distributions and (ii) a parametric spectral decomposition technique in order to disentangle stellar population properties of both main and counter-rotating stellar discs. Our spectral decomposition stays in perfect agreement with the photometric analysis. The counter-rotating component contributes $\\approx$30 per cent to the total galaxy light. We estimated its stellar mass to be $9.0^{+2.7}_{-1.8}\\cdot10^{9}M_\\odot$. The radia...
Effects of Faraday Rotation Observed in Filter Magnetograph Data
Hagyard, Mona J.; Adams, Mitzi L.; Smith, J. E.; West, Edward A.
1999-01-01
In this paper we analyze the effects of Faraday rotation on the azimuth of the transverse magnetic field from observations taken with the Marshall Space Flight Center's vector magnetograph for a simple sunspot observed on June 9, 1985. Vector magnetograms were obtained over the wavelength interval of 170 mA redward of line center of the Fe I 5250.22 A spectral line to 170 mA to the blue, in steps of 10 mA. These data were analyzed to produce the variation of the azimuth as a function of wavelength at each pixel over the field of vi ew of the sunspot. At selected locations in the sunspot, curves of the observed variation of azimuth with wavelength were compared with model calculations for the amount of Faraday rotation of the azimuth. From these comparisons we derived the amount of rotation as functions of bo th the magnitude and inclination of the sunspot's field and deduced the ranges of these field values for which Faraday rotation presents a significant problem in observations taken near the center of a spectral line.
Model for modulated and chaotic waves in zero-Prandtl-number rotating convection
Alaka Das; Krishna Kumar
2008-09-01
The effects of time-periodic forcing in a few-mode model for zero-Prandtl-number convection with rigid body rotation is investigated. The time-periodic modulation of the rotation rate about the vertical axis and gravity modulation are considered separately. In the presence of periodic variation of the rotation rate, the model shows modulated waves with a band of frequencies. The increase in the external forcing amplitude widens the frequency band of the modulated waves, which ultimately leads to temporally chaotic waves. The gravity modulation, on the other hand, with small frequencies, destroys the quasiperiodic waves at the onset and leads to chaos through intermittency. The spectral power density shows more power to a band of frequencies in the case of periodic modulation of the rotation rate. In the case of externally imposed vertical vibration, the spectral density has more power at lower frequencies. The two types of forcing show different routes to chaos.
Soft initial-rotation and HΦ robust constant rotational speed control for rotational MEMS gyro
Ma Gaoyin; Chen Wenyuan; Cui Feng; Zhang Weiping; Wang Liqi
2009-01-01
A novel soft initial-rotation control system and an Hoo robust constant rotational speed controller (RCRSC) for a rotational MEMS (micro-electro-mechanical system) gyro are presented. The soft initial-rotation control system can prevent the possible tumbling down of the suspended rotor and ensure a smooth and fast initial-rotation process. After the initial-rotation process, in order to maintain the rotational speed accurately constant, the RCRSC is acquired through the mixed sensitivity design approach. Simulation results show that the actuation voltage disturbances from the internal carrier waves in the gyro is reduced by more than 15.3 dB, and the speed fluctuations due to typical external vibrations ranging from 10 Hz to 200 Hz can also be restricted to 10-3 rad/s order.
Bambi, Cosimo
2013-01-01
The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this letter, we apply the Newman-Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer-Lindquist coordinates. These special solutions are of Petrov type ...
Gregory, Ruth; Wills, Danielle
2013-01-01
A Kerr black hole sporting cosmic string hair is studied in the context of the abelian Higgs model vortex. It is shown that a such a system displays much richer phenomenology than its static Schwarzschild or Reissner--Nordstrom cousins, for example, the rotation generates a near horizon `electric' field. In the case of an extremal rotating black hole, two phases of the Higgs hair are possible: Large black holes exhibit standard hair, with the vortex piercing the event horizon. Small black holes on the other hand, exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon. This solution however is extremely sensitive to confirm numerically, and we conjecture that it is unstable due to a supperradiant mechanism similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of the vortex, which turns out to be far more nuanced than a simple conical deficit. While the string produces a conical effect, it is con...
Rotge, J. R.; Simmons, B. J.; Kroncke, G. T.; Stech, D. J.
1986-05-01
Research efforts were concentrated on passive ring laser rotation sensor technology. Initial efforts were performed on supportive projects, e.g., laser stabilization, followed by a 0.62 sq m passive resonant ring laser gyro (PRRLG), leading to the development of a 60 sq m system mounted on the pneumatically supported isolation test platform (Iso-Pad) at FJSRL. Numerous sub-system tasks and a feasibility 0.62 sq m PRRLG were completed, supporting projections of very high resolution performance by a large 60 sq m PRRLG. The expected performance of the large PRRLG, on the order of 10 to the minus 10th power ERU (earth rate units), would provide an accurate error model applicable to Air Force operational ring laser gyros, a new source of geophysical data, e.g., earth wobble and variations in earth rotation, a proven design concept applicable to Air Force sensor needs as reference to MX instruments tests, and relativity experiments. This report documents the many accomplishments leading to, and the status of the large PRRLG at the date of the PRRLG stop order, November 1985.
Kissin, Yevgeni
2015-01-01
The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5 and $5\\,M_\\odot$, taking into account mass loss on the giant branches and the partitioning of angular momentum between the outer and inner envelope. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag as well as the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles $\\Omega(r)$ is considered in the deep convective envelope, ranging from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force on the inward pumping of angular momentum, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core ro...
Rotational Spectrum of Saccharine
Alonso, Elena R.; Mata, Santiago; Alonso, José L.
2017-06-01
A significant step forward in the structure-activity relationships of sweeteners was the assignment of the AH-B moiety in sweeteners by Shallenberger and Acree. They proposed that all sweeteners contain an AH-B moiety, known as glucophore, in which A and B are electronegative atoms separated by a distance between 2.5 to 4 Å. H is a hydrogen atom attached to one of the electronegative atom by a covalent bond. For saccharine, one of the oldest artificial sweeteners widely used in food and drinks, two possible B moieties exist ,the carbonyl oxygen atom and the sulfoxide oxygen atom although there is a consensus of opinion among scientists over the assignment of AH-B moieties to HN-SO. In the present work, the solid of saccharine (m.p. 220°C) has been vaporized by laser ablation (LA) and its rotational spectrum has been analyzed by broadband CP-FTMW and narrowband MB-FTMW Fourier transform microwave techniques. The detailed structural information extracted from the rotational constants and ^{14}N nuclear quadrupole coupling constants provided enough information to ascribe the glucophore's AH and B sites of saccharine. R. S. Shallenberger, T. E. Acree. Nature 216, 480-482 Nov 1967. R. S. Shallenberger. Taste Chemistry; Blackie Academic & Professional, London, (1993).
Moo-Yeon Lee
2012-01-01
Full Text Available We developed and tested a novel rotation scanner for nano resolution and accurate rotary motion about the rotation center. The scanner consists of circular hinges and leaf springs so that the parasitic error at the center of the scanner in the X and Y directions is minimized, and rotation performance is optimized. Each sector of the scanner's system was devised to have nano resolution by minimizing the parasitic errors of the rotation center that arise due to displacements other than rotation. The analytic optimal design results of the proposed scanner were verified using finite element analyses. The piezoelectric actuators were used to attain nano-resolution performances, and a capacitive sensor was used to measure displacement. A feedback controller was used to minimize the rotation errors in the rotation scanner system under practical conditions. Finally, the performance evaluation test results showed that the resonance frequency was 542 Hz, the resolution was 0.09 μrad, and the rotation displacement was 497.2 μrad. Our test results revealed that the rotation scanner exhibited accurate rotation about the center of the scanner and had good nano precision.
On Differential Rotation and Overshooting in Solar-like Stars
Brun, Allan Sacha; Strugarek, Antoine; Varela, Jacobo; Matt, Sean P.; Augustson, Kyle C.; Emeriau, Constance; DoCao, Olivier Long; Brown, Benjamin; Toomre, Juri
2017-02-01
We seek to characterize how the change of global rotation rate influences the overall dynamics and large-scale flows arising in the convective envelopes of stars covering stellar spectral types from early G to late K. We do so through numerical simulations with the ASH code, where we consider stellar convective envelopes coupled to a radiative interior with various global properties. As solar-like stars spin down over the course of their main sequence evolution, such a change must have a direct impact on their dynamics and rotation state. We indeed find that three main states of rotation may exist for a given star: anti-solar-like (fast poles, slow equator), solar-like (fast equator, slow poles), or a cylindrical rotation profile. Under increasingly strict rotational constraints, the last profile can further evolve into a Jupiter-like profile, with alternating prograde and retrograde zonal jets. We have further assessed how far the convection and meridional flows overshoot into the radiative zone and investigated the morphology of the established tachocline. Using simple mixing length arguments, we are able to construct a scaling of the fluid Rossby number {R}{of}=\\tilde{ω }/2{{{Ω }}}* ∼ \\tilde{v}/2{{{Ω }}}* {R}* , which we calibrate based on our 3D ASH simulations. We can use this scaling to map the behavior of differential rotation versus the global parameters of stellar mass and rotation rate. Finally, we isolate a region on this map (R of ≳ 1.5–2) where we posit that stars with an anti-solar differential rotation may exist in order to encourage observers to hunt for such targets.
The rotation curves of gas and stars
Westfall, Kyle; Bershady, Matthew A.; MaNGA Team
2016-01-01
In its first year alone, the SDSS-IV/MaNGA survey has provided kinematic data useful for determining the rotation curves of both the ionized-gas and stellar components for hundreds of disk galaxies. We use these data to study the well-known Tully-Fisher relation in the local Universe, as well as the difference between the ionized-gas and stellar rotation curves in a novel study of asymmetric drift. The physical scenario for the latter is that gas efficiently dissipates energy allowing it to settle toward the circular speed of the galactic potential, whereas the stellar ensemble orbits more slowly because stars are collisionless and retain any non-circular motions accrued over their dynamical history. In disk galaxies with line-of-sight velocity dispersions that are well-measured with MaNGA's moderate spectral resolution, we demonstrate the correlation between asymmetric drift and stellar velocity dispersion, as expected by the dynamical relation between the two via the stellar phase-space distribution function. This correlation is consistent with measurements obtained at higher spectral resolution by the DiskMass Survey, and it allows us to leverage asymmetric drift to provide stellar velocity dispersion estimates that probe well below the instrumental dispersion. These velocity dispersion measurements can then be used to estimate the dynamical mass surface density of the baryon-dominated disk (Bershady et al. 2010, 2011). Thus, by combining our circular-speed data --- which yield a well-defined Tully-Fisher relation that is consistent with literature studies --- and our measurements of asymmetric drift, we discuss the implications for the dark-matter mass fractions of our galaxy sample. Statistically, our results are consistent with previous claims (e.g., Martinsson et al. 2013) that dark matter is a significant, even dominant, mass component within the effective radius of disk galaxies.
Bifurcations of rotating waves in rotating spherical shell convection.
Feudel, F; Tuckerman, L S; Gellert, M; Seehafer, N
2015-11-01
The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Bénard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered.
Visualizing rotations and composition of rotations with the Rodrigues vector
Valdenebro, Angel G.
2016-11-01
The purpose of this paper is to show that the mathematical treatment of three-dimensional rotations can be simplified, and its geometrical understanding improved, using the Rodrigues vector representation. We present a novel geometrical interpretation of the Rodrigues vector. Based on this interpretation and simple geometrical considerations, we derive the Euler-Rodrigues formula, Cayley’s rotation formula and the composition law for finite rotations. The level of this discussion should be suitable for undergraduate physics or engineering courses where rotations are discussed.
Kurban, Mark R
2013-02-21
Picosecond rotational correlation times of perdeuterated tempone (PDT) are found in alkane and aromatic liquids by directly using the spectral width of the central electron paramagnetic resonance line. This is done by mathematically eliminating the nonsecular spectral density from the spectral parameter equations, thereby removing the need to assume a particular form for it. This is preferable to fitting a constant correction factor to the spectral density, because such a factor does not fit well in the low picosecond range. The electron-nuclear spin dipolar interaction between the probe and solvent is shown to be negligible for the very rapid rotation of PDT in these liquids at the temperatures of the study. The rotational correlation times obtained with the proposed method generally agree to within experimental uncertainty with those determined by using the traditional parameters. Using the middle line width offers greater precision and smoother trends. Previous work with the central line width is discussed, and past discrepancies are explained as possibly resulting from residual inhomogeneous broadening. The rotational correlation time almost forms a common curve across all of the solvents when plotted with respect to isothermal compressibility, which shows the high dependence of rotation on liquid free volume.
Exoplanetary Detection by Multifractal Spectral Analysis
Agarwal, Sahil; Del Sordo, Fabio; Wettlaufer, John S.
2017-01-01
Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source of information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio ≥ 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.
Multivariate Analysis of Solar Spectral Irradiance Measurements
Pilewskie, P.; Rabbette, M.
2001-01-01
Principal component analysis is used to characterize approximately 7000 downwelling solar irradiance spectra retrieved at the Southern Great Plains site during an Atmospheric Radiation Measurement (ARM) shortwave intensive operating period. This analysis technique has proven to be very effective in reducing a large set of variables into a much smaller set of independent variables while retaining the information content. It is used to determine the minimum number of parameters necessary to characterize atmospheric spectral irradiance or the dimensionality of atmospheric variability. It was found that well over 99% of the spectral information was contained in the first six mutually orthogonal linear combinations of the observed variables (flux at various wavelengths). Rotation of the principal components was effective in separating various components by their independent physical influences. The majority of the variability in the downwelling solar irradiance (380-1000 nm) was explained by the following fundamental atmospheric parameters (in order of their importance): cloud scattering, water vapor absorption, molecular scattering, and ozone absorption. In contrast to what has been proposed as a resolution to a clear-sky absorption anomaly, no unexpected gaseous absorption signature was found in any of the significant components.
Rectangular spectral collocation
Driscoll, Tobin A.
2015-02-06
Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.
Spectral disentangling with Spectangular
Sablowski, Daniel P.; Weber, Michael
2017-01-01
The paper introduces the software Spectangular for spectral disentangling via singular value decomposition with global optimisation of the orbital parameters of the stellar system or radial velocities of the individual observations. We will describe the procedure and the different options implemented in our program. Furthermore, we will demonstrate the performance and the applicability using tests on artificial data. Additionally, we use high-resolution spectra of Capella to demonstrate the performance of our code on real-world data. The novelty of this package is the implemented global optimisation algorithm and the graphical user interface (GUI) for ease of use. We have implemented the code to tackle SB1 and SB2 systems with the option of also dealing with telluric (static) lines. Based in part on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC.
Spectral Classification Beyond M
Leggett, S K; Burgasser, A J; Jones, H R A; Marley, M S; Tsuji, T
2004-01-01
Significant populations of field L and T dwarfs are now known, and we anticipate the discovery of even cooler dwarfs by Spitzer and ground-based infrared surveys. However, as the number of known L and T dwarfs increases so does the range in their observational properties, and difficulties have arisen in interpreting the observations. Although modellers have made significant advances, the complexity of the very low temperature, high pressure, photospheres means that problems remain such as the treatment of grain condensation as well as incomplete and non-equilibrium molecular chemistry. Also, there are several parameters which control the observed spectral energy distribution - effective temperature, grain sedimentation efficiency, metallicity and gravity - and their effects are not well understood. In this paper, based on a splinter session, we discuss classification schemes for L and T dwarfs, their dependency on wavelength, and the effects of the parameters T_eff, f_sed, [m/H] and log g on optical and infra...
Spectral disentangling with Spectangular
Sablowski, Daniel P
2016-01-01
The paper introduces the software Spectangular for spectral disentangling via singular value decomposition with global optimisation of the orbital parameters of the stellar system or radial velocities of the individual observations. We will describe the procedure and the different options implemented in our program. Furthermore, we will demonstrate the performance and the applicability using tests on artificial data. Additionally, we use high-resolution spectra of Capella to demonstrate the performance of our code on real-world data. The novelty of this package is the implemented global optimisation algorithm and the graphical user interface (GUI) for ease of use. We have implemented the code to tackle SB1 and SB2 systems with the option of also dealing with telluric (static) lines.
Spectral proper orthogonal decomposition
Sieber, Moritz; Paschereit, Christian Oliver
2015-01-01
The identification of coherent structures from experimental or numerical data is an essential task when conducting research in fluid dynamics. This typically involves the construction of an empirical mode base that appropriately captures the dominant flow structures. The most prominent candidates are the energy-ranked proper orthogonal decomposition (POD) and the frequency ranked Fourier decomposition and dynamic mode decomposition (DMD). However, these methods fail when the relevant coherent structures occur at low energies or at multiple frequencies, which is often the case. To overcome the deficit of these "rigid" approaches, we propose a new method termed Spectral Proper Orthogonal Decomposition (SPOD). It is based on classical POD and it can be applied to spatially and temporally resolved data. The new method involves an additional temporal constraint that enables a clear separation of phenomena that occur at multiple frequencies and energies. SPOD allows for a continuous shifting from the energetically ...
SPECTRAL ANALYSIS OF RADIOXENON
Cooper, Matthew W.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; McIntyre, Justin I.; Schrom, Brian T.
2008-09-23
Monitoring changes in atmospheric radioxenon concentrations is a major tool in the detection of an underground nuclear explosion. Ground based systems like the Automated Radioxenon Sampler /Analyzer (ARSA), the Swedish Unattended Noble gas Analyzer (SAUNA) and the Automatic portable radiometer of isotopes Xe (ARIX), can collect and detect several radioxenon isotopes by processing and transferring samples into a high efficiency beta-gamma coincidence detector. The high efficiency beta-gamma coincidence detector makes these systems highly sensitive to the radioxenon isotopes 133Xe, 131mXe, 133mXe and 135Xe. The standard analysis uses regions of interest (ROI) to determine the amount of a particular radioxenon isotope present. The ROI method relies on the peaks of interest falling within energy limits of the ROI. Some potential problems inherent in this method are the reliance on stable detector gains and a fixed resolution for each energy peak. In addition, when a high activity sample is measured there will be more interference among the ROI, in particular within the 133Xe, 133mXe, and 131mXe regions. A solution to some of these problems can be obtained through spectral fitting of the data. Spectral fitting is simply the fitting of the peaks using known functions to determine the number and relative peak positions and widths. By knowing this information it is possible to determine which isotopes are present. Area under each peak can then be used to determine an overall concentration for each isotope. Using the areas of the peaks several key detector characteristics can be determined: efficiency, energy calibration, energy resolution and ratios between interfering isotopes (Radon daughters).
Spectral unmixing: estimating partial abundances
Debba, Pravesh
2009-01-01
Full Text Available of spectral unmixing 3 End-member spectra and synthetic mixtures 4 Results 5 Conclusions Debba (CSIR) Spectral Unmixing LQM 2009 2 / 22 Background and Research Question If research could be as easy as eating a chocolate cake . . . Figure: Can you guess... the ingredients for this chocolate cake? Debba (CSIR) Spectral Unmixing LQM 2009 3 / 22 Background and Research Question Ingredients Quantity unsweetened chocolate unsweetened cocoa powder boiling water flour baking powder baking soda salt unsalted...
Triaxial rotation in atomic nuclei
CHEN Yong-Shou; GAO Zao-Chun
2009-01-01
The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.
Strongly magnetized rotating dipole in general relativity
Pétri, J.
2016-10-01
Context. Electromagnetic waves arise in many areas of physics. Solutions are difficult to find in the general case. Aims: We numerically integrate Maxwell equations in a 3D spherical polar coordinate system. Methods: Straightforward finite difference methods would lead to a coordinate singularity along the polar axis. Spectral methods are better suited for such artificial singularities that are related to the choice of a coordinate system. When the radiating object rotates like a star, for example, special classes of solutions to Maxwell equations are worthwhile to study, such as quasi-stationary regimes. Moreover, in high-energy astrophysics, strong gravitational and magnetic fields are present especially around rotating neutron stars. Results: To study such systems, we designed an algorithm to solve the time-dependent Maxwell equations in spherical polar coordinates including general relativity and quantum electrodynamical corrections to leading order. As a diagnostic, we computed the spin-down luminosity expected for these stars and compared it to the classical or non-relativistic and non-quantum mechanical results. Conclusions: Quantum electrodynamics leads to an irrelevant change in the spin-down luminosity even for a magnetic field of about the critical value of 4.4 × 109 T. Therefore the braking index remains close to its value for a point dipole in vacuum, namely n = 3. The same conclusion holds for a general-relativistic quantum electrodynamically corrected force-free magnetosphere.
Rotations, quaternions, and double groups
Altmann, Simon L
2005-01-01
This self-contained text presents a consistent description of the geometric and quaternionic treatment of rotation operators, employing methods that lead to a rigorous formulation and offering complete solutions to many illustrative problems.Geared toward upper-level undergraduates and graduate students, the book begins with chapters covering the fundamentals of symmetries, matrices, and groups, and it presents a primer on rotations and rotation matrices. Subsequent chapters explore rotations and angular momentum, tensor bases, the bilinear transformation, projective representations, and the g
Electronic Control Of Slow Rotations
Howard, David E.; Smith, Dennis A.
1992-01-01
Digital/analog circuit controls both angular position and speed of rotation of motor shaft with high precision. Locks angular position of motor to phase of rotation-command clock signal at binary submultiple of master clock signal. Circuit or modified version used to control precisely position and velocity of robotic manipulator, to control translation mechanism of crystal-growing furnace, to position hands of mechanical clock, or to control angular position and rate of rotation in any of large variety of rotating mechanisms.
Hanasoge, Shravan M.; Duvall, Thomas L., Jr.; Sreenivasan, Katepalli R.
2012-01-01
Convection in the solar interior is thought to comprise structures at a continuum of scales, from large to small. This conclusion emerges from phenomenological studies and numerical simulations though neither covers the proper range of dynamical parameters of solar convection. In the present work, imaging techniques of time-distance helioseismology applied to observational data reveal no long-range order in the convective motion. We conservatively bound the associated velocity magnitudes, as a function of depth and the spherical-harmonic degree l to be 20-100 times weaker than prevailing estimates within the wavenumber band l ux of a solar luminosity outwards? The Sun is seemingly a much faster rotator than previously thought, with advection dominated by Coriolis forces at scales l < 60.
Cohen, S.A.; Budny, R.V.; Corso, V.; Boychuck, J.; Grisham, L.; Heifetz, D.; Hosea, J.; Luyber, S.; Loprest, P.; Manos, D.
