Mechanism of viscosity effect on magnetic island rotation
Energy Technology Data Exchange (ETDEWEB)
Mikhailovskii, A.B.; Konovalov, S.V. [Institute of Nuclear Fusion, Russian Research Centre ' Kurchatov Institute' , Kurchatov Sq., 1, Moscow (Russian Federation); Pustovitov, V.D. [National Inst. for Fusion Science, Toki, Gifu (Japan); Tsypin, V.S. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, SP (Brazil)
2000-04-01
It is shown that plasma viscosity does not influence the magnetic island rotation directly. Nevertheless, it leads to nonstationarity of the plasma velocity. This nonstationarity is the reason of the viscosity effect on island rotation. (author)
Interplay between intrinsic plasma rotation and magnetic island evolution in disruptive discharges
Energy Technology Data Exchange (ETDEWEB)
Ronchi, G.; Severo, J. H. F. [Universidade de São Paulo, Instituto de Física (Brazil); Salzedas, F. [Universidade do Porto, Faculdade de Engenharia (Portugal); Galvão, R. M. O., E-mail: rgalvao@if.usp.br; Sanada, E. K. [Universidade de São Paulo, Instituto de Física (Brazil)
2016-05-15
The behavior of the intrinsic toroidal rotation of the plasma column during the growth and eventual saturation of m/n = 2/1 magnetic islands, triggered by programmed density rise, has been carefully investigated in disruptive discharges in TCABR. The results show that, as the island starts to grow and rotate at a speed larger than that of the plasma column, the angular frequency of the intrinsic toroidal rotation increases and that of the island decreases, following the expectation of synchronization. As the island saturates at a large size, just before a major disruption, the angular speed of the intrinsic rotation decreases quite rapidly, even though the island keeps still rotating at a reduced speed. This decrease of the toroidal rotation is quite reproducible and can be considered as an indicative of disruption.
The effect of sheared toroidal rotation on pressure driven magnetic islands in toroidal plasmas
Energy Technology Data Exchange (ETDEWEB)
Hegna, C. C. [Departments of Engineering Physics and Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2016-05-15
The impact of sheared toroidal rotation on the evolution of pressure driven magnetic islands in tokamak plasmas is investigated using a resistive magnetohydrodynamics model augmented by a neoclassical Ohm's law. Particular attention is paid to the asymptotic matching data as the Mercier indices are altered in the presence of sheared flow. Analysis of the nonlinear island Grad-Shafranov equation shows that sheared flows tend to amplify the stabilizing pressure/curvature contribution to pressure driven islands in toroidal tokamaks relative to the island bootstrap current contribution. As such, sheared toroidal rotation tends to reduce saturated magnetic island widths.
Waltz, R. E.; Waelbroeck, F. L.
2012-03-01
Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.
Waltz, R. E.; Waelbroeck, F. L.
2012-03-01
Static external resonant magnetic perturbations (RMPs) have been added to the δf gyrokinetic code GYRO. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr and the corresponding plasma torque (density) R[jrBθ/c], induced by islands that break the toroidal symmetry of a tokamak. This extends previous GYRO simulations for the transport of toroidal angular momentum (TAM) [1,2]. The focus is on full torus radial slice electrostatic simulations of induced q=m/n=6/3 islands with widths 5% of the minor radius. The island torque scales with the radial electric field Er the island width w, and the intensity I of the high-n micro-turbulence, as wErI^1/2. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that there is a small co-directed magnetic acceleration to the small diamagnetic co-rotation corresponding to the zero Er which can be called the residual stress [2] from an externally induced island. Finite-beta GYRO simulations of a core radial slice demonstrate island unlocking and the RMP screening. 6pt[1] R.E. Waltz, et al., Phys. Plasmas 14, 122507 (2007). [2] R.E. Waltz, et al., Phys. Plasmas 18, 042504 (2011).
Multi-scale interaction between magnetic islands and microturbulence in magnetized plasmas
International Nuclear Information System (INIS)
Muraglia, M.
2009-10-01
In a tokamak, it exists many kinds of instability at the origin of a damage of the confinement and worst of a lost of a confinement. This work presents a study of the dynamics of a magnetic island in presence of turbulence in magnetized plasmas. More precisely, the goal is to understand the multi-scales interaction between turbulence, generated by a pressure gradient and the magnetic field curvature, and a magnetic island formed thanks to a tearing mode. Thanks to the derivation of a 2-dimensional slab model taking into account both tearing and interchange instabilities, theoretical and numerical linear studies show the pressure effect on the magnetic island linear formation and show interchange modes are stabilized in presence of a strong magnetic field. Then, a numerical nonlinear study is presented in order to understand how the interchange mechanism affects the nonlinear dynamics of a magnetic island. It is shown that the pressure gradient and the magnetic field curvature affect strongly the nonlinear evolution of a magnetic island through dynamics bifurcations. The nature of these bifurcations should be characterized in function of the linear situation. Finally, the last part of this work is devoted to the study of the origin of the nonlinear poloidal rotation of the magnetic island. A model giving the different contributions to the rotation is derived. It is shown, thanks to the model and to the numerical studies, that the nonlinear rotation of the island is mainly governed by the ExB poloidal flow and/or by the nonlinear diamagnetic drift. (author)
Self-sustained magnetic islands
Energy Technology Data Exchange (ETDEWEB)
Chatenet, J H; Luciani, J F [Ecole Polytechnique, 91 - Palaiseau (France); Garbet, X [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee
1996-06-01
Numerical simulations of a single magnetic island evolution are presented in the regime where the island width is smaller than an ion Larmor radius. It is shown that the island rotation is controlled by particle diffusion due to collisions or a background of microturbulence. As expected from the theory of a stationary island, there exist cases where linearly stable magnetic perturbation are nonlinearly self-sustained. This situation corresponds to large poloidal beta and temperature gradient. The drive is due to diamagnetic frequency effects. However, this situation is not generic, and islands can also decay. It is found that a magnetic island is self-sustained for a negative off-diagonal diffusion coefficient. This case occurs in a tokamak if the inward particle pinch is due to the temperature gradient. (author). 30 refs.
Self-sustained magnetic islands
International Nuclear Information System (INIS)
Chatenet, J.H.; Luciani, J.F.; Garbet, X.
1996-06-01
Numerical simulations of a single magnetic island evolution are presented in the regime where the island width is smaller than an ion Larmor radius. It is shown that the island rotation is controlled by particle diffusion due to collisions or a background of microturbulence. As expected from the theory of a stationary island, there exist cases where linearly stable magnetic perturbation are nonlinearly self-sustained. This situation corresponds to large poloidal beta and temperature gradient. The drive is due to diamagnetic frequency effects. However, this situation is not generic, and islands can also decay. It is found that a magnetic island is self-sustained for a negative off-diagonal diffusion coefficient. This case occurs in a tokamak if the inward particle pinch is due to the temperature gradient. (author)
Kalman filters for real-time magnetic island phase tracking
Borgers, D. P.; Lauret, M.; M.R. de Baar,
2013-01-01
For control of neoclassical tearing modes (NTMs) and the resulting rotating magnetic islands in tokamak plasmas, the frequency and phase of the magnetic islands need to be accurately tracked in real-time. In previous experiments on TEXTOR, this was achieved using a phase-locked loop (PLL). For ASDEX
Suppressing magnetic island growth by resonant magnetic perturbation
Yu, Q.; Günter, S.; Lackner, K.
2018-05-01
The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.
Oscillating magnetic islands in a rotating plasma
International Nuclear Information System (INIS)
Persson, M.; Bondeson, A.
1990-01-01
The nonlinear evolution of tearing modes in the presence of sheared mass flow is studied as an initial value problem. It is shown that under certain conditions, when the mode is driven unstable primarily by the mass flow, the nonlinear evolution leads to a dynamic state in which the size and shape of the magnetic islands is oscillatory. 15 refs., 11 figs
Plasma flow healing of magnetic islands in stellarators
International Nuclear Information System (INIS)
Hegna, C. C.
2012-01-01
Recent experiments from the large helical device (LHD) demonstrate a correlation between the “healing” of vacuum magnetic islands in stellarators and changes in the plasma flow. A model explaining this phenomenon is developed based on self-consistent torque balance and island evolution equations. In conventional stellarators, neoclassical flow damping physics plays an important role in establishing the flow profiles. The balance of neoclassical damping and cross-field viscosity produces a radial boundary layer for the plasma rotation profile outside the separatrix of a locked magnetic island. The width of this boundary layer decreases as the plasma becomes less collisional. Associated with these flow effects are plasma currents flowing in the island region that attempt to suppress island formation. These currents are enhanced as the collisionality drops making magnetic island healing occur more readily in high temperature conventional stellarators. The analytic theory produces a critical β for healing that scales monotonically with collisionality and is in qualitative agreement with LHD observations.
International Nuclear Information System (INIS)
Askinazi, L G; Golant, V E; Kornev, V A; Lebedev, S V; Tukachinsky, A S; Vildjunas, M I; Zhubr, N A
2006-01-01
Radial electric field is known to be an important factor affecting transport and confinement in toroidal fusion plasmas. Langmuire probe measurements of peripheral radial electric field evolution in the presence of a rotating MHD island were performed on the TUMAN-3M tokamak in order to clear up the possible connection between the radial electric field and the island rotation, both in L and H-modes. The measurements showed that E r became positive, if the island was large enough, in spite of the constant direction of the island's rotation. Comparing similar ohmic H-mode discharges with or without a rotating MHD island, it was found that in the presence of the large island E r was always more positive. Possible explanations of this observation are discussed
Magnetic Island Growth A comparison of local and global effects
International Nuclear Information System (INIS)
Lloyd, S.S.; Gardner, H.J.
2003-01-01
In stellarators a hot plasma is confined to a torus by a magnetic field with both toroidal and poloidal components generated by external currents. Plasma currents develop to balance the pressure gradient with a J x B force which in turn change the shape of confining magnetic field. Self-consistent equilibrium magnetic fields and plasma currents for some H-1NF configurations were calculated using the HINT code. This code relaxes a simplified set of resistive MHD equations on a coordinate grid until an equilibrium is reached [1]. Islands can occur in the equilibrium magnetic field, surrounding field lines with low-order rational rotational transform. The island widths are influenced by four types of currents. External currents determine the vacuum island widths. Global resonant and non-resonant currents increase linearly with plasma pressure and can act in or out of phase to the external currents. Local resonant currents are caused by the presence of an island and reinforce or counteract the island depending on the field strength gradient [2]. We compare the impact of local resonant and global non-resonant currents by comparing the results of HINT for several related configurations of H-1NF. Two configurations with slightly different rotational transforms (but otherwise very similar parameters) will have very different resonant plasma currents but nearly identical non-resonant plasma currents. Comparing the effect of the currents of the two configurations on island width gives an insight into the different contributions of resonant and non-resonant plasma currents to island growth or self-healing
International Nuclear Information System (INIS)
Mallick, Sougata; Mallik, Srijani; Bedanta, Subhankar
2015-01-01
Microdimensional triangular magnetic antidot lattice arrays were prepared by varying the speed of substrate rotation. The pre-deposition patterning has been performed using photolithography technique followed by a post-deposition lift-off. Surface morphology taken by atomic force microscopy depicted that the growth mechanism of the grains changes from chain like formation to island structures due to the substrate rotation. Study of magnetization reversal via magneto optic Kerr effect based microscopy revealed reduction of uniaxial anisotropy and increase in domain size with substrate rotation. The relaxation measured under constant magnetic field becomes faster with rotation of the substrate during deposition. The nature of relaxation for the non-rotating sample can be described by a double exponential decay. However, the relaxation for the sample with substrate rotation is well described either by a double exponential or a Fatuzzo-Labrune like single exponential decay, which increases in applied field
International Nuclear Information System (INIS)
Sun Tengfei; Liu Yi; Ji Xiaoquan; Xu Yuan; Feng Beibin
2011-01-01
The new method that reconstructs the polar two-dimensional structure of the magnetic island using magnetic pickup coils data is introduced on HL-2A tokamak and dynamic analysis method that set up based on it for tearing mode is also introduced. In this experiment, the perturbation current which is the source of the perturbation magnetic field can be determined using the data measured by magnetic probes. Superimposing the perturbation flux and equilibrium flux reconnected by EFIT, the structure and the width of the magnetic islands can be obtained. Then two-dimensional structure maps are set up chronologically and recorded in turn. After that these maps are revealed in turn and magnetic island can be analyzed dynamically. This method is applied to analyzing tearing mode. The conclusion that magnetic island rotating direction is in accordance with electronic diamagnetic drift direction is reached. The relationship between the magnetic island width and the magnetic perturbation field is proved and the suppression of magnetic island by ECRH is also verified.It shows the immediacy of the method of inversion of magnetic island structure by magnetic probes and it is very useful for watching and controlling MHD instability. (authors)
Nonlinear evolution of magnetic islands in a two fluid torus
International Nuclear Information System (INIS)
Sugiyama, L.E.; Park, W.
1996-01-01
A numerical model MH3D-T for the two fluid description of macroscopic evolution in a full three dimensional torus has been developed. Based on the perturbative drift ordering, generalized to arbitrary perturbation size, the model follows the full temperature evolution, including the thermal equilibration along the magnetic field. It contains the diamagnetic drifts, ion gyroviscous stress tensor, and the Hall term in Ohm's law. Electron inertia is neglected. The numerical model solves the same equations in a torus and in several simplified configurations. It has been benchmarked against the diamagnetic ω* i stabilization of the resistive m = 1, n = 1 reconnecting mode in a cylinder. The nonlinear evolution of resistive magnetic islands with m,n ≠ 1,1 in a cylinder is found to agree with previous analytic and reduced-torus results, which show that the diamagnetic rotation vanishes early in the island evolution and the saturated island size is determined by the same external driving factor Δ' as in MHD. The two fluid evolution in a full torus, however, differs from that in a cylinder and from the resistive MHD evolution. The poloidal rotation velocity undergoes a degree of poloidal momentum damping in the torus, even without neoclassical effects. The two fluid magnetic island grows faster, nonlinearly, than the resistive MHD island, and also couples different toroidal harmonics more effectively. Plasma compressibility and processes operating along the magnetic field play a much more important role than in MHD or in simple geometry. The two fluid model contains all the important neoclassical fluid effects except for the b circ ∇ circ Π parallelj viscous force terms. The addition of these terms is in progress
Evolution of magnetic islands in a Heliac
International Nuclear Information System (INIS)
Hayashi, T.; Sato, T.; Gardner, H.J.; Meiss, J.D.
1994-09-01
Simulations of three-dimensional equilibria in the H-1 Heliac with the HINT code show that the size of a dangerous magnetic island should increase with plasma pressure but that a destruction of the equilibrium at low β is avoided because the rotational transform evolves to exclude the rational surface concerned. At higher pressures there is evidence of near-resonant flux surface deformations which may lead to an equilibrium limit. A reconnected equilibrium at still higher pressures exhibits a double island structure which is similar to homoclinic phase portraits which have been observed after separatrix reconnection in Hamiltonian systems. (author)
Shestakov, E. A.; Savrukhin, P. V.
2017-10-01
Experiments in the T-10 tokamak demonstrated possibility of controlling the plasma current during disruption instability using the electron cyclotron resonance heating (ECRH) and the controlled operation of the ohmic current-holding system. Quasistable plasma discharge with repeating sawtooth oscillations can be restored after energy quench using auxiliary ECRH power when PEC / POH > 2-5. The external magnetic field generation system consisted of eight saddle coils that were arranged symmetrically relative to the equatorial plane of the torus outside of the vacuum vessel of the T-10 tokamak to study the possible resonant magnetic field effects on the rotation frequency of magnetic islands. The saddle coils power supply system is based on four thyristor converters with a total power of 300 kW. The power supply control system is based on Siemens S7 controllers. As shown by preliminary experiments, the interaction efficiency of external magnetic fields with plasma depends on the plasma magnetic configuration. Optimal conditions for slowing the rotation of magnetic islands were determined. Additionally, the direction of the error magnetic field in the T-10 tokamak was determined, and the threshold value of the external magnetic field was determined.
International Nuclear Information System (INIS)
Lazzaro, Enzo
2009-01-01
Established results of neoclassical kinetic theory are used in a fluid model to show that in low collisionality regimes (ν and 1/ν) the propagation velocity of Neoclassical Tearing Modes (NTM) magnetic islands of sufficient width is determined self-consistently by the Neoclassical Toroidal Viscosity (NTV) appearing because of broken symmetry. The NTV effect on bulk plasma rotation, may also explain recent observations on momentum transport. At the same time this affects the role of the neoclassical ion polarization current on neoclassical tearing modes (NTM) stability.
Wall locking and multiple nonlinear states of magnetic islands
International Nuclear Information System (INIS)
Persson, Mikael; Australian National Univ., Canberra, ACT
1994-01-01
The nonlinear evolution of magnetic islands is analysed in configurations with multiple resonant magnetic surfaces. The existence of multiple nonlinear steady states, is discussed. These are shown to be associated with states where the dynamics around the different rational surfaces are coupled or decoupled and in the presence of a wall of finite resistivity may correspond wall-locked or non-wall-locked magnetic islands. For the case of strong wall stabilization the locking is shown to consist of two different phases. During the first phase the locking of the plasma at the different rational surfaces occurs. Only when the outermost resonant magnetic surface has locked to the inner surfaces can the actual wall locking process take place. Consequently, wall locking, of a global mode, involving more than one rational surface, can be prevented by the decoupling of the resonant magnetic surfaces by plasma rotation. Possible implications on tokamak experiments are discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Muraglia, M.
2009-10-15
In a tokamak, it exists many kinds of instability at the origin of a damage of the confinement and worst of a lost of a confinement. This work presents a study of the dynamics of a magnetic island in presence of turbulence in magnetized plasmas. More precisely, the goal is to understand the multi-scales interaction between turbulence, generated by a pressure gradient and the magnetic field curvature, and a magnetic island formed thanks to a tearing mode. Thanks to the derivation of a 2-dimensional slab model taking into account both tearing and interchange instabilities, theoretical and numerical linear studies show the pressure effect on the magnetic island linear formation and show interchange modes are stabilized in presence of a strong magnetic field. Then, a numerical nonlinear study is presented in order to understand how the interchange mechanism affects the nonlinear dynamics of a magnetic island. It is shown that the pressure gradient and the magnetic field curvature affect strongly the nonlinear evolution of a magnetic island through dynamics bifurcations. The nature of these bifurcations should be characterized in function of the linear situation. Finally, the last part of this work is devoted to the study of the origin of the nonlinear poloidal rotation of the magnetic island. A model giving the different contributions to the rotation is derived. It is shown, thanks to the model and to the numerical studies, that the nonlinear rotation of the island is mainly governed by the ExB poloidal flow and/or by the nonlinear diamagnetic drift. (author)
Energy Technology Data Exchange (ETDEWEB)
Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp [Kobe City College of Technology, Kobe, Hyogo 651-2194 (Japan)
2015-02-15
Magnetic islands are externally produced by resonant magnetic perturbations (RMPs) in toroidal plasmas. Spontaneous annihilation of RMP-induced magnetic islands called self-healing has been observed in helical systems. A possible mechanism of the self-healing is shielding of RMP penetration by helical ripple-induced neoclassical flows, which give rise to neoclassical viscous torques. In this study, effective helical ripple rates in multi-helicity helical systems are revisited, and a multi-helicity effect on the self-healing is investigated, based on a theoretical model of rotating magnetic islands. It is confirmed that effective helical ripple rates are sensitive to magnetic axis positions. It is newly found that self-healing thresholds also strongly depend on magnetic axis positions, which is due to dependence of neoclassical viscous torques on effective helical ripple rates.
International Nuclear Information System (INIS)
Volpe, F.; Austin, M. E.; Campbell, G.; Deterly, T.
2012-01-01
A two channel oblique electron cyclotron emission (ECE) radiometer was installed on the DIII-D tokamak and interfaced to four gyrotrons. Oblique ECE was used to toroidally and radially localize rotating magnetic islands and so assist their electron cyclotron current drive (ECCD) stabilization. In particular, after manipulations operated by the interfacing analogue circuit, the oblique ECE signals directly modulated the current drive in synch with the island rotation and in phase with the island O-point, for a more efficient stabilization. Apart from the different toroidal location, the diagnostic view is identical to the ECCD launch direction, which greatly simplified the real-time use of the signals. In fact, a simple toroidal extrapolation was sufficient to lock the modulation to the O-point phase. This was accomplished by a specially designed phase shifter of nearly flat response over the 1–7 kHz range. Moreover, correlation analysis of two channels slightly above and below the ECCD frequency allowed checking the radial alignment to the island, based on the fact that for satisfactory alignment the two signals are out of phase.
Formation of magnetic islands due to field perturbations in toroidal stellarator configurations
International Nuclear Information System (INIS)
Lee, D.K.; Harris, J.H.; Lee, G.S.
1990-06-01
An explicit formulation is developed to determine the width of a magnetic island separatrix generated by magnetic field perturbations in a general toroidal stellarator geometry. A conventional method is employed to recast the analysis in a magnetic flux coordinate system without using any simplifying approximations. The island width is seen to be proportional to the square root of the Fourier harmonic of B ρ /B ζ that is in resonance with the rational value of the rotational transform, where B ρ and B ζ are contravariant normal and toroidal components of the perturbed magnetic field, respectively. The procedure, which is based on a representation of three-dimensional flux surfaces by double Fourier series, allows rapid and fairly accurate calculation of the island widths in real vacuum field configurations, without the need to follow field lines through numerical integration of the field line equations. Numerical results of the island width obtained in the flux coordinate representation for the Advanced Toroidal Facility agree closely with those determined from Poincare puncture points obtained by following field lines. 22 refs., 5 tabs
International Nuclear Information System (INIS)
Stoschus, H.; Schmitz, O.; Frerichs, H.; Reiser, D.; Unterberg, B.; Lehnen, M.; Reiter, D.; Samm, U.; Jakubowski, M.W.
2012-01-01
Rotating resonant magnetic perturbation (RMP) fields impose a characteristic modulation to the edge electron density n e (r, t) and temperature T e (r, t) fields, which depends on the relative rotation f rel between external RMP field and plasma fluid. The n e (r, t) and T e (r, t) fields measured in the edge (r/a = 0.9–1.05) of TEXTOR L-mode plasmas are in close correlation with the local magnetic vacuum topology for low relative rotation f rel = −0.2 kHz. In comparison with the 3D neutral and plasma transport code EMC3-Eirene, this provides substantial experimental evidence that for low relative rotation level and high resonant field amplitudes (normalized radial field strength B r 4/1 /B t =2×10 -3 ), a stochastic edge with a remnant island chain dominated by diffusive transport exists. Radially outside a helical scrape-off layer, the so-called laminar zone embedded into a stochastic domain is found to exist. In contrast for high relative rotation of f rel = 1.8 kHz, the measured modulation of n e is shifted by π/2 toroidally with respect to the modelled vacuum topology. A pronounced flattening in T e (r) and a reduction in n e (r) is measured at the resonant flux surface and represents a clear signature for a magnetic island, which is phase shifted with respect to the vacuum island position. A correlated shift of the laminar zone radially outwards at the very plasma edge is observed suggesting that the actual near-field structure at the perturbation source is determined by the plasma response as well. (paper)
Interaction of bootstrap-current-driven magnetic islands
International Nuclear Information System (INIS)
Hegna, C.C.; Callen, J.D.
1991-10-01
The formation and interaction of fluctuating neoclassical pressure gradient driven magnetic islands is examined. The interaction of magnetic islands produces a stochastic region around the separatrices of the islands. This interaction causes the island pressure profile to be broadened, reducing the island bootstrap current and drive for the magnetic island. A model is presented that describes the magnetic topology as a bath of interacting magnetic islands with low to medium poloidal mode number (m congruent 3-30). The islands grow by the bootstrap current effect and damp due to the flattening of the pressure profile near the island separatrix caused by the interaction of the magnetic islands. The effect of this sporadic growth and decay of the islands (''magnetic bubbling'') is not normally addressed in theories of plasma transport due to magnetic fluctuations. The nature of the transport differs from statistical approaches to magnetic turbulence since the radial step size of the plasma transport is now given by the characteristic island width. This model suggests that tokamak experiments have relatively short-lived, coherent, long wavelength magnetic oscillations present in the steep pressure-gradient regions of the plasma. 42 refs
Kalman filters for real-time magnetic island phase tracking
International Nuclear Information System (INIS)
Borgers, D.P.; Lauret, M.; Baar, M.R. de
2013-01-01
Highlights: • We propose two Kalman filters for tracking of NTMs on ASDEX Upgrade. • The Kalman filters can track NTMs in a much larger frequency range than PLLs. • The filters are tested on synthetic and experimental data from TEXTOR and TCV. • We conclude that the unscented Kalman filter can be useful for NTM control. -- Abstract: For control of neoclassical tearing modes (NTMs) and the resulting rotating magnetic islands in tokamak plasmas, the frequency and phase of the magnetic islands need to be accurately tracked in real-time. In previous experiments on TEXTOR, this was achieved using a phase-locked loop (PLL). For ASDEX Upgrade however, the desired frequency range in which the islands are to be tracked (100 Hz–10 kHz) is much larger than is possible with a PLL. In this contribution, an extended Kalman filter (EKF) and an unscented Kalman filter (UKF) are proposed for real-time frequency, phase and amplitude tracking of sinusoidal signals, based on noisy measurements. Compared to PLLs, the EKF and UKF are able to track sinusoidal signals in a much larger frequency range. The filters are applied on synthetic data and on experimental data from the TEXTOR and TCV tokamaks, from which we conclude that the UKF can be useful for real-time control of magnetic islands on ASDEX Upgrade
Kalman filters for real-time magnetic island phase tracking
Energy Technology Data Exchange (ETDEWEB)
Borgers, D.P. [Hybrid and Networked Systems, Department of Mechanical Engineering – Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Lauret, M., E-mail: M.Lauret@tue.nl [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, Nieuwegein (Netherlands); Control Systems Technology, Department of Mechanical Engineering – Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Baar, M.R. de [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, Nieuwegein (Netherlands); Control Systems Technology, Department of Mechanical Engineering – Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2013-11-15
Highlights: • We propose two Kalman filters for tracking of NTMs on ASDEX Upgrade. • The Kalman filters can track NTMs in a much larger frequency range than PLLs. • The filters are tested on synthetic and experimental data from TEXTOR and TCV. • We conclude that the unscented Kalman filter can be useful for NTM control. -- Abstract: For control of neoclassical tearing modes (NTMs) and the resulting rotating magnetic islands in tokamak plasmas, the frequency and phase of the magnetic islands need to be accurately tracked in real-time. In previous experiments on TEXTOR, this was achieved using a phase-locked loop (PLL). For ASDEX Upgrade however, the desired frequency range in which the islands are to be tracked (100 Hz–10 kHz) is much larger than is possible with a PLL. In this contribution, an extended Kalman filter (EKF) and an unscented Kalman filter (UKF) are proposed for real-time frequency, phase and amplitude tracking of sinusoidal signals, based on noisy measurements. Compared to PLLs, the EKF and UKF are able to track sinusoidal signals in a much larger frequency range. The filters are applied on synthetic data and on experimental data from the TEXTOR and TCV tokamaks, from which we conclude that the UKF can be useful for real-time control of magnetic islands on ASDEX Upgrade.
Runaway electrons and magnetic island confinement
International Nuclear Information System (INIS)
Boozer, Allen H.
2016-01-01
The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativistic energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. The physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.
Runaway electrons and magnetic island confinement
Energy Technology Data Exchange (ETDEWEB)
Boozer, Allen H., E-mail: ahb17@columbia.edu [Columbia University, New York, New York 10027 (United States)
2016-08-15
The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativistic energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. The physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.
Nonlinear mechanism for the suppression of error field magnetic islands by plasma flow
International Nuclear Information System (INIS)
Parker, R.D.
1992-01-01
Non-axisymmetric magnetic field perturbations generated, for example, by errors in the alignment of the field coils are known to lead to reduced confinement in a tokamak. By inducing the formation of small, stationary, magnetic islands on all rational surfaces they can enhance radial transport and under certain circumstances interact with MHD instabilities to trigger the onset of locked modes leading, in some cases, to disruption of the plasma discharge. Given the stationary nature of the error field islands it is natural to consider whether they can be reduced significantly by the viscous drag of a sheared flow resulting from a bulk rotation of the plasma. In this paper, we examine this interaction by modelling the nonlinear growth and saturation of force-reconnected magnetic islands driven by a corrugated boundary in a slab plasma with an initially uniform flow. A systematic parameter study is made of the time asymptotic steady state. (author) 3 figs., 5 refs
Decay process of a magnetic island by forced reconnection
International Nuclear Information System (INIS)
Nagasaki, K.; Itoh, K.
1991-03-01
Time evolution of a magnetic island by forced reconnection, especially the decay process is analyzed. A simple slab model is used and the magnetic island is considered to have a single helicity. The plasma is assumed to be incompressible. The evolution time is affected by the presence of an original magnetic island. In the decay process, a current flows along the separatrix of the magnetic island, and the current layer width depends on the magnetic island width, when the island is relatively wide compared to the current layer. In the presence of a magnetic island, even if the magnetic Reynolds number S increases, the current layer does not become narrower. This leads to the slow evolution of the magnetic island. It is found that the time scale S 1 τ A is required to reach the last equilibrium regardless of the nonlinear terms. This is slower than that of the growth process, S 3/5 τ A . (author)
Locked magnetic island chains in toroidally flow damped tokamak plasmas
International Nuclear Information System (INIS)
Fitzpatrick, R; Waelbroeck, F L
2010-01-01
The physics of a locked magnetic island chain maintained in the pedestal of an H-mode tokamak plasma by a static, externally generated, multi-harmonic, helical magnetic perturbation is investigated. The non-resonant harmonics of the external perturbation are assumed to give rise to significant toroidal flow damping in the pedestal, in addition to the naturally occurring poloidal flow damping. Furthermore, the flow damping is assumed to be sufficiently strong to relax the pedestal ion toroidal and poloidal fluid velocities to fixed values determined by neoclassical theory. The resulting neoclassical ion flow causes a helical phase-shift to develop between the locked island chain and the resonant harmonic of the external perturbation. Furthermore, when this phase-shift exceeds a critical value, the chain unlocks from the resonant harmonic and starts to rotate, after which it decays away and is replaced by a helical current sheet. The neoclassical flow also generates an ion polarization current in the vicinity of the island chain which either increases or decreases the chain's radial width, depending on the direction of the flow. If the polarization effect is stabilizing, and exceeds a critical amplitude, then the helical island equilibrium becomes unstable, and the chain again decays away. The critical amplitude of the resonant harmonic of the external perturbation at which the island chain either unlocks or becomes unstable is calculated as a function of the pedestal ion pressure, the neoclassical poloidal and toroidal ion velocities and the poloidal and toroidal flow damping rates.
International Nuclear Information System (INIS)
Boozer, A.H.
1983-08-01
The response of a finite conductivity plasma to resonant magnetic perturbations is studied. The equations, which are derived for the time development of magnetic islands, help one interpret the singular currents which occur under the assumption of perfect plasma conductivity. The relation to the Rutherford regime of resistive instabilities is given
Hydromagnetic rotational braking of magnetic stars
International Nuclear Information System (INIS)
Fleck, R.C. Jr.
1980-01-01
It is suggested that the magnetic Ap stars can be rotationally decelerated to long periods by the braking action of the associated magnetic field on time scales of order 10 7 --10 10 years depending on whether the star's dipole field is aligned perpendicular or parallel to the rotation axis. Rotation includes a toroidal magnetic field in the plasma surrounding a star, and the accompanying magnetic stresses produce a net torque acting to despin the star. These results indicate that it is not necessary to postulate mass loss or mass accretion for this purely hydromagnetic braking effect
Behavior of magnetic islands in 3D MHD equilibria of helical devices
International Nuclear Information System (INIS)
Hayashi, T.; Sato, T.; Nakajima, N.
1994-09-01
Magnetic island formation in three-dimensional finite-β equilibria in the H-1 Heliac is studied by using the HINT code. It is found that the size of a dangerous island should increase with β but that a destruction of the equilibrium at low β is avoided because the rotational transform evolves to exclude the rational surface concerned. At higher β there is evidence of near-resonant flux surface deformations which may lead to an equilibrium limit. A reconnected equilibrium at still higher β exhibits a double island structure which is similar to homoclinic phase portraits which have been observed after separatrix reconnection in Hamiltonian systems. Physical mechanism of the island formation in finite-β helical equilibria is investigated to confirm there are cases where the global effect of the Pfirsch-Schlueter currents is important. The earlier theory is extended to elucidate the occurence of the complete self-healing of island when the resistive interchange criterion satisfied. (author)
Magnetic nanofluids and magnetic composite fluids in rotating seal systems
International Nuclear Information System (INIS)
Borbath, T; Borbath, I; Boros, T; Bica, D; Vekas, L; Potencz, I
2010-01-01
Recent results are presented concerning the development of magnetofluidic leakage-free rotating seals for vacuum and high pressure gases, evidencing significant advantages compared to mechanical seals. The micro-pilot scale production of various types of magnetizable sealing fluids is shortly reviewed, in particular the main steps of the chemical synthesis of magnetic nanofluids and magnetic composite fluids with light hydrocarbon, mineral oil and synthetic oil carrier liquids. The behavior of different types of magnetizable fluids in the rotating sealing systems is analyzed. Design concepts, some constructive details and testing procedures of magnetofluidic rotating seals are presented such as the testing equipment. The main characteristics of several magnetofluidic sealing systems and their applications will be presented: vacuum deposition systems and liquefied gas pumps applications, mechanical and magnetic nanofluid combined seals, gas valves up to 40 bar equipped by rotating seal with magnetic nanofluids and magnetic composite fluids.
Rotating magnetizations in electrical machines: Measurements and modeling
Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay
2018-05-01
This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.
Differential rotation in magnetic stars
International Nuclear Information System (INIS)
Moss, D.
1981-01-01
The possibility that large-scale magnetic fields in stars are the product of a contemporary dynamo situated in the convective stellar core, rather than being a fossil from an earlier stage in the history of the star, is investigated. It is demonstrated that then the envelope will almost inevitably be in a state of differential rotation. Some simple models are constructed to illustrate the magnitude of the effects on the structure of the envelope and magnetic field. It is found that, for models which are relatively rapidly rotating, a modest differential rotation at the surface of the core may increase considerably the ratio of internal to surface field, but only give rise to a small surface differential rotation. (author)
Rotating magnetizations in electrical machines: Measurements and modeling
Directory of Open Access Journals (Sweden)
Andreas Thul
2018-05-01
Full Text Available This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.
Electromagnetic fields of rotating magnetized NUT stars
International Nuclear Information System (INIS)
Ahmedov, B.J.; Khugaev, A.V.; Ahmedov, B.J.
2004-01-01
Full text: Analytic general relativistic expressions for the electromagnetic fields external to a slowly-rotating magnetized NUT star with nonvanishing gravitomagnetic charge have been presented. Solutions for the electric and magnetic fields have been found after separating the Maxwell equations in the external background spacetime of a slowly rotating NUT star into angular and radial parts in the lowest order approximation. The star is considered isolated and in vacuum, with different models for stellar magnetic field: i) monopolar magnetic field and II) dipolar magnetic field aligned with the axis of rotation. We have shown that the general relativistic corrections due to the dragging of reference frames and gravitomagnetic charge are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we have shown that the frame-dragging and gravitomagnetic charge provide an additional induced electric field which is analogous to the one introduced by the rotation of the star in the flat spacetime limit
Apparatus and method for materials processing utilizing a rotating magnetic field
Muralidharan, Govindarajan; Angelini, Joseph A.; Murphy, Bart L.; Wilgen, John B.
2017-04-11
An apparatus for materials processing utilizing a rotating magnetic field comprises a platform for supporting a specimen, and a plurality of magnets underlying the platform. The plurality of magnets are configured for rotation about an axis of rotation intersecting the platform. A heat source is disposed above the platform for heating the specimen during the rotation of the plurality of magnets. A method for materials processing utilizing a rotating magnetic field comprises providing a specimen on a platform overlying a plurality of magnets; rotating the plurality of magnets about an axis of rotation intersecting the platform, thereby applying a rotating magnetic field to the specimen; and, while rotating the plurality of magnets, heating the specimen to a desired temperature.
Fitzpatrick, Richard
2018-04-01
A two-fluid, neoclassical theory of the interaction of a single magnetic island chain with a resonant error-field in a quasi-cylindrical, low-β, tokamak plasma is presented. The plasmas typically found in large hot tokamaks lie in the so-called weak neoclassical flow-damping regime in which the neoclassical ion stress tensor is not the dominant term in the ion parallel equation of motion. Nevertheless, flow-damping in such plasmas dominates ion perpendicular viscosity, and is largely responsible for determining the phase velocity of a freely rotating island chain (which is in the ion diamagnetic direction relative to the local E × B frame at the rational surface). The critical vacuum island width required to lock the island chain is mostly determined by the ion neoclassical poloidal flow damping rate at the rational surface. The stabilizing effect of the average field-line curvature, as well as the destabilizing effect of the perturbed bootstrap current, is the same for a freely rotating, a non-uniformly rotating, and a locked island chain. The destabilizing effect of the error-field averages to zero when the chain is rotating and only manifests itself when the chain locks. The perturbed ion polarization current has a small destabilizing effect on a freely rotating island chain, but a large destabilizing effect on both a non-uniformly rotating and a locked island chain. This behavior may account for the experimentally observed fact that locked island chains are much more unstable than corresponding freely rotating chains.
International Nuclear Information System (INIS)
Ida, K.; Inagaki, S.; Yoshinuma, M.; Narushima, Y.; Itoh, K.; Kobuchi, T.; Watanabe, K. Y.; Funaba, H.; Sakakibara, S.; Morisaki, T.; LHD Experimental Group
2008-01-01
Three states of a magnetic island are observed when the magnetic shear at the rational surface is modified using inductive current associated with the neutral beam current drive in the Large Helical Device. One state is the healed magnetic island with a zero island width. The second state is the saturated magnetic island with partial flattening of the T e profile. The third state is characterized by the global flattening of the T e profile in the core region. As the plasma assumes each of the three states consecutively through a bifurcation process a clear hysteresis in the relation between the size of the magnetic island and the magnetic shear is observed
MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma
Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.;
2016-01-01
In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..
NMR system and method having a permanent magnet providing a rotating magnetic field
Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA
2009-05-19
Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.
Energy Technology Data Exchange (ETDEWEB)
Khabarova, O. [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS (IZMIRAN), Troitsk, Moscow 142190 (Russian Federation); Zank, G. P.; Li, G.; Roux, J. A. le; Webb, G. M.; Dosch, A. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Malandraki, O. E. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)
2015-08-01
Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.
International Nuclear Information System (INIS)
Mercier, C.
1989-02-01
The effect of a perturbing magnetic field on a field whose magnetic surfaces are tori nested around a closed central line is studied. This perturbation effect creates magnetic islands around surfaces with rational rotational transform. These islands are investigated analytically, which makes it possible to evaluate their size. The resulting turbulence of the medium can then be studied by calculating the interaction of two neighbouring islands
Belinsky, Moisey I
2016-05-02
The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.
A rotation/magnetism analogy for the quark–gluon plasma
Energy Technology Data Exchange (ETDEWEB)
McInnes, Brett, E-mail: matmcinn@nus.edu.sg
2016-10-15
In peripheral heavy ion collisions, the Quark–Gluon Plasma that may be formed often has a large angular momentum per unit energy. This angular momentum may take the form of (local) rotation. In many physical systems, rotation can have effects analogous to those produced by a magnetic field; thus, there is a risk that the effects of local rotation in the QGP might be mistaken for those of the large genuine magnetic fields which are also known to arise in these systems. Here we use the gauge-gravity duality to investigate this, and we find indeed that, with realistic parameter values, local rotation has effects on the QGP (at high values of the baryonic chemical potential) which are not only of the same kind as those produced by magnetic fields, but which can in fact be substantially larger. Furthermore, the combined effect of rotation and magnetism is to change the shape of the main quark matter phase transition line in an interesting way, reducing the magnitude of its curvature; again, local rotation contributes to this phenomenon at least as strongly as magnetism.
Measurement of the torque on diluted ferrofluid samples in rotating magnetic fields
International Nuclear Information System (INIS)
Storozhenko, A.M.; Stannarius, R.; Tantsyura, A.O.; Shabanova, I.A.
2017-01-01
We study magnetic suspensions with different concentrations of ferromagnetic nanoparticles in a spherical container under the action of a rotating magnetic field. Experimental data on the concentration dependence of the rotational effect, viz. the torque exerted by the magnetic field, are presented. We explain the observed torque characteristics using a model that takes into account field-driven aggregation of the magnetic nanoparticles in stationary or slowly rotating fields. At sufficiently high rotation rates, the rotating magnetic field obviously destroys these aggregates, which results in a decreasing torque with increasing rotation frequency of the field. - Highlights: • The experimental study of the rotational effect in the magnetic fluids is presented. • The torque density non-monotonously depends on the magnetic field frequency. • Experimental data can be explained assuming aggregation of magnetic nanoparticles.
Measurement of the torque on diluted ferrofluid samples in rotating magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Storozhenko, A.M. [Southwest State University, Kursk, 305040 (Russian Federation); Stannarius, R. [Otto von Guericke University Magdeburg, Magdeburg, 39016 Germany (Germany); Tantsyura, A.O.; Shabanova, I.A. [Southwest State University, Kursk, 305040 (Russian Federation)
2017-06-01
We study magnetic suspensions with different concentrations of ferromagnetic nanoparticles in a spherical container under the action of a rotating magnetic field. Experimental data on the concentration dependence of the rotational effect, viz. the torque exerted by the magnetic field, are presented. We explain the observed torque characteristics using a model that takes into account field-driven aggregation of the magnetic nanoparticles in stationary or slowly rotating fields. At sufficiently high rotation rates, the rotating magnetic field obviously destroys these aggregates, which results in a decreasing torque with increasing rotation frequency of the field. - Highlights: • The experimental study of the rotational effect in the magnetic fluids is presented. • The torque density non-monotonously depends on the magnetic field frequency. • Experimental data can be explained assuming aggregation of magnetic nanoparticles.
A rotation/magnetism analogy for the quark–gluon plasma
Directory of Open Access Journals (Sweden)
Brett McInnes
2016-10-01
Full Text Available In peripheral heavy ion collisions, the Quark–Gluon Plasma that may be formed often has a large angular momentum per unit energy. This angular momentum may take the form of (local rotation. In many physical systems, rotation can have effects analogous to those produced by a magnetic field; thus, there is a risk that the effects of local rotation in the QGP might be mistaken for those of the large genuine magnetic fields which are also known to arise in these systems. Here we use the gauge-gravity duality to investigate this, and we find indeed that, with realistic parameter values, local rotation has effects on the QGP (at high values of the baryonic chemical potential which are not only of the same kind as those produced by magnetic fields, but which can in fact be substantially larger. Furthermore, the combined effect of rotation and magnetism is to change the shape of the main quark matter phase transition line in an interesting way, reducing the magnitude of its curvature; again, local rotation contributes to this phenomenon at least as strongly as magnetism.
Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field
Duan, Shuchao; Xie, Weiping; Cao, Jintao; Li, Ding
2018-04-01
In this paper, we analyze theoretically the magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Slab configurations of finite thickness are treated both with and without using the Wenzel-Kramers-Brillouin approximation. Regardless of the slab thickness, the directional rotation of the driving magnetic field contributes to suppressing these instabilities. The two factors of the finite thickness and directional rotation of the magnetic field cooperate to enhance suppression, with the finite thickness playing a role only when the orientation of the magnetic field is time varying. The suppression becomes stronger as the driving magnetic field rotates faster, and all modes are suppressed, in contrast to the case of a non-rotating magnetic field, for which the vertical mode cannot be suppressed. This implies that the dynamically alternate configuration of a Theta-pinch and a Z-pinch may be applicable to the concept of Theta-Z liner inertial fusion.
Kinetic effects on the currents determining the stability of a magnetic island in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Poli, E., E-mail: emanuele.poli@ipp.mpg.de; Bergmann, A.; Casson, F. J.; Hornsby, W. A. [Max-Planck-Institut für Plasmaphysik (Germany); Peeters, A. G. [University of Bayreuth, Department of Physics (Germany); Siccinio, M.; Zarzoso, D. [Max-Planck-Institut für Plasmaphysik (Germany)
2016-05-15
The role of the bootstrap and polarization currents for the stability of neoclassical tearing modes is investigated employing both a drift kinetic and a gyrokinetic approach. The adiabatic response of the ions around the island separatrix implies, for island widths below or around the ion thermal banana width, density flattening for islands rotating at the ion diamagnetic frequency, while for islands rotating at the electron diamagnetic frequency the density is unperturbed and the only contribution to the neoclassical drive arises from electron temperature flattening. As for the polarization current, the full inclusion of finite orbit width effects in the calculation of the potential developing in a rotating island leads to a smoothing of the discontinuous derivatives exhibited by the analytic potential on which the polarization term used in the modeling is based. This leads to a reduction of the polarization-current contribution with respect to the analytic estimate, in line with other studies. Other contributions to the perpendicular ion current, related to the response of the particles around the island separatrix, are found to compete or even dominate the polarization-current term for realistic island rotation frequencies.
Bayesian analysis of magnetic island dynamics
International Nuclear Information System (INIS)
Preuss, R.; Maraschek, M.; Zohm, H.; Dose, V.
2003-01-01
We examine a first order differential equation with respect to time used to describe magnetic islands in magnetically confined plasmas. The free parameters of this equation are obtained by employing Bayesian probability theory. Additionally, a typical Bayesian change point is solved in the process of obtaining the data
Magnetic pseudo-fields in a rotating electron-nuclear spin system
Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.
2017-11-01
Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.
Hypersonic drift-tearing magnetic islands in tokamak plasmas
International Nuclear Information System (INIS)
Fitzpatrick, R.; Waelbroeck, F. L.
2007-01-01
A two-fluid theory of long wavelength, hypersonic, drift-tearing magnetic islands in low-collisionality, low-β plasmas possessing relatively weak magnetic shear is developed. The model assumes both slab geometry and cold ions, and neglects electron temperature and equilibrium current gradient effects. The problem is solved in three asymptotically matched regions. The 'inner region' contains the island. However, the island emits electrostatic drift-acoustic waves that propagate into the surrounding 'intermediate region', where they are absorbed by the plasma. Since the waves carry momentum, the inner region exerts a net force on the intermediate region, and vice versa, giving rise to strong velocity shear in the region immediately surrounding the island. The intermediate region is matched to the surrounding 'outer region', in which ideal magnetohydrodynamic holds. Isolated hypersonic islands propagate with a velocity that lies between those of the unperturbed local ion and electron fluids, but is much closer to the latter. The ion polarization current is stabilizing, and increases with increasing island width. Finally, the hypersonic branch of isolated island solutions ceases to exist above a certain critical island width. Hypersonic islands whose widths exceed the critical width are hypothesized to bifurcate to the so-called 'sonic' solution branch
Magnetic island formation in tokamaks
International Nuclear Information System (INIS)
Yoshikawa, S.
1989-04-01
The size of a magnetic island created by a perturbing helical field in a tokamak is estimated. A helical equilibrium of a current- carrying plasma is found in a helical coordinate and the helically flowing current in the cylinder that borders the plasma is calculated. From that solution, it is concluded that the helical perturbation of /approximately/10/sup /minus/4/ of the total plasma current is sufficient to cause an island width of approximately 5% of the plasma radius. 6 refs
International Nuclear Information System (INIS)
Stoschus, Henning
2011-01-01
relative rotation indications for a magnetic island acting as locally confining sub-volumes are found. (4) For high relative rotation, the entire measured edge plasma structure is shifted by π/2 toroidally with respect to the position modeled in vacuum approximation. The latter two experimental findings are compatible with modeling results of the underlying magnetic topology including plasma response obtained by a 4-field drift fluid transport model. (5) A smaller shift is measured in front of the RMP coils. This gives direct experimental evidence that the near field plasma structure is governed by the competition between the RMP near field and the local plasma structure at the next inward rational flux surface. The results obtained are essential input for benchmarking models, which include plasma response, in order to extrapolate the RMP imposed 3D plasma structure toward the next step fusion experiment ITER. The measurements of the plasma structure presented indicate that the underlying magnetic topology is rotation dependent and may therefore stimulate direct measurements of the components of the magnetic field in future. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Stoschus, Henning
2011-10-13
along open magnetic field lines to the wall components. For high relative rotation indications for a magnetic island acting as locally confining sub-volumes are found. (4) For high relative rotation, the entire measured edge plasma structure is shifted by {pi}/2 toroidally with respect to the position modeled in vacuum approximation. The latter two experimental findings are compatible with modeling results of the underlying magnetic topology including plasma response obtained by a 4-field drift fluid transport model. (5) A smaller shift is measured in front of the RMP coils. This gives direct experimental evidence that the near field plasma structure is governed by the competition between the RMP near field and the local plasma structure at the next inward rational flux surface. The results obtained are essential input for benchmarking models, which include plasma response, in order to extrapolate the RMP imposed 3D plasma structure toward the next step fusion experiment ITER. The measurements of the plasma structure presented indicate that the underlying magnetic topology is rotation dependent and may therefore stimulate direct measurements of the components of the magnetic field in future. (orig.)
Chaotic approach to evaluation of disturbed magnetic surfaces
International Nuclear Information System (INIS)
Kogoshi, Sumio; Mishimagi, Sigehiro; Yoshii, Keiichi; Maeda, Joji
1998-01-01
A circle mapping can approximately reproduce the cross section of magnetic surfaces and the value of the periodic driving force (K) at a magnetic island varies with the width of the magnetic island, which suggests the value of K is one of measures for the degradation of magnetic surfaces. The profile of a rotational transform has flat regions at the magnetic islands. The width of the flat region is proportional to the width of the magnetic island. Therefore it may be another measure of the degradation of magnetic surfaces. This method requires less data for the estimation than the usual method of calculating the width of magnetic islands. For collapsed magnetic surfaces that are produced by overlapping of two magnetic islands, the fractal dimension can effectively estimate the degradation of them. The fractal dimensions of cross sections of regular magnetic surfaces and clear magnetic islands are nearly 1, while that of a collapsed magnetic surface is about 1.2 in the present study. (author)
Research on single-chip microcomputer controlled rotating magnetic field mineralization model
Li, Yang; Qi, Yulin; Yang, Junxiao; Li, Na
2017-08-01
As one of the method of selecting ore, the magnetic separation method has the advantages of stable operation, simple process flow, high beneficiation efficiency and no chemical environment pollution. But the existing magnetic separator are more mechanical, the operation is not flexible, and can not change the magnetic field parameters according to the precision of the ore needed. Based on the existing magnetic separator is mechanical, the rotating magnetic field can be used for single chip microcomputer control as the research object, design and trial a rotating magnetic field processing prototype, and through the single-chip PWM pulse output to control the rotation of the magnetic field strength and rotating magnetic field speed. This method of using pure software to generate PWM pulse to control rotary magnetic field beneficiation, with higher flexibility, accuracy and lower cost, can give full play to the performance of single-chip.
