Similarity flows between a rotating and a stationary disk
International Nuclear Information System (INIS)
Buchmann, J.H.; Qassim, R.Y.
1981-07-01
The radial distribution of fluid pressure on a stationary disk coaxial with a rotating disk is determined experimentally for various inter-disc spacings. The results show that similarity flows are only possible for both small and large values of this distance. In the former case, the flow faraway from the stationary disk appears to be that suggested by Batchelor, while in the latter case, the flow turns out to be in accordance with the assumption of Stewartson. (Author) [pt
On unsteady two-phase fluid flow due to eccentric rotation of a disk
Directory of Open Access Journals (Sweden)
A. K. Ghosh
2003-01-01
in a double-disk configuration, a result which is the reverse to that of solid-body rotation. Finally, the results are presented graphically to determine the quantitative response of the particle on the flow.
Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes
Energy Technology Data Exchange (ETDEWEB)
Barik, R.N., E-mail: barik.rabinarayan@rediffmail.com [Department of Mathematics, Trident Academy of Technology, Bhubaneswar (India); Dash, G.C., E-mail: gcdash@indiatimes.com [Department of Mathematics, S.O.A. University, Bhubaneswar (India); Rath, P.K., E-mail: pkrath_1967@yahoo.in [Department of Mathematics, B.R.M. International Institute of Technology, Bhubaneswar (India)
2013-01-15
Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S{sup 2}. Further, the axis of rotation has no effect on the fluid flow. (author)
Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes
International Nuclear Information System (INIS)
Barik, R.N.; Dash, G.C.; Rath, P.K.
2013-01-01
Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S 2 . Further, the axis of rotation has no effect on the fluid flow. (author)
Thomas, S.; Faghri, A.; Hankey, W.
1990-01-01
The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.
Visualization of the flow in a cylindrical container with a rotating disk
Imahoko, Ryoki; Kurakata, Hiroki; Sakakibara, Jun
2017-11-01
We studied a behavior of the flow in a cylindrical container with a rotating disk. The apparatus consists of a fixed cylindrical container of the inner diameter of 140 mm and height H, and a coaxial rotating disc with a diameter of 140 mm connected with a cylindrical shaft driven by an electrical motor. The radial gap between rotating disk and side wall is very slight distance. The height H is variable up to 100 mm. The velocity distribution in the container was measured by means of particle image velocimetry (PIV). The results of this experiments will be discussed at the conference.
Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk
Thomas, S.; Faghri, A.; Hankey, W.
1991-01-01
The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.
Flow and heat transfer over a rotating disk with surface roughness
International Nuclear Information System (INIS)
Yoon, Myung Sup; Hyun, Jae Min; Park, Jun Sang
2007-01-01
A numerical study is made of flow and heat transfer near an infinite disk, which rotates steadily about the longitudinal axis. The surface of the disk is characterized by axisymmetric, sinusoidally-shaped roughness. The representative Reynolds number is large. Numerical solutions are acquired to the governing boundary-layer-type equations. The present numerical results reproduce the previous data for a flat disk. For a wavy surface disk, the radial distributions of local skin friction coefficient and local Nusselt number show double periodicity, which is in accord with the previous results. Physical explanations are provided for this finding. The surface-integrated torque coefficient and average Nusselt number increase as the surface roughness parameter increases. The effect of the Rossby number is also demonstrated
Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Waqas, M.; Alsaedi, A.
2018-06-01
Flow of magnetohydrodynamic (MHD) viscous fluid between two rotating disks is modeled. Angular velocities of two disks are different. Flow is investigated for nonlinear mixed convection. Heat transfer is analyzed for nonlinear thermal radiation and heat generation/absorption. Chemical reaction is also implemented. Convective conditions of heat and mass transfer are studied. Transformations used lead to reduction of PDEs into the ODEs. The impacts of important physical variables like Prandtl number, Reynold number, Hartman number, mixed convection parameter, chemical reaction and Schmidt number on velocities, temperature and concentration are elaborated. In addition velocity and temperature gradients are physically interpreted. Our obtained results indicate that radial, axial and tangential velocities decrease for higher estimation of Hartman number.
Numerical analysis of MHD Casson Navier's slip nanofluid flow yield by rigid rotating disk
Rehman, Khalil Ur; Malik, M. Y.; Zahri, Mostafa; Tahir, M.
2018-03-01
An exertion is perform to report analysis on Casson liquid equipped above the rigid disk for z bar > 0 as a semi-infinite region. The flow of Casson liquid is achieve through rotation of rigid disk with constant angular frequency Ω bar . Magnetic interaction is consider by applying uniform magnetic field normal to the axial direction. The nanosized particles are suspended in the Casson liquid and rotation of disk is manifested with Navier's slip condition, heat generation/absorption and chemical reaction effects. The obtain flow narrating differential equations subject to MHD Casson nanofluid are transformed into ordinary differential system. For this purpose the Von Karman way of scheme is executed. To achieve accurate trends a computational algorithm is develop rather than to go on with usual build-in scheme. The effects logs of involved parameters, namely magnetic field parameter, Casson fluid parameter, slip parameter, thermophoresis and Brownian motion parameters on radial, tangential velocities, temperature, nanoparticles concentration, Nusselt and Sherwood numbers are provided by means of graphical and tabular structures. It is observed that both tangential and radial velocities are decreasing function of Casson fluid parameter.
Flow and Heat Transfer of Bingham Plastic Fluid over a Rotating Disk with Variable Thickness
Liu, Chunyan; Pan, Mingyang; Zheng, Liancun; Ming, Chunying; Zhang, Xinxin
2016-11-01
This paper studies the steady flow and heat transfer of Bingham plastic fluid over a rotating disk of finite radius with variable thickness radially in boundary layer. The boundary layer flow is caused by the rotating disk when the extra stress is greater than the yield stress of the Bingham fluid. The analyses of the velocity and temperature field related to the variable thickness disk have not been investigated in current literatures. The governing equations are first simplified into ordinary differential equations owing to the generalized von Kármán transformation for seeking solutions easily. Then semi-similarity approximate analytical solutions are obtained by using the homotopy analysis method for different physical parameters. It is found that the Bingham number clearly influences the velocity field distribution, and the skin friction coefficient Cfr is nonlinear growth with respect to the shape parameter m. Additionally, the effects of the involved parameters (i.e. shape parameter m, variable thickness parameter β, Reynolds number Rev, and Prandtl number Pr) on velocity and temperature distribution are investigated and analyzed in detail.
A fluid dynamical flow model for the central peak in the rotation curve of disk galaxies
International Nuclear Information System (INIS)
Bhattacharyya, T.; Basu, B.
1980-01-01
The rotation curve of the central region in some disk galaxies shows a linear rise, terminating at a peak (primary peak) which is then vollowed by a deep minimum. The curve then again rises to another peak at more or less half-way across the galactic radius. This latter peak is considered as the peak of the rotation curve in all large-scale analysis of galactic structure. The primary peak is usually ignored for the purpose. In this work an attempt has been made to look at the primary peak as the manifestation of the post-explosion flow pattern of gas in the deep central region of galaxies. Solving hydrodynamical equations of motion, a flow model has been derived which imitates very closely the actually observed linear rotational velocity, followed by the falling branch of the curve to minimum. The theoretical flow model has been compared with observed results for nine galaxies. The agreement obtained is extremely encouraging. The distance of the primary peak from the galactic centre has been shown to be correlated with the angular velocity in the linear part of the rotation curve. Here also, agreement is very good between theoretical and observed results. It is concluded that the distance of the primary peak from the centre not only speaks of the time that has elapsed since the explosion occurred in the nucleus, it also speaks of the potential capability of the nucleus of the galaxy for repeating explosions through some efficient process of mass replenishment at the core. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Marcos Pinotti
1992-07-01
Flow study in the formatted channel for two disks in rotation is discussed including the following main issues: flow description between disks in rotation; computational model; and numerical results. The parametric studies accomplished of the spacing between disks, of the diameter, and of the rotor angular speed allowed the influence analysis of these variables in the flow inside the channel and in the generated pressure difference. The disks rotation, evaluated through Reynolds' rotational number, is the main parameter that influences the pressure difference between channel entrance and exit. It verified although how much larger the rotation larger the pressure difference.
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Marcos Pinotti
1992-07-01
Flow study in the formatted channel for two disks in rotation is discussed including the following main issues: flow description between disks in rotation; computational model; and numerical results. The parametric studies accomplished of the spacing between disks, of the diameter, and of the rotor angular speed allowed the influence analysis of these variables in the flow inside the channel and in the generated pressure difference. The disks rotation, evaluated through Reynolds' rotational number, is the main parameter that influences the pressure difference between channel entrance and exit. It verified although how much larger the rotation larger the pressure difference.
Basu, S.; Cetegen, B. M.
2005-01-01
An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.
Childs, Peter R N
2010-01-01
Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...
Mushtaq, A.; Mustafa, M.
In this paper, the classical Von Kármán problem of infinite disk is extended when an electrically conducting nanofluid fills the space above the rotating disk which also stretches uniformly in the radial direction. Buongiorno model is considered in order to incorporate the novel Brownian motion and thermophoresis effects. Heat transport mechanism is modeled through more practically feasible convective conditions while Neumann type condition for nanoparticle concentration is adopted. Modified Von Kármán transformations are utilized to obtain self-similar differential system which is treated through a numerical method. Stretching phenomenon yields an additional parameter c which compares the stretch rate with the swirl rate. The effect of parameter c is to reduce the temperature and nanoparticle concentration profiles. Torque required to main steady rotation of the disk increases for increasing values of c while an improvement in cooling rate is anticipated in case of radial stretching, which is important in engineering processes. Brownian diffusion does not influence the heat flux from the stretching wall. Moreover, the wall heat flux has the maximum value for the situation in which thermoporetic force is absent.
Energy Technology Data Exchange (ETDEWEB)
Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Qayyum, Sumaira [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Imtiaz, Maria, E-mail: mi_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alzahrani, Faris; Alsaedi, Ahmed [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2016-09-01
This paper addresses the flow of magnetic nanofluid (ferrofluid) between two parallel rotating stretchable disks with different rotating and stretching velocities. Water based fluid comprising magnetite-Fe{sub 3}O{sub 4} nanoparticles is addressed. Velocity slip and temperature jump at solid–fluid interface are also taken into account. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are obtained. Effects of various pertinent parameters on the velocity and temperature profiles are shown and evaluated. Computations for skin friction coefficient and Nusselt number are presented and examined for the influence of involved parameters. It is noted that tangential velocity of fluid decreases for larger velocity slip parameter. Fluid temperature also reduces for increasing value of thermal slip parameter. Surface drag force and heat transfer rate at lower disk are enhanced when magnetic field strength is increased. - Highlights: • Flow and heat transfer of ferrofluid induced by two stretchable rotating disks with velocity and thermal slips are explored. • Fluid temperature increases for larger solid volume fraction of nanofluid. • Heat transfer rate decreases for increasing values of thermal slip parameter.
von Kármán swirling flow between a rotating and a stationary smooth disk: Experiment
Mukherjee, Aryesh; Steinberg, Victor
2018-01-01
Precise measurements of the torque in a von Kármán swirling flow between a rotating and a stationary smooth disk in three Newtonian fluids with different dynamic viscosities are reported. From these measurements the dependence of the normalized torque, called the friction coefficient, on Re is found to be of the form Cf=1.17 (±0.03 ) Re-0.46±0.003 where the scaling exponent and coefficient are close to that predicted theoretically for an infinite, unshrouded, and smooth rotating disk which follows from an exact similarity solution of the Navier-Stokes equations, obtained by von Kármán. An error analysis shows that deviations from the theory can be partially caused by background errors. Measurements of the azimuthal Vθ and axial velocity profiles along radial and axial directions reveal that the flow core rotates at Vθ/r Ω ≃0.22 (up to z ≈4 cm from the rotating disk and up to r0/R ≃0.25 in the radial direction) in spite of the small aspect ratio of the vessel. Thus the friction coefficient shows scaling close to that obtained from the von Kármán exact similarity solution, but the observed rotating core provides evidence of the Batchelor-like solution [Q. J. Mech. Appl. Math. 4, 29 (1951), 10.1093/qjmam/4.1.29] different from the von Kármán [Z. Angew. Math. Mech. 1, 233 (1921), 10.1002/zamm.19210010401] or Stewartson [Proc. Camb. Philos. Soc. 49, 333 (1953), 10.1017/S0305004100028437] one.
Vibration of imperfect rotating disk
Directory of Open Access Journals (Sweden)
Půst L.
2011-12-01
Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.
Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disk
Directory of Open Access Journals (Sweden)
N.A. Latiff
2016-12-01
Full Text Available A mathematical model for the unsteady forced convection over rotating stretchable disk in nanofluid containing micro-organisms and taking into account Stefan blowing effect is presented theoretically and numerically. Appropriate transformations are used to transform the governing boundary layer equations into non-linear ordinary differential equations, before being solved numerically using the Runge-Kutta-Fehlberg method. The effect of the governing parameters on the dimensionless velocities, temperature, nanoparticle volume fraction (concentration, density of motile microorganisms as well as on the local skin friction, local Nusselt, Sherwood number and motile microorganisms numbers are thoroughly examined via graphs. It is observed that the Stefan blowing increases the local skin friction and reduces the heat transfer, mass transfer and microorganism transfer rates. The numerical results are in good agreement with those obtained from previous literature. Physical quantities results from this investigation show that the effects of higher disk stretching strength and suction case provides a good medium to enhance the heat, mass and microorganisms transfer compared to blowing case.
Hayat, T.; Ahmad, Salman; Ijaz Khan, M.; Alsaedi, A.
2018-05-01
In this article we investigate the flow of Sutterby liquid due to rotating stretchable disk. Mass and heat transport are analyzed through Brownian diffusion and thermophoresis. Further the effects of magnetic field, chemical reaction and heat source are also accounted. We employ transformation procedure to obtain a system of nonlinear ODE’s. This system is numerically solved by Built-in-Shooting method. Impacts of different involved parameter on velocity, temperature and concentration are described. Velocity, concentration and temperature gradients are numerically computed. Obtained results show that velocity is reduced through material parameter. Temperature and concentration are enhanced with thermophoresis parameter.
Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.
2018-05-01
This article addresses flow of third grade nanofluid due to stretchable rotating disk. Mass and heat transports are analyzed through thermophoresis and Brownian movement effects. Further the effects of heat generation and chemical reaction are also accounted. The obtained ODE's are tackled computationally by means of homotopy analysis method. Graphical outcomes are analyzed for the effects of different variables. The obtained results show that velocity reduces through Reynolds number and material parameters. Temperature and concentration increase with Brownian motion and these decrease by Reynolds number.
Qayyum, Sumaira; Khan, Muhammad Ijaz; Hayat, Tasawar; Alsaedi, Ahmed
2018-04-01
Present article addresses the comparative study for flow of five water based nanofluids. Flow in presence of Joule heating is generated by rotating disk with variable thickness. Nanofluids are suspension of Silver (Ag), Copper (Cu), Copper oxide (CuO), Aluminum oxide or Alumina (Al2O3), Titanium oxide or titania (TiO2) and water. Boundary layer approximation is applied to partial differential equations. Using Von Karman transformations the partial differential equations are converted to ordinary differential equations. Convergent series solutions are obtained. Graphical results are presented to examine the behaviors of axial, radial and tangential velocities, temperature, skin friction and Nusselt number. It is observed that radial, axial and tangential velocities decay for slip parameters. Axial velocity decays for larger nanoparticle volume fraction. Effect of nanofluids on velocities dominant than base material. Temperature rises for larger Eckert number and temperature of silver water nanofluid is more because of its higher thermal conductivity. Surface drag force reduces for higher slip parameters. Transfer of heat is more for larger disk thickness index.
Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Rauf, A.; Kumar, P. B. Sampath
2018-05-01
This research is made to visualize the nonlinear radiated flow of hydromagnetic nano-fluid induced due to rotation of the disk. The considered nano-fluid is a mixture of water and Ti6Al4V or AA7072 nano-particles. The various shapes of nanoparticles like lamina, column, sphere, tetrahedron and hexahedron are chosen in the analysis. The irregular heat source and nonlinear radiative terms are accounted in the law of energy. We used the heat flux condition instead of constant surface temperature condition. Heat flux condition is more relativistic and according to physical nature of the problem. The problem is made dimensionless with the help of suitable similarity constraints. The Runge-Kutta-Fehlberg scheme is adopted to find the numerical solutions of governing nonlinear ordinary differential systems. The solutions are plotted by considering the various values of emerging physical constraints. The effects of various shapes of nanoparticles are drawn and discussed.
Faghri, Amir; Swanson, Theodore D.
1990-01-01
In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.
Energy Technology Data Exchange (ETDEWEB)
Matsushita, K.; Shimizu, Y.; Watanabe, a. [Toto Ltd., Kitakyushu (Japan)
1994-09-15
A membrane separation experiment was made with multi-tubular membrane module and rotating-disk membrane module to study the cross-flow filtration of yeast extract. The membrane was an alumina precision filtration membrane with 0.15 micron m diameter pores. A multi-tubular membrane which was 19 in number of channels and 0.113{sup 2} in effective membrane area was fitted to the multi-tubular membrane module. A rotating-disk membrane which was 0.071m{sup 2} in effective membrane area was fitted to the rotating-disk membrane module. Judging from the concentration speed and factor, the rotating-disk type is more advantageous in concentrating the suspension than the multi-tubular type. The soluble high-molecular component was more easily filtrated through the rotating-disk type, which is judged attributable to its possible operation at a high flow rate on the membrane surface without necessitating a high-flow rate circulation pump. As compared with the conventional cross-filtration type, the rotating-disk type gives a high permeate flux even at a high concentration factor. 11 refs., 5 figs.
Directory of Open Access Journals (Sweden)
S. Srinivas
2016-01-01
Full Text Available The present work investigates the effects of thermal-diffusion and diffusion-thermo on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation. The partial differential equations governing the flow problem under consideration have been transformed by a similarity transformation into a system of coupled nonlinear ordinary differential equations. An analytical approach, namely the homotopy analysis method is employed in order to obtain the solutions of the ordinary differential equations. The effects of various emerging parameters on flow variables have been discussed numerically and explained graphically. Comparison of the HAM solutions with the numerical solutions is performed.
Streaming potential near a rotating porous disk.
Prieve, Dennis C; Sides, Paul J
2014-09-23
Theory and experimental results for the streaming potential measured in the vicinity of a rotating porous disk-shaped sample are described. Rotation of the sample on its axis draws liquid into its face and casts it from the periphery. Advection within the sample engenders streaming current and streaming potential that are proportional to the zeta potential and the disk's major dimensions. When Darcy's law applies, the streaming potential is proportional to the square of the rotation at low rate but becomes invariant with rotation at high rate. The streaming potential is invariant with the sample's permeability at low rate and is proportional to the inverse square of the permeability at high rate. These predictions were tested by determining the zeta potential and permeability of the loop side of Velcro, a sample otherwise difficult to characterize; reasonable values of -56 mV for zeta and 8.7 × 10(-9) m(2) for the permeability were obtained. This approach offers the ability to determine both the zeta potential and the permeability of materials having open structures. Compressing them into a porous plug is unnecessary. As part of the development of the theory, a convenient formula for a flow-weighted volume-averaged space-charge density of the porous medium, -εζ/k, was obtained, where ε is the permittivity, ζ is the zeta potential, and k is the Darcy permeability. The formula is correct when Smoluchowski's equation and Darcy's law are both valid.
Rotation of gas above the galactic disk
International Nuclear Information System (INIS)
Gvaramadze, V.V.; Lominadze, D.G.
1988-01-01
The galactic disk is modeled by an oblate spheroid with confocal spherodial isodensity surfaces. An explicit analytic expression is found for the angular velocity of the gas outside the disk. The parameters of a three-component model of a spiral galaxy (oblate spheroid with central hole, bulge, and massive corona) are chosen in such a way as to obtain in the disk a two-hump rotation curve (as in the Galaxy, M 31, and M 81). It is shown that at heights absolute value z ≤ 2 kpc the gas rotates in the same manner as the disk. However, at greater heights the rotation curve ceases to have two humps. Allowance for the pressure gradient of the gas slightly changes the rotation curve directly above the disk (r r/sub disk/)
Vibration of imperfect rotating disk
Czech Academy of Sciences Publication Activity Database
Půst, Ladislav; Pešek, Luděk
2011-01-01
Roč. 5, č. 2 (2011), s. 205-216 ISSN 1802-680X R&D Projects: GA ČR GA101/09/1166 Institutional research plan: CEZ:AV0Z20760514 Keywords : bladed disk * imperfect disk * travelling waves Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/index.php/acm/article/view/86
International Nuclear Information System (INIS)
Vasil'ev, S.A.; Dovganchuk, I.I.; Sozinov, Y.A.
1988-01-01
The laminar flow of a liquid metal in the clearance between rotating disks is examined in an axial magnetic field. A comparison is made between the experimental and calculated values of the potential difference
On radial flow between parallel disks
International Nuclear Information System (INIS)
Wee, A Y L; Gorin, A
2015-01-01
Approximate analytical solutions are presented for converging flow in between two parallel non rotating disks. The static pressure distribution and radial component of the velocity are developed by averaging the inertial term across the gap in between parallel disks. The predicted results from the first approximation are favourable to experimental results as well as results presented by other authors. The second approximation shows that as the fluid approaches the center, the velocity at the mid channel slows down which is due to the struggle between the inertial term and the flowrate. (paper)
Demonstration of pumping efficiency for rotating disks by Monte Carlo simulation
International Nuclear Information System (INIS)
Ogiwara, Norio
2010-01-01
We investigated the concept of creating a gas radial flow by employing the molecular drag effect upon gas molecules on rotating disks. All the gas molecules have a circumferential velocity rω (r: distance from the rotating axis, and ω: angular velocity) each time they leave a surface of the rotating disks. As a result, the gas molecules between the rotating disks tend on average to move outward from the center. That is, a radial flow appears. This idea was demonstrated by Monte Carlo simulation of 2 types of rotating disks (flat and corrugated ones). Pumping efficiency was clearly demonstrated for both types of disks when the velocity ratio rω/ ( : mean velocity) became larger than 1. (author)
Rotational instability in the outer region of protoplanetary disks
Energy Technology Data Exchange (ETDEWEB)
Ono, Tomohiro [Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Nomura, Hideko; Takeuchi, Taku, E-mail: ono.t@kusastro.kyoto-u.ac.jp [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)
2014-05-20
We analytically calculate the marginally stable surface density profile for the rotational instability of protoplanetary disks. The derived profile can be utilized for considering the region in a rotating disk where radial pressure gradient force is comparable to the gravitational force, such as an inner edge, steep gaps or bumps, and an outer region of the disk. In this paper, we particularly focus on the rotational instability in the outer region of disks. We find that a protoplanetary disk with a surface density profile of similarity solution becomes rotationally unstable at a certain radius, depending on its temperature profile and a mass of the central star. If the temperature is relatively low and the mass of the central star is high, disks have rotationally stable similarity profiles. Otherwise, deviation from the similarity profiles of surface density could be observable, using facilities with high sensitivity, such as ALMA.
Rotational instability in the outer region of protoplanetary disks
International Nuclear Information System (INIS)
Ono, Tomohiro; Nomura, Hideko; Takeuchi, Taku
2014-01-01
We analytically calculate the marginally stable surface density profile for the rotational instability of protoplanetary disks. The derived profile can be utilized for considering the region in a rotating disk where radial pressure gradient force is comparable to the gravitational force, such as an inner edge, steep gaps or bumps, and an outer region of the disk. In this paper, we particularly focus on the rotational instability in the outer region of disks. We find that a protoplanetary disk with a surface density profile of similarity solution becomes rotationally unstable at a certain radius, depending on its temperature profile and a mass of the central star. If the temperature is relatively low and the mass of the central star is high, disks have rotationally stable similarity profiles. Otherwise, deviation from the similarity profiles of surface density could be observable, using facilities with high sensitivity, such as ALMA.
P.A. Boncz (Peter); L. Liu (Lei); M. Tamer Özsu
2008-01-01
htmlabstractIn disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of
Contribution to the study of rotating disc induced MHD flows
International Nuclear Information System (INIS)
Herve, P.
1983-01-01
Influence of a magnetic field on electroconductor viscous fluid flow generated by disks in rotation is studied here. Flow in rectilinear conduct is first studied, together with velocity, force and current line repartition. Then a case more general is dealt with a toroidal conduct with disk drive. The influence of electric conductivity and of the thickness of the mobile disk are detailed. Couple study leads to think to a transmission by fluid variable by magnetic field variations. At last, a radial flow with a source in the middle of it is studied with a disk rotation. Analysis of velocity and pressure evolution shows a pump effect [fr
Analysis of stress and strain in a rotating disk mounted on a rigid shaft
Directory of Open Access Journals (Sweden)
Alexandrova Nelli N.
2006-01-01
Full Text Available The plane state of stress in an elastic-perfectly plastic isotropic rotating annular disk mounted on a rigid shaft is studied. The analysis of stresses, strains and displacements within the disk of constant thickness and density is based on the Mises yield criterion and its associated flow rule. It is observed that the plastic deformation is localized in the vicinity of the inner radius of the disk, and the disk of a sufficiently large outer radius never becomes fully plastic. The semi-analytical method of stress-strain analysis developed is illustrated by some numerical examples. .