1984-07-01
A limiter with a specially contoured front face and the ability to rotate during tokamak discharges has been installed in a PLT pump duct. These features have been selected to handle the unique particle removal and heat load requirements of ICRF heating and lower-hybrid current-drive experiments. The limiter has been conditioned and commissioned in an ion-beam test stand by irradiation with 1 MW power, 200 ms duration beams of 40 keV hydrogen ions. Operation in PLT during ohmic discharges has proven the ability of the limiter to reduce localized heating caused by energetic electron bombardment and to remove about 2% of the ions lost to the PLT walls and limiters.
Rotational Baroclinic Adjustment
Holtegård Nielsen, Steen Morten
In stratified waters like those around Denmark there is a close correlation between the biology of the water masses and their structure and currents; this is known as dynamic biologicaloceanography. The currents are particularly strong near the fronts, which can be seen in several places throughout...... the reciprocal of the socalled Coriolis parameter, and the length scale, which is known as the Rossby radius. Also, because of their limited width currents influenced by rotation are quite persistent. The flow which results from the introduction of a surface level discontinuity across a wide channel is discussed...... of the numerical model a mechanism for the generation of along-frontal instabilities and eddies is suggested. Also, the effect of an irregular bathymetry is studied.Together with observations of wind and water levels some of the oceanographical observations from the old lightvessels are used to study...
Sporcularda rotator cuff problemleri
Guven, Osman; Guven, Zeynep; Gundes, Hakan; Yalcin, Selim
2004-01-01
Rotator cuff tendinitinin etyolojisinde genellikle birden çok faktörün kombinasyonu görülür. Yüzme, raket sporları ve fırlatma sporlarının özellikle gelişmiş ülkelerde giderek yaygınlaşması bu konuya olan ilginin artmasına sebep olmuştur. Eski konseptlerde aktif bir sporcuda tedavinin başarısı genellikle eski atletik seviyesine dönmesi ile ölçülürdü. Son zamanlarda atletik tekniklerin analizi, atroskopik evaluasyon gibi yeni bir Iükse sahip olmamız ve Iiteratürün yeniden gözden geçirilmesi il...
[Review of digital ground object spectral library].
Zhou, Xiao-Hu; Zhou, Ding-Wu
2009-06-01
A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.
TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE
Cébron, D.; Hollerbach, R., E-mail: david.cebron@ujf-grenoble.fr, E-mail: r.hollerbach@leeds.ac.uk [Institut für Geophysik, Sonneggstrasse 5, ETH Zürich, Zürich CH-8092 (Switzerland)
2014-07-01
Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere.
Modeling rigid magnetically rotated microswimmers: rotation axes, bistability, and controllability.
Meshkati, Farshad; Fu, Henry Chien
2014-12-01
Magnetically actuated microswimmers have recently attracted attention due to many possible biomedical applications. In this study we investigate the dynamics of rigid magnetically rotated microswimmers with permanent magnetic dipoles. Our approach uses a boundary element method to calculate a mobility matrix, accurate for arbitrary geometries, which is then used to identify the steady periodically rotating orbits in a co-rotating body-fixed frame. We evaluate the stability of each of these orbits. We map the magnetoviscous behavior as a function of dimensionless Mason number and as a function of the angle that the magnetic field makes with its rotation axis. We describe the wobbling motion of these swimmers by investigating how the rotation axis changes as a function of experimental parameters. We show that for a given magnetic field strength and rotation frequency, swimmers can have more than one stable periodic orbit with different rotation axes. Finally, we demonstrate that one can improve the controllability of these types of microswimmers by adjusting the relative angle between the magnetic field and its axis of rotation.
Regimes of Internal Rotation in Differentially Rotating White Dwarfs
Wheeler, J. Craig; Ghosh, Pranab
2017-01-01
Most viable models of Type Ia supernovae (SN Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SN Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. Differential rotation is specifically invoked in attempts to account for the apparent excess mass in the super--Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly-uniform and strongly-differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri > 1 produce a regime of nearly-uniform rotation for which the baroclinic viscosity is of intermediate value and scales as σ3. We discuss the gap in understanding of the behavior at intermediate values of Ri and how observations may constrain the rotation regimes attained by nature.
Unidirectional Rotation of Molecules Measured by the Rotational Doppler Effect
Prior Yehiam
2013-03-01
Full Text Available A pair of linearly polarized pump pulses induce field-free unidirectional molecular rotation, which is detected by a delayed circularly polarized probe. The polarization and spectrum of the probe are modified by the interaction with the molecules, in accordance with the Rotational Doppler Effect.
Inertial waves in a differentially rotating spherical shell
Baruteau, C
2012-01-01
We investigate the properties of small-amplitude inertial waves propagating in a differentially rotating incompressible fluid contained in a spherical shell. For cylindrical and shellular rotation profiles and in the inviscid limit, inertial waves obey a second-order partial differential equation of mixed type. Two kinds of inertial modes therefore exist, depending on whether the hyperbolic domain where characteristics propagate covers the whole shell or not. The occurrence of these two kinds of inertial modes is examined, and we show that the range of frequencies at which inertial waves may propagate is broader than with solid-body rotation. Using high-resolution calculations based on a spectral method, we show that, as with solid-body rotation, singular modes with thin shear layers following short-period attractors still exist with differential rotation. They exist even in the case of a full sphere. In the limit of vanishing viscosities, the width of the shear layers seems to weakly depend on the global bac...
Effect of heat flux on differential rotation in turbulent convection
Kleeorin, N
2006-01-01
We studied the effect of the turbulent heat flux on the Reynolds stresses in a rotating turbulent convection. To this end we solved a coupled system of dynamical equations which includes the equations for the Reynolds stresses, the entropy fluctuations and the turbulent heat flux. We used a spectral $\\tau$ approximation in order to close the system of dynamical equations. We found that the ratio of the contributions to the Reynolds stresses caused by the turbulent heat flux and the anisotropic eddy viscosity is of the order of $\\sim 10 (L_\\rho / l_0)^2$, where $l_{0}$ is the maximum scale of turbulent motions and $L_\\rho$ is the fluid density variation scale. This effect is crucial for the formation of the differential rotation and should be taken into account in the theories of the differential rotation of the Sun, stars and planets. In particular, we demonstrated that this effect may cause the differential rotation which is comparable with the typical solar differential rotation.
Aerts, C; Groot, P J; Degroote, P
2014-01-01
The Fourier Transform method is a popular tool to derive the rotational velocities of stars from their spectral line profiles. However, its domain of validity does not include line-profile variables with time-dependent profiles. We investigate the performance of the method for such cases, by interpreting the line-profile variations of spotted B stars, and of pulsating B tars, as if their spectral lines were caused by uniform surface rotation along with macroturbulence. We perform time-series analysis and harmonic least-squares fitting of various line diagnostics and of the outcome of several implementations of the Fourier Transform method. We find that the projected rotational velocities derived from the Fourier Transform vary appreciably during the pulsation cycle whenever the pulsational and rotational velocity fields are of similar magnitude. The macroturbulent velocities derived while ignoring the pulsations can vary with tens of km/s during the pulsation cycle. The temporal behaviour of the deduced rotat...
Ryabov, Yaroslav; Clore, G Marius; Schwieters, Charles D
2012-01-21
We present a general formalism for the computation of orientation correlation functions involving a molecular system undergoing rotational diffusion in the presence of transitions between discrete conformational states. In this formalism, there are no proscriptions on the time scales of conformational rearrangement relative to that for rotational diffusion, and the rotational diffusion tensors of the different states can be completely arbitrary. Although closed-form results are limited to the frequency domain, this is generally useful for many spectroscopic observables as the result allows the computation of the spectral density function. We specialize the results for the computation of the frequency-domain correlation function associated with the NMR relaxation.
The Rotational Excitation Temperature of the $\\lambda$6614 Diffuse Interstellar Band Carrier
Cami, J; Jiménez-Vicente, J; Galazutdinov, G A; Krelowski, J
2004-01-01
Analysis of high spectral resolution observations of the $\\lambda$6614 diffuse interstellar band (DIB) line profile show systematic variations in the positions of the peaks in the substructure of the profile. These variations -- shown here for the first time -- can be understood most naturally in the framework of rotational contours of large molecules, where the variations are caused by changes in the rotational excitation temperature. We show that the rotational excitation temperature for the DIB carrier is likely significantly lower than the gas kinetic temperature -- indicating that for this particular DIB carrier angular momentum buildup is not very efficient.
Control of vortex breakdown in a closed cylinder with a small rotating rod
Lo Jacono, D.; Sørensen, J. N.; Thompson, M. C.; Hourigan, K.
2008-11-01
Effective control of vortex breakdown in a cylinder with a rotating lid was achieved with small rotating rods positioned on the stationary lid. After validation with accurate measurements using a novel stereoscopic particle image velocimetry (SPIV) technique, analysis of numerical simulations using a high-order spectral element method has been undertaken. The effect of a finite length rod creates additional source terms of vorticity as the rod rotates. These additional source terms and their spatial locations influence the occurrence of the vortex breakdown.
Control of vortex breakdown in a closed cylinder with a small rotating rod
Lo Jacono, D.; Sørensen, Jens Nørkær; Thompson, M.C.
2008-01-01
Effective control of vortex breakdown in a cylinder with a rotating lid was achieved with small rotating rods positioned on the stationary lid. After validation with accurate measurements using a novel stereoscopic particle image velocimetry (SPIV) technique, analysis of numerical simulations using...... a high-order spectral element method has been undertaken. The effect of a finite length rod creates additional source terms of vorticity as the rod rotates. These additional source terms and their spatial locations influence the occurrence of the vortex breakdown....
Fermionic spectral functions in backreacting p-wave superconductors at finite temperature
Giordano, G L; Lugo, A R
2016-01-01
We investigate the spectral function of fermions in a $p$-wave superconducting state, at finite both temperature and gravitational coupling, using the $AdS/CFT$ correspondence and extending previous research. We found that, for any coupling below a critical value, the system behaves as its zero temperature limit. By increasing the coupling, the "peak-dip-hump" structure that characterizes the spectral function at fixed momenta disappears. In the region where the normal/superconductor phase transition is first order, the presence of a non-zero order parameter is reflected in the absence of rotational symmetry in the fermionic spectral function at the critical temperature.
Spectral Analysis of Markov Chains
2007-01-01
The paper deals with the problem of a statistical analysis of Markov chains connected with the spectral density. We present the expressions for the function of spectral density. These expressions may be used to estimate the parameter of the Markov chain.
SPECTRAL ANALYSIS OF EXCHANGE RATES
ALEŠA LOTRIČ DOLINAR
2013-06-01
Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates
Quasilocal rotating conformal Killing horizons
Chatterjee, Ayan
2015-01-01
The formulation of quasi-local conformal Killling horizons(CKH) is extended to include rotation. This necessitates that the horizon be foliated by 2-spheres which may be distorted. Matter degrees of freedom which fall through the horizon is taken to be a real scalar field. We show that these rotating CKHs also admit a first law in differential form.
Rotation of the planet mercury.
Jefferys, W H
1966-04-08
The equations of motion for the rotation of Mercury are solved for the general case by an asymptotic expansion. The findings of Liu and O'Keefe, obtained by numerical integration of a special case, that it is possible for Mercury's rotation to be locked into a 2:3 resonance with its revolution, are confirmed in detail. The general solution has further applications.
KEPLER RAPIDLY ROTATING GIANT STARS
Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)
2015-07-10
Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.
Kepler rapidly rotating giant stars
Costa, A D; Bravo, J P; Paz-Chinchón, F; Chagas, M L das; Leão, I C; de Oliveira, G Pereira; da Silva, R Rodrigues; Roque, S; de Oliveira, L L A; da Silva, D Freire; De Medeiros, J R
2015-01-01
Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of sub-stellar companions by their hosting stars. In the present letter we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting very short rotation period with values ranging from 13 to 55 days. This finding points for remarkable surface rotation rates, up to 18 times the Sun rotation. These giants are combined with 6 other recently listed in the literature for mid-IR diagnostic based on WISE information, from which a trend for an infrared excess is revealed for at least a half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.
Miniature spectrally selective dosimeter
Adams, R.R.; Macconochie, I.O.; Poole, B.D.
1983-02-08
The present invention discloses a miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (e-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two e-cells and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one e-cell and three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame in a further embodiment, the electro-optic elements a packaged in a wristwatch case with attaching means being a watchband. The filters in all embodiments allow only selected wavelengths of radiation to be detected by the photovoltaic detectors and then integrated by the e-cells.
Spectral numbers in Floer theories
Usher, Michael
2007-01-01
The chain complexes underlying Floer homology theories typically carry a real-valued filtration, allowing one to associate to each Floer homology class a spectral number defined as the infimum of the filtration levels of chains representing that class. These spectral numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh, Schwarz, and others. We prove that the spectral number associated to any nonzero Floer homology class is always finite, and that the infimum in the definition of the spectral number is always attained. In the Hamiltonian case, this implies that what is known as the "nondegenerate spectrality" axiom holds on all closed symplectic manifolds. Our proofs are entirely algebraic and rather elementary, and apply to any Floer-type theory (including Novikov homology) satisfying certain standard formal properties provided that one works with coefficients in a Novikov ring whose degree-zero part \\Lambda_0 is a field. The key ingredient is a theorem about linear transforma...
Slowly rotating homogeneous masses revisited
Reina, Borja
2015-01-01
Hartle's model for slowly rotating stars has been extensively used to compute equilibrium configurations of slowly rotating stars to second order in perturbation theory in General Relativity, given a barotropic equation of state (EOS). A recent study based on the modern theory of perturbed matchings show that the model must be amended to accommodate EOS's in which the energy density does not vanish at the surface of the non rotating star. In particular, the expression for the change in mass given in the original model, i.e. a contribution to the mass that arises when the perturbations are chosen so that the pressure of the rotating and non rotating configurations agree, must be modified with an additional term. In this paper, the amended change in mass is calculated for the case of constant density stars.
Bidirectional optical rotation of cells
Jiyi Wu
2017-08-01
Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.
Bidirectional optical rotation of cells
Wu, Jiyi; Zhang, Weina; Li, Juan
2017-08-01
Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.
Optomechanics for absolute rotation detection
Davuluri, Sankar
2016-07-01
In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.
Advances in Rotational Seismic Measurements
Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)
2016-10-19
Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.
Rotational superradiance in fluid laboratories
Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke
2016-01-01
Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.
Rotational evolution of slow-rotators sequence stars
Lanzafame, Alessandro C
2015-01-01
The observed mass-age-rotation relationship in open clusters shows the progressive development of a slow-rotators sequence at masses lower than 1.2 $M_{\\odot}$. After 0.6 Gyr, almost all stars have settled on this sequence. The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, crucial to our understanding of the stellar angular momentum evolution. We couple a rotational evolution model that takes into account internal differential rotation with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov Chain method tailored to the case at hand. We explore the extent to which these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotators sequence. The description of the early evolution (0.1-0.6 Gyr) of the slow-rotators sequence requires taking into account the transfer of angular momentum f...
A multi-spectral band stellar photo-polarimeter
Srinivasulu, G; Muneer, S; Mekkaden, M V; Jayavel, N; Somashekar, M R; Sagayanathan, K; Ramamoorthy, S; Rosario, M J; Jayakumar, K
2015-01-01
We designed and built a new astronomical photo-polarimeter that can measure linear polarization simultaneously in three spectral bands. It has a Calcite beamdisplacement prism as the analyzer. The ordinary and extra-ordinary emerging beams in each spectral bands are quasi-simultaneously detected by the same photomultiplier by using a high speed rotating chopper. A rotating superachromatic Pancharatnam halfwave plate is used to modulate the light incident on the analyzer. The spectral bands are isolated using appropriate dichroic and glass filters. We show that the reduction of 50% in the efficiency of the polarimeter because of the fact that the intensities of the two beams are measured alternately is partly compensated by the reduced time to be spent on the observation of the sky background. The use of a beam-displacement prism as the analyzer completely removes the polarization of background skylight, which is a major source of error during moonlit nights, especially, in the case of faint stars. The field t...
Magnetostrophic Rotating Magnetoconvection
King, Eric; Aurnou, Jonathan
2016-11-01
Planetary magnetic fields are generated by turbulent convection within their vast interior liquid metal cores. Although direct observation is not possible, this liquid metal circulation is thought to be dominated by the controlling influences of Coriolis and Lorentz forces. Theory famously predicts that local-scale convection naturally settles into the so-called magnetostrophic state, where the Coriolis and Lorentz forces partially cancel, and convection is optimally efficient. To date, no laboratory experiments have reached the magnetostrophic regime in turbulent liquid metal convection. Furthermore, computational dynamo simulations have as yet failed to produce a globally magnetostrophic dynamo, which has led some to question the existence of the magnetostrophic state. Here, we present results from the first turbulent magnetostrophic rotating magnetoconvection experiments using the liquid metal gallium. We find that turbulent convection in the magnetostrophic regime is, in fact, maximally efficient. The experimental results clarify these previously disparate results, suggesting that the fluid dynamics saturate in magnetostrophic balance within turbulent liquid metal, planetary cores. The authors thank the NSF Geophysics Program for financial support.
Discovery of peculiar periodic spectral modulations in a small fraction of solar type stars
Borra, E F
2016-01-01
A Fourier transform analysis of 2.5 million spectra in the Sloan Digital Sky Survey was carried out to detect periodic spectral modulations. Signals having the same period were found in only 234 stars overwhelmingly in the F2 to K1 spectral range. The signals cannot be caused by instrumental or data analysis effects because they are present in only a very small fraction of stars within a narrow spectral range and because signal to noise ratio considerations predict that the signal should mostly be detected in the brightest objects, while this is not the case. We consider several possibilities, such as rotational transitions in molecules, rapid pulsations, Fourier transform of spectral lines and signals generated by Extraterrestrial Intelligence (ETI). They cannot be generated by molecules or rapid pulsations. It is highly unlikely that they come from the Fourier transform of spectral lines because too many strong lines located at nearly periodic frequencies are needed. Finally we consider the possibility, pre...
Micro-Doppler frequency comb generation by rotating wire scatterers
Kozlov, V.; Filonov, D.; Yankelevich, Y.; Ginzburg, P.
2017-03-01
Electromagnetic scattering in accelerating reference frames inspires a variety of phenomena, requiring employment of general relativity for their description. While the 'quasi-stationary field' analysis could be applied to slowly-accelerating bodies as a first-order approximation, the scattering problem remains fundamentally nonlinear in boundary conditions, giving rise to multiple frequency generation (micro-Doppler shifts). Here a frequency comb, generated by an axially rotating subwavelength (cm-range) wires is analyzed theoretically and observed experimentally by illuminating the system with a 2 GHz carrier wave. Highly accurate 'lock in' detection scheme enables factorization of the carrier and observation of multiple peaks in a comb. The Hallen integral equation is employed for deriving the currents induced on the scatterer and a set of coordinate transformations, connecting laboratory and rotating frames, is applied in order to make analytical predictions of the spectral positions and amplitudes of the frequency comb peaks. Numeric simulations of the theoretic framework reveal the dependence of the micro-Doppler peaks on the wire's length and its axis of rotation. Unique spectral signature of micro-Doppler shifts could enable resolving internal structures of scatterers and mapping their accelerations in space, which is valuable for a variety of applications spanning from targets identification to stellar radiometry.
Hudson, James G.
2009-02-27
Detailed aircraft measurements were made of cloud condensation nuclei (CCN) spectra associated with extensive cloud systems off the central California coast in the July 2005 MASE project. These measurements include the wide supersaturation (S) range (2-0.01%) that is important for these polluted stratus clouds. Concentrations were usually characteristic of continental/anthropogenic air masses. The most notable feature was the consistently higher concentrations above the clouds than below. CCN measurements are so important because they provide a link between atmospheric chemistry and cloud-climate effects, which are the largest climate uncertainty. Extensive comparisons throughout the eleven flights between two CCN spectrometers operated at different but overlapping S ranges displayed the precision and accuracy of these difficult spectral determinations. There are enough channels of resolution in these instruments to provide differential spectra, which produce more rigorous and precise comparisons than traditional cumulative presentations of CCN concentrations. Differential spectra are also more revealing than cumulative spectra. Only one of the eleven flights exhibited typical maritime concentrations. Average below cloud concentrations over the two hours furthest from the coast for the 8 flights with low polluted stratus was 614?233 at 1% S, 149?60 at 0.1% S and 57?33 at 0.04% S cm-3. Immediately above cloud average concentrations were respectively 74%, 55%, and 18% higher. Concentration variability among those 8 flights was a factor of two. Variability within each flight excluding distances close to the coast ranged from 15-56% at 1% S. However, CN and probably CCN concentrations sometimes varied by less than 1% over distances of more than a km. Volatility and size-critical S measurements indicated that the air masses were very polluted throughout MASE. The aerosol above the clouds was more polluted than the below cloud aerosol. These high CCN concentrations from
Regional fusion for high-resolution palmprint recognition using spectral minutiae representation
Wang, R.; Ramos, D.; Veldhuis, R.N.J.; Fierrez, J.; Spreeuwers, L.J.; Xu, Haiyun
2014-01-01
The spectral minutiae representation (SMC) has been recently proposed as a novel method to minutiae-based fingerprint recognition, which is invariant to minutiae translation and rotation and presents low computational complexity. As high-resolution palmprint recognition is also mainly based on minut
spectral-cube: Read and analyze astrophysical spectral data cubes
Robitaille, Thomas; Ginsburg, Adam; Beaumont, Chris; Leroy, Adam; Rosolowsky, Erik
2016-09-01
Spectral-cube provides an easy way to read, manipulate, analyze, and write data cubes with two positional dimensions and one spectral dimension, optionally with Stokes parameters. It is a versatile data container for building custom analysis routines. It provides a uniform interface to spectral cubes, robust to the wide range of conventions of axis order, spatial projections, and spectral units that exist in the wild, and allows easy extraction of cube sub-regions using physical coordinates. It has the ability to create, combine, and apply masks to datasets and is designed to work with datasets too large to load into memory, and provide basic summary statistic methods like moments and array aggregates.
Rotational energy transfer of the A{sup 2}{Sigma}`({nu}`=1) state of OH
Beaud, P.; Radi, P.; Frey, H.B.; Mischler, B.; Tzannis, A.P.; Gerber, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
Spectrally and temporally resolved laser excited fluorescence of OH is investigated in the picosecond time domain. The total rotational energy transfer (RET) rate from the excited state is determined from the experimental data. Simulated spectra obtained by modelling RET with the energy corrected sudden approximation agree well with the measured spectra. (author) 1 fig., 1 tab., 5 refs.