The 'positive' magnetic islands conception and its applications to T-11M experiments
International Nuclear Information System (INIS)
Mirnov, S.V.; Semenov, I.B.; Belov, A.M.; Azizov, E.A.
1999-01-01
A situation in tokamaks is analyzed in which the development of strong plasma current filamentation leads to nonlinear magnetic islands formation near resonant magnetic surfaces. It is shown that, along with the usual 'negative' magnetic islands, in which the modulation of the perturbation currents is negative, 'positive' islands can form in local regions with the positive current modulation. The 'positive' magnetic islands can be a reason of the 'hot spot' in plasma center during sawtooth crash. Also the 'positive' islands, probably, plays the important role in m=2 development during the major disruption and in the locked modes dynamics. (author)
The ''positive'' magnetic islands conception and its applications to T-11M experiments
International Nuclear Information System (INIS)
Mirnov, S.V.; Semenov, I.; Belov, A.M.; Azizov, E.A.
2001-01-01
A situation in tokamaks is analyzed in which the development of strong plasma current filamentation leads to nonlinear magnetic islands formation near resonant magnetic surfaces. It is shown that, along with the usual ''negative'' magnetic islands, in which the modulation of the perturbation currents is negative, ''positive'' islands can form in local regions with the positive current modulation. The ''positive'' magnetic islands can be a reason of the ''hot spot'' in plasma center during sawtooth crash. Also the ''positive'' islands, probably, plays the important role in m=2 development during the major disruption and in the locked modes dynamics. (author)
Faraday Rotation Measure Study of Cluster Magnetic Fields
Frankel, M. M.; Clarke, T. E.
2001-12-01
Magnetic fields are thought to play an important role in galaxy cluster evolution. To this end in this study, we looked at polarized radio sources viewed at small impact parameters to the cores of non-cooling flow clusters. By looking at non-cooling flow clusters we hoped to establish what magnetic fields of clusters look like in the absence of the compressed central magnetic fields of the cooling-flow cores. Clarke, Kronberg and Boehringer (2001) examined Faraday rotation measures of radio probes at relatively large impact parameters to the cores of galaxy clusters. The current study is an extension of the Clarke et al. analysis to probe the magnetic fields in the cores of galaxy clusters. We looked at the Faraday rotation of electromagnetic waves from background or imbedded radio galaxies, which were observed with the VLA in A&B arrays. Our results are consistent with previous findings and exhibit a trend towards higher rotation measures and in turn higher magnetic fields at small impact parameters to cluster cores. This research was made possible through funding from the National Science Foundation.
Towards age/rotation/magnetic activity relation with seismology
Directory of Open Access Journals (Sweden)
Mathur Savita
2015-01-01
Full Text Available The knowledge of stellar ages directly impacts the characterization of a planetary system as it puts strong constraints on the moment when the system was born. Unfortunately, the determination of precise stellar ages is a very difficult task. Different methods can be used to do so (based on isochrones or chemical element abundances but they usually provide large uncertainties. During its evolution a star goes through processes leading to loss of angular momentum but also changes in its magnetic activity. Building rotation, magnetic, age relations would be an asset to infer stellar ages model independently. Several attempts to build empirical relations between rotation and age (namely gyrochronology were made with a focus on cluster stars where the age determination is easier and for young stars on the main sequence. For field stars, we can now take advantage of high-precision photometric observations where we can perform asteroseismic analyses to improve the accuracy of stellar ages. Furthermore, the variability in the light curves allow us to put strong constraints on the stellar rotation and magnetic activity. By combining these precise measurements, we are on the way of understanding and improving relations between magnetic activity, rotation, and age, in particular at different stages of stellar evolution. I will review the status on gyrochronology relationships based on observations of young cluster stars. Then I will focus on solar-like stars and describe the inferences on stellar ages, rotation, and magnetism that can be provided by high-quality photometric observations such as the ones of the Kepler mission, in particular through asteroseismic analyses.
Effect of magnetic islands on the impurity transport in a tokamak
International Nuclear Information System (INIS)
Ivanov, N.V.; Khvostenko, P.P.; Chudnovskij, A.N.
1986-01-01
Effect of magnetic islands m=2, created in plasma with the help of special quadrupole winding, on the behaviour of impurity in the T-7 tokamak is studied. The use of quadrupole winding permitted to exlude the magnetic island nonstationarity typical to spontaneous development of the Tiaring instability. The results obtained confirm the point of view that splitting of rational magnetic surface results in the change of impurity ion density gradient in its vicinity. This change occurs under the action of ambipolar electric field, that is excited due to the increase of radial electron transport in magnetic islands
Evolution of magnetic islands in tokamaks
International Nuclear Information System (INIS)
Dubois, M.; Samain, A.
1980-01-01
The evolution of magnetic islands is studied by a variational method on the assumption that it consists of a sequence of equilibria. The characteristic time of the evolution is then a resistive time. The sequence may, however, reach a configuration where the angle of the flux lines at the X-point vanishes. This behaviour is plausible in the case of q=1 islands, in contrast to the case of q>1. The subsequent evolution must assign a certain role to inertia. It is shown that this role cannot consist of a rapid displacement of the separatrix preserving its topology, but must be due to the onset of small-grain kinetic and magnetic turbulence extending from the separatrix in a large domain. (author)
Radial electric field and transport near the rational surface and the magnetic island in LHD
International Nuclear Information System (INIS)
Ida, K.; Inagaki, S.; Tamura, N.
2002-10-01
The structure of the radial electric field and heat transport at the magnetic island in the Large Helical Device is investigated by measuring the radial profile of poloidal flow with charge exchange spectroscopy. The convective poloidal flow inside the island is observed when the n/m=1/1 external perturbation field becomes large enough to increase the magnetic island width above a critical value (15-20% of minor radius) in LHD. This convective poloidal flow results in a non-flat space potential inside the magnetic island. The sign of the curvature of the space potential depends on the radial electric field at the boundary of the magnetic island. The heat transport inside the magnetic island is studied with a cold pulse propagation technique. The experimental results show the existence of the radial electric field shear at the boundary of the magnetic island and a reduction of heat transport inside the magnetic island. (author)
The magnetic field generated by a rotating charged polygon
International Nuclear Information System (INIS)
Wan, Songlin; Chen, Xiangyu; Teng, Baohua; Fu, Hao; Li, Yefeng; Wu, Minghe; Wu, Shaoyi; Balfour, E A
2014-01-01
The magnetic field along the symmetry axis of a regular polygon carrying a uniform electric charge on its edges is calculated systematically when the polygon is rotated about this axis of symmetry. A group of circular current-carrying coils arranged concentrically about the axis of the polygon has been designed to simulate the magnetic field characteristics of the rotating charged polygon. The magnetic field of the simulated coils is measured using the PASCO magnetic field sensor. The results show that the theoretical calculation agrees well with the experimental results. (paper)
Reiman, Allan H.
2016-07-01
∇p are important in this region, and small non-MHD contributions to the parallel force balance equation cannot be neglected there. Two approaches are pursued to solve our equations for the pressure driven currents. First, the equilibrium equations are applied to an analytically tractable magnetic field with an island, obtaining explicit expressions for the rotational transform and magnetic coordinates, and for the pressure-driven current and its limiting behavior near the X-line. The second approach utilizes an expansion about the X-line to provide a more general calculation of the pressure-driven current near an X-line and of the rotational transform near a separatrix. The study presented in this paper is motivated, in part, by tokamak experiments with nonaxisymmetric magnetic perturbations, where significant differences are observed between the behavior of stellarator-symmetric and non-stellarator-symmetric configurations with regard to stabilization of edge localized modes by resonant magnetic perturbations. Implications for the coupling between neoclassical tearing modes, and for magnetic island stability calculations, are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Dobák, Samuel, E-mail: samuel.dobak@student.upjs.sk [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Füzer, Ján; Kollár, Peter [Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University, Park Angelinum 9, 041 54 Košice (Slovakia); Fáberová, Mária; Bureš, Radovan [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 043 53 Košice (Slovakia)
2017-03-15
This study sheds light on the dynamic magnetization process in iron/resin soft magnetic composites from the viewpoint of quantitative decomposition of their complex permeability spectra into the viscous domain wall motion and magnetization rotation. We present a comprehensive view on this phenomenon over the broad family of samples with different average particles dimension and dielectric matrix content. The results reveal the pure relaxation nature of magnetization processes without observation of spin resonance. The smaller particles and higher amount of insulating resin result in the prevalence of rotations over domain wall movement. The findings are elucidated in terms of demagnetizing effects rising from the heterogeneity of composite materials. - Highlights: • A first decomposition of complex permeability into domain wall and rotation parts in soft magnetic composites. • A pure relaxation nature of dynamic magnetization processes. • A complete loss separation in soft magnetic composites. • The domain walls activity is considerably suppressed in composites with smaller iron particles and higher matrix content. • The demagnetizing field acts as a significant factor at the dynamic magnetization process.
On the magnetic anomaly at Easter Island during the 2010 Chile tsunami
Directory of Open Access Journals (Sweden)
Benlong Wang
2015-08-01
Full Text Available A magnetic anomaly was recorded at Easter Island on 27 February 2010 during the Chile tsunami event. The physics of the magnetic anomaly is analyzed using kinematic dynamo theory. Using a single wave model, the space and time behavior of the magnetic field is given. By joint analysis of the magnetic observations, tide gauge data and numerical results of the global tsunami propagation, we show the close resemblance between the predicted spatial and temporal magnetic distributions and the field data, indicating the magnetic anomaly at Easter Island was actually induced by the motion of seawater under tsunami waves. Similarity between the field magnetic data at Easter Island during 2010 Chile tsunami and sea surface level is verified with realistic tsunami propagating model.
Broad-band linear polarization and magnetic intensification in rotating magnetic stars
International Nuclear Information System (INIS)
Degl'Innocenti, M.L.; Calamai, G.; Degl'Innocenti, E.L.; Patriarchi, P.
1981-01-01
Magnetic intensification is proposed as a mechanism to explain the general features of the variable broad-band linear polarization emerging from rotating magnetic stars. This mechanism is studied in detail, and some efforts are made to investigate the wide variety of polarization diagrams that can result from it. Theoretical results are compared with direct observations of the variable magnetic star 53 Cam to determine its geometric and magnetic configuration
The rotational hysteresis losses in thin films with unidirectional magnetic anisotropy
Mucha, J. M.; Vatskichev, L.; Vatskicheva, M.
1992-03-01
Using the Planar Hall Effect (PHE) the rotational hysteresis losses in NiFeGe thin magnetic films were measured. The calculation of the critical field for magnetization and rotational hysteresis losses based on extended Stoner-Wohlfarth theory including an exchange magnetic field is given.
Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.
Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai
2015-09-01
Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.
Modified small angle magnetization rotation method in multilayer magnetic microwires
International Nuclear Information System (INIS)
Torrejon, J.; Badini, G.; Pirota, K.; Vazquez, M.
2007-01-01
The small angle magnetization rotation (SAMR) technique is a widely used method to quantify magnetostriction in elongated ultrasoft magnetic materials. In the present work, we introduce significant optimization of the method, particularly simplification of the required equipment, profiting of the very peculiar characteristics of a recently introduced family of multilayer magnetic microwires consisting of a soft magnetic core, insulating intermediate layer and a hard magnetic outer layer. The introduced modified SAMR method is used not only to determine the saturation magnetostriction constant of the soft magnetic nucleus but also the magnetoelastic and magnetostatic coupling. This new method has a great potential in multifunctional sensor applications
Superparamagnetic beads in rotating magnetic fields: microfluidic experiments
Den Toonder, J.M.J.; Bokdam, M.
2008-01-01
The effect of the Mason number, ratio of viscous and magnetic force, on suspended superparamagnetic micro sized beads was investigated experimentally. Microfluidic experiments were performed in a set-up that generates a rotating homogeneous magnetic field. In the presence of a magnetic field, the
Spinning rate decay of levitated high-Tc superconductors in rotational magnetic field
Energy Technology Data Exchange (ETDEWEB)
Terentiev, A.N.; Kutukova, E.O.; Kuznetsov, A.A. (Inst. of Chemical Physics, Academy of Sciences, Moscow (Russia)); Mozhaev, A.P. (Moscow State Univ., Dept. of Chemistry (Russia))
1992-04-01
The rotation damping of a levitated superconductor was examined in the static field of a ring-shaped magnet and in the rotating field of coils. It was demonstrated that the pinning force mainly contributed to magnetic friction while the influence of a viscous component was negligible. The rotating magnetic field created a torque, reducing the angular deceleration under relaxation. Dependence of the rotational field-induced torque on the field-intensity was step-like. A relationship between the step-like behavior of rotational field-induced torque and pinning center distribution is discussed. The origins of friction torque and rotational field-produced torque are discussed. (orig.).
ELECTRON ACCELERATION IN CONTRACTING MAGNETIC ISLANDS DURING SOLAR FLARES
Energy Technology Data Exchange (ETDEWEB)
Borovikov, D.; Tenishev, V.; Gombosi, T. I. [University of Michigan, Department of Climate and Space Sciences and Engineering, 2455 Hayward Street, Ann Arbor, MI 48104-2143 (United States); Guidoni, S. E. [The Catholic University of America, 620 Michigan Avenue Northeast, Washington, DC 20064 (United States); DeVore, C. R.; Karpen, J. T.; Antiochos, S. K. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2017-01-20
Electron acceleration in solar flares is well known to be efficient at generating energetic particles that produce the observed bremsstrahlung X-ray spectra. One mechanism proposed to explain the observations is electron acceleration within contracting magnetic islands formed by magnetic reconnection in the flare current sheet. In a previous study, a numerical magnetohydrodynamic simulation of an eruptive solar flare was analyzed to estimate the associated electron acceleration due to island contraction. That analysis used a simple analytical model for the island structure and assumed conservation of the adiabatic invariants of particle motion. In this paper, we perform the first-ever rigorous integration of the guiding-center orbits of electrons in a modeled flare. An initially isotropic distribution of particles is seeded in a contracting island from the simulated eruption, and the subsequent evolution of these particles is followed using guiding-center theory. We find that the distribution function becomes increasingly anisotropic over time as the electrons’ energy increases by up to a factor of five, in general agreement with the previous study. In addition, we show that the energized particles are concentrated on the Sunward side of the island, adjacent to the reconnection X-point in the flare current sheet. Furthermore, our analysis demonstrates that the electron energy gain is dominated by betatron acceleration in the compressed, strengthened magnetic field of the contracting island. Fermi acceleration by the shortened field lines of the island also contributes to the energy gain, but it is less effective than the betatron process.
Reduction of Islands in Full-pressure Stellarator Equilibria
International Nuclear Information System (INIS)
Hudson, S.R.; Monticello, D.A.; Reiman, A.H.
2001-01-01
The control of magnetic islands is a crucial issue in designing Stellarators. Islands are associated with resonant radial magnetic fields at rational rotational-transform surfaces and can lead to chaos and poor plasma confinement. In this article, we show that variations in the resonant fields of a full-pressure stellarator equilibrium can be related to variations in the boundary via a coupling matrix, and inversion of this matrix determines a boundary modification for which the island content is significantly reduced. The numerical procedure is described and the results of island optimization are presented. Equilibria with islands are computed using the Princeton Iterative Equilibrium Solver, and resonant radial fields are calculated via construction of quadratic-flux-minimizing surfaces. A design candidate for the National Compact Stellarator Experiment [Phys. Plasmas 8, 2001], which has a large island, is used to illustrate the technique. Small variations in the boundary shape are used to reduce island size and to reverse the phase of a major island chain
Rotating permanent magnet excitation for blood flow measurement.
Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S
2015-11-01
A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.
Combining rotating-coil measurements of large-aperture accelerator magnets
AUTHOR|(CDS)2089510
2016-10-05
The rotating coil is a widely used tool to measure the magnetic field and the field errors in accelerator magnets. The coil has a length that exceeds the entire magnetic field along the longitudinal dimension of the magnet and gives therefore a two-dimensional representation of the integrated field. Having a very good precision, the rotating coil lacks in versatility. The fixed dimensions make it impractical and inapplicable in situations, when the radial coil dimension is much smaller than the aperture or when the aperture is only little covered by the coil. That being the case for rectangular apertures with large aspect ratio, where a basic measurement by the rotating coil describes the field only in a small area of the magnet. A combination of several measurements at different positions is the topic of this work. Very important for a combination is the error distribution on the measured field harmonics. To preserve the good precision of the higher-order harmonics, the combination must not rely on the main ...
Emergent rotational symmetries in disordered magnetic domain patterns.
Su, Run; Seu, Keoki A; Parks, Daniel; Kan, Jimmy J; Fullerton, Eric E; Roy, Sujoy; Kevan, Stephen D
2011-12-16
Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition. © 2011 American Physical Society
Active Control of 2/1 Magnetic Islands in the HBT-EP Tokamak
International Nuclear Information System (INIS)
Navratil, G.A.; Cates, C.; Mauel, M.E.; Maurer, D.; Nadle, D.; Taylor, E.; Xiao, Q.; Wurden, G.A.; Reass, W.A.
1997-01-01
Closed and open loop control techniques were applied to growing m/n=2/1 rotating islands in wall stabilized plasmas in the HBT-EP tokamak. The approach taken by HBT-EP combines an adjustable segmented conducting wall (which slows the growth or stabilizes ideal external kinks) with a number of small (6degree wide) saddle coils located between the gaps of the conducting wall. In this paper we report demonstration of 2-phase island rotation control from 5 kHz to 15 kHz and observation of the phase instability which are well modeled by the single-helicity, predictions of nonlinear Rutherford island dynamics for 2/1 tearing modes including important effects of ion inertia and FLR which appears as a damping term in the model equations. The closed loop response of active feedback control of the 2/1 mode at moderate gain was observed to be in good agreement with the theory. We have also demonstrated suppression of the 2/1 island growth using an asynchronous frequency modulation drive which maintains the flow damping of the island by application of rotating control fields with frequencies alternating above and below the natural mode frequency. This frequency modulation control technique was also able to prevent disruptions normally observed to follow giant sawtooth crashes in the plasma core
Energy Technology Data Exchange (ETDEWEB)
Tobias, B.; Grierson, B. A.; Okabayashi, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Chen, M.; Domier, C. W.; Luhmann, N. C.; Muscatello, C. M. [University of California at Davis, Davis, California 95616 (United States); Classen, I. G. J. [Dutch Institute for Fundamental Fusion Energy Research, DIFFER, Rhinjuizen (Netherlands); Fitzpatrick, R. [University of Texas at Austin, Austin, Texas 78705 (United States); Olofsson, K. E. J.; Paz-Soldan, C. [General Atomics, San Diego, California 92121 (United States)
2016-05-15
The electromagnetic coupling of helical modes, even those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. With increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lock to each other without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q{sub 95}, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. The additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor—a key issue for ITER.
Energy Technology Data Exchange (ETDEWEB)
Ye, Bo, E-mail: yebo@hubu.edu.cn [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); School of Computer Science and Information Engineering, HuBei University, Wuhan 430062 (China); Zhang, Wei [Department of Mechanical Engineering, Hubei University of Automotive Technology, Shiyan 442002 (China); Sun, Zhen-jun [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Guo, Lin [School of Computer Science and Information Engineering, HuBei University, Wuhan 430062 (China); Deng, Chao [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Chen, Ya-qi [Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Zhang, Hong-hai [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Liu, Sheng [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China)
2015-12-01
In this paper, the authors propose rotating an external permanent magnet (EPM) to manipulate the synchronous rotation of a magnetic spiral-type wireless capsule endoscope (WCE), and the synchronous rotation of the WCE is converted to its translational motion in intestinal tract. In order to preliminarily verify the feasibility of this method, a handheld actuator (HA) controlled by micro controller unit, a magnetic spiral-type WCE and a bracket were fabricated, theoretical analysis and simulations about the control distance of this method were performed, and in ex-vivo tests were examined in porcine small intestine to verify the control distance and control performances of this method. It was demonstrated that this method showed good performances in controlling the translational motion of the magnetic spiral-type WCE, and this method has great potential to be used in clinical application. - Highlights: • A new magnetic control method for spiral-type wireless capsule endoscope is proposed. • Wireless capsule endoscope rotates synchronously with external permanent magnet. • The method controls the wireless capsule endoscope well in porcine small intestine. • Long control distance makes the method may be used in future medical application. • Experimental setup has great advantages: high cost performance and easy operation.
Rotation of dust plasma crystals in an axial magnetic field
International Nuclear Information System (INIS)
Cheung, F.; Prior, N.; Mitchell, L.
2000-01-01
Full text: Micron-sized melamine formaldehyde particles were introduced into argon plasma. As a result, the particles were negatively charged due to collision with the electrons within the plasma. With the right conditions, these particles formed a stable macroscopic crystal lattice, known as dust plasma crystal. In our experiment we conduct at Flinders University, we apply an external axial magnetic field to various configurations of dust plasma crystal. These configurations include small crystal lattices consisting of one to several particles, and large crystal lattices with many hundreds of particles. The magnetic field strength ranged from 0-32G and was uniform over the extent of the crystal. The crystals were observed to be rotating collectively in the left-handed direction under the influence of the axial magnetic field. In the case of the large crystals, the angular velocity was about 2 complete rotations per minute and was proportional to the applied magnetic field. The angular velocity changes only slightly depending on the plasma conditions. Neither radial variance in the angular velocity nor shear velocity in the vertical direction was observed in the crystal's rotational motion. In the case of the small crystals, we managed to rotate 2-6 particles (whether they are planar, 2 layers or tetrahedral). We discovered that the ease and the uniformity of the rotation of the different crystals increase as its rotational symmetry increases. Also an increase in the magnetic field strength will correspond to an increase in the angular velocity. Crystals in the shape of an annulus were also tested for theoretical reasons. The poster presentation will contain the experimental procedures, a detailed analysis and an explanation for such dust plasma crystal rotational motion
Dipolar vortex structures in magnetized rotating plasma
International Nuclear Information System (INIS)
Liu Jixing
1990-01-01
Dipolar solitary vortices of both electrostatic and electromagnetic character in low-β, in homogeneous rotating plasma confined in a constant external magnetic field were systematically presented. The main stimulus to this investigation is the expectation to apply this coherent structure as a candidate constituent of plasma turbulance to understand the anomalous transport phenomena in confined plasma. The electrostatic vortices have similar structure and properties as the Rossby vortices in rotating fluids, the electromagnetic vortices obtained here have no analogy in hydrodynamics and hence are intrinsic to magnetized plasma. It is valuably remarked that the intrinsic electromagnetic vortices presented here have no discontinuity of perturbed magnetic field δB and parallel current j(parallel) on the border of vortex core. The existence region of the new type of vortex is found much narrower than the Rossby type one. (M.T.)
The Effect of a Guide Field on the Structures of Magnetic Islands: 2D PIC Simulations
Huang, C.; Lu, Q.; Lu, S.; Wang, P.; Wang, S.
2014-12-01
Magnetic island plays an important role in magnetic reconnection. Using a series of 2D PIC simulations, we investigate the magnetic structures of a magnetic island formed during multiple X-line magnetic reconnection, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the direction forms a tripolar structure inside a magnetic island during anti-parallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhance the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flows toward the X lines along the separatrices from the side with a higher density, and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island, and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.
International Nuclear Information System (INIS)
Duez, Matthew D.; Liu, Yuk Tung; Shapiro, Stuart L.; Stephens, Branson C.; Shibata, Masaru
2006-01-01
We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can be formed in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both act on differentially rotating stars to redistribute angular momentum. Simulations of these stars are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. We consider stars with two different equations of state (EOS), a gamma-law EOS with Γ=2, and a more realistic hybrid EOS, and we evolve them adiabatically. Our simulations show that the fate of the star depends on its mass and spin. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Normal configurations have rest masses below the maximum achievable with uniform rotation, and angular momentum below the maximum for uniform rotation at the same rest mass. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along
Development of Turbulent Magnetic Reconnection in a Magnetic Island
International Nuclear Information System (INIS)
Huang, Can; Lu, Quanming; Wang, Rongsheng; Wu, Mingyu; Lu, San; Wang, Shui; Guo, Fan
2017-01-01
In this paper, with two-dimensional particle-in-cell simulations, we report that the electron Kelvin–Helmholtz instability is unstable in the current layer associated with a large-scale magnetic island, which is formed in multiple X-line guide field reconnections. The current sheet is fragmented into many small current sheets with widths down to the order of the electron inertial length. Secondary magnetic reconnection then occurs in these fragmented current sheets, which leads to a turbulent state. The electrons are highly energized in such a process.
DARK MATTER, MAGNETIC FIELDS, AND THE ROTATION CURVE OF THE MILKY WAY
International Nuclear Information System (INIS)
Ruiz-Granados, B.; Battaner, E.; Florido, E.; Calvo, J.; Rubiño-Martín, J. A.
2012-01-01
The study of the disk rotation curve of our Galaxy at large distances provides an interesting scenario for us to test whether magnetic fields should be considered as a non-negligible dynamical ingredient. By assuming a bulge, an exponential disk for the stellar and gaseous distributions, and a dark halo and disk magnetic fields, we fit the rotation velocity of the Milky Way. In general, when the magnetic contribution is added to the dynamics, a better description of the rotation curve is obtained. Our main conclusion is that magnetic fields should be taken into account for the Milky Way dynamics. Azimuthal magnetic field strengths of B φ ∼ 2 μG at distances of ∼2 R 0 (16 kpc) are able to explain the rise-up for the rotation curve in the outer disk.
Influence of a minor periodicity on the magnetic island formation in tokamaks
International Nuclear Information System (INIS)
Matsuda, Shinzaburo
1975-01-01
A formation of magnetic islands due to external error fields in tokamaks is described. In particular, current control fields associated with shell gaps are shown to make islands of significant size. Moreover, we found that a toroidal minor periodicity of these perturbation fields, which is generally represented by the number of shell gaps, has an important meaning for the suppression of the resonant magnetic islands. (auth.)
Magnetic islands in tokamaks induced by thermal filamentation
International Nuclear Information System (INIS)
Dubois, M.A.; Mohamed-Benkadda, M.S.
1991-11-01
The thermal instability of filamentation is revisited in the fully nonlinear regime of a system of cool magnetic island chains, taking into account: the different transport processes inside and outside island cores, and a realistic temperature dependence of radiative losses. This mechanism is found to be a plausible candidate to explain the anomalous electron energy transport
Energy Technology Data Exchange (ETDEWEB)
Wang, Feng; Liu, J. Y. [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Fu, G. Y.; Breslau, J. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Tritz, Kevin [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States)
2013-07-15
Plasmas in spherical and conventional tokamaks, with weakly reversed shear q profile and minimum q above but close to unity, are susceptible to an non-resonant (m,n) = (1,1) internal kink mode. This mode can saturate and persist and can induce a (2,1) seed island for Neoclassical Tearing Mode. [Breslau et al. Nucl. Fusion 51, 063027 (2011)]. The mode can also lead to large energetic particle transport and significant broadening of beam-driven current. Motivated by these important effects, we have carried out extensive nonlinear simulations of the mode with finite toroidal rotation using parameters and profiles of an NTSX plasma with a weakly reversed shear profile. The numerical results show that, at the experimental level, plasma rotation has little effect on either equilibrium or linear stability. However, rotation can significantly influence the nonlinear dynamics of the (1,1) mode and the induced (2,1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at finite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the effects of rotation are found to greatly suppress the (2,1) magnetic island even at a low level.
Choi, W.; La Haye, R. J.; Lanctot, M. J.; Olofsson, K. E. J.; Strait, E. J.; Sweeney, R.; Volpe, F. A.; The DIII-D Team
2018-03-01
The toroidal phase and rotation of otherwise locked magnetic islands of toroidal mode number n = 1 are controlled in the DIII-D tokamak by means of applied magnetic perturbations of n = 1. Pre-emptive perturbations were applied in feedforward to ‘catch’ the mode as it slowed down and entrain it to the rotating field before complete locking, thus avoiding the associated major confinement degradation. Additionally, for the first time, the phase of the perturbation was optimized in real-time, in feedback with magnetic measurements, in order for the mode’s phase to closely match a prescribed phase, as a function of time. Experimental results confirm the capability to hold the mode in a given fixed-phase or to rotate it at up to 20 Hz with good uniformity. The control-coil currents utilized in the experiments agree with the requirements estimated by an electromechanical model. Moreover, controlled rotation at 20 Hz was combined with electron cyclotron current drive (ECCD) modulated at the same frequency. This is simpler than regulating the ECCD modulation in feedback with spontaneous mode rotation, and enables repetitive, reproducible ECCD deposition at or near the island O-point, X-point and locations in between, for careful studies of how this affects the island stability. Current drive was found to be radially misaligned relative to the island, and resulting growth and shrinkage of islands matched expectations of the modified Rutherford equation for some discharges presented here. Finally, simulations predict the as designed ITER 3D coils can entrain a small island at sub-10 Hz frequencies.
Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares
Guidoni, S. E.; Devore, C. R.; Karpen, J. T.; Lynch, B. J.
2016-01-01
The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magneto hydro dynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.
A novel rotating experimental platform in a superconducting magnet.
Chen, Da; Cao, Hui-Ling; Ye, Ya-Jing; Dong, Chen; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan
2016-08-01
This paper introduces a novel platform designed to be used in a strong static magnetic field (in a superconducting magnet). The platform is a sample holder that rotates in the strong magnetic field. Any samples placed in the platform will rotate due to the rotation of the sample holder. With this platform, a number of experiments such as material processing, culture of biological systems, chemical reactions, or other processes can be carried out. In this report, we present some preliminary experiments (protein crystallization, cell culture, and seed germination) conducted using this platform. The experimental results showed that the platform can affect the processes, indicating that it provides a novel environment that has not been investigated before and that the effects of such an environment on many different physical, chemical, or biological processes can be potentially useful for applications in many fields.
Liquid metal flow in a finite-length cylinder with a rotating magnetic field
International Nuclear Information System (INIS)
Gelfgat, Yu.M.; Gorbunov, L.A.; Kolevzon, V.
1993-01-01
A liquid metal flow induced by a rotating magnetic field in a cylindrical container of finite height was investigated experimentally. It was demonstrated that the flow in a rotating magnetic field is similar to geophysical flows: the fluid rotates uniformly with depth and the Ekman layer exists at the container bottom. Near the vertical wall the flow is depicted in the form of a confined jet whose thickness determines the instability onset in a rotating magnetic field. It was shown that the critical Reynolds number can be found by using the jet velocity u 0 for Re cr =u 2 0 /ν∂u/∂r. The effect of frequency of a magnetic field on the fluid flow was also studied. An approximate theoretical model is presented for describing the fluid flow in a uniform rotating magnetic field. (orig.)
Kinetic theory of magnetic island stability in tokamaks
International Nuclear Information System (INIS)
Zabiego, M.; Garbet, X.
1993-10-01
The non linear behavior of low and large wave number tearing modes is studied. The emphasis is layed on diamagnetic effects. A kinetic equation, including transport processes associated with a background of microturbulence, is used to describe the electron component. Such transport processes are shown to play a significant role in the adjustment of density and temperature profile and also in the calculation of the island rotation frequency. The fluctuating electric potential is calculated self-consistently, using the differential response of electrons and ions. Four regimes are considered, related to island width (smaller or larger than an ion Larmor radius) and transport regime (electron-ion collisions or electro-viscosity dominated). It is shown that diamagnetism does not influence the island stability for small island width in the viscous regime, as long as the constant A constraint is maintained. It turns out that the release of this constraint may strongly modify the previously calculated stability thresholds. Finally, it is found that diamagnetism is destabilizing (stabilizing) for island width smaller (larger) than an ion Larmor radius, in both resistive and viscous regimes. A typical island evolution scenario is studied which shows that even large scale tearing modes with positive Δ ' could saturate to island width of order of a few ion Larmor radii. Illustrative Δ ' threshold and island saturation size are calculated. (authors). 31 refs., 5 figs., 3 tabs
Design and Test Results of Superconducting Magnet for Heavy-Ion Rotating Gantry
Takayama, S.; Koyanagi, K.; Miyazaki, H.; Takami, S.; Orikasa, T.; Ishii, Y.; Kurusu, T.; Iwata, Y.; Noda, K.; Obana, T.; Suzuki, K.; Ogitsu, T.; Amemiya, N.
2017-07-01
Heavy-ion radiotherapy has a high curative effect in cancer treatment and also can reduce the burden on patients. These advantages have been generally recognized. Furthermore, a rotating gantry can irradiate a tumor with ions from any direction without changing the position of the patient. This can reduce the physical dose on normal cells, and is thus commonly used in proton radiotherapy. However, because of the high magnetic rigidity of carbon ions, the weight of the rotating gantry for heavy-ion therapy is about three-times heavier than those used for proton cancer therapy, according to our estimation. To overcome this issue, we developed a small and lightweight rotating gantry in collaboration with the National Institute of Radiological Sciences (NIRS). The compact rotating gantry was composed of ten low-temperature superconducting (LTS) magnets that were designed from the viewpoint of beam optics. These LTS magnets have a surface-winding coil-structure and provide both dipole and quadrupole fields. The maximum dipole and quadrupole magnetic field of the magnets were 2.88 T and 9.3 T/m, respectively. The rotating gantry was installed at NIRS, and beam commissioning is in progress to achieve the required beam quality. In the three years since 2013, in a project supported by the Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED), we have been developing high-temperature superconducting (HTS) magnets with the aim of a further size reduction of the rotating gantry. To develop fundamental technologies for designing and fabricating HTS magnets, a model magnet was manufactured. The model magnet was composed of 24 saddle-shaped HTS coils and generated a magnetic field of 1.2 T. In the presentation, recent progress in this research will be reported.
Faraday rotation and magneto-optical figure of merit for the magnetite magnetic fluids
Directory of Open Access Journals (Sweden)
Kalandadze L.
2011-05-01
Full Text Available In the present paper, using magnetite magnetic fluids as examples, we consider the optical and magneto-optical properties of magnetic fluids based on particles of magnetic oxides, for the optical constants of the material of which, n and k , the relation k2 ≺≺ n2 holds. In this work the Faraday rotation is represented within the theoretical Maxwell-Garnett model. A theoretical analysis has shown that Faraday rotation for magnetic fluids is related to the Faraday rotation on the material of particles by the simple relation. According to this result in specific experimental conditions the values of the Faraday rotation prorate to q , which is the occupancy of the volume of the magnetic fluid with magnetic particles and spectral dependences of effect in magnetic fluid and in the proper bulk magnetic are similar. We also show that the values of the magneto-optical figure of merit for ultrafine medium and for the bulk material are equal.
International Nuclear Information System (INIS)
Yoshimura, H.; Wang, Z.; Wu, F.
1984-01-01
Differential rotation dependence of the selection mechanism for magnetic parity of solar and stellar cycles is studied by assuming various differential rotation profiles inn the dynamo equation. The parity selection depends on propagation direction of oscillating magnetic fields in the form of dynamo waves which propagate along isorotation surfaces. When there is any radial gradient in the differential rotation, dynamo waves propagate either equatorward or poleward. In the former case, field systems of the two hemispheres approach each other and collide at the equator. Then, odd parity is selected. In the latter case, field systems of the two hemispheres recede from each other and do not collide at the equator, an even parity is selected. Thus the equatorial migration of wings of the butterfly iagram of the solar cycle and its odd parity are intrinsically related. In the case of purely latitudibnal differential rotation, dynamo waves propagate purely radially and growth rates of odd and even modes are nearly the same even when dynamo strength is weak when the parity selection mechanism should work most efficiently. In this case, anisotropy of turbulent diffusivity is a decisive factor to separate odd and even modes. Unlike in the case of radial-gradient-dominated differential rotation in which any difference between diffusivities for poloidal and toroidal fields enhancess the parity selection without changing the parity, the parity selection in the case of latitudinal-gradient-dominated differential rotation depends on the difference of diffusivities for poloidal and toroidal fields. When diffusivity for poloidal fields iss larger than that for toroidal fields, odd parity is selected; and when diffusivity for toroidal fields is larger, even parity is selected
Rotating structures in low temperature magnetized plasmas - Insight from particle simulations
Directory of Open Access Journals (Sweden)
Jean-Pierre eBoeuf
2014-12-01
Full Text Available The EXB configuration of various low temperature plasma devices is often responsible for the formation of rotating structures and instabilities leading to anomalous electron transport across the magnetic field. In these devices, electrons are strongly magnetized while ions are weakly or not magnetized and this leads to specific physical phenomena that are not present in fusion plasmas where both electrons and ions are strongly magnetized. In this paper we describe basic phenomena involving rotating plasma structures in simple configurations of low temperature EXB plasma devices on the basis of PIC-MCC (Particle-In-Cell Monte Carlo Collisions simulations. We focus on three examples: rotating electron vortices and rotating spokes in cylindrical magnetrons, and azimuthal electron-cyclotron drift instability in Hall thrusters. The simulations are not intended to give definite answers to the many physics issues related to low temperature EXB plasma devices but are used to illustrate and discuss some of the basic questions that need further studies.
Evidence for quantization of mechanical rotation of magnetic nanoparticles.
Tejada, J; Zysler, R D; Molins, E; Chudnovsky, E M
2010-01-15
We report evidence of the quantization of the rotational motion of solid particles containing thousands of atoms. A system of CoFe2O4 nanoparticles confined inside polymeric cavities has been studied. The particles have been characterized by the x-ray diffraction, transmission electron microscopy, plasma mass spectroscopy, ferromagnetic resonance (FMR), and magnetization measurements. Magnetic and FMR data confirm the presence of particles that are free to rotate inside the cavities. Equidistant, temperature-independent jumps in the dependence of the microwave absorption on the magnetic field have been detected. This observation is in accordance with the expectation that orbital motion splits the low-field absorption line into multiple lines.
Effect of rotation on Jeans instability of magnetized radiative quantum plasma
Joshi, H.; Pensia, R. K.
2017-03-01
The influence of rotation on the Jeans instability of homogeneous magnetized radiative quantum plasma is investigated. The basic equations of the problem are constructed and linearized by using the Quantum Magnetohydrodynamics (QMHD) model. The general dispersion relation is obtained by using the normal mode analysis technique, which is reduced for both the transverse and the longitudinal mode of propagations and further it is reduced for the axis of rotation parallel and perpendicular to the magnetic field. We found that the stabilizing effects of rotation are decreases for a strong magnetic field which is shown in the graphical representation. We also found that the quantum correction modified the condition of Jeans instability in both modes of propagation. The stabilizing effect of rotation is more increased in the presence of quantum correction.
Formation and healing of n = 1 magnetic islands in LHD equilibrium
International Nuclear Information System (INIS)
Kanno, Ryutaro; Hayashi, Takaya; Okamoto, Masao
2005-01-01
Magnetic islands with the toroidal mode number n = 1, e.g. m/n = 1/1 and 2/1 islands, in a Large Helical Device (LHD) equilibrium are studied using the three-dimensional MHD equilibrium code, HINT. In order to accomplish this purpose, the HINT code has been improved. The equilibrium analysis, in particular an analysis of the LHD equilibrium with an m/n = 1/1 island, is required for the local island divertor experiment, in order to understand the magnetic structures of field lines, i.e. flux surfaces, islands and ergodic field lines. We find that the m/n = 2/1 island can be healed for a finite equilibrium beta, while the m/n = 1/1 island is not healed and is surrounded with ergodic field lines for finite-β. From the latter result, we can conjecture that the island divertor concept is effective even for finite equilibrium beta-values, but the performance of the island divertor is deteriorated for finite-β because of the existence of the ergodic zone between the closed surfaces (i.e. the core region) and the m/n = 1/1 island. We also find that the width of the m/n = 1/1 island depends on the equilibrium beta value and that the island located at the inside of the torus has the advantage of retaining its width
Kon, S.; Nakamura, N.; Funaki, M.; Sakanaka, S.
2012-12-01
Change in plate motion produces convergence of the two oceanic lithospheres and the formation of volcanic island arcs above the subducted older and thicker plate. The association of calc-alkaline diorites to tonalites and granodiorites (ACG) is typical plutonic rocks of the volcanic arcs. In the many island arcs that surround the Pacific Ocean, ACG generally forms shallow level plutons and is closely associated with volcanic rocks. The Japan Arc setting had occurred the emplacement of the highly magnetic granitoid along the fore-arc basin before back-arc spreading at middle Miocene, showing a linear positive magnetic anomaly. Similar magnetic anomalies have also been exhibited along the Circum-Pacific Belt. Along East Antarctica, it is well known that the South Shetland Islands have been formed by back-arc spreading related to the subduction along the South Shetland trench during the late Cretaceous and middle Miocene. Moreover, geology in the South Shetland Islands consists of lava flows with subordinate pyroclastic deposits, intrusive dykes-sills, granitic plutons, displaying a typical subduction-related calc-alkaline volcanic association. However, there is little report on the presence of fore-arc granitoid. Here we report the distribution and structure of the granitic plutons around Marian Cove in the King George Island, South Shetland, East Antarctica by surface geological survey and magnetic anisotropic studies. Then we compare the distribution of granitic plutons with surface magnetic anomalies through our ship-borne and foot-borne magnetic surveys. The granitic plutons are distributed only shallow around the Marian cove in the King George Island, and the plutons had been intruded in the Sejong formation with pyroclastic deposits and basaltic/rhyoritic lavas, suggesting the post back-arc spreading. We sampled 8 plutons, 12 basaltic lavas and 6 andestic dykes, all located within four kilometer radius from the Korean Antarctic research station (King Sejong
Planar rotational magnetic micromotors with integrated shaft encoder and magnetic rotor levitation
Guckel, Henry; Christenson, T. R.; Skrobis, K. J.; Klein, J.; Karnowsky, M.
1994-01-01
Deep x-ray lithography and electroplating may be combined to form a fabrication tool for micromechanical devices with large structural heights, to 500 micron, and extreme edge acuities, less than 0.1 micron-run-out per 100 micron of height. This process concept which originated in Germany as LIGA may be further extended by adding surface micromachining. This extension permits the fabrication of precision metal and plastic parts which may be assembled into three-dimensional micromechanical components and systems. The processing tool may be used to fabricate devices from ferromagnetic material such as nickel and nickel-iron alloys. These materials when properly heat treated exhibit acceptable magnetic behavior for current to flux conversion and marginal behavior for permanent magnet applications. The tool and materials have been tested via planar, magnetic, rotational micromotor fabrication. Three phase reluctance machines of the 6:4 configuration with 280 micron diameter rotors have been tested and analyzed. Stable rotational speeds to 34,000 rpm with output torques above 10 x 10(exp -9) N-m have been obtained. The behavior is monitored with integrated shaft encoders which are photodiodes which measure the rotor response. Magnetic levitation of the rotor via reluctance forces has been achieved and has reduced frictional torque losses to less than 1 percent of the available torque. The results indicate that high speed limits of these actuators are related to torque ripple. Hysteresis motors with magnetic bearings are under consideration and will produce high speed rotational machines with excellent sensor application potential.
International Nuclear Information System (INIS)
Beković, Miloš; Trlep, Mladen; Jesenik, Marko; Hamler, Anton
2014-01-01
Magnetic fluids are distinct magnetic materials that have recently been the subject of extensive research precisely because of their unique properties. One of them is the heating effect when exposed to alternating magnetic fields, wherein the objective is to use this property in medicine as an alternative method for the treatment of tumors in the body. In this paper, we focus on two methods of magnetizing magnetic fluids, firstly using the alternating magnetic field (AMF), and secondly with the rotational magnetic field (RMF). The effects of the first are scientifically well-established, whilst the impact of RMF has not as yet been investigated as presented in this article. So far the effects of RMF have only been studied at low frequencies and high amplitudes, or vice versa. This article presents the results of heating at high frequencies and high magnetic field amplitudes, and the results compared with AMF. This paper presents the construction and implementation of a measuring system which is suitable both types of magnetic field. - Highlights: • Development of a new measurement system for the characterization of magnetic fluids. • System enables pulsed magnetic field, or a rotary magnetic field. • Analysis of the conditions to create a rotational magnetic field by means of a double power supply. • Good agreement between the analytical and numerical calculation of magnetic field and measurements. • Increase of the heating power when sample is exposed to rotating field compared to pulsating field
Bifurcated states of the error-field-induced magnetic islands
International Nuclear Information System (INIS)
Zheng, L.-J.; Li, B.; Hazeltine, R.D.
2008-01-01
We find that the formation of the magnetic islands due to error fields shows bifurcation when neoclassical effects are included. The bifurcation, which follows from including bootstrap current terms in a description of island growth in the presence of error fields, provides a path to avoid the island-width pole in the classical description. The theory offers possible theoretical explanations for the recent DIII-D and JT-60 experimental observations concerning confinement deterioration with increasing error field
Global modelling of magnetic island control in tokamaks
International Nuclear Information System (INIS)
Fevrier, Olivier
2016-01-01
Magneto-Hydro-Dynamic (MHD) instabilities are susceptible to develop within a tokamak plasma. These instabilities manifest themselves as magnetic islands which reduce the plasma confinement. The islands can however be controlled by driving current inside them. In this thesis, we consider the modeling of the magnetic islands and their control using first principle approaches, which rely on a global MHD description of the plasma. We have detailed the inclusion a RF-driven current like source term in an MHD code, which requires special care to be given to the modeling of the current density evolution. The implementation has been benchmarked against the asymptotic models, allowing us to retrieve the influence of parameters such as deposition width or misalignment with respect to the island width and position. Beyond these aspects, we have evidenced new effects, linked to the 3D nature of the current deposition. We have observed a flip instability in which an island, reduced by the ECCD, brutally inverse its phase so that its X-Point faces the current deposition, allowing the mode the grow further. We then moved on to the topic of the best suitable control strategies for the control of the island. We have implemented in XTOR a control system that mimics the experimental ones and adapt the current deposition in function of a preset strategy. Nonlinear MHD simulations have been carried out using different control schemes, allowing us to quantify the gain to expect from each of these methods depending on the characteristics of the current deposition. (author) [fr
Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals
Zou, Jibin; Li, Xuehui; Lu, Yongping; Hu, Jianhui
2002-11-01
The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively.
Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals
International Nuclear Information System (INIS)
Zou Jibin; Li Xuehui; Lu Yongping; Hu Jianhui
2002-01-01
The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively
Influence of the shaft rotation on the stability of magnetic fluid shaft seal characteristics
Krakov, M. S.; Nikiforov, I. V.
2008-12-01
Distribution of the magnetic particles concentration in a magnetic fluid shaft seal is studied numerically for a rotating shaft. It is revealed that the shaft rotation causes not only an azimuthal flow of the magnetic fluid, but a meridional flow as well. This meridional flow prevents the growth of magnetic particle concentration in the gap of the magnetic fluid shaft seal. As a result, the burst pressure of the magnetic fluid shaft seal for the rotating shaft is stable and does not change with time. Figs 6, Refs 7.
Instabilities responsible for magnetic turbulence in laboratory rotating plasma
International Nuclear Information System (INIS)
Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Erokhin, N.N.; Pustovitov, V.D.; Konovalov, S.V.
2008-01-01
Instabilities responsible for magnetic turbulence in laboratory rotating plasma are investigated. It is shown that the plasma compressibility gives a new driving mechanism in addition to the known Velikhov effect due to the negative rotation frequency gradient. This new mechanism is related to the perpendicular plasma pressure gradient, while the density gradient gives an additional drive depending also on the pressure gradient. It is shown that these new effects can manifest themselves even in the absence of the equilibrium magnetic field, which corresponds to nonmagnetic instabilities
The anisotropic magnetic property and Faraday rotation in Er3Ga5O12 under high magnetic field
International Nuclear Information System (INIS)
Wang Wei; Zhang Xijuan; Liu Gongqiang
2005-01-01
A theoretical investigation on the anisotropic magnetic property and Faraday rotation in Er 3 Ga 5 O 12 (ErGaG) is presented. With particular consideration of the anisotropy of the exchange interaction between rare-earth ions (Er 3+ ), the magnetization, based on the quantum theory, in ErGaG under high magnetic field (HMF) is calculated. Theoretical calculations show that the appropriate choice of the crystal field (CF) parameters is of great importance. A novel three-level model is presented, and in terms of this model the Faraday rotation under HMF is calculated. In addition, it is demonstrated that the Faraday rotation (θ) depends not only on the magnetization (M) but also on the magnetic field (H e ). The theory is in good agreement with the experiment
Nerve-muscle activation by rotating permanent magnet configurations.
Watterson, Peter A; Nicholson, Graham M
2016-04-01
The standard method of magnetic nerve activation using pulses of high current in coils has drawbacks of high cost, high electrical power (of order 1 kW), and limited repetition rate without liquid cooling. Here we report a new technique for nerve activation using high speed rotation of permanent magnet configurations, generating a sustained sinusoidal electric field using very low power (of order 10 W). A high ratio of the electric field gradient divided by frequency is shown to be the key indicator for nerve activation at high frequencies. Activation of the cane toad sciatic nerve and attached gastrocnemius muscle was observed at frequencies as low as 180 Hz for activation of the muscle directly and 230 Hz for curved nerves, but probably not in straight sections of nerve. These results, employing the first prototype device, suggest the opportunity for a new class of small low-cost magnetic nerve and/or muscle stimulators. Conventional pulsed current systems for magnetic neurostimulation are large and expensive and have limited repetition rate because of overheating. Here we report a new technique for nerve activation, namely high-speed rotation of a configuration of permanent magnets. Analytical solutions of the cable equation are derived for the oscillating electric field generated, which has amplitude proportional to the rotation speed. The prototype device built comprised a configuration of two cylindrical magnets with antiparallel magnetisations, made to rotate by interaction between the magnets' own magnetic field and three-phase currents in coils mounted on one side of the device. The electric field in a rectangular bath placed on top of the device was both numerically evaluated and measured. The ratio of the electric field gradient on frequency was approximately 1 V m(-2) Hz(-1) near the device. An exploratory series of physiological tests was conducted on the sciatic nerve and attached gastrocnemius muscle of the cane toad (Bufo marinus). Activation was
A procedure for combining rotating-coil measurements of large-aperture accelerator magnets
Energy Technology Data Exchange (ETDEWEB)
Köster, Oliver, E-mail: oliver.koester@cern.ch; Fiscarelli, Lucio, E-mail: lucio.fiscarelli@cern.ch; Russenschuck, Stephan, E-mail: stephan.russenschuck@cern.ch
2016-05-11
The rotating search coil is a precise and widely used tool for measuring the magnetic field harmonics of accelerator magnets. This paper deals with combining several such multipole measurements, in order to cover magnet apertures largely exceeding the diameter of the available search coil. The method relies on the scaling laws for multipole coefficients and on the method of analytic continuation along zero-homotopic paths. By acquiring several measurements of the integrated magnetic flux density at different transverse positions within the bore of the accelerator magnet, the uncertainty on the field harmonics can be reduced at the expense of tight tolerances on the positioning. These positioning tolerances can be kept under control by mounting the rotating coil and its motor-drive unit on precision alignment stages. Therefore, the proposed technique is able to yield even more precise results for the higher-order field components than a dedicated rotating search coil of larger diameter. Moreover, the versatility of the measurement bench is enhanced by avoiding the construction of rotating search coils of different measurement radii.