Convective heat and mass transfer in rotating disk systems
Shevchuk, Igor V
2009-01-01
The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD.
Unsteady flow over a decelerating rotating sphere
Turkyilmazoglu, M.
2018-03-01
Unsteady flow analysis induced by a decelerating rotating sphere is the main concern of this paper. A revolving sphere in a still fluid is supposed to slow down at an angular velocity rate that is inversely proportional to time. The governing partial differential equations of motion are scaled in accordance with the literature, reducing to the well-documented von Kármán equations in the special circumstance near the pole. Both numerical and perturbation approaches are pursued to identify the velocity fields, shear stresses, and suction velocity far above the sphere. It is detected that an induced flow surrounding the sphere acts accordingly to adapt to the motion of the sphere up to some critical unsteadiness parameters at certain latitudes. Afterward, the decay rate of rotation ceases such that the flow at the remaining azimuths starts revolving freely. At a critical unsteadiness parameter corresponding to s = -0.681, the decelerating sphere rotates freely and requires no more torque. At a value of s exactly matching the rotating disk flow at the pole identified in the literature, the entire flow field around the sphere starts revolving faster than the disk itself. Increasing values of -s almost diminish the radial outflow. This results in jet flows in both the latitudinal and meridional directions, concentrated near the wall region. The presented mean flow results will be useful for analyzing the instability features of the flow, whether of a convective or absolute nature.
Nonlinear vibrations analysis of rotating drum-disk coupling structure
Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen
2018-04-01
A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.
Gas Flow Across Gaps in Protoplanetary Disks
Lubow, Steve H.; D'Angelo, Gennaro
2005-01-01
We analyze the gas accretion flow through a planet-produced gap in a protoplanetary disk. We adopt the alpha disk model and ignore effects of planetary migration. We develop a semi-analytic, one-dimensional model that accounts for the effects of the planet as a mass sink and also carry out two-dimensional hydrodynamical simulations of a planet embedded in a disk. The predictions of the mass flow rate through the gap based on the semi-analytic model generally agree with the hydrodynamical simu...
3D CFD for chemical transport profiles in a rotating disk CVD reactor
Han, Jong-Hyun; Yoon, Do-Young
2010-06-01
The RDCVD (Rotating Disk Chemical Vapor Deposition) technique is an appropriate method for uniform deposition of grains, such as compound semiconductior materials. The substrate temperature and rotation speed are the major factors, which determine the thickness uniformity of the deposited films. This paper investigates 3D CFD (3 Dimensional Computational Fluid Dynamics) simulation results of flow and heat transfer in a reactor of RDCVD using Fluent. In order to establish the reducibility of buoyancy effect on deposition quality, the chemical transport profile upon the disk heated is examined successfully in 3D domain for different rotating speeds. The resulting vortex flows due the simultaneous buoyance and centrifuge are discussed qualitatively in the 3D virtual system of a RDCVD reactor. 3D CFD is even more effective to describe the internal vortex flows due to the competitive inlet, buoyancy and centrifuge flows, which cannot be realized in the general 2D (2 Dimensional) CFD.[Figure not available: see fulltext.
Rotating disk electrodes to assess river biofilm thickness and elasticity.
Boulêtreau, Stéphanie; Charcosset, Jean-Yves; Gamby, Jean; Lyautey, Emilie; Mastrorillo, Sylvain; Azémar, Frédéric; Moulin, Frédéric; Tribollet, Bernard; Garabetian, Frédéric
2011-01-01
The present study examined the relevance of an electrochemical method based on a rotating disk electrode (RDE) to assess river biofilm thickness and elasticity. An in situ colonisation experiment in the River Garonne (France) in August 2009 sought to obtain natural river biofilms exhibiting differentiated architecture. A constricted pipe providing two contrasted flow conditions (about 0.1 and 0.45 m s(-1) in inflow and constricted sections respectively) and containing 24 RDE was immersed in the river for 21 days. Biofilm thickness and elasticity were quantified using an electrochemical assay on 7 and 21 days old RDE-grown biofilms (t(7) and t(21), respectively). Biofilm thickness was affected by colonisation length and flow conditions and ranged from 36 ± 15 μm (mean ± standard deviation, n = 6) in the fast flow section at t(7) to 340 ± 140 μm (n = 3) in the slow flow section at t(21). Comparing the electrochemical signal to stereomicroscopic estimates of biofilms thickness indicated that the method consistently allowed (i) to detect early biofilm colonisation in the river and (ii) to measure biofilm thickness of up to a few hundred μm. Biofilm elasticity, i.e. biofilm squeeze by hydrodynamic constraint, was significantly higher in the slow (1300 ± 480 μm rpm(1/2), n = 8) than in the fast flow sections (790 ± 350 μm rpm(1/2), n = 11). Diatom and bacterial density, and biofilm-covered RDE surface analyses (i) confirmed that microbial accrual resulted in biofilm formation on the RDE surface, and (ii) indicated that thickness and elasticity represent useful integrative parameters of biofilm architecture that could be measured on natural river assemblages using the proposed electrochemical method. Copyright Â© 2010 Elsevier Ltd. All rights reserved.
Blade dynamic stress analysis of rotating bladed disks
Directory of Open Access Journals (Sweden)
Kellner J.
2007-10-01
Full Text Available The paper deals with mathematical modelling of steady forced bladed disk vibrations and with dynamic stress calculation of the blades. The blades are considered as 1D kontinuum elastic coupled with three-dimensional elastic disk centrally clamped into rotor rotating with constant angular speed. The steady forced vibrations are generated by the aerodynamic forces acting along the blade length. By using modal synthesis method the mathematical model of the rotating bladed disk is condensed to calculate steady vibrations. Dynamic stress analysis of the blades is based on calculation of the time dependent reduced stress in blade cross-sections by using Hubert-Misses-Hencky stress hypothesis. The presented method is applied to real turbomachinery rotor with blades connected on the top with shroud.
SPECTRALLY RESOLVED PURE ROTATIONAL LINES OF WATER IN PROTOPLANETARY DISKS
International Nuclear Information System (INIS)
Pontoppidan, Klaus M.; Salyk, Colette; Blake, Geoffrey A.; Kaeufl, Hans Ulrich
2010-01-01
We present ground-based high-resolution N-band spectra (Δv = 15 km s -1 ) of pure rotational lines of water vapor in two protoplanetary disks surrounding the pre-main-sequence stars AS 205N and RNO 90, selected based on detections of rotational water lines by the Spitzer InfraRed Spectrograph. Using VISIR on the Very Large Telescope, we spectrally resolve individual lines and show that they have widths of 30-60 km s -1 , consistent with an origin in Keplerian disks at radii of ∼1 AU. The water lines have similar widths to those of the CO at 4.67 μm, indicating that the mid-infrared water lines trace similar radii. The rotational temperatures of the water are 540 and 600 K in the two disks, respectively. However, the line ratios show evidence of non-LTE excitation, with low-excitation line fluxes being overpredicted by two-dimensional disk LTE models. Due to the limited number of observed lines and the non-LTE line ratios, an accurate measure of the water ortho/para (O/P) ratio is not available, but a best estimate for AS 205N is O/P =4.5 ± 1.0, apparently ruling out a low-temperature origin of the water. The spectra demonstrate that high-resolution spectroscopy of rotational water lines is feasible from the ground, and further that ground-based high-resolution spectroscopy is likely to significantly improve our understanding of the inner disk chemistry revealed by recent Spitzer observations.
Convective heat transfer from rotating disks subjected to streams of air
aus der Wiesche, Stefan
2016-01-01
This Brief describes systematically results of research studies on a series of convective heat transfer phenomena from rotating disks in air crossflow. Phenomena described in this volume were investigated experimentally using an electrically heated disk placed in the test section of a wind tunnel. The authors describe findings in which transitions between different heat transfer regimes can occur in dependency on the involved Reynolds numbers and the angle of incidence, and that these transitions could be related to phenomenological Landau and Landau-de Gennes models. The concise volume closes a substantial gap in the scientific literature with respect to flow and heat transfer in rotating disk systems and provides a comprehensive presentation of new and recent results not previously published in book form.
On the conventive instability evolution in a rotating gas disk
International Nuclear Information System (INIS)
Nikonov, S.V.; Solov'ev, L.S.
1986-01-01
The mechanism of formation of spiral configuration in a rotating gravitating gas disk, caused by the nonlinear development of the convective instability, is considered. The mechanism suggested may be considered as the model of formation of the galaxy spiral configuration in a rotating pregalactic gas disk due to the development of the convective instability. Unlike the popular at present conception of ''density waves'', formation of the spiral configuration, from this point of view, is the single process of the development of instability in the pregalactic gas cloud. The further advantageous star formation in the vicinity of the central region, in a strip and sleeves is caused by higher concentration of gas density and temperature in these regions
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
International Nuclear Information System (INIS)
Xu, J.J.; Woo, J.T.
1987-01-01
The steady-state flow of a conducting fluid between two coaxial rotating disks in the presence of an axial magnetic field is considered for the following conditions: (1) the gap d between two disks is very small compared with the radial extension of the disks R; (2) the angular velocity of the disks is not too high, so that the thickness of the Eckman layer δ is still larger than the gap d, (d/δ) 1 /sup // 4 2 /d 2 . Under these conditions asymptotic solutions to the problem are obtained in terms of the small parameter Epsilon = d/R. The results show that to the lowest-order approximation, the electric properties of the disks are not important to the flow field, while the magnitude of the magnetic field plays an important role in the equilibrium flow profile
Basic design of a rotating disk centrifugal atomizer for uranium-molybdenum alloys
International Nuclear Information System (INIS)
Alzari, Silvio
2001-01-01
One of the most used techniques to produce metallic powders is the centrifugal atomization with a rotating disk. This process is employ to fabricate ductile metallic particles of uranium-molybdenum alloys (typically U- 7 % Mo, by weight) for nuclear fuel elements for research and testing reactors. These alloys exhibit a face-centered cubic structure (γ phase) which is stable above 700 C degrees and can be retained at room temperature. The rotating disk centrifugal atomization allows a rapid solidification of spherical metallic droplets of about 40 to 100 μm, considered adequate to manufacture nuclear fuel elements. Besides the thermo-physical properties of both the alloy and the cooling gas, the main parameters of the process are the radius of the disk (R), the diameter of the atomization chamber (D), the disk rotation speed (ω), the liquid volume flow rate (Q) and the superheating of the liquid (ΔT). In this work, they were applied approximate analytical models to estimate the optimal geometrical and operative parameters to obtain spherical metallic powder of U- 7 % Mo alloy. Three physical phenomena were considerate: the liquid metal flow along the surface of the disk, the fragmentation and spheroidization of the droplets and the cooling and solidification of the droplets. The principal results are the more suitable gas is helium; R ≅ 20 mm; D ≥ 1 m; ≅ 20,000 - 50,000 rpm; Q ≅ 4 - 10 cm 3 /s; ΔT ≅ 100 - 200 C degrees. By applying the relevant non-dimensional parameters governing the main physical phenomena, the conclusion is that the more appropriate non-radioactive metal to simulate the atomization of U- 7 % Mo is gold [es
A 100 au Wide Bipolar Rotating Shell Emanating from the HH 212 Protostellar Disk: A Disk Wind?
Lee, Chin-Fei; Li, Zhi-Yun; Codella, Claudio; Ho, Paul T. P.; Podio, Linda; Hirano, Naomi; Shang, Hsien; Turner, Neal J.; Zhang, Qizhou
2018-03-01
HH 212 is a Class 0 protostellar system found to host a “hamburger”-shaped dusty disk with a rotating disk atmosphere and a collimated SiO jet at a distance of ∼400 pc. Recently, a compact rotating outflow has been detected in SO and SO2 toward the center along the jet axis at ∼52 au (0.″13) resolution. Here we resolve the compact outflow into a small-scale wide-opening rotating outflow shell and a collimated jet, with the observations in the same S-bearing molecules at ∼16 au (0.″04) resolution. The collimated jet is aligned with the SiO jet, tracing the shock interactions in the jet. The wide-opening outflow shell is seen extending out from the inner disk around the SiO jet and has a width of ∼100 au. It is not only expanding away from the center, but also rotating around the jet axis. The specific angular momentum of the outflow shell is ∼40 au km s‑1. Simple modeling of the observed kinematics suggests that the rotating outflow shell can trace either a disk wind or disk material pushed away by an unseen wind from the inner disk or protostar. We also resolve the disk atmosphere in the same S-bearing molecules, confirming the Keplerian rotation there.
Modelling of convective heat and mass transfer in rotating flows
Shevchuk, Igor V
2016-01-01
This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...
Determination of stresses in gas-turbine disks subjected to plastic flow and creep
Millenson, M B; Manson, S S
1948-01-01
A finite-difference method previously presented for computing elastic stresses in rotating disks is extended to include the computation of the disk stresses when plastic flow and creep are considered. A finite-difference method is employed to eliminate numerical integration and to permit nontechnical personnel to make the calculations with a minimum of engineering supervision. Illustrative examples are included to facilitate explanation of the procedure by carrying out the computations on a typical gas-turbine disk through a complete running cycle. The results of the numerical examples presented indicate that plastic flow markedly alters the elastic-stress distribution.
Directory of Open Access Journals (Sweden)
Mohammad Hadi Jalali
2018-01-01
Full Text Available Elastic stress analysis of rotating variable thickness annular disk made of functionally graded material (FGM is presented. Elasticity modulus, density, and thickness of the disk are assumed to vary radially according to a power-law function. Radial stress, circumferential stress, and radial deformation of the rotating FG annular disk of variable thickness with clamped-clamped (C-C, clamped-free (C-F, and free-free (F-F boundary conditions are obtained using the numerical finite difference method, and the effects of the graded index, thickness variation, and rotating speed on the stresses and deformation are evaluated. It is shown that using FG material could decrease the value of radial stress and increase the radial displacement in a rotating thin disk. It is also demonstrated that increasing the rotating speed can strongly increase the stress in the FG annular disk.
Effect of structure height on the drag reduction performance using rotating disk apparatus
Energy Technology Data Exchange (ETDEWEB)
Rashed, Musaab K; Salleh, Mohamad Amran Mohd; Ismail, M Halim Shah [Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia (Malaysia); Abdulbari, Hayder A, E-mail: hayder.bari@gmail.com [Center of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang (Malaysia)
2017-02-15
The drag reduction characteristics in a rotating disk apparatus were investigated by using structured disks with different riblet types and dimensions. Two disk types were fabricated with right angle triangular (RAT) grooves and space v-shape (SV) grooves, with six dimensions for each type. A high-accuracy rotating disk apparatus was fabricated and then used to investigate the turbulent drag reduction characterization of the disk in diesel fuel. In this work, the effects of several parameters are investigated; riblet types, riblet dimensions, and rotational disk speed (rpm) on the drag reduction performance. It was found that the surface structure of the disk reduced the drag, this was clearly seen from the comparison of torque values of smooth and structured disks. Drag reduction for structured disks was higher than that for smooth disks, and SV-grooves showed better drag reduction performance than RAT-grooves. In addition, it was observed that the drag reduction performance increased with decreasing groove height for both groove types. The maximum drag reduction achieved in this study was 37.368% for SV-groove at 1000 rpm, compared with 30% for RAT-groove, at the same rotational speed. (paper)
Parallel computation of rotating flows
DEFF Research Database (Denmark)
Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær
1999-01-01
This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process....... In the first step, the vorticity at the new time level is computed using the velocity at the previous time level. In the second step, the velocity at the new time level is computed using the new vorticity. We discuss here the second part which is by far the most time‐consuming. The numerical problem...
Parallel computation of rotating flows
DEFF Research Database (Denmark)
Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær
1999-01-01
This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process...... is that of solving a singular, large, sparse, over‐determined linear system of equations, and the iterative method CGLS is applied for this purpose. We discuss some of the mathematical and numerical aspects of this procedure and report on the performance of our software on a wide range of parallel computers. Darbe...
Development of a rotating graphite carbon disk stripper
Hasebe, Hiroo; Okuno, Hiroki; Tatami, Atsushi; Tachibana, Masamitsu; Murakami, Mutsuaki; Kuboki, Hironori; Imao, Hiroshi; Fukunishi, Nobuhisa; Kase, Masayuki; Kamigaito, Osamu
2018-05-01
Highly oriented graphite carbon sheets (GCSs) were successfully used as disk strippers. An irradiation test conducted in 2015 showed that GCS strippers have the longest lifetime and exhibit improved stripping and transmission efficiencies. The problem of disk deformation in previously used Be-disk was solved even with higher beam intensity.
Flow and heat transfer in gas turbine disk cavities subject to nonuniform external pressure field
Energy Technology Data Exchange (ETDEWEB)
Roy, R.P.; Kim, Y.W.; Tong, T.W. [Arizona State Univ., Tempe, AZ (United States)
1995-10-01
Injestion of hot gas from the main-stream gas path into turbine disk cavities, particularly the first-stage disk cavity, has become a serious concern for the next-generation industrial gas turbines featuring high rotor inlet temperature. Fluid temperature in the cavities increases further due to windage generated by fluid drag at the rotating and stationary surfaces. The resulting problem of rotor disk heat-up is exacerbated by the high disk rim temperature due to adverse (relatively flat) temperature profile of the mainstream gas in the annular flow passage of the turbine. A designer is concerned about the level of stresses in the turbine rotor disk and its durability, both of which are affected significantly by the disk temperature distribution. This distribution also plays a major role in the radial position of the blade tip and thus, in establishing the clearance between the tip and the shroud. To counteract mainstream gas ingestion as well as to cool the rotor and the stator disks, it is necessary to inject cooling air (bled from the compressor discharge) into the wheel space. Since this bleeding of compressor air imposes a penalty on the engine cycle performance, the designers of disk cavity cooling and sealing systems need to accomplish these tasks with the minimum possible amount of bleed air without risking disk failure. This requires detailed knowledge of the flow characteristics and convective heat transfer in the cavity. The flow in the wheel space between the rotor and stator disks is quite complex. It is usually turbulent and contains recirculation regions. Instabilities such as vortices oscillating in space have been observed in the flow. It becomes necessary to obtain both a qualitative understanding of the general pattern of the fluid motion as well as a quantitative map of the velocity and pressure fields.
Rotation of a metal gear disk in an ultrasonic levitator
Rendon, Pablo L.; Boullosa, Ricardo R.; Salazar, Laura
2016-11-01
The phenomenon known as acoustic radiation pressure is well-known to be associated with the time-averaged momentum flux of an acoustic wave, and precisely because it is a time-averaged effect, it is relatively easy to observe experimentally. An ultrasonic levitator makes use of this effect to levitate small particles. Although it is a less-well studied effect, the transfer of angular momentum using acoustic waves in air or liquids has nonetheless been the subject of some recent studies. This transfer depends on the scattering and absorbing properties of the object and is achieved, typically, through the generation of acoustic vortex beams. In the present study, we examine the manner in which the acoustic standing wave located between two disks of an ultrasonic levitator in air may transfer angular momentum to objects with different shapes. In this case, a non-spherical object is subjected to, in addition to the radiation force, a torque which induces rotation. Analytical solutions for the acoustic force and torque are available, but limited to a few simple cases. In general, a finite element model must be used to obtain solutions. Thus, we develop and validate a finite element simulation in order to calculate directly the torque and radiation force.
Rotating disk electrode system for elevated pressures and temperatures.
Fleige, M J; Wiberg, G K H; Arenz, M
2015-06-01
We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.
Rotating disk electrode system for elevated pressures and temperatures
International Nuclear Information System (INIS)
Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.
2015-01-01
We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H 2 SO 4 , the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells
Rotating disk electrode system for elevated pressures and temperatures
Energy Technology Data Exchange (ETDEWEB)
Fleige, M. J.; Wiberg, G. K. H.; Arenz, M. [Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Ø Copenhagen (Denmark)
2015-06-15
We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H{sub 2}SO{sub 4}, the setup can easily be operated in a pressure range of 1–101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.
Rotating disk electrode system for elevated pressures and temperatures
Fleige, M. J.; Wiberg, G. K. H.; Arenz, M.
2015-06-01
We describe the development and test of an elevated pressure and temperature rotating disk electrode (RDE) system that allows measurements under well-defined mass transport conditions. As demonstrated for the oxygen reduction reaction on polycrystalline platinum (Pt) in 0.5M H2SO4, the setup can easily be operated in a pressure range of 1-101 bar oxygen, and temperature of 140 °C. Under such conditions, diffusion limited current densities increase by almost two orders of magnitude as compared to conventional RDE setups allowing, for example, fuel cell catalyst studies under more realistic conditions. Levich plots demonstrate that the mass transport is indeed well-defined, i.e., at low electrode potentials, the measured current densities are fully diffusion controlled, while at higher potentials, a mixed kinetic-diffusion controlled regime is observed. Therefore, the setup opens up a new field for RDE investigations under temperature and current density conditions relevant for low and high temperature proton exchange membrane fuel cells.
Clem, Michelle M.; Woike, Mark R.
2013-01-01
The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed
Shaft flexibility effects on aeroelastic stability of a rotating bladed disk
Khader, Naim; Loewy, Robert
1989-01-01
A comprehensive study of Coriolis forces and shaft flexibility effects on the structural dynamics and aeroelastic stability of a rotating bladed-disk assembly attached to a cantilever, massless, flexible shaft is presented. Analyses were performed for an actual bladed-disk assembly, used as the first stage in the fan of the 'E3' engine. In the structural model, both in-plane and out-of-plane elastic deformation of the bladed-disk assembly were considered relative to their hub, in addition to rigid disk translations and rotations introduced by shaft flexibility. Besides structural coupling between blades (through the flexible disk), additional coupling is introduced through quasisteady aerodynamic loads. Rotational effects are accounted for throughout the work, and some mode shapes for the whole structure are presented at a selected rpm.
Some aspects of radial flow between parallel disks
International Nuclear Information System (INIS)
Tabatabai, M.; Pollard, A.
1985-01-01
Radial flow of air between two closely spaced parallel disks is examined experimentally. A comprehensive review of the previous work performed on similar flow situations is given by Tabatabai and Pollard. The present paper is a discussion of some of the results obtained so far and offers some observations on the decay of turbulence in this flow. (author)
Optical Tip Clearance Measurements as a Tool for Rotating Disk Characterization
Directory of Open Access Journals (Sweden)
Iker García
2017-01-01
Full Text Available An experimental investigation on the vibrational behavior of a rotating disk by means of three optical fiber sensors is presented. The disk, which is a scale model of the real disk of an aircraft engine, was assembled in a wind tunnel in order to simulate real operation conditions. The pressure difference between the upstream and downstream sides of the disk causes an airflow that might force the disk to vibrate. To characterize this vibration, a set of parameters was determined by measuring the tip clearance of the disk: the amplitude, the frequency and the number of nodal diameters in the disk. All this information allowed the design of an upgraded prototype of the disk, whose performance was also characterized by the same method. An optical system was employed for the measurements, in combination with a strain gauge mounted on the disk surface, which served to confirm the results obtained. The data of the strain gauge coincided closely with those provided by the optical fiber sensors, thus demonstrating the suitability of this innovative technique to evaluate the vibrational behavior of rotating disks.
Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field
Energy Technology Data Exchange (ETDEWEB)
Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru [National Research Center Kurchatov Institute (Russian Federation)
2016-11-15
A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.
Clem, Michelle M.; Woike, Mark R.; Abdul-Aziz, Ali
2014-01-01
The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-µm in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be 'shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the
Numerical modeling and design of a disk-type rotating permanent magnet induction pump
Energy Technology Data Exchange (ETDEWEB)
Koroteeva, E., E-mail: koroteeva@physics.msu.ru [Institute of Physics of University of Latvia, Salaspils 2169 (Latvia); Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Ščepanskis, M. [Laboratory for Mathematical Modelling of Environmental and Technological Processes, University of Latvia, Rīga 1002 (Latvia); Bucenieks, I.; Platacis, E. [Institute of Physics of University of Latvia, Salaspils 2169 (Latvia)
2016-05-15
Highlights: • The design and performance of a disk-type induction pump are described. • A 3D numerical model based on an iterative coupling between EM and hydrodynamic solvers is developed. • The model is verified by comparing with the experiments in a Pb-Bi loop facility. • The suggestions are given to estimate the pump performance in a Pb-Li loop at high pressures. - Abstract: Electromagnetic induction pumps with rotating permanent magnets appear to be the most promising devices to transport liquid metals in high-temperature applications. Here we present a numerical methodology to simulate the operation of one particular modification of these types of pumps: a disk-type induction pump. The numerical model allows for the calculation and analysis of the flow parameters, including the pressure–flow rate characteristics of the pump. The simulations are based on an iterative fully coupled scheme for electromagnetic and hydrodynamic solvers. The developed model is verified by comparing with experimental data obtained using a Pb-Bi loop test facility, for pressures up to 4 bar and flow rates up to 9 kg/s. The verified model is then expanded to higher pressures, beyond the limits of the experimental loop. Based on the numerical simulations, suggestions are given to extrapolate experimental data to higher (industrially important) pressure ranges. Using the numerical model and analytical estimation, the pump performance for the Pb-Li loop is also examined, and the ability of the designed pump to develop pressure heads over 6 bar and to provide flow rates over 15 kg/s is shown.