Timescale Analysis of Spectral Lags
Ti-Pei Li; Jin-Lu Qu; Hua Feng; Li-Ming Song; Guo-Qiang Ding; Li Chen
2004-01-01
A technique for timescale analysis of spectral lags performed directly in the time domain is developed. Simulation studies are made to compare the time domain technique with the Fourier frequency analysis for spectral time lags. The time domain technique is applied to studying rapid variabilities of X-ray binaries and γ-ray bursts. The results indicate that in comparison with the Fourier analysis the timescale analysis technique is more powerful for the study of spectral lags in rapid variabilities on short time scales and short duration flaring phenomena.
On regular rotating black holes
Torres, R.; Fayos, F.
2017-01-01
Different proposals for regular rotating black hole spacetimes have appeared recently in the literature. However, a rigorous analysis and proof of the regularity of this kind of spacetimes is still lacking. In this note we analyze rotating Kerr-like black hole spacetimes and find the necessary and sufficient conditions for the regularity of all their second order scalar invariants polynomial in the Riemann tensor. We also show that the regularity is linked to a violation of the weak energy conditions around the core of the rotating black hole.
On regular rotating black holes
Torres, Ramon
2016-01-01
Different proposals for regular rotating black hole spacetimes have appeared recently in the literature. However, a rigorous analysis and proof of the regularity of this kind of spacetimes is still lacking. In this note we analyze rotating Kerr-like black hole spacetimes and find the necessary and sufficient conditions for the regularity of all their second order scalar invariants polynomial in the Riemann tensor. We also show that the regularity is linked to a violation of the weak energy conditions around the core of the rotating black hole.
Cooling system for rotating machine
Gerstler, William Dwight; El-Refaie, Ayman Mohamed Fawzi; Lokhandwalla, Murtuza; Alexander, James Pellegrino; Quirion, Owen Scott; Palafox, Pepe; Shen, Xiaochun; Salasoo, Lembit
2011-08-09
An electrical machine comprising a rotor is presented. The electrical machine includes the rotor disposed on a rotatable shaft and defining a plurality of radial protrusions extending from the shaft up to a periphery of the rotor. The radial protrusions having cavities define a fluid path. A stationary shaft is disposed concentrically within the rotatable shaft wherein an annular space is formed between the stationary and rotatable shaft. A plurality of magnetic segments is disposed on the radial protrusions and the fluid path from within the stationary shaft into the annular space and extending through the cavities within the radial protrusions.
Motor processes in mental rotation
Wexler, Mark; Kosslyn, Stephen; Berthoz, Alain
1997-01-01
Much indirect evidence supports the hypothesis that transformations of mental images are at least in part guided by motor processes, even in the case of images of abstract objects rather than of body parts. For example, rotation may be guided by processes that also prime one to see results of a specific motor action. We directly test the hypothesis by means of a dual-task paradigm in which subjects perform the Cooper-Shepard mental rotation task while executing an unseen motor rotation in a g...
Rotational spectra and molecular structure
Wollrab, James E
1967-01-01
Physical Chemistry, A Series of Monographs: Rotational Spectra and Molecular Structure covers the energy levels and rotational transitions. This book is divided into nine chapters that evaluate the rigid asymmetric top molecules and the nuclear spin statistics for asymmetric tops. Some of the topics covered in the book are the asymmetric rotor functions; rotational transition intensities; classes of molecules; nuclear spin statistics for linear molecules and symmetric tops; and classical appearance of centrifugal and coriolis forces. Other chapters deal with the energy levels and effects of ce
Rotated and Scaled Alamouti Coding
Willems, Frans M J
2008-01-01
Repetition-based retransmission is used in Alamouti-modulation [1998] for $2\\times 2$ MIMO systems. We propose to use instead of ordinary repetition so-called "scaled repetition" together with rotation. It is shown that the rotated and scaled Alamouti code has a hard-decision performance which is only slightly worse than that of the Golden code [2005], the best known $2\\times 2$ space-time code. Decoding the Golden code requires an exhaustive search over all codewords, while our rotated and scaled Alamouti code can be decoded with an acceptable complexity however.
Differentially Rotating White Dwarfs I: Regimes of Internal Rotation
Ghosh, Pranab
2016-01-01
Most viable models of Type Ia supernovae (SN~Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SN~Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. {\\sl Differential rotation} is specifically invoked in attempts to account for the apparent excess mass in the super--Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly-uniform and strongly-differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri $\\leq$ 0.1, we find both the low-viscosity Zahn regime with a non-monot...
Broadband Advanced Spectral System Project
National Aeronautics and Space Administration — NovaSol proposes to develop an advanced hyperspectral imaging system for earth science missions named BRASS (Broadband Advanced Spectral System). BRASS combines...
Matched Spectral Filter Imager Project
National Aeronautics and Space Administration — OPTRA proposes the development of an imaging spectrometer for greenhouse gas and volcanic gas imaging based on matched spectral filtering and compressive imaging....
Spectral Methods for Numerical Relativity
Grandclément, Philippe
2007-01-01
Equations arising in General Relativity are usually to complicated to be solved analytically and one has to rely on numerical methods to solve sets of coupled, partial differential, equations. Amongst the possible choices, this paper focuses on a class called spectral methods where, typically, the various functions are expanded onto sets of orthogonal polynomials or functions. A theoretical introduction on spectral expansion is first given and a particular emphasize is put on the fast convergence of the spectral approximation. We present then different approaches to solve partial differential equations, first limiting ourselves to the one-dimensional case, with one or several domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. One then turns to results obtained by various groups in the field of General Relativity by means of spectral methods. First, works which do not involve explicit t...
Substitution dynamical systems spectral analysis
Queffélec, Martine
2010-01-01
This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...
Spectral Theory and Mirror Symmetry
Marino, Marcos
2015-01-01
Recent developments in string theory have revealed a surprising connection between spectral theory and local mirror symmetry: it has been found that the quantization of mirror curves to toric Calabi-Yau threefolds leads to trace class operators, whose spectral properties are conjecturally encoded in the enumerative geometry of the Calabi-Yau. This leads to a new, infinite family of solvable spectral problems: the Fredholm determinants of these operators can be found explicitly in terms of Gromov-Witten invariants and their refinements; their spectrum is encoded in exact quantization conditions, and turns out to be determined by the vanishing of a quantum theta function. Conversely, the spectral theory of these operators provides a non-perturbative definition of topological string theory on toric Calabi-Yau threefolds. In particular, their integral kernels lead to matrix integral representations of the topological string partition function, which explain some number-theoretic properties of the periods. In this...
Prat, V.; Mathis, S.; Lignières, F.; Ballot, J.; Culpin, P.-M.
2017-02-01
Context. As of today, asteroseismology mainly allows us to probe the internal rotation of stars when modes are only weakly affected by rotation using perturbative methods. Such methods cannot be applied to rapidly rotating stars, which exhibit complex oscillation spectra. In this context, the so-called traditional approximation, which neglects the terms associated with the latitudinal component of the rotation vector, describes modes that are strongly affected by rotation. This approximation is sometimes used for interpreting asteroseismic data, however, its domain of validity is not established yet. Aims: We aim at deriving analytical prescriptions for period spacings of low-frequency gravity modes strongly affected by rotation through the full Coriolis acceleration (i.e. without neglecting any component of the rotation vector), which can be used to probe stellar internal structure and rotation. Methods: We approximated the asymptotic theory of gravito-inertial waves in uniformly rotating stars using ray theory described in a previous paper in the low-frequency regime, where waves are trapped near the equatorial plane. We put the equations of ray dynamics into a separable form and used the Einstein-Brillouin-Keller (EBK) quantisation method to compute modes frequencies from rays. Results: Two spectral patterns that depend on stratification and rotation are predicted within this new approximation: one for axisymmetric modes and one for non-axisymmetric modes. Conclusions: The detection of the predicted patterns in observed oscillation spectra would give constraints on internal rotation and chemical stratification of rapidly rotating stars exhibiting gravity modes, such as γ Doradus, SPB, or Be stars. The obtained results have a mathematical form that is similar to that of the traditional approximation, but the new approximation takes the full Coriolis, which allows for propagation near the centre, and centrifugal accelerations into account.
Rotational ratchets with dipolar interactions.
Jäger, Sebastian; Klapp, Sabine H L
2012-12-01
We report results from a computer simulation study on the rotational ratchet effect in systems of magnetic particles interacting via dipolar interactions. The ratchet effect consists of directed rotations of the particles in an oscillating magnetic field, which lacks a net rotating component. Our investigations are based on Brownian dynamics simulations of such many-particle systems. We investigate the influence of both the random and deterministic contributions to the equations of motion on the ratchet effect. As a main result, we show that dipolar interactions can have an enhancing as well as a dampening effect on the ratchet behavior depending on the dipolar coupling strength of the system under consideration. The enhancement is shown to be caused by an increase in the effective field on a particle generated by neighboring magnetic particles, while the dampening is due to restricted rotational motion in the effective field. Moreover, we find a nontrivial influence of the short-range, repulsive interaction between the particles.
Scholz, Aleks
2016-01-01
One of the characteristic features of low-mass stars is their propensity to shed large amounts of angular momentum throughout their evolution. This distinguishs them from brown dwarfs which remain fast rotators over timescales of gigayears. Brown dwarfs with rotation periods longer than a couple of days have only been found in star forming regions and young clusters. This is a useful constraint on the mass dependency of mechanisms for angular momentum regular in stars. Rotational braking by disks and winds become highly inefficient in the substellar regime. In this short review I discuss the observational evidence for the fast rotation in brown dwarfs, the implications, and the link to the spin-mass relation in planets.
Structural dynamics in rotating systems
Kiraly, Louis J.
1993-01-01
Major issues and recent advances in the structural dynamics of rotating systems are summarized. The objectives and benefits of such systems are briefly discussed. Directions for future research are suggested.
Spontaneous Rotational Inversion in Phycomyces
Goriely, Alain
2011-03-01
The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.
Harmonic component detection: Optimized Spectral Kurtosis for operational modal analysis
Dion, J.-L.; Tawfiq, I.; Chevallier, G.
2012-01-01
This work is a contribution in the field of Operational Modal Analysis to identify the modal parameters of mechanical structures using only measured responses. The study deals with structural responses coupled with harmonic components amplitude and frequency modulated in a short range, a common combination for mechanical systems with engines and other rotating machines in operation. These harmonic components generate misleading data interpreted erroneously by the classical methods used in OMA. The present work attempts to differentiate maxima in spectra stemming from harmonic components and structural modes. The detection method proposed is based on the so-called Optimized Spectral Kurtosis and compared with others definitions of Spectral Kurtosis described in the literature. After a parametric study of the method, a critical study is performed on numerical simulations and then on an experimental structure in operation in order to assess the method's performance.
The spectral simulations of axisymmetric force-free pulsar magnetosphere
Cao, Gang; Sun, Sineng
2015-01-01
A pseudo-spectral method with an absorbing outer boundary is used to solve a set of the time-dependent force-free equations. In the method, both electric and magnetic fields are expanded in terms of the vector spherical harmonic (VSH) functions in spherical geometry and the divergencelessness of magnetic field is analytically enforced by a projection method. Our simulations show that the Deutsch vacuum solution and the Michel monopole solution can be well reproduced by our pseudo-spectral code. Further the method is used to present the time-dependent simulation of the force-free pulsar magnetosphere for an aligned rotator. The simulations show that the current sheet in the equatorial plane can be resolved well, and the obtained spin-down luminosity in the steady state is in good agreement with the value given by Spitkovsky (2006).
Nanocatalytic resonance scattering spectral analysis
无
2010-01-01
The resonance scattering spectral technique has been established using the synchronous scanning technique on spectrofluorometry.Because of its advantages of simplicity,rapidity and sensitivity,it has been widely applied to analyses of proteins,nucleic acids and inorganic ions.This paper summarizes the application of immunonanogold and aptamer modified nanogold(AptAu) catalytic resonance scattering spectral technique in combination with the work of our group,citing 53 references.
Spectral Conditions for Positive Maps
Chruściński, Dariusz; Kossakowski, Andrzej
2009-09-01
We provide partial classification of positive linear maps in matrix algebras which is based on a family of spectral conditions. This construction generalizes the celebrated Choi example of a map which is positive but not completely positive. It is shown how the spectral conditions enable one to construct linear maps on tensor products of matrix algebras which are positive but only on a convex subset of separable elements. Such maps provide basic tools to study quantum entanglement in multipartite systems.
Prym varieties of spectral covers
Hausel, Tamás
2010-01-01
Given a possibly reducible and non-reduced spectral cover X over a smooth projective complex curve C we determine the group of connected components of the Prym variety Prym(X/C). We also describe the sublocus of characteristics a for which the Prym variety Prym(X_a/C) is connected. These results extend special cases of work of Ng\\^o who considered integral spectral curves.
Spatial-spectral method for classification of hyperspectral images.
Bian, Xiaoyong; Zhang, Tianxu; Yan, Luxin; Zhang, Xiaolong; Fang, Houzhang; Liu, Hai
2013-03-15
Spatial-spectral approach with spatially adaptive classification of hyperspectral images is proposed. The rotation-invariant spatial texture information for each object is exploited and incorporated into the classifier by using the modified local Gabor binary pattern to distinguish different types of classes of interest. The proposed method can effectively suppress anisotropic texture in spatially separate classes as well as improve the discrimination among classes. Moreover, it becomes more robust with the within-class variation. Experimental results on the classification of three real hyperspectral remote sensing images demonstrate the effectiveness of the proposed approach.
Ovgun, A.
2016-11-01
We construct a rotating thin-shell wormhole using a Myers-Perry black hole in five dimensions, using the Darmois-Israel junction conditions. The stability of the wormhole is analyzed under perturbations. We find that exotic matter is required at the throat of the wormhole to keep it stable. Our analysis shows that stability of the rotating thin-shell wormhole is possible if suitable parameter values are chosen.
Rotationally symmetric viscous gas flows
Weigant, W.; Plotnikov, P. I.
2017-03-01
The Dirichlet boundary value problem for the Navier-Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval (γ*,∞) with a critical exponent γ* < 4/3 is proved.
Ovgun, A
2016-01-01
In this article, we construct rotating thin shell wormhole using a Myers-Perry black hole in five dimensions. The stability of the wormhole is analyzed under perturbations follows from the Darmois-Israel junction conditions. We find that it required exotic matter at the throat to keep throat of wormhole stable. Our analysis shows that the stability of the rotating thin-shell wormhole is available with choosing suitable values of parameters.
A Riemann-Hilbert approach to rotating attractors
Câmara, M. C.; Cardoso, G. L.; Mohaupt, T.; Nampuri, S.
2017-06-01
We construct rotating extremal black hole and attractor solutions in gravity theories by solving a Riemann-Hilbert problem associated with the Breitenlohner-Maison linear system. By employing a vectorial Riemann-Hilbert factorization method we explicitly factorize the corresponding monodromy matrices, which have second order poles in the spectral parameter. In the underrotating case we identify elements of the Geroch group which implement Harrison-type transformations which map the attractor geometries to interpolating rotating black hole solutions. The factorization method we use yields an explicit solution to the linear system, from which we do not only obtain the spacetime solution, but also an explicit expression for the master potential encoding the potentials of the infinitely many conserved currents which make this sector of gravity integrable.
Rotational Doppler Effect: A Probe for Molecular Orbitals Anisotropy.
Miao, Quan; Travnikova, Oksana; Gel'mukhanov, Faris; Kimberg, Victor; Sun, Yu-Ping; Thomas, T Darrah; Nicolas, Christophe; Patanen, Minna; Miron, Catalin
2015-05-01
The vibrationally resolved X-ray photoelectron spectra of X2Σg+(3σg−1) and B2Σu+(2σu−1) states of N2+ were recorded for different photon energies and orientations of the polarization vector. Clear dependencies of the spectral line widths on the X-ray polarization as well as on the symmetry of the final electronic states are observed. Contrary to the translational Doppler, the rotational Doppler broadening is sensitive to the photoelectron emission anisotropy. On the basis of theoretical modeling, we suggest that the different rotational Doppler broadenings observed for gerade and ungerade final states result from a Young's double-slit interference phenomenon.
Hydrodynamic and magnetohydrodynamic computations inside a rotating sphere
Mininni, P D; Turner, L; 10.1088/1367-2630/9/8/303
2009-01-01
Numerical solutions of the incompressible magnetohydrodynamic (MHD) equations are reported for the interior of a rotating, perfectly-conducting, rigid spherical shell that is insulator-coated on the inside. A previously-reported spectral method is used which relies on a Galerkin expansion in Chandrasekhar-Kendall vector eigenfunctions of the curl. The new ingredient in this set of computations is the rigid rotation of the sphere. After a few purely hydrodynamic examples are sampled (spin down, Ekman pumping, inertial waves), attention is focused on selective decay and the MHD dynamo problem. In dynamo runs, prescribed mechanical forcing excites a persistent velocity field, usually turbulent at modest Reynolds numbers, which in turn amplifies a small seed magnetic field that is introduced. A wide variety of dynamo activity is observed, all at unit magnetic Prandtl number. The code lacks the resolution to probe high Reynolds numbers, but nevertheless interesting dynamo regimes turn out to be plentiful in those ...
Micro-Doppler Frequency Comb Generation by Axially Rotating Scatterers
Kozlov, Vitali; Yankelevich, Yefim; Ginzburg, Pavel
2016-01-01
Electromagnetic scattering in accelerating reference frames inspires a variety of phenomena, requiring employment of general relativity for their description. While the quasi-stationary field analysis could be applied to slowly-accelerating bodies as a first-order approximation, the scattering problem remains fundamentally nonlinear in boundary conditions, giving rise to multiple frequency generation (micro-Doppler shifts). Here a frequency comb, generated by an axially rotating subwavelength (cm-range) wire and split ring resonator (SRR), is analyzed theoretically and observed experimentally by illuminating the system with a 2GHz carrier wave. Highly accurate lock in detection scheme enables factorization of the carrier and observation of more than ten peaks in a comb. The Hallen integral equation is employed for deriving the currents induced on the scatterer at rest and a set of coordinate transformations, connecting laboratory and rotating frames, is applied in order to predict the spectral positions and a...
Jupiter and Saturn Rotation Periods
Helled, Ravit; Anderson, John D
2009-01-01
Anderson & Schubert (2007, Science,317,1384) proposed that Saturn's rotation period can be ascertained by minimizing the dynamic heights of the 100 mbar isosurface with respect to the geoid; they derived a rotation period of 10h 32m 35s. We investigate the same approach for Jupiter to see if the Jovian rotation period is predicted by minimizing the dynamical heights of its isobaric (1 bar pressure level) surface using zonal wind data. A rotation period of 9h 54m 29s is found. Further, we investigate the minimization method by fitting Pioneer and Voyager occultation radii for both Jupiter and Saturn. Rotation periods of 9h 55m 30s and 10h 32m 35s are found to minimize the dynamical heights for Jupiter and Saturn, respectively. Though there is no dynamical principle requiring the minimization of the dynamical heights of an isobaric surface, the successful application of the method to Jupiter lends support to its relevance for Saturn. We derive Jupiter and Saturn rotation periods using equilibrium theory in ...
Counter-Rotating Accretion Discs
Dyda, Sergei; Ustyugova, Galina V; Romanova, Marina M; Koldoba, Alexander V
2014-01-01
Counter-rotating discs can arise from the accretion of a counter-rotating gas cloud onto the surface of an existing co-rotating disc or from the counter-rotating gas moving radially inward to the outer edge of an existing disc. At the interface, the two components mix to produce gas or plasma with zero net angular momentum which tends to free-fall towards the disc center. We discuss high-resolution axisymmetric hydrodynamic simulations of a viscous counter-rotating disc for cases where the two components are vertically separated and radially separated. The viscosity is described by an isotropic $\\alpha-$viscosity including all terms in the viscous stress tensor. For the vertically separated components a shear layer forms between them. The middle of this layer free-falls to the disk center. The accretion rates are increased by factors $\\sim 10^2-10^4$ over that of a conventional disc rotating in one direction with the same viscosity. The vertical width of the shear layer and the accretion rate are strongly dep...
The rotation of Galaxy Clusters
Tovmassian, Hrant M
2015-01-01
The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with $a/b>1.8$ and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy in which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60\\%, and clusters of BMI type with dominant cD galaxy, ~ 35%. The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not have merging with other clusters and groups of galaxies, in the result of which the rotation has been prevented.
Prostate cancer spectral multifeature analysis using TRUS images.
Mohamed, S S; Salama, M A
2008-04-01
This paper focuses on extracting and analyzing different spectral features from transrectal ultrasound (TRUS) images for prostate cancer recognition. First, the information about the images' frequency domain features and spatial domain features are combined using a Gabor filter and then integrated with the expert radiologist's information to identify the highly suspicious regions of interest (ROIs). The next stage of the proposed algorithm is to scan each identified region in order to generate the corresponding 1-D signal that represents each region. For each ROI, possible spectral feature sets are constructed using different new geometrical features extracted from the power spectrum density (PSD) of each region's signal. Next, a classifier-based algorithm for feature selection using particle swarm optimization (PSO) is adopted and used to select the optimal feature subset from the constructed feature sets. A new spectral feature set for the TRUS images using estimation of signal parameters via rotational invariance technique (ESPRIT) is also constructed, and its ability to represent tissue texture is compared to the PSD-based spectral feature sets using the support vector machines (SVMs) classifier. The accuracy obtained ranges from 72.2% to 94.4%, with the best accuracy achieved by the ESPRIT feature set.
On the rotation and pitching of flat plates
Jin, Yaqing; Ji, Sheng; Chamorro, Leonardo P.
2016-11-01
Wind tunnel experiments were performed to characterize the flow-induced rotation and pitching of various flat plates as a function of the thickness ratio, the location of the axis of rotation and turbulence levels. High-resolution telemetry, laser tachometer, and hotwire were used to get time series of the plates motions and the signature of the wake flow at a specific location. Results show that a minor axis offset can induce high-order modes in the plate rotation under low turbulence due to torque unbalance. The spectral decomposition of the flow velocity in the plate wake reveals the existence of a dominating high-frequency mode that corresponds to a static-like vortex shedding occurring at the maximum plate pitch, where the characteristic length scale is the projected width at maximum pitch. The plate thickness ratio shows inverse relation with the angular velocity. A simple model is derived to explain the linear relation between pitching frequency and wind speed. The spectra of the plate rotation show nonlinear relation with the incoming turbulence, and the dominating role of the generated vortices in the plate motions.
Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy
Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks
2016-06-01
Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.