KIC 9451096: Magnetic Activity, Flares and Differential Rotation
Özdarcan, O.; Yoldaş, E.; Dal, H. A.
2018-04-01
We present a spectroscopic and photometric analysis of KIC 9451096. The combined spectroscopic and photometric modelling shows that the system is a detached eclipsing binary in a circular orbit and composed of F5V + K2V components. Subtracting the best-fitting light curve model from the whole long cadence data reveals additional low (mmag) amplitude light variations in time and occasional flares, suggesting a low, but still remarkable level of magnetic spot activity on the K2V component. Analyzing the rotational modulation of the light curve residuals enables us to estimate the differential rotation coefficient of the K2V component as k = 0.069 ± 0.008, which is 3 times weaker compared with the solar value of k = 0.19, assuming a solar type differential rotation. We find the stellar flare activity frequency for the K2V component as 0.000368411 h-1 indicating a low magnetic activity level.
The magnetic early B-type stars I: magnetometry and rotation
Shultz, M. E.; Wade, G. A.; Rivinius, Th; Neiner, C.; Alecian, E.; Bohlender, D.; Monin, D.; Sikora, J.; MiMeS Collaboration; BinaMIcS Collaboration
2018-04-01
The rotational and magnetic properties of many magnetic hot stars are poorly characterized, therefore the Magnetism in Massive Stars and Binarity and Magnetic Interactions in various classes of Stars collaborations have collected extensive high-dispersion spectropolarimetric data sets of these targets. We present longitudinal magnetic field measurements for 52 early B-type stars (B5-B0), with which we attempt to determine their rotational periods Prot. Supplemented with high-resolution spectroscopy, low-resolution Dominion Astrophysical Observatory circular spectropolarimetry, and archival Hipparcos photometry, we determined Prot for 10 stars, leaving only five stars for which Prot could not be determined. Rotational ephemerides for 14 stars were refined via comparison of new to historical magnetic measurements. The distribution of Prot is very similar to that observed for the cooler Ap/Bp stars. We also measured v sin i and vmac for all stars. Comparison to non-magnetic stars shows that v sin i is much lower for magnetic stars, an expected consequence of magnetic braking. We also find evidence that vmac is lower for magnetic stars. Least-squares deconvolution profiles extracted using single-element masks revealed widespread, systematic discrepancies in between different elements: this effect is apparent only for chemically peculiar stars, suggesting it is a consequence of chemical spots. Sinusoidal fits to H line measurements (which should be minimally affected by chemical spots), yielded evidence of surface magnetic fields more complex than simple dipoles in six stars for which this has not previously been reported; however, in all six cases, the second- and third-order amplitudes are small relative to the first-order (dipolar) amplitudes.
Finite banana orbit effects in the presence of mini-magnetic islands
International Nuclear Information System (INIS)
Wang, J.P.; Hegna, C.C.; Callen, J.D.
1993-01-01
To address the interaction of trapped ions on magnetic islands, the contribution of collisionless finite banana orbit effects on the parallel (to the magnetic field B) current is investigated. In this calculation the width of the magnetic islands and the ion banana orbits are assumed to be small compared with the characteristic equilibrium gradient scale length, a, but comparable to each other, e.g., w isl ∼Δr T much-lt a. The ion drift kinetic equation is solved near the rational flux surface for a single resonant helicity perturbation of the magnetic field, B 1 =∇x(-ψ 1 ∇ζ)∼exp{im(θ-ζ/q s )}. Here, θ is the poloidal angle, ζ the toroidal angle, and q s =m/n the safety factor on the rational flux surface. Then, using this solution, the parallel current will be calculated in combination with the electron drift kinetic solution previously solved by Hegna and Callen, where the electron banana width effects are neglected since the electron poloidal gyro radius is taken to be very small with respect to the magnetic island width
Rigid-body rotation of an electron cloud in divergent magnetic fields
International Nuclear Information System (INIS)
Fruchtman, A.; Gueroult, R.; Fisch, N. J.
2013-01-01
For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions accelerated by the electric field. The focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets
Rotating magnetic field current drive-theory and experiment
International Nuclear Information System (INIS)
Donnelly, I.J.
1989-01-01
Rotating magnetic fields have been used to drive plasma current and establish a range of compact torus configurations, named rotamaks. The current drive mechanism involves a ponderomotive force acting on the electron fluid. Recent extensions of the theory indicate that this method is most suitable for driving currents in directions perpendicular to the steady magnetic fields
Magnetic suspension of a rotating system. Application to inertial flywheels
International Nuclear Information System (INIS)
Lemarquand, Guy
1984-01-01
The various possible magnetic suspension configurations compatible with rotating mechanical systems are defined from studies of the characteristics of different types of magnetic bearings. The results obtained are used in the design and realization of a magnetic suspension for an inertial flywheel. (author) [fr
Rotation and magnetism in intermediate-mass stars
Quentin, Léo G.; Tout, Christopher A.
2018-06-01
Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.
Nerve–muscle activation by rotating permanent magnet configurations
Nicholson, Graham M.
2016-01-01
Key points The standard method of magnetic nerve activation using pulses of high current in coils has drawbacks of high cost, high electrical power (of order 1 kW), and limited repetition rate without liquid cooling.Here we report a new technique for nerve activation using high speed rotation of permanent magnet configurations, generating a sustained sinusoidal electric field using very low power (of order 10 W).A high ratio of the electric field gradient divided by frequency is shown to be the key indicator for nerve activation at high frequencies.Activation of the cane toad sciatic nerve and attached gastrocnemius muscle was observed at frequencies as low as 180 Hz for activation of the muscle directly and 230 Hz for curved nerves, but probably not in straight sections of nerve.These results, employing the first prototype device, suggest the opportunity for a new class of small low‐cost magnetic nerve and/or muscle stimulators. Abstract Conventional pulsed current systems for magnetic neurostimulation are large and expensive and have limited repetition rate because of overheating. Here we report a new technique for nerve activation, namely high‐speed rotation of a configuration of permanent magnets. Analytical solutions of the cable equation are derived for the oscillating electric field generated, which has amplitude proportional to the rotation speed. The prototype device built comprised a configuration of two cylindrical magnets with antiparallel magnetisations, made to rotate by interaction between the magnets’ own magnetic field and three‐phase currents in coils mounted on one side of the device. The electric field in a rectangular bath placed on top of the device was both numerically evaluated and measured. The ratio of the electric field gradient on frequency was approximately 1 V m−2 Hz−1 near the device. An exploratory series of physiological tests was conducted on the sciatic nerve and attached gastrocnemius muscle of the cane toad
Formation and 'self-healing' of magnetic islands in finite-β Helias equilibria
International Nuclear Information System (INIS)
Hayashi, T.; Sato, T.; Merkel, P.; Nuehrenberg, J.; Schwenn, U.
1994-01-01
The behaviour of finite-pressure-induced magnetic islands is numerically analyzed for three-dimensional magnetohydrodynamic equilibria of the Helias configuration by using a three-dimensional equilibrium code. It is found that an island chain is generated on the 5/6 rational surface, when such a surface appears in the plasma region of the finite-β equilibrium. The island chain, however, is not so dangerous as to destroy the plasma confinement even if it appears in a vanishingly small shear region. Thus, a high β equilibrium with clear magnetic surfaces can be realized. Moreover, it is definitely confirmed that the finite pressure effect sometimes exhibits an unexpectedly good aspect, namely, that the vacuum islands are removed as β increases, which can be called 'self-healing' of islands. This property can be explained by the numerically discovered fact that the phases of islands induced by the finite-pressure effect are always locked in the same phase regardless of β. (author)
Rotational magnetization of anisotropic media: Lag angle, ellipticity and accommodation
International Nuclear Information System (INIS)
Kahler, G.R.; Della Torre, E.
2006-01-01
This paper discusses the change in the ellipticity of two-dimensional magnetization trajectories as the applied field rotates from the easy axis to the hard axis of a material. Furthermore, the impact that the reversible magnetization has on the ellipticity is discussed, including the relationship between the magnetization squareness and the reversible component of the magnetization
Suppression of magnetic islands by rf-driven currents
International Nuclear Information System (INIS)
Reiman, A.H.
1982-06-01
The quasilinear theory for the saturation of nonlinear tearing modes is modified to include rf driven currents. It is shown that the presence of lower hybrid driven currents can strongly suppress the growth of magnetic islands
New Limits on Extragalactic Magnetic Fields from Rotation Measures
Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.
2016-05-01
We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.
Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki
2014-01-21
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.
Energy Technology Data Exchange (ETDEWEB)
Stepanov, G.V., E-mail: gstepanov@mail.ru [State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation); Borin, D.Yu. [TU Dresden, Magnetofluiddynamics, Measuring and Automation Technology, Dresden 01062 (Germany); Storozhenko, P.A. [State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation)
2017-06-01
We propose the results of research on the magnetic properties of magnetoactive elastomers containing particles of a hard magnetic filler. According to our understanding, the mechanism of re-magnetizing of the composite is based on two competing processes, being the re-magnetizing of the magnetic filler and mechanical rotation of particles inside of the polymer matrix.
Energy Technology Data Exchange (ETDEWEB)
Kameno, H.; Miyagawa, Y.; Takahata, R.; Ueyama, H. [Koyo Seiko Co., Ltd., Osaka (Japan)
1999-11-25
In order to clarify the rotation loss and levitation force reduction characteristics of two kinds of radial and axial-type superconducting magnetic bearings (SMB) consisting of a ring-shaped YBCO and a permanent magnet composite, we measured rotation losses and levitation forces of each SMB with a new rotation-loss measuring device using active magnetic bearings. The rotation loss of the SMB increased with increased initial load of the SMB. The levitation force of the SMB decreased remarkably just after activating the initial load to the SMB and during acceleration of the rotor suspended by the SMB. The reduction in levitation force was improved by means of applying a pre-load, that means a temporary load, before the initial load against the SMB. But the rotation loss of the SMB was increased as pre-load was increased. When the YBCO was cooled down from 77 to 66 K, the rotation loss of the SMB decreased as the temperature of the SC decreased. (author)
Initial evolution of nonlinear magnetic islands in high temperature plasmas
International Nuclear Information System (INIS)
Kotschenreuther, M.
1988-06-01
The evolution of nonlinear magnetic islands is computed in the kinetic collisionality regime called the semicollisional regime, which is appropriate to present fusion confinement devices. Realistic effects are included, such as the presence of small external field errors, radial electric fields, and omega. When present simultaneously, these effects can greatly change the stability of small amplitude nonlinear islands. Islands with Δ' > O can sometimes be prevented from growing to macroscopic size; it is also possible to produce moderate mode-number nonlinear instabilities in the plasma edge. Furthermore, island growth can be prevented by application of external fields with suitably chosen amplitude and frequency
Experimental study of poloidal flow effect on magnetic island dynamics in LHD and TJ-II
International Nuclear Information System (INIS)
Narushima, Y.; Sakakibara, S.; Castejon, F.
2010-11-01
The dynamics of a magnetic island are studied by focusing on the poloidal flows in the helical devices LHD and TJ-II. The temporal increment of the ExB poloidal flow prior to the magnetic island transition from growth to healing is observed. The direction of the poloidal flow is in the electron-diamagnetic direction in LHD and in the ion-diamagnetic direction in TJ-II. From the magnetic diagnostics, it is observed that a current structure flowing in the plasma moves ∼π rad poloidally in the electron-diamagnetic direction during the transition in LHD experiments. These experimental observations from LHD and TJ-II show that the temporal increment of the poloidal flow is followed by the transition (growth to healing) of the magnetic island regardless of the flow direction and clarify the fact that significant poloidal flow affects the magnetic island dynamics. (author)
Synthesis of hard magnetic Mn3Ga micro-islands by e-beam evaporation
Akdogan, O.
2018-05-01
The permanent magnet industry heavily depends on Nd-Fe-B and Sm-Co alloys because of their high-energy product and high room temperature coercivity. Main ingredient for having such superior magnetic properties compared to other known ferromagnetic materials is rare earth elements (Nd, Sm, Dy…). However recent worldwide reserve and export limitation problem of rare earths, shifted researchers' focus to rare earth free permanent magnets. Among many alternatives (FePt, Zr2Co11, FeNi …), Mn-based alloys are the most suitable due to abundance of the forming elements and trivial formation of the necessary hard phases. In this study, Mn3Ga micro islands have been prepared. Mn3Ga owes its hard magnetic properties to tetragonal D022 phase with magnetic anisotropy energy of 2 MJ/m3. Thin films and islands of Cr/MnGa/Cr layers have been deposited on Si/SiO2 wafers using combination of e-beam and thermal evaporation techniques. Cr has been used as buffer and cover layer to protect the sample from the substrate and prevent oxidation during annealing. Annealing under Ar/H2 forming gas has been performed at 350oC for 10 min. Nano thick islands of 25, 50 and 100 μm lateral size have been produced by photolithography technique. Room temperature coercivity of 7.5 kOe has been achieved on 100 μm micro islands of Mn3Ga. Produced micro islands could be a rare earth free alternative for magnetic memory and MEMS applications.
Synthesis of hard magnetic Mn3Ga micro-islands by e-beam evaporation
Directory of Open Access Journals (Sweden)
O. Akdogan
2018-05-01
Full Text Available The permanent magnet industry heavily depends on Nd-Fe-B and Sm-Co alloys because of their high-energy product and high room temperature coercivity. Main ingredient for having such superior magnetic properties compared to other known ferromagnetic materials is rare earth elements (Nd, Sm, Dy…. However recent worldwide reserve and export limitation problem of rare earths, shifted researchers’ focus to rare earth free permanent magnets. Among many alternatives (FePt, Zr2Co11, FeNi …, Mn-based alloys are the most suitable due to abundance of the forming elements and trivial formation of the necessary hard phases. In this study, Mn3Ga micro islands have been prepared. Mn3Ga owes its hard magnetic properties to tetragonal D022 phase with magnetic anisotropy energy of 2 MJ/m3. Thin films and islands of Cr/MnGa/Cr layers have been deposited on Si/SiO2 wafers using combination of e-beam and thermal evaporation techniques. Cr has been used as buffer and cover layer to protect the sample from the substrate and prevent oxidation during annealing. Annealing under Ar/H2 forming gas has been performed at 350oC for 10 min. Nano thick islands of 25, 50 and 100 μm lateral size have been produced by photolithography technique. Room temperature coercivity of 7.5 kOe has been achieved on 100 μm micro islands of Mn3Ga. Produced micro islands could be a rare earth free alternative for magnetic memory and MEMS applications.
Magnetic resonance described in the excitation dependent rotating frame of reference.
Tahayori, Bahman; Johnston, Leigh A; Mareels, Iven M Y; Farrell, Peter M
2008-01-01
An excitation dependent rotating frame of reference to observe the magnetic resonance phenomenon is introduced in this paper that, to the best of our knowledge, has not been used previously in the nuclear magnetic resonance context. The mathematical framework for this new rotating frame of reference is presented based on time scaling the Bloch equation after transformation to the classical rotating frame of reference whose transverse plane is rotating at the Larmor frequency. To this end, the Bloch equation is rewritten in terms of a magnetisation vector observed from the excitation dependent rotating frame of reference. The resultant Bloch equation is referred to as the time scaled Bloch equation. In the excitation dependent rotating frame of reference whose coordinates are rotating at the instantaneous Rabi frequency the observed magnetisation vector is a much slower signal than the true magnetisation in the rotating frame of reference. As a result the ordinary differential equation solvers have the ability to solve the time scaled version of the Bloch equation with a larger step size resulting in a smaller number of samples for solving the equation to a desired level of accuracy. The simulation results for different types of excitation are presented in this paper. This method may be used in true Bloch simulators in order to reduce the simulation time or increase the accuracy of the numerical solution. Moreover, the time scaled Bloch equation may be employed to determine the optimal excitation pattern in magnetic resonance imaging as well as designing pulses with better slice selectivity which is an active area of research in this field.
Energy Technology Data Exchange (ETDEWEB)
Azreg-Ainou, Mustapha [Baskent University, Department of Mathematics, Ankara (Turkey)
2014-05-15
We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)
International Nuclear Information System (INIS)
Azreg-Ainou, Mustapha
2014-01-01
We derive a shortcut stationary metric formula for generating imperfect fluid rotating solutions, in Boyer-Lindquist coordinates, from spherically symmetric static ones. We explore the properties of the curvature scalar and stress-energy tensor for all types of rotating regular solutions we can generate without restricting ourselves to specific examples of regular solutions (regular black holes or wormholes). We show through examples how it is generally possible to generate an imperfect fluid regular rotating solution via radial coordinate transformations. We derive rotating wormholes that are modeled as imperfect fluids and discuss their physical properties. These are independent on the way the stress-energy tensor is interpreted. A solution modeling an imperfect fluid rotating loop black hole is briefly discussed. We then specialize to the recently discussed stable exotic dust Ellis wormhole as emerged in a source-free radial electric or magnetic field, and we generate its, conjecturally stable, rotating counterpart. This turns out to be an exotic imperfect fluid wormhole, and we determine the stress-energy tensor of both the imperfect fluid and the electric or magnetic field. (orig.)
International Nuclear Information System (INIS)
Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G.; Siccinio, M.; Poli, E.
2010-01-01
The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.
The Stability of Magnetized Rotating Plasmas with Superthermal Fields
DEFF Research Database (Denmark)
Pessah, Martin Elias; Psaltis, Dimitrios
2005-01-01
be taken fully into account. We demonstrate that the presence of a strong toroidal component in the magnetic field plays a non-trivial role. When strong fields are considered, the strength of the toroidal magnetic field not only modifies the growth rates of the unstable modes but also determines which...... modes are subject to instabilities. We find that, for rotating configurations with Keplerian laws, the magnetorotational instability is stabilized at low wavenumbers for toroidal Alfven speeds exceeding the geometric mean of the sound speed and the rotational speed. We discuss the significance of our......During the last decade it has become evident that the magnetorotational instability is at the heart of the enhanced angular momentum transport in weakly magnetized accretion disks around neutron stars and black holes. In this paper, we investigate the local linear stability of differentially...
Sensorless interior permanent magnet synchronous motor control with rotational inertia adjustment
Directory of Open Access Journals (Sweden)
Yongle Mao
2016-12-01
Full Text Available Mechanical model is generally required in high dynamic sensorless motor control schemes for zero phase lag estimation of rotor position and speed. However, the rotational inertia uncertainty will cause dynamic estimation errors, eventually resulting in performance deterioration of the sensorless control system. Therefore, this article proposes a high dynamic performance sensorless control strategy with online adjustment of the rotational inertia. Based on a synthetic back electromotive force model, the voltage equation of interior permanent magnet synchronous motor is transformed to that of an equivalent non-salient permanent magnet synchronous motor. Then, an extended nonlinear observer is designed for interior permanent magnet synchronous motor in the stator-fixed coordinate frame, with rotor position, speed and load torque simultaneously estimated. The effect of inaccurate rotational inertia on the estimation of rotor position and speed is investigated, and a novel rotational inertia adjustment approach that employs the gradient descent algorithm is proposed to suppress the dynamic estimation errors. The effectiveness of the proposed control strategy is demonstrated by experimental tests.
Tools and setups for experiments with AC and rotating magnetic fields
International Nuclear Information System (INIS)
Ponikvar, D
2010-01-01
A rotating magnetic field is the basis for the transformation of electrical energy to mechanical energy. School experiments on the rotating magnetic field are rare since they require the use of specially prepared mechanical setups and/or relatively large, three-phase power supplies to achieve strong magnetic fields. This paper proposes several experiments and describes setups and tools which are easy to obtain and work with. Free software is offered to generate the required signals by a personal computer. The experiments can be implemented in introductory physics courses on electromagnetism for undergraduates or specialized courses at high schools.
Ultrasensitive magnetometers based on rotational magnetic excitation
International Nuclear Information System (INIS)
Hristoforou, E.; Svec, P. Sr.
2014-01-01
Three new types of fluxgate magnetometers are presented in this paper, able to monitor the three components of the ambient field, all of them based on the principle of rotational excitation field. The first type is based on Yttrium- Iron Garnet (YIG) single crystal film, magnetized with rotational field on its plane, where the 2"n"d, 4"t"h and 6"t"h harmonics offer the three components of the ambient field with sensitivity better than 1 pT at 0.2 Hz, its size being 25 cm"3. The second type is based on permalloy film, where the rotational excitation field on its plane offers change of magnetoresistance with sensitivity better than 10 pT at 1 Hz, uncertainty of 1 ppm and size ∼ 8 cm"3. The third type, is based on amorphous film, where the rotation field mode offer sensitivity better than 100 pT at 1 Hz, uncertainty of 10 ppm and size ∼ 10 mm"3. (authors)
Energy Technology Data Exchange (ETDEWEB)
Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)
2011-11-15
The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.
Dynamics of seed magnetic island formation due to geometrically coupled perturbations
International Nuclear Information System (INIS)
Hegna, C.C.; Callen, J.D.; LaHaye, R.J.
1998-06-01
Seed magnetic island formation due to a dynamically growing external source in toroidal confinement devices is modeled as an initial value forced reconnection problem. For an external source whose amplitude grows on a time scale quickly compared to the Sweet-Parker time of resistive magnetohydrodynamics, the induced reconnection is characterized by a current sheet and a reconnected flux amplitude which lags in time the source amplitude. This suggests that neoclassical tearing modes, whose excitation requires a seed magnetic island, are more difficult to cause in high Lundquist number plasmas
Sustained turbulence and magnetic energy in non-rotating shear flows
DEFF Research Database (Denmark)
Nauman, Farrukh; Blackman, Eric G.
2017-01-01
From numerical simulations, we show that non-rotating magnetohydrodynamic shear flows are unstable to finite amplitude velocity perturbations and become turbulent, leading to the growth and sustenance of magnetic energy, including large scale fields. This supports the concept that sustained...... magnetic energy from turbulence is independent of the driving mechanism for large enough magnetic Reynolds numbers....
A MODEL OF MAGNETIC BRAKING OF SOLAR ROTATION THAT SATISFIES OBSERVATIONAL CONSTRAINTS
International Nuclear Information System (INIS)
Denissenkov, Pavel A.
2010-01-01
The model of magnetic braking of solar rotation considered by Charbonneau and MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic with the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.
Surface geometry of a rotating black hole in a magnetic field
International Nuclear Information System (INIS)
Kulkarni, R.; Dadhich, N.
1986-01-01
We study the intrinsic geometry of the surface of a rotating black hole in a uniform magnetic field, using a metric discovered by Ernst and Wild. Rotating black holes are analogous to material rotating bodies according to Smarr since black holes also tend to become more oblate on being spun up. Our study shows that the presence of a strong magnetic field ensures that a black hole actually becomes increasingly prolate on being spun up. Studying the intrinsic geometry of the black-hole surface also gives rise to an interesting embedding problem. Smarr shows that a Kerr black hole cannot be globally isometrically embedded in R 3 if its specific angular momentum a exceeds (√3 /2)mapprox.0.866. . .m. We show that in the presence of a magnetic field of strength B, satisfying 2- √3 2 m 2 3 for all values of the angular momentum
Seismometer using a vertical long natural-period rotational pendulum with magnetic levitation
International Nuclear Information System (INIS)
Otake, Yuji; Araya, Akito; Hidano, Kazuo
2005-01-01
We have demonstrated a highly sensitive/wideband vertical-component seismometer using an astatic rotational pendulum to obtain a long natural period. This seismometer employs magnetic levitation for removing any parasitic resonances of a spring to support a weight due to gravity and the thermal dependence of the spring constant. The pendulum has a cylindrical plunger-type permanent magnet that has a weight at one side of its end edge. The plunger magnet is inserted into a uniform magnetic field generated by a window-frame-type permanent magnet, and attached to two crossed-leaf spring hinges as a rotational axis outside of the bore of the magnet. Magnetic forces applied to the plunger magnet counterbalance the gravitational force at the weight. To realize stable operation of the rotational pendulum without any unnecessary movements of the plunger magnet, a tilt of lines of the magnetic force in the bore of the window-frame magnet was compensated by a tilted magnetic-pole surface near to its opening. The field uniformity reached 10 -4 owing to this compensation. The thermal dependence of a magnetic field strength of about 10 -3 /K was also compensated by as much as 9x10 -5 /K by Ni-Fe metal having a negative permeability coefficient. The metal was attached along the sidewalls of the window-frame magnet. To determine the feedback control parameters for a feedback control seismometer, the natural period of a prototype rotational pendulum was measured. It was more than 8 s, and was able to be changed from 5 to 8 s by using an additional magnetic spring, similar to the voice coil actuator of a speaker. This change was in accordance with theoretical calculations, and showed that the pendulum movement did not include a big nonlinearity caused by the tilt of the lines of the magnetic force. No parasitic resonances were found during experiments. A velocity feedback-control circuit and a capacitance position detector to measure the weight position were applied to the
Looking inside the Panarea Island (Aeolian Archipelago, Italy by gravity and magnetic data
Directory of Open Access Journals (Sweden)
F. Greco
2008-06-01
Full Text Available In this paper we show and discuss the results of gravity and magnetic surveys of Panarea Island and its archipelago. The most recent volcanic manifestation occurred in November 2002 with a shallow submarine gas eruption between the islets of Dattilo, Panarelli, Lisca Bianca, Bottaro and Lisca Nera. Currently, the activity of Panarea is monitored through a multidisciplinary study under the umbrella of the Italian Department of Civil Protection with the goal of defining the hazard of this area. With this aim, in May 2006 the first gravity and magnetic surveys of Panarea Island and its archipelago were performed. The offshore magnetic data were obtained using a marine magnetometer, a Geometrics G880, from the Istituto Idrografico dell Marina (IIM. Onshore and offshore magnetic data were integrated into an unique dataset for complete magnetic coverage of the study area. By using two micro-gravimeters (LaCoste & Romberg, gravity data were collected along tracks every 250 meters. The gravity dataset was processed using the standard method. A Bouguer reduction was applied to the free-air gravity dataset using a detailed digital elevation model of the island and the neighbouring sea after evaluation of the optimal Bouguer density to reduce the topographic effect. The result is a Bouguer anomaly map that shows lateral variations in density distribution and the relationships between the shallow volcanic/crustal features and tectonic lineaments. This evidence is also highlighted by the magnetic pattern, which suggests the importance of the youngest volcanic deposits with respect to the magnetic features of the island.
Gravitational convergence, shear deformation and rotation of magnetic forcelines
Giantsos, Vangelis; Tsagas, Christos G.
2017-11-01
We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.
Cheng, Yu; Muroski, Megan E; Petit, Dorothée C M C; Mansell, Rhodri; Vemulkar, Tarun; Morshed, Ramin A; Han, Yu; Balyasnikova, Irina V; Horbinski, Craig M; Huang, Xinlei; Zhang, Lingjiao; Cowburn, Russell P; Lesniak, Maciej S
2016-02-10
Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers. Copyright © 2015 Elsevier B.V. All rights reserved.
Magnetization Reversal of Nanoscale Islands: How Size and Shape Affect the Arrhenius Prefactor
Krause, S.; Herzog, G.; Stapelfeldt, T.; Berbil-Bautista, L.; Bode, M.; Vedmedenko, E. Y.; Wiesendanger, R.
2009-09-01
The thermal switching behavior of individual in-plane magnetized Fe/W(110) nanoislands is investigated by a combined study of variable-temperature spin-polarized scanning tunneling microscopy and Monte Carlo simulations. Even for islands consisting of less than 100 atoms the magnetization reversal takes place via nucleation and propagation. The Arrhenius prefactor is found to strongly depend on the individual island size and shape, and based on the experimental results a simple model is developed to describe the magnetization reversal in terms of metastable states. Complementary Monte Carlo simulations confirm the model and provide new insight into the microscopic processes involved in magnetization reversal of smallest nanomagnets.
International Nuclear Information System (INIS)
Sakai, J.I.; Haruki, T.; Kazimura, Y.
2000-01-01
It is shown by using a 2-D fully relativistic electromagnetic particle-in-cell (PIC) code that the tearing instability in a current sheet of pair plasmas is caused by Landau resonances of both electrons and positrons. Strong magnetic flux can be generated during coalescence of magnetic islands in the nonlinear phase of the tearing instability. The magnetic flux produced in an O-type magnetic island is caused from the counter-streaming instability found by Kazimura et al. (1998). It is also shown that charge separation with a quadrupole-like structure is generated from the localized strong magnetic flux. During the decay of the quadrupole-like charge structure as well as the magnetic flux, there appear wave emission with high-frequency electromagnetic waves and Alfven waves as well as Langmuir waves. We also show by using a 3-D PIC code that current filaments associated with the O-type magnetic islands become unstable against the kink instability during the coalescence of current filaments. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Cao, Jinjia; Gong, Xueyu, E-mail: gongxueyu-usc@163.com; Xiang, Dong; Huang, Qianhong [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Yu, Jun [School of Mathematics and Physics, University of South China, Hengyang 421001 (China)
2016-08-15
The structure of the drift-island surface of passing fast ions (PFIs) is investigated in the presence of the resonant interaction with a magnetic island. Two overlapping regions of the drift-island surface and the magnetic island surface are found, one corresponding to local overlapping region and the other to non-local one. Here, the word “nonlocal” denotes that the resonances in the core plasma can have effects on the PFIs near the plasma boundary, while the “local” represents that the PFIs just near the resonant location are influenced. The nonlocal overlapping constructs a transport path along which the PFIs can become losses. There are three kinds of drift-island surfaces to join in forming the transport paths. A pitch angle region, which is called pitch angle gap, is found near the plasma boundary, where the drift-island surface cannot be formed and few PFIs are lost. The pitch-angle selective features of PFI losses are obtained by analyzing the three kinds of drift-island surfaces. The coupling between the crowd drift island surfaces and the collision can induce the prompt losses of PFIs and rapidly slowing down of PFI energy. The time of the prompt losses and the slowing down rate are calculated. Qualitatively, the theoretical results are in well agreement with the experimental observations in ASDEX Upgrade [M. García-Muñoz et al., Nucl. Fusion 47, L10 (2007)].
Remanent and induced magnetization in the volcanites of Lipari and Vulcano (Aeolian Islands
Directory of Open Access Journals (Sweden)
R. Lanza
1994-06-01
Full Text Available The role of remanent and induced magnetization as sources of magnetic anomalies in the Lipari and Vulcano islands has been studied by systematic sampling. Remanent magnetization is higher than induced magnetization in almost all lithotypes. Its polarity is normal, and the mean directions are close to the present magnetic field. A slight thermal enhancement of the magnetic susceptibility occurs up to 450-500 °C, followed by a fall up to the Curie point, which is comprised in the range 550 ± 30 °C. This points to titanomagnetite as the main carrier of magnetization. The blocking temperature spectrum of the remanence ranges between the Curie point and 400 °C in most lithotypes, and falIs to 150-200 °C in the pyroclastic deposits. The results as a whole yield an outline of the areal distribution of the total magnetization intensity within the two islands.
New Methodology For Use in Rotating Field Nuclear MagneticResonance
Energy Technology Data Exchange (ETDEWEB)
Jachmann, Rebecca C. [Univ. of California, Berkeley, CA (United States)
2007-01-01
High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.
New Methodology For Use in Rotating Field Nuclear MagneticResonance
Energy Technology Data Exchange (ETDEWEB)
Jachmann, Rebecca C. [Univ. of California, Berkeley, CA (United States)
2007-05-18
High-resolution NMR spectra of samples with anisotropicbroadening are simplified to their isotropic spectra by fast rotation ofthe sample at the magic angle 54.7 circ. This dissertation concerns thedevelopment of novel Nuclear Magnetic Resonance (NMR) methodologies basedwhich would rotate the magnetic field instead of the sample, rotatingfield NMR. It provides an over of the NMR concepts, procedures, andexperiments needed to understand the methodologies that will be used forrotating field NMR. A simple two-dimensional shimming method based onharmonic corrector rings which can provide arbitrary multiple ordershimming corrections were developed for rotating field systems, but couldbe used in shimming other systems as well. Those results demonstrate, forexample, that quadrupolar order shimming improves the linewidth by up toan order of magnitude. An additional order of magnitude reduction is inprinciple achievable by utilizing this shimming method for z-gradientcorrection and higher order xy gradients. A specialized pulse sequencefor the rotating field NMR experiment is under development. The pulsesequence allows for spinning away from the magic angle and spinningslower than the anisotropic broadening. This pulse sequence is acombination of the projected magic angle spinning (p-MAS) and magic angleturning (MAT) pulse sequences. This will be useful to rotating field NMRbecause there are limits on how fast a field can be spun and spin at themagic angle is difficult. One of the goals of this project is forrotating field NMR to be used on biological systems. The p-MAS pulsesequence was successfully tested on bovine tissue samples which suggeststhat it will be a viable methodology to use in a rotating field set up. Aside experiment on steering magnetic particle by MRI gradients was alsocarried out. Some movement was seen in these experiment, but for totalcontrol over steering further experiments would need to bedone.
Electrodynamic Wireless Power Transmission to Rotating Magnet Receivers
International Nuclear Information System (INIS)
Garraud, A; Jimenez, J D; Garraud, N; Arnold, D P
2014-01-01
This paper presents an approach for electrodynamic wireless power transmission (EWPT) using a synchronously rotating magnet located in a 3.2 cm 3 receiver. We demonstrate wireless power transmission up to 99 mW (power density equal to 31 mW/cm 3 ) over a 5-cm distance and 5 mW over a 20-cm distance. The maximum operational frequency, and hence maximal output power, is constrained by the magnetic field amplitude. A quadratic relationship is found between the maximal output power and the magnetic field. We also demonstrate simultaneous, power transmission to multiple receivers positioned at different locations
Solar Magnetized Tornadoes: Rotational Motion in a Tornado-like Prominence
Su, Yang; Gömöry, Peter; Veronig, Astrid; Temmer, Manuela; Wang, Tongjiang; Vanninathan, Kamalam; Gan, Weiqun; Li, YouPing
2014-04-01
Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ~5 km s-1.
ROTATION RATE DIFFERENCES OF POSITIVE AND NEGATIVE SOLAR MAGNETIC FIELDS BETWEEN ±60° LATITUDES
Energy Technology Data Exchange (ETDEWEB)
Shi, X. J.; Xie, J. L., E-mail: shixiangjun@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)
2015-04-15
Based on a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields from Carrington Rotations Nos. 1625 to 2135 (from 1975 February to 2013 March), the sidereal rotation rates of the positive and negative magnetic fields in the latitude range of ±60° are obtained, and the rotation rate differences between them are investigated. The time–latitude distribution of the rate differences is shown, which looks like a butterfly diagram at the low and middle latitudes. For comparison, the time–latitude distribution of the longitudinally averaged photospheric magnetic fields is shown. We conclude that the magnetic fields having the same polarity as the leading sunspots at a given hemisphere rotate faster than those exhibiting the opposite polarity at low and middle latitudes. However, at higher latitudes, the magnetic fields having the same polarity as the leading sunspots at a given hemisphere do not always rotate faster than those with the opposite polarity. Furthermore, the relationship between the rotation rate differences and solar magnetic fields is studied through a correlation analysis. Our result shows that the correlation coefficients between them reach maximum values at 13° (14°) latitude in the northern (southern) hemisphere, and change sign at 28° latitude in both hemispheres, then reach their minimum values at 58° (53°) latitude in the northern (southern) hemisphere.
Effect of magnetic field on the Rayleigh Taylor instability of rotating and stratified plasma
International Nuclear Information System (INIS)
Sharma, PK; Tiwari, Anita; Argal, Shraddha
2017-01-01
In the present study the effect of magnetic field and rotation have been carried out on the Rayleigh Taylor instability of conducting and rotating plasma, which is assumed to be incompressible and confined between two rigid planes z = 0 and z = h. The dispersion relation of the problem is obtained by solving the basic MHD equations of the problem with the help normal mode technique and appropriate boundary conditions. The dispersion relation of the medium is analysed and the effect of magnetic field and angular velocity (rotation effect) have been examined on the growth rate of Rayleigh Taylor instability. It is found that the magnetic field and angular velocity (rotation effect) have stabilizing influence on the Rayleigh Taylor instability. (paper)
Chaotic diffusion across a magnetic island due to a single electrostatic drift wave
International Nuclear Information System (INIS)
Misguich, J.H.
1990-05-01
It is shown that the guiding center motion around a single chain of magnetic islands in a Tokamak can become chaotic in the presence of a single electrostatic drift wave. This process leads to radial diffusion across the islands without magnetic braiding. The chaotic diffusion appears to be selective in velocity space. Realistic values of the physical parameters are considered to deduce that this process can be effective in usual conditions: with the observed islands, and electrostatic field values corresponding to measured density fluctuations, this diffusion concerns ions with velocities higher than thermal, and almost all of the electron population. The consequences for radial diffusion are discussed
Non linear dynamics of magnetic islands in fusion plasmas
International Nuclear Information System (INIS)
Meshcheriakov, D.
2012-10-01
In this thesis we investigate the issues of linear stability of the tearing modes in a presence of both curvature and diamagnetic rotation using the non linear full-MHD toroidal code XTOR-2F, which includes anisotropic heat transport, diamagnetic and geometrical effects. This analysis is applied to one of the fully non-inductive discharges on Tore-Supra. Such experiments are crucially important to demonstrate reactor scale steady state operation for the tokamak. The possibility of a full linear stabilization of the tearing modes by diamagnetic rotation in the presence of toroidal curvature is shown. The stabilization threshold does not follow the classical scaling law connecting the growth rate of islands to plasma conductivity, measured here by the Lundquist number (S). However, for numerical reasons, the conductivity used in the simulations is lower than that of the experiment, which raises the question of extrapolation of the obtained results to the experimental situation. The extrapolation of the obtained results requires simulations with several different conductivities. It predicts that the mode at q = 2 surface to be stable at value of diamagnetic frequency consistent with the experimental one at S = S(exp). In the linearly stable domain, the mode is metastable: saturation level depends on the seed island size. In the non linear regime, the saturation of n=1, m=2 mode is found to be strongly reduced by diamagnetic rotation and by Lundquist number. However, the extrapolation to the experimental situation shows that if the island is destabilized, it will saturate at a detectable level for the Tore Supra diagnostic. For a large plasma aspect ratio (i.e. weak curvature effects), the reduction of the saturated width by diamagnetic frequency takes the form of a jump reminiscent of multiple states evidenced in slab geometry case. The question of extrapolation of the obtained results towards future generation of fusion devices is also addressed. In particular, for
International Nuclear Information System (INIS)
Shimizu, A.; Okamura, S.; Isobe, M.; Suzuki, C.; Nishimura, S.; Watari, T.; Matsuoka, K.
2002-08-01
A design of the modular coil system for CHS-qa has been made for the plasma configuration '2b32' with the aspect ratio 3.2. The magnetic field strength and the major radius are 1.5 T and 1.5 m, respectively. The normal component of magnetic field produced by the modular coils is minimized on the plasma boundary to obtain the optimum coil design. We put engineering constraint on the distance between adjacent modular coils and the radius of coil curvature. The dependence of the residual normal component of the field on these conditions is examined, and the realistic values for them are selected. Additional coils to control various properties of the magnetic field configuration (the rotational transform, the magnetic well depth, etc.) have been designed and a flexibility of the magnetic field configuration is realized. For the case that the rotational transform crosses the low-order rational value resulting in magnetic islands, the residues of islands are evaluated with which a further improvement of coil design can be made to eliminate magnetic islands. (author)
Superconducting magnets for induction linac phase-rotation in a neutrino factory
International Nuclear Information System (INIS)
Green, M.A.; Yu, S.
2001-01-01
The neutrino factory[1-3] consists of a target section where pions are produced and captured in a solenoidal magnetic field. Pions in a range of energies from 100 Mev to 400 MeV decay into muons in an 18-meter long channel of 1.25 T superconducting solenoids. The warm bore diameter of these solenoids is about 600 mm. The phase rotation section slows down the high-energy muon and speeds up the low energy muons to an average momentum of 200 MeV/c. The phase-rotation channel consists of three induction linac channels with a short cooling section and a magnetic flux reversal section between the first and second induction linacs and a drift space between the second and third induction linacs. The length of the phase rotation channel will be about 320 meters. The superconducting coils in the channel are 0.36 m long with a gap of 0.14 m between the coils. The magnetic induction within the channel will be 1.25. For 260 meters of the 320-meter long channel, the solenoids are inside the induction linac. This paper discusses the design parameters for the superconducting solenoids in the neutrino factory phase-rotation channel
International Nuclear Information System (INIS)
Gobbin, M.; Marrelli, L.; Martin, P.; Fahrbach, H.U.; Garcia-Munoz, M.; Guenter, S.; White, R.B.
2009-01-01
A test particle approach, implemented with the Hamiltonian code ORBIT, is used to simulate measurements of fast ion losses induced by magnetic islands in the ASDEX Upgrade tokamak. In particular, the numerical simulations reproduce the toroidal localization of losses and the lost ions pitch angle and energy distribution experimentally measured with the fast ion losses detector (FILD) in the presence of a neoclassical tearing mode (NTM). The simulated NTM induced losses occurring on time scales longer than 100 μs are composed of mainly trapped or barely passing particles, consistently with the slow decay of the experimental signal from one FILD channel after the beam switch-off. The numerical simulations have been performed by taking into account the D-shaped plasma geometry, the collision mechanisms, the losses due to ripple effects and the rotation of the mode. The radial profile of the magnetic perturbation is adjusted in order to match ECE measurements. While statistical properties of FILD measurements are rather well reproduced, the simulated total amount of losses is found to be significantly affected by edge details of the magnetic perturbation as it determines the loss mechanism.
Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction
Energy Technology Data Exchange (ETDEWEB)
Egolf, Peter W.; Pawlowski, Anne-Gabrielle; Tsague, Paulin; Marco, Bastien de; Bovy, William; Tucev, Sinisa [Institute of Thermal Sciences and Engineering, University of Applied Sciences of Western Switzerland, CH 1401 Yverdon-les-Bains (Switzerland); Shamsudhin, Naveen, E-mail: snaveen@ethz.ch; Pané, Salvador; Pokki, Juho; Ansari, M. H. D.; Nelson, Bradley J. [Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, CH 8092 Zurich (Switzerland); Vuarnoz, Didier [Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL Fribourg, CH 1701 Fribourg (Switzerland)
2016-08-14
A magnetic hyperthermia cancer treatment strategy that does not operate by means of conventional heating mechanisms is presented. The proposed approach consists of injecting a gel with homogeneously distributed magnetic nanowires into a tumor. Upon the application of a low-frequency rotating or circularly polarized magnetic field, nanowires spin around their center of viscous drag due to torque generated by shape anisotropy. As a result of external rotational forcing and fluid friction in the nanoparticle's boundary layer, heating occurs. The nanowire dynamics is theoretically and experimentally investigated, and different feasibility proofs of the principle by physical modeling, which adhere to medical guidelines, are presented. The magnetic nanorotors exhibit rotations and oscillations with quite a steady center of gravity, which proves an immobile behavior and guarantees a time-independent homogeneity of the spatial particle distribution in the tumor. Furthermore, a fluid dynamic and thermodynamic heating model is briefly introduced. This model is a generalization of Penne's model that for this method reveals theoretic heating rates that are sufficiently high, and fits well into medical limits defined by present standards.
Energy Technology Data Exchange (ETDEWEB)
Abo-Dahab, S. M. [Taif University, Taif (Saudi Arabia); Abd-Alla, A. M. [SVU, Qena (Egypt); Khan, Aftab [Sohag University, Sohag (Egypt)
2015-08-15
The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.
International Nuclear Information System (INIS)
Abo-Dahab, S. M.; Abd-Alla, A. M.; Khan, Aftab
2015-01-01
The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.
An Air Bearing Rotating Coil Magnetic Measurement System
Gottschalk, Stephen C; Taylor, David J; Thayer, William
2005-01-01
This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...
Design concepts for a continuously rotating active magnetic regenerator
DEFF Research Database (Denmark)
Bahl, Christian Robert Haffenden; Engelbrecht, Kurt; Bjørk, Rasmus
2011-01-01
Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the active magnetic regenerator (AMR) from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33−xSrxMn1.05O3, gives both a low pressure drop and allows....... Focus is on maximising the magnetic field in the high field regions but also, importantly, minimising the flux in the low field regions. The design is iteratively optimised through 3D finite element magnetostatic modelling....
SOLAR MAGNETIZED TORNADOES: ROTATIONAL MOTION IN A TORNADO-LIKE PROMINENCE
Energy Technology Data Exchange (ETDEWEB)
Su, Yang; Veronig, Astrid; Temmer, Manuela; Vanninathan, Kamalam [IGAM-Kanzelhöhe Observatory, Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Gömöry, Peter [Astronomical Institute of the Slovak Academy of Sciences, SK-05960 Tatranská Lomnica (Slovakia); Wang, Tongjiang [Department of Physics, the Catholic University of America, Washington, DC 20064 (United States); Gan, Weiqun; Li, YouPing, E-mail: yang.su@uni-graz.at [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)
2014-04-10
Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ∼5 km s{sup –1}.
SOLAR MAGNETIZED TORNADOES: ROTATIONAL MOTION IN A TORNADO-LIKE PROMINENCE
International Nuclear Information System (INIS)
Su, Yang; Veronig, Astrid; Temmer, Manuela; Vanninathan, Kamalam; Gömöry, Peter; Wang, Tongjiang; Gan, Weiqun; Li, YouPing
2014-01-01
Su et al. proposed a new explanation for filament formation and eruption, where filament barbs are rotating magnetic structures driven by underlying vortices on the surface. Such structures have been noticed as tornado-like prominences when they appear above the limb. They may play a key role as the source of plasma and twist in filaments. However, no observations have successfully distinguished rotational motion of the magnetic structures in tornado-like prominences from other motions such as oscillation and counter-streaming plasma flows. Here we report evidence of rotational motions in a tornado-like prominence. The spectroscopic observations in two coronal lines were obtained from a specifically designed Hinode/EIS observing program. The data revealed the existence of both cold and million-degree-hot plasma in the prominence leg, supporting the so-called prominence-corona transition region. The opposite velocities at the two sides of the prominence and their persistent time evolution, together with the periodic motions evident in SDO/AIA dark structures, indicate a rotational motion of both cold and hot plasma with a speed of ∼5 km s –1
Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi
2013-05-21
We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.
Possible relation between pulsar rotation and evolution of magnetic inclination
Tian, Jun
2018-05-01
The pulsar timing is observed to be different from predicted by a simple magnetic dipole radiation. We choose eight pulsars whose braking index was reliably determined. Assuming the smaller values of braking index are dominated by the secular evolution of the magnetic inclination, we calculate the increasing rate of the magnetic inclination for each pulsar. We find a possible relation between the rotation frequency of each pulsar and the inferred evolution of the magnetic inclination. Due to the model-dependent fit of the magnetic inclination and other effects, more observational indicators for the change rate of magnetic inclination are needed to test the relation.
Damping and non-linearity of a levitating magnet in rotation above a superconductor
International Nuclear Information System (INIS)
Druge, J; Jean, C; Laurent, O; Méasson, M-A; Favero, I
2014-01-01
We study the dissipation of moving magnets in levitation above a superconductor. The rotation motion is analyzed using optical tracking techniques. It displays a remarkable regularity together with long damping time up to several hours. The magnetic contribution to the damping is investigated in detail by comparing 14 distinct magnetic configurations and points towards amplitude-dependent dissipation mechanisms. The non-linear dynamics of the mechanical rotation motion is also revealed and described with an effective Duffing model. The magnetic mechanical damping is consistent with measured hysteretic cycles M(H) that are discussed within a modified critical state model. The obtained picture of the coupling of levitating magnets to their environment sheds light on their potential as ultra-low dissipation mechanical oscillators for high precision physics. (paper)
Carbon distribution during plasma detachment triggered by edge magnetic island formation in LHD
International Nuclear Information System (INIS)
Dong, C.F.; Morita, S.; Kobayashi, M.; Oishi, T.; Goto, M.; Wang, E.H.; Huang, X.L.
2013-01-01
The detached plasma has been successfully achieved by applying the edge 1/1 magnetic island in Large Helical Device (LHD). Carbon, which is uniquely the dominant intrinsic impurity in general LHD discharges, is considered to be the main radiating species in the island-triggered detached plasma. The vertical profile of CIV measured from general discharges of LHD is characterized by a single edge intensity peak. In detached plasmas triggered by the edge magnetic island formation, however, the vertical profile of CIV shows a significant difference. Double edge peaks of CIV are found during the plasma detachment and the CIV radiation is also remarkably enhanced in the vicinity of X-point, whereas the vertical profile of CVI does not show any significant difference in both the attached and detached plasmas. In this proceeding the carbon distribution during the plasma detachment is presented and the results are discussed with edge magnetic field structure. (author)
Akman, Nurten; Özdoğan, Cem
2018-04-01
We systematically investigate the energetics of ion implantation, stability, electronic, and magnetic properties of graphene/hexagonal boron nitrate (h-BN) in-plane hybrids through first principle calculations. We consider hexagonal and triangular islands in supercells of graphene and h-BN layouts. In the case of triangular islands, both phases mix with each other by either solely Csbnd N or Csbnd B bonds. We also patterned triangles with predominating Csbnd N or Csbnd B bonds at their interfaces. The energetics of island implantation is discussed in detail. Formation energies point out that the island implantation could be even exothermic for all hybrids studied in this work. Effects of size and shape of the island, and dominating bonding sort at the island-layout interfaces on the stability, band gap, and magnetic properties of hybrids are studied particularly. The hybrids become more stable with increasing island size. Regardless of the layout, hybrids with hexagonal islands are all non-magnetic and semiconducting. One can thus open a band gap in the semimetallic graphene by mixing it with the h-BN phase. In general, hybrids containing graphene triangles show metallic property and exhibit considerable amount of magnetic moments for possible localized spin utilizations. Total magnetic moment of hybrids with both graphene and h-BN layouts increases with growing triangle island as well. The spin densities of magnetic hybrids are derived from interfaces of the islands and diminish towards their center. We suggest that the increase in stability and magnetic moment depend on the number of atoms at the interfaces rather than the island size.