Optic Flow Information Influencing Heading Perception during Rotation
Directory of Open Access Journals (Sweden)
Diederick C. Niehorster
2011-05-01
Full Text Available We investigated what roles global spatial frequency, surface structure, and foreground motion play in heading perception during simulated rotation from optic flow. The display (110°Hx94°V simulated walking on a straight path over a ground plane (depth range: 1.4–50 m at 2 m/s while fixating a target off to one side (mean R/T ratios: ±1, ±2, ±3 under six display conditions. Four displays consisted of nonexpanding dots that were distributed so as to manipulate the amount of foreground motion and the presence of surface structure. In one further display the ground was covered with disks that expanded during the trial and lastly a textured ground display was created with the same spatial frequency power spectrum as the disk ground. At the end of each 1s trial, observers indicated their perceived heading along a line at the display's center. Mean heading biases were smaller for the textured than for the disk ground, for the displays with more foreground motion and for the displays with surface structure defined by dot motion than without. We conclude that while spatial frequency content is not a crucial factor, dense motion parallax and surface structure in optic flow are important for accurate heading perception during rotation.
Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities
Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.
2011-01-01
We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we selected a parent disk sample of 170,000 galaxies from SDSS DR7, with redshifts between 0.02 and 0.10 and r band absolute magnitudes between -18.0 and -22.5. Then, we constructed a child disk sample of 189 galaxies that span the parameter space-- in absolute magnitude, color, and disk size-- covered by the parent sample, and for which we have obtained kinematic data. Long-slit spectroscopy were obtained from the Dual Imaging Spectrograph (DIS) at the Apache Point Observatory 3.5 m for 99 galaxies, and from Pizagno et al. (2007) for 95 galaxies (five have repeat observations). We find the best photometric estimator of disk rotation velocity to be a synthetic magnitude with a color correction that is consistent with the Bell et al. (2003) color-based stellar mass ratio. The improved rotation velocity estimates have a wide range of scientific applications, and in particular, in combination with weak lensing measurements, they enable us to constrain the ratio of optical-to-virial velocity in disk galaxies.
Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin
2016-06-28
Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors.
Directory of Open Access Journals (Sweden)
Musaab K. Rashed
2016-12-01
Full Text Available Pipelines and tubes play important roles in transporting economic liquids, such as water, petroleum derivatives, and crude oil. However, turbulence reduces the initial flow rate at which liquids are pumped, thereby making liquid transportation through pipelines inefficient. This study focuses on enhancing the drag reduction (DR phenomenon within a rotating disk apparatus (RDA using polymer-surfactant additives. The complex mixture of polyisobutylene (PIB and sodium dioctyl sulfosuccinate (SDS was used. These materials were tested individually and as a complex mixture in RDA at various concentrations and rotational speeds (rpm. The morphology of this complex was investigated using transmission electronic microscopy (TEM. The reduction of the degradation level caused by the continuous circulation of surfactant additives in RDA could improve the long-term DR level. Experimental result shows that the maximum %DR of the complex mixture was 21.455% at 3000 rpm, while the PIB and SDS were 19.197% and 8.03%, respectively. Therefore, the complex mixture had better performance than these substances alone and were highly dependent on the alkyl chain of the surfactant.
Höfflin, Jens; Torres Delgado, Saraí M; Suárez Sandoval, Fralett; Korvink, Jan G; Mager, Dario
2015-06-21
We present a design for wireless power transfer, via inductively coupled coils, to a spinning disk. The rectified and stabilised power feeds an Arduino-compatible microcontroller (μC) on the disc, which in turn drives and monitors various sensors and actuators. The platform, which has been conceived to flexibly prototype such systems, demonstrates the feasibility of a wireless power supply and the use of a μC circuit, for example for Lab-on-a-disk applications, thereby eliminating the need for cumbersome slip rings or batteries, and adding a cogent and new degree of freedom to the setup. The large number of sensors and actuators included demonstrate that a wide range of physical parameters can be easily monitored and altered. All devices are connected to the μC via an I(2)C bus, therefore can be easily exchanged or augmented by other devices in order to perform a specific task on the disk. The wireless power supply takes up little additional physical space and should work in conjunction with most existing Lab-on-a-disk platforms as a straightforward add-on, since it does not require modification of the rotation axis and can be readily adapted to specific geometrical requirements.
Thin accretion disk signatures of slowly rotating black holes in Horava gravity
International Nuclear Information System (INIS)
Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S N
2011-01-01
In this work, we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos (KS) solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating KS geometry in Horava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating KS solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.
Thin accretion disk signatures of slowly rotating black holes in Horava gravity
Energy Technology Data Exchange (ETDEWEB)
Harko, Tiberiu; Kovacs, Zoltan [Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong); Lobo, Francisco S N, E-mail: harko@hkucc.hku.hk, E-mail: zkovacs@hku.hk, E-mail: flobo@cii.fc.ul.pt [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisboa (Portugal)
2011-08-21
In this work, we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos (KS) solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating KS geometry in Horava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating KS solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.
Directory of Open Access Journals (Sweden)
Saeed Dinarvand
2012-01-01
Full Text Available The steady three-dimensional flow of condensation or spraying on inclined spinning disk is studied analytically. The governing nonlinear equations and their associated boundary conditions are transformed into the system of nonlinear ordinary differential equations. The series solution of the problem is obtained by utilizing the homotopy perturbation method (HPM. The velocity and temperature profiles are shown and the influence of Prandtl number on the heat transfer and Nusselt number is discussed in detail. The validity of our solutions is verified by the numerical results. Unlike free surface flows on an incline, this through flow is highly affected by the spray rate and the rotation of the disk.
One-dimensional analysis of plane and radial thin film flows including solid-body rotation
Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.
1989-01-01
The flow of a thin liquid film with a free surface along a horizontal plate which emanates from a pressurized vessel is examined by integrating the equations of motion across the thin liquid layer and discretizing the integrated equations using finite difference techniques. The effects of 0-g and solid-body rotation will be discussed. The two cases of interest are plane flow and radial flow. In plane flow, the liquid is considered to be flowing along a channel with no change in the width of the channel, whereas in radial flow the liquid spreads out radially over a disk, so that the area changes along the radius. It is desired to determine the height of the liquid film at any location along the plate of disk, so that the heat transfer from the plate or disk can be found. The possibility that the flow could encounter a hydraulic jump is accounted for.
Self-gravitating axially symmetric disks in general-relativistic rotation
Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał
2018-05-01
We integrate numerically axially symmetric stationary Einstein equations describing self-gravitating disks around spinless black holes. The numerical scheme is based on a method developed by Shibata, but contains important new ingredients. We derive a new general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. Former results concerning rotation around spinless black holes emerge in the limit of a vanishing spin parameter. These rotation curves might be used for the description of rotating stars, after appropriate modification around the symmetry axis. They can be applied to the description of compact torus-black hole configurations, including active galactic nuclei or products of coalescences of two neutron stars.
Energy Technology Data Exchange (ETDEWEB)
Santos-Lima, R.; De Gouveia Dal Pino, E. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, R. do Matao, 1226, Sao Paulo, SP 05508-090 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)
2012-03-01
The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions {approx}100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star
Energy Technology Data Exchange (ETDEWEB)
Kurashima, D.; Naka, Y.; Fukagata, K. [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Obi, S., E-mail: obsn@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)
2011-06-15
The complex flow features inside hard disk drive models are investigated in an axisymmetric and a semi-open shroud configurations. For the axisymmetric case, we have employed both experimental and computational approaches. The experiment focuses on both flow dynamics and the disk vibration, where measurements of the fluctuating pressure and velocity are undertaken at some representative points. The correlation between the disk vibration and the fluctuating pressure in the turbulent flow between disks is evident from the spectral analysis. The experimentally observed fluctuating pressure and velocity are partly due to the disk vibration and its contribution could be estimated by comparing the experiment with the results of a large eddy simulation. For the semi-open shroud case, although the characteristic peaks attributable to the large-scale vortical structure are still observed in the power spectra, the pressure fluctuation and the disk vibration are suppressed when the arm is inserted.
Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich
2014-07-07
In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids-air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction.
Directory of Open Access Journals (Sweden)
Alexandre Presas
2014-07-01
Full Text Available In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids—air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction.
Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities
Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno II, Jim
We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we
DEFF Research Database (Denmark)
Pedersen, Christoffer Mølleskov; Escribano, Maria Escudero; Velazquez-Palenzuela, Amado Andres
2015-01-01
We present up-to-date benchmarking methods for testing electrocatalysts for polymer exchange membrane fuel cells (PEMFC), using the rotating disk electrode (RDE) method. We focus on the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR) in the presence of CO. We have chosen...
International Nuclear Information System (INIS)
Kim, Jeong-Gyu; Kim, Woong-Tae; Seo, Young Min; Hong, Seung Soo
2012-01-01
We investigate the gravitational instability (GI) of rotating, vertically stratified, pressure-confined, polytropic gas disks using a linear stability analysis as well as analytic approximations. The disks are initially in vertical hydrostatic equilibrium and bounded by a constant external pressure. We find that the GI of a pressure-confined disk is in general a mixed mode of the conventional Jeans and distortional instabilities, and is thus an unstable version of acoustic-surface-gravity waves. The Jeans mode dominates in weakly confined disks or disks with rigid boundaries. On the other hand, when the disk has free boundaries and is strongly pressure confined, the mixed GI is dominated by the distortional mode that is surface-gravity waves driven unstable under their own gravity and thus incompressible. We demonstrate that the Jeans mode is gravity-modified acoustic waves rather than inertial waves and that inertial waves are almost unaffected by self-gravity. We derive an analytic expression for the effective sound speed c eff of acoustic-surface-gravity waves. We also find expressions for the gravity reduction factors relative to a razor-thin counterpart that are appropriate for the Jeans and distortional modes. The usual razor-thin dispersion relation, after correcting for c eff and the reduction factors, closely matches the numerical results obtained by solving a full set of linearized equations. The effective sound speed generalizes the Toomre stability parameter of the Jeans mode to allow for the mixed GI of vertically stratified, pressure-confined disks.
International Nuclear Information System (INIS)
Bayat, Mehdi; Saleem, M.; Sahari, B.B.; Hamouda, A.M.S.; Mahdi, E.
2009-01-01
Rotating disks have many applications in the aerospace industry such as gas turbines and gears. These disks normally work under thermo mechanical loads. Minimizing the weight of such components can help reduce the overall payload in aerospace industry. For this purpose, a rotating functionally graded (FG) disk with variable thickness under a steady temperature field is considered in this paper. Thermo elastic solutions and the weight of the disk are related to the material grading index and the geometry of the disk. It is found that a disk with parabolic or hyperbolic convergent thickness profile has smaller stresses and displacements compared to a uniform thickness disk. Maximum radial stress due to centrifugal load in the solid disk with parabolic thickness profile may not be at the center unlike uniform thickness disk. Functionally graded disk with variable thickness has smaller stresses due to thermal load compared to those with uniform thickness. It is seen that for a given value of grading index, the FG disk having concave thickness profile is the lightest in weight whereas the FG disk with uniform thickness profile is the heaviest. Also for any given thickness profile, the weight of the FG disk lies in between the weights of the all-metal and the all-ceramic disks.
Torques Induced by Scattered Pebble-flow in Protoplanetary Disks
Benítez-Llambay, Pablo; Pessah, Martin E.
2018-03-01
Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.
International Nuclear Information System (INIS)
Yang, Yingnan; Tsukahara, Kenichiro; Sawayama, Shigeki
2007-01-01
A newly developed anaerobic rotating disk reactor (ARDR) packed with polyurethane was used in continuous mode for organic waste removal under thermophilic (55 o C) anaerobic conditions. This paper reports the effects of the rotational speed on the methanogenic performance and community in an ARDR supplied with acetic acid synthetic wastewater as the organic substrate. The best performance was obtained from the ARDR with the rotational speed (ω) of 30 rpm. The average removal of dissolved organic carbon was 98.5%, and the methane production rate was 393 ml/l-reactor/day at an organic loading rate of 2.69 g/l-reactor/day. Under these operational conditions, the reactor had a greater biomass retention capacity and better reactor performance than those at other rotational speeds (0, 5 and 60 rpm). The results of 16S rRNA phylogenetic analysis indicated that the major methanogens in the reactor belonged to the genus Methanosarcina spp. The results of real-time polymerase chain reaction (PCR) analysis suggested that the cell density of methanogenic archaea immobilized on the polyurethane foam disk could be concentrated more than 2000 times relative to those in the original thermophilic sludge. Scanning electron microphotographs showed that there were more immobilized microbes at ω of 30 rpm than 60 rpm. A rotational speed on the outer layer of the disk of 6.6 m/min could be appropriate for anaerobic digestion using the polyurethane ARDR
Properties of a thin accretion disk around a rotating non-Kerr black hole
International Nuclear Information System (INIS)
Chen Songbai; Jing Jiliang
2012-01-01
We study the accretion process in the thin disk around a rotating non-Kerr black hole with a deformed parameter and an unbound rotation parameter. Our results show that the presence of the deformed parameter ε modifies the standard properties of the disk. For the case in which the black hole is more oblate than a Kerr black hole, the larger deviation leads to the smaller energy flux, the lower radiation temperature and the fainter spectra luminosity in the disk. For the black hole with positive deformed parameter, we find that the effect of the deformed parameter on the disk becomes more complicated. It depends not only on the rotation direction of the black hole and the orbit particles, but also on the sign of the difference between the deformed parameter ε and a certain critical value ε c . These significant features in the mass accretion process may provide a possibility to test the no-hair theorem in the strong-field regime in future astronomical observations.
DISK BRAKING IN YOUNG STARS: PROBING ROTATION IN CHAMAELEON I AND TAURUS-AURIGA
International Nuclear Information System (INIS)
Duy Cuong Nguyen; Jayawardhana, Ray; Van Kerkwijk, Marten H.; Damjanov, Ivana; Brandeker, Alexis; Scholz, Alexander
2009-01-01
We present a comprehensive study of rotation, disk, and accretion signatures for 144 T Tauri stars in the young (∼2 Myr old) Chamaeleon I and Taurus-Auriga star-forming regions based on multi-epoch high-resolution optical spectra from the Magellan Clay 6.5 m telescope supplemented by mid-infrared photometry from the Spitzer Space Telescope. In contrast to previous studies in the Orion Nebula Cluster and NGC 2264, we do not see a clear signature of disk braking in Tau-Aur and Cha I. We find that both accretors and non-accretors have similar distributions of vsin i. This result could be due to different initial conditions, insufficient time for disk braking, or a significant age spread within the regions. The rotational velocities in both regions show a clear mass dependence, with F-K stars rotating on average about twice as fast as M stars, consistent with results reported for other clusters of similar age. Similarly, we find the upper envelope of the observed values of specific angular momentum j varies as M 0.5 for our sample which spans a mass range of ∼0.16-3 M sun . This power law complements previous studies in Orion which estimated j ∝ M 0.25 for ∼ sun . Furthermore, the overall specific angular momentum of this ∼10 Myr population is five times lower than that of non-accretors in our sample, and implies a stellar braking mechanism other than disk braking could be at work. For a subsample of 67 objects with mid-infrared photometry, we examine the connection between accretion signatures and dusty disks: in the vast majority of cases (63/67), the two properties correlate well, which suggests that the timescale of gas accretion is similar to the lifetime of inner disks.
Rocking Rotation of a Rigid Disk Embedded in a Transversely Isotropic Half-Space
Directory of Open Access Journals (Sweden)
Seyed Ahmadi
2014-06-01
Full Text Available The asymmetric problem of rocking rotation of a circular rigid disk embedded in a finite depth of a transversely isotropic half-space is analytically addressed. The rigid disk is assumed to be in frictionless contact with the elastic half-space. By virtue of appropriate Green's functions, the mixed boundary value problem is written as a dual integral equation. Employing further mathematical techniques, the integral equation is reduced to a well-known Fredholm integral equation of the second kind. The results related to the contact stress distribution across the disk region and the equivalent rocking stiffness of the system are expressed in terms of the solution of the obtained Fredholm integral equation. When the rigid disk is located on the surface or at the remote boundary, the exact closed-form solutions are presented. For verification purposes, the limiting case of an isotropic half-space is considered and the results are verified with those available in the literature. The jump behavior in the results at the edge of the rigid disk for the case of an infinitesimal embedment is highlighted analytically for the first time. Selected numerical results are depicted for the contact stress distribution across the disk region, rocking stiffness of the system, normal stress, and displacement components along the radial axis. Moreover, effects of anisotropy on the rocking stiffness factor are discussed in detail.
Rotating electrical machines: Poynting flow
International Nuclear Information System (INIS)
Donaghy-Spargo, C
2017-01-01
This paper presents a complementary approach to the traditional Lorentz and Faraday approaches that are typically adopted in the classroom when teaching the fundamentals of electrical machines—motors and generators. The approach adopted is based upon the Poynting vector, which illustrates the ‘flow’ of electromagnetic energy. It is shown through simple vector analysis that the energy-flux density flow approach can provide insight into the operation of electrical machines and it is also shown that the results are in agreement with conventional Maxwell stress-based theory. The advantage of this approach is its complementary completion of the physical picture regarding the electromechanical energy conversion process—it is also a means of maintaining student interest in this subject and as an unconventional application of the Poynting vector during normal study of electromagnetism. (paper)
Experimental studies of rotating exchange flow
Rabe, B.; Smeed, D. A.; Dalziel, S. B.; Lane-Serff, G. F.
2007-02-01
Ocean basins are connected by straits and passages, geometrically limiting important heat and salt exchanges which in turn influence the global thermohaline circulation and climate. Such exchange can be modeled in an idealized way by taking into consideration the density-driven two-layer flow along a strait under the influence of rotation. We use a laboratory model of a lock exchange between two reservoirs of different density through a flat-bottom channel with a horizontal narrows, set up on two different platforms: a 1 m diameter turntable, where density interface position was measured by dye attenuation, and the 14 m diameter turntable at Coriolis/LEGI (Grenoble, France), where correlation imaging velocimetry, a particle imaging technique, allowed us to obtain for the first time detailed measurements of the velocity fields in these flows. The influence of rotation is studied by varying a parameter, Bu, a type of Burger number given by the ratio of the Rossby radius to the channel width at the narrows. In addition, a two-layer version of the Miami Isopycnic Coordinate Model (MICOM) is used, to study the cases with low Burger number. Results from experiments by Dalziel [1988. Two-layer hydraulics: maximal exchange flows. Ph.D. Thesis, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, see also people/sd103/papers/1988/Thesis_Dalziel.pdf>] are also included for comparison. Time-mean exchange fluxes for any Bu are in close agreement with the inviscid zero-potential vorticity theory of Dalziel [1990. Rotating two-layer sill flows. In: Pratt, L.J. (Ed.), The Physical Oceanography of Sea Straits. Kluwer Academic, Dordrecht, pp. 343-371] and Whitehead et al. [1974. Rotating hydraulics of strait and sill flows. Geophysical Fluid Dynamics 6, 101-125], who found that fluxes for Bu>1 mainly vary with channel width, similar to non-rotating flow, but for Bu1 a steady, two-layer flow was observed that persisted across the channel at the narrows
Mass Distribution in Rotating Thin-Disk Galaxies According to Newtonian Dynamics
Directory of Open Access Journals (Sweden)
James Q. Feng
2014-04-01
Full Text Available An accurate computational method is presented for determining the mass distribution in a mature spiral galaxy from a given rotation curve by applying Newtonian dynamics for an axisymmetrically rotating thin disk of finite size with or without a central spherical bulge. The governing integral equation for mass distribution is transformed via a boundary-element method into a linear algebra matrix equation that can be solved numerically for rotation curves with a wide range of shapes. To illustrate the effectiveness of this computational method, mass distributions in several mature spiral galaxies are determined from their measured rotation curves. All the surface mass density profiles predicted by our model exhibit approximately a common exponential law of decay, quantitatively consistent with the observed surface brightness distributions. When a central spherical bulge is present, the mass distribution in the galaxy is altered in such a way that the periphery mass density is reduced, while more mass appears toward the galactic center. By extending the computational domain beyond the galactic edge, we can determine the rotation velocity outside the cut-off radius, which appears to continuously decrease and to gradually approach the Keplerian rotation velocity out over twice the cut-off radius. An examination of circular orbit stability suggests that galaxies with flat or rising rotation velocities are more stable than those with declining rotation velocities especially in the region near the galactic edge. Our results demonstrate the fact that Newtonian dynamics can be adequate for describing the observed rotation behavior of mature spiral galaxies.
Jung, Suho; Kortlever, Ruud; Jones, Ryan J R; Lichterman, Michael F; Agapie, Theodor; McCrory, Charles C L; Peters, Jonas C
2017-01-03
Rotating disk electrodes (RDEs) are widely used in electrochemical characterization to analyze the mechanisms of various electrocatalytic reactions. RDE experiments often make use of or require collection and quantification of gaseous products. The combination of rotating parts and gaseous analytes makes the design of RDE cells that allow for headspace analysis challenging due to gas leaks at the interface of the cell body and the rotator. In this manuscript we describe a new, hermetically sealed electrochemical cell that allows for electrode rotation while simultaneously providing a gastight environment. Electrode rotation in this new cell design is controlled by magnetically coupling the working electrode to a rotating magnetic driver. Calibration of the RDE using a tachometer shows that the rotation speed of the electrode is the same as that of the magnetic driver. To validate the performance of this cell for hydrodynamic measurements, limiting currents from the reduction of a potassium ferrocyanide (K 4 [Fe(CN) 6 ]·3H 2 O) were measured and shown to compare favorably with calculated values from the Levich equation and with data obtained using more typical, nongastight RDE cells. Faradaic efficiencies of ∼95% were measured in the gas phase for oxygen evolution in alkaline media at an Inconel 625 alloy electrocatalyst during rotation at 1600 rpm. These data verify that a gastight environment is maintained even during rotation.
Directory of Open Access Journals (Sweden)
Amir T. Kalali
Full Text Available Abstract A new elastio-plastic stress solution in axisymmetric problems (rotating disk, cylindrical and spherical vessel is presented. The rotating disk (cylindrical and spherical vessel was made of a ceramic/metal functionally graded material, i.e. a particle-reinforced composite. It was assumed that the material's plastic deformation follows an isotropic strain-hardening rule based on the von-Mises yield criterion. The mechanical properties of the graded material were modeled by the modified rule of mixtures. By assuming small strains, Hencky's stress-strain relation was used to obtain the governing differential equations for the plastic region. A numerical method for solving those differential equations was then proposed that enabled the prediction of stress state within the structure. Selected finite element results were also presented to establish supporting evidence for the validation of the proposed approach.
Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk
Energy Technology Data Exchange (ETDEWEB)
Čížek, P.; Semerák, O., E-mail: oldrich.semerak@mff.cuni.cz [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)
2017-09-01
Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green’s functions, represented by Will’s result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they can be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.
Determination of kinetic parameters for borohydride oxidation on a rotating Au disk electrode
International Nuclear Information System (INIS)
Cheng, H.; Scott, K.
2006-01-01
Borohydride oxidation has been investigated using a rotating disk electrode technique. The parameters, such as apparent rate constant, Tafel slope, Levich slope, number of electrons exchanged and reaction order, have been determined. The borohydride ion is oxidised on the gold electrode with an electrochemical rate constant of around 1 cm s -1 at intermediate potentials where side reactions had less effect. Influences of temperature, concentrations of borohydride and supporting electrolyte (NaOH) on the parameters were evaluated
The rotation of accretion-disks and the power spectra of X-rays 'flickering'
International Nuclear Information System (INIS)
Zhang Xiaohe; Bao Gang
1990-07-01
The X-ray producing, inner region of the accretion disk in Active Galactic Nuclei (AGN) is likely to be non-stationary and non-axisymmetric. This non-stationarity and non-axisymmetry in disk surface brightness may be modeled by considering the pre-sense of many 'hot spots' on a steady, axisymmetric disk. As long as a 'spot' can survive for a few orbital periods, its orbital frequency can be introduced into the light curve either by relativistic orbital motion or by eclipsing of the spot by the disk. These rotational effects vary with the local properties of the spot population. Depending on the radial variation of spot brightness, lifetime and number density, the observed variability power spectrum may differ from that due to the intrinsic variability of spots alone, within the orbital frequency range in which these spots occur. In this paper, we explore the relation between properties assumed for the spot population and the resulting predictions for the observed variability. The implications of our results for the 'flickering' of X-ray sources powered by accretion disks (both AGN and galactic sources) are also discussed. (author). 24 refs, 6 figs
A LARGE, MASSIVE, ROTATING DISK AROUND AN ISOLATED YOUNG STELLAR OBJECT
International Nuclear Information System (INIS)
Quanz, Sascha P.; Beuther, Henrik; Steinacker, Juergen; Linz, Hendrik; Krause, Oliver; Henning, Thomas; Birkmann, Stephan M.; Zhang Qizhou
2010-01-01
We present multi-wavelength observations and a radiative transfer model of a newly discovered massive circumstellar disk of gas and dust which is one of the largest disks known today. Seen almost edge-on, the disk is resolved in high-resolution near-infrared (NIR) images and appears as a dark lane of high opacity intersecting a bipolar reflection nebula. Based on molecular line observations, we estimate the distance to the object to be 3.5 kpc. This leads to a size for the dark lane of ∼10,500 AU but due to shadowing effects the true disk size could be smaller. In Spitzer/IRAC 3.6 μm images, the elongated shape of the bipolar reflection nebula is still preserved and the bulk of the flux seems to come from disk regions that can be detected due to the slight inclination of the disk. At longer IRAC wavelengths, the flux is mainly coming from the central regions penetrating directly through the dust lane. Interferometric observations of the dust continuum emission at millimeter wavelengths with the Submillimeter Array confirm this finding as the peak of the unresolved millimeter-emission coincides perfectly with the peak of the Spitzer/IRAC 5.8 μm flux and the center of the dark lane seen in the NIR images. Simultaneously acquired CO data reveal a molecular outflow along the northern part of the reflection nebula which seems to be the outflow cavity. An elongated gaseous disk component is also detected and shows signs of rotation. The emission is perpendicular to the molecular outflow and thus parallel to but even more extended than the dark lane in the NIR images. Based on the dust continuum and the CO observations, we estimate a disk mass of up to a few solar masses depending on the underlying assumptions. Whether the disk-like structure is an actual accretion disk or rather a larger-scale flattened envelope or pseudodisk is difficult to discriminate with the current data set. The existence of HCO + /H 13 CO + emission proves the presence of dense gas in the disk
Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.