Ion acoustic shocks in magneto rotating Lorentzian plasmas
Hussain, S.; Akhtar, N. [Theoretical Physics Division, PINSTECH, NILORE, Islamabad 44000 (Pakistan); DPAM, PIEAS, NILORE, Islamabad 44000 (Pakistan); Hasnain, H. [Theoretical Physics Division, PINSTECH, NILORE, Islamabad 44000 (Pakistan)
2014-12-15
Ion acoustic shock structures in magnetized homogeneous dissipative Lorentzian plasma under the effects of Coriolis force are investigated. The dissipation in the plasma system is introduced via dynamic viscosity of inertial ions. The electrons are following the kappa distribution function. Korteweg-de Vries Burger (KdVB) equation is derived by using reductive perturbation technique. It is shown that spectral index, magnetic field, kinematic viscosity of ions, rotational frequency, and effective frequency have significant impact on the propagation characteristic of ion acoustic shocks in such plasma system. The numerical solution of KdVB equation is also discussed and transition from oscillatory profile to monotonic shock for different plasma parameters is investigated.
On the Asymptotic Regimes and the Strongly Stratified Limit of Rotating Boussinesq Equations
Babin, A.; Mahalov, A.; Nicolaenko, B.; Zhou, Y.
1997-01-01
Asymptotic regimes of geophysical dynamics are described for different Burger number limits. Rotating Boussinesq equations are analyzed in the asymptotic limit, of strong stratification in the Burger number of order one situation as well as in the asymptotic regime of strong stratification and weak rotation. It is shown that in both regimes horizontally averaged buoyancy variable is an adiabatic invariant for the full Boussinesq system. Spectral phase shift corrections to the buoyancy time scale associated with vertical shearing of this invariant are deduced. Statistical dephasing effects induced by turbulent processes on inertial-gravity waves are evidenced. The 'split' of the energy transfer of the vortical and the wave components is established in the Craya-Herring cyclic basis. As the Burger number increases from zero to infinity, we demonstrate gradual unfreezing of energy cascades for ageostrophic dynamics. The energy spectrum and the anisotropic spectral eddy viscosity are deduced with an explicit dependence on the anisotropic rotation/stratification time scale which depends on the vertical aspect ratio parameter. Intermediate asymptotic regime corresponding to strong stratification and weak rotation is analyzed where the effects of weak rotation are accounted for by an asymptotic expansion with full control (saturation) of vertical shearing. The regularizing effect of weak rotation differs from regularizations based on vertical viscosity. Two scalar prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure ) are obtained.
Rotation, differential rotation, and gyrochronology of active Kepler stars
Reinhold, Timo
2015-01-01
The high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars. Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements in different gyrochronology relations. Multiple rotation periods are interpreted as surface differential rotation (DR). We re-analyze the sample of 24,124 Kepler stars from Reinhold et al. (2013) using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series, and different segments thereof are analyzed. For more than 18,500 stars our results are consistent with the rotation periods from McQuillan et al. (2014). Thereof, more than 12,300 stars show multiple significant peaks, which we interpret as DR. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17,000 stars using different gyrochronology relations. We find a bimodal...
Marenco, F.; Di Sarra, A. [ENEA, Centro Ricerche Casaccia, Rome (Italy)
2001-07-01
Osservazioni Climatiche Roberto Sarao dell'ENEA, sita nell'isola di Lampedusa. Questi risultati forniscono una conferma della validita' del metodo, grazie anche al confronto con misure indipendenti ottenute nel 1999 con un Multifilter Rotating Shadowband Radiometer. Qeusta metodologia consente di ricavare una climatologia del particolato atmosferico dalla rianalisi delle misure di ozono ottenute in numerosi siti di misura a livello mondiale.
Rehabilitation after Rotator Cuff Repair.
Nikolaidou, Ourania; Migkou, Stefania; Karampalis, Christos
2017-01-01
Rotator cuff tears are a very common condition that is often incapacitating. Whether non-surgical or surgical, successful management of rotator cuff disease is dependent on appropriate rehabilitation. If conservative management is insufficient, surgical repair is often indicated. Postsurgical outcomes for patients having had rotator cuff repair can be quite good. A successful outcome is much dependent on surgical technique as it is on rehabilitation. Numerous rehabilitation protocols for the management of rotator cuff disease are based primarily on clinical experience and expert opinion. This article describes the different rehabilitation protocols that aim to protect the repair in the immediate postoperative period, minimize postoperative stiffness and muscle atrophy. A review of currently available literature on rehabilitation after arthroscopic rotator cuff tear repair was performed to illustrate the available evidence behind various postoperative treatment modalities. There were no statistically significant differences between a conservative and an accelerated rehabilitation protocol . Early passive range of motion (ROM) following arthroscopic cuff repair is thought to decrease postoperative stiffness and improve functionality. However, early aggressive rehabilitation may compromise repair integrity. The currently available literature did not identify any significant differences in functional outcomes and relative risks of re-tears between delayed and early motion in patients undergoing arthroscopic rotator cuff repairs. A gentle rehabilitation protocol with limits in range of motion and exercise times after arthroscopic rotator cuff repair would be better for tendon healing without taking any substantial risks. A close communication between the surgeon, the patient and the physical therapy team is important and should continue throughout the whole recovery process.
Tsantaki, M; Santos, N C; Montalto, M; Delgado-Mena, E; Mortier, A; Adibekyan, V; Israelian, G
2014-01-01
Planetary studies demand precise and accurate stellar parameters as input to infer the planetary properties. Different methods often provide different results that could lead to biases in the planetary parameters. In this work, we present a refinement of the spectral synthesis technique designed to treat better more rapidly rotating FGK stars. This method is used to derive precise stellar parameters, namely effective temperature, surface gravity, metallicitity and rotational velocity. This procedure is tested for samples of low and moderate/fast rotating FGK stars. The spectroscopic analysis is based on the spectral synthesis package Spectroscopy Made Easy (SME), assuming Kurucz model atmospheres in LTE. The line list where the synthesis is conducted, is comprised of iron lines and the atomic data are derived after solar calibration. The comparison of our stellar parameters shows good agreement with literature values, both for low and for higher rotating stars. In addition, our results are on the same scale w...
Monitoring Stand Level Photosynthesis from Spectral Reflectance
Hilker, T.; Coops, N. C.; Hall, F. G.; Black, A. T.; Krishnan, P.; Chen, B.; Wulder, M. A.; Nesic, Z.; Huemmrich, K. F.; Middleton, E. M.; Margolis, H. A.; Drolet, G.; Cheng, Y.
2007-12-01
Global determination and monitoring of gross primary production (GPP) is a critical component of climate change research. On local scales, GPP can be assessed from measuring CO2 exchange above the plant canopy using tower-based eddy covariance (EC) systems. The limited footprint inherent to this method however, restricts observations to relatively few discrete areas making continuous predictions of global CO2 fluxes challenging. Recently, the advent of high resolution optical remote sensing devices has offered new possibilities to address some of the scaling issues related to GPP using approaches based on spectral reflectance. One key component for inferring GPP from remote sensing is the efficiency (e) with which plants can convert absorbed photosynthetically active radiation into biomass. Whilst recent years have seen progress determining e at the leaf level using the photochemical reflectance index PRI, little is known about the temporal and spatial requirements for upscaling PRI. For instance, satellite observations of canopy reflectance are subject to view and illumination geometry effects induced by the bi-directional reflectance distribution function (BRDF) of canopies that can confound the desired signal; however little is known about interactions between these effects and PRI. Further areas of research include dependencies of PRI on canopy structure, understorey and species composition. One potential way to investigate these requirements is using automated tower-based remote sensing platforms, facilitating spectral observations of the canopy with high spatial, temporal, and spectral resolution. The experimental setup presented herein features an automated spectral radiometer (AMSPEC) with a motor-driven probe allowing observations in a nearly full circle around the tower. Year round data are sampled every 5 sec., a full rotation is completed within 15 min. The spatial similarity to the flux-footprint allows direct comparisons with EC and micro
Spectral Estimation of NMR Relaxation
Naugler, David G.; Cushley, Robert J.
2000-08-01
In this paper, spectral estimation of NMR relaxation is constructed as an extension of Fourier Transform (FT) theory as it is practiced in NMR or MRI, where multidimensional FT theory is used. nD NMR strives to separate overlapping resonances, so the treatment given here deals primarily with monoexponential decay. In the domain of real error, it is shown how optimal estimation based on prior knowledge can be derived. Assuming small Gaussian error, the estimation variance and bias are derived. Minimum bias and minimum variance are shown to be contradictory experimental design objectives. The analytical continuation of spectral estimation is constructed in an optimal manner. An important property of spectral estimation is that it is phase invariant. Hence, hypercomplex data storage is unnecessary. It is shown that, under reasonable assumptions, spectral estimation is unbiased in the context of complex error and its variance is reduced because the modulus of the whole signal is used. Because of phase invariance, the labor of phasing and any error due to imperfect phase can be avoided. A comparison of spectral estimation with nonlinear least squares (NLS) estimation is made analytically and with numerical examples. Compared to conventional sampling for NLS estimation, spectral estimation would typically provide estimation values of comparable precision in one-quarter to one-tenth of the spectrometer time when S/N is high. When S/N is low, the time saved can be used for signal averaging at the sampled points to give better precision. NLS typically provides one estimate at a time, whereas spectral estimation is inherently parallel. The frequency dimensions of conventional nD FT NMR may be denoted D1, D2, etc. As an extension of nD FT NMR, one can view spectral estimation of NMR relaxation as an extension into the zeroth dimension. In nD NMR, the information content of a spectrum can be extracted as a set of n-tuples (ω1, … ωn), corresponding to the peak maxima
Automated coregistration of MTI spectral bands.
Theiler, J. P. (James P.); Galbraith, A. E. (Amy E.); Pope, P. A. (Paul A.); Ramsey, K. A. (Keri A.); Szymanski, J. J. (John J.)
2002-01-01
In the focal plane of a pushbroom imager, a linear array of pixels is scanned across the scene, building up the image one row at a time. For the Multispectral Thermal Imager (MTI), each of fifteen different spectral bands has its own linear array. These arrays are pushed across the scene together, but since each band's array is at a different position on the focal plane, a separate image is produced for each band. The standard MTI data products resample these separate images to a common grid and produce coregistered multispectral image cubes. The coregistration software employs a direct 'dead reckoning' approach. Every pixel in the calibrated image is mapped to an absolute position on the surface of the earth, and these are resampled to produce an undistorted coregistered image of the scene. To do this requires extensive information regarding the satellite position and pointing as a function of time, the precise configuration of the focal plane, and the distortion due to the optics. These must be combined with knowledge about the position and altitude of the target on the rotating ellipsoidal earth. We will discuss the direct approach to MTI coregistration, as well as more recent attempts to 'tweak' the precision of the band-to-band registration using correlations in the imagery itself.
Speech recognition from spectral dynamics
Hynek Hermansky
2011-10-01
Information is carried in changes of a signal. The paper starts with revisiting Dudley’s concept of the carrier nature of speech. It points to its close connection to modulation spectra of speech and argues against short-term spectral envelopes as dominant carriers of the linguistic information in speech. The history of spectral representations of speech is brieﬂy discussed. Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) ﬁltering. Next, the frequency domain perceptual linear prediction technique for deriving autoregressive models of temporal trajectories of spectral power in individual frequency bands is reviewed. Finally, posterior-based features, which allow for straightforward application of modulation frequency domain information, are described. The paper is tutorial in nature, aims at a historical global overview of attempts for using spectral dynamics in machine recognition of speech, and does not always provide enough detail of the described techniques. However, extensive references to earlier work are provided to compensate for the lack of detail in the paper.
Counter-Rotation in Disk Galaxies
Corsini, E M
2014-01-01
Counter-rotating galaxies host two components rotating in opposite directions with respect to each other. The kinematic and morphological properties of lenticulars and spirals hosting counter-rotating components are reviewed. Statistics of the counter-rotating galaxies and analysis of their stellar populations provide constraints on the formation scenarios which include both environmental and internal processes.
Transitions in turbulent rotating convection
Rajaei, Hadi; Alards, Kim; Kunnen, Rudie; Toschi, Federico; Clercx, Herman; Fluid Dynamics Lab Team
2015-11-01
This study aims to explore the flow transition from one state to the other in rotating Rayleigh-Bènard convection using Lagrangian acceleration statistics. 3D particle tracking velocimetry (3D-PTV) is employed in a water-filled cylindrical tank of equal height and diameter. The measurements are performed at the center and close to the top plate at a Rayleigh number Ra = 1.28e9 and Prandtl number Pr = 6.7 for different rotation rates. In parallel, direct numerical simulation (DNS) has been performed to provide detailed information on the boundary layers. We report the acceleration pdfs for different rotation rates and show how the transition from weakly to strongly rotating Rayleigh-Bènard affects the acceleration pdfs in the bulk and boundary layers. We observe that the shapes of the acceleration PDFs as well as the isotropy in the cell center are largely unaffected while crossing the transition point. However, acceleration pdfs at the top show a clear change at the transition point. Using acceleration pdfs and DNS data, we show that the transition between turbulent states is actually a boundary layer transition between Prandtl-Blasius type (typical of non-rotating convection) and Ekman type.
Rapidly rotating neutron star progenitors
Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.
2016-12-01
Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In this paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE (Binary Star Evolution) population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 yr. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1-1 per cent of the total core collapses, depending on the common envelope efficiency.
Rapidly rotating neutron star progenitors
Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.
2016-08-01
Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 years. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1 - 1% of the total core collapses, depending on the common envelope efficiency.
Rotational spectroscopy of interstellar PAHs
Ali-Haïmoud, Yacine
2013-01-01
Polycyclic aromatic hydrocarbons (PAHs) have long been part of the standard model of the interstellar medium, and are believed to play important roles in its physics and chemistry. Yet, up to now it has not been possible to identify any specific molecule among them. In this paper, a new observational avenue is suggested to detect individual PAHs, using their rotational line emission at radio frequencies. Previous PAH searches based on rotational spectroscopy have only targeted the bowl-shaped corannulene molecule, with the underlying assumption that other polar PAHs are triaxial and as a consequence their rotational emission is diluted over a very large number of lines and unusable for detection purposes. In this paper the rotational spectrum of quasi-symmetric PAHs is computed analytically, as a function of the level of triaxiality. It is shown that the asymmetry of planar, nitrogen-substituted symmetric PAHs is small enough that their rotational spectrum, when observed with a resolution of about a MHz, has ...
New approach to spectral features modeling
Brug, H. van; Scalia, P.S.
2012-01-01
The origin of spectral features, speckle effects, is explained, followed by a discussion on many aspects of spectral features generation. The next part gives an overview of means to limit the amplitude of the spectral features. This paper gives a discussion of all means to reduce the spectral featur
Aerosol Optical Depth Value-Added Product Report
Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J
2013-03-17
This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.
Rotation Properties of Small Jovian Trojan Asteroids
French, Linda M.; Stephens, Robert D.; James, David; Coley, Daniel R.; Warner, Brian D.; Rohl, Derrick
2016-10-01
Jovian Trojan asteroids are of interest both as objects in their own right (we have no spectral analogs among meteorite samples) and as possible relics of Solar System formation. Asteroid lightcurves can give information about processes that have affected a group of asteroids; they can also give information about the density of the objects when enough lightcurves have been collected. We have been carrying out a survey of Trojan lightcurve properties for comparison with small asteroids and with comets. In a recent paper (French et al. 2015) we presented evidence that a significant number of Trojans have rotation periods greater than 24 hours. We will report our latest results and compare them with results of sparsely-sampled lightcurves from the Palomar Transient Factory (Waszczak et al. 2015). LF, RS, and DR were visiting astronomers at Cerro Tololo Interamerican Observatory, operated by AURA under contract with the NSF, and with the SMARTS Consortium at CTIO. This research was sponsored by NSF Planetary Astronomy grant 1212115.ReferencesFrench, L.M. et al. 2015. Icarus 254, pp. 1-17.Waszczak, A. et al. 2015. A.J. 150, Issue 3, I.D. 35.
Multiwavelength Studies of Rotating Radio Transients
Miller, Joshua; Rea, Nanda; Keane, Evan; Lyne, Andrew; Kramer, Michael; Manchester, Richard; Lazaridis, Kosmas
2011-01-01
We describe our studies of the radio and high-energy properties of Rotating Radio Transients (RRATs). We find that the radio pulse intensity distributions are log-normal, with power-law tails evident in two cases. For the three RRATs with coverage over a wide range of frequency, the mean spectral index is -1.7\\pm0.1, roughly in the range of normal pulsars. We do not observe anomalous magnetar-like spectra for any RRATs. Our 94-ks XMM-Newton observation of the high magnetic field RRAT J1819-1458 reveals a blackbody spectrum (kT ~130 eV) with an unusual absorption feature at ~1 keV. We find no evidence for X-ray bursts or other X-ray variability. We performed a correlation analysis of the X-ray photons with radio pulses detected in concurrent observations with the Green Bank, Effelsberg, and Parkes telescopes. We find no evidence for any correlations between radio pulse emission and X-ray photons, perhaps suggesting that sporadicity is not due to variations in magnetospheric particle density but to changes in b...
Spectral element simulation of ultrafiltration
Hansen, M.; Barker, Vincent A.; Hassager, Ole
1998-01-01
A spectral element method for simulating stationary 2-D ultrafiltration is presented. The mathematical model is comprised of the Navier-Stokes equations for the velocity field of the fluid and a transport equation for the concentration of the solute. In addition to the presence of the velocity...... vector in the transport equation, the system is coupled by the dependency of the fluid viscosity on the solute concentration and by a concentration-dependent boundary condition for the Navier-Stokes equations at the membrane surface. The spectral element discretization yields a nonlinear algebraic system....... The performance of the spectral element code when applied to several ultrafiltration problems is reported. (C) 1998 Elsevier Science Ltd. All rights reserved....
Spectral Tensor-Train Decomposition
Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.
2016-01-01
The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT.......e., the “cores”) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable dimension-scaling of the TT...... decomposition with the spectral convergence rate of polynomial approximations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these decompositions, we use the sampling algorithm \\tt TT-DMRG-cross to obtain the TT decomposition of tensors resulting from suitable...
Optical Spectral Variability of Blazars
Haritma Gaur
2014-09-01
It is well established that blazars show flux variations in the complete electromagnetic (EM) spectrum on all possible time scales ranging from a few tens of minutes to several years. Here, we report the review of optical flux and spectral variability properties of different classes of blazars on IDV and STV time-scales. Our analysis show HSPs are less variable in optical bands as compared to LSPs. Also, we investigated the spectral slope variability and found that the average spectral slopes of LSPs showed a good agreement with the synchrotron self-Compton loss-dominated model. However, spectra of the HSPs and FSRQs have significant additional emission components. In general, spectra of BL Lacs get flatter when they become brighter, while for FSRQs the opposite trend appears to hold.
Synchrotron and Smith-Purcell radiations from a charge rotating around a cylindrical grating
Saharian, A A; Mkrtchyan, A R; Khachatryan, B V
2016-01-01
We investigate the radiation from a charge rotating around conductors with cylindrical symmetry. First the problem is considered with a charge rotating around a conducting cylinder immersed in a homogeneous medium. The surface charge and current densities induced on the cylinder surface are evaluated. A formula is derived for the spectral-angular density of the radiation intensity. In the second part, we study the radiation for a charge rotating around a diffraction grating on a cylindrical surface with metallic strips parallel to the cylinder axis. The effect of the grating on the radiation intensity is approximated by the surface currents induced on the strips by the field of the rotating charge. The expressions are derived for the electric and magnetic fields and for the angular density of the radiation intensity on a given harmonic. We show that the interference between the synchrotron and Smith-Purcell radiations may lead to interesting features. In particular, the behavior of the radiation intensity on ...
A further experiment on two-dimensional decaying turbulence on a rotating sphere
Yoden, S. [Kyoto Univ., Kyoto (Japan). Dept. of Geophysics; Ishioka, K.; Yamada, M. [Tokyo Univ., Tokyo (Japan). Graduate Schoool of Mathematical Sciences; Hayashi, Y.-Y. [Hokkaido Univ., Sapporo (Japan). Div. of Earth and Planetary Sciences
1999-12-01
A series of numerical experiments on the two-dimensional decaying turbulence is performed for a non-divergent barotropic fluid on a rotating sphere by using a high-resolution spectral model. Time variations of the energy spectrum and the flow field are highly dependent on the rotation rate. In non-rotational cases, isolated coherent vortices emerge in the course of time development as in the planar two-dimensional turbulence. As the rotation rate increases, however, the evolution of the flow field charges drastically, and a westward circumpolar vortex appears in high-latitudes as well as zonal band structures in mid- and low-latitudes. The dependence of these features on the initial energy spectrum is investigated and the dynamics of such pattern formulations is discussed.
Rotational excitation of molecules with long sequences of intense femtosecond pulses
Bitter, M
2016-01-01
We investigate the prospects of creating broad rotational wave packets by means of molecular interaction with long sequences of intense femtosecond pulses. Using state-resolved rotational Raman spectroscopy of oxygen, subject to a sequence of more than 20 laser pulses with peak intensities exceeding $10^{13}$ W/cm$^{2}$ per pulse, we show that the centrifugal distortion is the main obstacle on the way to reaching high rotational states. We demonstrate that the timing of the pulses can be optimized to partially mitigate the centrifugal limit. The cumulative effect of a long pulse sequence results in high degree of rotational coherence, which is shown to cause an efficient spectral broadening of probe light via cascaded Raman transitions.
A Rotating-Frame Perspective on High-Harmonic Generation of Circularly Polarized Light
Reich, Daniel M
2016-01-01
We employ a rotating frame of reference to elucidate high-harmonic generation of circularly polarized light by bicircular driving fields. In particular, we show how the experimentally observed circular components of the high-harmonic spectrum can be directly related to the corresponding quantities in the rotating frame. Supported by numerical simulations of the time-dependent Schr\\"{o}dinger equation, we deduce an optimal strategy for maximizing the cutoff in the high-harmonic plateau while keeping the two circular components of the emitted light spectrally distinct. Moreover, we show how the rotating-frame picture can be more generally employed for elliptical drivers. Finally, we point out how circular and elliptical driving fields show a near-duality to static electric and static magnetic fields in a rotating-frame description. This demonstrates how high-harmonic generation of circularly polarized light under static electromagnetic fields can be emulated in practice even at static field strengths beyond cur...
The structure of rotational discontinuities
Neugebauer, M. (California Institute of Technology, Pasadena (USA))
1989-11-01
This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle {theta} between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When {theta} is large, angular overshoots are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (i.e., when {theta} is small), many different types of structure are seen, ranging from straight lines, the S-shaped curves, to complex, disorganized shapes.