International Nuclear Information System (INIS)
Song, M.C.; Lee, K.J.
2004-01-01
Most of the insoluble radioactive corrosion products have the characteristic of showing strong ferrimagnetism. Along with the new development and production of permanent magnets which generate much stronger magnetic field than conventional permanent magnets, new type of magnetic filter that can separate radioactive corrosion products efficiently and eventually reduce the radiation exposure of the personnel at a nuclear power plant is suggested. This new type of separator with novel geometry consists of an inner and an outer magnet assembly, a coolant channel and a container surrounding the outer magnet assembly. The particulates are separated from the coolant by the alternating magnetic fields that are generated by shift arrangement of permanent magnets. This study describes of experimental results performed with the different flow rates, rotation velocities of magnet assemblies, particle size and various materials. The efficiency of magnetic filter tends to increase as the flow rate is lower, and particle size is bigger. The rotating velocity of magnet assembly has also some influences on the separation efficiency. This new magnetic filter shows good performance results in filtering magnetite, cobalt ferrite and nickel ferrite except hematite, which is a kind of anti-ferromagnetic material, from aqueous coolant simulation. At the above 5 μm of particle size, the separation efficiencies are over than 90%. (author)
Kwon, Jae-Min; Ku, S.; Choi, M. J.; Chang, C. S.; Hager, R.; Yoon, E. S.; Lee, H. H.; Kim, H. S.
2018-05-01
We perform gyrokinetic simulations to study the effects of a stationary magnetic island on neoclassical flow and micro-instability in a realistic KSTAR plasma condition. Through the simulations, we aim to analyze a recent KSTAR experiment, which was to measure the details of poloidal flow and fluctuation around a stationary (2, 1) magnetic island [M. J. Choi et al., Nucl. Fusion 57, 126058 (2017)]. From the simulations, it is found that the magnetic island can significantly enhance the equilibrium E × B flow. The corresponding flow shearing is strong enough to suppress a substantial portion of ambient micro-instabilities, particularly ∇Te -driven trapped electron modes. This implies that the enhanced E × B flow can sustain a quasi-internal transport barrier for Te in an inner region neighboring the magnetic island. The enhanced E × B flow has a (2, 1) mode structure with a finite phase shift from the mode structure of the magnetic island. It is shown that the flow shear and the fluctuation suppression patterns implied from the simulations are consistent with the observations on the KSTAR experiment.
The Use of Faraday Rotation Sign Maps as a Diagnostic for Helical Jet Magnetic Fields
International Nuclear Information System (INIS)
Reichstein, Andrea; Gabuzda, Denise
2012-01-01
We present maps of the sign of the Faraday Rotation measure obtained from multi-frequency radio observations made with the Very Long Baseline Array (VLBA). The Active Galactic Nuclei (AGN) considered have B-field structures with a central 'spine' of B-field orthogonal to the jet and/or a longitudinal B-field near one or both edges of the jet. This structure can plausibly be interpreted as being caused by a helical/toroidal jet magnetic field. Faraday Rotation is a rotation of the plane of polarization that occurs when the polarized radiation passes through a magnetized plasma. The sign of the RM is determined by the direction of the line-of-sight B-field in the region causing the Faraday Rotation, and an ordered toroidal or helical magnetic field associated with an AGN jet will thus produce a distinctive bilateral distribution of the RMs across the jet. We present and discuss RM-sign maps and their possible interpretation regarding the magnetic field geometries for several sources.
A Model of Solar Flares Based on Arcade Field Reconnection and Merging of Magnetic Islands
International Nuclear Information System (INIS)
Choe, G.S.; Cheng, C.Z.
2001-01-01
Solar flares are intense, abrupt releases of energy in the solar corona. In the impulsive phase of a flare, the intensity of hard X-ray emission reaches a sharp peak indicating the highest reconnection rate. It is often observed that an X-ray emitting plasma ejecta (plasmoid) is launched before the impulsive phase and accelerated throughout the phase. Thus, the plasmoid ejection may not be an effect of fast magnetic reconnection as conventionally assumed, but a cause of fast reconnection. Based on resistive magnetohydrodynamic simulations, a solar flare model is presented, which can explain these observational characteristics of flares. In the model, merging of a newly generated magnetic island and a pre-existing island results in stretching and thinning of a current sheet, in which fast magnetic reconnection is induced. Recurrence of homologous flares naturally arises in this model. Mechanisms of magnetic island formation are also discussed
Design of Rotating Moving-Magnet-Type VCM Actuator for Miniaturized Mobile Robot
Energy Technology Data Exchange (ETDEWEB)
Shin, Bu Hyun [Hanbat Nat' l Univ., Daejeon (Korea, Republic of); Lee, Seungyop [Sogana Univ., Seoul (Korea, Republic of); Lee, Kyungmin [Korean Intellectual Property Office, Seoul (Korea, Republic of); Oh, Dongho [Chungnam Nat' l Univ., Daejeon (Korea, Republic of)
2013-12-15
A voice coil actuator with a rotating moving magnet has been developed for a miniaturized mobile robot. The actuator has simple structure comprising a magnet, a coil, and a yoke. Actuator performance is predicted using a linearized theoretical model, and dynamic performance based on the air-gap between the magnet and the coil is predicted using motor constant and restoring constant obtained through finite element simulations. The theoretical model was verified using a prototype with 60 Hz resonance and 80 Hz bandwidth. We found that an input of 1.5 V can make the actuator rotate by 20 .deg. statically. The driving configuration of the proposed actuator can be simplified because of its implementation of open-loop control.
Rotating magnetic shallow water waves and instabilities in a sphere
Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.
2017-07-01
Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.
Five-dimensional rotating black hole in a uniform magnetic field: The gyromagnetic ratio
International Nuclear Information System (INIS)
Aliev, A.N.; Frolov, Valeri P.
2004-01-01
In four-dimensional general relativity, the fact that a Killing vector in a vacuum spacetime serves as a vector potential for a test Maxwell field provides one with an elegant way of describing the behavior of electromagnetic fields near a rotating Kerr black hole immersed in a uniform magnetic field. We use a similar approach to examine the case of a five-dimensional rotating black hole placed in a uniform magnetic field of configuration with biazimuthal symmetry that is aligned with the angular momenta of the Myers-Perry spacetime. Assuming that the black hole may also possess a small electric charge we construct the five-vector potential of the electromagnetic field in the Myers-Perry metric using its three commuting Killing vector fields. We show that, like its four-dimensional counterparts, the five-dimensional Myers-Perry black hole rotating in a uniform magnetic field produces an inductive potential difference between the event horizon and an infinitely distant surface. This potential difference is determined by a superposition of two independent Coulomb fields consistent with the two angular momenta of the black hole and two nonvanishing components of the magnetic field. We also show that a weakly charged rotating black hole in five dimensions possesses two independent magnetic dipole moments specified in terms of its electric charge, mass, and angular momentum parameters. We prove that a five-dimensional weakly charged Myers-Perry black hole must have the value of the gyromagnetic ratio g=3
Directory of Open Access Journals (Sweden)
Jongyul Kim
2017-05-01
Full Text Available We propose a position control method for a helical magnetic robot (HMR that uses the rotating frequency of the external rotating magnetic field (ERMF to minimize the position fluctuation of the HMR caused by pulsatile flow in human blood vessels. We prototyped the HMR and conducted several experiments in pseudo blood vessel environments with a peristaltic pump. We experimentally obtained the relation between the flow rate and the rotating frequency of the ERMF required to make the HMR stationary in a given pulsatile flow. Then we approximated the pulsatile flow by Fourier series and applied the required ERMF rotating frequency to the HMR in real time. Our proposed position control method drastically reduced the position fluctuation of the HMR under pulsatile flow.
Solution of magnetic field and eddy current problem induced by rotating magnetic poles (abstract)
Liu, Z. J.; Low, T. S.
1996-04-01
The magnetic field and eddy current problems induced by rotating permanent magnet poles occur in electromagnetic dampers, magnetic couplings, and many other devices. Whereas numerical techniques, for example, finite element methods can be exploited to study various features of these problems, such as heat generation and drag torque development, etc., the analytical solution is always of interest to the designers since it helps them to gain the insight into the interdependence of the parameters involved and provides an efficient tool for designing. Some of the previous work showed that the solution of the eddy current problem due to the linearly moving magnet poles can give satisfactory approximation for the eddy current problem due to rotating fields. However, in many practical cases, especially when the number of magnet poles is small, there is significant effect of flux focusing due to the geometry. The above approximation can therefore lead to marked errors in the theoretical predictions of the device performance. Bernot et al. recently described an analytical solution in a polar coordinate system where the radial field is excited by a time-varying source. A discussion of an analytical solution of the magnetic field and eddy current problems induced by moving magnet poles in radial field machines will be given in this article. The theoretical predictions obtained from this method is compared with the results obtained from finite element calculations. The validity of the method is also checked by the comparison of the theoretical predictions and the measurements from a test machine. It is shown that the introduced solution leads to a significant improvement in the air gap field prediction as compared with the results obtained from the analytical solution that models the eddy current problems induced by linearly moving magnet poles.
Eriksson, S.; Newman, D. L.; Lapenta, G.; Angelopoulos, V.
2014-06-01
We report the first observation consistent with a magnetic reconnection generated magnetic island at a solar wind current sheet that was observed on 10 June 2012 by the two ARTEMIS satellites and the upstream WIND satellite. The evidence consists of a core magnetic field within the island which is formed by enhanced Hall magnetic fields across a solar wind reconnection exhaust. The core field at ARTEMIS displays a local dip coincident with a peak plasma density enhancement and a locally slower exhaust speed which differentiates it from a regular solar wind exhaust crossing. Further indirect evidence of magnetic island formation is presented in the form of a tripolar Hall magnetic field, which is supported by an observed electron velocity shear, and plasma density depletion regions which are in general agreement with multiple reconnection X-line signatures at the same current sheet on the basis of predicted signatures of magnetic islands as generated by a kinetic reconnection simulation for solar wind-like conditions. The combined ARTEMIS and WIND observations of tripolar Hall magnetic fields across the same exhaust and Grad-Shrafranov reconstructions of the magnetic field suggest that an elongated magnetic island was encountered which displayed a 4RE normal width and a 43RE extent along the exhaust between two neighboring X-lines.
Experimental and numerical results of a high frequency rotating active magnetic refrigerator
DEFF Research Database (Denmark)
Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian
2012-01-01
Experimental results for a recently developed prototype magnetic refrigeration device at The Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators...
Experimental and numerical results of a high frequency rotating active magnetic refrigerator
DEFF Research Database (Denmark)
Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian R.H.
2014-01-01
Experimental results for a recently developed prototype magnetic refrigeration device at the Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators...
North–South Asymmetry of the Rotation of the Solar Magnetic Field
Xie, Jinglan; Shi, Xiangjun; Qu, Zhining
2018-03-01
Using the rotation rates of the solar magnetic field during solar cycles 21 to 23 obtained by Chu et al. by analyzing the synoptic magnetic maps produced by the NSO/Kitt Peak and SOHO/MDI during the years 1975 to 2008, the temporal variation of the equatorial rotation rate (A) and the latitude gradient of rotation (B) in the northern and southern hemispheres are studied separately. The results indicate that the rotation is more differential (about 4.3%) in the southern hemisphere in the considered time frame. It is found that the north–south asymmetry of A and the asymmetry of B show increasing trends in the considered time frame, while the north–south asymmetry of the solar activity shows a decreasing trend. There exists a significant negative correlation (at 95% confidence level) between the asymmetry of B and the asymmetry of the solar activity, and this may be due to stronger magnetic activity in a certain hemisphere that may suppress the differential rotation to some extent. The periodicities in the variation of A and B are also studied, and periods of about 5.0 and 10.5 yr (5.5 and 10.4 yr) can be found for the variation of the northern (southern) hemisphere B. Moreover, the north–south asymmetry of A and the asymmetry of B have similar periods of about 2.6–2.7 and 5.2–5.3 yr. Further, cross-correlation analysis indicates that there exists a phase difference (about eight months) between the northern and southern hemisphere B, and this means that the northern hemisphere B generally leads by about eight months.
A study on stability of rotating magnets
International Nuclear Information System (INIS)
Higuchi, N.; Kaiho, K.; Ishii, I.
1996-01-01
Superconducting power generators are being developed in Japan, as a part of a R and D program on energy technology, the New Sunshine Project. In this development, national laboratories are taking a role of fundamental studies to contribute to the R and D being carried out mainly by the manufacturers involved in a research association, Super-GM. Stabilities of magnets in a high gravitational field up to 2,000 G are discussed, based upon the experimental results of forced quench tests in a set of rotating magnets, in order to establish the stability design criterion of field windings of superconducting generators. Relations of propagation velocities, recovery currents, minimum quench energy and heat transfer characteristics are studied, a good agreement between the experimental results and a theory confirmed the improvement of magnet stability in a high gravitational field because of the enhanced heat transfer characteristics
Apparatus and method for generating a magnetic field by rotation of a charge holding object
Gerald, II, Rex E.; Vukovic, Lela [Westchester, IL; Rathke, Jerome W [Homer Glenn, IL
2009-10-13
A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.
Dynamic Chiral Magnetic Effect and Faraday Rotation in Macroscopically Disordered Helical Metals.
Ma, J; Pesin, D A
2017-03-10
We develop an effective medium theory for electromagnetic wave propagation through gapless nonuniform systems with a dynamic chiral magnetic effect. The theory allows us to calculate macroscopic-disorder-induced corrections to the values of optical, as well as chiral magnetic conductivities. In particular, we show that spatial fluctuations of the optical conductivity induce corrections to the effective value of the chiral magnetic conductivity. The absolute value of the effect varies strongly depending on the system parameters, but yields the leading frequency dependence of the polarization rotation and circular dichroism signals. Experimentally, these corrections can be observed as features in the Faraday rotation angle near frequencies that correspond to the bulk plasmon resonances of a material. Such features are not expected to be present in single-crystal samples.
Size-dependent magnetic properties of FeGaB/Al2O3 multilayer micro-islands
Wang, X.; Gao, Y.; Chen, H.; Chen, Y.; Liang, X.; Lin, W.; Sun, N. X.
2018-06-01
Recently, micrometer-size patterned magnetic materials have been widely used in MEMS devices. However, the self-demagnetizing action is significantly influencing the performance of the magnetic materials in many MEMS devices. Here, we report an experimental study on the magnetic properties of the patterned micro-scale FeGaB/Al2O3 multilayers. Ferromagnetic hysteresis loop, ferromagnetic resonance (FMR), permeability and domain behavior have been demonstrated by complementary techniques. Magnetic annealing was used to enhance the performance of magnetic multilayers. The comparisons among micro-islands with different sizes in the range of 200 μm ∼ 500 μm as well as full film show a marked influence of size-effect, the exchange coupling effect, and the different domain structures inside the islands.
Power and momentum relations in rotating magnetic field current drive
Energy Technology Data Exchange (ETDEWEB)
Hugrass, W N [Flinders Univ. of South Australia, Bedford Park. School of Physical Sciences
1984-01-01
The use of rotating magnetic fields (RMF) to drive steady currents in plasmas involves a transfer of energy and angular momentum from the radio frequency source feeding the rotating field coils to the plasma. The power-torque relationships in RMF systems are discussed and the analogy between RMF current drive and the polyphase induction motor is explained. The general relationship between the energy and angular momentum transfer is utilized to calculate the efficiency of the RMF plasma current drive. It is found that relatively high efficiencies can be achieved in RMF current drive because of the low phase velocity and small slip between the rotating field and the electron fluid.
Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A
2010-08-20
Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.
Directory of Open Access Journals (Sweden)
Ivo Doležel
2014-04-01
Full Text Available An advanced way of induction heating of nonmagnetic billets is discussed and modeled. The billet rotates in a stationary magnetic field produced by unmoving high-parameter permanent magnets fixed on magnetic circuit of an appropriate shape. The mathematical model of the problem consisting of two coupled partial differential equations is solved numerically, in the monolithic formulation. Computations are carried out using our own code Agros2D based on a fully adaptive higher-order finite element method. The most important results are verified experimentally on our own laboratory device.
Features of the mass transfer in magnetic cataclysmic variables with fast-rotating white dwarfs
Directory of Open Access Journals (Sweden)
Isakova Polina
2014-01-01
Full Text Available The flow structure in magnetic cataclysmic variables was investigated taking into account the effects of strong magnetic field and fast rotation of the white dwarf. We modeled the AE Aqr system as a unique object that has the rotation period of the white dwarf is about 1000 times shorter than the orbital period of the binary system. Observations show that in spite of fast rotation of the white dwarf some part of the stream from the inner Lagrange point comes into the Roche lobe region. We analyzed possible mechanisms preventing material to outflow from the system.
Energy Technology Data Exchange (ETDEWEB)
Wei, Xing, E-mail: xing.wei@sjtu.edu.cn [Institute of Natural Sciences and Department of Physics and Astronomy, Shanghai Jiao Tong University (China); Princeton University Observatory, Princeton, NJ 08544 (United States)
2016-09-01
To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.
International Nuclear Information System (INIS)
Gisin, B V
2002-01-01
We consider the anomalous magnetic moment from an 'optical viewpoint' using an analogy between the motion of a particle with a magnetic moment in a magnetic field and the propagation of an optical pulse through an electro-optical crystal in an electric field. We show that an optical experiment similar to electron magnetic resonance is possible in some electro-optical crystals possessing the Faraday effect. This phenomenon is described by an analogue of the Pauli equation extracted from the Maxwell equation in the slowly varied amplitude approximation. In such an experiment the modulation by rotating fields plays a significant role. From the optical viewpoint the modulation assumes introducing the concept of a point rotation frame with the rotation axis at every point originated from the concept of the optical indicatrix (index ellipsoid). We discuss the connection between the non-classical transformation by transition from one such frame to another and an anomalous magnetic moment
International Nuclear Information System (INIS)
Eriksson, S; Newman, D L; Lapenta, G; Angelopoulos, V
2014-01-01
We report the first observation consistent with a magnetic reconnection generated magnetic island at a solar wind current sheet that was observed on 10 June 2012 by the two ARTEMIS satellites and the upstream WIND satellite. The evidence consists of a core magnetic field within the island which is formed by enhanced Hall magnetic fields across a solar wind reconnection exhaust. The core field at ARTEMIS displays a local dip coincident with a peak plasma density enhancement and a locally slower exhaust speed which differentiates it from a regular solar wind exhaust crossing. Further indirect evidence of magnetic island formation is presented in the form of a tripolar Hall magnetic field, which is supported by an observed electron velocity shear, and plasma density depletion regions which are in general agreement with multiple reconnection X-line signatures at the same current sheet on the basis of predicted signatures of magnetic islands as generated by a kinetic reconnection simulation for solar wind-like conditions. The combined ARTEMIS and WIND observations of tripolar Hall magnetic fields across the same exhaust and Grad–Shrafranov reconstructions of the magnetic field suggest that an elongated magnetic island was encountered which displayed a 4R E normal width and a 43R E extent along the exhaust between two neighboring X-lines. (paper)
X-ray tube incorporating a rotating anode with magnetic bearings
International Nuclear Information System (INIS)
1979-01-01
This patent describes an X-ray tube incorporating a rotating anode. The rotor consists of a single, soft-magnetic dish which is fixed on the axis and which seals the magnetic yoke of the stator. Looking in the direction of the axis, one side is equipped with two circular pole surfaces, one at least of which is provided with circular pole-shoes, separated from one another by concentric grooves. (T.P.)
Kinetic theory of instabilities responsible for magnetic turbulence in laboratory rotating plasma
International Nuclear Information System (INIS)
Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Pustovitov, V.D.; Erokhin, N.N.; Konovalov, S.V.
2008-01-01
The problem of instabilities responsible for magnetic turbulence in collisionless laboratory rotating plasma is investigated. It is shown that the standard mechanism of driving the magnetorotational instability (MRI), due to negative rotation frequency gradient, disappears in such a plasma. Instead of it, a new driving mechanism due to plasma pressure gradient is predicted
Effect of drift-acoustic waves on magnetic island stability in slab geometry
International Nuclear Information System (INIS)
Fitzpatrick, R.; Waelbroeck, F.L.
2005-01-01
A mathematical formalism is developed for calculating the ion polarization term in the Rutherford island width evolution equation in the presence of drift-acoustic waves. The calculation is fully nonlinear, includes both ion and electron diamagnetic effects, as well as ion compressibility, but is performed in slab geometry. Magnetic islands propagating in a certain range of phase velocities are found to emit drift-acoustic waves. Wave emission gives rise to rapid oscillations in the ion polarization term as the island phase velocity varies, and also generates a net electromagnetic force acting on the island region. Increasing ion compressibility is found to extend the range of phase velocities over which drift-acoustic wave emission occurs in the electron diamagnetic direction
Observation of plasma rotation driven by static nonaxisymmetric magnetic fields in a tokamak.
Garofalo, A M; Burrell, K H; DeBoo, J C; deGrassie, J S; Jackson, G L; Lanctot, M; Reimerdes, H; Schaffer, M J; Solomon, W M; Strait, E J
2008-11-07
We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical "offset" rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions.
4 K to 20 K rotational-cooling magnetic refrigerator capable of 1-mW to >1-W operation
International Nuclear Information System (INIS)
Barclay, J.A.
1980-02-01
The low-temperature, magnetic entropy of certain single-crystal paramagnetic materials, such as DyPO 4 , changes dramatically as the crystal rotates in a magnetic field. A new magnetic refrigerator design based on the anisotropic nature of such materials is presented. The key advantages of the rotational-cooling concept are (1) a single, rotary motion is required, (2) magnetic field shaping is not a problem because the entire working material is in a constant field, and (3) the refrigerator can be smaller than comparable magnetic refrigerators because the working material is entirely inside the magnet at all times. The main disadvantage of the rotational-cooling concept is that small-dimension single crystals are required
Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields
International Nuclear Information System (INIS)
Kim, S H; Hashi, S; Ishiyama, K
2011-01-01
This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and 19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.
Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields
Kim, S. H.; Hashi, S.; Ishiyama, K.
2011-01-01
This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.
Energy Technology Data Exchange (ETDEWEB)
Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC, V8W 3P6 (Canada)
2010-04-15
The effect of applied rotating and combined (rotating and static) magnetic fields on silicon transport during the liquid phase diffusion growth of SiGe was experimentally studied. 72-hour growth periods produced some single crystal sections. Single and polycrystalline sections of the processed samples were examined for silicon composition. Results show that the application of a rotating magnetic field enhances silicon transport in the melt. It also has a slight positive effect on flattening the initial growth interface. For comparison, growth experiments were also conducted under combined (rotating and static) magnetic fields. The processed samples revealed that the addition of static field altered the thermal characteristics of the system significantly and led to a complete melt back of the germanium seed. Silicon transport in the melt was also enhanced under combined fields compared with experiments with no magnetic field. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Modelling magnetic islands in the H-1NF heliac with the hint code
International Nuclear Information System (INIS)
Lloyd, S.S.; Gardner, H.J.
1999-01-01
Full text: Recent progress in the theoretical modelling of the effects of plasma pressure on the growth and change in geometry of magnetic islands in the H-1NF Heliac will be reviewed. The HINT magnetohydrodynamic equilibrium code, which has become a standard workhorse in the stellarator community for problems of this type, has been modified to incorporate an interpolation algorithm which significantly accelerates its convergence. This has enabled the critical evaluation of earlier results, and of some conventional wisdom. In many ways the treatment of magnetic islands in low shear fusion reactors, such as H-1NF, is an ideal case study in computational science - the devil is in the details and the devil is important: the existence or otherwise of island self-healing at reactor pressures could significantly affect the design of future experiments. (author)
Current drive by EC waves in the presence of magnetic islands and transport
International Nuclear Information System (INIS)
Rosa, P R da S; Ziebell, L F
2008-01-01
In this paper we address the problem of current drive by electron cyclotron (EC) waves in the presence of magnetic islands and transport. Our approach makes use of quasilinear theory by numerically solving the Fokker-Planck equation in cylindrical geometry. We take into account the actual geometry of the islands along the calculations as well as the changes in the plasma density profile due to the action of the radial particle transport. The particle transport is supposed to have a magnetic origin. The waves are assumed to be launched and propagated in the equatorial plane of the tokamak, as in the slab geometry. Our results show that the use of equilibrium profiles as usually done in the studies on neoclassical tearing mode control may not be a better choice and point to the need for taking into account the actual island geometry
Response of plasma rotation to resonant magnetic perturbations in J-TEXT tokamak
Yan, W.; Chen, Z. Y.; Huang, D. W.; Hu, Q. M.; Shi, Y. J.; Ding, Y. H.; Cheng, Z. F.; Yang, Z. J.; Pan, X. M.; Lee, S. G.; Tong, R. H.; Wei, Y. N.; Dong, Y. B.; J-TEXT Team
2018-03-01
The response of plasma toroidal rotation to the external resonant magnetic perturbations (RMP) has been investigated in Joint Texas Experimental Tokamak (J-TEXT) ohmic heating plasmas. For the J-TEXT’s plasmas without the application of RMP, the core toroidal rotation is in the counter-current direction while the edge rotation is near zero or slightly in the co-current direction. Both static RMP experiments and rotating RMP experiments have been applied to investigate the plasma toroidal rotation. The core toroidal rotation decreases to lower level with static RMP. At the same time, the edge rotation can spin to more than 20 km s-1 in co-current direction. On the other hand, the core plasma rotation can be slowed down or be accelerated with the rotating RMP. When the rotating RMP frequency is higher than mode frequency, the plasma rotation can be accelerated to the rotating RMP frequency. The plasma confinement is improved with high frequency rotating RMP. The plasma rotation is decelerated to the rotating RMP frequency when the rotating RMP frequency is lower than the mode frequency. The plasma confinement also degrades with low frequency rotating RMP.
Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density
International Nuclear Information System (INIS)
Espejel-Morales, R; Murguía-Romero, G; Calles, A; Cabrera-Bravo, E; Morán-López, J L
2016-01-01
We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell -like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder. (paper)
International Nuclear Information System (INIS)
Carvalho-Santos, Vagson L.; Dandoloff, Rossen
2012-01-01
We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.
THE EXTREME ULTRAVIOLET DEFICIT AND MAGNETICALLY ARRESTED ACCRETION IN RADIO-LOUD QUASARS
Energy Technology Data Exchange (ETDEWEB)
Punsly, Brian, E-mail: brian.punsly1@verizon.net [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States); ICRANet, Piazza della Repubblica, I-65100 10 Pescara (Italy)
2014-12-20
The Hubble Space Telescope composite quasar spectra presented in Telfer et al. show a significant deficit of emission in the extreme ultraviolet for the radio-loud component of the quasar population (RLQs) compared to the radio-quiet component of the quasar population. The composite quasar continuum emission between 1100 Å and ∼580 Å is generally considered to be associated with the innermost regions of the accretion flow onto the central black hole. The deficit between 1100 Å and 580 Å in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. It is proposed that this can be the result of islands of large-scale magnetic flux in RLQs that are located close to the central black hole that remove energy from the accretion flow as Poynting flux (sometimes called magnetically arrested accretion). These magnetic islands are natural sites for launching relativistic jets. Based on the Telfer et al. data and the numerical simulations of accretion flows in Penna et al., the magnetic islands are concentrated between the event horizon and an outer boundary of <2.8 M (in geometrized units) for rapidly rotating black holes and <5.5 M for modestly rotating black holes.
Ion heating due to rotation and collision in magnetized plasma
International Nuclear Information System (INIS)
Anderegg, F.; Stern, R.A.; Skiff, F.; Hammel, B.A.; Tran, M.Q.; Paris, P.J.; Kohler, P.
1986-01-01
The E x B rotation and associated collisional ion heating of noble-gas magnetized plasmas are investigated with high resolution by means of laser-induced fluorescence and electrical probes. Plasma rotation results from a radial potential gradient which can be controlled by biasing of the discharge electrodes. The time and space evolution of the potential, the rotation velocity v/sub t//sub h//sub e//sub t//sub a/, and the ion perpendicular temperature indicate that heating is due to the randomization of v/sub t//sub h//sub e//sub t//sub a/ by ion-neutral collisions, and leads to temperature increases as high as a factor of 50 over initial values
Effects of 3D magnetic perturbations on toroidal plasmas
International Nuclear Information System (INIS)
Callen, J.D.
2011-01-01
Small three-dimensional (3D) magnetic field perturbations have many interesting and possibly useful effects on tokamak and quasi-symmetric stellarator plasmas. Plasma transport equations that include these effects, most notably on diamagnetic-level toroidal plasma flows, have recently been developed. The 3D field perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (say 1-5) resonant (with field line pitch, q = m/n) and non-resonant fields, medium n (∼20, due to toroidal field ripple) and high n (due to microturbulence). Low n non-resonant fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal rotation throughout the plasma towards an offset rotation in the counter-current direction. Recent tokamak experiments have generally confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n toroidal field ripple produces similar effects plus possible ripple-trapping NTV effects and ion direct losses in the edge. A low n (e.g. n = 1) resonant field is mostly shielded by the toroidally rotating plasma at and inside the resonant (rational) surface. If it is large enough it can stop plasma rotation at the rational surface, facilitate magnetic reconnection there and lead to a growing stationary magnetic island (locked mode), which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components. In the plasma their lowest n (e.g. n = 1) externally resonant components can be amplified by kink-type plasma responses, particularly at high β. Low n plasma instabilities (e.g. resistive wall modes, neoclassical tearing modes) cause additional 3D magnetic perturbations in tokamak plasmas. Tearing modes in their nonlinear (Rutherford) regime bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can, if not shielded by plasma rotation effects, cause local magnetic
Drag and lift forces between a rotating conductive sphere and a cylindrical magnet
Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.
2018-06-01
Modeling the interaction between a non-uniform magnetic field and a rotating conductive object provides insight into the drag force, which is used in applications such as eddy current braking and linear induction motors, as well as the transition to a repulsive force, which is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two-step mathematical process is developed to find a closed-form solution in terms of only three eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate-level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.
Drag and Lift Forces Between a Rotating Conductive Sphere and a Cylindrical Magnet
Nurge, Mark A.; Youngquist, Robert C.
2017-01-01
Modeling the interaction between a non-uniform magnetic field and a rotating conductive object allows study of the drag force which is used in applications such as eddy current braking and linear induction motors as well as the transition to a repulsive force that is the basis for magnetic levitation systems. Here, we study the interaction between a non-uniform field generated by a cylindrical magnet and a rotating conductive sphere. Each eddy current in the sphere generates a magnetic field which in turn generates another eddy current, eventually feeding back on itself. A two step mathematics process is developed to find a closed form solution in terms of only two eddy currents. However, the complete solution requires decomposition of the magnetic field into a summation of spherical harmonics, making it more suitable for a graduate level electromagnetism lecture or lab. Finally, the forces associated with these currents are calculated and then verified experimentally.
Computation of zero. beta. three-dimensional equilibria with magnetic islands
Energy Technology Data Exchange (ETDEWEB)
Reiman, A.H.; Greenside, H.S.
1989-01-01
A Picard iteration scheme has been implemented for the computation of toroidal, fully three-dimensional, zero ..beta.. equilibria with islands and stochastic regions. Representation of the variables in appropriate coordinate systems has been found to be a key to making the scheme work well. In particular, different coordinate systems are used for solving magnetic differential equations and Ampere's law. The current profile is adjusted when islands and stochastic regions appear. An underrelaxation of the current profile modifications is generally needed for stable iteration of the algorithm. Some examples of equilibrium calculations are presented. 16 refs., 6 figs., 1 tab.
Energy Technology Data Exchange (ETDEWEB)
Loizu, J., E-mail: joaquim.loizu@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton New Jersey 08543 (United States); Hudson, S.; Bhattacharjee, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton New Jersey 08543 (United States); Helander, P. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)
2015-02-15
Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the gap between Taylor's relaxation theory and ideal MHD, we provide a thorough analytical and numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal MHD equilibria. These include the force-free singular current density represented by a Dirac δ-function, which presumably prevents the formation of islands, and the Pfirsch-Schlüter 1/x singular current, which arises as a result of finite pressure gradient. An analytical model based on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant rational surfaces, (2) retrieve the ideal MHD limit where magnetic islands are shielded, and (3) compute the subsequent formation of singular currents. The analytical results are benchmarked against numerical simulations carried out with a fully nonlinear implementation of MRxMHD.
Eriksson, S.; Cassak, P. A.; Retinò, A.; Mozer, F. S.
2016-04-01
The Polar satellite recorded two reconnection exhausts within 6 min on 1 April 2001 across a subsolar magnetopause that displayed a symmetric plasma density, but different out-of-plane magnetic field signatures for similar solar wind conditions. The first magnetopause crossing displayed a bipolar guide field variation in a weak external guide field consistent with a symmetric Hall field from a single X line. The subsequent crossing represents the first observation of a tripolar guide field perturbation at Earth's magnetopause in a strong guide field. This perturbation consists of a significant guide field enhancement between two narrow guide field depressions. A particle-in-cell simulation for the prevailing conditions across this second event resulted in a magnetic island between two simulated X lines across which a tripolar guide field developed consistent with the observation. The simulated island supports a scenario whereby Polar encountered the asymmetric quadrupole Hall magnetic fields between two X lines for symmetric conditions across the magnetopause.
Energy Technology Data Exchange (ETDEWEB)
Azimi, Neda; Rahimi, Masoud, E-mail: masoudrahimi@yahoo.com
2017-01-15
Rotating magnetic field (RMF) was applied on a micromixer to break the laminar flow and induce chaotic flow to enhance mass transfer between two-immiscible organic and aqueous phases. The results of RMF were compared to those of static magnetic field (SMF). For this purpose, experiments were carried out in a T-micromixer at equal volumetric flow rates of organic and aqueous phases. Fe{sub 3}O{sub 4} nanoparticles were synthesized by co-precipitation technique and they were dissolved in organic phase. Results obtained from RMF and SMF were compared in terms of overall volumetric mass transfer coefficient (K{sub L}a) and extraction efficiency (E) at various Reynolds numbers. Generally, RMF showed higher effect in mass transfer characteristics enhancement compared with SMF. The influence of rotational speeds of magnets (ω) in RMF was investigated, and measurable enhancements of K{sub L}a and E were observed. In RMF, the effect of magnetic field induction (B) was investigated. The results reveal that at constant concentration of nanoparticles, by increasing of B, mass transfer characteristics will be enhanced. The effect of various nanoparticles concentrations (ϕ) within 0.002–0.01 (w/v) on K{sub L}a and E at maximum induction of RMF (B=76 mT) was evaluated. Maximum values of K{sub L}a (2.1±0.001) and E (0.884±0.001) were achieved for the layout of RMF (B=76 mT), ω=16 rad/s and MNPs concentration of 0.008–0.01 (w/v). - Highlights: • Magnetic nanoparticles used for mixing of two immiscible liquids in a micromixer. • Extraction efficiency of rotating magnetic field (RMF) is compared with static one. • In RMF, the effect of the angular speed on KLa and E enhancement is reported. • In RMF, at a selected magnet distance effect of nanoparticle concentration is reported.
DEFF Research Database (Denmark)
Juul-Kristensen, B.; Bojsen-Møller, Finn; Holst, E.
2000-01-01
Anatomy, biomechanics, cross-section, magnetic resonance imaging, method comparison, rotator cuff muscles, ultrasound......Anatomy, biomechanics, cross-section, magnetic resonance imaging, method comparison, rotator cuff muscles, ultrasound...
Half- coalescence of the m/n = 1 magnetic island in Tokamaks
International Nuclear Information System (INIS)
Bussac, M.N.; Pellat, R.
1986-01-01
We show that a configuration containing an m/n = 1 magnetic island is unstable to an ideal MHD mode. The expected nonlinear implications of this instability could explain the disruptive phase of the classical sawtooth behaviour of Tokamak plasmas
Local instabilities in magnetized rotational flows: A short-wavelength approach
Kirillov, Oleg N.; Stefani, Frank; Fukumoto, Yasuhide
2014-01-01
We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the cas...
Multiscale Simulations of Magnetic Island Coalescence
Dorelli, John C.
2010-01-01
We describe a new interactive parallel Adaptive Mesh Refinement (AMR) framework written in the Python programming language. This new framework, PyAMR, hides the details of parallel AMR data structures and algorithms (e.g., domain decomposition, grid partition, and inter-process communication), allowing the user to focus on the development of algorithms for advancing the solution of a systems of partial differential equations on a single uniform mesh. We demonstrate the use of PyAMR by simulating the pairwise coalescence of magnetic islands using the resistive Hall MHD equations. Techniques for coupling different physics models on different levels of the AMR grid hierarchy are discussed.
Ireland, Lewis G.; Browning, Matthew K.
2018-04-01
Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter α MLT. We provide formulae linking changes in α MLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent α MLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable α MLT to these putative MLT reformulations.
Plasma rotation by electric and magnetic fields in a discharge cylinder
Wilhelm, H. E.; Hong, S. H.
1977-01-01
A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.
SPECTRAL VARIATIONS OF Of?p OBLIQUE MAGNETIC ROTATOR CANDIDATES IN THE MAGELLANIC CLOUDS
Energy Technology Data Exchange (ETDEWEB)
Walborn, Nolan R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Morrell, Nidia I. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Nazé, Yaël [GAPHE, Département AGO, Université de Liège, Allée du 6 Août 19c, Bat. B5C, B-4000-Liège (Belgium); Wade, Gregg A. [Department of Physics, Royal Military College of Canada, P.O. Box 17000 Station Forces, Kingston, ON, Canada K7K 7B4 (Canada); Bagnulo, Stefano [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Barbá, Rodolfo H. [Departamento de Física y Astronomía, Universidad de La Serena, Cisternas 1200 Norte, La Serena (Chile); Apellániz, Jesús Maíz [Centro de Astrobiología, CSIC-INTA, Campus ESAC, Apartado Postal 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Howarth, Ian D. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Evans, Christopher J. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Sota, Alfredo, E-mail: walborn@stsci.edu, E-mail: nmorrell@lco.cl, E-mail: naze@astro.ulg.ac.be, E-mail: wade-g@rmc.ca, E-mail: sba@arm.ac.uk, E-mail: rbarba@dfuls.cl, E-mail: jmaiz@cab.inta-csic.es, E-mail: idh@star.ucl.ac.uk [Instituto de Astrofísica de Andalucía—CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain)
2015-10-15
Optical spectroscopic monitoring has been conducted of two O stars in the SMC and one in the LMC, the spectral characteristics of which place them in the Of?p category, which has been established in the Galaxy to consist of oblique magnetic rotators. All of these Magellanic stars show systematic spectral variations typical of the Of?p class, further strengthening their magnetic candidacy to the point of virtual certainty. The spectral variations are related to photometric variations derived from Optical Gravitational Lensing Experiment data by Nazé et al. in a parallel study, which yields rotational periods for two of them. Now circular spectropolarimetry is required to measure their fields, and ultraviolet spectroscopy to further characterize their low-metallicity, magnetically confined winds, in support of hydrodynamical analyses.
SPECTRAL VARIATIONS OF Of?p OBLIQUE MAGNETIC ROTATOR CANDIDATES IN THE MAGELLANIC CLOUDS
International Nuclear Information System (INIS)
Walborn, Nolan R.; Morrell, Nidia I.; Nazé, Yaël; Wade, Gregg A.; Bagnulo, Stefano; Barbá, Rodolfo H.; Apellániz, Jesús Maíz; Howarth, Ian D.; Evans, Christopher J.; Sota, Alfredo
2015-01-01
Optical spectroscopic monitoring has been conducted of two O stars in the SMC and one in the LMC, the spectral characteristics of which place them in the Of?p category, which has been established in the Galaxy to consist of oblique magnetic rotators. All of these Magellanic stars show systematic spectral variations typical of the Of?p class, further strengthening their magnetic candidacy to the point of virtual certainty. The spectral variations are related to photometric variations derived from Optical Gravitational Lensing Experiment data by Nazé et al. in a parallel study, which yields rotational periods for two of them. Now circular spectropolarimetry is required to measure their fields, and ultraviolet spectroscopy to further characterize their low-metallicity, magnetically confined winds, in support of hydrodynamical analyses
Magnetic rotation spectra of Co/Pt and Co/Cu multilayers in 50-90 eV region
International Nuclear Information System (INIS)
Saito, K.; Igeta, M.; Ejima, T.; Hatano, T.; Arai, A.; Watanabe, M.
2005-01-01
Faraday rotation spectra of Co/Pt multilayers were obtained in the region including Co M 2,3 and Pt N 6,7 absorption edges by using multilayer polarizers, and were transformed to magnetic circular dichroism (MCD) spectra by Kramers-Kronig analysis (KKA). From the dependence of the rotation angle on the layer thickness, it was suggested that the magnetization of Co tends to be uniform in Co layers and that of Pt is localized at Co/Pt interfaces. The orbital magnetic moment of Co was estimated to be about 0.17 μ B /Co. The similarity of electronic states around magnetized Pt site between Co/Pt multilayers and CoPt 3 alloy is suggested by the resemblance of the MCD spectra of both materials around Pt N 6,7 edges. In addition, magnetic Kerr rotation of Co/Cu multilayer was measured and was observed around Co M 2,3 and Cu M 2,3 absorption edges
Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field
Energy Technology Data Exchange (ETDEWEB)
Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru [National Research Center Kurchatov Institute (Russian Federation)
2016-11-15
A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.
ROTATION AND MAGNETIC ACTIVITY IN A SAMPLE OF M-DWARFS
International Nuclear Information System (INIS)
Browning, Matthew K.; Basri, Gibor; Marcy, Geoffrey W.; Zhang Jiahao; West, Andrew A.
2010-01-01
We have analyzed the rotational broadening and chromospheric activity in a sample of 123 M-dwarfs, using spectra taken at the W.M. Keck Observatory as part of the California Planet Search program. We find that only seven of these stars are rotating more rapidly than our detection threshold of v sin i ∼ 2.5 km s -1 . Rotation appears to be more common in stars later than M3 than in the M0-M2.5 mass range: we estimate that less than 10% of early-M stars are detectably rotating, whereas roughly a third of those later than M4 show signs of rotation. These findings lend support to the view that rotational braking becomes less effective in fully convective stars. By measuring the equivalent widths of the Ca II H and K lines for the stars in our sample, and converting these to approximate L Ca /L bol measurements, we also provide constraints on the connection between rotation and magnetic activity. Measurable rotation is a sufficient, but not necessary condition for activity in our sample: all the detectable rotators show strong Ca II emission, but so too do a small number of non-rotating stars, which we presume may lie at high inclination angles relative to our line of sight. Our data are consistent with a 'saturation-type' rotation-activity relationship, with activity roughly independent of rotation above a threshold velocity of less than 6 km s -1 . We also find weak evidence for a 'gap' in L Ca /L bol between a highly active population of stars, which typically are detected as rotators, and another much less active group.
Design Concepts for a Continuously Rotating Active Magnetic Regenerator
DEFF Research Database (Denmark)
Bahl, Christian Robert Haffenden; Engelbrecht, Kurt; Bjørk, Rasmus
2010-01-01
Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the AMR from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33-xSrxMn1.05O3, gives both a low pressure drop and allows grading of the Curie temperatu...
Diffusive heat transport across magnetic islands and stochastic layers in tokamaks
International Nuclear Information System (INIS)
Hoelzl, Matthias
2010-01-01
Heat transport in tokamak plasmas with magnetic islands and ergodic field lines was simulated at realistic plasma parameters in realistic tokamak geometries. This requires the treatment of anisotropic heat diffusion, which is more efficient along magnetic field lines by up to ten orders of magnitude than perpendicular to them. Comparisons with analytical predictions and experimental measurements allow to determine the stability properties of neoclassical tearing modes as well as the experimental heat diffusion anisotropy.
Rotating and propagating LIB stabilized by self-induced magnetic field
International Nuclear Information System (INIS)
Murakami, H.; Aoki, T.; Kawata, S.; Niu, K.
1984-01-01
Rotating motion of a propagating LIB is analyzed in order to suppress the mixed mode of the Kelvin-Helmholtz instability, the tearing instability and the sausage instability by the action of a self-induced magnetic field in the axial direction. The beams are assumed to be charge-neutralized but not current-neutralized. The steady-state solutions of a propagating LIB with rotation are first obtained numerically. Through the dispersion relation with respect to the ikonal type of perturbations, which are added to the steady-state solutions, the growth rates of instabilities appearing in an LIB are obtained. It is concluded that if the mean rotating velocity of an LIB is comparable to the propagation velocity, the instability disappears in the propagating ion beam. (author)
Directory of Open Access Journals (Sweden)
Peter Cimalla
2017-04-01
Full Text Available In this paper, we present a reliable and robust method for magnetomotive optical coherence tomography (MM-OCT imaging of single cells labeled with iron oxide particles. This method employs modulated longitudinal and transverse magnetic fields to evoke alignment and rotation of anisotropic magnetic structures in the sample volume. Experimental evidence suggests that magnetic particles assemble themselves in elongated chains when exposed to a permanent magnetic field. Magnetomotion in the intracellular space was detected and visualized by means of 3D OCT as well as laser speckle reflectometry as a 2D reference imaging method. Our experiments on mesenchymal stem cells embedded in agar scaffolds show that the magnetomotive signal in rotational MM-OCT is significantly increased by a factor of ~3 compared to previous pulsed MM-OCT, although the solenoid’s power consumption was 16 times lower. Finally, we use our novel method to image ARPE-19 cells, a human retinal pigment epithelium cell line. Our results permit magnetomotive imaging with higher sensitivity and the use of low power magnetic fields or larger working distances for future three-dimensional cell tracking in target tissues and organs.
Energy Technology Data Exchange (ETDEWEB)
Llera, María [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Codnia, Jorge [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF-CONICET, Buenos Aires (Argentina); Jorge, Guillermo A., E-mail: gjorge@ungs.edu.ar [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina)
2015-06-15
We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized.
International Nuclear Information System (INIS)
Llera, María; Codnia, Jorge; Jorge, Guillermo A.
2015-01-01
We present a dynamic study of soft magnetic, commercial Fe and Ni micrometer-sized particles dispersed in oleic acid and subjected to a variable (rotating) magnetic field in the horizontal plane. A very complex structure is formed after the particles decant towards the bottom liquid–solid interface and the magnetic field is applied for several minutes. The dynamics of structure formation was studied by means of the registration and analysis of microscopic video images, through a Matlab image analysis script. Several parameters, such as the number of clusters, the perimeter-based fractal dimension and circularity, were calculated as a function of time. The time evolution of the number of clusters was found to follow a power-law behavior, with an exponent consistent with that found in other studies for magnetic systems, whereas the typical formation time depends on the particle diameter and field configuration. Complementarily, the magnetic properties of the formed structure were studied, reproducing the experiment with liquid paraffin as the containing fluid, and then letting it solidify. The sample obtained was studied by vibrating sample magnetometry. The magnetization curves show that the material obtained is a planar magnetically anisotropic material, which could eventually be used as an anisotropic magnetic sensor or actuator. - Highlights: • Dynamic study of Fe and Ni particles in oleic acid under rotating fields. • A very complex system of interconnected clusters was observed. • Larger particles had a smaller aggregation time. • A power law behavior of the number of clusters vs. time. • A Fe-paraffin sample with planar anisotropy characterized
Magnetization strucrure of thermal vent on island arc from vector magnetic anomlies using AUV
Isezaki, N.; Matsuo, J.; Sayanagi, K.
2012-04-01
The geomagnetic anomaly measured by a scalar magnetometer,such as a proton precession magnetometer cannot be defined its direction, then it does not satisfy the Laplace's equation. Therefore physical formula describing the relation between magnetic field and magnetization cannot be established.Because the difference between results obtained from scalar data and from vector data is very significant, we must use vector magnetic field data for magnetization analyses to get the more reliable and exact solutions. The development program of fundamental tools for exploration of deep seabed resources started with the financial support of the Ministry of Education, Culture, Sports, Science & Technology (MEXT) in 2008 and will end in 2012. In this project, we are developing magnetic exploration tools for seabed resources using AUV (Autonomous Underwater Vehicle) and other deep-towed vehicles to measure not the scalar magnetic field but the vector magnetic field in order to estimate magnetization structure below the sea-floor exactly and precisely. We conducted AUV magnetic survey in 2010 at the thermal area called Hakurei deposit in the Bayonnaise submarine caldera at the southern end of Izu island arc, about 400km south of Tokyo. We analyzed the observed vector magnetic fields to get the vector magnetic anomaly Fields using the method of Isezaki(1984). We inverted these vector magnetic anomaly fields to magnetization structure. CONCLUSIONS 1.The scalar magnetic field TIA (Total Intensity Anomaly) has no physical formula describing the relation between M (Magnetization) and TIA because TIA does not satisfy the Laplace's equation. Then it is impossible to estimate M from TIA. 2.Anlyses of M using TIA have been done so far under assumption TIA=PTA (Projected Total Anomay on MF (Main Geomagnetic Field)), however, which caused the analysis error due to ɛT= TIA - PTA . 3.We succeeded to measure the vector magnetic anomaly fields using AUV despite the severe magnetic noises
Spin current pumped by a rotating magnetic field in zigzag graphene nanoribbons
International Nuclear Information System (INIS)
Wang, J; Chan, K S
2010-01-01
We study electron spin resonance in zigzag graphene nanoribbons by applying a rotating magnetic field on the system without any bias. By using the nonequilibrium Green's function technique, the spin-resolved pumped current is explicitly derived in a rotating reference frame. The pumped spin current density increases with the system size and the intensity of the transverse rotating magnetic field. For graphene nanoribbons with an even number of zigzag chains, there is a nonzero pumped charge current in addition to the pumped spin current owing to the broken spatial inversion symmetry of the system, but its magnitude is much smaller than the spin current. The short-ranged static disorder from either impurities or defects in the ribbon can depress the spin current greatly due to the localization effect, whereas the long-ranged disorder from charge impurities can avoid inter-valley scattering so that the spin current can survive in the strong disorder for the single-energy mode.