1990-01-01
The flow of a thin liquid film with a free surface along a horizontal plane that emanates from a pressurized vessel is examined numerically. In one g, a hydraulic jump was predicted in both plane and radial flow, which could be forced away from the inlet by increasing the inlet Froude number or Reynolds number. In zero g, the hydraulic jump was not predicted. The effect of solid-body rotation for radial flow in one g was to 'wash out' the hydraulic jump and to decrease the film height on the disk. The liquid film heights under one g and zero g were equal under solid-body rotation because the effect of centrifugal force was much greater than that of the gravitational force. The heat transfer to a film on a rotating disk was predicted to be greater than that of a stationary disk because the liquid film is extremely thin and is moving with a very high velocity.
Vibrations of beams with a variable cross-section fixed on rotational rigid disks
Directory of Open Access Journals (Sweden)
Slawomir Zolkiewski
Full Text Available The work is focused on the problem of vibrating beams with a variable cross-section fixed on a rotational rigid disk. The beam is loaded by a transversal time varying force orthogonal to an axis of the beam and simultaneously parallel to the disk's plane. There are many ways of usage of the technical moveable systems composed of elements with the variable cross-sections. The main applications are used in numerous types of turbines and pumps. The paper is a kind of introduction to the dynamic analysis of above mentioned beam systems. The equations of motion of rotational beams fixed on the rigid disks were derived. After introducing the Coriolis forces and the centrifugal forces, the transportation effect in the mathematical model was considered. This particular project is the first stage research, where there were proposed certain solutions of problems connected with the linear variable cross-sections systems. The further investigation considering the nonlinear systems has been proceeding. The results, analysis and comparison will be presented in the future works.
Rotating disk atomization of Gd and Gd-Y for hydrogen liquefaction via magnetocaloric cooling
Energy Technology Data Exchange (ETDEWEB)
Slinger, Tyler [Iowa State Univ., Ames, IA (United States)
2016-12-17
In order to enable liquid hydrogen fuel cell technologies for vehicles the cost of hydrogen liquefaction should be lowered. The current method of hydrogen liquefaction is the Claude cycle that has a figure of merit (FOM) of 0.3-0.35. New magnetocaloric hydrogen liquefaction devices have been proposed with a FOM>0.5, which is a significant improvement. A significant hurdle to realizing these devices is the synthesis of spherical rare earth based alloy powders of 200μm in diameter. In this study a centrifugal atomization method that used a rotating disk with a rotating oil quench bath was developed to make gadolinium and gadolinium-yttrium spheres. The composition of the spherical powders included pure Gd and Gd_{0.91}Y_{0.09}. The effect of atomization parameters, such as superheat, melt properties, disk shape, disk speed, and melt system materials and design, were investigated on the size distribution and morphology of the resulting spheres. The carbon, nitrogen, and oxygen impurity levels also were analyzed and compared with the magnetic performance of the alloys. The magnetic properties of the charge material as well as the resulting powders were measured using a vibrating sample magnetometer. The saturation magnetization and Curie temperature were the target properties for the resulting spheres. These values were compared with measurements taken on the charge material in order to investigate the effect of atomization processing on the alloys.
On effects of topography in rotating flows
Burmann, Fabian; Noir, Jerome; Jackson, Andrew
2017-11-01
Both, seismological studies and geodynamic arguments suggest that there is significant topography at the core mantle boundary (CMB). This leads to the question whether the topography of the CMB could influence the flow in the Earth's outer core. As a preliminary experiment, we investigate the effects of bottom topography in the so-called Spin-Up, where motion of a contained fluid is created by a sudden increase of rotation rate. Experiments are performed in a cylindrical container mounted on a rotating table and quantitative results are obtained with particle image velocimetry. Several horizontal length scales of topography (λ) are investigated, ranging from cases where λ is much smaller then the lateral extend of the experiment (R) to cases where λ is a fraction of R. We find that there is an optimal λ that creates maximum dissipation of kinetic energy. Depending on the length scale of the topography, kinetic energy is either dissipated in the boundary layer or in the bulk of the fluid. Two different phases of fluid motion are present: a starting flow in the from of solid rotation (phase I), which is later replaced by meso scale vortices on the length scale of bottom topography (phase II).
Directory of Open Access Journals (Sweden)
Sanjeev Sharma
2013-01-01
Full Text Available Elastic-plastic stresses, strains, and displacements have been obtained for a thin rotating annular disk with exponentially variable thickness and exponentially variable density with nonlinear strain hardening material by finite difference method using Von-Mises' yield criterion. Results have been computed numerically and depicted graphically. From the numerical results, it can be concluded that disk whose thickness decreases radially and density increases radially is on the safer side of design as compared to the disk with exponentially varying thickness and exponentially varying density as well as to flat disk.
On the Dynamical Structure of the Jet System in the Disk with the Keplerian Rotation
Directory of Open Access Journals (Sweden)
Kyung-Sook Jeong
1989-06-01
Full Text Available The classical sloar wind theory proposed by Parker(1963 explains well the dynamics of the wind pheonomena such as stellar wind accretion disk. While the stellar wind system like the solar wind has the spherically symmetric wind structure, there are various jet phenomena which collimate the system into the narrow space. We can find these dynamical structures in SS433, in the optical jet of M87, and around the active galactic nulei. We present the dynamical structure of the jet system in disks, which conserves the angular momentum, with the Keplerian rotation and the strong relation between the geometrical cross section and the physical change of the jet stream on the basis of the hydrodynamic equations.
Directory of Open Access Journals (Sweden)
Sanaz Jafari
2011-10-01
Full Text Available Rotating discs work mostly at high angular velocity. High speed results in large centrifugal forces in discs and induces large stresses and deformations. Minimizing weight of such disks yields various benefits such as low dead weights and lower costs. In order to attain a certain and reliable analysis, disk with variable thickness and density is considered. Semi-analytical solutions for the elastic stress distribution in rotating annular disks with uniform and variable thicknesses and densities are obtained under plane stress assumption by authors in previous works. The optimum disk profile for minimum weight design is achieved by the Karush–Kuhn–Tucker (KKT optimality conditions. Inequality constrain equation is used in optimization to make sure that maximum von Mises stress is always less than yielding strength of the material of the disk.
Irreversibility analysis of magneto-hydrodynamic nanofluid flow injected through a rotary disk
Directory of Open Access Journals (Sweden)
Rashidi Mohammad Mehdi
2015-01-01
Full Text Available The non-linear Navier-Stokes equations governed on the nanofluid flow injected through a rotary porous disk in the presence of an external uniform vertical magnetic field can be changed to a system of non-linear partial differential equations by applying similar parameter. In this study, partial differential equations are analytically solved by the modified differential transform method, Pade differential transformation method to obtain self-similar functions of motion and temperature. A very good agreement is observed between the obtained results of Pade differential transformation method and those of previously published ones. Then it has become possible to do a comprehensive parametric analysis on the entropy generation in this case to demonstrate the effects of physical flow parameters such as magnetic interaction parameter, injection parameter, nanoparticle volume fraction, dimensionless temperature difference, rotational Brinkman number and the type of nanofluid on the problem.
Rotational flow in tapered slab rocket motors
Saad, Tony; Sams, Oliver C.; Majdalani, Joseph
2006-10-01
Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.
International Nuclear Information System (INIS)
Hojjati, M.H.; Jafari, S.
2009-01-01
Analytical solutions for the elastic-plastic stress distribution in rotating annular disks with uniform and variable thicknesses and densities are obtained under plane stress assumption. The solution employs a technique called the homotopy perturbation method. A numerical solution of the governing differential equation is also presented based on the Runge-Kutta's method for both elastic and plastic regimes. The analysis is based on Tresca's yield criterion, its associated flow rule and linear strain hardening. The results of the two methods are compared and generally show good agreement. It is shown that, depending on the boundary conditions used, the plastic core may contain one, two or three different plastic regions governed by different mathematical forms of the yield criterion. Four different stages of elastic-plastic deformation occur. The expansion of these plastic regions with increasing angular velocity is obtained together with the distributions of stress and displacement
Corrosion and Passivation of Nickel Rotating Disk Electrode in Borate Buffer Solution
Energy Technology Data Exchange (ETDEWEB)
Kim, Younkyoo [Hankuk Univ. of Foreign Studies, Yongin (Korea, Republic of)
2013-10-15
The electrochemical corrosion and passivation of Ni rotating disk electrod in borate buffer solution was studied with potentiodynamic and electrochemical impedance spectroscopy. The mechanisms of both the active dissolution and passivation of nickel and the hydrogen evolution in reduction reaction were hypothetically established while utilizing the Tafel slope, impedance data, the rotation speed of Ni-RDE and the pH dependence of corrosion potential and current. Based on the EIS data, an equivalent circuit was suggested. In addition, carefully measured were the electrochemical parameters for specific anodic dissolution regions. It can be concluded from the data collected that the Ni(OH){sub 2} oxide film, which is primarily formed by passivation, is converted to NiO by dehydration under the influence of an electrical field.
Electrochemical study of uranium cations in LiCl-KCl melt using a rotating disk electrode
Energy Technology Data Exchange (ETDEWEB)
Bae, Sang-Eun; Kim, Dae-Hyun; Kim, Jong-Yoon; Park, Tae-Hong; Cho, Young Hwan; Yeon, Jei-Won; Song, Kyuseok [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute,989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)
2013-07-01
A rotating disk electrode (RDE) measurement technique was employed to investigate the electrochemical REDOX reactions of actinide (An) and lanthanide (Ln) ions in LiCl-KCl molten salt. By using RDE, it is possible to access more exact values of the diffusion coefficient, Tafel slope, and exchange current density. In this work, we constructed RDE setup and electrodes for RDE measurements in high temperature molten salt and measured the electrochemical parameters of the An and Ln ions. The RDE setup is composed of a Pine model MSRX rotator equipped with a rod type of W electrode. The active electrode area was confined to the planar part of the W rod by making meniscus at the LiCl-KCl melt surface.
A Stefan model for mass transfer in a rotating disk reaction vessel
BOHUN, C. S.
2015-05-04
Copyright © Cambridge University Press 2015. In this paper, we focus on the process of mass transfer in the rotating disk apparatus formulated as a Stefan problem with consideration given to both the hydrodynamics of the process and the specific chemical reactions occurring in the bulk. The wide range in the reaction rates of the underlying chemistry allows for a natural decoupling of the problem into a simplified set of weakly coupled convective-reaction-diffusion equations for the slowly reacting chemical species and a set of algebraic relations for the species that react rapidly. An analysis of the chemical equilibrium conditions identifies an expansion parameter and a reduced model that remains valid for arbitrarily large times. Numerical solutions of the model are compared to an asymptotic analysis revealing three distinct time scales and chemical diffusion boundary layer that lies completely inside the hydrodynamic layer. Formulated as a Stefan problem, the model generalizes the work of Levich (Levich and Spalding (1962) Physicochemical hydrodynamics, vol. 689, Prentice-Hall Englewood Cliffs, NJ) and will help better understand the natural limitations of the rotating disk reaction vessel when consideration is made for the reacting chemical species.
A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB
International Nuclear Information System (INIS)
Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Steidel, Charles C.; Trainor, Ryan
2016-01-01
How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10"1"2 M _⊙ halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.
A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB
Energy Technology Data Exchange (ETDEWEB)
Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D. [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 278-17, Pasadena, California 91125 (United States); Moore, Anna [Caltech Optical Observatories, Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 11-17, Pasadena, California 91125 (United States); Steidel, Charles C. [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 249-17, Pasadena, California 91125 (United States); Trainor, Ryan, E-mail: cmartin@srl.caltech.edu [Department of Astronomy, University of California, Berkeley, 501 15 Campbell Hall, Berkeley, CA 94720 (United States)
2016-06-10
How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10{sup 12} M {sub ⊙} halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.
Fluid flow and heat transfer in rotating porous media
Vadasz, Peter
2016-01-01
This Book concentrates the available knowledge on rotating fluid flow and heat transfer in porous media in one single reference. Dr. Vadasz develops the fundamental theory of rotating flow and heat transfer in porous media and introduces systematic classification and identification of the relevant problems. An initial distinction between rotating flows in isothermal heterogeneous porous systems and natural convection in homogeneous non-‐isothermal porous systems provides the two major classes of problems to be considered. A few examples of solutions to selected problems are presented, highlighting the significant impact of rotation on the flow in porous media.
The influence of magnetic field on the inertial deposition of a particle on a rotating disk
International Nuclear Information System (INIS)
Tsatsin, P O; Beskachko, V P
2008-01-01
The problem of inertial deposition attracts considerable attention in the connection with the separating of detrimental impurities and the refining of liquid metals. In the present investigation the deposition of particles suspended in a conducting melt on the rotating disk in the presence of axial uniform magnetic field is considered. The field of the fluid velocities is computed by means of the MHD-analogue of Karman reduction, which makes possible to reduce initial governing nonlinear partial differential equations to a two-point boundary value problem for the set of ordinary differential equations. The influence of magnetic field on dia-and paramagnetic particle deposition effect was estimated. The results reveal that magnetic field has significant effect on particle parameters, especially for magnetic particles
Steady hydromagnetic Couette flow in a rotating system with ...
African Journals Online (AJOL)
International Journal of Engineering, Science and Technology ... Couette flow of class-II of a viscous incompressible electrically conducting fluid in a rotating system ... Heat transfer characteristics of the flow are considered taking viscous and ...
Flow Visualization of a Rotating Detonation Engine
2016-10-05
SUPPLEMENTARY NOTES 14. ABSTRACT The rotating detonation engine ( RDE ) is a propulsion system that obtains thrust using continuously existing...2014 – 12/4/2015 Summary: The rotating detonation engine ( RDE ) is a propulsion system that obtains thrust using continuously existing detonation...structure. Studies have been conducted on rotating detonation engines ( RDE ) that obtain thrust from the continuously propagating detonation waves in the
SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES
Energy Technology Data Exchange (ETDEWEB)
Lelli, Federico; McGaugh, Stacy S. [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Schombert, James M., E-mail: federico.lelli@case.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)
2016-12-01
We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i mass–radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii) V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.
Low frequency oscillatory flow in a rotating curved pipe
Institute of Scientific and Technical Information of China (English)
陈华军; 章本照; 苏霄燕
2003-01-01
The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotation on the low frequency oscillatory flow were examined in detail. The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without rotation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis force to centrifugal force and the axial pressure gradient.
Regimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing
Directory of Open Access Journals (Sweden)
Susie Wright
2017-07-01
Full Text Available We present a numerical study of axisymmetric flow in a rotating annulus in which local thermal forcing, via a heated annular ring on the outside of the base and a cooled circular disk in the centre of the top surface, drives convection. This new configuration is a variant of the classical thermally-driven annulus, where uniform heating and cooling are applied through the outer and inner sidewalls respectively. The annulus provides an analogue to a planetary circulation and the new configuration, with its more relaxed vertical thermal boundary conditions, is expected to better emulate vigorous convection in the tropics and polar regions as well as baroclinic instability in the mid-latitude baroclinic zone. Using the Met Office/Oxford Rotating Annulus Laboratory (MORALS code, we have investigated a series of equilibrated, two dimensional axisymmetric flows across a large region of parameter space. These are characterized in terms of their velocity and temperature fields. When rotation is applied several distinct flow regimes may be identified for different rotation rates and strengths of differential heating. These regimes are defined as a function of the ratio of the horizontal Ekman layer thickness to the non-rotating thermal boundary layer thickness and are found to be similar to those identified in previous annulus experiments. Convection without rotation is also considered and the scaling of the heat transport with Rayleigh number is calculated. This is then compared with existing work on the classical annulus as well as horizontal and Rayleigh-Bénard convection. As with previous studies on both rotating and non-rotating convection the system’s behaviour is found to be aspect ratio dependent. This dependence is seen in the scaling of the non-rotating Nusselt number and in transitions between regimes in the rotating case although further investigation is required to fully explain these observations.
Sources of intrinsic rotation in the low-flow ordering
International Nuclear Information System (INIS)
Parra, Felix I.; Barnes, Michael; Catto, Peter J.
2011-01-01
A low flow, δf gyrokinetic formulation to obtain the intrinsic rotation profiles is presented. The momentum conservation equation in the low-flow ordering contains new terms, neglected in previous first-principles formulations, that may explain the intrinsic rotation observed in tokamaks in the absence of external sources of momentum. The intrinsic rotation profile depends on the density and temperature profiles and on the up-down asymmetry.
Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi
2014-01-01
Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.
Directory of Open Access Journals (Sweden)
Mohammad Zamani Nejad
2014-01-01
Full Text Available Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT. These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM is also presented and good agreement was found.
Directory of Open Access Journals (Sweden)
Bingfeng Ju
2011-03-01
Full Text Available In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.
Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing
2011-01-01
In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin's discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.
Rotating bouncing disks, tossing pizza dough, and the behavior of ultrasonic motors
Liu, Kuang-Chen; Friend, James; Yeo, Leslie
2009-10-01
Pizza tossing and certain forms of standing-wave ultrasonic motors (SWUMs) share a similar process for converting reciprocating input into continuous rotary motion. We show that the key features of this motion conversion process such as collision, separation and friction coupling are captured by the dynamics of a disk bouncing on a vibrating platform. The model shows that the linear or helical hand motions commonly used by pizza chefs and dough-toss performers for single tosses maximize energy efficiency and the dough’s airborne rotational speed; on the other hand, the semielliptical hand motions used for multiple tosses make it easier to maintain dough rotation at the maximum speed. The system’s bifurcation diagram and basins of attraction also provide a physical basis for understanding the peculiar behavior of SWUMs and provide a means to design them. The model is able to explain the apparently chaotic oscillations that occur in SWUMs and predict the observed trends in steady-state speed and stall torque as preload is increased.
Faghri, Amir; Swanson, Theodore D.
1989-01-01
The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.
Direct method of design and stress analysis of rotating disks with temperature gradient
Manson, S S
1950-01-01
A method is presented for the determination of the contour of disks, typified by those of aircraft gas turbines, to incorporate arbitrary elastic-stress distributions resulting from either centrifugal or combined centrifugal and thermal effects. The specified stress may be radial, tangential, or any combination of the two. Use is made of the finite-difference approach in solving the stress equations, the amount of computation necessary in the evolution of a design being greatly reduced by the judicious selection of point stations by the aid of a design chart. Use of the charts and of a preselected schedule of point stations is also applied to the direct problem of finding the elastic and plastic stress distribution in disks of a given design, thereby effecting a great reduction in the amount of calculation. Illustrative examples are presented to show computational procedures in the determination of a new design and in analyzing an existing design for elastic stress and for stresses resulting from plastic flow.
International Nuclear Information System (INIS)
Loghman, A.; Abdollahian, M.; Jafarzadeh Jazi, A.; Ghorbanpour Arani, A.
2013-01-01
Time-dependent electro-magneto-thermoelastic creep response of rotating disk made of functionally graded piezoelectric materials (FGPM) is studied. The disk is placed in a uniform magnetic and a distributed temperature field and is subjected to an induced electric potential and a centrifugal body force. The material thermal, mechanical, magnetic and electric properties are represented by power-law distributions in radial direction. The creep constitutive model is Norton's law in which the creep parameters are also power functions of radius. Using equations of equilibrium, strain-displacement and stress-strain relations in conjunction with the potential-displacement equation a non-homogeneous differential equation containing time-dependent creep strains for displacement is derived. A semi-analytical solution followed by a numerical procedure has been developed to obtain history of stresses, strains, electric potential and creep-strain rates by using Prandtl-Reuss relations. History of electric potential, Radial, circumferential and effective stresses and strains as well as the creep stress rates and effective creep strain rate histories are presented. It has been found that tensile radial stress distribution decreases during the life of the FGPM rotating disk which is associated with major electric potential redistributions which can be used as a sensor for condition monitoring of the FGPM rotating disk. (authors)
International Nuclear Information System (INIS)
Jafari, S.; Hojjati, M.H.; Fathi, A.
2012-01-01
Rotating disks work mostly at high angular velocity and this results a large centrifugal force and consequently induce large stresses and deformations. Minimizing weight of such disks yields to benefits such as low dead weights and lower costs. This paper aims at finding an optimal disk profiles for minimum weight design using the Karush-Kuhn-Tucker method (KKT) as a classical optimization method, simulated annealing (SA) and particle swarm optimization (PSO) as two modern optimization techniques. Some semi-analytical solutions for the elastic stress distribution in a rotating annular disk with uniform and variable thickness and density proposed by the authors in the previous works have been used. The von Mises failure criterion of optimum disk is used as an inequality constraint to make sure that the rotating disk does not fail. The results show that the minimum weight obtained for all three methods is almost identical. The KKT method gives a profile with slightly less weight (6% less than SA and 1% less than PSO) while the implementation of PSO and SA methods are easier and provide more flexibility compared with those of the KKT method. The effectiveness of the proposed optimization methods is shown. - Highlights: ► Karush-Kuhn-Tucker, simulated annealing and particle swarm methods are used. ► The KKT gives slightly less weight (6% less than SA and 1% less than PSO). ► Implementation of PSO and SA methods are easier and provide more flexibility. ► The effectiveness of the proposed optimization methods is shown.
Energy Technology Data Exchange (ETDEWEB)
Jafari, S. [Faculty of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of); Hojjati, M.H., E-mail: Hojjati@nit.ac.ir [Faculty of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of); Fathi, A. [Faculty of Mechanical Engineering, Babol University of Technology, P.O. Box 484, Babol (Iran, Islamic Republic of)
2012-04-15
Rotating disks work mostly at high angular velocity and this results a large centrifugal force and consequently induce large stresses and deformations. Minimizing weight of such disks yields to benefits such as low dead weights and lower costs. This paper aims at finding an optimal disk profiles for minimum weight design using the Karush-Kuhn-Tucker method (KKT) as a classical optimization method, simulated annealing (SA) and particle swarm optimization (PSO) as two modern optimization techniques. Some semi-analytical solutions for the elastic stress distribution in a rotating annular disk with uniform and variable thickness and density proposed by the authors in the previous works have been used. The von Mises failure criterion of optimum disk is used as an inequality constraint to make sure that the rotating disk does not fail. The results show that the minimum weight obtained for all three methods is almost identical. The KKT method gives a profile with slightly less weight (6% less than SA and 1% less than PSO) while the implementation of PSO and SA methods are easier and provide more flexibility compared with those of the KKT method. The effectiveness of the proposed optimization methods is shown. - Highlights: Black-Right-Pointing-Pointer Karush-Kuhn-Tucker, simulated annealing and particle swarm methods are used. Black-Right-Pointing-Pointer The KKT gives slightly less weight (6% less than SA and 1% less than PSO). Black-Right-Pointing-Pointer Implementation of PSO and SA methods are easier and provide more flexibility. Black-Right-Pointing-Pointer The effectiveness of the proposed optimization methods is shown.