Electromagnetism of rotating conductors revisited
Redzic, Dragan V. [Faculty of Physics, University of Belgrade, Belgrade (Yugoslavia)]. E-mail: redzic@ff.bg.ac.yu
2002-03-01
The charge distribution and electromagnetic fields in a rotating, charged conductor under stationary conditions are investigated, assuming that the electrons are at rest relative to the conductor. The basic equations are found, referred to the inertial rest frame of the rotational axis, in the relativistic case, and applied to the case of a cylindrical conductor. The results obtained are compared with those of Groen and Voeyenli (Groen Oe and Voeyenli K 1982 Eur. J. Phys. 3 210-4) who considered the same problem but without taking into account the relative permittivity of the rotating conductor. It is found that the E- and B-fields do not depend on {epsilon}{sub r} and coincide with those calculated by Groen and Voeyenli; the space and surface charge densities, however, depend on {epsilon}{sub r}. (author)
Rotational Mixing and Lithium Depletion
Pinsonneault, M H
2010-01-01
I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...
Wormhole shadows in rotating dust
Ohgami, Takayuki; Sakai, Nobuyuki
2016-09-01
As an extension of our previous work, which investigated the shadows of the Ellis wormhole surrounded by nonrotating dust, in this paper we study wormhole shadows in a rotating dust flow. First, we derive steady-state solutions of slowly rotating dust surrounding the wormhole by solving relativistic Euler equations. Solving null geodesic equations and radiation transfer equations, we investigate the images of the wormhole surrounded by dust for the above steady-state solutions. Because the Ellis wormhole spacetime possesses unstable circular orbits of photons, a bright ring appears in the image, just as in Schwarzschild spacetime. The bright ring looks distorted due to rotation. Aside from the bright ring, there appear weakly luminous complex patterns by the emission from the other side of the throat. These structure could be detected by high-resolution very-long-baseline-interferometry observations in the near future.
Rotating Rayleigh-Taylor turbulence
Boffetta, G.; Mazzino, A.; Musacchio, S.
2016-09-01
The turbulent Rayleigh-Taylor system in a rotating reference frame is investigated by direct numerical simulations within the Oberbeck-Boussinesq approximation. On the basis of theoretical arguments, supported by our simulations, we show that the Rossby number decreases in time, and therefore the Coriolis force becomes more important as the system evolves and produces many effects on Rayleigh-Taylor turbulence. We find that rotation reduces the intensity of turbulent velocity fluctuations and therefore the growth rate of the temperature mixing layer. Moreover, in the presence of rotation the conversion of potential energy into turbulent kinetic energy is found to be less effective, and the efficiency of the heat transfer is reduced. Finally, during the evolution of the mixing layer we observe the development of a cyclone-anticyclone asymmetry.
Rotating Ellis Wormholes in Four Dimensions
Kleihaus, Burkhard
2014-01-01
We present rotating wormhole solutions in General Relativity, which are supported by a phantom scalar field. These solutions evolve from the static Ellis wormhole, when the throat is set into rotation. As the rotational velocity increases, the throat deforms until at a maximal value of the rotational velocity, an extremal Kerr solution is encountered. The rotating wormholes attain a finite mass and quadrupole moment. They exhibit ergospheres and possess bound orbits.
LAMOST OBSERVATIONS IN THE KEPLER FIELD: SPECTRAL CLASSIFICATION WITH THE MKCLASS CODE
Gray, R. O. [Department of Physics and Astronomy, Appalachian State University, Boone, NC 28608 (United States); Corbally, C. J. [Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721-0065 (United States); Cat, P. De [Royal Observatory of Belgium, Ringlaan 3, B-1180 Brussel (Belgium); Fu, J. N.; Ren, A. B. [Department of Astronomy, Beijing Normal University, 19 Avenue Xinjiekouwai, Beijing 100875 (China); Shi, J. R.; Luo, A. L.; Zhang, H. T.; Wu, Y.; Cao, Z.; Li, G. [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Zhang, Y.; Hou, Y.; Wang, Y. [Nanjing Institute of Astronomical Optics and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing 210042 (China)
2016-01-15
The LAMOST-Kepler project was designed to obtain high-quality, low-resolution spectra of many of the stars in the Kepler field with the Large Sky Area Multi Object Fiber Spectroscopic Telescope (LAMOST) spectroscopic telescope. To date 101,086 spectra of 80,447 objects over the entire Kepler field have been acquired. Physical parameters, radial velocities, and rotational velocities of these stars will be reported in other papers. In this paper we present MK spectral classifications for these spectra determined with the automatic classification code MKCLASS. We discuss the quality and reliability of the spectral types and present histograms showing the frequency of the spectral types in the main table organized according to luminosity class. Finally, as examples of the use of this spectral database, we compute the proportion of A-type stars that are Am stars, and identify 32 new barium dwarf candidates.
Spectral analysis by correlation; Analyse spectrale par correlation
Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1969-07-01
The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [French] La densite spectrale d'un signal qui represente la repartition de sa puissance sur l'axe des frequences est une fonction de premiere importance, constamment utilisee dans tout ce qui touche le traitement du signal (identification de processus, analyse de vibrations, etc...). Parmi toutes les methodes possibles de calcul de cette fonction, la methode par correlation (calcul de la fonction de correlation + transformation de Fourier) est tres seduisante par sa simplicite et ses performances. L'etude qui est faite ici va deboucher sur la realisation d'un appareil qui, couple a un correlateur, constituera un ensemble d'analyse spectrale en temps reel couvrant la gamme de frequence 0 a 5 MHz. (auteur)
Multi-spectral camera development
Holloway, M
2012-10-01
Full Text Available stream_source_info Holloway_2012.pdf.txt stream_content_type text/plain stream_size 6209 Content-Encoding ISO-8859-1 stream_name Holloway_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Multi-Spectral Camera... Development 4th Biennial Conference Presented by Mark Holloway 10 October 2012 Fused image ? Red, Green and Blue Applications of the Multi-Spectral Camera ? CSIR 2012 Slide 2 Green and Blue, Near Infrared (IR) RED Applications of the Multi...
Stingray: Spectral-timing software
Huppenkothen, Daniela; Bachetti, Matteo; Stevens, Abigail L.; Migliari, Simone; Balm, Paul
2016-08-01
Stingray is a spectral-timing software package for astrophysical X-ray (and more) data. The package merges existing efforts for a (spectral-)timing package in Python and is composed of a library of time series methods (including power spectra, cross spectra, covariance spectra, and lags); scripts to load FITS data files from different missions; a simulator of light curves and event lists that includes different kinds of variability and more complicated phenomena based on the impulse response of given physical events (e.g. reverberation); and a GUI to ease the learning curve for new users.
Spectral Analysis of Nonstationary Spacecraft Vibration Data
1965-11-01
the instantaneous power spectral density function for the process (y(t)). This spectral function can take on negative values for certain cases...power spectral density function is not directly measurable in the frequency domain. An experimental estimate for the function can be obtained only by...called the generalized power spectral density function for the process (y(t)) . This spectral description for nonstationary data is of great value for
Rotated balance in humans due to repetitive rotational movement.
Zakynthinaki, M S; Milla, J Madera; De Durana, A López Diaz; Martínez, C A Cordente; Romo, G Rodríguez; Quintana, M Sillero; Molinuevo, J Sampedro
2010-03-01
We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.
Rotational mixing in close binaries
de Mink, S E; Langer, N; Yoon, S -Ch; Brott, I; Glebbeek, E; Verkoulen, M; Pols, O R
2008-01-01
Rotational mixing is a very important but uncertain process in the evolution of massive stars. We propose to use close binaries to test its efficiency. Based on rotating single stellar models we predict nitrogen surface enhancements for tidally locked binaries. Furthermore we demonstrate the possibility of a new evolutionary scenario for very massive (M > 40 solar mass) close (P < 3 days) binaries: Case M, in which mixing is so efficient that the stars evolve quasi-chemically homogeneously, stay compact and avoid any Roche-lobe overflow, leading to very close (double) WR binaries.
The rotational spectrum of tyrosine.
Pérez, Cristóbal; Mata, Santiago; Cabezas, Carlos; López, Juan C; Alonso, José L
2015-04-23
In this work neutral tyrosine has been generated in the gas phase by laser ablation of solid samples, and its most abundant conformers characterized through their rotational spectra. Their identification has been made by comparison between the experimental and ab initio values of the rotational and quadrupole coupling constants. Both conformers are stabilized by an O-H•••N hydrogen bond established within the amino acid skeleton chain and an additional weak N-H•••π hydrogen bond. The observed conformers differ in the orientation of the phenolic -OH group.
Butterflies with rotation and charge
Reynolds, Alan P.; Ross, Simon F.
2016-11-01
We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2 + 1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.
Butterflies with rotation and charge
Reynolds, Alan P
2016-01-01
We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2+1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.
Relativity on Rotated Graph Paper
Salgado, Roberto B
2011-01-01
We present visual calculations in special relativity using spacetime diagrams drawn on graph paper that has been rotated by 45 degrees. The rotated lines represent lightlike directions in Minkowski spacetime, and the boxes in the grid (called "light-clock diamonds") represent units of measurement modeled on the ticks of an inertial observer's lightclock. We show that many quantitative results can be read off a spacetime diagram by counting boxes, using a minimal amount of algebra. We use the Doppler Effect, in the spirit of the Bondi k-calculus, to motivate the method.
Rotationally actuated prosthetic helping hand
Norton, William E. (Inventor); Belcher, Jewell G., Jr. (Inventor); Carden, James R. (Inventor); West, Thomas W. (Inventor)
1991-01-01
A prosthetic device has been developed for below-the-elbow amputees. The device consists of a cuff, a stem, a housing, two hook-like fingers, an elastic band for holding the fingers together, and a brace. The fingers are pivotally mounted on a housing that is secured to the amputee's upper arm with the brace. The stem, which also contains a cam, is rotationally mounted within the housing and is secured to the cuff, which fits over the amputee's stump. By rotating the cammed stem between the fingers with the lower arm, the amputee can open and close the fingers.
Rotation sensing with trapped ions
Campbell, W C
2016-01-01
We present a protocol for using trapped ions to measure rotations via matter-wave Sagnac interferometry. The trap allows the interferometer to enclose a large area in a compact apparatus through repeated round-trips in a Sagnac geometry. We show how a uniform magnetic field can be used to close the interferometer over a large dynamic range in rotation speed and measurement bandwidth without losing contrast. Since this technique does not require the ions to be confined in the Lamb-Dicke regime, thermal states with many phonons should be sufficient for operation.
Rotation and winds of exoplanet HD 189733 b measured with high-dispersion transmission spectroscopy
Brogi, M; Albrecht, S; Snellen, I A G; Birkby, J L; Schwarz, H
2015-01-01
Giant exoplanets orbiting very close to their parent star (hot Jupiters) are subject to tidal forces expected to synchronize their rotational and orbital periods on short timescales (tidal locking). However, spin rotation has never been measured directly for hot Jupiters. Furthermore, their atmospheres can show equatorial super-rotation via strong eastward jet streams, and/or high-altitude winds flowing from the day- to the night-side hemisphere. Planet rotation and atmospheric circulation broaden and distort the planet spectral lines to an extent that is detectable with measurements at high spectral resolution. We observed a transit of the hot Jupiter HD 189733 b around 2.3 {\\mu}m and at a spectral resolution of R~10$^5$ with CRIRES at the ESO Very Large Telescope. After correcting for the stellar absorption lines and their distortion during transit (the Rossiter-McLaughlin effect), we detect the absorption of carbon monoxide and water vapor in the planet transmission spectrum by cross-correlating with model...
Rayleigh imaging in spectral mammography
Berggren, Karl; Danielsson, Mats; Fredenberg, Erik
2016-03-01
Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.
Polynomial J-spectral factorization
Kwakernaak, Huibert; Sebek, Michael
1994-01-01
Several algorithms are presented for the J-spectral factorization of a para-Hermitian polynomial matrix. The four algorithms that are discussed are based on diagonalization, successive factor extraction, interpolation, and the solution of an algebraic Riccati equation, respectively. The paper includ
Asymptotics of thermal spectral functions
Caron-Huot, S
2009-01-01
We use operator product expansion (OPE) techniques to study the spectral functions of currents at finite temperature, in the high-energy time-like region $\\omega\\gg T$. The leading corrections to the spectral function of currents and stress tensors are proportional to $\\sim T^4$ expectation values in general, and the leading corrections $\\sim g^2T^4$ are calculated at weak coupling, up to one undetermined coefficient in the shear viscosity channel. Spectral functions in the asymptotic regime are shown to be infrared safe up to order $g^8T^4$. The convergence of sum rules in the shear and bulk viscosity channels is established in QCD to all orders in perturbation theory, though numerically significant tails $\\sim T^4/(\\log\\omega)^3$ are shown to exist in the bulk viscosity channel and to have an impact on sum rules recently proposed by Kharzeev and Tuchin. We argue that the spectral functions of currents and stress tensors in strongly coupled $\\mathcal{N}=4$ super Yang-Mills do not receive any medium-dependent...
Spectral representation of Gaussian semimartingales
Basse-O'Connor, Andreas
2009-01-01
The aim of the present paper is to characterize the spectral representation of Gaussian semimartingales. That is, we provide necessary and sufficient conditions on the kernel K for X t =∫ K t (s) dN s to be a semimartingale. Here, N denotes an independently scattered Gaussian random measure...
Spectral problems for operator matrices
Bátkai, A.; Binding, P.; Dijksma, A.; Hryniv, R.; Langer, H.
2005-01-01
We study spectral properties of 2 × 2 block operator matrices whose entries are unbounded operators between Banach spaces and with domains consisting of vectors satisfying certain relations between their components. We investigate closability in the product space, essential spectra and generation of
Rapidly rotating neutron star progenitors
Postnov, K A; Kolesnikov, D A; Popov, S B; Porayko, N K
2016-01-01
Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In the present paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, $\\tau_c$. The validity of this approach is checked by direct MESA calculations ...
Complications of intertrochanteric rotational osteotomy
Braunstein, E.M.; Weissman, B.N.; Sosman, J.L.; Drew, M.
1983-11-01
Intertrochanteric anterior rotational osteotomy is a recently developed surgical procedure to treat osteonecrosis of the femoral head. We reviewed the radiographic findings in four cases to acquaint radiologists with the usual appearance of the procedure and to assess surgical complications. In all cases, immediate postoperative radiographs showed rotation of the necrotic portion of the femoral head anteriorly so that it was no longer weight-bearing. Clinical and radiologic follow-up ranged from 12 to 30 months. In this time, three patients developed complications, including nonunion of the osteotomy, further osteonecrosis with collapse of the femoral head, and worsening pain in the absence of progressive radiologic change. Radiology provides an important means of assessing rotational osteotomy, particularly in demonstrating sufficient rotation of the femoral head to assure nonweight-bearing by diseased bone. Also, surgical complications such as nonunion and hardware loosening may be identified. Nevertheless, the patient may deteriorate clinically even in the absence of radiologic demonstration of disease pregression, and the absence of radiographic change does not assure a successful surgical outcome.
ENGINEERING BULLETIN: ROTATING BIOLOGICAL CONTACTORS
Rotating biological contactors employ aerobic fixed-film treatment to degrade either organic and/or nitrogenous (ammonia-nitrogen) constituents present in aqueous waste streams. ixed-film systems provide a surface to which the biomass can adhere. Treatment is achieved as the wast...
Holder for rotating glass body
Kolleck, Floyd W.
1978-04-04
A device is provided for holding and centering a rotating glass body such as a rod or tube. The device includes a tubular tip holder which may be held in a lathe chuck. The device can utilize a variety of centering tips each adapted for a particular configuration, such as a glass O-ring joint or semi-ball joint.
Pattern formation in rotating fluids
Bühler, Karl
2009-06-01
Flows in nature and technology are often associated with specific structures and pattern. This paper deals with the development and behaviour of such flow pattern. Flow structures are important for the mass, momentum and energy transport. The behaviour of different flow pattern is used by engineers to obtain an efficient mass and energy consumption. Mechanical power is transmitted via the momentum of rotating machine parts. Therefore the physical and mathematical knowledge of these basic concepts is important. Theoretical and experimental investigations of principle experiments are described in the following. We start with the classical problem of the flow between two concentric cylinders where the inner cylinder rotates. Periodic instabilities occur which are called Taylor vortices. The analogy between the cylindrical gap flow, the heat transfer in a horizontal fluid layer exposed to the gravity field and the boundary layer flow along concave boundaries concerning their stability behaviour is addressed. The vortex breakdown phenomenon in a cylinder with rotating cover is also described. A generalization to spherical sectors leads then to investigations with different boundary conditions. The spherical gap flow exhibits interesting phenomena concerning the nonlinear character of the Navier-Stokes equations. Multiple solutions in the nonlinear regime give rise to different routes during the laminar-turbulent transition. The interaction of two rotating spheres results in flow structures with separation and stagnation lines. Experimental results are confirmed by numerical simulations.
Ultrasonography of the Rotator Cuff
Yoon, Yong Cheol [Samsung Medica Center, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)
2006-09-15
The ultrasonography (US) is an important modality in evaluating shoulder disease. It is accurate in diagnosing the various shoulder diseases including tendinosis, calcific tendinitis, and subacromial bursitis as well as rotator cuff tears. This article presents a pictorial review of US anatomy of the shoulder, the technical aspects of shoulder US, major types of shoulder pathology, and interventional procedure under US guidance
Rotatable fixture for spray coating
Katvala, V.; Porter, E.; Smith, M.
1979-01-01
Fixture that rotates about two axes ensures uniform coating and minimizes handling of coated workpiece. Each side of tile is coated in sequence by moving turntables until surface is perpendicular to spray. Process is repeated until desired thickness has built up.
Poloidal rotation of main ions in the CT-6B tokamak
冯春华; 李赞良; 杨宣宗; 郑少白; 李文莱; 王龙
2003-01-01
The poloidal rotation velocity of neutral hydrogen atoms is measured using the Doppler shift of the Hα spectral line emitted in the CT-6B tokamak. The poloidal rotation of hydrogen atoms is generated through the collisions and charge-exchanges with main ions (protons). Therefore, the rotation direction of main ions can be deduced from that of neutral hydrogen atoms. The experimental results show that the main ions rotate in the electron diamagnetic drift direction, the same as the impurity ions, in the plasma core. The neutral hydrogen atoms rotate also in the electron diamagnetic drift direction in the edge region of the plasma. However, the rotation direction of main ions in the edge region cannot be judged from the experimental result due to the long mean free path of hydrogen atoms in the edge region. An inward diffusion flux of hydrogen atoms toward the torus inside with a velocity of the same order of magnitude as their poloidal rotation is also observed.
Further Results from the Galactic O-Star Spectroscopic Survey: Rapidly Rotating Late ON Giants
Walborn, Nolan R; Sota, Alfredo; Alfaro, Emilio J; Morrell, Nidia I; Barba, Rodolfo H; Arias, Julia I; Gamen, Roberto C
2011-01-01
With new data from the Galactic O-Star Spectroscopic Survey, we confirm and expand the ONn category of late-O, nitrogen-enriched (N), rapidly rotating (n) giants. In particular, we have discovered two "clones" (HD 102415 and HD 117490) of one of the most rapidly rotating O stars previously known (HD 191423, "Howarth's Star"). We compare the locations of these objects in the theoretical HR Diagram to those of slowly rotating ON dwarfs and supergiants. All ON giants known to date are rapid rotators, whereas no ON dwarf or supergiant is; but all ON stars are small fractions of their respective spectral-type/luminosity-class/rotational subcategories. The ONn giants, displaying both substantial processed material and high rotation at an intermediate evolutionary stage, may provide significant information about the development of those properties. They may have preserved high initial rotational velocities or been spun up by TAMS core contraction; but alternatively and perhaps more likely, they may be products of bi...
Ouazzani, R-M
2012-01-01
Information about the rotation rate is contained in the low frequency part of power spectra, where signatures of nonuniform surface rotation are expected, as well as in the frequency splittings induced by the internal rotation rate. We wish to figure out whether the differences between the seismic rotation period as determined by a mean rotational splitting, and the rotation period measured from the low frequency peak in the Fourier spectrum (observed for some of CoRoT's targets) can provide constraints on the rotation profile. For uniform moderate rotators,perturbative corrections to second and third order in terms of the rotation angular velocity \\Omega, may mimic differential rotation. We apply our perturbation method to evaluate mode frequencies accurate up to \\Omega^3 for uniform rotation. Effects of latitudinal dependence are calculated in the linear approximation. In \\beta Cephei pulsators models, third order effects become comparable to that of a horizontal shear similar to the solar one at rotation r...
Assigning the Vibration-Rotation Spectra Using the Lww Program Package
Lodyga, Wieslaw; Kreglewski, Marek
2016-06-01
The LWW program package is based on traditional methods used in assigning rotationally resolved IR molecular spectra. The Loomis-Wood diagrams, which are used to visualize spectral branches and facilitate their identification, are combined with the power of interactive lower state combination difference (LSCD) checking, which provides immediate verification of correct assignments of quantum numbers to spectral lines. The traditional Giessen/Cologne type Loomis-Wood algorithm is also implemented. Predictions of vibration-rotation wavenumbers are calculated from a table of vibration-rotation energies, which can be imported from any external fitting program. Program includes many additional tools like simulation of a spectrum from a catalog file (list of transitions with intensities), build-up of a vibration-rotation band from individual branches and simultaneous displaying of two IR spectra - active one used for assignments and a reference one, both with full link to their peak-list files. Importing energies as well as exporting assigned data for fitting in an external program is made easy and flexible by a user-programmed import/export interface, which facilitates iterative refining of energy levels and gives a possibility of using directly exact vibration-rotation energies. Program is available in tree versions: for symmetric top, asymmetric top and molecules with large amplitude motions. The program is designed for the Windows operating systems and is available with full documentation on www.lww.amu.edu.pl .
Detection and spectral measurements of coherent synchrotron radiation at FLASH
Behrens, Christopher
2010-02-15
The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 {mu}m to 110 {mu}m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 {mu}m to 160 {mu}m were done. (orig.)
Multiwavelength Studies of Rotating Radio Transients
Miller, Joshua J.