Power system stabilization by superconducting magnetic energystorage connected to rotating exciter
Mitani, Yasunori; Tsuji, K
1993-01-01
The authors describe a combination of a rotating exciter and a superconducting magnetic energy storage (SMES) system for efficient power system stabilization. A SMES system connected to an exciter rotating with a turbine-rotor shaft is proposed. The exciter is installed exclusively to supply current for the SMES. Since electrical power output from the SMES is converted into a mechanical torque of the generator directly by the exciter, it is expected that power swings of the generator will be ...
Magnetic Resonance Imaging of Rotator Cuff Tears in Shoulder Impingement Syndrome
International Nuclear Information System (INIS)
Freygant, Magdalena; Dziurzyńska-Białek, Ewa; Guz, Wiesław; Samojedny, Antoni; Gołofit, Andrzej; Kostkiewicz, Agnieszka; Terpin, Krzysztof
2014-01-01
Shoulder joint is a common site of musculoskeletal pain caused, among other things, by rotator cuff tears due to narrowing of subacromial space, acute trauma or chronic shoulder overload. Magnetic resonance imaging (MRI) is an excellent modality for imaging of soft tissues of the shoulder joint considering a possibility of multiplanar image acquisition and non-invasive nature of the study. The aim of this study was to evaluate the prevalence of partial and complete rotator cuff tears in magnetic resonance images of patients with shoulder impingement syndrome and to review the literature on the causes and classification of rotator cuff tears. We retrospectively analyzed the results of 137 shoulder MRI examinations performed in 57 women and 72 men in Magnetic Resonance facility of the Department of Radiology and Diagnostic Imaging at the St. Jadwiga the Queen Regional Hospital No. 2 in Rzeszow between June 2010 and February 2013. Examinations were performed using Philips Achieva 1.5T device, including spin echo and gradient echo sequences with T1-, T2- and PD-weighted as well as fat saturation sequences in transverse, frontal and sagittal oblique planes. Patients were referred from hospital wards as well as from outpatient clinics of the subcarpathian province. The most frequently reported injuries included partial supraspinatus tendon tear and complete tearing most commonly involved the supraspinatus muscle tendon. The smallest group comprised patients with complete tear of subscapularis muscle tendon. Among 137 patients in the study population, 129 patients suffered from shoulder pain, including 57 patients who reported a history of trauma. There was 44% women and 56% men in a group of patients with shoulder pain. Posttraumatic shoulder pain was predominantly reported by men, while women comprised a larger group of patients with shoulder pain not preceded by injury. Rotator cuff injury is a very common pathology in patients with shoulder impingement syndrome
International Nuclear Information System (INIS)
Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Le Roux, Jakobus A.; Webb, Gary M.; Malandraki, Olga E.
2016-01-01
We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.
Nuclear resonance apparatus including means for rotating a magnetic field
International Nuclear Information System (INIS)
Sugimoto, H.
1983-01-01
A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction
Magnetism of iron and nickel from rotationally invariant Hirsch-Fye quantum Monte Carlo calculations
Belozerov, A. S.; Leonov, I.; Anisimov, V. I.
2013-03-01
We present a rotationally invariant Hirsch-Fye quantum Monte Carlo algorithm in which the spin rotational invariance of Hund's exchange is approximated by averaging over all possible directions of the spin quantization axis. We employ this technique to perform benchmark calculations for the two- and three-band Hubbard models on the infinite-dimensional Bethe lattice. Our results agree quantitatively well with those obtained using the continuous-time quantum Monte Carlo method with rotationally invariant Coulomb interaction. The proposed approach is employed to compute the electronic and magnetic properties of paramagnetic α iron and nickel. The obtained Curie temperatures agree well with experiment. Our results indicate that the magnetic transition temperature is significantly overestimated by using the density-density type of Coulomb interaction.
LIM, M.; PARK, Y.; Jung, H.; SHIN, Y.; Rim, H.; PARK, C.
2017-12-01
To measure all components of a physical property, for example the magnetic field, is more useful than to measure its magnitude only in interpretation and application thereafter. To convert the physical property measured in 3 components on a random coordinate system, for example on moving magnetic sensor body's coordinate system, into 3 components on a fixed coordinate system, for example on geographical coordinate system, by the rotations of coordinate system around Euler angles for example, we should have the attitude values of the sensor body in time series, which could be acquired by an INS-GNSS system of which the axes are installed coincident with those of the sensor body. But if we want to install some magnetic sensors in array at sea floor but without attitude acquisition facility of the magnetic sensors and to monitor the variation of magnetic fields in time, we should have also some way to estimate the relation between the geographical coordinate system and each sensor body's coordinate system by comparison of the vectors only measured on both coordinate systems on the assumption that the directions of the measured magnetic field on both coordinate systems are the same. For that estimation, we have at least 3 ways. The first one is to calculate 3 Euler angles phi, theta, psi from the equation Vgeograph = Rx(phi) Ry(theta) Rz(psi) Vrandom, where Vgeograph is the vector on geographical coordinate system etc. and Rx(phi) is the rotation matrix around the x axis by the angle phi etc. The second one is to calculate the difference of inclination and declination between the 2 vectors on spherical coordinate system. The third one, used by us for this study, is to calculate the angle of rotation along a great circle around the rotation axis, and the direction of the rotation axis. We installed no. 1 and no. 2 FVM-400 fluxgate magnetometers in array near Cheongyang Geomagnetic Observatory (IAGA code CYG) and acquired time series of magnetic fields for CYG and for
Energy Technology Data Exchange (ETDEWEB)
Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Xu, Zhe, E-mail: boyang@ynao.ac.cn, E-mail: yjy@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China)
2015-04-20
We present the first observation of the formation and eruption of a small circular filament driven by a rotating network magnetic field (RNF) in the quiet Sun. In the negative footpoint region of an inverse J-shaped dextral filament, the RNF was formed by the convergence to supergranular junctions of several magnetic flux patches of the same polarity, and it then rotated counterclockwise (CCW) for approximately 11 hr and showed up as a CCW rotating EUV cyclone, during which time the filament gradually evolved into a circular filament that surrounded the cyclone. When the calculated convergence and vortex flows appeared around the RNF during its formation and rotation phases, the injected magnetic helicity calculation also showed negative helicity accumulation during the RNF rotation that was consistent with the dextral chirality of the filament. Finally, the RNF rotation stopped and the cyclone disappeared, and, probably due to an emerging bipole and its forced cancellation with the RNF, the closure filament underwent an eruption along its axis in the (clockwise) direction opposite to the rotation directions of the RNF and cyclone. These observations suggest that the RNFs might play an important role in the formation of nearby small-scale circular filaments as they transport and inject magnetic energy and helicity, and the formation of the EUV cyclones may be a further manifestation of the helicity injected into the corona by the rotation of the RNFs in the photosphere. In addition, the new emerging bipole observed before the filament eruption might be responsible for destabilizing the system and triggering the magnetic reconnection which proves useful for the filament eruption.
Energy Technology Data Exchange (ETDEWEB)
Maldonado-Velázquez, M. [Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de México, 04510 (Mexico); Barrón-Palos, L., E-mail: libertad@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 (Mexico); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Snow, W.M. [Indiana University, Bloomington, IN 47405 (United States)
2017-05-11
The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10{sup −7} rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.
Measurements of plasma rotation in an axially magnetized MPD arc-jet
Energy Technology Data Exchange (ETDEWEB)
Tobari, Hiroyuki; Ashino, Masashi; Yoshino, Kyohei; Sagi, Yukiko; Yoshinuma, Mikirou; Hattori, Kunihiko; Ando, Akira; Inutake, Masaaki [Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi (Japan)
2001-01-24
Characteristics of an axially magnetized MPD (magneto-plasma-dynamic) arcjet plasma are investigated by spectroscopy on the HITOP (High density of Tohoku Plasma) device in Tohoku University. Plasma flow and rotational velocity and temperature of He ion and atom near the muzzle region of MPD arcjet are measured by Doppler shift and broadening of the HeI ({lambda}=578.56 nm) and HeII ({lambda}=468.58 nm) lines. From the measured radial profile of rotational velocity and temperature of He ion, the radial profiles of electrical field and space potential are calculated and it has been found that the potential profile in the core region is parabolic, which shows the plasma rotates as a rigid body. (author)
Energy Technology Data Exchange (ETDEWEB)
Vanderbemden, P [SUPRATECS and Department of Electrical Engineering and Computer Science B28, Sart-Tilman, B-4000 Liege (Belgium); Hong, Z [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Coombs, T A [Centre for Advanced Photonics and Electronics, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Ausloos, M [SUPRATECS and Department of Physics B5, Sart-Tilman, B-4000 Liege (Belgium); Babu, N Hari [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cardwell, D A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Campbell, A M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom)
2007-09-15
Bulk melt-processed Y-Ba-Cu-O (YBCO) has significant potential for a variety of high-field permanent-magnet-like applications, such as the rotor of a brushless motor. When used in rotating devices of this kind, however, the YBCO can be subjected to both transient and alternating magnetic fields that are not parallel to the direction of magnetization and which have a detrimental effect on the trapped field. These effects may lead to long-term decay of the magnetization of the bulk sample. In the present work, we analyze both experimentally and numerically the remagnetization process of a melt-processed YBCO single domain that has been partially demagnetized by a magnetic field applied orthogonal to the initial direction of trapped flux. Magnetic torque measurements are used as a tool to probe changes in the remanent magnetization during various sequences of applied field. The application of a small magnetic field between the transverse cycles parallel to the direction of original magnetization results in partial remagnetization of the sample. Rotating the applied field, however, is found to be much more efficient at remagnetizing the bulk material than applying a magnetizing field pulse of the same amplitude. The principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law. Finally, the remagnetization process is shown to result from the complex modification of current distribution within the cross-section of the bulk sample.
International Nuclear Information System (INIS)
Vanderbemden, P; Hong, Z; Coombs, T A; Ausloos, M; Babu, N Hari; Cardwell, D A; Campbell, A M
2007-01-01
Bulk melt-processed Y-Ba-Cu-O (YBCO) has significant potential for a variety of high-field permanent-magnet-like applications, such as the rotor of a brushless motor. When used in rotating devices of this kind, however, the YBCO can be subjected to both transient and alternating magnetic fields that are not parallel to the direction of magnetization and which have a detrimental effect on the trapped field. These effects may lead to long-term decay of the magnetization of the bulk sample. In the present work, we analyze both experimentally and numerically the remagnetization process of a melt-processed YBCO single domain that has been partially demagnetized by a magnetic field applied orthogonal to the initial direction of trapped flux. Magnetic torque measurements are used as a tool to probe changes in the remanent magnetization during various sequences of applied field. The application of a small magnetic field between the transverse cycles parallel to the direction of original magnetization results in partial remagnetization of the sample. Rotating the applied field, however, is found to be much more efficient at remagnetizing the bulk material than applying a magnetizing field pulse of the same amplitude. The principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law. Finally, the remagnetization process is shown to result from the complex modification of current distribution within the cross-section of the bulk sample
Temporal Variation of the Rotation of the Solar Mean Magnetic Field
Energy Technology Data Exchange (ETDEWEB)
Xie, J. L.; Shi, X. J.; Xu, J. C., E-mail: xiejinglan@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)
2017-04-01
Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.
Tissue discrimination in magnetic resonance imaging of the rotator cuff
International Nuclear Information System (INIS)
Meschino, G J; Comas, D S; González, M A; Ballarin, V L; Capiel, C
2016-01-01
Evaluation and diagnosis of diseases of the muscles within the rotator cuff can be done using different modalities, being the Magnetic Resonance the method more widely used. There are criteria to evaluate the degree of fat infiltration and muscle atrophy, but these have low accuracy and show great variability inter and intra observer. In this paper, an analysis of the texture features of the rotator cuff muscles is performed to classify them and other tissues. A general supervised classification approach was used, combining forward-search as feature selection method with kNN as classification rule. Sections of Magnetic Resonance Images of the tissues of interest were selected by specialist doctors and they were considered as Gold Standard. Accuracies obtained were of 93% for T1-weighted images and 92% for T2-weighted images. As an immediate future work, the combination of both sequences of images will be considered, expecting to improve the results, as well as the use of other sequences of Magnetic Resonance Images. This work represents an initial point for the classification and quantification of fat infiltration and muscle atrophy degree. From this initial point, it is expected to make an accurate and objective system which will result in benefits for future research and for patients’ health. (paper)
Tissue discrimination in magnetic resonance imaging of the rotator cuff
Meschino, G. J.; Comas, D. S.; González, M. A.; Capiel, C.; Ballarin, V. L.
2016-04-01
Evaluation and diagnosis of diseases of the muscles within the rotator cuff can be done using different modalities, being the Magnetic Resonance the method more widely used. There are criteria to evaluate the degree of fat infiltration and muscle atrophy, but these have low accuracy and show great variability inter and intra observer. In this paper, an analysis of the texture features of the rotator cuff muscles is performed to classify them and other tissues. A general supervised classification approach was used, combining forward-search as feature selection method with kNN as classification rule. Sections of Magnetic Resonance Images of the tissues of interest were selected by specialist doctors and they were considered as Gold Standard. Accuracies obtained were of 93% for T1-weighted images and 92% for T2-weighted images. As an immediate future work, the combination of both sequences of images will be considered, expecting to improve the results, as well as the use of other sequences of Magnetic Resonance Images. This work represents an initial point for the classification and quantification of fat infiltration and muscle atrophy degree. From this initial point, it is expected to make an accurate and objective system which will result in benefits for future research and for patients’ health.
Gao, Liang; Zhao, Yue; Yang, Zhenyu; Liu, Jianmin; Liu, Xiaochun; Zhang, Shuan-Hong; Pei, Junling
2018-01-01
To reconstruct the paleoposition of the Antarctic Peninsula relative to the South American Plate during the breakup of Gondwana, as well as the opening kinematics of the Drake Passage, we conducted detailed paleomagnetic, rock magnetic, and isotopic chronology studies of Byers Peninsula (Livingston Island) and Fildes Peninsula (King George Island) of the South Shetland Islands. The 40Ar/39Ar ages of the Agate Beach Formation to the Long Hill Formation in Fildes Peninsula range from 56.38 ± 0.2 Ma to 52.42 ± 0.19 Ma. Low natural remanent magnetization/isothermal remanent magnetization ratios, inconsistency with the polarity constrained by the paleomagnetic results and 40Ar/39Ar age constraints, as well as the widespread cation-deficient titanomagnetite and Ti-free magnetite of secondary origin, indicate that the volcanic and sedimentary rocks of Fildes Peninsula were remagnetized at about 55 Ma. Combining our results with previous data from the South Shetland Islands and the Antarctic Peninsula, we calculated the paleopoles for 110 Ma and 55 Ma for the South Shetland Islands and the Antarctic Peninsula. The paleomagnetic reconstruction of the relative paleoposition of the Antarctic Peninsula and South America shows that these plates were connected and experienced a southward movement and clockwise rotation from 110 to 55 Ma. Subsequently, southward translation and clockwise rotation of the Antarctic Peninsula between 55 and 27 Ma separated the Antarctic Peninsula and South America, forming the Drake Passage. Northward translation of South America after 27 Ma increased the N-S divergence and increased the distance between the Antarctic Peninsula and the South American Plate.
Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field
Energy Technology Data Exchange (ETDEWEB)
Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Fukushima, Tadamasa [Shimadzu GLC Ltd., Phenomenex Support Centre, Tokyo 110-0016 (Japan); Morimoto, Hisao; Usami, Ron [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyonet.toyo.ac.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)
2010-03-19
We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).
International Nuclear Information System (INIS)
Bazaliy, Y. B.; Jones, B. A.
2002-01-01
''Spin-transfer'' torque is created when electric current is passed through metallic ferromagnets and may have interesting applications in spintronics. So far it was experimentally studied in ''collinear'' geometries, where it is difficult to predict whether magnetization will coherently rotate or spin-waves will be generated. Here we propose an easy modification of existing experiment in which the spin-polarization of incoming current will no longer be collinear with magnetization and recalculate the switching behavior of the device. We expect that a better agreement with the magnetization rotation theory will be achieved. That can be an important step in reconciling alternative points of view on the effect of spin-transfer torque
Abdoli-Arani, A.; Ramezani-Arani, R.
2012-11-01
The dielectric permittivity tensor elements of a rotating cold collisionless plasma spheroid in an external magnetic field with toroidal and axial components are obtained. The effects of inhomogeneity in the densities of charged particles and the initial toroidal velocity on the dielectric permittivity tensor and field equations are investigated. The field components in terms of their toroidal components are calculated and it is shown that the toroidal components of the electric and magnetic fields are coupled by two differential equations. The influence of thermal and collisional effects on the dielectric tensor and field equations in the rotating plasma spheroid are also investigated. In the limiting spherical case, the dielectric tensor of a stationary magnetized collisionless cold plasma sphere is presented.
Differential detection for measurements of Faraday rotation by means of ac magnetic fields
International Nuclear Information System (INIS)
Valev, V K; Wouters, J; Verbiest, T
2008-01-01
We demonstrate that by using a combination of a Wollaston prism and two photodiodes the accuracy in the measurements of Faraday rotation with ac magnetic fields can be greatly improved. Our experiments were performed on microscope cover glass plates with thicknesses between 0.13 and 0.16 mm. We show that our setup is capable of distinguishing between the Faraday rotation signals of glass plates having a difference in thickness of a few micrometers, corresponding to Faraday rotations of hundreds of microdegrees per Tesla only
Feonychev, A. I.
It is well known that numerous experiments on crystal growth by the Bridgman method in space had met with only limited success. Because of this, only floating zone method is promising at present. However, realization of this method demands solution of some problems, in particular reduction of dopant micro- and macrosegregation. Rotating magnetic field is efficient method for control of flow in electrically conducting fluid and transfer processes. Investigation of rotating magnetic field had initiated in RIAME MAI in 1994 /3/. Results of the last investigations had been presented in /4/. Mathematical model of flow generated by rotating magnetic field and computer program were verified by comparison with experiment in area of developed oscillatory flow. Nonlinear analysis of flow stability under combination of thermocapillary convection and secondary flow generated by rotating magnetic field shows that boundary of transition from laminar to oscillatory flow is nonmonotone function in the plane of Marangoni number (Ma) - combined parameter Reω Ha2 (Ha is Hartman number, Reω is dimensionless velocity of magnetic field rotation). These data give additional knowledge of mechanism of onset of oscillations. In this case, there is reason to believe that the cause is Eckman's viscous stresses in rotating fluid on solid end-walls. It was shown that there is a possibility to increase stability of thermocapillary convection and in doing so to remove the main cause of dopant microsegregation. In doing so, if parameters of rotating magnetic field had been incorrectly chosen the dangerous pulsating oscillations are to develop. Radial macrosegregation of dopant can result from correct choosing of parameters of rotating magnetic field. As example, optimization of rotating magnetic field had been carried out for Ge(Ga) under three values of Marangoni number in weightlessness conditions. In the case when rotating magnetic field is used in terrestrial conditions, under combination of
Dynamics of local isolated magnetic flux tubes in a fast-rotating stellar atmosphere
International Nuclear Information System (INIS)
Chou, W.; Tajima, C.T.; Shibata, K.
1998-01-01
Dynamics of magnetic flux tubes in the fast rotating stellar atmosphere is studied. We focus on the effects and signatures of the instability of the flux tube emergence influenced by the Coriolis force. We present the result from a linear stability analysis and discuss its possible signatures in the course of the evolution of G-type and M-type stars. We present a three dimensional magnetohydrodynamical simulation of local isolated magnetic flux tubes under a magnetic buoyancy instability in co-rotating Cartesian coordinates. We find that the combination of the buoyancy instability and the Coriolis effect gives rise to a mechanism, to twist the emerging magnetic flux tube into a helical structure. The tilt angle, east-west asymmetry and magnetic helicity of the Twisted flux tubes in the simulations are studied in detail. The linear and nonlinear analyses provide hints as to what kind of pattern of large spots in young M-type main-sequence stars might be observed. We find that young and old G-type stars may have different distributions of spots while M-type stars may always have low latitudes spots. The size of stellar spots may decrease when a star becomes older, due to the decreasing of magnetic field. A qualitative comparison with solar observations is also presented
International Nuclear Information System (INIS)
Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas
2013-01-01
The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition. (paper)
Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas
2013-11-01
The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.
Heisenberg Model in a Rotating Magnetic Field
Institute of Scientific and Technical Information of China (English)
LIN Qiong-Gui
2005-01-01
We study the Heisenberg model under the influence of a rotating magnetic field. By using a time-dependent unitary transformation, the time evolution operator for the Schrodinger equation is obtained, which involves no chronological product. The spin vectors (mean values of the spin operators) are obtained as explicit functions of time in the most general case. A series of cyclic solutions are presented. The nonadiabatic geometric phases of these cyclic solutions are calculated, and are expressed in terms of the solid angle subtended by the closed trace of the total spin vector, as well as in terms of those of the individual spins.
Lin, N.; Walker, R. J.; Mcpherron, R. L.; Kivelson, M. G.
1990-01-01
During the 1054 UT CDAW 6 substorm event, two ISEE spacecraft observed dynamic changes in the magnetic field and in the flux of energetic particles in the near-earth plasma sheet. In the substorm growth phase, the magnetic field at both ISEE spacecraft became tail-like. Following expansion phase onset, two small scale magnetic islands were observed moving tailward at a velocity of about 580 km/s. The passage of these two magnetic islands was coincident with bursts of tailward streaming energetic particles. The length of the magnetic loops was estimated to have been about 2 to 3 earth radii while the height of the loops was less than 0.5 earth radii. The magnetic islands were produced by multipoint reconnection processes in the near tail plasma sheet which may have been associated with the formation of the near-earth neutral line and the subsequent formation of a large scale plasmoid. The near-earth neutral line retreated tailward later in the expansion phase, as suggested by the reversal of the streaming of energetic particles.
Evaluation of post-exercise magnetic resonance images of the rotator cuff
International Nuclear Information System (INIS)
Cahoy, P.M.; Orwin, J.F.; Tuite, M.J.
1996-01-01
Objective. To examine the effect of strenuous exercise on the magnetic resonance imaging (MRI) characteristics of the rotator cuff tendon. A second objective was to define an optimal time to image the rotator cuff and possibly eliminate exercise-induced false positives. Design and patients. Five male subjects from 24 to 38 years old with normal rotator cuffs by history, physical examination, and screening MRI underwent a rotator cuff exercise session on the Biodex System 2 (Biodex, Shirley, New York). The exercise sessions were followed by sequential MRI scans of the exercised shoulder. These were performed immediately and at 8 h and 24 h after exercise. Results and conclusions. The rotator cuff tendon and subacromial-subdeltoid bursal signal remained unchanged from the pre-exercise through the 24-h post-exercise scans. The rotator cuff muscle signal was increased in five of five subjects on the immediate post-exercise fat-suppressed T2-weighted images. This signal returned to baseline by the 8-h scan. Positive findings of rotator cuff pathology on MRI after strenuous athletic activity should not be discounted as normal exercise-induced changes. Also, diagnostic MRI scanning may take place after a practice session without an increased risk of false positives. (orig.). With 1 fig
Evaluation of post-exercise magnetic resonance images of the rotator cuff
Energy Technology Data Exchange (ETDEWEB)
Cahoy, P M [Division of Orthopedic Surgery G5/358, University of Wisconsin Hospital and Clinics, Madison, WI (United States); Orwin, J F [Division of Orthopedic Surgery G5/358, University of Wisconsin Hospital and Clinics, Madison, WI (United States); Tuite, M J [Department of Radiology, University of Wisconsin Hospital and Clinics, Madison, WI (United States)
1996-11-01
Objective. To examine the effect of strenuous exercise on the magnetic resonance imaging (MRI) characteristics of the rotator cuff tendon. A second objective was to define an optimal time to image the rotator cuff and possibly eliminate exercise-induced false positives. Design and patients. Five male subjects from 24 to 38 years old with normal rotator cuffs by history, physical examination, and screening MRI underwent a rotator cuff exercise session on the Biodex System 2 (Biodex, Shirley, New York). The exercise sessions were followed by sequential MRI scans of the exercised shoulder. These were performed immediately and at 8 h and 24 h after exercise. Results and conclusions. The rotator cuff tendon and subacromial-subdeltoid bursal signal remained unchanged from the pre-exercise through the 24-h post-exercise scans. The rotator cuff muscle signal was increased in five of five subjects on the immediate post-exercise fat-suppressed T2-weighted images. This signal returned to baseline by the 8-h scan. Positive findings of rotator cuff pathology on MRI after strenuous athletic activity should not be discounted as normal exercise-induced changes. Also, diagnostic MRI scanning may take place after a practice session without an increased risk of false positives. (orig.). With 1 fig.
Twin Rotating Coils for Cold Magnetic Measurements of 15 m Long LHC Dipoles
Billan, J; Buzio, M; D'Angelo, G; Deferne, G; Dunkel, O; Legrand, P; Rijllart, A; Siemko, A; Sievers, P; Schloss, S; Walckiers, L
2000-01-01
We describe here a new harmonic coil system for the field measurement of the superconducting, twin aperture LHC dipoles and the associated corrector magnets. Besides field measurements the system can be used as an antenna to localize the quench origin. The main component is a 16 m long rotating shaft, made up of 13 ceramic segments, each carrying two tangential coils plus a central radial coil, all working in parallel. The segments are connected with flexible Ti-alloy bellows, allowing the piecewise straight shaft to follow the curvature of the dipole while maintaining high torsional rigidity. At each interconnection the structure is supported by rollers and ball bearings, necessary for the axial movement for installation and for the rotation of the coil during measurement. Two such shafts are simultaneously driven by a twin-rotating unit, thus measuring both apertures of a dipole at the same time. This arrangement allows very short measurement times (typically 10 s) and is essential to perform cold magnetic ...
International Nuclear Information System (INIS)
Gorican, Viktor; Hamler, Anton; Jesenik, Marko; Stumberger, Bojan; Trlep, Mladen
2004-01-01
The magnetic properties of grain-oriented material under rotational magnetic flux condition were measured, using two different pairs of B coils with different angle with respect to the rolling direction. It is known that induced voltages in two perpendicularly positioned B coils do not represent the actual amplitude and the angular speed of vector B in the measuring region. Consequently, the control of the induced voltages in the B coils at different positions means that the sample is measured under different magnetic flux condition. This leads to a difference between the results of vector H and the rotational loss
FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS
International Nuclear Information System (INIS)
Melrose, D. B.
2010-01-01
The standard formula for the rotation measure (RM), which determines the position angle, ψ = RMλ 2 , due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, Δψ is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.
FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS
Energy Technology Data Exchange (ETDEWEB)
Melrose, D B [SIfA, School of Physics, University of Sydney, NSW 2006 (Australia)
2010-12-20
The standard formula for the rotation measure (RM), which determines the position angle, {psi} = RM{lambda}{sup 2}, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution {Delta}{psi} needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, {Delta}{psi} is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.
Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations
Energy Technology Data Exchange (ETDEWEB)
Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Huijsmans, G. [ITER Organization, Route de Vinon, F-13115 Saint-Paul-Lez-Durance (France); Pamela, S. [IIFS-PIIM. Aix Marseille Université - CNRS, 13397 Marseille Cedex20 (France); Chapman, I.; Kirk, A.; Thornton, A. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxon OX14 3DB (United Kingdom); Hoelzl, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Cahyna, P. [Association EURATOM/IPP.CR, Prague (Czech Republic)
2013-10-15
The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.
A Method to Measure the Transverse Magnetic Field and Orient the Rotational Axis of Stars
Energy Technology Data Exchange (ETDEWEB)
Leone, Francesco; Scalia, Cesare; Gangi, Manuele; Giarrusso, Marina [Università di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Via S. Sofia 78, I-95123 Catania (Italy); Munari, Matteo; Scuderi, Salvatore; Trigilio, Corrado [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Stift, Martin J. [Armagh Observatory, College Hill, Armagh BT61 9DG. Northern Ireland (United Kingdom)
2017-10-20
Direct measurements of stellar magnetic fields are based on the splitting of spectral lines into polarized Zeeman components. With a few exceptions, Zeeman signatures are hidden in data noise, and a number of methods have been developed to measure the average, over the visible stellar disk, of longitudinal components of the magnetic field. At present, faint stars are only observable via low-resolution spectropolarimetry, which is a method based on the regression of the Stokes V signal against the first derivative of Stokes I . Here, we present an extension of this method to obtain a direct measurement of the transverse component of stellar magnetic fields by the regression of high-resolution Stokes Q and U as a function of the second derivative of Stokes I . We also show that it is possible to determine the orientation in the sky of the rotation axis of a star on the basis of the periodic variability of the transverse component due to its rotation. The method is applied to data, obtained with the Catania Astrophysical Observatory Spectropolarimeter along the rotational period of the well known magnetic star β CrB.
Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C
2016-01-01
We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.
360° deterministic magnetization rotation in a three-ellipse magnetoelectric heterostructure
Kundu, Auni A.; Chavez, Andres C.; Keller, Scott M.; Carman, Gregory P.; Lynch, Christopher S.
2018-03-01
A magnetic dipole-coupled magnetoelectric heterostructure comprised of three closely spaced ellipse shapes was designed and shown to be capable of achieving deterministic in-plane magnetization rotation. The design approach used a combination of conventional micromagnetic simulations to obtain preliminary configurations followed by simulations using a fully strain-coupled, time domain micromagnetic code for a detailed assessment of performance. The conventional micromagnetic code has short run times and was used to refine the ellipse shape and orientation, but it does not accurately capture the effects of the strain gradients present in the piezoelectric and magnetostrictive layers that contribute to magnetization reorientation. The fully coupled code was used to assess the effects of strain and magnetic field gradients on precessional switching in the side ellipses and on the resulting dipole-field driven magnetization reorientation in the center ellipse. The work led to a geometry with a CoFeB ellipse (125 nm × 95 nm × 4 nm) positioned between two smaller CoFeB ellipses (75 nm × 50 nm × 4 nm) on a 500 nm PZT-5H film substrate clamped at its bottom surface. The smaller ellipses were oriented at 45° and positioned at 70° and 250° about the central ellipse due to the film deposition on a thick substrate. A 7.3 V pulse applied to the PZT for 0.22 ns produced 180° switching of the magnetization in the outer ellipses that then drove switching in the center ellipse through dipole-dipole coupling. Full 360° deterministic rotation was achieved with a second pulse. The temporal response of the resulting design is discussed.
A brief review of intruder rotational bands and magnetic rotation in the A = 110 mass region
Banerjee, P.
2018-05-01
Nuclei in the A ∼ 110 mass region exhibit interesting structural features. One of these relates to the process by which specific configurations, built on the excitation of one or more protons across the Z = 50 shell-gap, manifest as collective rotational bands at intermediate spins and gradually lose their collectivity with increase in spin and terminate in a non-collective state at the maximum spin which the configuration can support. These bands are called terminating bands that co-exist with spherical states. Some of these bands are said to terminate smoothly underlining the continuous character of the process by which the band evolves from significant collectivity at low spin to a pure particle-hole non-collective state at the highest spin. The neutron-deficient A ∼ 110 mass region provides the best examples of smoothly terminating bands. The present experimental and theoretical status of such bands in several nuclei with 48 ≤ Z ≤ 52 spanning the 106 ≤ A ≤ 119 mass region have been reviewed in this article. The other noteworthy feature of nuclei in the A ∼ 110 mass region is the observation of regular rotation-like sequences of strongly enhanced magnetic dipole transitions in near-spherical nuclei. These bands, unlike the well-studied rotational sequences in deformed nuclei, arise from a spontaneous symmetry breaking by the anisotropic currents of a few high-j excited particles and holes. This mode of excitation is called magnetic rotation and was first reported in the Pb region. Evidence in favor of the existence of such structures, also called shears bands, are reported in the literature for a large number of Cd, In, Sn and Sb isotope with A ∼ 110. The present article provides a general overview of these reported structures across this mass region. The review also discusses antimagnetic rotation bands and a few cases of octupole correlations in the A = 110 mass region.
International Nuclear Information System (INIS)
Sosenko, P.; Pierre, Th.; Zagorodny, A.
2004-01-01
The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)
Magnetic Helicities and Dynamo Action in Magneto-rotational Turbulence
Energy Technology Data Exchange (ETDEWEB)
Bodo, G.; Rossi, P. [INAF/Osservatorio Astrofisico di Torino, Strada Osservatorio 20, I-10025 Pino Torinese (Italy); Cattaneo, F. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S. Ellis Avenue, Chicago IL 60637 (United States); Mignone, A., E-mail: bodo@oato.inaf.it [Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino (Italy)
2017-07-10
We examine the relationship between magnetic flux generation, taken as an indicator of large-scale dynamo action, and magnetic helicity, computed as an integral over the dynamo volume, in a simple dynamo. We consider dynamo action driven by magneto-rotational turbulence (MRT) within the shearing-box approximation. We consider magnetically open boundary conditions that allow a flux of helicity in or out of the computational domain. We circumvent the problem of the lack of gauge invariance in open domains by choosing a particular gauge—the winding gauge—that provides a natural interpretation in terms of the average winding number of pairwise field lines. We use this gauge precisely to define and measure the helicity and the helicity flux for several realizations of dynamo action. We find in these cases that the system as a whole does not break reflectional symmetry and that the total helicity remains small even in cases when substantial magnetic flux is generated. We find no particular connection between the generation of magnetic flux and the helicity or the helicity flux through the boundaries. We suggest that this result may be due to the essentially nonlinear nature of the dynamo processes in MRT.
Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes
Energy Technology Data Exchange (ETDEWEB)
Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr [Laboratoire AIM Paris-Saclay CEA/DSM—CNRS—Université Paris Diderot, IRFU/DAp CEA Paris-Saclay, F-91191 Gif-sur-Yvette Cedex (France)
2017-09-01
During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing a seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.
Cosmic Magnetic Fields : XXV Canary Islands Winter School of Astrophysics
Martinez Gonzalez, Maria Jesus
2018-01-01
Magnetic fields pervade the universe and play an important role in many astrophysical processes. However, they require specialised observational tools, and are challenging to model and understand. This volume provides a unified view of magnetic fields across astrophysical and cosmological contexts, drawing together disparate topics that are rarely covered together. Written by the lecturers of the XXV Canary Islands Winter School, it offers a self-contained introduction to cosmic magnetic fields on a range of scales. The connections between the behaviours of magnetic fields in these varying contexts are particularly emphasised, from the relatively small and close ranges of the Sun, planets and stars, to galaxies and clusters of galaxies, as well as on cosmological scales. Aimed at young researchers and graduate students, this up-to-date review uniquely brings together a subject often tackled by disconnected communities, conveying the latest advances as well as highlighting the limits of our current understandi...
Calorimetric method of ac loss measurement in a rotating magnetic field
Energy Technology Data Exchange (ETDEWEB)
Ghoshal, P. K. [Oxford Instruments NanoScience, Abingdon, Oxfordshire OX13 5QX (United Kingdom); Coombs, T. A.; Campbell, A. M. [Department of Engineering, Electrical Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)
2010-07-15
A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.
Bifurcation of plasma cylinder equilibrium into a stationary helical flow with magnetic islands
International Nuclear Information System (INIS)
Gubarev, V.F.; Dmitrenko, A.G.; Fesenko, A.I.
1985-01-01
Introduction of the low-hydrodynamic viscosity into the system of nonlinear MHD-equations enabled to use the bifurcation theory for the investigation into nonlinear phenomena connected with a tearing mode. The existance of a stable stationary helical flow with magnetic islands in the vicinity of a neutral curve is established. Fransfer from an axisymmetric equilibrium of a plasma cylinder to a helical one takes place only under soft conditions at both sides of the neutral curve. This result confirms the fact that the tearing mode, actually, is not an instability and may be con sidered only as a reason of formation of equilibrium with splitted magnetic surfaces. Really, changing the q 0 parameter (q 0 is the value proportional to a value of stability margin) at the plasma filament boundary a plasma equilibrium is attained corresponding to a stable branch of the bifurcation curve. In this case, a stable branch of the bifurcation curve corresponds to a helical stationary flow with magnetic islands in the instabwility region determined from the linear theory
Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices.
Zhai, Xiaofang; Cheng, Long; Liu, Yang; Schlepütz, Christian M; Dong, Shuai; Li, Hui; Zhang, Xiaoqiang; Chu, Shengqi; Zheng, Lirong; Zhang, Jing; Zhao, Aidi; Hong, Hawoong; Bhattacharya, Anand; Eckstein, James N; Zeng, Changgan
2014-07-09
Lattice distortion due to oxygen octahedral rotations have a significant role in mediating the magnetism in oxides, and recently attracts a lot of interests in the study of complex oxides interface. However, the direct experimental evidence for the interrelation between octahedral rotation and magnetism at interface is scarce. Here we demonstrate that interfacial octahedral rotation are closely linked to the strongly modified ferromagnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices. The maximized ferromagnetic moment in the N=6 superlattice is accompanied by a metastable structure (space group Imcm) featuring minimal octahedral rotations (a(-)a(-)c(-), α~4.2°, γ~0.5°). Quenched ferromagnetism for Nmagnetism. Our study demonstrates that engineering superlattices with controllable interfacial structures can be a feasible new route in realizing functional magnetic materials.
International Nuclear Information System (INIS)
Glasser, A.H.; Cohen, S.A.
2001-01-01
The trajectories of individual electrons are studied numerically in a 3D, prolate, FRC [field-reversed configuration] equilibrium magnetic geometry with added small-amplitude, slowly rotating, odd-parity magnetic fields (RMFos). RMFos cause electron heating by toroidal acceleration near the O-point line and by field-parallel acceleration away from it, both followed by scattering from magnetic-field inhomogeneities. Electrons accelerated along the O-point line move antiparallel to the FRC's current and attain average toroidal angular speeds near that of the RMFo, independent of the sense of RMFo rotation. A conserved transformed Hamiltonian, dependent on electron energy and RMFo sense, controls electron flux-surface coordinate
Toroidal rotation braking with n = 1 magnetic perturbation field on JET
DEFF Research Database (Denmark)
Sun, Y; Liang, Y; Koslowski, H R
2010-01-01
A strong toroidal rotation braking has been observed in plasmas with application of an n = 1 magnetic perturbation field on the JET tokamak. Calculation results from the momentum transport analysis show that the torque induced by the n = 1 perturbation field has a global profile. The maximal value...
International Nuclear Information System (INIS)
Hase, T.P.A.; Fulthorpe, B.D.; Wilkins, S.B.; Tanner, B.K.; Marrows, C.H.; Hickey, B.J.
2001-01-01
We report the observation of magnetic viscosity in the intensity of resonant magnetic soft X-ray scattering during rotational magnetisation processes in antiferromagnetically coupled Co/Cu multilayers. The hysteretic time-dependent component of the signal can be fitted to a single-exponential function that varies as a function of magnetising field
Analysis on the Viscous Pumping in a Magnetic Fluid Seal Under a Rotating Load and the Seal Design
長屋, 幸助; 大沼, 浩身; 佐藤, 淳
1990-01-01
This paper discusses effects of viscous pumping in a magnetic fluid seal under a rotating load. The Reynolds equation was presented for the seal based on magnetic fluid mechanics, and the expressions for obtaining pressures in the seal, eccentricities of the rotating shaft due to the viscous pumping and seal pressures were given. Numerical Calculations were carried out for some sample problems, and the effect of magnetic flux densities on the pressure in the seal and the seal pressures were c...
Magnetic-flutter-induced pedestal plasma transport
International Nuclear Information System (INIS)
Callen, J.D.; Hegna, C.C.; Cole, A.J.
2013-01-01
Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δB ρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δB ρ s induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δB ρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δB ρ /B 0 ) 2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an
Magnetic-flutter-induced pedestal plasma transport
Callen, J. D.; Hegna, C. C.; Cole, A. J.
2013-11-01
Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron
Directory of Open Access Journals (Sweden)
Manh-Huong Phan
2016-12-01
Full Text Available A new type of rotary coolers based on the temperature change (ΔTrot of an anisotropic superconductor when rotated in a constant magnetic field is proposed. We show that at low temperature the Sommerfeld coefficient γ(B,Θ of a single crystalline superconductor, such as MgB2 and NbS2, sensitively depends on the applied magnetic field (B and the orientation of the crystal axis (Θ, which is related to the electronic entropy (SE and temperature (T via the expression: SE=γT. A simple rotation of the crystal from one axis to one another in a constant magnetic field results in a change in γ and hence SE: ΔSE=ΔγT. A temperature change −ΔTrot ∼ 0.94 K from a bath temperature of 2.5 K is achieved by simply rotating the single crystal MgB2 by 90° with respect to the c-axis direction in a fixed field of 2 T. ΔTrot can be tuned by adjusting the strength of B within a wide magnetic field range. Our study paves the way for development of new materials and cryogenic refrigerators that are potentially more energy-efficient, simplified, and compact.
International Nuclear Information System (INIS)
Vyas, M.K.; Chhajlani, R.K.
1989-01-01
The effects of suspended particles and the finite thermal and electrical conductivities on the magnetogravitational instability of an ionized rotating plasma through a porous medium have been investigated, under varying assumptions of the rotational axis and the modes of propagation. In all the cases it is observed that the Jeans' criterion determines the condition of instability with some modifications due to various parameters. The effects of rotation, the medium porosity, and the mass concentration of the suspended particles on instability condition have been removed by (1) magnetic field for longitudinal mode of propagation with perpendicular rotational axis, and (2) viscosity for transverse propagation with rotational axis parallel to the magnetic field. The mass concentration reduces the effects of rotation. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one, whereas the effect of the finite electrical conductivity is to delink the alignment between the magnetic field and the plasma. Porosity reduces the effects of both the magnetic field and the rotation, on Jeans' criterion. (author)
Magnetic rotational hysteresis study on spherical 85-160 nm Fe3O4 particles
Schmidbauer, E.
1988-05-01
Rotational hysteresis losses Wr were determined as a function of magnetic field H for dispensed spherical Fe3O4 particles of mean grain sizes 85 nm, 127 nm and 162 nm between 78 K and 294 K. The observed Wr-H curves are compared with theoretical curves for single domain particles. The analysed particles reveal centers of high magnetic anisotropy. Such centers can be of importance during the generation of a thermoremanent magnetization, as they may be the origin of enhanced magnetic stability.
Seed islands driven by turbulence and NTM dynamics
Muraglia, M.; Agullo, O.; Poye, A.; Benkadda, S.; Horton, W.; Dubuit, N.; Garbet, X.; Sen, A.
2014-10-01
Magnetic reconnection is an issue for tokamak plasmas. Growing magnetic islands expel energetic particles from the plasma core leading to high energy fluxes in the SOL and may cause damage to the plasma facing components. The islands grow from seeds from the bootstrap current effects that oppose the negative delta-prime producing nonlinear island growth. Experimentally, the onset of NTM is quantified in terms of the beta parameter and the sawtooth period. Indeed, in experiments, (3;2) NTM magnetic islands are often triggered by sawtooth precursors. However (2;1) magnetic islands can appear without noticeable MHD event and the seed islands origin for the NTM growth is still an open question. Macroscale MHD instabilities (magnetic islands) coexist with micro-scale turbulent fluctuations and zonal flows which impact island dynamics. Nonlinear simulations show that the nonlinear beating of the fastest growing small-scale ballooning interchange modes on a low order rational surface drive a magnetic islands located on the same surface. The island size is found to be controlled by the turbulence level and modifies the NTM threshold and dynamics.
Magnetic Field Studies in BL Lacertae through Faraday Rotation and a Novel Astrometric Technique
Directory of Open Access Journals (Sweden)
Sol N. Molina
2017-12-01
Full Text Available It is thought that dynamically important helical magnetic fields twisted by the differential rotation of the black hole’s accretion disk or ergosphere play an important role in the launching, acceleration, and collimation of active galactic nuclei (AGN jets. We present multi-frequency astrometric and polarimetric Very Long Baseline Array (VLBA images at 15, 22, and 43 GHz, as well as Faraday rotation analyses of the jet in BL Lacertae as part of a sample of AGN jets aimed to probe the magnetic field structure at the innermost scales to test jet formation models. The novel astrometric technique applied allows us to obtain the absolute position at mm wavelengths without any external calibrator.
Impact of magnetic perturbation fields on tokamak plasmas
Energy Technology Data Exchange (ETDEWEB)
Fietz, Sina; Maraschek, Marc; Suttrop, Wolfgang; Zohm, Hartmut [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Classen, Ivo [FOM-Institute DIFFER, Nieuwegein (Netherlands); Collaboration: the ASDEX Upgrade Team
2015-05-01
Non-axisymmetric external magnetic perturbation (MP) fields arise in every tokamak e.g. due to not perfectly positioned external coils. Additionally many tokamaks, like ASDEX Upgrade (AUG), are equipped with a set of external coils, which produce a 3D MP field in addition to the equilibrium field. This field is used to either compensate for the intrinsic MP field or to influence MHD instabilities such as Edge Localised Modes (ELMs) or Neoclassical Tearing Modes (NTMs). But these MP fields can also give rise to a more global plasma response. The resonant components can penetrate the plasma and influence the stability of existing NTMs or even lead to their formation via magnetic reconnection. In addition they exert a local torque on the plasma. These effects are less pronounced at high plasma rotation where the resonant field components are screened. The non-resonant components do not influence NTMs directly but slow down the plasma rotation globally via the neoclassical toroidal viscous torque. The island formation caused by the MP field as well as the interaction of pre-existing islands with the MP field at AUG is presented. It is shown that these effects can be modelled using a simple forced reconnection theory. Also the effect of resonant and non-resonant MPs on the plasma rotation at AUG is discussed.
Bayones, F. S.; Abd-Alla, A. M.
2018-06-01
The prime objective of the present paper is to analyze the effect of magnetic field and rotation on the free vibrations of an elastic hollow sphere. The one-dimensional equation of motion is solved in terms of radial displacement. The frequency equation is obtained when the boundaries are free and fixed boundary conditions. The determination is concerned with the eigenvalues of the natural frequency of the free vibrations in the case of harmonic vibrations. The natural frequencies and the mode shapes are calculated numericall and the effects of rotation and magnetic field are discussed. It was shown that the dispersion curves of waves were significantly influenced by the magnetic field and rotation of the elastic sphere.
Energy Technology Data Exchange (ETDEWEB)
Dieckhoff, Jan, E-mail: j.dieckhoff@tu-bs.de [Institut fuer Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany); Schrittwieser, Stefan; Schotter, Joerg [Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna (Austria); Remmer, Hilke; Schilling, Meinhard; Ludwig, Frank [Institut fuer Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany)
2015-04-15
In this work, we report on the effect of the magnetic nanoparticle (MNP) concentration on the quantitative detection of proteins in solution with a rotating magnetic field (RMF) based homogeneous bioassay. Here, the phase lag between 30 nm iron oxide single-core particles and the RMF is analyzed with a fluxgate-based measurement system. As a test analyte anti-human IgG is applied which binds to the protein G functionalized MNP shell and causes a change of the phase lag. The measured phase lag changes for a fixed MNP and a varying analyte concentration are modeled with logistic functions. A change of the MNP concentration results in a nonlinear shift of the logistic function with the analyte concentration. This effect results from the law of mass action. Furthermore, the bioassay results are used to determine the association constant of the binding reaction. - Highlights: • A rotating magnetic field based homogeneous bioassay concept was presented. • Here, single-core iron oxide nanoparticles are applied as markers. • The impact of the particle concentration on the bioassay results is investigated. • The relation between particle concentration and bioassay sensitivity is nonlinear. • This finding can be reasonably explained by the law of mass action.
Addendum to 'Half coalescence of the m=1, n=1 magnetic island in tokamaks'
International Nuclear Information System (INIS)
Bussac, M.N.; Pellat, R.
1985-01-01
As an addendum to our previous work concerning the half-coalescence instability of an m=1, n=1 magnetic island in tokamaks, the potential energy is given for an arbitrary shape of the separatrix. (orig.)
Effect of magnetic island geometry on ECRH/ECCD and consequences to the NTM stabilization dynamics
Chatziantonaki, I.; Tsironis, C.; Isliker, H.; Vlahos, L.
2012-09-01
In the majority of codes that model ECCD-based NTM stabilization, the analysis of the EC propagation and absorption is performed in terms of the axisymmetric magnetic field, ignoring effects due to the island topology. In this paper, we analyze the wave propagation, absorption and current drive in the presence of NTMs, as well as the ECCD-driven island growth, focusing on the effect of the island geometry on the wave de-position. A primary evaluation of the consequences of these effects on the NTM evolution is also made in terms of the modified Rutherford equation.
A Rigidly Rotating Magnetosphere Model for the Circumstellar Environments of Magnetic OB Stars
Townsend, R.; Owocki, S.; Groote, D.
2005-11-01
We report on a new model for the circumstellar environments of rotating, magnetic hot stars. This model predicts the channeling of wind plasma into a corotating magnetosphere, where -- supported against gravity by centrifugal forces -- it can steadily accumulate over time. We apply the model to the B2p star σ Ori E, demonstrating that it can simultaneously reproduce the spectroscopic, photometric and magnetic variations exhibited by the star.
SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495
International Nuclear Information System (INIS)
Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.; Henry, Gregory W.
2015-01-01
A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence
Physics conditions for robust control of tearing modes in a rotating tokamak plasma
Lazzaro, E.; Borgogno, D.; Brunetti, D.; Comisso, L.; Fevrier, O.; Grasso, D.; Lutjens, H.; Maget, P.; Nowak, S.; Sauter, O.; Sozzi, C.; the EUROfusion MST1 Team
2018-01-01
The disruptive collapse of the current sustained equilibrium of a tokamak is perhaps the single most serious obstacle on the path toward controlled thermonuclear fusion. The current disruption is generally too fast to be identified early enough and tamed efficiently, and may be associated with a variety of initial perturbing events. However, a common feature of all disruptive events is that they proceed through the onset of magnetohydrodynamic instabilities and field reconnection processes developing magnetic islands, which eventually destroy the magnetic configuration. Therefore the avoidance and control of magnetic reconnection instabilities is of foremost importance and great attention is focused on the promising stabilization techniques based on localized rf power absorption and current drive. Here a short review is proposed of the key aspects of high power rf control schemes (specifically electron cyclotron heating and current drive) for tearing modes, considering also some effects of plasma rotation. From first principles physics considerations, new conditions are presented and discussed to achieve control of the tearing perturbations by means of high power ({P}{{EC}}≥slant {P}{{ohm}}) in regimes where strong nonlinear instabilities may be driven, such as secondary island structures, which can blur the detection and limit the control of the instabilities. Here we consider recent work that has motivated the search for the improvement of some traditional control strategies, namely the feedback schemes based on strict phase tracking of the propagating magnetic islands.