Energy Technology Data Exchange (ETDEWEB)
Chatenet, M. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France)], E-mail: Marian.Chatenet@phelma.grenoble-inp.fr; Molina-Concha, M.B. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France); El-Kissi, N. [Laboratoire de Rheologie, UMR 5520 CNRS/Grenoble-INP/UJF, 1301 rue de la piscine, 38041 Grenoble Cedex 9 (France); Parrour, G.; Diard, J.-P. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France)
2009-07-15
This paper presents the experimental determination of the diffusion coefficient of borohydride anion and solution kinematic viscosity for a large panel of NaOH + NaBH{sub 4} electrolytic solutions relevant for use as anolyte in Direct Borohydride Fuel Cells (DBFC). The diffusion coefficients have been measured by the transit-time technique on gold rotating ring-disk electrodes, and verified using other classical techniques reported in the literature, namely the Levich method and Electrochemical Impedance Spectroscopy on a gold RDE, or chronoamperometry at a gold microdisk. The agreement between these methods is generally good. The diffusion coefficients measured from the RRDE technique are however ca. twice larger than those previously reported in the literature (e.g. ca. 3 x 10{sup -5} cm{sup 2} s{sup -1} in 1 M NaOH + 0.01 M NaBH{sub 4} at 25 deg. C in the present study vs. ca. 1.6 x 10{sup -5} cm{sup 2} s{sup -1} in 1 M NaOH + 0.02 M NaBH{sub 4} at 30 deg. C in the literature, as measured by chronoamperometry at a gold microsphere), which is thoroughly discussed. Our measurements using chronoamperometry at a gold microdisk showed that such technique can yield diffusion coefficient values below what expected. The origin of such finding is explained in the frame of the formation of both a film of boron-oxide(s) at the surface of the (static) gold microdisk and the generation of H{sub 2} bubbles at the electrode surface (as a result of the heterogeneous hydrolysis at Au), which alter the access to the electrode surface and thus prevents efficient measurements. Such film formation and H{sub 2} bubbles generation is not so much of an issue for rotating electrodes thanks to the convection of electrolyte which sweeps the electrode surface. In addition, should such film be present, the transit-time determination technique on a RRDE displays the advantage of not being very sensible to its presence: the parameter measured is the time taken by a perturbation generated the
International Nuclear Information System (INIS)
Chatenet, M.; Molina-Concha, M.B.; El-Kissi, N.; Parrour, G.; Diard, J.-P.
2009-01-01
This paper presents the experimental determination of the diffusion coefficient of borohydride anion and solution kinematic viscosity for a large panel of NaOH + NaBH 4 electrolytic solutions relevant for use as anolyte in Direct Borohydride Fuel Cells (DBFC). The diffusion coefficients have been measured by the transit-time technique on gold rotating ring-disk electrodes, and verified using other classical techniques reported in the literature, namely the Levich method and Electrochemical Impedance Spectroscopy on a gold RDE, or chronoamperometry at a gold microdisk. The agreement between these methods is generally good. The diffusion coefficients measured from the RRDE technique are however ca. twice larger than those previously reported in the literature (e.g. ca. 3 x 10 -5 cm 2 s -1 in 1 M NaOH + 0.01 M NaBH 4 at 25 deg. C in the present study vs. ca. 1.6 x 10 -5 cm 2 s -1 in 1 M NaOH + 0.02 M NaBH 4 at 30 deg. C in the literature, as measured by chronoamperometry at a gold microsphere), which is thoroughly discussed. Our measurements using chronoamperometry at a gold microdisk showed that such technique can yield diffusion coefficient values below what expected. The origin of such finding is explained in the frame of the formation of both a film of boron-oxide(s) at the surface of the (static) gold microdisk and the generation of H 2 bubbles at the electrode surface (as a result of the heterogeneous hydrolysis at Au), which alter the access to the electrode surface and thus prevents efficient measurements. Such film formation and H 2 bubbles generation is not so much of an issue for rotating electrodes thanks to the convection of electrolyte which sweeps the electrode surface. In addition, should such film be present, the transit-time determination technique on a RRDE displays the advantage of not being very sensible to its presence: the parameter measured is the time taken by a perturbation generated the disk to reach the ring trough a distance several orders
Directory of Open Access Journals (Sweden)
Dan Qin
2017-01-01
Full Text Available Recycling and reusing of poly (ethylene terephthalate (PET fabrics waste are essential for reducing serious waste of resources and environmental pollution caused by low utilization rate. The liquid-phase polymerization method has advantages of short process flow, low energy consumption, and low production cost. However, unlike prepolymer, the material characteristics of PET fabrics waste (complex composition, high intrinsic viscosity, and large quality fluctuations make its recycling a technique challenge. In this study, the falling film-rotating disk combined reactor is proposed, and the continuous liquid-phase polymerization is modeled by optimizing and correcting existing models for the final stage of PET polymerization to improve the product quality in plant production. Through modeling and simulation, the weight analysis of indexes closely related to the product quality (intrinsic viscosity, carboxyl end group concentration, and diethylene glycol content was investigated to optimize the production process in order to obtain the desired polymer properties and meet specific product material characteristics. The model could be applied to other PET wastes (e.g., bottles and films and extended to investigate different aspects of the recycling process.
Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.
2005-01-01
A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.
DEFF Research Database (Denmark)
Bayat, M.; Sahari, B. B.; Saleem, M.
2012-01-01
In this paper the elastic solutions of a disk composed of FGM – Functionaly Graded Material, is presented.......In this paper the elastic solutions of a disk composed of FGM – Functionaly Graded Material, is presented....
Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori
2013-08-01
As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.
Low frequency oscillatory flow in a rotating curved pipe
Institute of Scientific and Technical Information of China (English)
陈华军; 章本照; 苏霄燕
2003-01-01
The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotationon the low frequency oscillatory flow were examined in detail, The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without ro-tation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis foree to centrifugal foree and the axial pressure gradient.
Phase-Averaged Method Applied to Periodic Flow Between Shrouded Corotating Disks
Directory of Open Access Journals (Sweden)
Shen-Chun Wu
2003-01-01
Full Text Available This study investigates the coherent flow fields between corotating disks in a cylindrical enclosure. By using two laser velocimeters and a phase-averaged technique, the vortical structures of the flow could be reconstructed and their dynamic behavior was observed. The experimental results reveal clearly that the flow field between the disks is composed of three distinct regions: an inner region near the hub, an outer region, and a shroud boundary layer region. The outer region is distinguished by the presence of large vortical structures. The number of vortical structures corresponds to the normalized frequency of the flow.
Rotation Disk Process to Assess the Influence of Metals and Voltage on the Growth of Biofilm
Directory of Open Access Journals (Sweden)
Dana M. Barry
2016-07-01
Full Text Available Biofilms consist of not only bacteria but also extracellular polymer substrates (EPS. They are groups of microorganisms that adhere to each other on a surface, especially as a result of exposure to water and bacteria. They can pose health risks to humans as they grow in hospital settings that include medical supplies and devices. In a previous study, the researchers discovered that bacteria/biofilm grew well on wetted external latex, male catheters. These results concerned the investigators and encouraged them to find ways for prohibiting the growth of bacteria/biofilm on the male catheters (which are made of natural rubber. They carried out a new study to assess the influence of metals and voltage for the growth of bacteria on these latex samples. For this purpose, a unique Rotation Disk Reactor was used to accelerate biofilm formation on external male catheter samples. This setup included a dip tank containing water and a rotating wheel with the attached latex samples (some of which had single electrodes while others had paired electrodes with applied voltage. The process allowed the samples to become wetted and also exposed them to microorganisms in the ambient air during each revolution of the wheel. The results (as viewed from SEM images showed that when compared to the control sample, the presence of metals (brass, stainless steel, and silver was generally effective in preventing bacterial growth. Also the use of voltage (9.5 volt battery essentially eliminated the appearance of rod shaped bacteria in some of the samples. It can be concluded that the presence of metals significantly reduced bacterial growth on latex and the application of voltage was able to essentially eliminate bacteria, providing appropriate electrode combinations were used.
Energy Technology Data Exchange (ETDEWEB)
Roha, D.J.
1981-06-01
Limiting currents for the reduction of ferric cyanide at a rotating disk were determined in the presence of 0 to 40 percent by volume of spherical glass beads. Experiments were conducted with six different particle diameters, and with rotation speeds in the range of 387 to 270 rpm, usong both a 0.56 cm and a 1.41 cm radius disk electrode. It was established that at a given rpm upon addition of glass beads in the limiting current, i/sub L/, may increase to more than three times its value without solids. This increase in limiting current density is greater at high rotation speeds and with the larger disk electrode. i/sub L/ as a function of particle diameter yields at maximum at approx. 10 ..mu..m. Two mass transfer models are offered to explain this behavior, both of which assume that the beads are in contact with the disk electrode and moving parallel to its surface. In the surface renewal model it is assumed that complete mixing takes place with the passage of each bead and the boundary layer is replaced with fresh bulk solution. While with the particle film model it is assumed the bead and a clinging film of fluid rotate together. The film promotes mass transfer by alternately absorbing and desorbing the diffusing species. The particle film model best explains the observed behavior of the limiting current density. Calculations of stirring power required verses i/sub L/ observed, show that adding beads to increase i/sub L/ consumes less additional power than simply increasing the rotation speed alone and even permits a decrease in the amount of stirring energy required per unit reactant consumed, at limiting current conditions.
The rapid formation of a large rotating disk galaxy three billion years after the Big Bang.
Genzel, R; Tacconi, L J; Eisenhauer, F; Schreiber, N M Förster; Cimatti, A; Daddi, E; Bouché, N; Davies, R; Lehnert, M D; Lutz, D; Nesvadba, N; Verma, A; Abuter, R; Shapiro, K; Sternberg, A; Renzini, A; Kong, X; Arimoto, N; Mignoli, M
2006-08-17
Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.
Electrochemical synthesis of hydrogen peroxide: Rotating disk electrode and fuel cell studies
International Nuclear Information System (INIS)
Lobyntseva, Elena; Kallio, Tanja; Alexeyeva, Nadezda; Tammeveski, Kaido; Kontturi, Kyoesti
2007-01-01
The electrochemical reduction of oxygen on various catalysts was studied using the thin-layer rotating disk electrode (RDE) method. High-surface-area carbon was modified with an anthraquinone derivative and gold nanoparticles. Polytetrafluoroethylene (PTFE) and cationic polyelectrolyte (FAA) were used as binders in the preparation of thin-film electrodes. Our primary goal was to find a good electrocatalyst for the two-electron reduction of oxygen to hydrogen peroxide. All electrochemical measurements were carried out in 0.1 M KOH. Cyclic voltammetry was used in order to characterise the surface processes of the modified electrodes in O 2 -free electrolyte. The RDE results revealed that the carbon-supported gold nanoparticles are active catalysts for the four-electron reduction of oxygen in alkaline solution. Anthraquinone-modified high-area carbon catalyses the two-electron reduction at low overpotentials, which is advantageous for hydrogen peroxide production. In addition, the polymer electrolyte fuel cell technology was used for the generation of hydrogen peroxide. The cell was equipped with a bipolar membrane which consisted of commercial Nafion 117 as a cation-exchange layer and FT-FAA as an anion-exchange layer. The bipolar membranes were prepared by a hot pressing method. Use of the FAA ionomer as a binder for the anthraquinone-modified carbon catalyst resulted in production of hydrogen peroxide
Limiting diffusion current at rotating disk electrode with dense particle layer.
Weroński, P; Nosek, M; Batys, P
2013-09-28
Exploiting the concept of diffusion permeability of multilayer gel membrane and porous multilayer we have derived a simple analytical equation for the limiting diffusion current at rotating disk electrode (RDE) covered by a thin layer with variable tortuosity and porosity, under the assumption of negligible convection in the porous film. The variation of limiting diffusion current with the porosity and tortuosity of the film can be described in terms of the equivalent thickness of stagnant solution layer, i.e., the average ratio of squared tortuosity to porosity. In case of monolayer of monodisperse spherical particles, the equivalent layer thickness is an algebraic function of the surface coverage. Thus, by means of cyclic voltammetry of RDE with a deposited particle monolayer we can determine the monolayer surface coverage. The effect of particle layer adsorbed on the surface of RDE increases non-linearly with surface coverage. We have tested our theoretical results experimentally by means of cyclic voltammetry measurements of limiting diffusion current at the glassy carbon RDE covered with a monolayer of 3 μm silica particles. The theoretical and experimental results are in a good agreement at the surface coverage higher than 0.7. This result suggests that convection in a monolayer of 3 μm monodisperse spherical particles is negligibly small, in the context of the coverage determination, in the range of very dense particle layers.
Mass transport at rotating disk electrodes: effects of synthetic particles and nerve endings.
Chiu, Veronica M; Lukus, Peter A; Doyle, Jamie L; Schenk, James O
2011-11-01
An unstirred layer (USL) exists at the interface of solids with solutions. Thus, the particles in brain tissue preparations possess a USL as well as at the surface of a rotating disk electrode (RDE) used to measure chemical fluxes. Time constraints for observing biological kinetics based on estimated thicknesses of USLs at the membrane surface in real samples of nerve endings were estimated. Liposomes, silica, and Sephadex were used separately to model the tissue preparation particles. Within a solution stirred by the RDE, both diffusion and hydrodynamic boundary layers are formed. It was observed that the number and size of particles decreased the following: the apparent diffusion coefficient excluding Sephadex, boundary layer thicknesses excluding silica, sensitivity excluding diluted liposomes (in agreement with results from other laboratories), limiting current potentially due to an increase in the path distance, and mixing time. They have no effect on the detection limit (6 ± 2 nM). The RDE kinetically resolves transmembrane transport with a timing of approximately 30 ms. Copyright © 2011 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Pathan, A.A.
2015-01-01
The performance of greywater treatment through RBC (Rotating Biological Contactor) is related to many factors including rotational speed of disc, surface area of the media, thickness of biological film; quality and flow rate of influent. The plastic media provides surface for biological slime. The slime is rotated alternatively into the settled wastewater and then into atmosphere to provide aerobic conditions for the microorganisms. In this study the performance of RBC is investigated at different flow rates and disk areas of media by introducing additional discs on the shaft of RBC. Initially efficiency of the RBC was observed on six flow rates at the disc area of 9.78m/sup 2/. Furthermore optimized three flow rates were used to augment the disk area. The efficiency of RBC system was improved significantly at disk area of 11.76m/sup 2/ and flow rate of 20 L/h. Under these conditions the removal of BOD5 (Biochemical Oxygen Demand) COD (Chemical Oxygen Demand) and TSS (Total Suspended Solid) was observed 83, 57 and 90% respectively. (author)
Directory of Open Access Journals (Sweden)
Allam M. N. M.
2017-12-01
Full Text Available Analytical and numerical nonlinear solutions for rotating variable-thickness functionally graded solid and annular disks with viscoelastic orthotropic material properties are presented by using the method of successive approximations.Variable material properties such as Young’s moduli, density and thickness of the disk, are first introduced to obtain the governing equation. As a second step, the method of successive approximations is proposed to get the nonlinear solution of the problem. In the third step, the method of effective moduli is deduced to reduce the problem to the corresponding one of a homogeneous but anisotropic material. The results of viscoelastic stresses and radial displacement are obtained for annular and solid disks of different profiles and graphically illustrated. The calculated results are compared and the effects due to many parameters are discussed.
Rotating thermal flows in natural and industrial processes
Lappa, Marcello
2012-01-01
Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework. This allows the reader to understand and assimilate the underlying, quintessential mechanisms withou
Dynamic Characteristics of Rotating Stall in Mixed Flow Pump
Directory of Open Access Journals (Sweden)
Xiaojun Li
2013-01-01
Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.
Secondary Flow Phenomena in Rotating Radial Straight Pipes
Cheng, K. C.; Wang, Liqiu
1995-01-01
Flow visualization results for secondary flow phenomena near the exit of a rotating radial-axis straight pipe (length ࡁ = 82 cm, inside diameter d = 3.81 cm, ࡁ/d 21.52) are presented to study the stabilizing (relaminarization) and destabilizing (early transition from laminar to turbulent flow) effects of Coriolis forces for Reynolds numbers Re = 500 ∼ 4,500 and rotating speeds n = 0 ∼ 200 rpm. The flow visualization was realised by smoke injection method. The main features of the trans...
Application of rotating disk electrode technique for the preparation of Np, Pu and Am α-sources
International Nuclear Information System (INIS)
Tsoupko-Sitnikov, V.; Dayras, F.; Sanoit, J. de; Filossofov, D.
2000-01-01
Method of electrodeposition on rotating disk cathode (RDE) is applied for preparation of Np, Pu and Am α-standards. Phenomenon of critical current density is experimentally observed which is in perfect accord with Hansen's theory of electrodeposition. Influence of deposit calcination regime on quality of α-sources is studied, and comparison is made of uniformity of deposits obtained in various deposition systems. Standards with energy resolution better than 9 keV can be reproducibly obtained by optimized RDE electrodeposition technique
Flow produced in a conical container by a rotating endwall
International Nuclear Information System (INIS)
Escudier, M.P.; O'Leary, J.; Poole, R.J.
2007-01-01
Numerical calculations have been carried out for flow in a truncated cone generated by rotation of one endwall. For both convergent (radius increasing with approach to the rotating endwall) and divergent geometries, vortex breakdown is suppressed beyond a certain angle of inclination of the sidewall. At the same time Moffat eddies of increasing strength and extent appear in the corner between the sidewall and the non-rotating endwall. For the divergent geometry, a zone of recirculation appears on the sidewall and eventually merges with the Moffat eddies. The flow phenomena identified from streamline patterns are consistent with the calculated variation of pressure around the periphery of the computational domain
Topographic instability of flow in a rotating fluid
Directory of Open Access Journals (Sweden)
K. I. Patarashvili
2006-01-01
Full Text Available Here are presented the results of experimental and theoretical studies on a stability of zonal geostrophic flows in the rotating layer of the shallow water. In the experiments, a special apparatus by Abastumani Astrophysical Observatory Georgian Academy of Science was used. This apparatus represents a paraboloid of rotation, which can be set in a regulable rotation around the vertical axis. Maximal diameter of the paraboloid is 1.2 m, radius of curvature in the pole is 0.698 m. In the paraboloid, water spreads on walls as a layer uniform on height under the period of rotation 1.677 s. Against a background of the rotating fluid, the zonal flows are formed by the source-sink system. It consists of two concentric circular perforations on the paraboloid bottom (width is 0.3 cm, radiuses are 8.4 and 57.3 cm, respectively; water can be pumped through them with various velocities and in all directions. It has been established that under constant vertical depth of the rotating fluid the zonal flows are stable. There are given the measurements of the radial profiles for the water level and velocity in the stationary regime. It has been found that zonal flows may lose stability under the presence of the radial gradient of full depth formed by a change of angular velocity of paraboloid rotation. An instability origin results in the loss of flow axial symmetry and in the appearance of self-excited oscillations in the zonal flow. At the given angular velocity of rotation, instability is observed only in the definite range of intensities of the source-sink system. The theoretical estimations are performed in the framework of the equations of the shallow water theory, including the terms describing the bottom friction. It has been shown that the instability of zonal flows found experimentally has a topographical nature and is related with non-monotone dependence of the potential vorticity on radius.
Stokes flow heat transfer in an annular, rotating heat exchanger
International Nuclear Information System (INIS)
Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.
2011-01-01
The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.
Steady hydromagnetic Couette flow in a rotating system with non ...
African Journals Online (AJOL)
user
energy equation and numerical values of rate of heat transfer at both plates are ... An investigation of MHD flow of an electrically conducting fluid in a rotating ... bounded by stationary free stream whereas MHD flow past a stationary plate ... induced magnetic field produced by fluid motion is negligible in comparison to the ...
Secondary flows and particle centrifugation in slightly tilted rotating pipes
Brouwers, J.J.H.
1995-01-01
A theoretical analysis is presented of viscous incompressible laminar flow in a pipe which rotates around an axis held at small angle with respect to its symmetry-axis. Analogous to the results of Barua and Benton [1, 2], solutions in closed-form are given for circulatory flows in the
Flow of conductive fluid between parallel disks in an axial magnetic field, (2)
International Nuclear Information System (INIS)
Koike, Kazuo; Kamiyama, Shin-ichi
1981-01-01
The basic characteristics of the flow in a disc type non-equilibrium MHD power generator were studied. The flow of conductive fluid between parallel disks in an axial magnetic field was analyzed as the subsonic MHD turbulent approach flow of viscous compressible fluid, taking the electron temperature dependence of conductivity into account. The equations for the flow between disks are described by ordinary electromagnetic hydrodynamic approximation. Practical numerical calculation was performed for the non-equilibrium argon plasma seeded with potassium. The effects of the variation of characteristics of non-equilibrium plasma in main flow and boundary layer on the flow characteristics became clear. The qualitative tendency of the properties of MHD generators can be well explained. (Kato, T.)
Clem, Michelle M.; Abdul-Aziz, Ali; Woike, Mark R.; Fralick, Gustave C.
2015-01-01
The modern turbine engine operates in a harsh environment at high speeds and is repeatedly exposed to combined high mechanical and thermal loads. The cumulative effects of these external forces lead to high stresses and strains on the engine components, such as the rotating turbine disks, which may eventually lead to a catastrophic failure if left undetected. The operating environment makes it difficult to use conventional strain gauges, therefore, non-contact strain measurement techniques is of interest to NASA and the turbine engine community. This presentation describes one such approach; the use of cross correlation analysis to measure strain experienced by the engine turbine disk with the goal of assessing potential faults and damage.
Bubble Pinch-Off in a Rotating Flow
DEFF Research Database (Denmark)
Bergmann, Raymond; Andersen, Anders Peter; van der Meer, Devaraj
2009-01-01
We create air bubbles at the tip of a "bathtub vortex" which reaches to a finite depth. The bathtub vortex is formed by letting water drain through a small hole at the bottom of a rotating cylindrical container. The tip of the needlelike surface dip is unstable at high rotation rates and releases...... bubbles which are carried down by the flow. Using high-speed imaging we find that the minimal neck radius of the unstable tip decreases in time as a power law with an exponent close to 1/3. This exponent was found by Gordillo et al. [Phys. Rev. Lett. 95, 194501 (2005)] to govern gas flow driven pinch...
Rarefied, rotational gas flows in spiral galaxies
International Nuclear Information System (INIS)
Roberts, W.W. Jr.; Hausman, M.A.
1983-01-01
We develop a computational model of a rotating, rarefied gas in which the individual molecules collide inelastically and are subject to circularly asymmetric external forces and internal heating sources. This model is applied to the interstellar medium (ISM) of spiral galaxies, in which most of the matter is confined to discrete gas clouds separated by a tenuous intercloud medium. We identify inelastically-colliding gas molecules with interstellar clouds which orbit ballistically in the galactic gravitational field and are perturbed by expanding shells surrounding supernovae. When a small, spiral perturbation is added to the gravitational force to mimic a spiral galaxy, the cloud distribution responds with a strong, global shock. In the model, stars are formed from the gas when clouds collide or are perturbed by supernovae; these stars are the internal heating sources for the gas cloud system. We determine the morphologies (evolution, distribution) of the two components, gas and stars, in the model as functions of varying input physics. Variation of the cloud system's collisional mean free path (over physically-realistic ranges) has remarkably little influence on the computed shock structure
International Nuclear Information System (INIS)
Zhang, Yan; Gao, Ming-Ming; Wang, Xin-Hua; Wang, Shu-Guang; Liu, Rui-Ting
2015-01-01
An electro-Fenton process was developed for wastewater treatment in which hydrogen peroxide was generated in situ with a rotating graphite disk electrode as cathode. The maximum H 2 O 2 generation rate for the RDE reached 0.90 mg/L/h/cm 2 under the rotation speed of 400 rpm at pH 3, and −0.8 V vs SCE. The performance of this electro-Fenton reactor was assessed by tetracycline degradation in an aqueous solution. Experimental results showed the rotation of disk cathode resulted in the efficient production of H 2 O 2 without oxygen aeration, and excellent ability for degrading organic pollutants compared to the electro-Fenton system with fixed cathode. Tetracycline of 50 mg/L was degraded completely within 2 h with the addition of ferrous ion (1.0 mM). The chronoamperometry analysis was employed to investigate the oxygen diffusion on the rotating cathode. The results demonstrated that the diffusion coefficients of dissolved oxygen is 19.45 × 10 −5 cm 2 /s, which is greater than that reported in the literature. Further calculation indicated that oxygen is able to diffuse through the film on the rotating cathode within the contact time in each circle. This study proves that enhancement of oxygen diffusion on RDE is benefit for H 2 O 2 generation, thus provides a promising method for organic pollutants degradation by the combination of RDE with electro-Fenton reactor and offers a new insight on the oxygen transform process in this new system.
Jets of an electroconducting fluid in rotating flows
Energy Technology Data Exchange (ETDEWEB)
Gorbachev, L P; Kalyakin, A N; Potanin, E P; Tubin, A A
1976-04-01
A study was made of weak-intensity jets of an electroconducting incompressible fluid in rotating flows, caused by the action of a uniform axial magnetic field B and a radial electric field E =E/sub 0/r. The induced magnetic field is neglected. Hydrodynamic characteristics were obtained for flows during conservation of the jet flow rate or momentum. The presence of a counterflow in the jet and the weak dependence of the flow parameters on the linear coordinate were demonstrated. 7 references, 1 figure.
Kazanas, Demosthenes; Fukumura, K.
2009-01-01
We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\
Pattern formation and three-dimensional instability in rotating flows
Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.
1997-03-01
A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.