Seven years ago, a new class of pulsars called the Rotating Radio Transients (RRATs) was discovered with the Parkes radio telescope in Australia (McLaughlin et al., 2006). These neutron stars are characterized by strong radio bursts at repeatable dispersion measures, but not detectable using standard periodicity-search algorithms. We now know of roughly 100 of these objects, discovered in new surveys and re-analysis of archival survey data. They generally have longer periods than those of the normal pulsar population, and several have high magnetic fields, similar to those other neutron star populations like the X-ray bright magnetars. However, some of the RRATs have spin-down properties very similar to those of normal pulsars, making it difficult to determine the cause of their unusual emission and possible evolutionary relationships between them and other classes of neutron stars. We have calculated single-pulse flux densities for eight RRAT sources observed using the Parkes radio telescope. Like normal pulsars, the pulse amplitude distributions are well described by log-normal probability distribution functions, though two show evidence for an additional power-law tail. Spectral indices are calculated for the seven RRATs which were detected at multiple frequencies. These RRATs have a mean spectral index of = -3.2(7), or = -3.1(1) when using mean flux densities derived from fitting log-normal probability distribution functions to the pulse amplitude distributions, suggesting that the RRATs have steeper spectra than normal pulsars. When only considering the three RRATs for which we have a wide range of observing frequencies, however, and become --1.7(1) and --2.0(1), respectively, and are roughly consistent with those measured for normal pulsars. In all cases, these spectral indices exclude magnetar-like flat spectra. For PSR J1819--1458, the RRAT with the highest bursting rate, pulses were detected at 685 and 3029 MHz in simultaneous observations and have a
Spin rotators and split Siberian Snakes
Roser, Thomas
1994-03-01
The study of spin effects in the collision of polarized high energy beams requires flexible and compact spin rotators to manipulate the beam polarization direction. Design criteria and specific examples are presented for high energy, orbit transparent spin rotators ranging from small angle rotators to be used for the excitation of spin resonances to large angle rotators to be used as Siberian Snakes. It is shown that all the requirements for spin rotators can be met with a simple 6-magnet spin rotator design, for which a complete continuous solution is presented.
Spin rotators and split Siberian Snakes
Roser, T. (Brookhaven National Lab., Upton, NY (United States))
1994-03-22
The study of spin effects in the collision of polarized high energy beams requires flexible and compact spin rotators to manipulate the beam polarization direction. Design criteria and specific examples are presented for high energy, orbit transparent spin rotators ranging from small angle rotators to be used for the excitation of spin resonances to large angle rotators to be used as Siberian Snakes. It is shown that all the requirements for spin rotators can be met with a simple 6-magnet spin rotator design, for which a complete continuous solution is presented. (orig.)
Structure of molecules and internal rotation
Mizushima, San-Ichiro
1954-01-01
Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi
VIBRATIONS DETECTION IN INDUSTRIAL PUMPS BASED ON SPECTRAL ANALYSIS TO INCREASE THEIR EFFICIENCY
Belhadef RACHID
2016-01-01
Full Text Available Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analy-sis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.
A synthetic high fidelity, high cadence spectral Earth database
Schwieterman, Edward; Meadows, Victoria; Robinson, Tyler D.; Lustig-Yaeger, Jacob; Sparks, William B.; Cracraft, Misty
2016-10-01
Earth is currently our only, and will always be our best, example of a living planet. While Earth data model comparisons have been effectively used in recent years to validate spectral models, observations by interplanetary spacecraft are limited to "snapshots" in terms of viewing geometry and Earth's dynamic surface and atmosphere state. We use the well-validated Virtual Planetary Laboratory 3D spectral Earth model to generate both simulated disk-averaged spectra and high resolution, spatially resolved spectral data cubes of Earth at a viewing geometry consistent with Lunar viewing angles at wavelengths from the far UV (0.1 μm) the to the far IR (200 μm). The database includes disk-averaged spectra from dates 03/19/2008 to 04/23/2008 at one-hour cadence and fully spectral data cubes for a subset of those times. These spectral products have a wide range of applications including calibration of spacecraft instrumentation (Robinson et al. 2014), modeling the radiation environment of permanently shadowed Lunar craters due to Earthshine (Glenar et al., in prep), and testing the detectability of atmospheric and surface features of an Earth-like planet orbiting a distant star with a large space-based telescope mission concepts such as LUVOIR. These data include the phase and time-dependent changes in spectral biosignatures (O2, O3, CH4, VRE) and habitability markers (N2, H2O, CO2, ocean glint). The advantages of the VPL Earth model data products over 1D spectra traditionally used for testing instrument architectures include accurate modeling of Earth's surface inhomogeneity (continental distribution and ice caps), cloud cover and variability, pole to equator temperature gradients, obliquity, phase-dependent scattering effects, and rotation. We present a subset of this spectral data including anticipated signal-to-noise calculations of an exoEarth twin at different phases using a coronagraph instrument model (Robinson et al. 2015). We also calculate time
Keplerian frequency of uniformly rotating neutron stars and quark stars
Haensel, P; Bejger, M; Lattimer, J M
2009-01-01
We calculate Keplerian (mass shedding) configurations of rigidly rotating neutron stars and quark stars with crusts. We check the validity of empirical formula for Keplerian frequency, f_K, proposed by Lattimer & Prakash, f_K(M)=C (M/M_sun)^1/2 (R/10km)^-3/2, where M is the (gravitational) mass of Keplerian configuration, R is the (circumferential) radius of the non-rotating configuration of the same gravitational mass, and C = 1.04 kHz. Numerical calculations are performed using precise 2-D codes based on the multi-domain spectral methods. We use a representative set of equations of state (EOSs) of neutron stars and quark stars. We show that the empirical formula for f_K(M) holds within a few percent for neutron stars with realistic EOSs, provided 0.5 M_sun < M < 0.9 M_max,stat, where M_max,stat is the maximum allowable mass of non-rotating neutron stars for an EOS, and C=C_NS=1.08 kHz. Similar precision is obtained for quark stars with 0.5 M_sun < M < 0.9 M_max,stat. For maximal crust masses...
Autonomous strange nonchaotic oscillations in a system of mechanical rotators
Jalnine, Alexey Yu.; Kuznetsov, Sergey P.
2017-05-01
We investigate strange nonchaotic self-oscillations in a dissipative system consisting of three mechanical rotators driven by a constant torque applied to one of them. The external driving is nonoscillatory; the incommensurable frequency ratio in vibrational-rotational dynamics arises due to an irrational ratio of diameters of the rotating elements involved. It is shown that, when losing stable equilibrium, the system can demonstrate two- or three-frequency quasi-periodic, chaotic and strange nonchaotic self-oscillations. The conclusions of the work are confirmed by numerical calculations of Lyapunov exponents, fractal dimensions, spectral analysis, and by special methods of detection of a strange nonchaotic attractor (SNA): phase sensitivity and analysis using rational approximation for the frequency ratio. In particular, SNA possesses a zero value of the largest Lyapunov exponent (and negative values of the other exponents), a capacitive dimension close to 2 and a singular continuous power spectrum. In general, the results of this work shed a new light on the occurrence of strange nonchaotic dynamics.
Hindered internal rotation in some singly methylated trans-stilbenes
Spangler, L.H.; Bosma, W.B.; van Zee, R.D.; Zwier, T.S.
1988-06-01
The fluorescence excitation and several dispersed fluorescence spectra for supersonically cooled p-methyl-trans-stilbene and the two m-methyl-trans-stilbenes are presented. Despite significant spectral congestion present in these molecules which contain low frequency modes and internal rotation structure, nearly complete assignments of the excitation spectra are given. One notable transition is assigned as a combination of a nontotally symmetric vibration and a nontotally symmetric level of the methyl rotor. All three species have a ground state barrier to internal rotation of approx.28 cm/sup -1/. Excited state barriers and conformational changes observed on excitation are 150 cm/sup -1/ and 35/sup 0/ for p-Me, and 80 cm/sup -1/ and 60/sup 0/, and 186 cm/sup -1/ and 30/sup 0/ for the two m-Me compounds. The p-Me compound shows a threefold barrier to internal rotation rather than a sixfold one, indicating that the two meta positions are inequivalent. The large differences in barrier height and conformational change on excitation between the two meta isomers, whose origins are separated by 207 cm/sup -1/, confirm this inequivalence.
Transit Lightcurves of Extrasolar Planets Orbiting Rapidly-Rotating Stars
Barnes, Jason W
2009-01-01
Main-sequence stars earlier than spectral type ~F6 or so are expected to rotate rapidly due to their radiative exteriors. This rapid rotation leads to an oblate stellar figure. It also induces the photosphere to be hotter (by up to several thousand Kelvin) at the pole than at the equator as a result of a process called gravity darkening that was first predicted by von Zeipel (1924). Transits of extrasolar planets across such a non-uniform, oblate disk yield unusual and distinctive lightcurves that can be used to determine the relative alignment of the stellar rotation pole and the planet orbit normal. This spin-orbit alignment can be used to constrain models of planet formation and evolution. Orderly planet formation and migration within a disk that is coplanar with the stellar equator will result in spin-orbit alignment. More violent planet-planet scattering events should yield spin-orbit misaligned planets. Rossiter-McLaughlin measurements of transits of lower-mass stars show that some planets are spin-orbi...
Gravito-inertial waves in a differentially rotating spherical shell
Mirouh, Giovanni M; Rieutord, Michel; Ballot, Jérôme
2015-01-01
We study the properties of gravito-inertial waves in a differentially rotating fluid inside a spherical shell. The fluid is modeled with the Boussinesq approximation and has a shellular steady rotation profile that stems from the combined effects of stratification, rotation, and no-slip boundary conditions. The waves properties are examined by computing paths of characteristics in the non-dissipative limit, and by solving the full dissipative eigenvalue problem using a high-resolution spectral method. Gravito-inertial waves are found to obey a mixed-type second-order operator and to be often focused around short-period attractors of characteristics or trapped in a wedge formed by turning surfaces and boundaries. We also find eigenmodes that show a weak dependence with respect to viscosity and heat diffusion just like truly regular modes. Some axisymmetric modes are found unstable and likely destabilized by baroclinic instabilities. Similarly, some non-axisymmetric modes that meet a critical layer (or corotati...
The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States
Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago
2017-06-01
The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).
Absorption spectrum of Gafchromic EBT2 film with angular rotation
Park, Soah; Hwang, Taejin; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Me-Yeon; Kim, KyoungJu; Bae, Hoonsik; Kang, Sei-Kwon
2015-01-01
It is important to study absorption spectrum in film dosimetry because the spectral absorbance of the film relates to the film's total absorption dose. We investigated the absorption spectra of Gafchromic EBT2 film with various rotational angles in a visible wavelength band. The film was irradiated with 6 MV photon beams and a total dose of 300 cGy. Absorption spectra were taken under different rotational angles after 24 h after irradiation and we fitted the spectra using Lorentzian functions. There were two dominant absorption peaks at approximately 586 nm (green) and 634 nm (red). The measured spectrum was decomposed 542 nm, 558 nm, 578 nm, 586 nm, 626 nm, 634 nm, and 641 nm. The maximum total area of the red band absorption spectrum was at 45{\\deg}(225{\\deg}) and the minimum at 90{\\deg}(270{\\deg}). As the angle of rotation changed, the intensity and integrated area of the blue and green peaks also changed with 180{\\deg} period, with minima at 90{\\deg} and 270{\\deg}, and maxima at 0{\\deg} and 180{\\deg}, alt...
Rotation, magnetism, and metallicity of M dwarf systems
Shulyak, D; Reiners, A; Kochukhov, O; Piskunov, N
2011-01-01
Close M-dwarf binaries and higher multiples allow the investigation of rotational evolution and mean magnetic flux unbiased from scatter in inclination angle and age since the orientation of the spin axis of the components is most likely parallel and the individual systems are coeval. Systems composed of an early (M0.0 -- M4.0) and a late (M4.0 -- M8.0) type component offer the possibility to study differences in rotation and magnetism between partially and fully convective stars. We have selected 10 of the closest dM systems to determine the rotation velocities and the mean magnetic field strengths based on spectroscopic analysis of FeH lines of Wing-Ford transitions at 1 $\\mu$m observed with VLT/CRIRES. We also studied the quality of our spectroscopic model regarding atmospheric parameters including metallicity. A modified version of the Molecular Zeeman Library (MZL) was used to compute Land\\'e g-factors for FeH lines. Magnetic spectral synthesis was performed with the Synmast code. We confirmed previously...
The Rotational Spectra of Perfluoropropionic Acid and its Hydrates
Lin, Wei; Serrato, Agapito Serrato, Iii; Obenchain, Daniel A.; Grubbs, G. S. Grubbs, Ii; Novick, Stewart E.; Cooke, S. A.
2012-06-01
The pure rotational spectrum of perfluoropropionic acid, CF3CF2COOH, has been studied using a chirped pulse Fourier transform microwave spectrometer in the frequency range of 8-14 GHz. A total of 81 transitions, including {a}-type, {b}-type, and {c}-type transitions have been observed and analyzed. The rotational constants and the five quartic centrifugal distortion constants have been determined for the first time. Quantum chemical calculations and the spectral analysis indicate that the observed conformer is the {gauche} form of perfluoropropionic acid with calculated dihedral angles
Kong, Lingjie; Xiao, Xiaosheng; Yang, Changxi
2011-09-12
We numerically studied the polarization dynamics in dissipative soliton lasers mode-locked by nonlinear polarization rotation (NPR). It was found that the polarization states of the intracavity dissipative soliton vary with time across the pulse. Depending on output coupling ratios, the polarization states of the pulse peak before the polarizer can be either nearly circular or nearly linear polarizations. The polarization dependent component in NPR is found to play a role of spectral filter under high and medium output coupling. However, NPR may work as a weak optical limiter under low output coupling, when additional spectral filtering is necessary to maintain steady mode-locking state.
Reduction of Sample Rotation in Electrostatic Levitation
Hyers, R. W; Johnson, W. L.; Savage, L.; Rogers, J. R.
2000-01-01
In many containerless processing systems, control of sample rotation is an important issue. Sample rotation is even more important for microgravity containerless processing systems, where the centrifugal acceleration can approach 1 g for even a small rotation rate. Prior work on rotation control by Rhim focused on driving the sample rotation at a controlled rate for droplet dynamics experiments and measurement of electrical conductivity. His technique allows controlled, fast rotation, but for many microgravity experiments the goal is zero rotation. To minimize sample rotation, two approaches are apparent: first, to identify and balance or eliminate the driving forces for undesired sample rotation, or second, implement a feedback-based rotation control loop in parallel with the position control loop. In this work, we have taken the first approach. To minimize sample rotation, the simplest approach is to identify and balance or eliminate the driving forces for undesired sample rotation. Our experiments show that the dominant driving force for rotation of machined Zr spheres in the MSFC ESL is photon pressure from the heating laser. Experimental results showing the correlation between heating power and torque are compared to theoretical predictions, and a strategy for minimizing the torque due to photon pressure is presented.
Fitzpatrick, E L
2010-01-01
We show that the UV spectrum (1280-3200 A) of the "superficially normal" A-star Vega, as observed by the IUE satellite at a resolution comparable to the star's rotational broadening width, can be fit remarkably well by a single-temperature synthetic spectrum based on LTE atmosphere models and a newly constructed UV line list. If Vega were a normal, equator-on, slow-rotating star, then its spectrum and our analysis would indicate a temperature of Teff ~ 9550 K, surface gravity of log g ~ 3.7, general surface metallicity of [m/H] ~ -0.5, and a microturbulence velocity of v(turb) ~ 2.0 km/s. Given its rapid rotation and nearly pole-on orientation, however, these parameters must be regarded as representing averages across the observed hemisphere. Modeling the complex UV line spectrum has allowed us to determine the specific surface abundances for 17 different chemical elements, including CNO, the light metals, and the iron group elements. The resultant abundance pattern agrees in general with previous results, al...
Lynov, Jens-Peter; Bergeron, K.; Coutsias, E.A.;
2000-01-01
We present an efficient spectral method for studies of fundamental vortex dynamics in forced, circular shear flows. The numerical results are compared with results from experiments carried out in rotating flows with both planar and parabolic geometries, Due to the high accuracy of the code, it can...
Spectral computations for bounded operators
Ahues, Mario; Limaye, Balmohan
2001-01-01
Exact eigenvalues, eigenvectors, and principal vectors of operators with infinite dimensional ranges can rarely be found. Therefore, one must approximate such operators by finite rank operators, then solve the original eigenvalue problem approximately. Serving as both an outstanding text for graduate students and as a source of current results for research scientists, Spectral Computations for Bounded Operators addresses the issue of solving eigenvalue problems for operators on infinite dimensional spaces. From a review of classical spectral theory through concrete approximation techniques to finite dimensional situations that can be implemented on a computer, this volume illustrates the marriage of pure and applied mathematics. It contains a variety of recent developments, including a new type of approximation that encompasses a variety of approximation methods but is simple to verify in practice. It also suggests a new stopping criterion for the QR Method and outlines advances in both the iterative refineme...
Spectral diagonal ensemble Kalman filters
Kasanický, Ivan; Vejmelka, Martin
2015-01-01
A new type of ensemble Kalman filter is developed, which is based on replacing the sample covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique improves the aproximation of the covariance when the covariance itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method is extended by wavelets to the case when the state variables are random fields, which are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet transform (DWT) are presented for several types of observations, including high-dimensional data given on a part of the domain, such as radar and satellite images. Computational experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water equations with very small ensembles and over multiple analysis cycles.
Spectral Synthesis of SDSS Galaxies
Sodre, J; Mateus, A; Stasinska, G; Gomes, J M
2005-01-01
We investigate the power of spectral synthesis as a mean to estimate physical properties of galaxies. Spectral synthesis is nothing more than the decomposition of an observed spectrum in terms of a superposition of a base of simple stellar populations of various ages and metallicities (here from Bruzual & Charlot 2003), producing as output the star-formation and chemical histories of a galaxy, its extinction and velocity dispersion. We discuss the reliability of this approach and apply it to a volume limited sample of 50362 galaxies from the SDSS Data Release 2, producing a catalog of stellar population properties. A comparison with recent estimates of both observed and physical properties of these galaxies obtained by other groups shows good qualitative and quantitative agreement, despite substantial differences in the method of analysis. The confidence in the method is further strengthened by several empirical and astrophysically reasonable correlations between synthesis results and independent quantiti...
Spectral Clustering with Imbalanced Data
Qian, Jing; Saligrama, Venkatesh
2013-01-01
Spectral clustering is sensitive to how graphs are constructed from data particularly when proximal and imbalanced clusters are present. We show that Ratio-Cut (RCut) or normalized cut (NCut) objectives are not tailored to imbalanced data since they tend to emphasize cut sizes over cut values. We propose a graph partitioning problem that seeks minimum cut partitions under minimum size constraints on partitions to deal with imbalanced data. Our approach parameterizes a family of graphs, by ada...
Remote application for spectral collection
Cone, Shelli R.; Steele, R. J.; Tzeng, Nigel H.; Firpi, Alexer H.; Rodriguez, Benjamin M.
2016-05-01
In the area of collecting field spectral data using a spectrometer, it is common to have the instrument over the material of interest. In certain instances it is beneficial to have the ability to remotely control the spectrometer. While several systems have the ability to use a form of connectivity to capture the measurement it is essential to have the ability to control the settings. Additionally, capturing reference information (metadata) about the setup, system configuration, collection, location, atmospheric conditions, and sample information is necessary for future analysis leading towards material discrimination and identification. This has the potential to lead to cumbersome field collection and a lack of necessary information for post processing and analysis. The method presented in this paper describes a capability to merge all parts of spectral collection from logging reference information to initial analysis as well as importing information into a web-hosted spectral database. This allows the simplification of collecting, processing, analyzing and storing field spectra for future analysis and comparisons. This concept is developed for field collection of thermal data using the Designs and Prototypes (D&P) Hand Portable FT-IR Spectrometer (Model 102). The remote control of the spectrometer is done with a customized Android application allowing the ability to capture reference information, process the collected data from radiance to emissivity using a temperature emissivity separation algorithm and store the data into a custom web-based service. The presented system of systems allows field collected spectra to be used for various applications by spectral analysts in the future.
Chebyshev and Fourier spectral methods
Boyd, John P
2001-01-01
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
FLUID FLOW IN ROTATING HELICAL SQUARE DUCTS
Chen Hua-jun; Zhang Ben-zhao; Zhang Jin-suo
2003-01-01
A numerical study is made for a fully developed laminar flow in rotating helical pipes.Due to the rotation, the Coriolis force can also contribute to the secondary flow.The interaction between rotation, torsion, and curvature complicates the flow characteristics.The effects of rotation and torsion on the flow transitions are studied in details.The results show that there are obvious differences between the flow in rotating ducts and in helical ducts without rotation.Certain hitherto unknown flow patterns are found.The effects of rotation and torsion on the friction factor are also examined.Present results show the characteristics of the fluid flow in rotating helical square ducts.
Area spectrum of slowly rotating black holes
2010-01-01
We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.
SEG Advances in Rotational Seismic Measurements
Pierson, Robert; Laughlin, Darren; Brune, Bob
2016-10-17
Significant advancements in the development of sensors to enable rotational seismic measurements have been achieved. Prototypes are available now to support experiments that help validate the utility of rotational seismic measurements.
Stellar Spectral Synthesis with OpenGL
Hill, Nicholas R.; Townsend, R.
2011-01-01
Given an appropriate model atmosphere, synthesizing the spectrum of a star is a relatively straightforward task -- *if* the star is spherical and homogeneous across its surface. Many astronomically interesting objects do not, however, fall into this category. Examples include single stars that are spotted, rapidly rotating or pulsating, and binary stars in eclipsing or ellipsoidal-variable configurations. To synthesize a spectrum in such cases, it is necessary to construct a 3-D model of the stellar surface; determine which regions of the surface are visible to an external observer; and then calculate the observer-directed radiation from these regions. The Open Graphics Library (OpenGL), a cross-platform application programming interface for creation of 2-D and 3-D graphics, already includes much of the functionality required to implement these steps. We describe a new approach to stellar spectral synthesis that leverages this functionality. A 3-D mesh is constructed to represent the (possibly non-spherical) geometry of the stellar surface (or surfaces, in the case of binary or multiple systems). Textures are laid over this mesh to represent the run of physical attributes such as temperature, gravity, velocity, etc. The textured mesh is then rendered by OpenGL into a framebuffer, a step which naturally takes care of projection and occultation effects. The attributes of each framebuffer pixel are used to look up an appropriate spectrum in pre-calculated tables of specific intensities; and finally, summing the spectra from all pixels gives the disk-integrated synthetic flux spectrum of the star. The advantage of this approach lies in its efficiency (many OpenGL features are hardware-implemented), flexibility and manifest simplicity. Possible applications include binary light-curve modeling, mode identification in pulsating stars, and stellar population synthesis.
Morphological and spectral study of the galaxies Kaz 69 and Kaz 460
Kazarian, M. A.; Karapetian, E. L.; Adibekyan, V. Zh.
2007-10-01
Morphological and spectral studies of the galaxies Kaz 69 and Kaz 460 are reported. The observations were made on the 2.6-m telescope at the Byurakan Observatory using the VAGR multiaperture spectrograph. Isophotes of monochromatic images of the Hα, [NII] λ6584, and [SII] λ6717 lines are constructed. Densifications I and II are found to rotate with north-south oriented axes of rotation. The two densifications (“knots”) have all the kinematic and spectral properties of individual galaxies. It is assumed that Kaz 139 and the densifications I and II were ejected from the nucleus of Kaz 460 at different times, with Kaz 139 probably having been ejected first, although they may all have been ejected simultaneously with different velocities. Along with Kaz 460, these objects form a physical group of galaxies and, at the same time, are a consequence of the activity of the nucleus of Kaz 460.