International Nuclear Information System (INIS)
Rhodes, Scott; Perez, Juan; Elborai, Shihab; Lee, Se-Hee; Zahn, Markus
2005-01-01
New flows and instabilities are presented for a ferrofluid drop contained in glass Hele-Shaw cells with simultaneously applied in-plane clockwise rotating and DC axial uniform magnetic fields. When a ferrofluid drop is stressed by a uniform DC axial magnetic field, up to ∼250 G in 0.9-1.4 mm gap Hele-Shaw cells, the drop forms a labyrinth pattern. With subsequent application of an in-plane uniform rotating magnetic field, up to ∼100 G rms at frequency 20-40 Hz, smooth spirals form from viscous shear due to ferrofluid flow. If the rotating magnetic field is applied first, the drop is held together without a labyrinth. Gradual increase of the DC axial magnetic field, to a critical magnetic field value, results in an abrupt phase transformation from a large drop to many small discrete droplets. A preliminary minimum magnetization and surface energy analysis is presented to model the phase transformation
Magnetic islands at the field reversal surface in reversed field pinches
International Nuclear Information System (INIS)
Pinsker, R.I.; Reiman, A.H.
1985-09-01
In the reversed field pinch (RFP), magnetic field perturbations having zero poloidal mode number and any toroidal mode number are resonant at the field reversal surface. Such perturbations are a particular threat to the RFP because of their weak radial dependence at low toroidal mode number, and because the toroidal field ripple is essentially of this type. The widths of the resulting islands are calculated in this paper. The self-consistent plasma response is included through the assumption that the plasma relaxes to a Taylor force-free state. The connection with linear tearing mode theory is established for those limits where arbitrarily large islands result from infinitesimal perturbations. Toroidal effects are considered, and application of the theory to RFP experiments is discussed
Class renormalization: islands around islands
International Nuclear Information System (INIS)
Meiss, J.D.
1986-01-01
An orbit of 'class' is one that rotates about a periodic orbit of one lower class with definite frequency. This contrasts to the 'level' of a periodic orbit which is the number of elements in its continued fraction expansion. Level renormalization is conventionally used to study the structure of quasi-periodic orbits. The scaling structure of periodic orbits encircling other periodic orbits in area preserving maps is discussed here. Fixed points corresponding to the accumulation of p/q bifurcations are found and scaling exponents determined. Fixed points for q > 2 correspond to self-similar islands around islands. Frequencies of the island boundary circles at the fixed points are obtained. Importance of this scaling for the motion of particles in stochastic regions is emphasized. (author)
Energy Technology Data Exchange (ETDEWEB)
Kumar, Dinesh; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur 313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)
2015-01-15
In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics.
International Nuclear Information System (INIS)
Kumar, Dinesh; Bhattacharyya, R.; Smolarkiewicz, P. K.
2015-01-01
In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics
Test of Magnetic Rotation near the band head in ^197,198Pb
Krücken, R.; Clark, R. M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Macchiavelli, A. O.; Lee, I. Y.; Schmid, G. J.; Stephens, F. S.; Vetter, K.; Dewald, A.; Peusquens, R.; von Brentano, P.; Baldsiefen, G.; Chmel, S.; Hübel, H.; Becker, J. A.; Bernstein, L. A.; Hauschild, K.
1998-04-01
The concept of magnetic rotation is tested near the band head of shears-bands in ^197,198Pb by means of a lifetime experiment with the recoil distance method (RDM). The experiment was performed using the Gammasphere array in conjunction with the Cologne Plunger. The B(M1) values extracted from the measured lifetimes can prove the applicability of the concept of magnetic rotation for the states near the band head of these shears bands. The RDM results are compared with tilted axis cranking and shell model calculations. Furthermore the results will be used to test earlier DSAM lifetime measurements for states at higher spins. Preliminary results of this topic will be presented. This work is supported by DOE grant numbers DE-AC03-76SF00098 (LBNL), DE-FG02-91ER40609 (Yale), W-7405-ENG-48 (LLNL) and by the German BMBF for Cologne (No. 06 OK 668) and Bonn.
International Nuclear Information System (INIS)
Oikawa, T.; Suzuki, T.; Isayama, A.; Hayashi, N.; Fujita, T.; Naito, O.; Tuda, T.; Kurita, G.
2005-01-01
Evolution of the current density profile associated with magnetic island formation in a neoclassical tearing mode plasma is measured for the first time in JT-60U by using a motional Stark effect diagnostic. As the island grows, the current density profile turns flat at the radial region of the island and a hollow structure appears at the rational surface. As the island shrinks the deformed region becomes narrower and finally diminishes after the disappearance of the island. In a quiescent plasma without magnetohydrodynamic instabilities, on the other hand, no deformation is observed. The observed deformation in the current density profile associated with the tearing mode is reproduced in a time dependent transport simulation assuming the reduction of the bootstrap current in the radial region of the island. Comparison of the measurement with a calculated steady-state solution also shows that the reduction and recovery of the bootstrap current at the island explains the temporal behaviours of the current density and safety factor profiles. From the experimental observation and simulations, we reach the conclusion that the bootstrap current decreases within the island O-point
Schröder, Femke F; Huis In't Veld, Rianne; den Otter, Lydia A; van Raak, Sjoerd M; Ten Haken, Bennie; Vochteloo, Anne J H
2018-04-01
The rate of retear after rotator cuff surgery is 17%. Magnetic resonance imaging (MRI) scans are used for confirmative diagnosis of retear. However, because of the presence of titanium suture anchors, metal artefacts on the MRI are common. The present study evaluated the diagnostic value of MRI after rotator cuff tendon surgery with respect to assessing the integrity as well as the degeneration and atrophy of the rotator cuff tendons when titanium anchors are in place. Twenty patients who underwent revision surgery of the rotator cuff as a result of a clinically suspected retear between 2013 and 2015 were included. The MRI scans of these patients were retrospectively analyzed by four specialized shoulder surgeons and compared with intra-operative findings (gold standard). Sensitivity and interobserver agreement among the surgeons in assessing retears as well as the Goutallier and Warner classification were examined. In 36% (range 15% to 50%) of the pre-operative MRI scans, the observers could not review the rotator cuff tendons. When the rotator cuff tendons were assessable, a diagnostic accuracy with a mean sensitivity of 0.84 (0.70 to 1.0) across the surgeons was found, with poor interobserver agreement (kappa = 0.12). Metal artefacts prevented accurate diagnosis from MRI scans of rotator cuff retear in 36% of the patients studied.
International Nuclear Information System (INIS)
Morita, E; Matsuzaki, H; Kimura, Y; Ohtani, I; Izumi, M; Nonaka, Y; Murakami, M; Ida, T; Sugimoto, H; Miki, M; Kitano, M
2006-01-01
We employed Gd-bulk HTS magnets as rotating poles for a smaller and lighter axial-gap type rotating machine. The bulk was placed between two vortex-type armature coils and cooled down to 77 K under zero-field. Pulsed current was applied to the vortex-type magnetizing coils. The trapped field distribution and transient flux behaviour strongly depend on the radial dimension of the armature vortex-type coil. In the present study, we show that there is an optimal radial dimension of magnetizing coils to the given bulk disk size to give a homogeneously conical distribution of the trapped flux
Magnetism, planetary rotation and convection in the solar system
1985-01-01
On the 6th, 7th' and 8th April 1983, a conference entitled "Magnetism, planetary rotation and convection in the Solar System" was held in the School of Physics at the University of Newcastle upon Tyne. The purpose of the meeting was to celebrate the 60th birthday of Prof. Stanley Keith Runcorn and his, and his students' and associates', several decades of scientific achievement. The social programme, which consisted of excursions in Northumberland and Durham with visits to ancient castles and churches, to Hexham Abbey and Durham Cathedral, and dinners in Newcastle and Durham, was greatly enjoyed by those attending the meeting and by their guests. The success ofthe scientific programme can be judged by this special edition of Geophysical Surveys which is derived mainly from the papers given at the meeting. The story starts in the late 1940s when the question of the origin of the magnetic field of the Earth and such other heavenly bodies as had at that time been discovered as having a magnetic field, was exerci...
Asynchronous Magnetic Bead Rotation (AMBR Microviscometer for Label-Free DNA Analysis
Directory of Open Access Journals (Sweden)
Yunzi Li
2014-03-01
Full Text Available We have developed a label-free viscosity-based DNA detection system, using paramagnetic beads as an asynchronous magnetic bead rotation (AMBR microviscometer. We have demonstrated experimentally that the bead rotation period is linearly proportional to the viscosity of a DNA solution surrounding the paramagnetic bead, as expected theoretically. Simple optical measurement of asynchronous microbead motion determines solution viscosity precisely in microscale volumes, thus allowing an estimate of DNA concentration or average fragment length. The response of the AMBR microviscometer yields reproducible measurement of DNA solutions, enzymatic digestion reactions, and PCR systems at template concentrations across a 5000-fold range. The results demonstrate the feasibility of viscosity-based DNA detection using AMBR in microscale aqueous volumes.
Controlling the structure of forced convective flow by means of rotating magnetic-field inductors
International Nuclear Information System (INIS)
Sorkin, M.Z.; Mozgirs, O.Kh.
1993-01-01
The forced convective flow generated by a rotating magnetic-field inductor is used in a melt as a means of controlling the transfer of mass and heat in the case of directed crystallization. An obvious advantage in using a rotating field is the generation of azimuthal twisting of the fluid, this providing for an evening out of the crystallization conditions in the azimuthal direction under nonsymmetrical boundary conditions in an actual technological process. From the standpoint of affecting the crystallization processes it would be preferable to use an inductor which would allow alteration of the intensity and of the direction of the meridional flow. Mixing in the form of velocity pulsations generated by the inductor within the melt would be if interest from the standpoint of affecting the crystallization processes, in particular to intensify the crystallization purification. The authors propose the use of a double magnetohydrodynmic rotator which consists of two rotating magnetic-field inductors, separated in altitude, with separate power supplies. The supply of power to the inductors with various current loads allows the generation of a controllable nonuniformity in field distribution and in the azimuthal velocity through the altitude and thus allows control of both the intensity and configuration of the meridional flows. The dual rotator makes it possible to purposefully control the structure of the meridional flows and the pulsation component of velocity and can be recommended for use in processes of directed crystallization as well as in crystallization purification. 4 refs., 3 figs
A magnetic levitation rotating plate model based on high-Tc superconducting technology
Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang
2017-09-01
With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.
A possible mechanism for the seed island formation
International Nuclear Information System (INIS)
Pustovitov, V.D.
2005-01-01
The evolution of neoclassical tearing modes (NTMs) is usually described by the generalized Rutherford equation allowing the mode growth from a finite level, which is referred to as seed island. It is generally accepted that the seed island is induced by some MHD event, but sometimes the NTMs start without visible triggers. Here we discuss a possible role of the error fields in producing the seeds. The analysis is based on Maxwell equations and Ohm's law for magnetic perturbation outside the plasma. The plasma enters the problem via boundary conditions. Its contribution is described by the decay/growth rate and the toroidal rotation frequency of perturbation. The model also assumes a resonant harmonic in the spectrum of the error field. It is shown that the resonant field amplification near the stability boundary of the mode may be a mechanism resulting in the 'spontaneous' formation of the seed island. In contrast to NTM seeding due to the sawteeth, fishbones, or ELMs, the considered mechanism needs some longer time. However, all the estimates give realistic values consistent with typical experimental conditions. (author)
Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment
Energy Technology Data Exchange (ETDEWEB)
Fonseca, I. C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, João Pessoa, PB 58051-970 (Brazil)
2016-01-07
Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.
Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment
Fonseca, I. C.; Bakke, K.
2016-01-01
Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.
Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment
International Nuclear Information System (INIS)
Fonseca, I. C.; Bakke, K.
2016-01-01
Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels
Stabilization of a magnetic island by localized heating in a tokamak with stiff temperature profile
Maget, Patrick; Widmer, Fabien; Février, Olivier; Garbet, Xavier; Lütjens, Hinrich
2018-02-01
In tokamaks plasmas, turbulent transport is triggered above a threshold in the temperature gradient and leads to stiff profiles. This particularity, neglected so far in the problem of magnetic island stabilization by a localized heat source, is investigated analytically in this paper. We show that the efficiency of the stabilization is deeply modified compared to the previous estimates due to the strong dependence of the turbulence level on the additional heat source amplitude inside the island.
Feng, C; Wang, S G; Yang, M Y; Zhang, E; Zhan, Q; Jiang, Y; Li, B H; Yu, G H
2012-02-01
Based on interfacial manipulation of the MgO single crystal substrate and non-magnetic AIN compound, a L1(0)-FePt perpendicular ultrathin film with the structure of MgO/FePt-AIN/Ta was designed, prepared, and investigated. The film is comprised of L1(0)-FePt "magnetic islands," which exhibits a perpendicular magnetic anisotropy (PMA), tunable coercivity (Hc), and interparticle exchange coupling (IEC). The MgO substrate promotes PMA of the film because of interfacial control of the FePt lattice orientation. The AIN compound is doped to increase the difference of surface energy between FePt layer and MgO substrate and to suppress the growth of FePt grains, which takes control of island growth mode of FePt atoms. The AIN compound also acts as isolator of L1(0)-FePt islands to pin the sites of FePt domains, resulting in the tunability of Hc and IEC of the films.
Magnetic resonance imaging findings associated with surgically proven rotator interval lesions
Energy Technology Data Exchange (ETDEWEB)
Vinson, Emily N.; Major, Nancy M. [Duke University Medical Center, Department of Radiology, P.O. Box 3808, Durham, NC (United States); Higgins, Laurence D. [Brigham and Women' s Hospital, Department of Orthopedic Surgery, Boston, MA (United States)
2007-05-15
To identify shoulder magnetic resonance imaging (MRI) findings associated with surgically proven rotator interval abnormalities. The preoperative MRI examinations of five patients with surgically proven rotator interval (RI) lesions requiring closure were retrospectively evaluated by three musculoskeletal-trained radiologists in consensus. We assessed the structures in the RI, including the coracohumeral ligament, superior glenohumeral ligament, fat tissue, biceps tendon, and capsule for variations in size and signal alteration. In addition, we noted associated findings of rotator cuff and labral pathology. Three of three of the MR arthrogram studies demonstrated extension of gadolinium to the cortex of the undersurface of the coracoid process compared with the control images, seen best on the sagittal oblique images. Four of five of the studies demonstrated subjective thickening of the coracohumeral ligament, and three of five of the studies demonstrated subjective thickening of the superior glenohumeral ligament. Five of five of the studies demonstrated a labral tear. The MRI arthrogram finding of gadolinium extending to the cortex of the undersurface of the coracoid process was noted on the studies of those patients with rotator interval lesions at surgery in this series. Noting this finding - especially in the presence of a labral tear and/or thickening of the coracohumeral ligament or superior glenohumeral ligament - may be helpful in the preoperative diagnosis of rotator interval lesions. (orig.)
On the stability of rotational discontinuities
International Nuclear Information System (INIS)
Richter, P.; Scholer, M.
1989-01-01
The stability of symmetric rotational discontinuities in which the magnetic field rotates by 180 degree is investigated by means of a one-dimensional self-consistent hybrid code. Rotational discontinuities with an angle Θ > 45 degree between the discontinuity normal direction and the upstream magnetic field are found to be relatively stable. The discontinuity normal is in the x direction and the initial magnetic field has finite y component only in the transition region. In the case of the ion (left-handed) sense of rotation of the tangential magnetic field, the transition region does not broaden with time. In the case of the electron (right-handed) sense of rotation, a damped wavetrain builds up in the B y component downstream of the rotational discontinuity and the discontinuity broadens with time. Rotational discontinuities with smaller angles, Θ, are unstable. Examples for a rotational discontinuity with Θ = 30 degree and the electron sense of rotation as well as a rotational discontinuity with Θ = 15 degree and the ion sense of rotation show that these discontinuities into waves. These waves travel approximately with Alfven velocity in the upstream direction and are therefore phase standing in the simulation system. The magnetic hodograms of these disintegrated discontinuities are S-shaped. The upstream portion of the hodogram is always right-handed; the downstream portion is always left-handed
Magnetic cycles and rotation periods of late-type stars from photometric time series
Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.
2016-10-01
Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability
Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields
International Nuclear Information System (INIS)
Pustelny, S.; Gawlik, W.; Rochester, S. M.; Kimball, D. F. Jackson; Yashchuk, V. V.; Budker, D.
2006-01-01
Larmor precession of laser-polarized atoms contained in antirelaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR), is a promising technique for a new generation of ultrasensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency or amplitude modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. Additional NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method of achieving additional information about a direction of the magnetic field
Dhiman, Joginder Singh; Sharma, Rajni
2017-12-01
The effects of nonuniform rotation and magnetic field on the instability of a self gravitating infinitely extending axisymmetric cylinder of viscoelastic ferromagnetic medium have been studied using the Generalised Hydrodynamic (GH) model. The non-uniform magnetic field and rotation are acting along the axial direction of the cylinder and the propagation of the wave is considered along the radial direction, while the ferrofluid magnetization is taken collinear with the magnetic field. A general dispersion relation representing magnetization, magnetic permeability and viscoelastic relaxation time parameters is obtained using the normal mode analysis method in the linearized perturbation equation system. Jeans criteria which represent the onset of instability of self gravitating medium are obtained under the limits; when the medium behaves like a viscous liquid (strongly coupled limit) and a Newtonian liquid (weakly coupled limit). The effects of various parameters on the Jeans instability criteria and on the growth rate of self gravitating viscoelastic ferromagnetic medium have been discussed. It is found that the magnetic polarizability due to ferromagnetization of medium marginalizes the effect of non-uniform magnetic field on the Jeans instability, whereas the viscoelasticity of the medium has the usual stabilizing effect on the instability of the system. Further, it is found that the cylindrical geometry is more stable than the Cartesian one. The variation of growth rate against the wave number and radial distance has been depicted graphically.
International Nuclear Information System (INIS)
Carvalho-Santos, Vagson L.; Dandoloff, Rossen
2013-01-01
We study the Heisenberg model in an external magnetic field on curved surfaces with rotational symmetry. The Euler-Lagrange static equations, derived from the Hamiltonian, lead to the inhomogeneous double sine-Gordon equation. Nonetheless, if the magnetic field is coupled to the metric elements of the surface, and consequently to its curvature, the homogeneous double sine-Gordon equation emerges and a 2π-soliton solution is obtained. In order to satisfy the self-dual equations, surface deformations are predicted to appear at the sector where the spin direction is opposite to the magnetic field. On the basis of the model, we find the characteristic length of the 2π-soliton for three specific rotationally symmetric surfaces: the cylinder, the catenoid, and the hyperboloid. On finite surfaces, such as the sphere, torus, and barrels, fractional 2π-solitons are predicted to appear. (author)
Energy Technology Data Exchange (ETDEWEB)
Santos-Lima, R.; De Gouveia Dal Pino, E. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, R. do Matao, 1226, Sao Paulo, SP 05508-090 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)
2012-03-01
The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions {approx}100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star
International Nuclear Information System (INIS)
Hugrass, W.N.; Grimm, R.C.
1980-07-01
The generation of a steady azimuthal current in a cylindrical plasma column using a rotating magnetic field is numerically investigated. The mixed initial-boundary-value problem is solved using a finite difference method. It is shown that substantial azimuthal current can be driven provided that the amplitude of the rotating magnetic field is greater than a certain threshold value which depends on the plasma resistivity
Functional and magnetic resonance imaging evaluation after single-tendon rotator cuff reconstruction
DEFF Research Database (Denmark)
Knudsen, H B; Gelineck, J; Søjbjerg, Jens Ole
1999-01-01
The aim of this study was to investigate tendon integrity after surgical repair of single-tendon rotator cuff lesions. In 31 patients, 31 single-tendon repairs were evaluated. Thirty-one patients were available for clinical assessment and magnetic resonance imaging (MRI) at follow-up. A standard...... series of MR images was obtained for each. The results of functional assessment were scored according to the system of Constant. According to MRI evaluation, 21 (68%) patients had an intact or thinned rotator cuff and 10 (32%) had recurrence of a full-thickness cuff defect at follow-up. Patients...... with an intact or thinned rotator cuff had a median Constant score of 75.5 points; patients with a full-thickness cuff defect had a median score of 62 points. There was no correlation between tendon integrity on postoperative MR images and functional outcome. Patients with intact or thinned cuffs did not have...
Magneto-rotational instability in differentially rotating liquid metals
International Nuclear Information System (INIS)
Velikhov, E.P.; Ivanov, A.A.; Lakhin, V.P.; Serebrennikov, K.S.
2006-01-01
We study the stability of Couette flow between two cylinders in the presence of axial magnetic field in local WKB approximation. We find the analytical expression of the critical angular velocity minimized over the wave number and the imposed magnetic field as a function of the measure of deviation of the rotation law from the Rayleigh line. The result found is in a good agreement with the previously known numerical results based on the global analysis. We perform a minimization of the critical Reynolds number over the wave number at fixed magnetic field both analytically and numerically. We show that a compromise between resistive suppression of magneto-rotational instability at weak magnetic field and the increase of the critical Reynolds number with the increase of magnetic field is possible. It takes place at moderate values of magnetic field of order 3x10 2 gauss giving the critical Reynolds number of order 4x10 4
Sheared flow amplification by vacuum magnetic islands in stellarator plasmas
International Nuclear Information System (INIS)
Garcia, L.; Carreras, B. A.; Lynch, V. E.; Pedrosa, M. A.; Hidalgo, C.
2001-01-01
There is some experimental evidence that the E x B flows have radial structure that may be linked to rational surfaces. This flow structure may result from a self-organization process involving nonlinear flow amplification through Reynolds stress and fluctuation reduction by sheared flows. In stellarators, a large contribution to the Reynolds stress comes from the coupling of the magnetic field component of a vacuum field island with a plasma instability. In this process, the self-organization principle seems to be marginal stability for the fluctuations driving the flow
Energy Technology Data Exchange (ETDEWEB)
Kheradmand, Saeid; Esmailian, Mojtaba; Fatahy, A. [Malek-Ashtar University of Technology (MUT), Isfahan (Iran, Islamic Republic of)
2017-04-15
Finishing of a workpiece is a main process in the production. This affects the quality and lifetime. Finishing in order of nanometer, nowadays, is a main demand of the industries. Thus, some new finishing process, such as abrasive flow finishing, is introduced to respond this demand. This may be aided by rotating workpiece and imposing a magnetic field. Numerical simulation of this process can be beneficial to reduce the expense and predict the result in a minimum time. Accordingly, in this study, magnetorheological fluid finishing is numerically simulated. The working medium contains magnetic and abrasive particles, blended in a base fluid. Some hydrodynamic parameters and surface roughness variations are studied. It is found that combination of rotating a workpiece and imposing a magnetic field can improve the surface roughness up to 15 percent.
International Nuclear Information System (INIS)
Rogister, A.L.M.; Hasselberg, G.
1993-01-01
To the ionization instability described in Part I correspond odd Φ, even b r eigenfunctions leading, as for the tearing mode, to a magnetic island belt centred about the rational magnetic surface q=m a (q is the safety factor; m is the mode number). Plasma dumping on the target plates, along the island magnetic field lines, releases the neutrals, the ionization of which drives the instability. This self-consistent model of the plasma edge yields the electron temperature on the last closed equilibrium magnetic surface and the particle confinement time, which are compared with the values measured in TEXTOR and other tokamaks; interestingly, the value obtained for τ p is very reminiscent of the heuristic energy confinement time expression proposed by Kaye and Goldston. Theory also predicts an equilibrium bifurcation at high power, corresponding to a reduction, and then a collapse, of the island width. The hypothesis that the (L mode) island belt be hooked up to the machine's structure is briefly discussed. (author). 29 refs, 2 figs
On rapid rotation in stellarators
International Nuclear Information System (INIS)
Helander, Per
2008-01-01
The conditions under which rapid plasma rotation may occur in a three-dimensional magnetic field, such as that of a stellarator, are investigated. Rotation velocities comparable to the ion thermal speed are found to be attainable only in magnetic fields which are approximately isometric. In an isometric magnetic field the dependence of the magnetic field strength B on the arc length l along the field is the same for all field lines on each flux surface ψ. Only in fields where the departure from exact isometry, B=B(ψ,l), is of the order of the ion gyroradius divided by the macroscopic length scale are rotation speeds comparable to the ion thermal speed possible. Moreover, it is shown that the rotation must be in the direction of the vector ∇ψx∇B. (author)
Spin, quadrupole moment, and deformation of the magnetic-rotational band head in Pb193
Balabanski, D. L.; Ionescu-Bujor, M.; Iordachescu, A.; Bazzacco, D.; Brandolini, F.; Bucurescu, D.; Chmel, S.; Danchev, M.; de Poli, M.; Georgiev, G.; Haas, H.; Hübel, H.; Marginean, N.; Menegazzo, R.; Neyens, G.; Pavan, P.; Rossi Alvarez, C.; Ur, C. A.; Vyvey, K.; Frauendorf, S.
2011-01-01
The spectroscopic quadrupole moment of the T1/2=9.4(5) ns isomer in Pb193 at an excitation energy Eex=(2585+x) keV is measured by the time-differential perturbed angular distribution method as |Qs|=2.6(3) e b. Spin and parity Iπ=27/2- are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the 1i13/2 subshell with the (3s1/2-21h9/21i13/2)11- proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation ɛ2=-0.11, similar to that of the 11-proton intruder states, which nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.
Momentum transfer to rotating magnetized plasma from gun plasma injection
International Nuclear Information System (INIS)
Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.
2006-01-01
Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented
International Nuclear Information System (INIS)
Abd-Alla, A.M.; Abo-Dahab, S.M.; Al-Simery, R.D.
2013-01-01
In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient
Energy Technology Data Exchange (ETDEWEB)
Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Abo-Dahab, S.M., E-mail: sdahb@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Maths Department, Faculty of Science, SVU, Qena 83523 (Egypt); Al-Simery, R.D. [Maths Department, Faculty of Science, Taif University (Saudi Arabia)
2013-12-15
In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient.
Current drive by neutral beams, rotating magnetic fields and helicity injection in compact toroids
International Nuclear Information System (INIS)
Farengo, R.; Arista, N.R.; Lifschitz, A.F.; Clemente, R.A.
2003-01-01
The use of neutral beams (NB) for current drive and heating in spheromaks, the relaxed states of flux core spheromaks (FCS) sustained by helicity injection and the effect of ion dynamics on rotating magnetic field (RMF) current drive in spherical tokamaks (ST) are studied. (author)
International Nuclear Information System (INIS)
Ghosh, P.; Lamb, F.K.
1979-01-01
We use the solutions of the two-dimensional hydromagnetic equations obtained previously to calculate the torque on a magnetic neutron star accreting from a Keplerian disk. We find that the magnetic coupling between the star and the plasma outside the inner edge of the disk is appreciable. As a result of this coupling the spin-up torque on fast rotators is substantially less than that on slow rotators; for sufficiently high stellar angular velocities or sufficiently low accretion rates this coupling dominates that de to the plasma and the magnetic field at the inner edge of the disk, braking the star's rotation even while accretion, and hence X-ray emission, continues.We apply these results to pulsating X-ray sources, and show that the observed secular spin-up rates of all the sources in which this rate has been measured can be accounted for quantitatively if one assumes that these sources are accreting from Keplerian disks and have magnetic moments approx.10 29 --10 32 gauss cm 3 . The reduction of the torque on fast rotators provides a natural explanation of the spin-up rate of Her X-1, which is much below that expected for slow rotators. We show further that a simple relation between the secular spin-up rate : P and the quantity PL/sup 3/7/ adequately represents almost all the observational data, P and L being the pulse period and the luminosity of the source, respectively. This ''universal'' relation enables one to estimate any one of the parameters P, P, and L for a given source if the other two are known. We show that the short-term period fluctuations observed in Her X-1, Cen X-3, Vela X-1, and X Per can be accounted for quite naturally as consequences of torque variations caused by fluctuations in the mass transfer rate. We also indicate how the spin-down torque at low luminosities found here may account for the paradoxical existence of a large number of long-period sources with short spin-up time scales
International Nuclear Information System (INIS)
Bellandi, Jose; Guzzo, Marcelo M.; Hollanda, Pedro C. de
1997-01-01
Assuming that neutrino magnetic moment is not null, we study the evolution of neutrinos submitted to rotating magnetic fields, and the way the evolution can convert 'left' helicity neutrinos (actives) into 'right' neutrinos (sterile). We use the fact that the 'right' neutrinos do not interact with the detectors to obtain information on the neutrino magnetic field magnitude. For solving the neutrino evolution equation, the expansion method was combined with steady phase approximation used for the expansion integrals solution. The possibility of 'left' conversion into 'right' neutrinos has been calculated as function of the evolution matrix parameters (neutrino magnetic moment, electron density of the medium, the magnetic field magnitude and phase, etc). We made an attempt to obtain fitting of the parameter conditions in order to occur resonances in the neutrino transition probability, and therefore to obtain information on the limits for neutrino magnetic moments from the controlled beam helicity
Adjustable Permanent Quadrupoles Using Rotating Magnet Material Rods for the Next Linear Collider.
Spencer, C M
2002-01-01
The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 132 Tesla, with a maximum gradient of 135 Tesla per meter, an adjustment range of +0 -20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micrometer during the 20% adjustment. In an effort to reduce estimated costs and increase reliability, several designs using hybrid permanent magnets have been developed. All magnets have iron poles and use either Samarium Cobalt or Neodymium Iron to provide the magnetic fields. Two prototypes use rotating rods containing permanent magnetic material to vary the gradient. Gradient changes of 20% and center shifts of less than 20 microns have been measured. These data are compared to an equivalent electromagnet prototype. See High Reliability Prototype Quadrupole for the Next Linear Collider by C.E Rago, C.M SPENC...
Gallasch, Eugen; Rafolt, Dietmar; Postruznik, Magdalena; Fresnoza, Shane; Christova, Monica
2018-04-19
Rotation of a static magnet over the motor cortex (MC) generates a transcranial alternating magnetic field (tAMF), and a linked alternating electrical field. The aim of this transcranial magnetic stimulation (TMS) study is to investigate whether such fields are able to influence MC excitability, and whether there are parallels to tACS induced effects. Fourteen healthy volunteers received 20 Hz tAMF stimulation over the MC, over the vertex, and 20 Hz tACS over the MC, each with a duration of 15 min. TMS assessments were performed before and after the interventions. Changes in motor evoked potentials (MEP), short interval intra-cortical inhibition (SICI) and intra-cortical facilitation (ICF) were evaluated. The tACS and the tAMF stimulation over the MC affected cortical excitability in a different way. After tAMF stimulation MEP amplitudes and ICF decreased and the effect of SICI increased. After tACS MEP amplitudes increased and there were no effects on SICI and ICF. The recorded single and paired pulse MEPs indicate a general decrease of MC excitability following 15 min of tAMF stimulation. The effects demonstrate that devices based on rotating magnets are potentially suited to become a novel brain stimulation tool in clinical neurophysiology. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Evidence of magnetic field in plasma focus by means of Faraday rotation measurements
International Nuclear Information System (INIS)
Fischfeld, G.
1982-01-01
Preliminary results of Faraday rotation measurements on a beam of laser light crossing the plasma column in the axial direction. are repacted. The presence of intense axial magnetic field Bsup(z) in the column both before and during the pinch phase is demonstrated. The experiments were performed on the Mather type Frascati 1 MJ plasma Focus, operated at 250 KJ 3 torr D 2 filling pressure. Is is used in the measurements a Quantel YG 49 YAG laser, frecuency doubled by means of KD*P crystal, which delivers about 60 mJ in 3 ns at = 530 nm. The beam polarization is analized by Wollaston prism. The electronic density is determined by Mach-Zender insterferometry. Two measurements are taken at time close to the end of the radial collapse phase, yielding Faraday rotation angles of 0.25 +- 0.05 rd and 0.56 +- o.05 rd which correspond to values, of axial magnetic fields of b(sup z) = 500 KG and B(sub z) = 400 KG. (Author) [pt
Directory of Open Access Journals (Sweden)
N. C. LENIN
2017-01-01
Full Text Available This paper presents the application of Soft Magnetic Composite (SMC material in Outer Rotating Switched Reluctance Motor (ORSRM. The presented stator core of the Switched Reluctance Motor was made of two types of material, the classical laminated silicon steel sheet and the soft magnetic composite material. First, the stator core made of laminated steel has been analysed. The next step is to analyse the identical geometry SRM with the soft magnetic composite material, SOMALOY for its stator core. The comparisons of both cores include the calculated torque and torque ripple, magnetic conditions, simplicity of fabrication and cost. The finite element method has been used to analyse the magnetic conditions and the calculated torque. Finally, tested results shows that SMC is a better choice for SRM in terms of torque ripple and power density.
Hamano, Noritaka; Yamamoto, Atsushi; Shitara, Hitoshi; Ichinose, Tsuyoshi; Shimoyama, Daisuke; Sasaki, Tsuyoshi; Kobayashi, Tsutomu; Kakuta, Yohei; Osawa, Toshihisa; Takagishi, Kenji
2017-06-01
Muscle atrophy and fatty infiltration in the rotator cuff muscles are often observed in patients with chronic rotator cuff tears. The recovery from these conditions has not been clarified. Ninety-four patients were included in this study. The improvement in muscle atrophy and fatty infiltration in successfully repaired rotator cuff tears was evaluated by magnetic resonance imaging at 1 year and 2 years after surgery and was compared with muscle atrophy and fatty infiltration observed on magnetic resonance imaging at 2 weeks after surgery to discount any changes due to the medial retraction of the torn tendon. The patients' muscle strength was evaluated in abduction and external rotation. Muscle atrophy and fatty infiltration of the supraspinatus were significantly improved at 2 years after surgery in comparison to 2 weeks after surgery. The subjects' abduction and external rotation strength was also significantly improved at 2 years after surgery in comparison to the preoperative values. Patients whose occupation ratio was improved had a better abduction range of motion, stronger abduction strength, and higher Constant score. Patients whose fatty infiltration was improved had a better range of motion in flexion and abduction, whereas the improvements of muscle strength and the Constant score were similar in the group that showed an improvement of fatty infiltration and the group that did not. Muscle atrophy and fatty infiltration can improve after rotator cuff repair. The strengths of abduction and external rotation were also improved at 2 years after surgery. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke, E-mail: k145676@kansai-u.ac.jp
2013-11-15
Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T{sub c} bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.
International Nuclear Information System (INIS)
Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke
2013-01-01
Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T c bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one
DEFF Research Database (Denmark)
Cheng, Shuangyin; Luo, Derong; Huang, Shoudao
2015-01-01
This study presents an investigation into the control of an axial-flux permanent magnet synchronous machine (PMSM) with contra-rotating rotors fed by a single inverter, which corresponds to two PMSM connected in series. In this study, the mathematic model of the PMSM with contra-rotating rotors...... water vehicle propulsions. The control strategy is implemented on a DSP 28335 processor featured hardware platform and is tested on a 1.2 kW prototype machine. Experimental results validate the correctness of the analysis and control strategy....
Magnetic surfaces and localized perturbations in the Wendelstein VII-A stellarator
International Nuclear Information System (INIS)
Wobig, H.
1986-09-01
The critical dependence of plasma confinement in low-shear stellarators, such as Wendelstein VII-A, on the external rotational transform can be explained on the basis of magnetic surface destruction. External symmetry-breaking perturbations generate islands on the low order rational magnetic surfaces. The islands are largest at t=1/2 and t=1/3. Confinement is optimum in close proximity to these values. In order to study the structure of surfaces under the influence of perturbations, a mapping procedure is used instead of field line integration. It is found that the neighbourhood of low- order rational surfaces is particularly robust against surface destruction. The reason is that in this vicinity only rational surfaces with large m and n exist (t=m/n). On these surfaces the external perturbation only generates small islands. In W VII-A the current leads to the helical windings are one symmetry- breaking perturbation, and there might also be others. It is possible to avoid field errors of this kind in future stellarators. (orig.)
Lee, S. M.; Parq, J. H.
2017-12-01
An accurate measurement of magnetic field inside the borehole, together with a right set of paleomagnetic measurements on the recovered core samples, should allow one to resolve important elements such as the rotation of the basin or the plate on which the basin is located. The ability to resolve the rotation of the basin can be crucial during drilling experiments by International Continental Scientific Drilling Program (ICDP) and International Ocean Discovery Program (IODP). A good example where the rotation is a central question is the Philippine Sea Plate, which is thought to have rotated about 90° clockwise during the last 55 million years. Despite the significance, previous borehole magnetometers were not accurate enough to achieve such a goal because, among various technical issues, determining the orientation of the sensor inside the borehole to a very high level of accuracy was not easy. The next-generation (third-generation) borehole magnetometer (3GBM) was developed to overcome this difficulty and to bring paleomagnetic investigations to a new level. Even with the new development, however, there are still concerns whether the new instrument can really resolve the rotation because the magnetic field anomalies generated by the sediment is generally very low. In this paper, we present numerical simulations based on finite element method of the magnetic field inside the borehole that were conducted as part of a test to demonstrate that, despite low levels of magnetization, the magnetic fields can be resolved. The results also served as an important input on the design requirements of the borehole magnetometer. Various cases were considered, including the situation where the sedimentary layer is horizontal and inclined. We also explored the cases where volcanic sills were present within the sedimentary layer as they may provide a greater magnetic signature than having sediment alone, and thus improving our chances of determining the rotation. Simulations are
Compact torus equilibria set up in the rotamak by rotating magnetic fields
International Nuclear Information System (INIS)
Storer, R.G.
1983-01-01
In the Rotamak, a rotating magnetic field is used to drive a steady toroidal current in a compact torus device. High power, short duration (approx.=80 μs) and low power, long duration experiments (approx.=3 ms) have been studied. In both of these experiments a steady phase exists which is well described by the assumption that the plasma is in an averaged magnetohydrodynamic pressure balance situation. Using a model based on this assumption, self-consistency imposes conditions relating the temperature and density of the plasma to the steady components of the internal magnetic fields. In the high power experiment, this steady phase evolves into a second steady phase, with lower toroidal current, which has a #betta#=1, mirror-like configuration which also appears to satisfy local pressure balance but with the magnetic axis (minimum of the poloidal flux) at the centre of the spherical vessel. (orig.)
Stephens, Hillary Dianne
Tearing mode induced magnetic islands have a significant impact on the thermal characteristics of magnetically confined plasmas such as those in the reversed-field-pinch. Using a state-of-the-art Thomson scattering (TS) diagnostic, electron temperature fluctuations correlated with magnetic tearing modes have been observed on the Madison Symmetric Torus reversed-field-pinch. The TS diagnostic consists of two independently triggerable Nd:YAG lasers that can each pulse up to 15 times each plasma discharge and 21 General Atomics polchromators equipped with avalanche photodiode modules. Detailed calibrations focusing on accuracy, ease of use and repeatability and in-situ measurements have been performed on the system. Electron temperature (Te) profiles are acquired at 25 kHz with 2 cm or less resolution along the minor radius, sufficient to measure the effect of an island on the profile as the island rotates by the measurement point. Bayesian data analysis techniques are developed and used to detect fluctuations over an ensemble of shots. Four cases are studied; standard plasmas in quiescent periods, through sawteeth, through core reconnection events and in plasmas where the tearing mode activity is decreased. With a spectrum of unstable tearing modes, remnant islands that tend to flatten the temperature profile are present in the core between sawtooth-like reconnection events. This flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. The spatial structure of the temperature fluctuations show that the location of the rational surface of the m/n = 1/6 tearing mode is significantly further in than equilibrium suggestions predict. The fluctuations also provide a measurement of the remnant island width which is significantly smaller than the predicted full island width. These correlated fluctuations disappear during both global and core reconnection events. In striking contrast to temperature flattening, a temperature gradient
International Nuclear Information System (INIS)
Lao, L.L.; Burrell, K.H.; Casper, T.S.
1996-08-01
The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-η i mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the η i mode suggests that the large core E x B flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low Β N < 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity
A SCILAB Program for Computing Rotating Magnetic Compact Objects
Papasotiriou, P. J.; Geroyannis, V. S.
We implement the so-called ``complex-plane iterative technique'' (CIT) to the computation of classical differentially rotating magnetic white dwarf and neutron star models. The program has been written in SCILAB (© INRIA-ENPC), a matrix-oriented high-level programming language, which can be downloaded free of charge from the site http://www-rocq.inria.fr/scilab. Due to the advanced capabilities of this language, the code is short and understandable. Highlights of the program are: (a) time-saving character, (b) easy use due to the built-in graphics user interface, (c) easy interfacing with Fortran via online dynamic link. We interpret our numerical results in various ways by extensively using the graphics environment of SCILAB.
Coalescence of magnetic islands
International Nuclear Information System (INIS)
Pellat, R.
1982-01-01
The paper gives the analytical theory of the coalescence instability and of a new, one island, instability. These instabilities are expected to be relevant for the disruptions observed in Tokamak experiments and astrophysical plasmas
Adjustable Permanent Quadrupoles Using Rotating Magnet Material Rods for the Next Linear Collider
International Nuclear Information System (INIS)
Spencer, Cherrill M
2002-01-01
The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 132 Tesla, with a maximum gradient of 135 Tesla per meter, an adjustment range of +0 -20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micrometer during the 20% adjustment. In an effort to reduce estimated costs and increase reliability, several designs using hybrid permanent magnets have been developed. All magnets have iron poles and use either Samarium Cobalt or Neodymium Iron to provide the magnetic fields. Two prototypes use rotating rods containing permanent magnetic material to vary the gradient. Gradient changes of 20% and center shifts of less than 20 microns have been measured. These data are compared to an equivalent electromagnet prototype. See High Reliability Prototype Quadrupole for the Next Linear Collider by C.E Rago, C.M SPENCER, Z. Wolf submitted to this conference
International Nuclear Information System (INIS)
Casado-Pascual, Jesus
2010-01-01
Graphical abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. - Abstract: In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-1/2 particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. The analytical results achieved by applying these two methods are compared with those obtained from the numerical solution of the Schroedinger equation. This comparison leads to the conclusion that the multiple scale method provides a better understanding of the system dynamics than the averaging method. In particular, the averaging method predicts the complete destruction of the resonant behavior by an appropriate choice of the parameter values of the high-frequency magnetic field. This conclusion is disproved both by the numerical results, and also by the results obtained from the multiple scale method.
Honda, M.; Satake, S.; Suzuki, Y.; Shinohara, K.; Yoshida, M.; Narita, E.; Nakata, M.; Aiba, N.; Shiraishi, J.; Hayashi, N.; Matsunaga, G.; Matsuyama, A.; Ide, S.
2017-11-01
Capabilities of the integrated framework consisting of TOPICS, OFMC, VMEC and FORTEC-3D, have been extended to calculate toroidal rotation in fully non-axisymmetric perturbed magnetic fields for demonstrating operation scenarios in actual tokamak geometry and conditions. The toroidally localized perturbed fields due to the test blanket modules and the tangential neutral beam ports in ITER augment the neoclassical toroidal viscosity (NTV) substantially, while do not significantly influence losses of beam ions and alpha particles in an ITER L-mode discharge. The NTV takes up a large portion of total torque in ITER and fairly decelerates toroidal rotation, but the change in toroidal rotation may have limited effectiveness against turbulent heat transport. The error field correction coils installed in JT-60SA can externally apply the perturbed fields, which may alter the NTV and the resultant toroidal rotation profiles. However, the non-resonant n=18 components of the magnetic fields arising from the toroidal field ripple mainly contribute to the NTV, regardless of the presence of the applied field by the coil current of 10 kA , where n is the toroidal mode number. The theoretical model of the intrinsic torque due to the fluctuation-induced residual stress is calibrated by the JT-60U data. For five JT-60U discharges, the sign of the calibration factor conformed to the gyrokinetic linear stability analysis and a range of the amplitude thereof was revealed. This semi-empirical approach opens up access to an attempt on predicting toroidal rotation in H-mode plasmas.
Effects of 3D Magnetic Perturbations on Toroidal Plasmas
International Nuclear Information System (INIS)
Callen, J.D.
2010-01-01
Full text: To lowest order tokamaks are two-dimensional (2D) axisymmetric magnetic systems. But small 3D magnetic perturbations (both externally applied and from plasma instabilities) have many interesting and useful effects on tokamak (and quasi-symmetric stellarator) plasmas. Plasma transport equations that include these effects, especially on diamagnetic-level toroidal plasma rotation, have recently been developed. The 3D magnetic perturbations and their plasma effects can be classified according to their toroidal mode number n: low n (1 to 5) resonant (q = m/n in plasma) and non-resonant fields, medium n (due to toroidal field ripple), and high n (due to microturbulence). This paper concentrates on low and medium n perturbations. Low n non-resonant magnetic fields induce a neoclassical toroidal viscosity (NTV) that damps toroidal plasma rotation throughout the plasma toward an offset flow in the counter-I p direction; recent tokamak experiments have confirmed and exploited these predictions by applying external low n non-resonant magnetic perturbations. Medium n perturbations have similar effects plus possible ripple trapping and resultant edge ion losses. A low n resonant magnetic field induces a toroidal plasma torque in the vicinity of the rational surface; when large enough it can stop plasma rotation there and lead to a locked mode, which often causes a plasma disruption. Externally applied 3D magnetic perturbations usually have many components; in the plasma their lowest n components are amplified by plasma responses, particularly at high beta. Low n plasma instabilities (e.g., NTMs, RWMs) cause additional 3D magnetic perturbations in tokamak plasmas; tearing modes can bifurcate the topology and form magnetic islands. Finally, multiple resonant magnetic perturbations (RMPs) can cause local magnetic stochasticity and influence H-mode edge pedestal transport. These various effects of 3D magnetic perturbations can be used to control the toroidal plasma
MHD flow layer formation at boundaries of magnetic islands in tokamak plasmas
International Nuclear Information System (INIS)
Jiaqi Dong; Yongxing Long; Zongze Mou; Jinhua Zhang
2005-01-01
Non-linear development of double tearing modes induced by electron viscosity is numerically simulated. MHD flow layers are demonstrated to merge in the development of the modes. The sheared flows are shown to lie just at the boundaries of the magnetic islands, and to have sufficient levels required for internal transport barrier (ITB) formation. Possible correlation between the layer formation and triggering of experimentally observed ITBs, preferentially formed in proximities of rational flux surfaces of low safety factors, is discussed. (author)
Shielding of External Magnetic Perturbations By Torque In Rotating Tokamak Plasmas
International Nuclear Information System (INIS)
Park, Jong-Kyu; Boozer, Allen H.; Menard, Jonathan E.; Gerhardt, Stefan P.; Sabbagh, Steve A.
2009-01-01
The imposition of a nonaxisymmetric magnetic perturbation on a rotating tokamak plasma requires energy and toroidal torque. Fundamental electrodynamics implies that the torque is essentially limited and must be consistent with the external response of a plasma equilibrium (rvec f) = (rvec j) x (rvec B). Here magnetic measurements on National Spherical Torus eXperiment (NSTX) device are used to derive the energy and the torque, and these empirical evaluations are compared with theoretical calculations based on perturbed scalar pressure equilibria (rvec f) = (rvec (del))p coupled with the theory of nonambipolar transport. The measurement and the theory are consistent within acceptable uncertainties, but can be largely inconsistent when the torque is comparable to the energy. This is expected since the currents associated with the torque are ignored in scalar pressure equilibria, but these currents tend to shield the perturbation.
Energy Technology Data Exchange (ETDEWEB)
Itagaki, H.; Inomoto, M. [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Asai, T.; Takahashi, Ts. [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)
2014-03-15
Active control of destructive rotational instability in a high-beta field-reversed configuration (FRC) plasma was demonstrated by using double-sided plasmoid injection technique. The elliptical deformation of the FRC's cross section was mitigated as a result of substantial suppression of spontaneous spin-up by the plasmoid injection. It was found that the injected plasmoid provided better stability against the rotational mode, suggesting that the compensation of the FRC's decaying magnetic flux might help to suppress its spin-up.
Spin, quadrupole moment, and deformation of the magnetic-rotational band head in (193)Pb
Balabanski, D L; Iordachescu, A; Bazzacco, D; Brandolini, F; Bucurescu, D; Chmel, S; Danchev, M; De Poli, M; Georgiev, G; Haas, H; Hubel, H; Marginean, N; Menegazzo, R; Neyens, G; Pavan, P; Rossi Alvarez, C; Ur, C A; Vyvey, K; Frauendorf, S
2011-01-01
The spectroscopic quadrupole moment of the T(1/2) = 9.4(5) ns isomer in (193)Pb at an excitation energy E(ex) = (2585 + x) keV is measured by the time-differential perturbed angular distribution method as vertical bar Q(s)vertical bar = 2.6(3) e b. Spin and parity I(pi) = 27/2(-) are assigned to it based on angular distribution measurements. This state is the band head of a magnetic-rotational band, described by the coupling of a neutron hole in the 1i(13/2) subshell with the (3s(1/2)(-2)1h(9/2)1i(13/2))(11-) proton excitation. The pairing-plus-quadrupole tilted-axis cranking calculations reproduce the measured quadrupole moment with a moderate oblate deformation epsilon(2) = -0.11, similar to that of the 11(-)proton intruder states, which occur in the even-even Pb nuclei in the region. This is the first direct measurement of a quadrupole moment and thus of the deformation of a magnetic-rotational band head.
Perez-Cruz, L.; Urrutia-Fucugauchi, J.; Vazquez-Gutierrez, F.; Carranza-Edwards, A.