Experimental study on flow past a rotationally oscillating cylinder
Gao, Yang-yang; Yin, Chang-shan; Yang, Kang; Zhao, Xi-zeng; Tan, Soon Keat
2017-08-01
A series of experiments was carried out to study the flow behaviour behind a rotationally oscillating cylinder at a low Reynolds number (Re=300) placed in a recirculation water channel. A stepper motor was used to rotate the cylinder clockwise- and- counterclockwise about its longitudinal axis at selected frequencies. The particle image velocimetry (PIV) technique was used to capture the flow field behind a rotationally oscillating cylinder. Instantaneous and timeaveraged flow fields such as the vorticity contours, streamline topologies and velocity distributions were analyzed. The effects of four rotation angle and frequency ratios F r ( F r= f n/ f v, the ratio of the forcing frequency f n to the natural vortex shedding frequency f v) on the wake in the lee of a rotationally oscillating cylinder were also examined. The significant wake modification was observed when the cylinder undergoes clockwise-and-counterclockwise motion with amplitude of π, especially in the range of 0.6≤ F r≤1.0.
Vibration-Based Data Used to Detect Cracks in Rotating Disks
Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Martin, Richard E.; Baaklini, George Y.
2004-01-01
Rotor health monitoring and online damage detection are increasingly gaining the interest of aircraft engine manufacturers. This is primarily due to the fact that there is a necessity for improved safety during operation as well as a need for lower maintenance costs. Applied techniques for the damage detection and health monitoring of rotors are essential for engine safety, reliability, and life prediction. Recently, the United States set the ambitious goal of reducing the fatal accident rate for commercial aviation by 80 percent within 10 years. In turn, NASA, in collaboration with the Federal Aviation Administration, other Federal agencies, universities, and the airline and aircraft industries, responded by developing the Aviation Safety Program. This program provides research and technology products needed to help the aerospace industry achieve their aviation safety goal. The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center is currently developing propulsion-system-specific technologies to detect damage prior to catastrophe under the propulsion health management task. Currently, the NDE group is assessing the feasibility of utilizing real-time vibration data to detect cracks in turbine disks. The data are obtained from radial blade-tip clearance and shaft-clearance measurements made using capacitive or eddy-current probes. The concept is based on the fact that disk cracks distort the strain field within the component. This, in turn, causes a small deformation in the disk's geometry as well as a possible change in the system's center of mass. The geometric change and the center of mass shift can be indirectly characterized by monitoring the amplitude and phase of the first harmonic (i.e., the 1 component) of the vibration data. Spin pit experiments and full-scale engine tests have been conducted while monitoring for crack growth with this detection methodology. Even so, published data are
Flow in Rotating Serpentine Coolant Passages With Skewed Trip Strips
Tse, David G.N.; Steuber, Gary
1996-01-01
Laser velocimetry was utilized to map the velocity field in serpentine turbine blade cooling passages with skewed trip strips. The measurements were obtained at Reynolds and Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and Coriolis force on the flow field. The interaction of the secondary flows induced by skewed trips with the passage rotation produces a swirling vortex and a corner recirculation zone. With trips skewed at +45 deg, the secondary flows remain unaltered as the cross-flow proceeds from the passage to the turn. However, the flow characteristics at these locations differ when trips are skewed at -45 deg. Changes in the flow structure are expected to augment heat transfer, in agreement with the heat transfer measurements of Johnson, et al. The present results show that trips are skewed at -45 deg in the outward flow passage and trips are skewed at +45 deg in the inward flow passage maximize heat transfer. Details of the present measurements were related to the heat transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.
Ekman effects in a rotating flow over bottom topography
Zavala Sansón, L.; Heijst, van G.J.F.
2002-01-01
This paper presents a general two-dimensional model for rotating barotropic flows over topography. The model incorporates in a vorticity–stream function formulation both inviscid topography effects, associated with stretching and squeezing of fluid columns enforced by their motion over variable
Generation of rotation and shear flow in an imploding liner
Energy Technology Data Exchange (ETDEWEB)
Hammer, J H; Ryutov, D D [Lawrence Livermore National Lab., Livermore, CA (United States)
1997-12-31
There exist several techniques that can set the liner into rotation and/or excite an embedded shear flow at any desired depth of the liner material. A common element of all these techniques is the use of properly used left-right asymmetric structures, situated either on the liner surface or embedded in the shell. Both rotation and shear flow get enhanced in the course of the liner implosion because of the angular momentum conservation. While fast enough rotation should stabilize the Rayleigh-Taylor instability near the turn-around point, the shear flow can also have a stabilizing effect on the interface. The specific model presented in the paper shows that a strong enough shear causes stabilization of a broad class of Rayleigh-Taylor perturbations. Thus, the use of left-right asymmetric structure for generation of rotation and shear flow is an interesting new option for improvement of the quality of the liner implosions. (J.U.). 4 figs., 12 refs.
DYNAMIC TENSILE TESTING WITH A LARGE SCALE 33 MJ ROTATING DISK IMPACT MACHINE
Kussmaul , K.; Zimmermann , C.; Issler , W.
1985-01-01
A recently completed testing machine for dynamic tensile tests is described. The machine consists essentially of a pendulum which holds the specimen and a large steel disk with a double striking nose fixed to its circumference. Disk diameter measures 2000 mm, while its mass is 6400 kg. The specimens to be tested are tensile specimens with a diameter of up to 20 mm and 300 mm length or CT 15 specimens at various temperatures. Loading velocity ranges from 1 to 150 m/s. The process of specimen-n...
Energy Technology Data Exchange (ETDEWEB)
Matsushita, K.; Kanekuni, N.; Nogaki, H.; Itakura, I.; Shimizu, Y.; Watanabe, A. [TOTO Ltd., Kitakyushu (Japan)
1995-01-15
Soy sauce sediment is formed in pasteurization of raw soy sauce. It is treated as industrial waste, though its main component is soy sauce, because of difficulty in perfect clarification of the suspension. In this paper, we decided a suitable range of pore size of microfiltration and a cut-off level of ultrafiltration to clarify soy sauce sediment and we developed a rotating disk membrane module (RD Module) and compared performance with conventional a multi-tubular membrane module (MT Module). The optimum range to obtain soy sauce of quality was less than a pore size of O.2{mu}m for microfiltration, while ultrafiltration was not suitable for soy sauce sediment. Ultrafiltration was restricted by rejection of colors and nucleic acids and related compounds in soy sauce sediment, rather than rejection of bacteria and ethanol. An RD Module could recover soy sauce of quality and was superior to an MT Module for concentration ratio, but the permeate fluxes of the RD Module decreased under conditions of high revolution as centrifugal forces were exerted on the permeate in the disk membrane. The power consumption of the RD Module was proportional to the cube of number of revolutions and to the fifth power of the radius, so it was found that one of methods for the scale up is to increase the number of disk membranes than increase the radius. 15 refs., 8 figs., 1 tab.
Directory of Open Access Journals (Sweden)
Pankaj Thakur
2014-01-01
Full Text Available Steady thermal stresses in a rotating disc with shaft having density variation parameter subjected to thermal load have been derived by using Seth's transition theory. Neither the yields criterion nor the associated flow rule is assumed here. Results are depicted graphically. It has been seen that compressible material required higher percentage increased angular speed to become fully-plastic as compare to rotating disc made of incompressible material. Circumferential stresses are maximal at the outer surface of the rotating disc. With the introduction of thermal effect it decreases the value of radial and circumferential stresses at inner and outer surface for fully-plastic state.
Nonlinear travelling waves in rotating Hagen–Poiseuille flow
Pier, Benoît; Govindarajan, Rama
2018-03-01
The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.
Unsteady flow simulations of Pelton turbine at different rotational speeds
Directory of Open Access Journals (Sweden)
Minsuk Choi
2015-11-01
Full Text Available This article presents numerical simulations of a small Pelton turbine suitable for desalination system. A commercial flow solver was adopted to resolve difficulties in the numerical simulation for Pelton turbine such as the relative motion of the turbine runner to the injector and two-phase flow of water and air. To decrease the numerical diffusion of the water jet, a new topology with only hexagonal mesh was suggested for the computational mesh around the complex geometry of a bucket. The predicted flow coefficient, net head coefficient, and overall efficiency showed a good agreement with the experimental data. Based on the validation of the numerical results, the pattern of wet area on the bucket inner surface has been analyzed at different rotational speeds, and an attempt to find the connection between rotational speeds, torque, and efficiency has been made.
Polygon formation and surface flow on a rotating fluid surface
DEFF Research Database (Denmark)
Bergmann, Raymond; Tophøj, Laust Emil Hjerrild; Homan, T. A. M.
2011-01-01
We present a study of polygons forming on the free surface of a water flow confined to a stationary cylinder and driven by a rotating bottom plate as described by Jansson et al. (Phys. Rev. Lett., vol. 96, 2006, 174502). In particular, we study the case of a triangular structure, either completely...... there the symmetry breaking proceeds like a low-dimensional linear instability. We show that the circular state and the unstable manifold connecting it with the polygon solution are universal in the sense that very different initial conditions lead to the same circular state and unstable manifold. For a wet triangle......, we measure the surface flows by particle image velocimetry (PIV) and show that there are three vortices present, but that the strength of these vortices is far too weak to account for the rotation velocity of the polygon. We show that partial blocking of the surface flow destroys the polygons and re...
Numerical simulation of fluid flow in a rotational bioreactor
Ganimedov, V. L.; Papaeva, E. O.; Maslov, N. A.; Larionov, P. M.
2017-10-01
Application of scaffold technology for the problem of bone tissue regeneration has great prospects in modern medicine. The influence of fluid shear stress on stem cells cultivation and its differentiation into osteoblasts is the subject of intensive research. Mathematical modeling of fluid flow in bioreactor allowed us to determine the structure of flow and estimate the level of mechanical stress on cells. The series of computations for different rotation frequencies (0.083, 0.124, 0.167, 0.2 and 0.233 Hz) was performed for the laminar flow regime approximation. It was shown that the Taylor vortices in the gap between the cylinders qualitatively change the distribution of static pressure and shear stress in the region of vortices connection. It was shown that an increase in the rotation frequency leads to an increase of the unevenness in distribution of the above mentioned functions. The obtained shear stress and static pressure dependence on the rotational frequency make it possible to choose the operating mode of the reactor depending on the provided requirements. It was shown that in the range of rotation frequencies chosen in this work (0.083 < f < 0.233 Hz), the shear stress does not exceed the known literature data (0.002 - 0.1 Pa).
Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates
SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro
2016-11-01
Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.
Precessing rotating flows with additional shear: stability analysis.
Salhi, A; Cambon, C
2009-03-01
We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally
Rotating permanent magnet excitation for blood flow measurement.
Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S
2015-11-01
A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.
Flow visualization around a rotating body in a wind tunnel
Hiraki, K.; Zaitsu, D.; Yanaga, Y.; Kleine, H.
2017-02-01
The rotational behavior of capsule-shaped models is investigated in the transonic wind tunnel of JAXA. A special support is developed to allow the model to rotate around the pitch, yaw and roll axes. This 3-DOF free rotational mounting apparatus achieves the least frictional torque from the support and the instruments. Two types of capsule models are prepared, one is drag type (SPH model) and the other is lift type (HTV-R model). The developed mounting apparatus is used in the wind tunnel tests with these capsule models. In a flow of Mach 0.9, the SPH model exhibits oscillations in pitch and yaw, and it rolls half a turn during the test. Similarly, the HTV-R model exhibits pitch and yaw oscillations in a flow of Mach 0.5. Moreover, it rolls multiple times during the test. In order to investigate the flow field around the capsule, the combined technique of color schlieren and surface tufts is applied. This visualization clearly shows the flow reattachment on the back surface of a capsule, which is suspected to induce the rapid rolling motion.
Magnetic viscosity by localized shear flow instability in magnetized accretion disks
International Nuclear Information System (INIS)
Matsumoto, R.; Tajima, T.
1995-01-01
Differentially rotating disks are subject to the axisymmetric instability for perfectly conducting plasma in the presence of poloidal magnetic fields. For nonaxisymmetric perturbations, the authors find localized unstable eigenmodes whose eigenfunction is confined between two Alfven singularities at ω d = ± ω A , where ω d is the Doppler-shifted wave frequency, and ω A = k parallel v A is the Alfven frequency. The radial width of the unstable eigenfunction is Δx ∼ ω A /(Ak y ), where A is the Oort's constant, and k y is the azimuthal wave number. The growth rate of the fundamental mode is larger for smaller value of k y /k z . The maximum growth rate when k y /k z ∼ 0.1 is ∼ 0.2Ω for the Keplerian disk with local angular velocity Ω. It is found that the purely growing mode disappears when k y /k z > 0.12. In a perfectly conducting disk, the instability grows even when the seed magnetic field is infinitesimal. Inclusion of the resistivity, however, leads to the appearance of an instability threshold. When the resistivity η depends on the instability-induced turbulent magnetic fields δB as η([δB 2 ]), the marginal stability condition self-consistently determines the α parameter of the angular momentum transport due to the magnetic stress. For fully ionized disks, the magnetic viscosity parameter α B is between 0.001 and 1. The authors' three-dimensional MHD simulation confirms these unstable eigenmodes. It also shows that the α parameter observed in simulation is between 0.01 and 1, in agreement with theory. The observationally required smaller α in the quiescent phase of accretion disks in dwarf novae may be explained by the decreased ionization due to the temperature drop
Anomalous scaling of passive scalars in rotating flows.
Rodriguez Imazio, P; Mininni, P D
2011-06-01
We present results of direct numerical simulations of passive scalar advection and diffusion in turbulent rotating flows. Scaling laws and the development of anisotropy are studied in spectral space, and in real space using an axisymmetric decomposition of velocity and passive scalar structure functions. The passive scalar is more anisotropic than the velocity field, and its power spectrum follows a spectral law consistent with ~ k[Please see text](-3/2). This scaling is explained with phenomenological arguments that consider the effect of rotation. Intermittency is characterized using scaling exponents and probability density functions of velocity and passive scalar increments. In the presence of rotation, intermittency in the velocity field decreases more noticeably than in the passive scalar. The scaling exponents show good agreement with Kraichnan's prediction for passive scalar intermittency in two dimensions, after correcting for the observed scaling of the second-order exponent.
Thermal Radiation Effects on Squeezing Flow Casson Fluid between Parallel Disks
Directory of Open Access Journals (Sweden)
Sheikh Irfanullah Khan
2016-05-01
Full Text Available In this paper, we investigate the thermal radiation effects in a time-dependent two-dimensional flow of a Casson fluid between two parallel disks when upper disk is taken to be impermeable and lower one is porous. Suitable similarity transforms are employed to convert governing partial differential equations into system of ordinary differential equations. Well known Homotopy Analysis Method (HAM is employed to obtain the expressions for velocity and temperature profiles. Effects of different physical parameters such as squeeze number $S$, Prandtl number $Pr$, Eckert number $Ec$ and the dimensionless length on the flow are also discussed with the help of graphs for velocity and temperature coupled with a comprehensive discussions. The skin friction coefficient and local Nusselt number along with convergence of the series solutions obtained by HAM are presented in tabulated form, while numerical solution is obtained by $RK-4$ method and comparison shows an excellent agreement between both the solutions.
Steady particulate flows in a horizontal rotating cylinder
Yamane, K.; Nakagawa, M.; Altobelli, S. A.; Tanaka, T.; Tsuji, Y.
1998-06-01
Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio ˜7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit.
Precession of a rapidly rotating cylinder flow: traverse through resonance
Lopez, Juan; Marques, Francisco
2014-11-01
The flow in a rapidly rotating cylinder that is titled and also rotating around another axis can undergo sudden transitions to turbulence. Experimental observations of this have been associated with triadic resonances. The experimental and theoretical results are well-established in the literature, but there remains a lack of understanding of the physical mechanisms at play in the sudden transition from laminar to turbulent flow with very small variations in the governing parameters. Here, we present direct numerical simulations of a traverse in parameter space through an isolated resonance, and describe in detail the bifurcations involved in the sudden transition. U.S. National Science Foundation Grant CBET-1336410 and Spanish Ministry of Education and Science Grant (with FEDER funds) FIS2013-40880.
Heat transfer analysis of GO-water nanofluid flow between two parallel disks
Directory of Open Access Journals (Sweden)
M. Azimi
2015-03-01
Full Text Available In this paper, the unsteady magnetohydrodynamic (MHD squeezing flow between two parallel disks (which is filled with nanofluid is considered. The Galerkin optimal homotopy asymptotic method (GOHAM is used to obtain the solution of the governing equations. The effects of Hartman number, nanoparticle volume fraction, Brownian motion parameter and suction/blowing parameter on nanofluid concentration, temperature and velocity profiles have been discussed. Furthermore, a comparison between obtained solutions and numerical ones have been provided.
Magnus effect on laminar flow around a rotating cylinder
International Nuclear Information System (INIS)
Amarante, J.C.A.
1989-01-01
The laminar flow around a rotating cylinder is studied, through the numerical solution of the full Navier-Stokes equations, for Reynolds number, based on cylinder radius, varying between 0.5 and 25 and for non-dimensional tangential velocities of the body surface between zero and 8. The Taylor and Hughes method is employed in the theoretical investigation. The Magnus lift coefficient and the drag coefficient are obtained and the presure and vorticity distribution are calculated. (author)
On soft stability loss in rotating turbulent MHD flows
International Nuclear Information System (INIS)
Kapusta, Arkady; Mikhailovich, Boris
2014-01-01
The problem of the stability of turbulent flows of liquid metal in a cylindrical cavity against small velocity disturbances under the action of a rotating magnetic field (RMF) has been studied. The flow is considered in the induction-free approximation using the ‘external’ friction model. A system of dimensionless equations is examined in cylindrical coordinates. The results of computations performed on the basis of this mathematical model using the exchange of stabilities principle have shown a good consistency between the critical values of computed and experimental Reynolds numbers. (paper)
Aerodynamic structures and processes in rotationally augmented flow fields
DEFF Research Database (Denmark)
Schreck, S.J.; Sørensen, Niels N.; Robinson, M.C.
2007-01-01
. Experimental measurements consisted of surface pressure data statistics used to infer sectional boundary layer state and to quantify normal force levels. Computed predictions included high-resolution boundary layer topologies and detailed above-surface flow field structures. This synergy was exploited...... to reliably identify and track pertinent features in the rotating blade boundary layer topology as they evolved in response to varying wind speed. Subsequently, boundary layer state was linked to above-surface flow field structure and used to deduce mechanisms; underlying augmented aerodynamic force...
Couple stress fluid flow in a rotating channel with peristalsis
Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.
2018-04-01
This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.
Nonlinear dynamics near the stability margin in rotating pipe flow
Yang, Z.; Leibovich, S.
1991-01-01
The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.
Granular flow in a rotating drum: Experiments and theory
Hung, C. Y.; Stark, C. P.; Capart, H.; Li, L.; Smith, B.; Grinspun, E.
2015-12-01
Erosion at the base of a debris flow fundamentally controls how large the flow will become and how far it will travel. Experimental observations of this important phenomenon are rather limited, and this lack has led theoretical treatments to making ad hoc assumptions about the basal process. In light of this, we carried out a combination of laboratory experiments and theoretical analysis of granular flow in a rotating drum, a canonical example of steady grain motion in which entrainment rates can be precisely controlled. Our main result is that basal sediment is entrained as the velocity profile adjusts to imbalance in the flow of kinetic energy.Our experimental apparatus consisted of a 40cm-diameter drum, 4cm-deep, half-filled with 2.3mm grains. Rotation rates varied from 1-70 rpm. We varied the effective scale by varying effective gravity from 1g to 70g on a geotechnical centrifuge. The field of grain motion was recorded using high-speed video and mapped using particle tracking velocimetry. In tandem we developed a depth-averaged theory using balance equations for mass, momentum and kinetic energy. We assumed a linearized GDR Midi granular rheology [da Cruz, 2005] and a Coulomb friction law along the sidewalls [Jop et al., 2005]. A scaling analysis of our equations yields a dimensionless "entrainment number" En, which neatly parametrizes the flow geometry in the drum for a wide range of variables, e.g., rotation rate and effective gravity. At low En, the flow profile is planar and kinetic energy is balanced locally in the flow layer. At high En, the flow profile is sigmoidal (yin-yang shaped) and the kinetic energy is dominated by longitudinal, streamwise transfer. We observe different scaling behavior under each of these flow regimes, e.g., between En and kinetic energy, surface slope and flow depth. Our theory correctly predicts their scaling exponents and the value of En at which the regime transition takes place. We are also able to make corrections for
A ROTATING MOLECULAR DISK TOWARD IRAS 18162-2048, THE EXCITING SOURCE OF HH 80-81
International Nuclear Information System (INIS)
Fernandez-Lopez, M.; Curiel, S.; Girart, J. M.; Gomez, Y.; Ho, P. T. P.; Patel, N.
2011-01-01
We present several molecular line emission arcsecond and subarcsecond observations obtained with the Submillimeter Array in the direction of the massive protostar IRAS 18162-2048, the exciting source of HH 80-81. The data clearly indicate the presence of a compact (radius ∼425-850 AU) SO 2 structure, enveloping the more compact (radius ∼ sun . The SO 2 spectral line data also allow us to constrain the structure temperature between 120 and 160 K and the volume density ∼> 2 x 10 9 cm -3 . We also find that such a rotating flattened system could be unstable due to gravitational disturbances. The data from C 17 O line emission show a dense core within this star-forming region. Additionally, the H 2 CO and SO emissions appear clumpy and trace the disk-like structure, a possible interaction between a molecular core and the outflows, and in part, the cavity walls excavated by the thermal radio jet.
Hsieh, Shang-Hsien
1993-01-01
The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.
Steady flow in a rotating sphere with strong precession
Kida, Shigeo
2018-04-01
The steady flow in a rotating sphere is investigated by asymptotic analysis in the limit of strong precession. The whole spherical body is divided into three regions in terms of the flow characteristics: the critical band, which is the close vicinity surrounding the great circle perpendicular to the precession axis, the boundary layer, which is attached to the whole sphere surface and the inviscid region that occupies the majority of the sphere. The analytic expressions, in the leading order of the asymptotic expansion, of the velocity field are obtained in the former two, whereas partial differential equations for the velocity field are derived in the latter, which are solved numerically. This steady flow structure is confirmed by the corresponding direct numerical simulation.
Chashechkin, Yu. D.; Bardakov, R. N.
2018-02-01
By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.
International Nuclear Information System (INIS)
Tolmachev, Yuriy V.; Scherson, Daniel A.
2004-01-01
Certain aspects of the electrochemical oxidation of sulfite in buffered, mildly acidic aqueous solutions (pH 5.23) have been examined using in situ near normal incidence UV-Vis reflectance spectroscopy (NNI-UVRS) at a Au rotating disk electrode (RDE). The dependence of the limiting current, i lim , on the rotation rate of the RDE was found to display classical Levich behavior up to potentials well within the range in which Au forms a surface oxide in the neat (sulfite-free) supporting electrolyte. However, simultaneous in situ NNI-UVRS measurements performed at λ=500 nm during sulfite oxidation failed to show any evidence for the presence of oxide on the Au surface within that entire potential range. Polarization of the Au RDE at more positive potentials led to a sudden drop in i lim , ca. an order of magnitude, which correlated with an abrupt decrease in the intensity of the reflected light, consistent with formation of (one or more forms of) Au oxide on the surface. On the basis of these and other observations a model has been proposed in which sulfite reacts chemically with adsorbed oxygen on the surface (oxygen atom transfer) in the region that precedes partial inhibition. As the potential is increased, adsorbed oxygen undergoes Au-O place exchange forming two-dimensional nuclei on the surface, which undergo rapid (autocatalytic) growth, covering an area large enough to block significantly sulfite oxidation
Energy Technology Data Exchange (ETDEWEB)
Hara, C. [University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-0033 (Japan); Shimajiri, Y.; Kurono, Y.; Saigo, K.; Nakamura, F.; Saito, M.; Kawabe, R. [National Astronomical Observatory of Japan, 2-21-1 Osawa Mitaka, Tokyo 181-0015 (Japan); Tsukagoshi, T. [Ibaraki University, 2-1-1 Bunkyo Mito, Ibaraki Prefecture 310-8512 (Japan); Wilner, David, E-mail: c.hara@nao.ac.jp [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2013-07-10
We present the results of observations toward a low-mass Class-0/I protostar [BHB2007] no. 11 (B59 no. 11) in the nearby (d = 130 pc) star-forming region Barnard 59 (B59), in the Pipe Nebula. We utilize the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope ({approx}22'' resolution), focusing on the CO(3-2), HCO{sup +}, H{sup 13}CO{sup +}(4-3), and 1.1 mm dust-continuum emission transitions. We also show Submillimeter Array (SMA) data with {approx}5'' resolution in {sup 12}CO, {sup 13}CO, C{sup 18}O(2-1), and 1.3 mm dust-continuum emission. From ASTE CO(3-2) observations, we found that B59 no. 11 is blowing a collimated outflow whose axis lies almost on the plane of the sky. The outflow traces well a cavity-like structure seen in the 1.1 mm dust-continuum emission. The results of SMA {sup 13}CO and C{sup 18}O(2-1) observations have revealed that a compact and elongated structure of dense gas is associated with B59 no. 11; the structure is oriented perpendicular to the outflow axis. There is a compact dust condensation with a size of 350 Multiplication-Sign 180 AU seen in the SMA 1.3 mm continuum map, and the direction of its major axis is almost the same as that of the dense gas elongation. The distributions of {sup 13}CO and C{sup 18}O emission also show velocity gradients along their major axes, which are thought to arise from the envelope/disk rotation. From detailed analysis of the SMA data, we infer that B59 no. 11 is surrounded by a Keplerian disk with a radius of less than 350 AU. In addition, the SMA CO(2-1) image shows a velocity gradient in the outflow in the same direction as that of the dense gas rotation. We suggest that this velocity gradient indicates rotation in the outflow.