The JCMT Spectral Legacy Survey
Plume, R; Helmich, F; Van der Tak, F F S; Roberts, H; Bowey, J; Buckle, J; Butner, H; Caux, E; Ceccarelli, C; Van Dishoeck, E F; Friberg, P; Gibb, A G; Hatchell, J; Hogerheijde, M R; Matthews, H; Millar, T; Mitchell, G; Moore, T J T; Ossenkopf, V; Rawlings, J; Richer, J; Roellig, M; Schilke, P; Spaans, M; Tielens, A G G M; Thompson, M A; Viti, S; Weferling, B; White, G J; Wouterloot, J; Yates, J; Zhu, M; White, Glenn J.
2006-01-01
Stars form in the densest, coldest, most quiescent regions of molecular clouds. Molecules provide the only probes which can reveal the dynamics, physics, chemistry and evolution of these regions, but our understanding of the molecular inventory of sources and how this is related to their physical state and evolution is rudimentary and incomplete. The Spectral Legacy Survey (SLS) is one of seven surveys recently approved by the JCMT Board. Starting in 2007, the SLS will produce a spectral imaging survey of the content and distribution of all the molecules detected in the 345 GHz atmospheric window (between 332 GHz and 373 GHz) towards a sample of 5 sources. Our intended targets are: a low mass core (NGC1333 IRAS4), 3 high mass cores spanning a range of star forming environments and evolutionary states (W49, AFGL2591, and IRAS20126), and a PDR (the Orion Bar). The SLS will use the unique spectral imaging capabilities of HARP-B/ACSIS to study the molecular inventory and the physical structure of these objects, w...
Electric Deflection of Rotating Molecules
Gershnabel, E
2010-01-01
We provide a theory of the deflection of polar and non-polar rotating molecules by inhomogeneous static electric field. Rainbow-like features in the angular distribution of the scattered molecules are analyzed in detail. Furthermore, we demonstrate that one may efficiently control the deflection process with the help of short and strong femtosecond laser pulses. In particular the deflection process may by turned-off by a proper excitation, and the angular dispersion of the deflected molecules can be substantially reduced. We study the problem both classically and quantum mechanically, taking into account the effects of strong deflecting field on the molecular rotations. In both treatments we arrive at the same conclusions. The suggested control scheme paves the way for many applications involving molecular focusing, guiding, and trapping by inhomogeneous fields.
Faraday rotation system. Topical report
Bauman, L.E.; Wang, W.
1994-07-01
The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.
The chaotic rotation of Hyperion
Wisdom, J.; Peale, S. J.; Mignard, F.
1984-01-01
Under the assumption that the satellite is rotating about a principal axis that is normal to its orbit plane, a plot of spin rate-versus-orientation for Hyperion at the pericenter of its orbit has revealed a large, chaotic zone surrounding Hyperion's synchronous spin-orbit state. The chaotic zone is so large that it surrounds the 1/2 and 2 states, and libration in the 3/2 state is not possible. Rotation in the chaotic zone is also attitude-unstable. As tidal dissipation drives Hyperion's spin toward a nearly synchronous value, Hyperion necessarily enters the large chaotic zone, becoming attitude-unstable and tumbling. It is therefore predicted that Hyperion will be found to be tumbling chaotically.
Characterization of the rotating display.
Keyes, J W; Fahey, F H; Harkness, B A; Eggli, D F; Balseiro, J; Ziessman, H A
1988-09-01
The rotating display is a useful method for reviewing single photon emission computed tomography (SPECT) data. This study evaluated the requirements for a subjectively pleasing and useful implementation of this technique. Twelve SPECT data sets were modified and viewed by several observers who recorded the minimum framing rates for apparent smooth rotation, 3D effect, effects of image size, and other parameters. The results showed that a minimum of 16 frames was needed for a useful display. Smaller image sizes and more frames were preferred. The recommended minimal framing rate for a 64-frame study is 16-17 frames per second and for a 32-frame study, 12-13 frames per second. Other enhancements also were useful.
Hydrodynamic Instabilities in Rotating Fluids
KarlBuehler
2000-01-01
Rotating flow systems are often used to study stability phenomena and structure developments.The closed spherical gap prblem is generalized into an open flow system by superimposing a mass flux in meridional direction.The basic solutions at low Reynolds numbers are described by analytical methods.The nonlinear supercritical solutions are simulated numerically and realized in experiments.Novel steady and time-dependent modes of flows are obtained.The extensive results concern the stability behaviour.non-uniqueness of supercritical solutions,symmetry behaviour and transitions between steady and time-dependent solutions.The experimental investigations concern the visualization of the various instabilities and the quatitative description of the flow structures including the laminar-turbulent transition.A Comparison between theoretical and experimental results shows good agreement within the limit of rotational symmetric solutions from the theory.
Alignment of suprathermally rotating grains
Lazarian, A.
1995-12-01
It is shown that mechanical alignment can be efficient for suprathermally rotating grains, provided that they drift with supersonic velocities. Such a drift should be widely spread due to both Alfvenic waves and ambipolar diffusion. Moreover, if suprathermal rotation is caused by grain interaction with a radiative flux, it is shown that mechanical alignment may be present even in the absence of supersonic drift. This means that the range of applicability of mechanical alignment is wider than generally accepted and that it can rival the paramagnetic one. We also study the latter mechanism and re-examine the interplay between poisoning of active sites and desorption of molecules blocking the access to the active sites of H_2 formation, in order to explain the observed poor alignment of small grains and good alignment of large grains. To obtain a more comprehensive picture of alignment, we briefly discuss the alignment by radiation fluxes and by grain magnetic moments.
Whirling skirts and rotating cones
Guven, Jemal; Müller, Martin Michael
2013-01-01
Steady, dihedrally symmetric patterns with sharp peaks may be observed on a spinning skirt, lagging behind the material flow of the fabric. These qualitative features are captured with a minimal model of traveling waves on an inextensible, flexible, generalized-conical sheet rotating about a fixed axis. Conservation laws are used to reduce the dynamics to a quadrature describing a particle in a three-parameter family of potentials. One parameter is associated with the stress in the sheet, the second is the Noether current associated with rotational invariance, and the third is a Rossby number which indicates the relative strength of Coriolis forces. Solutions are quantized by enforcing a topology appropriate to a skirt and a particular choice of dihedral symmetry. A perturbative analysis of nearly axisymmetric cones shows that Coriolis effects are essential in establishing skirt-like solutions. Fully non-linear solutions with three-fold symmetry are presented, which bear a suggestive resemblance to the observ...
On the concept of spectral singularities
Gusein Sh Guseinov
2009-09-01
In this paper, we discuss the concept of spectral singularities for non-Hermitian Hamiltonians. We exihibit spectral singularities of some well-known concrete Hamiltonians with complex-valued coefficients.
Global and local aspects of spectral actions
Iochum, Bruno; Vassilevich, Dmitri
2012-01-01
The principal object in noncommutatve geometry is the spectral triple consisting of an algebra A, a Hilbert space H, and a Dirac operator D. Field theories are incorporated in this approach by the spectral action principle, that sets the field theory action to Tr f(D^2/\\Lambda^2), where f is a real function such that the trace exists, and \\Lambda is a cutoff scale. In the low-energy (weak-field) limit the spectral action reproduces reasonably well the known physics including the standard model. However, not much is known about the spectral action beyond the low-energy approximation. In this paper, after an extensive introduction to spectral triples and spectral actions, we study various expansions of the spectral actions (exemplified by the heat kernel). We derive the convergence criteria. For a commutative spectral triple, we compute the heat kernel on the torus up the second order in gauge connection and consider limiting cases.
Spectral efficiency analysis of OCDMA systems
Hui Yan; Kun Qiu; Yun Ling
2009-01-01
We discuss several kinds of code schemes and analyze their spectral efficiency, code utilizing efficiency, and the maximal spectral efficiency. Error correction coding is used to increase the spectral efficiency, and it can avoid the spectral decrease with the increase of the length. The extended primer code (EPC) has the highest spectral efficiency in the unipolar code system. The bipolar code system has larger spectral efficiency than unipolar code system, but has lower code utilizing efficiency and the maximal spectral efficiency. From the numerical results, we can see that the spectral efficiency increases by 0.025 (b/s)/Hz when the bit error rate (BER) increases from 10-9 to 10-7.
What Is Rotating in Exploratory Factor Analysis?
Jason W. Osborne
2015-01-01
Full Text Available Exploratory factor analysis (EFA is one of the most commonly-reported quantitative methodology in the social sciences, yet much of the detail regarding what happens during an EFA remains unclear. The goal of this brief technical note is to explore what - rotation- is, what exactly is rotating, and why we use rotation when performing EFAs. Some commentary about the relative utility and desirability of different rotation methods concludes the narrative.
Contra rotative propeller performance estimation
Coca Casanueva, Vladimir
2008-01-01
Due to the continuous increase in the fuel price, the propeller engine solution (the most efficient in fuel saving terms) becomes very attractive to airlines and thus, to aircraft manufacturers. However, airlines aren’t ready to fly an aircraft at lower cruise Mach number than the traditional Mach 0,84, which jeopardizes the fuel efficiency of propellers. At this stage is where the contra-rotative concept appears, which let us to increase the cruise speed while reducing fuel consumption...
Ruiz-Granados, Beatriz; Battaner, Eduardo; Florido, Estrella
2016-10-01
WMAP CMB polarization maps have been used to detect a low signal of Faraday Rotation (FR). If this detection is not interpreted as simple noise, it could be produced: at the last scattering surface (LSS) (z=1100), being primordial, at Reionization (z=10), in the Milky Way. The second interpretation is favoured here. In this case magnetic fields at Reionization with peak values of the order of 10-8 G should produce this observational FR.
Instabilities in Coaxial Rotating Jets
无
2000-01-01
The aim of this study is the characterization of the cylindrical mixing layer resulting layer resulting from the interaction of two coaxial swirling jets.The experimental part of this study was performed in a cylindrical water tunnel,permitting an independent rotation of two coaxial jets.The rotations are generated by means of 2×36 blades localized in two swirling chambers.As expected,the evolution of the main instabiltiy modes presents certain differences compared to the plane-mixing-layer case ,Experimental results obtained by tomography showed the existence of vortex rings and streamwise vortex paris in the near field region.This method also permitted the observation of the evolution and interaction of different modes.PIV velocity measurements realized in the meridian plans and the plans perpendicular to the jet axis show that rotation distrots the typical top-hat axial velocity profile.The transition of the the axial velocity profile from jet-like into wake-like is also observed.
The Stellar Activity - Rotation Relationship
Wright, Nicholas J; Mamajek, Eric E; Henry, Gregory W
2012-01-01
Using a new catalog of 824 solar and late-type stars with X-ray luminosities and rotation periods we have studied the relationship between rotation and stellar activity. From an unbiased subset of this sample the power law slope of the unsaturated regime, $L_X/L_{bol}\\propto Ro^\\beta$, is fit as $\\beta=-2.70\\pm0.13$. This is inconsistent with the canonical $\\beta=-2$ slope to a confidence of 5$\\sigma$ and argues for an interface-type dynamo. Super-saturation is observed for the fastest rotators in our sample and its parametric dependencies are explored. Significant correlations are found with both the corotation radius and the excess polar updraft, the latter theory being supported by other observations. We also present a new X-ray population synthesis model of the mature stellar component of our Galaxy and use it to reproduce deep observations of a high Galactic latitude field. The model, XStar, can be used to test models of stellar spin-down and dynamo decay, as well as for estimating stellar X-ray contamin...
Simultaneity on the Rotating Disk
Koks, Don
2017-04-01
The disk that rotates in an inertial frame in special relativity has long been analysed by assuming a Lorentz contraction of its peripheral elements in that frame, which has produced widely varying views in the literature. We show that this assumption is unnecessary for a disk that corresponds to the simplest form of rotation in special relativity. After constructing such a disk and showing that observers at rest on it do not constitute a true rotating frame, we choose a "master" observer and calculate a set of disk coordinates and spacetime metric pertinent to that observer. We use this formalism to resolve the "circular twin paradox", then calculate the speed of light sent around the periphery as measured by the master observer, to show that this speed is a function of sent-direction and disk angle traversed. This result is consistent with the Sagnac Effect, but constitutes a finer analysis of that effect, which is normally expressed using an average speed for a full trip of the periphery. We also use the formalism to give a resolution of "Selleri's paradox".
Calibration with near-continuous spectral measurements
Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik
2001-01-01
In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....
Nonlinear evolution of tidally forced inertial waves in rotating fluid bodies
Favier, B; Baruteau, C; Ogilvie, G I
2014-01-01
We perform one of the first studies into the nonlinear evolution of tidally excited inertial waves in a uniformly rotating fluid body, exploring a simplified model of the fluid envelope of a planet (or the convective envelope of a solar-type star) subject to the gravitational tidal perturbations of an orbiting companion. Our model contains a perfectly rigid spherical core, which is surrounded by an envelope of incompressible uniform density fluid. The corresponding linear problem was studied in previous papers which this work extends into the nonlinear regime, at moderate Ekman numbers (the ratio of viscous to Coriolis accelerations). By performing high-resolution numerical simulations, using a combination of pseudo-spectral and spectral element methods, we investigate the effects of nonlinearities, which lead to time-dependence of the flow and the corresponding dissipation rate. Angular momentum is deposited non-uniformly, leading to the generation of significant differential rotation in the initially unifor...
USGS Spectral Library Version 7
Kokaly, Raymond F.; Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Hoefen, Todd M.; Pearson, Neil C.; Wise, Richard A.; Benzel, William M.; Lowers, Heather A.; Driscoll, Rhonda L.; Klein, Anna J.
2017-04-10
We have assembled a library of spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns [μm]). Laboratory samples of specific minerals, plants, chemical compounds, and manmade materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically constructed as well as mathematically computed mixtures. Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of Analytical Spectral Devices (ASD) field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Measurements of rocks, soils, and natural mixtures of minerals were made in laboratory and field settings. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. This report describes the instruments used, the organization of materials into chapters, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements. To facilitate greater application of the spectra, the library has also been convolved to selected spectrometer and imaging spectrometers sampling and
Rotating Polygons on a Fluid Surface
Bohr, Tomas; Jansson, Thomas; Haspang, Martin
The free surface of a rotating fluid will, due to the centrifugal force, be pressed radially outward. If the fluid rotates as a rigid body in a cylindrical container the surface will assume a parabolic shape. If, however, the flow is driven by rotating the bottom plate, the axial symmetry can break...
Magnetism and rotation in relativistic field theory
Mameda, Kazuya; Yamamoto, Arata
2016-09-01
We investigate the analogy between magnetism and rotation in relativistic theory. In nonrelativistic theory, the exact correspondence between magnetism and rotation is established in the presence of an external trapping potential. Based on this, we analyze relativistic rotation under external trapping potentials. A Landau-like quantization is obtained by considering an energy-dependent potential.
What Is Rotating in Exploratory Factor Analysis?
Osborne, Jason W.
2015-01-01
Exploratory factor analysis (EFA) is one of the most commonly-reported quantitative methodology in the social sciences, yet much of the detail regarding what happens during an EFA remains unclear. The goal of this brief technical note is to explore what "rotation" is, what exactly is rotating, and why we use rotation when performing…
Visualizing Compound Rotations with Virtual Reality
Flanders, Megan; Kavanagh, Richard C.
2013-01-01
Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…
Motor Processes in Children's Mental Rotation
Frick, Andrea; Daum, Moritz M.; Walser, Simone; Mast, Fred W.
2009-01-01
Previous studies with adult human participants revealed that motor activities can influence mental rotation of body parts and abstract shapes. In this study, we investigated the influence of a rotational hand movement on mental rotation performance from a developmental perspective. Children at the age of 5, 8, and 11 years and adults performed a…
Trade Space Analysis: Rotational Analyst Research Project
2015-09-01
TRAC-M-TR-15-028 September 2015 Trade Space Analysis: Rotational Analyst Research Project TRADOC Analysis...PAGE INTENTIONALLY LEFT BLANK TRAC-M-TR-15-028 September 2015 Trade Space Analysis: Rotational Analyst Research Project...NUMBERS Trade Space Analysis : Rotational Analyst Research Project TRAC Project Code 060128 6. AUTHOR(S) Kirstin D Smead 7. PERFORMING
Manual Training of Mental Rotation in Children
Wiedenbauer, Gunnar; Jansen-Osmann, Petra
2008-01-01
When deciding whether two stimuli rotated in space are identical or mirror reversed, subjects employ mental rotation to solve the task. In children mental rotation can be trained by extensive repetition of the task, but the improvement seems to rely on the retrieval of previously learned stimuli. We assumed that due to the close relation between…
Visualizing Compound Rotations with Virtual Reality
Flanders, Megan; Kavanagh, Richard C.
2013-01-01
Mental rotations are among the most difficult of all spatial tasks to perform, and even those with high levels of spatial ability can struggle to visualize the result of compound rotations. This pilot study investigates the use of the virtual reality-based Rotation Tool, created using the Virtual Reality Modeling Language (VRML) together with…
Retinal oxygen saturation evaluation by multi-spectral fundus imaging
Khoobehi, Bahram; Ning, Jinfeng; Puissegur, Elise; Bordeaux, Kimberly; Balasubramanian, Madhusudhanan; Beach, James
2007-03-01
Purpose: To develop a multi-spectral method to measure oxygen saturation of the retina in the human eye. Methods: Five Cynomolgus monkeys with normal eyes were anesthetized with intramuscular ketamine/xylazine and intravenous pentobarbital. Multi-spectral fundus imaging was performed in five monkeys with a commercial fundus camera equipped with a liquid crystal tuned filter in the illumination light path and a 16-bit digital camera. Recording parameters were controlled with software written specifically for the application. Seven images at successively longer oxygen-sensing wavelengths were recorded within 4 seconds. Individual images for each wavelength were captured in less than 100 msec of flash illumination. Slightly misaligned images of separate wavelengths due to slight eye motion were registered and corrected by translational and rotational image registration prior to analysis. Numerical values of relative oxygen saturation of retinal arteries and veins and the underlying tissue in between the artery/vein pairs were evaluated by an algorithm previously described, but which is now corrected for blood volume from averaged pixels (n > 1000). Color saturation maps were constructed by applying the algorithm at each image pixel using a Matlab script. Results: Both the numerical values of relative oxygen saturation and the saturation maps correspond to the physiological condition, that is, in a normal retina, the artery is more saturated than the tissue and the tissue is more saturated than the vein. With the multi-spectral fundus camera and proper registration of the multi-wavelength images, we were able to determine oxygen saturation in the primate retinal structures on a tolerable time scale which is applicable to human subjects. Conclusions: Seven wavelength multi-spectral imagery can be used to measure oxygen saturation in retinal artery, vein, and tissue (microcirculation). This technique is safe and can be used to monitor oxygen uptake in humans. This work
RoMi: Refraction Microtremor Using Rotational Seismometers
Clark, B.; Abbott, R. E.; Knox, H. A.; Eimer, M. O.; Hart, D. M.; Skaggs, J.; Denning, J. T.
2013-12-01
We present the results of a shallow shear-wave velocity study that utilized both traditional geophones and a newly developed rotational seismometer (Applied Technology Associates ARS-16). We used Refraction Microtremor (ReMi), a method developed by John N. Louie, during processing to determine both Rayleigh and Love wave dispersion curves using both vertical and horizontal sources. ReMi uses a distance-time (x-t) wavefield transformation technique to image the dispersion curve in slowness-frequency (p-f) space. In the course of the ReMi processing, unwanted P waves are transformed into p-f space. As rotational seismometers are insensitive to P waves, they should prove to be superior sensors for Love wave studies, as those P waves would not interfere with interpretation of the p-f wavefield. Our results show that despite having one-fifth the geophone signal-to-noise ratio in the distance-time wavefield, the ARS-16 produced superior results in the p-f wavefield. Specifically, we found increases of up to 50% in ReMi spectral ratio along the dispersion curve. This implies that as more quiet and sensitive rotational sensors are developed, deploying rotational seismometers instead of traditional sensors will yield significantly better results. This will ultimately improve shallow shear-wave velocity resolution, which is vital for calculating seismic hazard. This data was collected at Sandia National Laboratories' Facility for Analysis, Calibration, and Testing (FACT) located in Albuquerque, NM. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Stellar pulsation and rotation in NGC 6811
Rodríguez, E.; Ocando, S.; López-González, M. J.; Martín-Ruiz, S.
2017-03-01
We present the results of the frequency analysis for a selected sample of pulsating δ Sct- and γ Dor-type stars in the field of the open cluster NGC 6811, which have been observed in short-cadence (SC) mode by the Kepler satellite. In all cases, the resulting frequency spectra are very complex, especially when the dominant pulsation is that of the δ Sct type, that is, short-period pulsations corresponding to excited pressure (p) modes. In all cases, the δ Sct stars are shown to be essentially δ Sct/ γ Dor hybrid pulsators. However, the opposite seems not to be true. We also find that the δ Sct-type peaks commonly are not stable in amplitude. Many of the main peaks significantly change their amplitudes over relatively short time scales. For a large percentage of pulsators in our sample we also find that the variability shown in the light curves is not produced by a single cause, but a combination of various sources: δ Sct- and γ Dor-type pulsations together with rotational modulation produced by starspots in the surfaces of these stars. This is an indication of stellar activity in the surfaces of these relatively hot stars of spectral type A(-F). Sometimes, activity dominates the luminosity variations in various pulsating stars in our sample. Eclipsing binarity is also detected in a few cases. Flares are also detected in one of the δ Sct-type pulsators. This is an indication of unusual strong activity for this kind of hot stars.
Planck 2013 results. IX. HFI spectral response
Planck Collaboration,; Ade, P. A. R.; Aghanim, N.;
2013-01-01
The Planck HFI spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests is to measure the relative spectral response (including the level of out-of-band s...
Spectral averaging techniques for Jacobi matrices
del Rio, Rafael; Schulz-Baldes, Hermann
2008-01-01
Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations.
AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS
West, Andrew A.; Weisenburger, Kolby L. [Department of Astronomy, Boston University, 725 Commonwealth Ave, Boston, MA 02215 (United States); Irwin, Jonathan; Charbonneau, David; Dittmann, Jason [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Berta-Thompson, Zachory K. [MIT, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Ave., Bldg. 37, Cambridge, MA 02139 (United States); Pineda, J. Sebastian, E-mail: aawest@bu.edu [California Institute of Technology, Department of Astronomy, 1200 E. California Ave, Pasadena, CA 91125 (United States)
2015-10-10
Using spectroscopic observations and photometric light curves of 238 nearby M dwarfs from the MEarth exoplanet transit survey, we examine the relationships between magnetic activity (quantified by Hα emission), rotation period, and stellar age. Previous attempts to investigate the relationship between magnetic activity and rotation in these stars were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that v sin i measurements probe only rapid rotation). However, the photometric data from MEarth allows us to probe a wide range of rotation periods for hundreds of M dwarf stars (from shorter than one to longer than 100 days). Over all M spectral types that we probe, we find that the presence of magnetic activity is tied to rotation, including for late-type, fully convective M dwarfs. We also find evidence that the fraction of late-type M dwarfs that are active may be higher at longer rotation periods compared to their early-type counterparts, with several active, late-type, slowly rotating stars present in our sample. Additionally, we find that all M dwarfs with rotation periods shorter than 26 days (early-type; M1–M4) and 86 days (late-type; M5–M8) are magnetically active. This potential mismatch suggests that the physical mechanisms that connect stellar rotation to chromospheric heating may be different in fully convective stars. A kinematic analysis suggests that the magnetically active, rapidly rotating stars are consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population.
Development of dual-broadband rotational CARS for combustion diagnostics
Bood, Joakim
2000-06-01
The present thesis concerns development and application of dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) for temperature and species concentration measurements in combustion processes. Both fundamental development of the technique, including experimental as well as modelling results, and measurements in practical combustion devices were conducted. A code for calculation of rotational CARS spectra of pure acetylene as well as mixtures of acetylene and nitrogen was developed. Using this code, temperatures and relative acetylene to nitrogen concentrations were evaluated from DB-RCARS measurements in pure acetylene and different acetylene/nitrogen mixtures. Moreover, rotational CARS spectra of dimethyl-ether (DME) have been analyzed. A powerful tool for simultaneous temperature and multiple species concentration measurements was developed by combining rotational CARS with vibrational CARS. The concept was demonstrated for measurements of temperature, oxygen, and carbon monoxide concentrations simultaneously in a premixed sooting ethene/air flame. Rotational CARS spectra of nitrogen at very high pressures (0.1-44 MPa) at room temperature were investigated. The experimental spectra were compared with calculated spectra using different Raman linewidth models. The results indicate some shortcomings in the present model, basically the density calculation and neglecting overlapping effects between adjacent spectral lines. A new method for CARS measurements in several spatially separated points simultaneously was developed. By using DB-RCARS the method was demonstrated for quantitative measurements of profiles of temperatures and oxygen concentrations. An atomic filter for rejection of stray light was developed. The filter was shown to efficiently reject stray light from the narrowband laser without affecting the shape of the rotational CARS spectrum or causing any signal losses. Within an interdisciplinary project intended to increase the
Kobayashi, Hiroyuki
2012-01-01
Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.
Sharp Upper and Lower Bounds for the Laplacian Spectral Radius and the Spectral Radius of Graphs
Ji-ming Guo
2008-01-01
In this paper, sharp upper bounds for the Laplacian spectral radius and the spectral radius of graphs are given, respectively. We show that some known bounds can be obtained from our bounds. For a bipartite graph G, we also present sharp lower bounds for the Laplacian spectral radius and the spectral radius,respectively.
Visual perception of axes of head rotation
David Mattijs Arnoldussen
2013-02-01
Full Text Available Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. 1. Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit.We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow’s rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals.2. Do transformed visual self-rotation signals reflect the arrangement of the semicircular canals (SCC? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those BOLD signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes.3. We investigated if subject’s sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into
Rotation and massive close binary evolution
Langer, N; Yoon, S -C; Hunter, I; Brott, I; Lennon, D J; de Mink, S E; Verheijdt, M
2008-01-01
We review the role of rotation in massive close binary systems. Rotation has been advocated as an essential ingredient in massive single star models. However, rotation clearly is most important in massive binaries where one star accretes matter from a close companion, as the resulting spin-up drives the accretor towards critical rotation. Here, we explore our understanding of this process, and its observable consequences. When accounting for these consequences, the question remains whether rotational effects in massive single stars are still needed to explain the observations.
Rotation of microscopic propellers in laser tweezers
Galajda, Peter; Ormos, Pal [Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, PO Box 521, H-6701 (Hungary)
2002-04-01
Particles of helical shape trapped in laser tweezers are rotated by light, independently of its polarization state. Light scattering by such propeller-like particles generates the momentum to drive the rotation. The efficiency of the rotation depends on the geometry of the particles. We used photopolymerization of light curing resins to create micrometre-size rotors with different shapes. The rotation of such particles was studied: the effect of shape and size on the rotation, as well as on the stability of the position in the laser tweezers.
Rotating samples in FT-RAMAN spectrometers
De Paepe, A. T. G.; Dyke, J. M.; Hendra, P. J.; Langkilde, F. W.
1997-11-01
It is customary to rotate samples in Raman spectroscopy to avoid absorption or sample heating. In FT-Raman experiments the rotation is always shown (typically 30-60 rpm) because higher speeds are thought to generate noise in the spectra. In this article we show that more rapid rotation is possible. A tablet containing maleic acid and one made up of sub-millimetre silica particles with metoprolol succinate as active ingredient were rotated at different speeds, up to 6760 rpm. The FT-Raman spectra were recorded and studied. We conclude that it is perfectly acceptable to rotate samples up to 1500 rpm.
Rotating optical microcavities with broken chiral symmetry
Sarma, Raktim; Wiersig, Jan; Cao, Hui
2014-01-01
We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.
Sun, Ling; Zhu, Zesheng
2017-08-01
This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.
RACE-OC Project: Rotation and variability in the open cluster NGC2099 (M37)
Messina, S; Parihar, Padmakar; Kang, Y B; Kim, S -L; Rey, S -C; Lee, C -U
2008-01-01
Rotation and solar-type magnetic activity are closely related to each other in stars of G or later spectral types. Presence and level of magnetic activity depend on star's rotation and rotation itself is strongly influenced by strength and topology of the magnetic fields. Open clusters represent especially useful targets to investigate the connection between rotation and activity. The open cluster NGC2099 has been studied as a part of the RACE-OC project, which is aimed at exploring the evolution of rotation and magnetic activity in the late-type members of open clusters of different ages. Time series CCD photometric observations of this cluster were collected during January 2004. The relations between activity manifestations, such as the light curve amplitude, and global stellar parameters are investigated. We have discovered 135 periodic variables, 122 of which are candidate cluster members. Determination of rotation periods of G- and K-type stars has allowed us to better explore evolution of angular moment...
A New View on the Maximum Mass of Differentially Rotating Neutron Stars
Gondek-Rosińska, D.; Kowalska, I.; Villain, L.; Ansorg, M.; Kucaba, M.
2017-03-01
We study the main astrophysical properties of differentially rotating neutron stars described as stationary and axisymmetric configurations of a moderately stiff {{Γ }}=2 polytropic fluid. The high level of accuracy and of stability of our relativistic multidomain pseudo-spectral code enables us to explore the whole solution space for broad ranges of the degree of differential rotation, but also of the stellar density and oblateness. Staying within an astrophysically motivated range of rotation profiles, we investigate the characteristics of neutron stars with maximal mass for all types of families of differentially rotating relativistic objects identified in a previous article. We find that the maximum mass depends on both the degree of differential rotation and the type of solution. It turns out that the maximum allowed mass can be up to 4 times higher than what it is for nonrotating stars with the same equation of state. Such values are obtained for a modest degree of differential rotation but for one of the newly discovered types of solutions. Since such configurations of stars are not that extreme, this result may have important consequences for the gravitational wave signal expected from coalescing neutron star binaries or from some supernova events.
A new view on the maximum mass of differentially rotating neutron stars
Gondek-Rosinska, Dorota; Villain, Loic; Ansorg, Marcus; Kucaba, Marcin
2016-01-01
We study the main astrophysical properties of differentially rotating neutron stars described as stationary and axisymmetric configurations of a moderately stiff $\\Gamma=2$ polytropic fluid. The high level of accuracy and of stability of our relativistic multidomain pseudo-spectral code enables us to explore the whole solution space for broad ranges of the degree of differential rotation, but also of the stellar density and oblateness. Staying within an astrophysicaly motivated range of rotation profiles, we investigate the characteristics of neutron stars with maximal mass for all types of families of differentially rotating relativistic objects identified in a previous article Ansorg, Gondek-Rosinsla, Villain (2009). We find that the maximum mass depends on both the degree of differential rotation and on the type of solution. It turns out that the maximum allowed mass can be up to 4 times higher than what it is for non-rotating stars with the same equation of state. Such values are obtained for a modest deg...
Effect of the equation of state on the maximum mass of differentially rotating neutron stars
Studzińska, A. M.; Kucaba, M.; Gondek-Rosińska, D.; Villain, L.; Ansorg, M.
2016-12-01
Knowing the value of the maximum mass of a differentially rotating relativistic star is a key step towards the understanding of the signals to be expected from the merger of binary neutron stars, one of the most awaited alternative sources of gravitational waves after binary black holes. In this paper, we study the effects of differential rotation and of the equation of state on the maximum mass of rotating neutron stars modelled as relativistic polytropes with various adiabatic indices. Calculations are performed using a highly accurate numerical code, based on a multidomain spectral method. We thoroughly explore the parameter space and determine how the maximum mass depends on the stiffness, on the degree of differential rotation and on the maximal density, taking into account all the types of solutions that were proven to exist in a preceding paper. The highest increase with respect to the maximum mass for non-rotating stars with the same equation of state is reached for a moderate stiffness. With differential rotation, the maximum mass can even be 3-4 times higher than it is for static stars. This result may have important consequences for the gravitational wave signal from coalescing neutron star binaries or for some supernovae events.
Grubb, Michael P.; Coulter, Philip M.; Marroux, Hugo J. B.; Hornung, Balazs; McMullen, Ryan S.; Orr-Ewing, Andrew J.; Ashfold, Michael N. R.
2016-11-01
Spectroscopically observing the translational and rotational motion of solute molecules in liquid solutions is typically impeded by their interactions with the solvent, which conceal spectral detail through linewidth broadening. Here we show that unique insights into solute dynamics can be made with perfluorinated solvents, which interact weakly with solutes and provide a simplified liquid environment that helps to bridge the gap in our understanding of gas- and liquid-phase dynamics. Specifically, we show that in such solvents, the translational and rotational cooling of an energetic CN radical can be observed directly using ultrafast transient absorption spectroscopy. We observe that translational-energy dissipation within these liquids can be modelled through a series of classic collisions, whereas classically simulated rotational-energy dissipation is shown to be distinctly faster than experimentally measured. We also observe the onset of rotational hindering from nearby solvent molecules, which arises as the average rotational energy of the solute falls below the effective barrier to rotation induced by the solvent.
Proper orthogonal decomposition analysis of vortex shedding behind a rotating circular cylinder
Dol Sharul Sham
2016-01-01
Full Text Available Turbulence studies were made in the wake of a rotating circular cylinder in a uniform free stream with the objective of describing the patterns of the vortex shedding up to suppression of the periodic vortex street at high velocity ratios, λ. The results obtained in the present study establish that shedding of Kármán vortices in a rotating circular cylinder-generated wake is modified by rotation of the cylinder. Alternate vortex shedding is highly visible when λ < 2.0 although the strength of the separated shear layers differ due to the rotation of the cylinder. The spectral density in the wakes indicate significant changes at λ = 2.0. The results indicate that the rotation of the cylinder causes significant disruption in the structure of the flow. Alternate vortex shedding is weak, distorted and close to being suppressed at λ = 2.0. It is clear that flow asymmetries will weaken vortex shedding, and when the asymmetries are significant enough, total suppression of a periodic street occurs. Particular attention was paid to the decomposition of the flow using Proper Orthogonal Decomposition (POD. By analyzing this decomposition with the help of Particle Image Velocimetry (PIV data, it was found that large scales contribute to the coherent motion. Vorticity structures in the modes become increasingly irregular with downstream distance, suggesting turbulent interactions are occurring at the more downstream locations, especially when the cylinder rotates.
Planar-waveguide integrated spectral comparator.
Mossberg, T W; Iazikov, D; Greiner, C
2004-06-01
A cost-effective yet robust and versatile dual-channel spectral comparator is presented. The silica-on-silicon planar-waveguide integrated device includes two holographic Bragg-grating reflectors (HBRs) with complementary spectral transfer functions. Output comprises projections of input signal spectra onto the complementary spectral channels. Spectral comparators may be useful in optical code-division multiplexing, optical packet decoding, spectral target recognition, and the identification of molecular spectra. HBRs may be considered to be mode-specific photonic crystals.
Systematization of published spectral data on deuterated isotopologues of hydrogen sulfide molecule
Voronina, S. S.; Naumenko, O. V.; Polovtseva, E. R.; Fazliev, A. Z.
2014-11-01
The report presents a description of properties of published data on spectral lines parameters of deuterated isotopologues of hydrogen sulfide - HDS, HD34S, D2S, D2 34S. Properties values characterizing data quality are calculated taking into account the validity criteria and credit estimation according to publishing criteria. Formalized criteria of data check based on the constraints and selection rules known from the vibrational-rotational theory, as well as an expert evaluation are utilized for validation of the original experimental transitions and energy levels. The consistent and accurate set of the vibration - rotation (VR) energy levels is derived based on the cleaned transitions. Published vibrational-rotational transitions and energy levels of considered molecules as well as the knowledge base are available in the Internet in W@DIS information system (IS).
Spectral clustering for TRUS images
Salama Magdy MA
2007-03-01
Full Text Available Abstract Background Identifying the location and the volume of the prostate is important for ultrasound-guided prostate brachytherapy. Prostate volume is also important for prostate cancer diagnosis. Manual outlining of the prostate border is able to determine the prostate volume accurately, however, it is time consuming and tedious. Therefore, a number of investigations have been devoted to designing algorithms that are suitable for segmenting the prostate boundary in ultrasound images. The most popular method is the deformable model (snakes, a method that involves designing an energy function and then optimizing this function. The snakes algorithm usually requires either an initial contour or some points on the prostate boundary to be estimated close enough to the original boundary which is considered a drawback to this powerful method. Methods The proposed spectral clustering segmentation algorithm is built on a totally different foundation that doesn't involve any function design or optimization. It also doesn't need any contour or any points on the boundary to be estimated. The proposed algorithm depends mainly on graph theory techniques. Results Spectral clustering is used in this paper for both prostate gland segmentation from the background and internal gland segmentation. The obtained segmented images were compared to the expert radiologist segmented images. The proposed algorithm obtained excellent gland segmentation results with 93% average overlap areas. It is also able to internally segment the gland where the segmentation showed consistency with the cancerous regions identified by the expert radiologist. Conclusion The proposed spectral clustering segmentation algorithm obtained fast excellent estimates that can give rough prostate volume and location as well as internal gland segmentation without any user interaction.
Locomotion gaits of a rotating cylinder pair
van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.
2015-11-01
Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.
Stellar rotation effects in polarimetric microlensing
Sajadian, Sedighe
2016-01-01
It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rapidly rotate around their stellar axes. The stellar rotation makes ellipticity and gravity-darkening effects which break the spherical symmetry of the source shape and the circular symmetry of the source surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetry microlensing of fast rotating stars. For moderate rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetry observations. The gravity-darkening effect due to a rotating source star makes asymmetric perturbations in polarimetry and photometry microlensing curves whose maximum happens when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity makes a time shift (i) in the position of ...
Dimensionality constraints of light induced rotation
Oroszi, László; Galajda, Péter; Kelemen, Lóránd; Mathesz, Anna; Vicsek, Tamás; Vizsnyiczai, Gaszton; Ormos, Pál
2015-01-01
We have studied the conditions of rotation induced by collimated light carrying no angular momentum. Objects of different shapes and optical properties were examined in the nontrivial case where the rotation axis is perpendicular to the direction of light propagation. This geometry offers important advantages for application as it fundamentally broadens the possible practical arrangements to be realised. We found that collimated light cannot drive permanent rotation of 2D or prism-like 3D objects (i.e. fixed cross-sectional profile along the rotation axis) in the case of fully reflective or fully transparent materials. Based on both geometrical optics simulations and theoretical analysis, we derived a general condition for rotation induced by collimated light carrying no angular momentum valid for any arrangement: Permanent rotation is not possible if the scattering interaction is two-dimensional and lossless. In contrast, light induced rotation can be sustained if partial absorption is present or the object ...
Omni rotational driving and steering wheel
2008-01-01
Abstract of WO 2008138346 (A1) There is disclosed a driving and steering wheel (112) module (102) with an omni rotational part (106), the module comprising a flange part (104) fixable on a robot, and the omni rotational part (106) comprises an upper omni rotational part (105) and a driving...... and steering wheel part (108), where the omni rotational part (106) is provided for infinite rotation relative to the flange part (104) by both a drive motor (110) and a steering motor (114) being positionable on the flange part (104), and the driving and steering wheel part (108) is suspended from the upper...... omni rotational part (105) with a suspension (116) such that wheel part (108) can move relatively to the upper omni rotational part (105) in a suspension direction (118), and a reduction gear (120) for gearing the drive torque is provided in the wheel part (108) in order e.g. to assure traction...
Spectral Methods for Magnetic Anomalies
Parker, R. L.; Gee, J. S.
2013-12-01
Spectral methods, that is, those based in the Fourier transform, have long been employed in the analysis of magnetic anomalies. For example, Schouten and MaCamy's Earth filter is used extensively to map patterns to the pole, and Parker's Fourier transform series facilitates forward modeling and provides an efficient algorithm for inversion of profiles and surveys. From a different, and perhaps less familiar perspective, magnetic anomalies can be represented as the realization of a stationary stochastic process and then statistical theory can be brought to bear. It is vital to incorporate the full 2-D power spectrum, even when discussing profile data. For example, early analysis of long profiles failed to discover the small-wavenumber peak in the power spectrum predicted by one-dimensional theory. The long-wavelength excess is the result of spatial aliasing, when energy leaks into the along-track spectrum from the cross-track components of the 2-D spectrum. Spectral techniques may be used to improve interpolation and downward continuation of survey data. They can also evaluate the reliability of sub-track magnetization models both across and and along strike. Along-strike profiles turn out to be surprisingly good indicators of the magnetization directly under them; there is high coherence between the magnetic anomaly and the magnetization over a wide band. In contrast, coherence is weak at long wavelengths on across-strike lines, which is naturally the favored orientation for most studies. When vector (or multiple level) measurements are available, cross-spectral analysis can reveal the wavenumber interval where the geophysical signal resides, and where noise dominates. One powerful diagnostic is that the phase spectrum between the vertical and along-path components of the field must be constant 90 degrees. To illustrate, it was found that on some very long Project Magnetic lines, only the lowest 10% of the wavenumber band contain useful geophysical signal. In this
Numerical relativity and spectral methods
Grandclement, P.
2016-12-01
The term numerical relativity denotes the various techniques that aim at solving Einstein's equations using computers. Those computations can be divided into two families: temporal evolutions on the one hand and stationary or periodic solutions on the other one. After a brief presentation of those two classes of problems, I will introduce a numerical tool designed to solve Einstein's equations: the KADATH library. It is based on the the use of spectral methods that can reach high accuracy with moderate computational resources. I will present some applications about quasicircular orbits of black holes and boson star configurations.
Spectral analysis of bedform dynamics
Winter, Christian; Ernstsen, Verner Brandbyge; Noormets, Riko
. An assessment of bedform migration was achieved, as the growth and displacement of every single constituent can be distinguished. It can be shown that the changes in amplitude remain small for all harmonic constituents, whereas the phase shifts differ significantly. Thus the harmonics can be classified....... The proposed method overcomes the above mentioned problems of common descriptive analysis as it is an objective and straightforward mathematical process. The spectral decomposition of superimposed dunes allows a detailed description and analysis of dune patterns and migration....
Spectral Properties of Schwarzschild Instantons
Jante, Rogelio
2016-01-01
We study spectral properties of the Dirac and scalar Laplace operator on the Euclidean Schwarzschild space, both twisted by a family of abelian connections with anti-self-dual curvature. We show that the zero-modes of the gauged Dirac operator, first studied by Pope, take a particularly simple form in terms of the radius of the Euclidean time orbits, and interpret them in the context of geometric models of matter. For the gauged Laplace operator, we study the spectrum of bound states numerically and observe that it can be approximated with remarkable accuracy by that of the exactly solvable gauged Laplace operator on the Euclidean Taub-NUT space.
Spectral Methods in Spatial Statistics
Kun Chen
2014-01-01
Full Text Available When the spatial location area increases becoming extremely large, it is very difficult, if not possible, to evaluate the covariance matrix determined by the set of location distance even for gridded stationary Gaussian process. To alleviate the numerical challenges, we construct a nonparametric estimator called periodogram of spatial version to represent the sample property in frequency domain, because periodogram requires less computational operation by fast Fourier transform algorithm. Under some regularity conditions on the process, we investigate the asymptotic unbiasedness property of periodogram as estimator of the spectral density function and achieve the convergence rate.
Science with CMB spectral distortions
Chluba, Jens
2014-01-01
The measurements of COBE/FIRAS have shown that the CMB spectrum is extremely close to a perfect blackbody. There are, however, a number of processes in the early Universe that should create spectral distortions at a level which is within reach of present day technology. In this talk, I will give a brief overview of recent theoretical and experimental developments, explaining why future measurements of the CMB spectrum will open up an unexplored window to early-universe and particle physics with possible non-standard surprises but also several guaranteed signals awaiting us.
[Spectral emissivity of thin films].
Zhong, D
2001-02-01
In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.
Subnanosecond spectral diffusion measurement using photon correlation
Sallen, Gregory; Aichele, Thomas; André, Régis; Besombes, Lucien; Bougerol, Catherine; Richard, Maxime; Tatarenko, Serge; Kheng, Kuntheak; Poizat, Jean-Philippe; 10.1038/nphoton.2010.174
2012-01-01
Spectral diffusion is a result of random spectral jumps of a narrow line as a result of a fluctuating environment. It is an important issue in spectroscopy, because the observed spectral broadening prevents access to the intrinsic line properties. However, its characteristic parameters provide local information on the environment of a light emitter embedded in a solid matrix, or moving within a fluid, leading to numerous applications in physics and biology. We present a new experimental technique for measuring spectral diffusion based on photon correlations within a spectral line. Autocorrelation on half of the line and cross-correlation between the two halves give a quantitative value of the spectral diffusion time, with a resolution only limited by the correlation set-up. We have measured spectral diffusion of the photoluminescence of a single light emitter with a time resolution of 90 ps, exceeding by four orders of magnitude the best resolution reported to date.