2007-12-01
Marine turtles are well known for their navigation ability in the open ocean and fidelity to nesting beaches. Green turtle adult females migrate from foraging areas to island nesting beaches, traveling hundreds or thousands of kilometers each way. The marine turtle breeding in the Galapagos Islands is the Green Sea Turtle (Chelonia mydas agassisi); fairly common throughout the islands but with nesting sites located at Las Bachas (Santa Cruz), Barahona and Quinta Playa (Isabela), Salinas (Baltra), Gardner Bay (Española) and Bartolomé Islet. In order to characterize and to identify the geochemical signature of nesting marine turtle beaches in Galapagos Islands, sedimentological, geochemical and rock magnetic parameters are used. A total of one hundred and twenty sand samples were collected in four beaches to relate compositional characteristics between equivalent areas, these are: Las Bachas, Salinas, Barahona and Quinta Playa. Grain size is evaluated using laser particle analysis (Model Coulter LS 230). Bulk ICP-MS geochemical analysis is performed, following trace elements are analyzed: Al, V, Cr, Co, Ni, Cu, Zn, Cd, Ba, Pb, Fe, Mn, K, Na, Mg, Sr, Ca and Hg; and low-field magnetic susceptibility is measured in all samples at low and high frequencies. Granulometric analysis showed that Barahona and Quinta Playa are characterized for fine grained sands. In contrast, Salinas and Las Bachas exhibit medium to coarse sands. Trace metals concentrations and magnetic susceptibility show different distribution patterns in the beach sands. Calcium is the most abundant element in the samples. In particular, Co, K, and Na show similar concentrations in the four beaches. Las Bachas beach shows highest concentrations of Pb and Hg (maximum values 101.1 and 118.5 mg/kg, respectively), we suggest that the enrichment corresponds to an anthropogenic signal. Salinas beach samples show high concentrations of Fe, V, Cr, Zn, Mn and the highest values of magnetic susceptibility (maximum
Linear and Nonlinear Response of a Rotating Tokamak Plasma to a Resonant Error-Field
Fitzpatrick, Richard
2014-10-01
An in-depth investigation of the effect of a resonant error-field on a rotating, quasi-cylindrical, tokamak plasma is preformed within the context of resistive-MHD theory. General expressions for the response of the plasma at the rational surface to the error-field are derived in both the linear and nonlinear regimes, and the extents of these regimes mapped out in parameter space. Torque-balance equations are also obtained in both regimes. These equations are used to determine the steady-state plasma rotation at the rational surface in the presence of the error-field. It is found that, provided the intrinsic plasma rotation is sufficiently large, the torque-balance equations possess dynamically stable low-rotation and high-rotation solution branches, separated by a forbidden band of dynamically unstable solutions. Moreover, bifurcations between the two stable solution branches are triggered as the amplitude of the error-field is varied. A low- to high-rotation bifurcation is invariably associated with a significant reduction in the width of the magnetic island chain driven at the rational surface, and vice versa. General expressions for the bifurcation thresholds are derived, and their domains of validity mapped out in parameter space. This research was funded by the U.S. Department of Energy under Contract DE-FG02-04ER-54742.
International Nuclear Information System (INIS)
Sugiyama, Jun; Ikedo, Yutaka; Mukai, Kazuhiko; Nozaki, Hiroshi; Russo, Peter L.; Ansaldo, Eduardo J.; Brewer, Jess H.; Andreica, Daniel; Amato, Alex
2009-01-01
In order to elucidate the nature of layered cobalt dioxides A x CoO 2 , we have investigated their microscopic magnetism by means of positive muon-spin rotation and relaxation (μ + SR) spectroscopy, in particular for A=Li, Na, and K. The dome-shaped magnetic phase diagram for Na x CoO 2 with x≥0.75 suggests the competition between the spin concentration and geometrical frustration on the two-dimensional triangular lattice of the CoO 2 plane. The additional experiment on Li x CoO 2 and K x CoO 2 indicates both a weakly coupled regime for the d electrons in the CoO 2 plane and an ignorable weak effect of the inter-plane interaction on their magnetic order at low T.
International Nuclear Information System (INIS)
Calderon, Oscar G; Melle, Sonia
2002-01-01
We study theoretically the dynamics of a system of two magnetizable particles suspended in a non-magnetic fluid subject to a rotating magnetic field when a modulation on the Mason number (ratio of viscous to magnetic forces) is applied. We find, using a periodic modulation, that a resonant-like phenomenon between the periodic modulation of the Mason number and the intrinsic radial oscillation of the system without modulation occurs. For a random perturbation of the Mason number, we obtain an optimum noise strength at which the average interparticle distance reaches the lowest value. When a weak periodic modulation and a noise source are included in the Mason number, stochastic resonance (SR) is found for different frequencies and amplitudes of the modulation. An interpretation of this SR phenomenon is made by means of a threshold crossing mechanism
Hydrodynamic Torques and Rotations of Superparamagnetic Bead Dimers
Pease, Christopher; Etheridge, J.; Wijesinghe, H. S.; Pierce, C. J.; Prikockis, M. V.; Sooryakumar, R.
Chains of micro-magnetic particles are often rotated with external magnetic fields for many lab-on-a-chip technologies such as transporting beads or mixing fluids. These applications benefit from faster responses of the actuated particles. In a rotating magnetic field, the magnetization of superparamagnetic beads, created from embedded magnetic nano-particles within a polymer matrix, is largely characterized by induced dipoles mip along the direction of the field. In addition there is often a weak dipole mop that orients out-of-phase with the external rotating field. On a two-bead dimer, the simplest chain of beads, mop contributes a torque Γm in addition to the torque from mip. For dimers with beads unbound to each other, mop rotates individual beads which generate an additional hydrodynamic torque on the dimer. Whereas, mop directly torques bound dimers. Our results show that Γm significantly alters the average frequency-dependent dimer rotation rate for both bound and unbound monomers and, when mop exceeds a critical value, increases the maximum dimer rotation frequency. Models that include magnetic and hydrodynamics torques provide good agreement with the experimental findings over a range of field frequencies.
Investigating stellar surface rotation using observations of starspots
DEFF Research Database (Denmark)
Korhonen, Heidi Helena
2011-01-01
Rapid rotation enhances the dynamo operating in stars, and thus also introduces significantly stronger magnetic activity than is seen in slower rotators. Many young cool stars still have the rapid, primordial rotation rates induced by the interstellar molecular cloud from which they were formed....... Also older stars in close binary systems are often rapid rotators. These types of stars can show strong magnetic activity and large starspots. In the case of large starspots which cause observable changes in the brightness of the star, and even in the shapes of the spectral line profiles, one can get...... information on the rotation of the star. At times even information on the spot rotation at different stellar latitudes can be obtained, similarly to the solar surface differential rotation measurements using magnetic features as tracers. Here, I will review investigations of stellar rotation based...
Electrodeless plasma acceleration system using rotating magnetic field method
Directory of Open Access Journals (Sweden)
T. Furukawa
2017-11-01
Full Text Available We have proposed Rotating Magnetic Field (RMF acceleration method as one of electrodeless plasma accelerations. In our experimental scheme, plasma generated by an rf (radio frequency antenna, is accelerated by RMF antennas, which consist of two-pair, opposed, facing coils, and these antennas are outside of a discharge tube. Therefore, there is no wear of electrodes, degrading the propulsion performance. Here, we will introduce our RMF acceleration system developed, including the experimental device, e.g., external antennas, a tapered quartz tube, a vacuum chamber, external magnets, and a pumping system. In addition, we can change RMF operation parameters (RMF applied current IRMF and RMF current phase difference ϕ, focusing on RMF current frequency fRMF by adjusting matching conditions of RMF, and investigate the dependencies on plasma parameters (electron density ne and ion velocity vi; e.g., higher increases of ne and vi (∼360 % and 55 %, respectively than previous experimental results were obtained by decreasing fRMF from 5 MHz to 0.7 MHz, whose RMF penetration condition was better according to Milroy’s expression. Moreover, time-varying component of RMF has been measured directly to survey the penetration condition experimentally.
Directory of Open Access Journals (Sweden)
Assaf Rotem
Full Text Available Transcranial Magnetic Stimulation (TMS is a promising technology for both neurology and psychiatry. Positive treatment outcome has been reported, for instance in double blind, multi-center studies on depression. Nonetheless, the application of TMS towards studying and treating brain disorders is still limited by inter-subject variability and lack of model systems accessible to TMS. The latter are required to obtain a deeper understanding of the biophysical foundations of TMS so that the stimulus protocol can be optimized for maximal brain response, while inter-subject variability hinders precise and reliable delivery of stimuli across subjects. Recent studies showed that both of these limitations are in part due to the angular sensitivity of TMS. Thus, a technique that would eradicate the need for precise angular orientation of the coil would improve both the inter-subject reliability of TMS and its effectiveness in model systems. We show here how rotation of the stimulating field relieves the angular sensitivity of TMS and provides improvements in both issues. Field rotation is attained by superposing the fields of two coils positioned orthogonal to each other and operated with a relative phase shift in time. Rotating field TMS (rfTMS efficiently stimulates both cultured hippocampal networks and rat motor cortex, two neuronal systems that are notoriously difficult to excite magnetically. This opens the possibility of pharmacological and invasive TMS experiments in these model systems. Application of rfTMS to human subjects overcomes the orientation dependence of standard TMS. Thus, rfTMS yields optimal targeting of brain regions where correct orientation cannot be determined (e.g., via motor feedback and will enable stimulation in brain regions where a preferred axonal orientation does not exist.
SMES application for frequency control during islanded microgrid operation
International Nuclear Information System (INIS)
Kim, A-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man
2013-01-01
Highlights: ► The operating characteristics of SMES for the frequency control of an islanded microgrid were investigated. ► The SMES contributes well for frequency control in the islanded operation. ► A dual and a single magnet type of SMES have been compared to demonstrate the performances. -- Abstract: This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail
SMES application for frequency control during islanded microgrid operation
Energy Technology Data Exchange (ETDEWEB)
Kim, A-Rong, E-mail: haven21c@changwon.ac.kr [Changwon National University, Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Gyeong-Hun; Heo, Serim; Park, Minwon [Changwon National University, Sarim-dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@changwon.ac.kr [Changwon National University, Sarim-dong, Changwon 641-773 (Korea, Republic of); Kim, Hak-Man [University of Incheon, Songdo-dong, Incheon 406-772 (Korea, Republic of)
2013-01-15
Highlights: ► The operating characteristics of SMES for the frequency control of an islanded microgrid were investigated. ► The SMES contributes well for frequency control in the islanded operation. ► A dual and a single magnet type of SMES have been compared to demonstrate the performances. -- Abstract: This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.
Free-boundary Full-pressure Island Healing in a Stellarator: Coil-healing
International Nuclear Information System (INIS)
Hudson, S.R.; Reiman, A.; Strickler, D.; Brooks, A.; Monticello, D.A.; Hirshman, S.P.
2002-01-01
The lack of axisymmetry in stellarators guarantees that in general magnetic islands and chaotic magnetic field lines will exist. As particle transport is strongly tied to the magnetic field lines, magnetic islands and chaotic field lines result in poor plasma confinement. For stellarators to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux-surfaces, and the suppression of magnetic islands is a critical issue for stellarator coil design, particularly for small aspect ratio devices. A procedure for modifying stellarator coil designs to eliminate magnetic islands in free-boundary full-pressure magnetohydrodynamic equilibria is presented. Islands may be removed from coil-plasma free-boundary equilibria by making small changes to the coil geometry and also by variation of trim coil currents. A plasma and coil design relevant to the National Compact Stellarator Experiment is used to illustrate the technique
Dikpati, Mausumi; McIntosh, Scott W.; Bothun, Gregory; Cally, Paul S.; Ghosh, Siddhartha S.; Gilman, Peter A.; Umurhan, Orkan M.
2018-02-01
We present a nonlinear magnetohydrodynamic shallow-water model for the solar tachocline (MHD-SWT) that generates quasi-periodic tachocline nonlinear oscillations (TNOs) that can be identified with the recently discovered solar “seasons.” We discuss the properties of the hydrodynamic and magnetohydrodynamic Rossby waves that interact with the differential rotation and toroidal fields to sustain these oscillations, which occur due to back-and-forth energy exchanges among potential, kinetic, and magnetic energies. We perform model simulations for a few years, for selected example cases, in both hydrodynamic and magnetohydrodynamic regimes and show that the TNOs are robust features of the MHD-SWT model, occurring with periods of 2–20 months. We find that in certain cases multiple unstable shallow-water modes govern the dynamics, and TNO periods vary with time. In hydrodynamically governed TNOs, the energy exchange mechanism is simple, occurring between the Rossby waves and differential rotation. But in MHD cases, energy exchange becomes much more complex, involving energy flow among six energy reservoirs by means of eight different energy conversion processes. For toroidal magnetic bands of 5 and 35 kG peak amplitudes, both placed at 45° latitude and oppositely directed in north and south hemispheres, we show that the energy transfers responsible for TNO, as well as westward phase propagation, are evident in synoptic maps of the flow, magnetic field, and tachocline top-surface deformations. Nonlinear mode–mode interaction is particularly dramatic in the strong-field case. We also find that the TNO period increases with a decrease in rotation rate, implying that the younger Sun had more frequent seasons.
Kinetic equilibrium for an asymmetric tangential layer with rotation of the magnetic field
Belmont, Gérard; Dorville, Nicolas; Aunai, Nicolas; Rezeau, Laurence
2015-04-01
Finding kinetic equilibria for tangential current layers is a key issue for modeling plasma phenomena such as magnetic reconnection instabilities, for which theoretical and numerical studies have to start from steady-state current layers. Until 2012, all theoretical models -starting with the most famous "Harris" one- relied on distribution functions built as mono-valued functions of the trajectories invariants. For a coplanar anti-symmetric magnetic field and in absence of electric field, these models were only able to model symmetric variations of the plasma, so precluding any modeling of "magnetopause-like'' layers, which separate two plasmas of different densities and temperatures. Recently, the "BAS" model was presented (Belmont et al., 2012), where multi-valued functions were taken into account. This new tool is made necessary each time the magnetic field reversal occurs on scales larger than the particle Larmor radii, and therefore guaranties a logical transition with the MHD modeling of large scales. The BAS model so provides a new asymmetric equilibrium. It has been validated in a hybrid simulation by Aunai et al (2013), and more recently in a fully kinetic simulation as well. For this original equilibrium to be computed, the magnetic field had to stay coplanar inside the layer. We present here an important generalization, where the magnetic field rotates inside the layer (although restricted to a 180° rotation hitherto). The tangential layers so obtained are thus closer to those encountered at the real magnetopause. This will be necessary, in the future, for comparing directly the theoretical profiles with the experimental ones for the various physical parameters. As it was done previously, the equilibrium is presently tested with a hybrid simulation. Belmont, G.; Aunai, N.; Smets, R., Kinetic equilibrium for an asymmetric tangential layer, Physics of Plasmas, Volume 19, Issue 2, pp. 022108-022118-10, 2012 Aunai, N.; Belmont, G.; Smets, R., First
Strongly coupled rotational band in ${}^{33}\mathrm{Mg}$
Energy Technology Data Exchange (ETDEWEB)
Richard, A. L.; Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.; Bader, V. M.; Bazin, D.; Bowry, M.; Campbell, C. M.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Gade, A.; Ideguchi, E.; Iwasaki, H.; Jones, M. D.; Langer, C.; Lee, I. Y.; Loelius, C.; Lunderberg, E.; Morse, C.; Rissanen, J.; Salathe, M.; Smalley, D.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wiens, A.; Williams, S. J.; Wimmer, K.; Yamamato, T.
2017-07-01
The “Island of Inversion” at N~20 for the neon, sodium, and magnesium isotopes has long been an area of interest both experimentally and theoretically due to the subtle competition between 0p-0h and np-nh configurations leading to deformed shapes. However, the presence of rotational band structures, which are fingerprints of deformed shapes, have only recently been observed in this region. In this work, we report on a measurement of the low-lying level structure of 33Mg populated by a two-stage projectile fragmentation reaction and studied with GRETINA. The experimental level energies, ground state magnetic moment, intrinsic quadrupole moment, and γ-ray intensities show good agreement with the strong-coupling limit of a rotational model.
Thermodynamic properties of rotating trapped ideal Bose gases
International Nuclear Information System (INIS)
Li, Yushan; Gu, Qiang
2014-01-01
Ultracold atomic gases can be spined up either by confining them in rotating frame, or by introducing “synthetic” magnetic field. In this paper, thermodynamics of rotating ideal Bose gases are investigated within truncated-summation approach which keeps to take into account the discrete nature of energy levels, rather than to approximate the summation over single-particle energy levels by an integral as it does in semi-classical approximation. Our results show that Bose gases in rotating frame exhibit much stronger dependence on rotation frequency than those in “synthetic” magnetic field. Consequently, BEC can be more easily suppressed in rotating frame than in “synthetic” magnetic field.
Doppler-Zeeman Mapping of the Rapidly Rotating Magnetic CP Star HD37776
Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Romanyuk, I. I.
2000-03-01
We present the results of our analysis of magnetic-field configuration and abundance anomalies on the surface of the rapidly rotating, chemically peculiar helium-strong variable B2 V star HD37776 with unresolved Zeeman components of spectral lines. Simultaneous inversion of the observed Stokes I and V profiles, which realizes the method of Doppler-Zeeman mapping (Vasilchenko et al. 1996), has been applied for the first time. Spectroscopic observations were carried out with the Main stellar spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a Zeeman analyzer and a CCD array, which allowed spectra in right- and left-hand circularly polarized light to be taken simultaneously at a signal-to-noise ratio S/N > 200 (Romanyuk et al. 1999). The profile width of winged spectral lines (reaching 5 A) is determined by Zeeman line splitting; however, the observed Zeeman components are blurred and unresolved because of the rapid stellar rotation. When solving the inverse problem, we sought for the magnetic-field configuration in the form of a combination of arbitrarily oriented dipole, quadrupole, and octupole placed at the stellar center. The observed Stokes I and V profiles for eight spectral lines of He, OII, AlIII, SiIII, and FeIII averaged over the visible stellar surface were used as input data. We constructed a model of the magnetic field from the condition of coincidence of magnetic maps obtained from different lines of different chemical elements and from the condition of a minimum profile residual. This model is a combination of centered coaxial dipole and quadrupole with the dominant quadrupole component at 30 deg < i < 50 deg, beta = 40 deg, and a maximum surface field strength H_s = 60 kG. A comparison of our abundance maps with the field configuration shows that the He concentration is at a maximum in the regions of maximum radial field, while the maximum concentrations of O, Al, Si, and Fe coincide with the regions of maximum
International Nuclear Information System (INIS)
Zou, Hong-Xiang; Zhang, Wen-ming; Li, Wen-Bo; Wei, Ke-Xiang; Gao, Qiu-Hua; Peng, Zhi-Ke; Meng, Guang
2017-01-01
Highlights: • A magnetically coupled two-degree-of-freedom harvester for rotation is proposed. • The electromechanical coupling model is developed and validated experimentally. • The harvester can generate high voltage at low rotating speeds. • The harvester can harvest vibration energy in multiple frequency bands. - Abstract: Energy can be harvested from rotational motion for powering wireless autonomous electronic devices. The paper presents a magnetically coupled two-degree-of-freedom vibration energy harvester for rotary motion applications. The design consists of two inverted piezoelectric cantilever beams whose free ends point to the rotating shaft. The centrifugal force of the inverted cantilever beam is beneficial to producing large amplitude in a low speed range. The electromechanical coupling dynamical model is developed by the energy method from Hamilton’s principle and validated experimentally. The experimental results indicate that the presented harvester is suitable for low speed rotation and can harvest vibration energy in multiple frequency bands. The first and second resonant behaviors of voltage can be obtained at 420 r/min and 550 r/min, and the average output powers are 564 μW and 535.3 μW, respectively.
Blanco-Montenegro, I.; Montesinos, F. G.; GarcíA, A.; Vieira, R.; VillalaíN, J. J.
2005-12-01
The Bouguer and aeromagnetic anomaly maps of Lanzarote show a gravity high and a dipolar magnetic anomaly over the central part of the island, indicating one isolated source. Assuming that the structure responsible for both anomalies is the same, a methodology has been designed to estimate the total magnetization vector of the source, which is interpreted as a large intrusive body (mafic core) positioned as a result of magma rising to the surface during the early stages of growth of Lanzarote. Considering its geometry to be known from a previous three-dimensional (3-D) gravity model, the approach proposed in this paper is based on the delineation of magnetic contacts through analysis of the horizontal gradient of the reduced-to-the-pole anomaly map, comparison between the gravity and the pseudogravity anomalies, and 3-D forward magnetic modeling. The total magnetization vector obtained by this method is defined by a module of 4.5 A m-1 and a direction D = -20° and I = 30°. Comparing the paleomagnetic pole, obtained from this direction, with the apparent polar wander path of Africa for the last 160 Myr, it is concluded that the main component of the total magnetization vector is probably a primary natural remanent magnetization (NRM) which could have been acquired between 60 and 100 Ma. This result suggests that the emplacement of magmas at shallow depths linked to the beginning of volcanism in Lanzarote took place during the Upper Cretaceous, thus providing the first evidence of a timeline for the early formative stages of this volcanic island.
Long pulse FRC sustainment with enhanced edge driven rotating magnetic field current drive
International Nuclear Information System (INIS)
Hoffman, A.L.; Guo, H.Y.; Miller, K.E.; Milroy, R.D.
2005-01-01
FRCs have been formed and sustained for up to 50 normal flux decay times by Rotating Magnetic Fields (RMF) in the TCS experiment. For these longer pulse times a new phenomenon has been observed: switching to a higher performance mode delineated by shallower RMF penetration, higher ratios of generated poloidal to RMF drive field, and lower overall plasma resistivity. This global data is not explainable by previous RMF theory based on uniform electron rotational velocities or by numerical calculations based on uniform plasma resistivity, but agrees in many respects with new calculations made using strongly varying resistivity profiles. In order to more realistically model RMF driven FRCs with such non-uniform resistivity profiles, a double rigid rotor model has been developed with separate inner and outer electron rotational velocities and resistivities. The results of this modeling suggest that the RMF drive results in very high resistivity in a narrow edge layer, and that the higher performance mode is characterized by a sharp reduction in resistivity over the bulk of the FRC. (author)
Directory of Open Access Journals (Sweden)
M. E. Shimpi
2012-01-01
Full Text Available Efforts have been directed to study and analyze the squeeze film performance between rotating transversely rough curved porous annular plates in the presence of a magnetic fluid lubricant considering the effect of elastic deformation. A stochastic random variable with nonzero mean, variance, and skewness characterizes the random roughness of the bearing surfaces. With the aid of suitable boundary conditions, the associated stochastically averaged Reynolds' equation is solved to obtain the pressure distribution in turn, which results in the calculation of the load-carrying capacity. The graphical representations establish that the transverse roughness, in general, adversely affects the performance characteristics. However, the magnetization registers a relatively improved performance. It is found that the deformation causes reduced load-carrying capacity which gets further decreased by the porosity. This investigation tends to indicate that the adverse effect of porosity, standard deviation and deformation can be compensated to certain extent by the positive effect of the magnetic fluid lubricant in the case of negatively skewed roughness by choosing the rotational inertia and the aspect ratio, especially for suitable ratio of curvature parameters.
A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls
Directory of Open Access Journals (Sweden)
Zhaoying Zhou
2009-04-01
Full Text Available In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ~490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached.
Schouteden, K; Muzychenko, D A; Van Haesendonck, C
2008-07-01
Magnetic monolayer and bilayer Co islands of only a few nanometer in size were grown by atomic deposition on atomically flat Au(111) films. The islands were studied in situ by scanning tunneling microscopy (STM) and spectroscopy at low temperatures. Spin-resolved tunneling spectroscopy, using an STM tip with a magnetic coating, revealed that the Co islands exhibit a net magnetization perpendicular to the substrate surface due to the presence of spin-polarized d-states. A random distribution of islands with either upward or downward pointing magnetization was observed, without any specific correlation of magnetization orientation with island size or island height.
Barnoud, Anne; Bouligand, Claire; Coutant, Olivier; Carlut, Julie
2017-12-01
We interpret aeromagnetic data to constrain the magnetic structure of the island of Basse-Terre, Guadeloupe, Lesser Antilles. Aeromagnetic data are inverted in the spatial domain with a Bayesian formulation to retrieve the 3D distribution of rock magnetization intensity and polarity. The inversion is regularized using a correlation length and standard deviation for magnetization chosen to be consistent with results from paleomagnetic measurements on lava flow samples from Basse-Terre. The resulting 3D model of magnetization is consistent at the surface with observed polarities and at depth with a 2D model obtained from a Parker and Huestis (1974) inversion in the Fourier domain. The inferred magnetic structure is compared with the available geological information deduced from published geological, geomorphological and geochronological studies. In the southern part of the island, very low magnetization is observed around the Soufrière lava dome, last activity of the Grande-Découverte-Carmichaël-Soufrière composite volcano, in relation with a high level of hydrothermal alteration. High-magnetizations in the South-East might reflect the presence of massive lava flows and lava domes from the Madeleine vents and Monts Caraïbes. Medium magnetizations in the South-West coincide with the location of debris avalanche deposits associated with the collapse of the former Carmichaël volcano and might reflect less massive lava structure at depth. Using the volume of normal polarity in the South part of Basse-Terre recovered in our 3D model of rock magnetization, we estimate an average construction rate of ∼ 9.4 ×10-4 km3/yr during the Brunhes chron which provides new insights on the volcanic activity of La Soufrière volcano.
Development of a fast response rotating polarimeter for a faraday rotation measurement
International Nuclear Information System (INIS)
Maeno, Masaki; Ogiwara, Norio; Ogawa, Hiroaki; Matsuda, Toshiaki
1994-03-01
This paper describes a method for using a spindle sustained with active magnetic bearing to make a rotating half waveplate frequency more fast. The time interval of the zero-cross phase measurement is 189 μsec in this experiment. The magnetic bearing is applicable to increase the rotating waveplate frequency by a factor of 2-3 compared with the conventional one. The waveplate speed as well as the deviation with respect to the stationary laser beam has no influence on the amplitude and phase shift of the rotating polarized beam signal. There is also no influence of the mirror reflections on the phase shift. The overall phase resolution is estimated to be about 0.1 degrees. (author)
The influence of magnetic field on the inertial deposition of a particle on a rotating disk
International Nuclear Information System (INIS)
Tsatsin, P O; Beskachko, V P
2008-01-01
The problem of inertial deposition attracts considerable attention in the connection with the separating of detrimental impurities and the refining of liquid metals. In the present investigation the deposition of particles suspended in a conducting melt on the rotating disk in the presence of axial uniform magnetic field is considered. The field of the fluid velocities is computed by means of the MHD-analogue of Karman reduction, which makes possible to reduce initial governing nonlinear partial differential equations to a two-point boundary value problem for the set of ordinary differential equations. The influence of magnetic field on dia-and paramagnetic particle deposition effect was estimated. The results reveal that magnetic field has significant effect on particle parameters, especially for magnetic particles
Reyes, Bryan A; Hull, Brandon R; Kurth, Alexander B; Kukowski, Nathan R; Mulligan, Edward P; Khazzam, Michael S
2017-11-01
Many patients with rotator cuff tears suffer from nocturnal shoulder pain, resulting in sleep disturbance. To determine whether rotator cuff tear size correlated with sleep disturbance in patients with full-thickness rotator cuff tears. Cross-sectional study; Level of evidence, 3. Patients with a diagnosis of unilateral full-thickness rotator cuff tears (diagnosed via magnetic resonance imaging [MRI]) completed the Pittsburgh Sleep Quality Index (PSQI), a visual analog scale (VAS) quantifying their shoulder pain, and the American Shoulder and Elbow Surgeons (ASES) questionnaire. Shoulder MRI scans were analyzed for anterior-posterior tear size (mm), tendon retraction (mm), Goutallier grade (0-4), number of tendons involved (1-4), muscle atrophy (none, mild, moderate, or severe), and humeral head rise (present or absent). Bivariate correlations were calculated between the MRI characteristics and baseline survey results. A total of 209 patients with unilateral full-thickness rotator cuff tears were included in this study: 112 (54%) female and 97 (46%) male (mean age, 64.1 years). On average, shoulder pain had been present for 24 months. The mean PSQI score was 9.8, and the mean VAS score was 5.0. No significant correlations were found between any of the rotator cuff tear characteristics and sleep quality. Only tendon retraction had a significant correlation with pain. Although rotator cuff tears are frequently associated with nocturnal pain and sleep disruption, this study demonstrated that morphological characteristics of full-thickness rotator cuff tears, such as size and tendon retraction, do not correlate with sleep disturbance and have little to no correlation with pain levels.
SMES application for frequency control during islanded microgrid operation
Kim, A.-Rong; Kim, Gyeong-Hun; Heo, Serim; Park, Minwon; Yu, In-Keun; Kim, Hak-Man
2013-01-01
This paper analyzes the operating characteristics of a superconducting magnetic energy storage (SMES) for the frequency control of an islanded microgrid operation. In the grid-connected mode of a microgrid, an imbalance between power supply and demand is solved by a power trade with the upstream power grid. The difference in the islanded mode is a critical problem because the microgrid is isolated from any power grid. For this reason, the frequency control during islanded microgrid operation is a challenging issue. A test microgrid in this paper consisted of a wind power generator, a PV generation system, a diesel generator and a load to test the feasibility of the SMES for controlling frequency during islanded operation as well as the transient state varying from the grid-connected mode to the islanded mode. The results show that the SMES contributes well for frequency control in the islanded operation. In addition, a dual and a single magnet type of SMES have been compared to demonstrate the control performance. The dual magnet has the same energy capacity as the single magnet, but there are two superconducting coils and each coil has half inductance of the single magnet. The effectiveness of the SMES application with the simulation results is discussed in detail.
Toroidal rotation braking with n = 1 magnetic perturbation field on JET
International Nuclear Information System (INIS)
Sun, Y; Liang, Y; Koslowski, H R; Harting, D; Wiegmann, C; Wiesen, S; Jachmich, S; Alfier, A; Asunta, O; Corrigan, G; Giroud, C; Gryaznevich, M P; Hender, T; Nardon, E; Parail, V; Naulin, V; Tala, T
2010-01-01
A strong toroidal rotation braking has been observed in plasmas with application of an n = 1 magnetic perturbation field on the JET tokamak. Calculation results from the momentum transport analysis show that the torque induced by the n = 1 perturbation field has a global profile. The maximal value of this torque is at the plasma core region (ρ - √ν regime in the plasma core, but it is close to the transition between the 1/ν and ν - √ν regimes. The neoclassical toroidal viscosity (NTV) torque in the 1/ν and ν - √ν regimes is calculated. The observed torque is of a magnitude in between that of the NTV torque in the 1/ν and ν - √ν regimes. The NTV torque in the ν - √ν regimes is enhanced using the Lagrangian variation of the magnetic field strength. However, it is still smaller than the observed torque by one order of magnitude.
International Nuclear Information System (INIS)
Shukla, Nitin; Moslem, W. M.; Shukla, P. K.
2007-01-01
By using the two fluid and Maxwell equations, the properties of electromagnetic waves in a rotating positive-negative dusty magnetoplasmas are investigated. It is found that the cross-coupling between the equilibrium dust flows and the perturbed magnetic field produces a Lorentz force that separates positive and negative dust grains. A new dispersion relation is derived and analyzed numerically. The effects of the dust grain radius, the equilibrium streaming speed, Jeans frequency, and the rotational frequency on the behavior of the real and imaginary parts of the wave frequency are examined. It is found that for small dust grain radius, the growth rate (the real frequency) increases (decreases) with the increase of the streaming dust speed and Jeans frequency. However, the dust rotational frequency does not have an important role in this case. For large dust grain radius, only the imaginary part of the wave frequency is presented. It is found that the rotational frequency (Jeans frequency and dust streaming speed) decreases (increase) the growth rate
International Nuclear Information System (INIS)
Sonier, J.E.; Kiefl, R.F.; Brewer, J.H.; Chakhalian, J.; Dunsiger, S.R.; MacFarlane, W.A.; Miller, R.I.; Wong, A.; Luke, G.M.; Brill, J.W.
1997-01-01
Muon-spin rotation spectroscopy (μSR) has been used to measure the internal magnetic field distribution in NbSe 2 for H c1 c2 . The deduced profiles of the supercurrent density J s indicate that the vortex-core radius ρ 0 in the bulk decreases sharply with increasing magnetic field. This effect, which is attributed to increased vortex-vortex interactions, does not agree with the dirty-limit microscopic theory. A simple phenomenological equation in which ρ 0 depends on the intervortex spacing is used to model this behavior. In addition, we find for the first time that the in-plane magnetic penetration depth λ ab increases linearly with H in the vortex state of a conventional superconductor. copyright 1997 The American Physical Society
Flux expulsion and trapping in rotating discs of type II superconductors
International Nuclear Information System (INIS)
Boyer, R.; Leblanc, M.A.R.
1977-01-01
The magnetic flux rotating in step with a type II superconducting disc is measured with orthogonal pick up coils for various previous magnetic histories vs H 0 applied at right angles to the axis of rotation. For some initial magnetic states, flux expulsion, independent of the rate of rotation, occurs during the initial rotation. A simple model where flux lines leave the specimen against the magnetic pressure in the active region accounts for the observations. (author)
International Nuclear Information System (INIS)
Rudnick, J.J.; Filipkowski, M.E.; Tan, Z.; Chamberland, B.; Niedermayer, C.; Weidinger, A.; Golnik, A.; Simon, R.; Rauer, M.; Recknagel, E.; Gluckler, H.; Baines, C.
1990-01-01
In this paper the authors review results of a series of muon spin rotation (μSR) studies extending down to milli Kelvin temperatures in order to explore the existence of magnetic correlations below T C in the La 2-x Sr x CuO 4 system. Evidence is presented for the existence of local magnetic fields thought to originate from Cu electronic moments in both superconducting La 2-x Sr x CuO 4 and in superconducting oxygen deficient YBa 2 Cu 3 O 6.6 . μSR results are also presented for oxygen deficient and superconducting GdBa 2 Cu 3 O 6+x samples. Some discussion of the relevance of these results to recent proposals for pairing mechanisms is presented
B polarization of the CMB from Faraday rotation
International Nuclear Information System (INIS)
Scoccola, Claudia; Harari, Diego; Mollerach, Silvia
2004-01-01
We study the effect of Faraday rotation due to a uniform magnetic field on the polarization of the cosmic microwave background. Scalar fluctuations give rise only to parity-even E-type polarization of the cosmic microwave background. However in the presence of a magnetic field, a nonvanishing parity-odd B-type polarization component is produced through Faraday rotation. We derive the exact solution for the E and B modes generated by scalar perturbations including the Faraday rotation effect of a uniform magnetic field, and evaluate their cross correlations with temperature anisotropies. We compute the angular autocorrelation function of the B-modes in the limit that the Faraday rotation is small. We find that uniform primordial magnetic fields of present strength around B 0 =10 -9 G rotate E-modes into B-modes with amplitude comparable to those due to the weak gravitational lensing effect at frequencies around ν=30 GHz. The strength of B-modes produced by Faraday rotation scales as B 0 /ν 2 . We evaluate also the depolarizing effect of Faraday rotation upon the cross correlation between temperature anisotropy and E-type polarization
Demonstrating multibit magnetic memory in the Fe8 high-spin molecule by muon spin rotation
Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris
2005-09-01
We develop a method to detect the quantum nature of high-spin molecules using muon spin rotation and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember six (possibly eight) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for multibit magnetic memory. Our experiment also paves the way for magnetic quantum tunneling detection in films.
Numerical study of rotating relativistic stars
International Nuclear Information System (INIS)
Wilson, J.R.
1975-01-01
The equations of structure for rotating stars in general relativity are presented and put in a form suitable for computer calculations. The results of equilibrium calculations for supermassive stars, neutron stars, and magnetically supported stars are reported, as are calculations of collapsing, rotating, and magnetized stars in the slowly changing gravitational field approximation. (auth)
INTERNAL-CYCLE VARIATION OF SOLAR DIFFERENTIAL ROTATION
International Nuclear Information System (INIS)
Li, K. J.; Xie, J. L.; Shi, X. J.
2013-01-01
The latitudinal distributions of the yearly mean rotation rates measured by Suzuki in 1998 and 2012 and Pulkkinen and Tuominen in 1998 are utilized to investigate internal-cycle variation of solar differential rotation. The rotation rate at the solar equator seems to have decreased since cycle 10 onward. The coefficient B of solar differential rotation, which represents the latitudinal gradient of rotation, is found to be smaller in the several years after the minimum of a solar cycle than in the several years after the maximum time of the cycle, and it peaks several years after the maximum time of the solar cycle. The internal-cycle variation of the solar rotation rates looks similar in profile to that of the coefficient B. A new explanation is proposed to address such a solar-cycle-related variation of the solar rotation rates. Weak magnetic fields may more effectively reflect differentiation at low latitudes with high rotation rates than at high latitudes with low rotation rates, and strong magnetic fields may more effectively repress differentiation at relatively low latitudes than at high latitudes. The internal-cycle variation is inferred as the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity in differentiation.
Strongly coupled rotational band in ${}^{33}\mathrm{Mg}$
Energy Technology Data Exchange (ETDEWEB)
Richard, A. L. [Ohio Univ., Athens, OH (United States). Inst. for Nuclear and Particle Physics; Crawford, H. L. [Ohio Univ., Athens, OH (United States). Inst. for Nuclear and Particle Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Fallon, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Macchiavelli, A. O. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Bader, V. M. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Bazin, D. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Bowry, M. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Campbell, C. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Carpenter, M. P. [Argonne National Lab. (ANL), Argonne, IL (United States). Physics Div.; Clark, R. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Cromaz, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Gade, A. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Ideguchi, E. [Osaka Univ. (Japan). RCNP; Iwasaki, H. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Jones, M. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Langer, C. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Lee, I. Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Loelius, C. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Lunderberg, E. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Morse, C. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Rissanen, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Salathe, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Smalley, D. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Stroberg, S. R. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Weisshaar, D. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Whitmore, K. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Wiens, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Williams, S. J. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Wimmer, K. [Univ. of Tokyo (Japan). Dept. of Physics; Yamamato, T. [Osaka Univ. (Japan). RCNP
2017-07-01
The “island of inversion” at N≈20 for the neon, sodium, and magnesium isotopes has long been an area of interest both experimentally and theoretically due to the subtle competition between 0p-0h and np-nh configurations leading to deformed shapes. However, the presence of rotational band structures, which are fingerprints of deformed shapes, have only recently been observed in this region. In this work, we report on a measurement of the low-lying level structure of Mg33 populated by a two-stage projectile fragmentation reaction and studied with the Gamma Ray Energy Tracking In-Beam Nuclear Array (GRETINA). The experimental level energies, ground-state magnetic moment, intrinsic quadrupole moment, and γ-ray intensities show good agreement with the strong-coupling limit of a rotational model.
International Nuclear Information System (INIS)
Gorican, Viktor; Hamler, Anton; Jesenik, Marko; Stumberger, Bojan; Trlep, Mladen
2006-01-01
The magnetic properties of two grain-oriented (GO) samples of the same grade were measured under alternating and rotational magnetic flux conditions. Two samples were measured separately and then together in different arrangement to each other. The interaction of magnetic field between two samples were measured by using a coil, which was placed in between. The results show that the H z component influence measured magnetic properties in the x-y plane
The Formation of Magnetic Depletions and Flux Annihilation Due to Reconnection in the Heliosheath
International Nuclear Information System (INIS)
Drake, J. F.; Swisdak, M.; Opher, M.; Richardson, J. D.
2017-01-01
The misalignment of the solar rotation axis and the magnetic axis of the Sun produces a periodic reversal of the Parker spiral magnetic field and the sectored solar wind. The compression of the sectors is expected to lead to reconnection in the heliosheath (HS). We present particle-in-cell simulations of the sectored HS that reflect the plasma environment along the Voyager 1 and 2 trajectories, specifically including unequal positive and negative azimuthal magnetic flux as seen in the Voyager data. Reconnection proceeds on individual current sheets until islands on adjacent current layers merge. At late time, bands of the dominant flux survive, separated by bands of deep magnetic field depletion. The ambient plasma pressure supports the strong magnetic pressure variation so that pressure is anticorrelated with magnetic field strength. There is little variation in the magnetic field direction across the boundaries of the magnetic depressions. At irregular intervals within the magnetic depressions are long-lived pairs of magnetic islands where the magnetic field direction reverses so that spacecraft data would reveal sharp magnetic field depressions with only occasional crossings with jumps in magnetic field direction. This is typical of the magnetic field data from the Voyager spacecraft. Voyager 2 data reveal that fluctuations in the density and magnetic field strength are anticorrelated in the sector zone, as expected from reconnection, but not in unipolar regions. The consequence of the annihilation of subdominant flux is a sharp reduction in the number of sectors and a loss in magnetic flux, as documented from the Voyager 1 magnetic field and flow data.
The Formation of Magnetic Depletions and Flux Annihilation Due to Reconnection in the Heliosheath
Energy Technology Data Exchange (ETDEWEB)
Drake, J. F. [Department of Physics, the Institute for Physical Science and Technology and the Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Swisdak, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Opher, M. [Astronomy Department, Boston University, MA 02215 (United States); Richardson, J. D., E-mail: drake@umd.edu [Kavli Center for Astrophysics and Space Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2017-03-10
The misalignment of the solar rotation axis and the magnetic axis of the Sun produces a periodic reversal of the Parker spiral magnetic field and the sectored solar wind. The compression of the sectors is expected to lead to reconnection in the heliosheath (HS). We present particle-in-cell simulations of the sectored HS that reflect the plasma environment along the Voyager 1 and 2 trajectories, specifically including unequal positive and negative azimuthal magnetic flux as seen in the Voyager data. Reconnection proceeds on individual current sheets until islands on adjacent current layers merge. At late time, bands of the dominant flux survive, separated by bands of deep magnetic field depletion. The ambient plasma pressure supports the strong magnetic pressure variation so that pressure is anticorrelated with magnetic field strength. There is little variation in the magnetic field direction across the boundaries of the magnetic depressions. At irregular intervals within the magnetic depressions are long-lived pairs of magnetic islands where the magnetic field direction reverses so that spacecraft data would reveal sharp magnetic field depressions with only occasional crossings with jumps in magnetic field direction. This is typical of the magnetic field data from the Voyager spacecraft. Voyager 2 data reveal that fluctuations in the density and magnetic field strength are anticorrelated in the sector zone, as expected from reconnection, but not in unipolar regions. The consequence of the annihilation of subdominant flux is a sharp reduction in the number of sectors and a loss in magnetic flux, as documented from the Voyager 1 magnetic field and flow data.
International Nuclear Information System (INIS)
Saito, Takao; Oki, Tosio
1989-01-01
The photospheric magnetic field is revealed to rotate with different solar rotation periods depending on its m-number, or its longitudinal range. The m-dependent rotation reveals the unexplained solar cycle variation of the 28-day period of the IMF 2-sector structure in inclining/minimum years and of the 27-day period in the declining/minimum years. The m-dependent rotation reveals also the unexplained 155-day periodicity in the occurrence of solar flare clusters, suggesting a motion of the sunspot field relative to the large-scale field. The IMF sector structure is closely related to recurrent geomagnetic storms, while the flare occurrence is related to sporadic SC storms. Hence, the m-dependent rotation is quite important in the study of the STE forecast. (author)
Structural looseness investigation in slow rotating permanent magnet generators
DEFF Research Database (Denmark)
Skrimpas, Georgios Alexandros; Mijatovic, Nenad; Sweeney, Christian Walsted
2016-01-01
Structural looseness in electric machines is a condition influencing the alignment of the machine and thus the overall bearing health. In this work, assessment of the above mentioned failure mode is tested on a slow rotating (running speed equal to 0.7Hz) permanent magnet generator (PMG), while...... collecting vibration and current data in order to cross-reference the indications from the two monitoring techniques. It is found that electric signature analysis shows no response even when two hold down bolts are untightened, whereas the analysis results from the vibration data exhibit superior performance....... The vibration-based condition indicators with the best response are the stator slot pass frequency, which can be directly related to the cogging torque in PMGs, and the 4th electric frequency harmonic, whose amplitudes increase due to the overall lower structure damping coefficient under looseness...
International Nuclear Information System (INIS)
Dahmani, Ch.; Mykhaylyk, O.; Helling, Fl.; Götz, St.; Weyh, Th.; Herzog, H.-G.; Plank, Ch.
2013-01-01
The association of magnetic nanoparticles with gene delivery vectors in combination with the use of gradient magnetic fields (magnetofection) enables improved and synchronised gene delivery to cells. In this paper, we report a system comprising rotating permanent magnets to generate defined magnetic field pulses with frequencies from 2.66 to 133 Hz and a field amplitude of 190 or 310 mT at the location of the cells. Low-frequency pulses of 2.66–10 Hz with a magnetic flux density of 190 mT were applied to the examined cells for 30–120 s after magnetofection. These pulses resulted in a 1.5–1.9-fold enhancement in the transfection efficiency compared with magnetofection with only a static magnetic field in both adherent and suspension cells. The magnetic field amplitudes of 190 and 310 mT had similar effects on the transfection efficacy. No increase in the percentage of transgene-expressing suspension cells and no cytotoxic effects (based on the results of the MTT assay) were observed after applying alternating magnetic fields. - Highlights: ► We developed a magnetic system capable of generating defined magnetic pulses based on permanent magnets. ► The main advantage of the system is the lack of heat-induced fluctuations in the working parameters. ► Our system succeeded in enhancing the transfection of adherent human lung epithelial cells and human suspension cells. ► The enhancement in the transfection efficiency compared with static magnetic field is due to the magnetic field pulses. ► The approach could be used as a complementary method for drug targeting
Observation of magnetic field perturbations during sawtooth activity in tokamak plasmas
International Nuclear Information System (INIS)
Soltwisch, H.; Koslowski, H.R.
1997-01-01
Sawtooth activity is a prominent example of a global plasma instability which is observed in virtually all tokamak devices. Despite numerous experimental and theoretical investigations, the phenomenon is still barely understood. As far as experimental effort is concerned, much attention has been paid to soft X-ray emission from the plasma and to its analysis in terms of two-dimensional contour plots, because it is thought to reflect the shape and temporal behaviour of magnetic flux surfaces during a sawtooth cycle. Recently, more direct methods of detecting sawtooth-related changes in the magnetic field structure have become available and have added new facets to the general picture. In this picture, some observations made on the Juelich tokamak TEXTOR by means of a Faraday rotation diagnostic technique will be reported. First, in correlation with the sawtooth collapse a localized periodic perturbation of the magnetic field with principal mode numbers m = 1 and n = 0 has been detected which, in the presence of an m = n = 1 island, may give rise to magnetic field line stochastization and thereby contribute significantly to a rapid expulsion of electronic energy from the plasma core region. Second, the so-called precursor oscillations prior to a sawtooth crash have been investigated and estimates have been obtained for the growth rate and width of a magnetic island forming immediately before the collapse. (Author)
Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo
Takahashi, F.
2011-12-01
Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.
Numerical studies of Siberian snakes and spin rotators for RHIC
International Nuclear Information System (INIS)
Luccio, A.
1995-01-01
For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180 degrees apart and with their axis of spin precession at 90 degrees to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis
International Nuclear Information System (INIS)
Abd-Alla, A.M.; Abo-Dahab, S.M.
2015-01-01
In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel is studied. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, streamlines, axial velocity and shear stress on the channel walls have been computed numerically. Effects of Hartmann number, the ratio of relaxation to retardation times, time-mean flow, rotation and the phase angle on the pressure gradient, pressure rise, streamline, axial velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, rotation and the phase angle are very pronounced in the phenomena. Comparison was made with the results obtained in the asymmetric channel and symmetric channel. - Highlights: • The peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel with magnetic field. • Mathematical modeling for long wavelength and low Reynolds number assumptions. • Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity and shear stress
An investigation of the structure of rotational discontinuities
International Nuclear Information System (INIS)
Goodrich, C.C.; Cargill, P.J.
1991-01-01
The structure of rotational discontinuities (RDs) has been studied through hybrid simulations for a range of propagation angle Θ bn between the discontinuity normal and the upstream magnetic field and plasma β. For sufficiently narrow initial states, the simulations produce quasi-steady reverse rotation magnetic field structures for 30 degree ≤ Θ bn ≤ 60 degree and 0 i -1 . This structure is characterized by a right handed field rotation upstream joined smoothly to a left handed field rotation downstream; its width decreases from 60-70 c/ω pi at Θ bn = 30 degree to less than 25 c/ω pi at Θ bn = 60 degree. The magnetic field hodograms of the RD results have a distinctive S-shape which is most pronounced in simulations with small Θ bn and initially right handed rotations. The reverse rotation structure is the net result of the expansion of the initial current layer via the fast and intermediate wave modes
Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field
Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves
2016-10-01
Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.
Grants, Ilmars; Gerbeth, Gunter
2010-07-01
The stability of a thermally stratified liquid metal flow is considered numerically. The flow is driven by a rotating magnetic field in a cylinder heated from above and cooled from below. The stable thermal stratification turns out to destabilize the flow. This is explained by the fact that a stable stratification suppresses the secondary meridional flow, thus indirectly enhancing the primary rotation. The instability in the form of Taylor-Görtler rolls is consequently promoted. These rolls can only be excited by finite disturbances in the isothermal flow. A sufficiently strong thermal stratification transforms this nonlinear bypass instability into a linear one reducing, thus, the critical value of the magnetic driving force. A weaker temperature gradient delays the linear instability but makes the bypass transition more likely. We quantify the non-normal and nonlinear components of this transition by direct numerical simulation of the flow response to noise. It is observed that the flow sensitivity to finite disturbances increases considerably under the action of a stable thermal stratification. The capabilities of the random forcing approach to identify disconnected coherent states in a general case are discussed.
Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N Robert; Pelc, Norbert; Fahrig, Rebecca
2013-02-01
Using hybrid x-ray∕MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also evaluated to determine
Energy Technology Data Exchange (ETDEWEB)
Lillaney, Prasheel; Pelc, Norbert [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States); Shin Mihye [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Hinshaw, Waldo; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Bennett, N. Robert [Department of Radiology, Stanford University, Stanford, California 94305 and Qualcomm MEMS Technologies, San Jose, California 95134 (United States)
2013-02-15
Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also
Pinning, rotation, and metastability of BiFeO3 cycloidal domains in a magnetic field
Fishman, Randy S.
2018-01-01
Earlier models for the room-temperature multiferroic BiFeO3 implicitly assumed that a very strong anisotropy restricts the domain wave vectors q to the threefold-symmetric axis normal to the static polarization P . However, recent measurements demonstrate that the domain wave vectors q rotate within the hexagonal plane normal to P away from the magnetic field orientation m . We show that the previously neglected threefold anisotropy K3 restricts the wave vectors to lie along the threefold axis in zero field. Taking m to lie along a threefold axis, the domain with q parallel to m remains metastable below Bc 1≈7 T. Due to the pinning of domains by nonmagnetic impurities, the wave vectors of the other two domains start to rotate away from m above 5.6 T, when the component of the torque τ =M ×B along P exceeds a threshold value τpin. Since τ =0 when m ⊥q , the wave vectors of those domains never become completely perpendicular to the magnetic field. Our results explain recent measurements of the critical field as a function of field orientation, small-angle neutron scattering measurements of the wave vectors, as well as spectroscopic measurements with m along a threefold axis. The model developed in this paper also explains how the three multiferroic domains of BiFeO3 for a fixed P can be manipulated by a magnetic field.