Sengupta, Tapan K.; Gullapalli, Atchyut
2016-11-01
Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].
Directory of Open Access Journals (Sweden)
Xi Wu
2008-01-01
Full Text Available A mathematical model of a cracked rotor and an asymmetric rotor with two disks representing a turbine and a generator is utilized to study the vibrations due to imbalance and side load. Nonlinearities typically related with a “breathing” crack are included using a Mayes steering function. Numerical simulations demonstrate how the variations of rotor parameters affect the vibration response and the effect of coupling between torsional and lateral modes. Bode, spectrum, and orbit plots are used to show the differences between the vibration signatures associated with cracked shafts versus asymmetric shafts. Results show how nonlinear lateral-torsional coupling shifts the resonance peaks in the torsional vibration response for cracked shafts and asymmetric rotors. The resonance peaks shift depending on the ratio of the lateral-to-torsional natural frequencies with the peak responses occurring at noninteger values of the lateral natural frequency. When the general nonlinear models used in this study are constrained to reduce to linear torsional vibration, the peak responses occur at commonly reported integer ratios. Full spectrum analyses of the X and Y vibrations reveal distinct vibration characteristics of both cracked and asymmetric rotors including reverse vibration components. Critical speeds and vibration orders predicted using the models presented herein include and extend diagnostic indicators commonly reported.
Study of flow induce vibration inside 3.5 inch hard disk drives
Directory of Open Access Journals (Sweden)
Wichitpon Seepangmon
2014-06-01
Full Text Available This study focused on flow induced vibration of head stack assembly (HSA in a 3.5 inch hard disk drive with 5 disks and 10 read/write heads. We studied the effects of air flow on gimbal flex and resonance on arm. The comparison of vibrations on slider between the normal model and the experiment has been done for verifying the model. The peaks of frequency in experiment match the normal model at 1,040 1,320 and 1,400 Hz respectively. After that, the RNG K-ε turbulence model was used to determine the turbulent air flow of 7,200 rpm hard disk drive. The comparison between the normal model and the model with spoiler was investigated by using, computational fluid dynamics software (ANSYS and FLUENT. The results shown velocity magnitudes at the arm were decreased by 0.725 - 57.689 % and pressure dropped by 74.028 - 87.222 %. The velocity magnitudes at the gimbal flex were decreased by 5.522 - 14.291 % and pressure dropped by 48.440 - 82.947 %. The peak of vibrations on arm and gimbal flex was occurred at the frequency 1200 Hz. The model with spoiler could reduce vibration at arm by 2.56 - 95.601 % and reduce vibration at gimbal flex by 4.065 - 95.503 %. In the conclusion, the model with a spoiler could decrease the vibration at all surface of the arm and gimbal flex due to the velocity and pressure reduction[1][4].
Observations of Reconnection Flows in a Flare on the Solar Disk
International Nuclear Information System (INIS)
Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.; Fletcher, L.; Wright, P. J.; Hannah, I. G.
2017-01-01
Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.
Observations of Reconnection Flows in a Flare on the Solar Disk
Energy Technology Data Exchange (ETDEWEB)
Wang, Juntao; Simões, P. J. A.; Jeffrey, N. L. S.; Fletcher, L.; Wright, P. J.; Hannah, I. G., E-mail: j.wang.4@research.gla.ac.uk [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)
2017-09-20
Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares (CSHKP model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of Solar Dynamics Observatory /Atmospheric Imaging Assembly imaging and Hinode /EUV Imaging Spectrometer spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field, and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.
A COMMON SOURCE OF ACCRETION DISK TILT
International Nuclear Information System (INIS)
Montgomery, M. M.; Martin, E. L.
2010-01-01
Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source that causes and maintains disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through the disk's center of mass. The disk responds to lift by pitching around the disk's line of nodes. If the gas stream flow ebbs, then lift also ebbs and the disk attempts to return to its original orientation. To first approximation, lift does not depend on magnetic fields or radiation sources but does depend on the mass and the surface area of the disk. Also, for disk tilt to be initiated, a minimum mass transfer rate must be exceeded. For example, a 10 -11 M sun disk around a 0.8 M sun compact central object requires a mass transfer rate greater than ∼ 8 x 10 -11 M sun yr -1 , a value well below the known mass transfer rates in cataclysmic variable dwarf novae systems that retrogradely precess and exhibit negative superhumps in their light curves and a value well below mass transfer rates in protostellar-forming systems.
SOLAR ROTATION EFFECTS ON THE HELIOSHEATH FLOW NEAR SOLAR MINIMA
International Nuclear Information System (INIS)
Borovikov, Sergey N.; Pogorelov, Nikolai V.; Ebert, Robert W.
2012-01-01
The interaction between fast and slow solar wind (SW) due to the Sun's rotation creates corotating interaction regions (CIRs), which further interact with each other creating complex plasma structures at large heliospheric distances. We investigate the global influence of CIRs on the SW flow in the inner heliosheath between the heliospheric termination shock (TS) and the heliopause. The stream interaction model takes into account the major global effects due to slow-fast stream interaction near solar minima. The fast and slow wind parameters are derived from the Ulysses observations. We investigate the penetration of corotating structures through the TS and their further propagation through the heliosheath. It is shown that the heliosheath flow structure may experience substantial modifications, including local decreases in the radial velocity component observed by Voyager 1.
Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders
International Nuclear Information System (INIS)
Paoletti, M. S.; Lathrop, D. P.
2011-01-01
We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water between independently rotating cylinders for all regions of the (Ω 1 , Ω 2 ) parameter space at high Reynolds numbers, where Ω 1 (Ω 2 ) is the inner (outer) cylinder angular velocity. We find that the Rossby number Ro=(Ω 1 -Ω 2 )/Ω 2 fully determines the state and torque G as compared to G(Ro=∞)≡G ∞ . The ratio G/G ∞ is a linear function of Ro -1 in four sections of the parameter space. For flows with radially increasing angular momentum, our measured torques greatly exceed those of previous experiments [Ji et al., Nature (London), 444, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron. Astrophys. 347, 734 (1999)].
International Nuclear Information System (INIS)
Romanova, M.M.
1985-01-01
The dynamics of a gas--star disk embedded in a dense, mildly oblate (flattening epsilon-c or approx. =0.2--0.3 the stable disk will survive for at least half the cluster evolution time. The possibility of a thin disk of stars existing inside a dense star cluster is considered. For small epsilon-c and for disk member stars having > or approx. =0.04 the mass of the cluster members, collisions between cluster and disk stars will have no effect on the disk evolution prior to instability
Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias
2018-03-16
We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced.
Combined free and forced convection flow in a rotating channel with ...
African Journals Online (AJOL)
user
free and forced convection flow of a viscous incompressible electrically conducting fluid in a .... The boundary conditions (10) and (11), in dimensionless form, become ...... On hydromagnetic Flow and heat transfer in a rotating fluid past an infinite porous ... Electrically Conducting Fluid in Non-Rotating and Rotating Media”.
Elastic fingering in rotating Hele-Shaw flows
Carvalho, Gabriel D.
2014-05-21
The centrifugally driven viscous fingering problem arises when two immiscible fluids of different densities flow in a rotating Hele-Shaw cell. In this conventional setting an interplay between capillary and centrifugal forces makes the fluid-fluid interface unstable, leading to the formation of fingered structures that compete dynamically and reach different lengths. In this context, it is known that finger competition is very sensitive to changes in the viscosity contrast between the fluids. We study a variant of such a rotating flow problem where the fluids react and produce a gellike phase at their separating boundary. This interface is assumed to be elastic, presenting a curvature-dependent bending rigidity. A perturbative weakly nonlinear approach is used to investigate how the elastic nature of the interface affects finger competition events. Our results unveil a very different dynamic scenario, in which finger length variability is not regulated by the viscosity contrast, but rather determined by two controlling quantities: a characteristic radius and a rigidity fraction parameter. By properly tuning these quantities one can describe a whole range of finger competition behaviors even if the viscosity contrast is kept unchanged. © 2014 American Physical Society.
Elastic fingering in rotating Hele-Shaw flows
Carvalho, Gabriel D.; Gadê lha, Hermes; Miranda, José A.
2014-01-01
The centrifugally driven viscous fingering problem arises when two immiscible fluids of different densities flow in a rotating Hele-Shaw cell. In this conventional setting an interplay between capillary and centrifugal forces makes the fluid-fluid interface unstable, leading to the formation of fingered structures that compete dynamically and reach different lengths. In this context, it is known that finger competition is very sensitive to changes in the viscosity contrast between the fluids. We study a variant of such a rotating flow problem where the fluids react and produce a gellike phase at their separating boundary. This interface is assumed to be elastic, presenting a curvature-dependent bending rigidity. A perturbative weakly nonlinear approach is used to investigate how the elastic nature of the interface affects finger competition events. Our results unveil a very different dynamic scenario, in which finger length variability is not regulated by the viscosity contrast, but rather determined by two controlling quantities: a characteristic radius and a rigidity fraction parameter. By properly tuning these quantities one can describe a whole range of finger competition behaviors even if the viscosity contrast is kept unchanged. © 2014 American Physical Society.
PROJECTED ROTATIONAL VELOCITIES OF 136 EARLY B-TYPE STARS IN THE OUTER GALACTIC DISK
Energy Technology Data Exchange (ETDEWEB)
Garmany, C. D.; Glaspey, J. W. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Bragança, G. A.; Daflon, S.; Fernandes, M. Borges; Cunha, K. [Observatório Nacional-MCTI, Rua José Cristino, 77. CEP: 20921-400, Rio de Janeiro, RJ (Brazil); Oey, M. S. [University of Michigan, Department of Astronomy, 311 West Hall, 1085 S. University Ave., Ann Arbor, MI: 48109-1107 (United States); Bensby, T., E-mail: garmany@noao.edu [Lund Observatory, Department of Astronomy and Theoretical Physics, Box 43, SE-22100, Lund (Sweden)
2015-08-15
We have determined projected rotational velocities, v sin i, from Magellan/MIKE echelle spectra for a sample of 136 early B-type stars having large Galactocentric distances. The target selection was done independently of their possible membership in clusters, associations or field stars. We subsequently examined the literature and assigned each star as Field, Association, or Cluster. Our v sin i results are consistent with a difference in aggregate v sin i with stellar density. We fit bimodal Maxwellian distributions to the Field, Association, and Cluster subsamples representing sharp-lined and broad-lined components. The first two distributions, in particular, for the Field and Association are consistent with strong bimodality in v sin i. Radial velocities are also presented, which are useful for further studies of binarity in B-type stars, and we also identify a sample of possible new double-lined spectroscopic binaries. In addition, we find 18 candidate Be stars showing emission at Hα.
Reynolds-Stress and Triple-Product Models Applied to Flows with Rotation and Curvature
Olsen, Michael E.
2016-01-01
Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.
Computer modeling of the stalled flow of a rotating cylinder and the reverse magnus effect
Belotserkovskii, S. M.; Kotovskii, V. N.; Nisht, M. I.; Fedorov, R. M.
1985-02-01
Unsteady stalled flow around a rotating cylinder is investigated in a numerical experiment. Attention is mostly given to the reverse Magnus effect which was discovered in tube experiments at some critical rotational speed of the cylinder.
Water-based squeezing flow in the presence of carbon nanotubes between two parallel disks
Directory of Open Access Journals (Sweden)
Haq Rizwan Ul
2016-01-01
Full Text Available Present study is dedicated to investigate the water functionalized carbon nanotubes squeezing flow between two parallel discs. Moreover, we have considered magnetohydrodynamics effects normal to the disks. In addition we have considered two kind of carbon nanotubes named: single wall carbon nanotubes (SWCNT and multiple wall carbon nanotubes (MWCNT with in the base fluid. Under this squeezing flow mechanism model has been constructed in the form of partial differential equation. Transformed ordinary differential equations are solved numerically with the help of Runge-Kutta-Fehlberg method. Results for velocity and temperature are constructed against all the emerging parameters. Comparison among the SWCNT and MWCNT are drawn for skin friction coefficient and local Nusselt number. Conclusion remarks are drawn under the observation of whole analysis.
Directory of Open Access Journals (Sweden)
A. Rauf
2015-07-01
Full Text Available This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.
Energy Technology Data Exchange (ETDEWEB)
Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Meraj, M. A. [Department of Mathematics, CIIT Sahiwal 57000 (Pakistan); Ashraf, M.; Batool, K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Hussain, M. [Department of Sciences & Humanities, National University of computer & Emerging Sciences, Islamabad 44000 (Pakistan)
2015-07-15
This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.
Wang, Andrew; Gyenge, Előd L.
2017-08-01
The electrode kinetics of the NaBH4 oxidation reaction (BOR) in a molten NaOH-KOH eutectic mixture is investigated by rotating disk electrode (RDE) voltammetry on electrochemically oxidized Ni at temperatures between 458 K and 503 K. The BH4- diffusion coefficient in the molten alkali eutectic together with the BOR activation energy, exchange current density, transfer coefficient and number of electrons exchanged, are determined. Electrochemically oxidized Ni shows excellent BOR electrocatalytic activity with a maximum of seven electrons exchanged and a transfer coefficient up to one. X-ray photoelectron spectroscopy (XPS) reveals the formation of NiO as the catalytically active species. The high faradaic efficiency and BOR rate on oxidized Ni anode in the molten electrolyte compared to aqueous alkaline electrolytes is advantageous for power sources. A novel molten electrolyte battery design is investigated using dissolved NaBH4 at the anode and immobilized KIO4 at the cathode. This battery produces a stable open-circuit cell potential of 1.04 V, and a peak power density of 130 mW cm-2 corresponding to a superficial current density of 160 mA cm-2 at 458 K. With further improvements and scale-up borohydride molten electrolyte batteries and fuel cells could be integrated with thermal energy storage systems.
Stochastic Rotation Dynamics simulations of wetting multi-phase flows
Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin
2016-06-01
Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.
Directory of Open Access Journals (Sweden)
Norimasa Shiomi
2003-01-01
Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.
Water flow in soil from organic dairy rotations
DEFF Research Database (Denmark)
Lamandé, Mathieu; Eriksen, Jørgen; Krogh, Paul Henning
2017-01-01
rye. Each plot was irrigated for an hour with 18·5 mm of water containing a conservative tracer, potassium bromide; 24 h after irrigation, macropores >1 mm were recorded visually on a horizontal plan of 0·7 m2 at five depths (10, 30, 40, 70 and 100 cm). The bromide (Br−) concentration in soil was also......Managed grasslands are characterized by rotations of leys and arable crops. The regime of water flow evolves during the leys because of earthworm and root activity, climate and agricultural practices (fertilizer, cutting and cattle trampling). The effects of duration of the leys, cattle trampling...... and fertilizer practice on the movement of water through sandy loam soil profiles were investigated in managed grassland of a dairy operation. Experiments using tracer chemicals were performed, with or without cattle slurry application, with cutting or grazing, in the 1st and the 3rd year of ley, and in winter...
Reddy, B. Siva Kumar; Rao, K. V. Surya Narayana; Vijaya, R. Bhuvana
2017-07-01
In this paper, we have considered the unsteady magnetohydrodynamic squeezing axi-symmetric flow of water-nanofluid through saturated porous medium between two parallel disks. The equations for the governing flow are solved by Galerkin optimal Homotopy asymptotic method. The effects of non-dimensional parameters on velocity, temperature and concentration have been discussed with the help of graphs. Also we obtained local Nusselt number and computationally discussed with reference to flow parameters.
Anisotropic turbulence and zonal jets in rotating flows with a β-effect
Directory of Open Access Journals (Sweden)
B. Galperin
2006-01-01
Full Text Available Numerical studies of small-scale forced, two-dimensional turbulent flows on the surface of a rotating sphere have revealed strong large-scale anisotropization that culminates in the emergence of quasi-steady sets of alternating zonal jets, or zonation. The kinetic energy spectrum of such flows also becomes strongly anisotropic. For the zonal modes, a steep spectral distribution, E(n=CZ (Ω/R2 n-5, is established, where CZ=O(1 is a non-dimensional coefficient, Ω is the angular velocity, and R is the radius of the sphere, respectively. For other, non-zonal modes, the classical, Kolmogorov-Batchelor-Kraichnan, spectral law is preserved. This flow regime, referred to as a zonostrophic regime, appears to have wide applicability to large-scale planetary and terrestrial circulations as long as those are characterized by strong rotation, vertically stable stratification and small Burger numbers. The well-known manifestations of this regime are the banded disks of the outer planets of our Solar System. Relatively less known examples are systems of narrow, subsurface, alternating zonal jets throughout all major oceans discovered in state-of-the-art, eddy-permitting simulations of the general oceanic circulation. Furthermore, laboratory experiments recently conducted using the Coriolis turntable have basically confirmed that the lateral gradient of ''planetary vorticity'' (emulated via the topographic β-effect is the primary cause of the zonation and that the latter is entwined with the development of the strongly anisotropic kinetic energy spectrum that tends to attain the same zonal and non-zonal distributions, −5 and , respectively, in both the slope and the magnitude, as the corresponding spectra in other environmental conditions. The non-dimensional coefficient CZ in the −5 spectral law appears to be invariant, , in a variety of simulated and natural flows. This paper provides a brief review of the zonostrophic regime. The review includes the
Spectroscopic studies of a high Mach-number rotating plasma flow
International Nuclear Information System (INIS)
Ando, Akira; Ashino, Masashi; Sagi, Yukiko; Inutake, Masaaki; Hattori, Kunihiko; Yoshinuma, Mikirou; Imasaki, Atsushi; Tobari, Hiroyuki; Yagai, Tsuyoshi
2001-01-01
Characteristics of an axially-magnetized rotating plasma are investigated by spectroscopy in the HITOP device of Tohoku University. A He plasma flows our axially and rotates azimuthally near the muzzle region of the MPD arcjet. Flow and rotational velocities and temperature of He ions and atoms are measured by Doppler shift and broadening of the HeII (γ=468.58 nm) and HeI (γ=587.56 nm) lines. Rotational velocity increases with the increase of axially-applied magnetic field strength and discharge current. As discharge current increases and mass flow rate decreases, the plasma flow velocity increases and T i increases. Ion acoustic Mach number of the plasma flow also increases, but tends to saturate at near 1. Radial profile of space potential is calculated from the obtained rotational velocity. The potential profile in the core region is parabolic corresponding to the observed rigid-body rotation of the core plasma. (author)
Spectroscopic studies of a high Mach-number rotating plasma flow
Energy Technology Data Exchange (ETDEWEB)
Ando, Akira; Ashino, Masashi; Sagi, Yukiko; Inutake, Masaaki; Hattori, Kunihiko; Yoshinuma, Mikirou; Imasaki, Atsushi; Tobari, Hiroyuki; Yagai, Tsuyoshi [Tohoku Univ., Dept. of Electrical Engineering, Sendai, Miyagi (Japan)
2001-07-01
Characteristics of an axially-magnetized rotating plasma are investigated by spectroscopy in the HITOP device of Tohoku University. A He plasma flows our axially and rotates azimuthally near the muzzle region of the MPD arcjet. Flow and rotational velocities and temperature of He ions and atoms are measured by Doppler shift and broadening of the HeII ({gamma}=468.58 nm) and HeI ({gamma}=587.56 nm) lines. Rotational velocity increases with the increase of axially-applied magnetic field strength and discharge current. As discharge current increases and mass flow rate decreases, the plasma flow velocity increases and T{sub i} increases. Ion acoustic Mach number of the plasma flow also increases, but tends to saturate at near 1. Radial profile of space potential is calculated from the obtained rotational velocity. The potential profile in the core region is parabolic corresponding to the observed rigid-body rotation of the core plasma. (author)
Bondi flow from a slowly rotating hot atmosphere
Narayan, Ramesh; Fabian, Andrew C.
2011-08-01
A supermassive black hole in the nucleus of an elliptical galaxy at the centre of a cool-core group or cluster of galaxies is immersed in hot gas. Bondi accretion should occur at a rate determined by the properties of the gas at the Bondi radius and the mass of the black hole. X-ray observations of massive nearby elliptical galaxies, including M87 in the Virgo cluster, indicate a Bondi accretion rate ? which roughly matches the total kinetic power of the jets, suggesting that there is a tight coupling between the jet power and the mass accretion rate. While the Bondi model considers non-rotating gas, it is likely that the external gas has some angular momentum, which previous studies have shown could decrease the accretion rate drastically. We investigate here the possibility that viscosity acts at all radii to transport angular momentum outwards so that the accretion inflow proceeds rapidly and steadily. The situation corresponds to a giant advection-dominated accretion flow (ADAF) which extends from beyond the Bondi radius down to the black hole. We find solutions of the ADAF equations in which the gas accretes at just a factor of a few less than ?. These solutions assume that the atmosphere beyond the Bondi radius rotates with a sub-Keplerian velocity and that the viscosity parameter is large, α≥ 0.1, both of which are reasonable for the problem at hand. The infall time of the ADAF solutions is no more than a few times the free-fall time. Thus, the accretion rate at the black hole is closely coupled to the surrounding gas, enabling tight feedback to occur. We show that jet powers of a few per cent of ? are expected if either a fraction of the accretion power is channelled into the jet or the black hole spin energy is tapped by a strong magnetic field pressed against the black hole by the pressure of the accretion flow. We discuss the Bernoulli parameter of the flow, the role of convection and the possibility that these as well as magnetohydrodynamic effects
Disk mini-adsorbers with radial flow for determination of 234Th concentration in seawater
International Nuclear Information System (INIS)
Gulin, S.B.; Gorelov, Yu.S.; Sidorov, I.G.; Proskurnin, V.Yu.
2013-01-01
A modified method has been developed for measuring the 234 Th concentration in seawater, which is based upon the use of MnO 2 -impregnated disk mini adsorbers with radial flow connected in-line and the direct beta counting of 234 Th and/or its daughter 234m Pa. This allows determining the 234 Th concentration in a relatively small volume of seawater (20-50 L) with the possibility to check the extraction efficiency in every individual sample. The field testing, which was carried out at different areas of Sevastopol Bay during different seasons, has shown applicability of the proposed method to evaluate particle fluxes in marine environments within a wide range of concentrations of suspended matter. (author)
Liquid metal flow in a finite-length cylinder with a rotating magnetic field
International Nuclear Information System (INIS)
Gelfgat, Yu.M.; Gorbunov, L.A.; Kolevzon, V.
1993-01-01
A liquid metal flow induced by a rotating magnetic field in a cylindrical container of finite height was investigated experimentally. It was demonstrated that the flow in a rotating magnetic field is similar to geophysical flows: the fluid rotates uniformly with depth and the Ekman layer exists at the container bottom. Near the vertical wall the flow is depicted in the form of a confined jet whose thickness determines the instability onset in a rotating magnetic field. It was shown that the critical Reynolds number can be found by using the jet velocity u 0 for Re cr =u 2 0 /ν∂u/∂r. The effect of frequency of a magnetic field on the fluid flow was also studied. An approximate theoretical model is presented for describing the fluid flow in a uniform rotating magnetic field. (orig.)
Sudjai, W.; Juntasaro, V.; Juttijudata, V.
2018-01-01
The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.
Flow control by combining radial pulsation and rotation of a cylinder in uniform flow
Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.
2008-11-01
Flow visualizations and hot-wire measurements are carried out to study a circular cylinder undergoing simultaneous radial pulsation and rotation and placed in a uniform flow. The Reynolds number is in the range of 1,000--22,000, for which transition in the shear layers and near wake is expected. Our previous experimental and numerical investigations in this subcritical flow regime have established the existence of an important energy transfer mechanism from the mean flow to the fluctuations. Radial pulsations cause and enhance that energy transfer. Certain values of the amplitude and frequency of the pulsations lead to negative drag (i.e. thrust). The nonlinear interaction between the Magnus effect induced by the steady rotation of the cylinder and the near-wake modulated by the bluff body's pulsation leads to alteration of the omnipresent Kármán vortices and the possibility of optimizing the lift-to-drag ratio as well as the rates of heat and mass transfer. Other useful applications include the ability to enhance or suppress the turbulence intensity, and to avoid the potentially destructive lock-in phenomenon in the wake of bridges, electric cables and other structures.
International Nuclear Information System (INIS)
Montgomery, M. M.
2012-01-01
Accretion disks around black hole, neutron star, and white dwarf systems are thought to sometimes tilt, retrogradely precess, and produce hump-shaped modulations in light curves that have a period shorter than the orbital period. Although artificially rotating numerically simulated accretion disks out of the orbital plane and around the line of nodes generate these short-period superhumps and retrograde precession of the disk, no numerical code to date has been shown to produce a disk tilt naturally. In this work, we report the first naturally tilted disk in non-magnetic cataclysmic variables using three-dimensional smoothed particle hydrodynamics. Our simulations show that after many hundreds of orbital periods, the disk has tilted on its own and this disk tilt is without the aid of radiation sources or magnetic fields. As the system orbits, the accretion stream strikes the bright spot (which is on the rim of the tilted disk) and flows over and under the disk on different flow paths. These different flow paths suggest the lift force as a source to disk tilt. Our results confirm the disk shape, disk structure, and negative superhump period and support the source to disk tilt, source to retrograde precession, and location associated with X-ray and He II emission from the disk as suggested in previous works. Our results identify the fundamental negative superhump frequency as the indicator of disk tilt around the line of nodes.