International Nuclear Information System (INIS)
Wyslocki, J.J.; Pawlik, P.; Wochowski, K.; Kotur, B.; Bodak, O.I.
1996-01-01
The magnetic torque, T, was applied to determine the anisotropy constants K 1 and K 2 of the UFe 6 Al 6 , UFe 9 AlSi 2 and ScFe 10 Si 2 compounds. The mechanism of magnetization reversal processes in these compounds was investigated on the basis of the analysis of the rotational hysteresis energy, W r and rotational hysteresis integral, R, calculated from the magnetic torque curves. Applying the powder pattern method, magnetic domain structures were observed. Moreover, the fundamental parameters of the domain structure were determined. (orig.)
DEFF Research Database (Denmark)
Mantica, P.; Challis, C.; Peeters, A.G.
2011-01-01
New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implicatio...
Mantica, P.; Angioni, C.; Challis, C.; Colyer, G.; Frassinetti, L.; Hawkes, N.C.; Johnson, T.; Tsalas, M.; de Vries, P.C.; Weiland, J.; Baiocchi, B.; Beurskens, M.N.A.; Figueiredo, A.C.A.; Giroud, C.; Hobirk, J.; Joffrin, E.; Lerche, E.; Naulin, V.; Peeters, A.G.; Salmi, A.; Sozzi, C.; Strintzi, D.; Staebler, G.; Tala, T.; Van Eester, D.; Versloot, T.W.
2011-01-01
New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications
Equilibrium of current driven rotating liquid metal
International Nuclear Information System (INIS)
Velikhov, E.P.; Ivanov, A.A.; Zakharov, S.V.; Zakharov, V.S.; Livadny, A.O.; Serebrennikov, K.S.
2006-01-01
In view of great importance of magneto-rotational instability (MRI) as a fundamental mechanism for angular momentum transfer in magnetized stellar accretion disks, several research centers are involved in experimental study of MRI under laboratory conditions. The idea of the experiment is to investigate the rotation dynamics of well conducting liquid (liquid metal) between two cylinders in axial magnetic field. In this Letter, an experimental scheme with immovable cylinders and fluid rotation driven by radial current is considered. The analytical solution of a stationary flow was found taking into account the external current. Results of axially symmetric numerical simulations of current driven fluid dynamics in experimental setup geometry are presented. The analytical solution and numerical simulations show that the current driven fluid rotation in axial magnetic field provides the axially homogeneous velocity profile suitable for MRI study in classical statement
Transient rotation of photospheric vector magnetic fields associated with a solar flare.
Xu, Yan; Cao, Wenda; Ahn, Kwangsu; Jing, Ju; Liu, Chang; Chae, Jongchul; Huang, Nengyi; Deng, Na; Gary, Dale E; Wang, Haimin
2018-01-03
As one of the most violent eruptions on the Sun, flares are believed to be powered by magnetic reconnection. The fundamental physics involving the release, transfer, and deposition of energy have been studied extensively. Taking advantage of the unprecedented resolution provided by the 1.6 m Goode Solar Telescope, here, we show a sudden rotation of vector magnetic fields, about 12-20° counterclockwise, associated with a flare. Unlike the permanent changes reported previously, the azimuth-angle change is transient and cospatial/temporal with Hα emission. The measured azimuth angle becomes closer to that in potential fields suggesting untwist of flare loops. The magnetograms were obtained in the near infrared at 1.56 μm, which is minimally affected by flare emission and no intensity profile change was detected. We believe that these transient changes are real and discuss the possible explanations in which the high-energy electron beams or Alfve'n waves play a crucial role.
Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma
International Nuclear Information System (INIS)
Yoshimura, Shinji; Tanaka, Masayoshi Y.
2008-01-01
The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)
Translational and rotational dynamic analysis of a superconducting levitation system
International Nuclear Information System (INIS)
Cansiz, A; Hull, J R; Gundogdu, Oe
2005-01-01
The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet
International Nuclear Information System (INIS)
Sevec, J.B.
1978-01-01
A protective device to provide a warning if a piece of rotating machinery slows or stops is comprised of a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal
da Silva, O. E.; de Siqueira, J. V.; Kern, P. R.; Garcia, W. J. S.; Beck, F.; Rigue, J. N.; Carara, M.
2018-04-01
Exchange bias properties of NiFe/FeMn thin films have been investigated through X-ray diffraction, hysteresis loops, angular measurements of anisotropic magnetoresistance (AMR) and magnetic torque. As first predicted by Meiklejohn and Bean we found a decrease on the bias field as the NiFe layer thickness increases. However such reduction is not as strong as expected and it was attributed to the increase on the number of uncompensed antiferromagnetic spins resulting from the increase on the number of FeMn grains at the interface as the thickness of the NiFe layer is increased. The angular evolution of AMR and the magnetic torque were calculated and compared to the experimental ones using the minimization of the free magnetic energy and finding the magnetization equilibrium angle. The free energy, for each grain of the polycrystalline sample, is composed by the following terms: Zeeman, uniaxial, unidirectional and the rotatable energies. While from the AMR curves we obtain stable anisotropy fields independently on the measuring fields, from the torque curves we obtain increasing values of the uniaxial and rotatable fields, as the measuring field is increased. These results were attributed to the physical origin and sensitivity of the two different techniques. Magnetoresistance is mainly sensitive to the inner portion of the ferromagnetic layer, and the torque brings out information of the whole ferromagnetic layer including the interface of the layers. In this way, we believe that the increase in the uniaxial and rotatable values were due to an increase on the volume of the ferromagnetic layer, near the interfaces, which is made to rotate with the measuring field. Studying the rotational hysteresis by both techniques allows to separately obtain the contributions coming from the inner portion of ferromagnetic layer and from the interface.
Directory of Open Access Journals (Sweden)
Bég Anwar O.
2014-01-01
Full Text Available A mathematical model is presented for viscous hydromagnetic flow through a hybrid non-Darcy porous media rotating generator. The system is simulated as steady, incompressible flow through a nonlinear porous regime intercalated between parallel plates of the generator in a rotating frame of reference in the presence of a strong, inclined magnetic field A pressure gradient term is included which is a function of the longitudinal coordinate. The general equations for rotating viscous magnetohydrodynamic flow are presented and neglecting convective acceleration effects, the two-dimensional viscous flow equations are derived incorporating current density components, porous media drag effects, Lorentz drag force components and Hall current effects. Using an appropriate group of dimensionless variables, the momentum equations for primary and secondary flow are rendered nondimensional and shown to be controlled by six physical parameters-Hartmann number (Ha, Hall current parameter (Nh, Darcy number (Da, Forchheimer number (Fs, Ekman number (Ek and dimensionless pressure gradient parameter (Np, in addition to one geometric parameter-the orientation of the applied magnetic field (θ . Several special cases are extracted from the general model, including the non-porous case studied earlier by Ghosh and Pop (2006. A numerical solution is presented to the nonlinear coupled ordinary differential equations using both the Network Simulation Method and Finite Element Method, achieving excellent agreement. Additionally very good agreement is also obtained with the earlier analytical solutions of Ghosh and Pop (2006. for selected Ha, Ek and Nh values. We examine in detail the effects of magnetic field, rotation, Hall current, bulk porous matrix drag, second order porous impedance, pressure gradient and magnetic field inclination on primary and secondary velocity distributions and also frictional shear stresses at the plates. Primary velocity is seen to decrease
Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg
2018-06-01
Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.
Investigating the Magnetospheres of Rapidly Rotating B-type Stars
Fletcher, C. L.; Petit, V.; Nazé, Y.; Wade, G. A.; Townsend, R. H.; Owocki, S. P.; Cohen, D. H.; David-Uraz, A.; Shultz, M.
2017-11-01
Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA's XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.
Glatzmaier, Gary
2013-01-01
This book provides readers with the skills they need to write computer codes that simulate convection, internal gravity waves, and magnetic field generation in the interiors and atmospheres of rotating planets and stars. Using a teaching method perfected in the classroom, Gary Glatzmaier begins by offering a step-by-step guide on how to design codes for simulating nonlinear time-dependent thermal convection in a two-dimensional box using Fourier expansions in the horizontal direction and finite differences in the vertical direction. He then describes how to implement more efficient and accura
Mishra, A.; Sharma, B. K.
2017-11-01
A numerical study of an oscillatory unsteady MHD flow and heat and mass transfer in a vertical rotating channel with an inclined uniform magnetic field and the Hall effect is carried out. The conservation equations of momentum, energy, and species are formulated in a rotating frame of reference with inclusion of the buoyancy effects and Lorentz forces. The Lorentz forces are determined by using the generalized Ohm law with the Hall parameter taken into account. The obtained coupled partial differential equations are nondimensionalized and solved numerically by using the explicit finite difference method. The effects of various model parameters, like the Hall parameter, Hartmann number, wall suction/injection parameter, rotation parameter, angle of magnetic field inclination, Prandtl number, Schmidt number, etc., on the channel velocities, skin friction coefficients, Nusselt number, and the Sherwood number are examined. It is found that the influence of the Hartmann number and Hall parameter on the channel velocities and skin friction coefficients is dependent on the value of the wall suction/injection parameter.
Backe, H; Engfer, R; Kankeleit, E; Link, R; Michaelsen, R; Petitjean, C; Schellenberg, L; Schneuwly, H; Schröder, W U; Vuilleumier, J L; Walter, H K; Zehnder, A
1973-01-01
The lowest states in muonic atoms are rather sensitive to the spatial distribution of the nuclear magnetization density, and several results were deduced from the broadening of the muonic 2p/sub 1/2/-1s/sub 1/2/ and 3d/sub 3/2/-2p/sub 1/2/ transitions. By measuring low energetic transitions such as the 2s/sub 1/2/-2p/sub 1/2/ transition or nuclear gamma -transitions, it is possible to resolve the magnetic hyperfine splittings. The magnetic hf splitting of the 2s/sub 1/2/-2p/sub 1/2/ transition in mu /sup 115/In and of the 3/2/sup +/-1/2/sup +/ nuclear gamma -transitions in mu /sup 203/Tl at 279 keV, and in mu /sup 205/Tl at 204 keV, have been resolved. For the 2/sup +/-0/sup +/ nuclear gamma -transition in mu /sup 190,192/Os at 187 keV and 206 keV, respectively, the magnetic hf splitting of the 2/sup +/ rotational levels and the intensities of the hf components were determined from a nearly resolved doublet splitting. (7 refs).
Directory of Open Access Journals (Sweden)
C. W. Su
2013-07-01
Full Text Available An experimental approach of inclined incidence magneto-optic Faraday effect observed in the polar plane is applied. Three samples containing ferromagnetic cobalt ultrathin films on a semiconductor zinc oxide (0001 single crystal substrate with in-plane and out-of-plane anisotropy are evaluated. Through the fine adjustment of crossed polarizers in the magneto-optic effect measurement completely recorded the detail optical and magneto-optical responses from the birefringent crystal substrate and the magnetic film, especially for the signal induced from the substrate with uniaxial optical axis. The angle dependency of interference phenomena periodically from the optical and magneto-optical responses is attributed to the birefringence even in the absence of a magnetic field. The new type of observation finds that the transmission Faraday intensity in the oblique incidence includes a combination of polarization rotations, which results from optical compensation from the substrate and magneto-optical Faraday effects from the film. The samples grown at different rates and examined by this method exhibit magnetic structure discriminations. This result can be applied in the advanced polarized-light technologies to enhance the spatial resolution of magnetic surfaces with microstructural information under various magnetic field direction.
Impact of compressibility and a guide field on Fermi acceleration during magnetic island coalescence
Montag, Peter; Egedal, Jan; Lichko, Emily; Wetherton, Blake
2017-10-01
Previous work has shown that Fermi acceleration can be an effective heating mechanism during magnetic island coalescence, where electrons may undergo repeated reflections as the magnetic field lines contract. This energization has the potential to account for the power-law distributions of particle energy inferred from observations of solar flares. Here, we develop a generalized framework for the analysis of Fermi acceleration that can incorporate the effects of compressibility and non-uniformity along field lines, which have commonly been neglected in previous treatments of the problem. Applying this framework to the simplified case of the uniform flux tube allows us to find both the power-law scaling of the distribution function and the rate at which the power-law behavior develops. We find that a guide magnetic field of order unity effectively suppresses the development of power-law distributions. The work was supported by NASA Grant No. NNX14AC68G, NSF GEM Grant No. 1405166, NSF Award 1404166, and NASA Award NNX15AJ73G.
Toroidal rotation studies in KSTAR
Lee, S. G.; Lee, H. H.; Yoo, J. W.; Kim, Y. S.; Ko, W. H.; Terzolo, L.; Bitter, M.; Hill, K.; KSTAR Team
2014-10-01
Investigation of the toroidal rotation is one of the most important topics for the magnetically confined fusion plasma researches since it is essential for the stabilization of resistive wall modes and its shear plays an important role to improve plasma confinement by suppressing turbulent transport. The most advantage of KSTAR tokamak for toroidal rotation studies is that it equips two main diagnostics including the high-resolution X-ray imaging crystal spectrometer (XICS) and charge exchange spectroscopy (CES). Simultaneous core toroidal rotation and ion temperature measurements of different impurity species from the XICS and CES have shown in reasonable agreement with various plasma discharges in KSTAR. It has been observed that the toroidal rotation in KSTAR is faster than that of other tokamak devices with similar machine size and momentum input. This may due to an intrinsically low toroidal field ripple and error field of the KSTAR device. A strong braking of the toroidal rotation by the n = 1 non-resonant magnetic perturbations (NRMPs) also indicates these low toroidal field ripple and error field. Recently, it has been found that n = 2 NRMPs can also damp the toroidal rotation in KSTAR. The detail toroidal rotation studies will be presented. Work supported by the Korea Ministry of Science, ICT and Future Planning under the KSTAR project.
Adjustable permanent magnet assembly for NMR and MRI
Pines, Alexander; Paulsen, Jeffrey; Bouchard, Louis S; Blumich, Bernhard
2013-10-29
System and methods for designing and using single-sided magnet assemblies for magnetic resonance imaging (MRI) are disclosed. The single-sided magnet assemblies can include an array of permanent magnets disposed at selected positions. At least one of the permanent magnets can be configured to rotate about an axis of rotation in the range of at least +/-10 degrees and can include a magnetization having a vector component perpendicular to the axis of rotation. The single-sided magnet assemblies can further include a magnet frame that is configured to hold the permanent magnets in place while allowing the at least one of the permanent magnets to rotate about the axis of rotation.
The dynamics of a neoclassical tearing mode (NTM) influenced by energetic ions on EAST
International Nuclear Information System (INIS)
Li, Erzhong; Xu, L; Shi, T; Zhao, H; Liu, Y; Ti, A; Zhang, J; Huang, J; Shen, B; Lin, S; Qian, J; Gong, X; Hu, L; Igochine, V; White, R; Zhu, Y
2016-01-01
In the 2014 year’s campaign of experimental advanced superconducting tokamak (EAST), a series of Magnetohydrodynamics (MHD) instabilities were observed as the launching of Neutral Beam Injection (NBI), the most interesting one of which is the neoclassical tearing mode (NTM). Evidence clearly shows that a kink mode present after a strong sawtooth-like (ST-like) crash leaves a perturbation near the location of the magnetic island, providing the initial seed. The interaction of energetic ions makes the magnetic island oscillate both in island width and in rotation frequency. Analysis indicates that the bulk plasma still dominates the dynamics of NTM, and the orbit excursion of energetic ions induces a polarization current and modifies the width and rotation frequency of the neoclassical magnetic island. (paper)
Smith, Douglas P.; Busby, Cathy J.
1993-10-01
Paleomagnetic data from Albian to Turonian sedimentary rocks on Cedros Island, Mexico (28.2° N, 115.2° W) support the interpretation that Cretaceous rocks of western Baja California have moved farther northward than the 3° of latitude assignable to Neogene oblique rifting in the Gulf of California. Averaged Cretaceous paleomagnetic results from Cedros Island support 20 ± 10° of northward displacement and 14 ± 7° of clockwise rotation with respect to cratonic North America. Positive field stability tests from the Vizcaino terrane substantiate a mid-Cretaceous age for the high-temperature characteristic remanent magnetization in mid-Cretaceous strata. Therefore coincidence of characteristic magnetization directions and the expected Quaternary axial dipole direction is not due to post mid-Cretaceous remagnetization. A slump test performed on internally coherent, intrabasinal slump blocks within a paleontologically dated olistostrome demonstrates a mid-Cretaceous age of magnetization in the Valle Group. The in situ high-temperature natural remanent magnetization directions markedly diverge from the expected Quaternary axial dipole, indicating that the characteristic, high-temperature magnetization was acquired prior to intrabasinal slumping. Early acquisition of the characteristic magnetization is also supported by a regional attitude test involving three localities in coherent mid-Cretaceous Valle Group strata. Paleomagnetic inclinations in mudstone are not different from those in sandstone, indicating that burial compaction did not bias the results toward shallow inclinations in the Vizcaino terrane.
International Nuclear Information System (INIS)
Rangin, C.; Maury, R.C.; Bellon, H.; Cotten, J.; Polve, M.; Priadi, B.; Soeria-Atmadja, R.; Joron, J.L.
1997-01-01
Eocene BABB basalts intruded by tholeiitic and calk-alkalic island arc magmatic rocks are reported from the north arm of Sulawesi (Indonesia). Age and geochemical similarities between these basalts and those drilled in the Celebes Sea indicate this North Sulawesi volcanic arc was built on the same oceanic crust. The 25 deg late Neogene clockwise rotation of the north arm of Sulawesi following its collision with fragments of Australia (Sula, Buton) is not sufficient to explain the asymmetrical magnetic anomalies in the Celebes basin. The North Sulawesi island arc could be interpreted as having progressively retreated northward on its own Celebes sea back arc basin, during an episode of Palaeogene-early Neogene tectonic erosion along the trench. (authors)
Translational and rotational dynamic analysis of a superconducting levitation system
Energy Technology Data Exchange (ETDEWEB)
Cansiz, A [Electric-Electronic Engineering Department, Ataturk University, Erzurum (Turkey); Hull, J R [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Gundogdu, Oe [Mechanical Engineering Department, Ataturk University, Erzurum (Turkey)
2005-07-01
The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet.
Simple method for calculating island widths
International Nuclear Information System (INIS)
Cary, J.R.; Hanson, J.D.; Carreras, B.A.; Lynch, V.E.
1989-01-01
A simple method for calculating magnetic island widths has been developed. This method uses only information obtained from integrating along the closed field line at the island center. Thus, this method is computationally less intensive than the usual method of producing surfaces of section of sufficient detail to locate and resolve the island separatrix. This method has been implemented numerically and used to analyze the buss work islands of ATF. In this case the method proves to be accurate to at least within 30%. 7 refs
L. Braga, F.
2013-10-01
The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.
International Nuclear Information System (INIS)
Jesenik, M.; Gorican, V.; Trlep, M.; Hamler, A.; Stumberger, B.
2006-01-01
A lot of magnetic materials are anisotropic. In the 3D finite element method calculation, anisotropy of the material is taken into account. Anisotropic magnetic material is described with magnetization curves for different magnetization directions. The 3D transient calculation of the rotational magnetic field in the sample of the round rotational single sheet tester with circular sample considering eddy currents is made and compared with the measurement to verify the correctness of the method and to analyze the magnetic field in the sample
Radial modes of slowly rotating compact stars in the presence of magnetic field
Energy Technology Data Exchange (ETDEWEB)
Panda, N.R. [Institute of Physics, Bhubaneswar (India); Siksha ' O' Anusandhan University, Bhubaneswar (India); Mohanta, K.K. [Rairangpur College, Rairangpur, Odisha (India); Sahu, P.K. [Institute of Physics, Bhubaneswar (India)
2016-09-15
Compact stars are composed of very high-density hadron matter. When the matter is above nuclear matter density, then there is a chance of different phases of matter such as hadron matter to quark matter. There is a possible phase which, having the quark core surrounded by a mixed phase followed by hadronic matter, may be considered as a hybrid phase inside the stars called hybrid star (HS). The star which consists of only u, d and s quarks is called quark star (QS) and the star which has only hadronic matter is called neutron star (NS). For the equation of state (EOS) of hadronic matter, we have considered the Relativistic Mean Field (RMF) theory and we incorporated the effect of strong magnetic fields. For the EOS of the quark phase we use the simple MIT bag model. We have assumed Gaussian parametrization to make the density dependent for both bag pressure in quark matter and magnetic field. We have constructed the intermediate mixed phase by using the Glendenning conjecture. Eigenfrequencies of radial pulsations of slowly rotating magnetized compact stars (NS, QS, HS) are calculated in a general relativistic formalism given by Chandrasekhar and Friedman. We have studied the effect of central density on the square of the frequencies of the compact stars in the presence of zero and strong magnetic field. (orig.)
Host-guest interaction on Bruny and Magnetic Islands, Australia
Moyle, Brent Don
2017-01-01
Islands are integral to the earth’s biodiversity, with their distinct environments offering a haven for a variety of threatened species of plants, wildlife and unique human cultures. Worldwide, tourism activity profoundly impacts upon destinations, but the impacts on islands are noticeably more acute due to their fragile environments and isolated communities. Research has found that tourism can impact island communities in a variety of ways, including economically, socially and environmentall...
Elution of Artificial Sputum from Swab by Rotating Magnetic Field-Induced Mechanical Impingement
Directory of Open Access Journals (Sweden)
Shubham Banik
2017-12-01
Full Text Available Cotton-tipped applicator swabs are used as a collection device for many biological samples and its complete elution is a desired step for clinical and forensic diagnostics. Swabs are used to collect infectious body fluids, where the concentration of pathogens can range from 1 × 104 CFU/mL (colony forming units/mL in respiratory-tract infections and 1 × 105 in urinary-tract infections, to up to 1 × 109 CFU/mL in salivary samples. These samples are then eluted and lysed, prior to DNA (De-oxy Ribonucleic Acid analysis. The recovery of micro-organisms from a matrix of swab fibres depends on the nature of the body fluid, the type of the swab fibres, and the process of elution. Various methods to elute samples from swab include chemical digestion of fibres (~20% recovery, centrifugation (~58% recovery, piezoelectric vibration, or pressurized fluid-flow (~60% recovery. This study reports a magnetically-actuated physical impingement method for elution and recovery of artificial sputum samples from cotton fibres. A device has been fabricated to induce a rotating magnetic field on smaller magnetic particles in a vial that strikes the swab within a confined gap. Elution from the swab in this device was characterized using 2% Methyl cellulose in deionised water, loaded with fluorescent-tagged polystyrene beads and E. coli at various concentrations. The recovery efficiency was found to increase with both rotational speed and elution time, but plateaus after 400 RPM (Revolutions per minute and 120 s, respectively. At a higher concentration of polystyrene beads (5 × 108 particles/mL, a maximum recovery of ~85% was achieved. With lower concentration, (1 × 105 particles/mL the maximum efficiency (~92.8% was found to be almost twice of passive elution (46.7%. In the case of E. coli, the corresponding recovery efficiency at 3.35 × 105 CFU/mL is 90.4% at 500 RPM and 120 s. This elution method is expected to have a wide applicability in clinical diagnostics.
Influence of external resonant magnetic perturbation field on edge plasma of small tokamak HYBTOK-II
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Suzuki, Y.; Ohno, N. [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Okamoto, M. [Ishikawa National College of Technology, Kitachujo, Tsubata-cho, Kahoku-gun, Ishikawa 929-0392 (Japan); Kikuchi, Y. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Sakakibara, S.; Watanabe, K.; Takemura, Y. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan)
2015-08-15
Radial profile of externally applied resonant magnetic perturbation (RMP) field with mode numbers of m = 6 and n = 2 in a small tokamak device HYBTOK-II have been investigated using a magnetic probe array, which is able to measure the radial profile of magnetic field perturbation induced by applying RMP. Results of RMP penetration into the plasma show that the RMP decreased toward the plasma center, while they were amplified around the resonant surface with a safety factor q = 3 due to the formation of magnetic islands. This suggests that RMP fields for controlling edge plasmas may trigger some kind of MHD instabilities. In addition, simulation results, based on a linearized four-field model, which agrees with the experimental ones, indicates that the penetration and amplification process of RMP strongly depend on a Doppler-shifted frequency between the RMP and plasma rotation.
Passive magnetic bearing configurations
Post, Richard F [Walnut Creek, CA
2011-01-25
A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.
The structure of rotational discontinuities
International Nuclear Information System (INIS)
Neugebauer, M.
1989-01-01
This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle θ between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When θ is large, angular overshoots are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (i.e., when θ is small), many different types of structure are seen, ranging from straight lines, the S-shaped curves, to complex, disorganized shapes
Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon
We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.
International Nuclear Information System (INIS)
Misguich, J.H.
2004-04-01
As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation
Energy Technology Data Exchange (ETDEWEB)
Misguich, J.H
2004-04-01
As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation.
New insights into nano-magnetism by spin-polarized scanning tunneling microscopy
Energy Technology Data Exchange (ETDEWEB)
Sander, Dirk, E-mail: sander@mpi-halle.de [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale (Germany); Oka, Hirofumi; Corbetta, Marco; Stepanyuk, Valeri; Kirschner, Jürgen [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale (Germany)
2013-08-15
Highlights: ► We measure the magnetization reversal of individual nm small Co island by spin-STM. ► We identify an inhomogeneous magnetic anisotropy within a single Co island. ► The magnetic anisotropy near the rim is negligible as compared to 0.148 meV/atom at the island center. ► A crossover of the magnetization reversal from an exchange-spring behavior to domain wall formation is suggested. ► The impact of the observed spatial variation of the spin-dependent electronic properties on reversal is discussed. -- Abstract: We study the magnetization reversal and the position dependence of the spin-dependent electronic properties of nm small bilayer Co islands on Cu(1 1 1) by spin-polarized scanning tunneling microscopy in magnetic fields at low temperatures of 8 K. The analysis of the energy barrier of magnetization reversal from measurements of the switching field suggests a crossover of the magnetization reversal mode with increasing island size around 7500 atoms from exchange-spring behavior to domain wall formation. The quantitative analysis of the island size dependence of the energy barrier indicates an inhomogeneous magnetic anisotropy of the island. The island rim is magnetically soft, whereas the center shows a pronounced effective anisotropy of 0.148 meV/atom. We speculate that this inhomogeneity of the magnetic anisotropy might be a consequence of the spatial dependence of the spin-dependent electronic properties. We measure a spin-polarization and a tunnel magneto resistance ratio of opposite sign at the rim as compared to the island center.
New insights into nano-magnetism by spin-polarized scanning tunneling microscopy
International Nuclear Information System (INIS)
Sander, Dirk; Oka, Hirofumi; Corbetta, Marco; Stepanyuk, Valeri; Kirschner, Jürgen
2013-01-01
Highlights: ► We measure the magnetization reversal of individual nm small Co island by spin-STM. ► We identify an inhomogeneous magnetic anisotropy within a single Co island. ► The magnetic anisotropy near the rim is negligible as compared to 0.148 meV/atom at the island center. ► A crossover of the magnetization reversal from an exchange-spring behavior to domain wall formation is suggested. ► The impact of the observed spatial variation of the spin-dependent electronic properties on reversal is discussed. -- Abstract: We study the magnetization reversal and the position dependence of the spin-dependent electronic properties of nm small bilayer Co islands on Cu(1 1 1) by spin-polarized scanning tunneling microscopy in magnetic fields at low temperatures of 8 K. The analysis of the energy barrier of magnetization reversal from measurements of the switching field suggests a crossover of the magnetization reversal mode with increasing island size around 7500 atoms from exchange-spring behavior to domain wall formation. The quantitative analysis of the island size dependence of the energy barrier indicates an inhomogeneous magnetic anisotropy of the island. The island rim is magnetically soft, whereas the center shows a pronounced effective anisotropy of 0.148 meV/atom. We speculate that this inhomogeneity of the magnetic anisotropy might be a consequence of the spatial dependence of the spin-dependent electronic properties. We measure a spin-polarization and a tunnel magneto resistance ratio of opposite sign at the rim as compared to the island center
Faraday rotation due to excitation of magnetoplasmons in graphene microribbons.
Tymchenko, Mykhailo; Nikitin, Alexey Yu; Martín-Moreno, Luis
2013-11-26
A single graphene sheet, when subjected to a perpendicular static magnetic field, provides a Faraday rotation that, per atomic layer, greatly surpasses that of any other known material. In continuous graphene, Faraday rotation originates from the cyclotron resonance of massless carriers, which allows dynamical tuning through either external electrostatic or magneto-static setting. Furthermore, the rotation direction can be controlled by changing the sign of the carriers in graphene, which can be done by means of an external electric field. However, despite these tuning possibilities, the requirement of large magnetic fields hinders the application of the Faraday effect in real devices, especially for frequencies higher than a few terahertz. In this work we demonstrate that large Faraday rotation can be achieved in arrays of graphene microribbons, through the excitation of the magnetoplasmons of individual ribbons, at larger frequencies than those dictated by the cyclotron resonance. In this way, for a given magnetic field and chemical potential, structuring graphene periodically can produce large Faraday rotation at larger frequencies than what would occur in a continuous graphene sheet. Alternatively, at a given frequency, graphene ribbons produce large Faraday rotation at much smaller magnetic fields than in continuous graphene.
A piezoelectric energy harvester for broadband rotational excitation using buckled beam
Xie, Zhengqiu; Kitio Kwuimy, C. A.; Wang, Zhiguo; Huang, Wenbin
2018-01-01
This paper proposes a rotational energy harvester using a piezoelectric bistable buckled beam to harvest low-speed rotational energy. The proposed harvester consists of a piezoelectric buckled beam with a center magnet, and a rotary magnet pair with opposite magnetic poles mounted on a revolving host. The magnetic plucking is used to harvest the angular kinetic energy of the host. The nonlinear snap-through mechanism is utilized to improve the vibration displacement and output voltage of the piezoelectric layer over a wide rotation frequency range. Theoretical simulation and experimental results show that the proposed energy harvester can yield a stable average output power ranging between 6.91-48.01 μW over a rotation frequency range of 1-14 Hz across a resistance load of 110 kΩ. Furthermore, dual attraction magnets were employed to overcome the suppression phenomenon at higher frequencies, which yields a broadband and flat frequency response over 6-14 Hz with the output power reaching 42.19-65.44 μW, demonstrating the great potential of the bistable buckled beam for wideband rotation motion energy harvesting.
A piezoelectric energy harvester for broadband rotational excitation using buckled beam
Directory of Open Access Journals (Sweden)
Zhengqiu Xie
2018-01-01
Full Text Available This paper proposes a rotational energy harvester using a piezoelectric bistable buckled beam to harvest low-speed rotational energy. The proposed harvester consists of a piezoelectric buckled beam with a center magnet, and a rotary magnet pair with opposite magnetic poles mounted on a revolving host. The magnetic plucking is used to harvest the angular kinetic energy of the host. The nonlinear snap-through mechanism is utilized to improve the vibration displacement and output voltage of the piezoelectric layer over a wide rotation frequency range. Theoretical simulation and experimental results show that the proposed energy harvester can yield a stable average output power ranging between 6.91-48.01 μW over a rotation frequency range of 1-14 Hz across a resistance load of 110 kΩ. Furthermore, dual attraction magnets were employed to overcome the suppression phenomenon at higher frequencies, which yields a broadband and flat frequency response over 6-14 Hz with the output power reaching 42.19-65.44 μW, demonstrating the great potential of the bistable buckled beam for wideband rotation motion energy harvesting.
Top, Can Barış; Ilbey, Serhat; Güven, Hüseyin Emre
2017-12-01
We propose a coil arrangement for open bore field-free line (FFL) magnetic particle imaging (MPI) system, which is suitable for accessing the subject from the sides. The purpose of this study is twofold, to show that the FFL can be rotated and translated electronically in a volume of interest with this arrangement and to analyze the current, voltage and power requirements for a 1 T/m gradient human sized scanner for a 200 mm diameter × 200 mm height cylindrical field of view (FOV). We used split coils side by side with alternating current directions to generate a field-free line. Employing two of these coil groups, one of which is rotated 90 degrees with respect to the other, a rotating FFL was generated. We conducted numerical simulations to show the feasibility of this arrangement for three-dimensional (3D) electronical scan of the FFL. Using simulations, we obtained images of a two-dimensional (2D) in silico dot phantom for a human size scanner with system matrix-based reconstruction. Simulations showed that the FFL can be generated and rotated in one plane and can be translated in two axes, allowing for 3D imaging of a large subject with the proposed arrangement. Human sized scanner required 63-215 kW power for the selection field coils to scan the focus inside the FOV. The proposed setup is suitable for FFL MPI imaging with an open bore configuration without the need for mechanical rotation, which is preferable for clinical usage in terms of imaging time and patient access. Further studies are necessary to determine the limitations imposed by peripheral nerve stimulation, and to optimize the system parameters and the sequence design. © 2017 American Association of Physicists in Medicine.
Self-gravitational instability of dense degenerate viscous anisotropic plasma with rotation
Sharma, Prerana; Patidar, Archana
2017-12-01
The influence of finite Larmor radius correction, tensor viscosity and uniform rotation on self-gravitational and firehose instabilities is discussed in the framework of the quantum magnetohydrodynamic and Chew-Goldberger-Low (CGL) fluid models. The general dispersion relation is obtained for transverse and longitudinal modes of propagation. In both the modes of propagation the dispersion relation is further analysed with respect to the direction of the rotational axis. In the analytical discussion the axis of rotation is considered in parallel and in the perpendicular direction to the magnetic field. (i) In the transverse mode of propagation, when rotation is parallel to the direction of the magnetic field, the Jeans instability criterion is affected by the rotation, finite Larmor radius (FLR) and quantum parameter but remains unaffected due to the presence of tensor viscosity. The calculated critical Jeans masses for rotating and non-rotating dense degenerate plasma systems are \\odot $ and \\odot $ respectively. It is clear that the presence of rotation enhances the threshold mass of the considered system. (ii) In the case of longitudinal mode of propagation when rotation is parallel to the direction of the magnetic field, Alfvén and viscous self-gravitating modes are obtained. The Alfvén mode is modified by FLR corrections and rotation. The analytical as well as graphical results show that the presence of FLR and rotation play significant roles in stabilizing the growth rate of the firehose instability by suppressing the parallel anisotropic pressure. The viscous self-gravitating mode is significantly affected by tensor viscosity, anisotropic pressure and the quantum parameter while it remains free from rotation and FLR corrections. When the direction of rotation is perpendicular to the magnetic field, the rotation of the considered system coupled the Alfvén and viscous self-gravitating modes to each other. The finding of the present work is applicable to
The Faraday rotation experiment. [solar corona
Volland, H.; Levy, G. S.; Bird, M. K.; Stelzried, C. T.; Seidel, B. L.
1984-01-01
The magnetized plasma of the solar corona was remotely sounded using the Faraday rotation effect. The solar magnetic field together with the electrons of the coronal plasma cause a measurable Faraday rotation effect, since the radio waves of Helios are linearly polarized. The measurement is performed at the ground stations. Alfven waves traveling from the Sun's surface through the corona into interplanetary space are observed. Helios 2 signals penetrating through a region where coronal mass is ejected show wavelike structures.
g-Factors of magnetic-rotational states in {sup 85}Zr
Energy Technology Data Exchange (ETDEWEB)
Yuan Daqing; Zheng Yongnan; Zhou Dongmei; Zuo Yi; Fan Ping; Liu Meng; Wu Xiaoguang; Zhu Lihua; Li Guangsheng; Xu Guoji; Fan Qiewen; Zhang Xizhen; Zhu Shengyun, E-mail: zhusy@ciae.ac.cn [China Institute of Atomic Energy (China)
2007-11-15
The g-factors of the magnetic-rotational intra-band states in {sup 85}Zr have been measured by the TMF-IMPAD method for the first time. The configuration {pi} (g{sub 9/2}){sub 8}{sup 2} x {nu} ( f{sub 7/2}) is established for the band. The measured g-factors are in good agreement with those calculated by the semi-classical model. The decrease of both g-factors and shears angles along the band shows that the total angular momentum is generated by the sheras effect of a step-by-step alignment of the valence protons and neutrons. The rapid neutron alignment leads to a decrease of g-factors along the band. The shears angle of the band-head is great than 90{sup o}, which implies that the spin-dependent interaction as well as the residul interaction might be involved in the shears mechanism in {sup 85}Zr.
Arc dynamics of a pulsed DC nitrogen rotating gliding arc discharge
Zhu, Fengsen; Zhang, Hao; Li, Xiaodong; Wu, Angjian; Yan, Jianhua; Ni, Mingjiang; Tu, Xin
2018-03-01
In this study, a novel pulsed direct current (DC) rotating gliding arc (RGA) plasma reactor co-driven by an external magnetic field and a tangential gas flow has been developed. The dynamic characteristics of the rotating gliding arc have been investigated by means of numerical simulation and experiment. The simulation results show that a highly turbulent vortex flow can be generated at the bottom of the RGA reactor to accelerate the arc rotation after arc ignition, whereas the magnitude of gas velocity declined significantly along the axial direction of the RGA reactor. The calculated arc rotation frequency (14.4 Hz) is reasonably close to the experimental result (18.5 Hz) at a gas flow rate of 10 l min-1. In the presence of an external magnet, the arc rotation frequency is around five times higher than that of the RGA reactor without using a magnet, which suggests that the external magnetic field plays a dominant role in the maintenance of the arc rotation in the upper zone of the RGA reactor. In addition, when the magnet is placed outside the reactor reversely to form a reverse external magnetic field, the arc can be stabilized at a fixed position in the inner wall of the outer electrode at a critical gas flow rate of 16 l min-1.
Assessment of eddy current effects on compression experiments in the TFTR tokamak
International Nuclear Information System (INIS)
Wong, K.L.; Park, W.
1986-05-01
The eddy current induced on the TFTR vacuum vessel during compression experiments is estimated based on a cylindrical model. It produces an error magnetic field that generates magnetic islands at the rational magnetic surfaces. The widths of these islands are calculated and found to have some effect on electron energy confinement. However, resistive MHD simulation results indicate that the island formation process can be slowed down by plasma rotation
Energy Technology Data Exchange (ETDEWEB)
Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); McClure-Griffiths, N. M.; McConnell, D. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Haverkorn, M. [Department of Astrophysics, Radboud University, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Beck, R. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Wolleben, M. [Square Kilometre Array South Africa, The Park, Pinelands 7405 (South Africa); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dickey, J. M. [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia); Staveley-Smith, L., E-mail: mao@astro.wisc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia)
2012-11-01
We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.
Heat transport in the quasi-single-helicity islands of EXTRAP T2R
Frassinetti, L.; Brunsell, P. R.; Drake, J.
2009-03-01
The heat transport inside the magnetic island generated in a quasi-single-helicity regime of a reversed-field pinch device is studied by using a numerical code that simulates the electron temperature and the soft x-ray emissivity. The heat diffusivity χe inside the island is determined by matching the simulated signals with the experimental ones. Inside the island, χe turns out to be from one to two orders of magnitude lower than the diffusivity in the surrounding plasma, where the magnetic field is stochastic. Furthermore, the heat transport properties inside the island are studied in correlation with the plasma current and with the amplitude of the magnetic fluctuations.
Energy Technology Data Exchange (ETDEWEB)
Yang, Y. M.; Geurts, M.; Smilowitz, J. B.; Bednarz, B. P., E-mail: bbednarz2@wisc.edu [Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin 53703 (United States); Sterpin, E. [Molecular Imaging, Radiotherapy and Oncology, Université catholique de Louvain, Brussels, Belgium 1348 (Belgium)
2015-02-15
Purpose: Several groups are exploring the integration of magnetic resonance (MR) image guidance with radiotherapy to reduce tumor position uncertainty during photon radiotherapy. The therapeutic gain from reducing tumor position uncertainty using intrafraction MR imaging during radiotherapy could be partially offset if the negative effects of magnetic field-induced dose perturbations are not appreciated or accounted for. The authors hypothesize that a more rotationally symmetric modality such as helical tomotherapy will permit a systematic mediation of these dose perturbations. This investigation offers a unique look at the dose perturbations due to homogeneous transverse magnetic field during the delivery of Tomotherapy{sup ®} Treatment System plans under varying degrees of rotational beamlet symmetry. Methods: The authors accurately reproduced treatment plan beamlet and patient configurations using the Monte Carlo code GEANT4. This code has a thoroughly benchmarked electromagnetic particle transport physics package well-suited for the radiotherapy energy regime. The three approved clinical treatment plans for this study were for a prostate, head and neck, and lung treatment. The dose heterogeneity index metric was used to quantify the effect of the dose perturbations to the target volumes. Results: The authors demonstrate the ability to reproduce the clinical dose–volume histograms (DVH) to within 4% dose agreement at each DVH point for the target volumes and most planning structures, and therefore, are able to confidently examine the effects of transverse magnetic fields on the plans. The authors investigated field strengths of 0.35, 0.7, 1, 1.5, and 3 T. Changes to the dose heterogeneity index of 0.1% were seen in the prostate and head and neck case, reflecting negligible dose perturbations to the target volumes, a change from 5.5% to 20.1% was observed with the lung case. Conclusions: This study demonstrated that the effect of external magnetic fields can
International Nuclear Information System (INIS)
Soini, I.; Belt, E.A.; Niemitukia, L.; Maeenpaeae, H.M.; Kautiainen, H.J.
2004-01-01
Purpose: To evaluate the predictive value of preoperative magnetic resonance imaging (MRI) with respect to rotator cuff ruptures. Material and Methods: Thirty-one patients with rheumatic disease underwent preoperative MRI before shoulder arthroplasty. The scans were reviewed independently by two experienced radiologists. Three surgeons performed all the replacements (hemiarthroplasties), and the condition of the rotator cuff was assessed. Complete and massive tears of the rotator cuff were recorded and compared at surgery and on MRI. Results: With MRI, 21 shoulders (68%) were classified as having complete or massive tears of the rotator cuff and at surgery 14 shoulders (45%). Cohen's kappa coefficient was 0.44 (95% CI: 0.16 to 0.72) and accuracy 0.71 (95% CI: 0.52 to 0.86). Conclusion: In severely destroyed rheumatoid shoulder, the findings of soft tissues were incoherent both with MRI and at surgery. The integrity of tendons could not readily be elucidated with MRI because of an inflammatory process and scarred tissues; in surgery, too, changes were frequently difficult to categorize. Preoperative MRI of severely destroyed rheumatoid shoulder before arthroplasty turned out to be of only minor importance
Kochukhov, O.; Silvester, J.; Bailey, J. D.; Landstreet, J. D.; Wade, G. A.
2017-09-01
Context. The young, rapidly rotating Bp star HR 5624 (HD 133880) shows an unusually strong non-sinusoidal variability of its longitudinal magnetic field. This behaviour was previously interpreted as the signature of an exceptionally strong, quadrupole-dominated surface magnetic field geometry. Aims: We studied the magnetic field structure and chemical abundance distributions of HR 5624 with the aim to verify the unusual quadrupolar nature of its magnetic field and to investigate correlations between the field topology and chemical spots. Methods: We analysed high-resolution, time series Stokes parameter spectra of HR 5624 with the help of a magnetic Doppler imaging inversion code based on detailed polarised radiative transfer modelling of the line profiles. Results: We refined the stellar parameters, revised the rotational period, and obtained new longitudinal magnetic field measurements. Our magnetic Doppler inversions reveal that the field structure of HR 5624 is considerably simpler and the field strength is much lower than proposed by previous studies. We find a maximum local field strength of 12 kG and a mean field strength of 4 kG, which is about a factor of three weaker than predicted by quadrupolar field models. Our model implies that overall large-scale field topology of HR 5624 is better described as a distorted, asymmetric dipole rather than an axisymmetric quadrupole. The chemical abundance maps of Mg, Si, Ti, Cr, Fe, and Nd obtained in our study are characterised by large-scale, high-contrast abundance patterns. These structures correlate weakly with the magnetic field geometry and, in particular, show no distinct element concentrations in the horizontal field regions predicted by theoretical atomic diffusion calculations. Conclusions: We conclude that the surface magnetic field topology of HR 5624 is not as unusual as previously proposed. Considering these results together with other recent magnetic mapping analyses of early-type stars suggests that
Synchrotron Radiation and Faraday Rotation
Heald, George
2015-01-01
Synchrotron radiation and its degree of linear polarization are powerful tracers of magnetic fields that are illuminated by cosmic ray electrons. Faraday rotation of the linearly polarized radiation is induced by intervening line-of-sight magnetic fields that are embedded in ionized plasmas. For
Kitada, K.; Kasaya, T.; Iwamoto, H.; Nogi, Y.
2017-12-01
The Okinawa Trough is an active back-arc basin formed by the rifting associated with extension of the continental margin behind the Ryukyu trench. New hydrothermal sites were recently discovered off Kumejima Island in the Mid-Okinawa Trough and the hydrothermal mineral deposits were identified by seafloor surveys and rock samplings by ROV (e.g., JOGMEC, 2015). In order to characterize the sub-seafloor structures and the spatial distribution of the magmatic activity around the sites, we conducted the dense magnetic, gravity and bathymetric surveys with a line spacing of 0.5 nmi aboard the R/Vs Yokosuka and Kairei, operated by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) in 2016. The geophysical data collected during the previous cruises in the area by JAMSTEC were additionally used for this study. Magnetic anomaly was calculated by subtracting the IGRF model and the magnetization intensity was estimated by the method of Parker and Huestis (1974). Free-air gravity anomaly was calculated with subtracting the normal gravity field and with corrections of the drift and of the Eötvös effect. Bouguer gravity anomaly was calculated based on the method of Parker (1972). The magnetization intensity and the Bouguer gravity anomaly reveal three characteristics of the hydrothermal area off Kumejima Island: 1) The distribution of magnetization around the hydrothermal sites shows two different types of sub-seafloor magnetic features. One is corresponded to the submarine knolls with a relatively high magnetization of 4 A/M. The other is an ENE-WSW trending magnetization distribution with relatively high and low intensities, which is consistent with the trend of the bathymetric lineament. These features are considered to be formed by magmatism associated with submarine volcanoes and back-arc rifting. 2) The reduced magnetization zone corresponding to the hydrothermal area probably attributes to hydrothermal alteration of the host rock. 3) The hydrothermal
Poloidal rotation driven by electron cyclotron resonance wave in tokamak plasmas
Directory of Open Access Journals (Sweden)
Qing Zhou
2017-10-01
Full Text Available The poloidal electric filed, which is the drive field of poloidal rotation, has been observed and increases obviously after the injection of electron cyclotron resonance wave in HL-2A experiment, and the amplitude of the poloidal electric field is in the order of 103 V/m. Through theoretical analysis using Stringer rotation model, the observed poloidal electric field is of the same order as the theoretical calculation value. In addition, the magnetic pump damping which would damp the poloidal rotation is calculated numerically and the calculation results show that the closer to the core plasmas, the stronger the magnetic pump damping will be. Meanwhile, according to the value of the calculated magnetic pump damping, the threshold of the poloidal electric field which could overcome magnetic pump damping and drive poloidal rotation in tokamak plasmas is given out. Finally, the poloidal rotation velocity over time at different minor radius is studied theoretically.
Typhoon Effect on Kuroshio and Green Island Wakes: A Modelling Study
Directory of Open Access Journals (Sweden)
Tai-Wen Hsu
2018-01-01
Full Text Available Green Island, located in the typhoon-active eastern Taiwan coastal water, is the potential Kuroshio power plant site. In this study, a high resolution (250–2250 m shallow-water equations model is used to investigate the effect of typhoon on the hydro-dynamics of Kuroshio and Green Island wakes. Two typhoon–Kuroshio interactions—typhoon Soulik and Holland’s typhoon model—are studied. Simulation results of typhoon Soulik indicate salient characteristics of Kuroshio, and downstream island wakes seems less affected by the typhoon Soulik, because the shortest distance of typhoon Soulik is 250 km away from Green Island and wind speed near Green Island is small. Moreover, Kuroshio currents increase when flow is in the same direction as the counterclockwise rotation of typhoon, and vice versa. This finding is in favorable agreement with the TOROS (Taiwan Ocean Radar Observing System observed data. Simulations of Kuroshio and Holland’s typhoon model successfully reproduces the downstream recirculation and vortex street. Numerical results reveal that the slow moving typhoon has a more significant impact on the Kuroshio and downstream Green Island wakes than the fast moving typhoon does. The rightward bias phenomenon is evident—Kuroshio currents increase (decrease in the right (left of the moving typhoon’s track, due to the counterclockwise rotation of typhoon.
Label-acquired magnetorotation for biosensing: An asynchronous rotation assay
International Nuclear Information System (INIS)
Hecht, Ariel; Kinnunen, Paivo; McNaughton, Brandon; Kopelman, Raoul
2011-01-01
This paper presents a novel application of magnetic particles for biosensing, called label-acquired magnetorotation (LAM). This method is based on a combination of the traditional sandwich assay format with the asynchronous magnetic bead rotation (AMBR) method. In label-acquired magnetorotation, an analyte facilitates the binding of a magnetic label bead to a nonmagnetic solid phase sphere, forming a sandwich complex. The sandwich complex is then placed in a rotating magnetic field, where the rotational frequency of the sandwich complex is a function of the amount of analyte attached to the surface of the sphere. Here, we use streptavidin-coated beads and biotin-coated particles as analyte mimics, to be replaced by proteins and other biological targets in future work. We show this sensing method to have a dynamic range of two orders of magnitude.
Meckler, S; Mikuszeit, N; Pressler, A; Vedmedenko, E Y; Pietzsch, O; Wiesendanger, R
2009-10-09
Using spin-polarized scanning tunneling microscopy performed in a triple axes vector magnet, we show that the magnetic structure of the Fe double layer on W(110) is an inhomogeneous right-rotating cycloidal spin spiral. The magnitude of the Dzyaloshinskii-Moriya vector is extracted from the experimental data using micromagnetic calculations. The result is confirmed by comparison of the measured saturation field along the easy axis to the respective value as obtained from Monte Carlo simulations. We find that the Dzyaloshinskii-Moriya interaction is too weak to destabilize the single domain state. However, it can define the sense of rotation and the cycloidal spiral type once the single domain state is destabilized by dipolar interaction.
Energy Technology Data Exchange (ETDEWEB)
Kamiev, K.
2013-11-01
At present, permanent magnet synchronous generators (PMSGs) are of great interest. Since they do not have electrical excitation losses, the highly efficient, lightweight and compact PMSGs equipped with damper windings work perfectly when connected to a network. However, in island