Directory of Open Access Journals (Sweden)
Alipázaga Maria V.
2003-01-01
Full Text Available The oxidation of Cu(II complexes with tetra, penta and hexaglycine in borate buffer aqueous solution, by dissolved oxygen is strongly accelerated by sulfite. The formation of Cu(III complexes with maximum absorbances at 250 nm (e = 9000 mol-1 L cm-1 and 365 nm (e = 7120 mol-1 L cm-1 was also characterized by using rotating ring-disk voltammetry, whose anodic and cathodic components were observed in voltammograms recorded in solutions containing Cu(II. Voltammograms, obtained at various rotation speeds, showed that the Cu(III species electrochemically generated is not stable over the entire time window of the experiment and in solutions containing tetraglycine the overall limiting current is controlled by the kinetics of an equilibrium involving Cu(II species.The calculated first order rate constant of the decomposition was 4.37x10-3 s-1. Electrochemical experiments carried out in Cu(II solutions after the addition of relatively small amounts of sulfite demonstrated that the Cu(III species formed in the chemical reaction is the same as the one collected at the ring electrode when Cu(II is oxidized at the disk electrode in ring-disk voltammetry. The concentration of Cu(III complexes is proportional to the amount of added sulfite and the results indicated that indirect analytical methods for sulfite may be developed by means of spectrophotometric or amperometric detection of the chemically generated product.
Energy Technology Data Exchange (ETDEWEB)
Wang, Li-Fang; Ou, Chin-Ching; Striebel, Kathryn A.; Chen, Jenn-Shing
2003-07-01
The goal of this research was to measure Mn dissolution from a thin porous spinel LiMn{sub 2}O{sub 4} electrode by rotating ring-disk collection experiments. The amount of Mn dissolution from the spinel LiMn{sub 2}O{sub 4} electrode under various conditions was detected by potential step chronoamperometry. The concentration of dissolved Mn was found to increase with increasing cycle numbers and elevated temperature. The dissolved Mn was not dependent on disk rotation speed, which indicated that the Mn dissolution from the disk was under reaction control. The in situ monitoring of Mn dissolution from the spinel was carried out under various conditions. The ring currents exhibited maxima corresponding to the end-of-charge (EOC) and end-of-discharge (EOD), with the largest peak at EOC. The results suggest that the dissolution of Mn from spinel LiMn{sub 2}O{sub 4} occurs during charge/discharge cycling, especially in a charged state (at >4.1 V) and in a discharged state (at <3.1 V). The largest peak at EOC demonstrated that Mn dissolution took place mainly at the top of charge. At elevated temperatures, the ring cathodic currents were larger due to the increase of Mn dissolution rate.
Tokamak turbulence in self-regulated differentially rotating flow and L-H transition dynamics
International Nuclear Information System (INIS)
Terry, P.W.; Carreras, B.A.; Sidikman, K.
1992-01-01
An analytical study of turbulence in the presence of turbulently generated differentially rotating flow is presented as a paradigm for fluctuation dynamics in L- and H-mode plasmas. Using a drift wave model, the role of both flow shear and flow curvature (second radial derivative of the poloidal ExB flow) is detailed in linear and saturated turbulence phases. In the strong turbulence saturated state, finite amplitude-induced modification of the fluctuation structure near low order rational surfaces strongly inhibits flow shear suppression. Suppression by curvature is not diminished, but it occurs through a frequency shift. A description of L-H mode transition dynamics based on the self-consistent linking of turbulence suppression by differentially rotating flow and generation of flow by turbulent momentum transport is presented. In this model, rising edge temperature triggers a transition characterized by spontaneous generation of differentially rotating flow and decreasing turbulence intensity
1991-01-01
The 3390 disks rotated faster than those in the previous model 3380. Faster disk rotation reduced rotational delay (ie. the time required for the correct area of the disk surface to move to the point where data could be read or written). In the 3390's initial models, the average rotational delay was reduced to 7.1 milliseconds from 8.3 milliseconds for the 3380 family.
International Nuclear Information System (INIS)
Aya, I.
1975-11-01
The proposed model was developed at ORNL to calculate mass flow rate and other quantities of two-phase flow in a pipe when the flow is dispersed with slip between the phases. The calculational model is based on assumptions concerning the characteristics of a turbine meter and a drag disk. The model should be validated with experimental data before being used in blowdown analysis. In order to compare dispersed flow and homogeneous flow, the ratio of readings from each flow regime for each device discussed is calculated for a given mass flow rate and steam quality. The sensitivity analysis shows that the calculated flow rate of a steam-water mixture (based on the measurements of a drag disk and a gamma densitometer in which the flow is assumed to be homogeneous even if there is some slip between phases) is very close to the real flow rate in the case of dispersed flow at a low quality. As the steam quality increases at a constant slip ratio, all models are prone to overestimate. At 20 percent quality the overestimates reach 8 percent in the proposed model, 15 percent in Rouhani's model, 38 percent in homogeneous model, and 75 percent in Popper's model
DISK FORMATION IN MAGNETIZED CLOUDS ENABLED BY THE HALL EFFECT
International Nuclear Information System (INIS)
Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun
2011-01-01
Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. A dynamically important magnetic field presents a significant obstacle to the formation of protostellar disks. Recent studies have shown that magnetic braking is strong enough to suppress the formation of rotationally supported disks in the ideal MHD limit. Whether non-ideal MHD effects can enable disk formation remains unsettled. We carry out a first study on how disk formation in magnetic clouds is modified by the Hall effect, the least explored of the three non-ideal MHD effects in star formation (the other two being ambipolar diffusion and Ohmic dissipation). For illustrative purposes, we consider a simplified problem of a non-self-gravitating, magnetized envelope collapsing onto a central protostar of fixed mass. We find that the Hall effect can spin up the inner part of the collapsing flow to Keplerian speed, producing a rotationally supported disk. The disk is generated through a Hall-induced magnetic torque. Disk formation occurs even when the envelope is initially non-rotating, provided that the Hall coefficient is large enough. When the magnetic field orientation is flipped, the direction of disk rotation is reversed as well. The implication is that the Hall effect can in principle produce both regularly rotating and counter-rotating disks around protostars. The Hall coefficient expected in dense cores is about one order of magnitude smaller than that needed for efficient spin-up in these models. We conclude that the Hall effect is an important factor to consider in studying the angular momentum evolution of magnetized star formation in general and disk formation in particular.
Hydromagnetic stability of rotating stratified compressible fluid flows
Energy Technology Data Exchange (ETDEWEB)
Srinivasan, V; Kandaswamy, P [Dept. of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu, India; Debnath, L [Dept. of Mathematics, University of Central Florida, Orlando, USA
1984-09-01
The hydromagnetic stability of a radially stratified compressible fluid rotating between two coaxial cylinders is investigated. The stability with respect to axisymmetric disturbances is examined. The fluid system is found to be thoroughly stable to axisymmetric disturbances provided the fluid rotates very rapidly. The system is shown to be unstable to non-axisymmetric disturbances, and the slow amplifying hydromagnetic wave modes propagate against the basic rotation. The lower and upper bounds of the azimuthal phase speeds of the amplifying waves are determined. A quadrant theorem on the slow waves characteristic of a rapidly rotating fluid is derived. Special attention is given to the effects of compressibility of the fluid. Some results concerning the stability of an incompressible fluid system are obtained as special cases of the present analysis.
Stability Analysis for Rotating Stall Dynamics in Axial Flow Compressors
1999-01-01
modes determines collectively local stability of the compressor model. Explicit conditions are obtained for local stability of rotating stall which...critical modes determines the stability for rotating stall collectively . We point out that although in a special case our stability condition for...strict crossing assumption implies that the zero solution changes its stability as ~, crosses ~’c. For instance, odk (yc ) > 0 implies that the zero
LES of turbulent flow in a concentric annulus with rotating outer wall
International Nuclear Information System (INIS)
Hadžiabdić, M.; Hanjalić, K.; Mullyadzhanov, R.
2013-01-01
Highlights: • High rotation up to N = 2 dampens progressively the turbulence near the rotating outer wall. • At 2 2.8, while tending to laminarize, the flow exhibits distinct Taylor-Couette vortical rolls. -- Abstract: Fully-developed turbulent flow in a concentric annulus, r 1 /r 2 = 0.5, Re h = 12,500, with the outer wall rotating at a range of rotation rates N = U θ,wall /U b from 0.5 up to 4 is studied by large-eddy simulations. The focus is on the effects of moderate to very high rotation rates on the mean flow, turbulence statistics and eddy structure. For N up to ∼2, an increase in the rotation rate dampens progressively the turbulence near the rotating outer wall, while affecting only mildly the inner-wall region. At higher rotation rates this trend is reversed: for N = 2.8 close to the inner wall turbulence is dramatically reduced while the outer wall region remains turbulent with discernible helical vortices as the dominant turbulent structure. The turbulence parameters and eddy structures differ significantly for N = 2 and 2.8. This switch is attributed to the centrifuged turbulence (generated near the inner wall) prevailing over the axial inertial force as well as over the counteracting laminarizing effects of the rotating outer wall. At still higher rotation, N = 4, the flow gets laminarized but with distinct spiralling vortices akin to the Taylor–Couette rolls found between the two counter-rotating cylinders without axial flow, which is the limiting case when N approaches to infinity. The ratio of the centrifugal to axial inertial forces, Ta/Re 2 ∝ N 2 (where Ta is the Taylor number) is considered as a possible criterion for defining the conditions for the above regime change
Rotating turbulent Rayleigh-Bénard convection subject to harmonically forced flow reversals
Geurts, B.J.; Kunnen, R.P.J.
2014-01-01
The characteristics of turbulent flow in a cylindrical Rayleigh–B´enard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by nonconstant rotation rates, a remarkably strong
Rotating turbulent Rayleigh–Bénard convection subject to harmonically forced flow reversals
Geurts, Bernardus J.; Kunnen, Rudie P.J.
2014-01-01
The characteristics of turbulent flow in a cylindrical Rayleigh–Bénard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by non-constant rotation rates, a remarkably strong
On Stationary Navier-Stokes Flows Around a Rotating Obstacle in Two-Dimensions
Higaki, Mitsuo; Maekawa, Yasunori; Nakahara, Yuu
2018-05-01
We study the two-dimensional stationary Navier-Stokes equations describing the flows around a rotating obstacle. The unique existence of solutions and their asymptotic behavior at spatial infinity are established when the rotation speed of the obstacle and the given exterior force are sufficiently small.
Prediction of Heat Transfer For Turbulent Flow in Rotating Radial Duct
Directory of Open Access Journals (Sweden)
P. Tekriwal
1995-01-01
in the case of low-Re model, the computation time is relatively high and the convergence is rather slow, thus rendering the low-Re model as an unattractive choice for rotating flows at high Reynolds number.
Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser
Moore, F. K.
1988-01-01
A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.
Reynolds-Stress and Triple-Product Models Applied to a Flow with Rotation and Curvature
Olsen, Michael E.
2016-01-01
Turbulence models, with increasing complexity, up to triple product terms, are applied to the flow in a rotating pipe. The rotating pipe is a challenging case for turbulence models as it contains significant rotational and curvature effects. The flow field starts with the classic fully developed pipe flow, with a stationary pipe wall. This well defined condition is then subjected to a section of pipe with a rotating wall. The rotating wall introduces a second velocity scale, and creates Reynolds shear stresses in the radial-circumferential and circumferential-axial planes. Furthermore, the wall rotation introduces a flow stabilization, and actually reduces the turbulent kinetic energy as the flow moves along the rotating wall section. It is shown in the present work that the Reynolds stress models are capable of predicting significant reduction in the turbulent kinetic energy, but triple product improves the predictions of the centerline turbulent kinetic energy, which is governed by convection, dissipation and transport terms, as the production terms vanish on the pipe axis.
International Nuclear Information System (INIS)
Manzo, Valentina; Ulisse, Karla; Rodríguez, Inés; Pereira, Eduardo; Richter, Pablo
2015-01-01
The microextraction of diclofenac and mefenamic acid from water samples was performed by using rotating disk sorptive extraction (RDSE) with molecularly imprinted polymer (MIP) as the sorptive phase. The MIP was synthesized from the monomer 1-vinylimidazol (VI) together with the cross-linker divinylbenzene (DVB) using diphenylamine as the template molecule. Scanning electron microscopy (SEM) analyses of the MIP revealed clusters of spherical particles having a narrow size distribution, with diameters of approximately 1 μm. The optimized extraction conditions involved a disk rotation velocity of 3000 rpm, an extraction time of 120 min, a sample volume of 50 mL, and a sample pH of 2 as well as 25 mg of MIP immobilized in the disk. Desorption of the extracted analytes was performed with 5 mL of methanol for 10 min. Analysis by gas chromatography-mass spectrometry (GC–MS) was carried out after derivatization of the analytes with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA). Nonmolecularly imprinted polymer (NIP) was also synthesized for comparison. It was observed that under the same conditions, MIP extracted significantly more NSAIDs containing diphenylamine (or part of this molecule) in their structure than NIP. Higher significant differences between MIP and NIP were observed for diclofenac, mefenamic acid and paracetamol, clearly indicating the effect of the template on the extraction. Recoveries of the method were between 100 and 112%, with relative standard deviations of 5–6%. The limits of detection were between 60 and 223 ng L −1 . Water samples from a wastewater treatment plant (WWTP) of Santiago de Chile, were found to contain concentrations of these acidic drugs between 1.6 and 4.3 μg L −1 and between 1.4 and 3.3 μg L −1 in the influent and effluent, respectively. - Highlights: • A MIP immobilized in a rotating disk sucessfully extracts NSAIDs from wastewater. • MIP had remarkably superior binding properties
Energy Technology Data Exchange (ETDEWEB)
Manzo, Valentina; Ulisse, Karla [Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 653, Santiago (Chile); Rodríguez, Inés [Department of Analytical and Inorganic Chemistry, Faculty of Chemical Sciences, University of Concepción (Chile); Pereira, Eduardo, E-mail: epereira@udec.cl [Department of Analytical and Inorganic Chemistry, Faculty of Chemical Sciences, University of Concepción (Chile); Richter, Pablo, E-mail: prichter@ciq.uchile.cl [Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 653, Santiago (Chile)
2015-08-19
The microextraction of diclofenac and mefenamic acid from water samples was performed by using rotating disk sorptive extraction (RDSE) with molecularly imprinted polymer (MIP) as the sorptive phase. The MIP was synthesized from the monomer 1-vinylimidazol (VI) together with the cross-linker divinylbenzene (DVB) using diphenylamine as the template molecule. Scanning electron microscopy (SEM) analyses of the MIP revealed clusters of spherical particles having a narrow size distribution, with diameters of approximately 1 μm. The optimized extraction conditions involved a disk rotation velocity of 3000 rpm, an extraction time of 120 min, a sample volume of 50 mL, and a sample pH of 2 as well as 25 mg of MIP immobilized in the disk. Desorption of the extracted analytes was performed with 5 mL of methanol for 10 min. Analysis by gas chromatography-mass spectrometry (GC–MS) was carried out after derivatization of the analytes with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA). Nonmolecularly imprinted polymer (NIP) was also synthesized for comparison. It was observed that under the same conditions, MIP extracted significantly more NSAIDs containing diphenylamine (or part of this molecule) in their structure than NIP. Higher significant differences between MIP and NIP were observed for diclofenac, mefenamic acid and paracetamol, clearly indicating the effect of the template on the extraction. Recoveries of the method were between 100 and 112%, with relative standard deviations of 5–6%. The limits of detection were between 60 and 223 ng L{sup −1}. Water samples from a wastewater treatment plant (WWTP) of Santiago de Chile, were found to contain concentrations of these acidic drugs between 1.6 and 4.3 μg L{sup −1} and between 1.4 and 3.3 μg L{sup −1} in the influent and effluent, respectively. - Highlights: • A MIP immobilized in a rotating disk sucessfully extracts NSAIDs from wastewater. • MIP had remarkably superior binding
Bingham liquid flow between two cylinders induced by inner ring rotation
Jaroslav, Štigler; Simona, Fialová
2017-09-01
This paper deals with the fluid flow between two cylinders induced by inner ring rotation. The gap width between the cylinders, in case that they are both concentric, is 1mm, the gap and inner ring radius ratio 0.013 and the radius ratio 0.987. Attention is focused on rotation speed and eccentricity influence on the flow. Calculations were done for both Newtonian liquid and Bingham plastic liquid with the yield stress threshold 50 Pa.
Effects of rotation on flow in an asymmetric rib-roughened duct: LES study
International Nuclear Information System (INIS)
Borello, D.; Salvagni, A.; Hanjalić, K.
2015-01-01
Highlights: • Ribbed duct reproduces most of the phenomena occurring in internal cooling channels of blade turbines (rotor and stator). • LES analysis of the flow in a ribbed duct was carried out aiming at detecting the influence of rotation on the turbulence. • In destabilizing conditions, rotation enhances turbulence close to the ribbed duct thus enhancing removal of fluid from the wall and improving mixing. • In stabilizing conditions, turbulence is suppressed by rotation close to the ribbed wall. - Abstract: We report on large-eddy simulations (LES) of fully-developed asymmetric flow in a duct of a rectangular cross-section in which square-sectioned, equally-spaced ribs oriented perpendicular to the flow direction, were mounted on one of the walls. The configuration mimics a passage of internal cooling of a gas-turbine blade. The duct flow at a Reynolds number Re = 15,000 (based on hydraulic diameter D_h and bulk flow velocity U_0) was subjected to clock-wise (stabilising) and anti-clock-wise (destabilising) orthogonal rotation at a moderate rotational number Ro = ΩD_h/U_0 = 0.3, where Ω is the angular velocity. The LES results reproduced well the available experimental results of Coletti et al. (2011) (in the mid-plane adjacent to the ribbed wall) and provided insight into the whole duct complementing the reference PIV measurement. We analyzed the effects of stabilising and destabilising rotation on the flow, vortical structures and turbulence statistics by comparison with the non-rotating case. The analysis includes the identification of depth of penetration of the rib-effects into the bulk flow, influence of flow three-dimensionality and the role of secondary motions, all shown to be strongly affected by the rotation and its direction.
International Nuclear Information System (INIS)
Hojjati, M.H.; Jafari, S.
2008-01-01
In this work, two powerful analytical methods, namely homotopy perturbation method (HPM) and Adomian's decomposition method (ADM), are introduced to obtain distributions of stresses and displacements in rotating annular elastic disks with uniform and variable thicknesses and densities. The results obtained by these methods are then compared with the verified variational iteration method (VIM) solution. He's homotopy perturbation method which does not require a 'small parameter' has been used and a homotopy with an imbedding parameter p element of [0,1] is constructed. The method takes the full advantage of the traditional perturbation methods and the homotopy techniques and yields a very rapid convergence of the solution. Adomian's decomposition method is an iterative method which provides analytical approximate solutions in the form of an infinite power series for nonlinear equations without linearization, perturbation or discretization. Variational iteration method, on the other hand, is based on the incorporation of a general Lagrange multiplier in the construction of correction functional for the equation. This study demonstrates the ability of the methods for the solution of those complicated rotating disk cases with either no or difficult to find fairly exact solutions without the need to use commercial finite element analysis software. The comparison among these methods shows that although the numerical results are almost the same, HPM is much easier, more convenient and efficient than ADM and VIM
Generation of zonal flows in rotating fluids and magnetized plasmas
DEFF Research Database (Denmark)
Juul Rasmussen, J.; Garcia, O.E.; Naulin, V.
2006-01-01
The spontaneous generation of large-scale flows by the rectification of small-scale turbulent fluctuations is of great importance both in geophysical flows and in magnetically confined plasmas. These flows regulate the turbulence and may set up effective transport barriers. In the present....... The analogy to large-scale flow generation in drift-wave turbulence dynamics in magnetized plasma is briefly discussed....
Dynamics of shallow flows with and without background rotation
Durán Matute, M.
2010-01-01
Large-scale oceanic and atmospheric flows tend to behave in a two-dimensional way. To further understand such flows, a large scientific effort has been devoted to the study of perfect two-dimensional flows. For the last 30 years, there has been a large interest in experimentally validating the
Lift of a rotating circular cylinder in unsteady flows
DEFF Research Database (Denmark)
Carstensen, Stefan; Mandviwalla, Xerxes; Vita, Luca
2012-01-01
A cylinder rotating in steady current experiences a lift known as the Magnus effect. In the present study the effect of waves on the Magnus effect has been investigated. This situation is experienced with the novel floating offshore vertical axis wind turbine (VAWT) concept called the DEEPWIND...... concept, which incorporates a rotating spar buoy and thereby utilizes seawater as a roller-bearing. The a priori assumption and the results suggest that the lift in waves, to a first approximation, may be represented by a formulation similar to the well-known Morison formulation. The force coefficients...
Rotation induced flow suppression around two tandem circular cylinders at low Reynolds number
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Dipankar [Advanced Design and Analysis Group, CSIR—Central Mechanical Engineering Research Institute, Durgapur-713209 (India); Gupta, Krishan [Department of Mechanical Engineering, Sardar Vallabhai National Institute of Technology Surat, Surat-395007 (India); Kumar, Virendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna-800013 (India); Varghese, Sachin Abraham, E-mail: d_chatterjee@cmeri.res.in [Department of Mechanical Engineering, National Institute of Technology Durgapur, Durgapur-713209 (India)
2017-08-15
The rotation to a bluff object is known to have a stabilizing effect on the fluid dynamic transport around the body. An unsteady periodic flow can be degenerated into a steady flow pattern depending on the rate of rotation imparted to the body. On the other hand, multiple bodies placed in tandem arrangement with respect to an incoming flow can cause destabilization to the flow as a result of the complicated wake interaction between the bodies. Accordingly, the spacing between the bodies and the rate of rotation have significant impact on the overall fluid dynamic transport around them. The present work aims to understand how these two competing factors are actually influencing the fluidic transport across a pair of identical rotating circular cylinders kept in tandem arrangement in an unconfined medium. The cylinders are subjected to a uniform free stream flow and the gaps between the cylinders are varied as 0.2, 0.7, 1.5 and 3.0. Both the cylinders are made to rotate in the clockwise sense. The Reynolds number based on the free stream flow is taken as 100. A two-dimensional finite volume based transient computation is performed for a range of dimensionless rotational speeds of the cylinders (0 ≤ Ω ≤ 2.75). The results show that the shedding phenomena can be observed up to a critical rate of rotation (Ω{sub cr}) depending on the gap spacing. Beyond Ω{sub cr}, the flow becomes stabilized and finally completely steady as Ω increases further. Increasing the gap initially causes a slight decrease in the critical rotational speed, however, it increases at a rapid rate for larger gap spacing. (paper)
Directory of Open Access Journals (Sweden)
Bouakkaz Rafik
2017-06-01
Full Text Available In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5–40. Furthermore, the range of nanoparticle volume fractions considered is 0–5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.
Montgomery, M. M.; Martin, E. L.
2010-01-01
Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...
A study on heat-flow analysis of friction stir welding on a rotation affected zone
International Nuclear Information System (INIS)
Kang, Sung Wook; Jang, Beom Seon; Kim, Jae Woong
2014-01-01
In recent years, as interest in environmental protection and energy conservation rose, technological development for lightweight efficiency of transport equipment, such as aircrafts, railcars, automobiles and vessels, have been briskly proceeding. This has led to an expansion of the application of lightweight alloys such as aluminum and magnesium. For the welding of these lightweight alloys, friction stir welding has been in development by many researchers. Heat-flow analysis of friction stir welding is one such research. The flow and energy equation is solved using the computational fluid dynamic commercial program 'Fluent'. In this study, a rotation affected zone concept is imposed. The rotation affected zone is a constant volume. In this volume, flow is rotated the same as the tool rotation speed and so plastic dissipation occurs. Through this simulation, the temperature distribution results are calculated and the simulation results are compared with the experimental results.
Scaling of wet granular flows in a rotating drum
Directory of Open Access Journals (Sweden)
Jarray Ahmed
2017-01-01
Full Text Available In this work, we investigate the effect of capillary forces and particle size on wet granular flows and we propose a scaling methodology that ensures the conservation of the bed flow. We validate the scaling law experimentally by using different size glass beads with tunable capillary forces. The latter is obtained using mixtures of ethanol-water as interstitial liquid and by increasing the hydrophobicity of glass beads with an ad-hoc silanization procedure. The scaling methodology in the flow regimes considered (slipping, slumping and rolling yields similar bed flow for different particle sizes including the angle of repose that normally increases when decreasing the particle size.
Inception mechanism and suppression of rotating stall in an axial-flow fan
International Nuclear Information System (INIS)
Nishioka, T
2013-01-01
Inception patterns of rotating stall at two stagger-angle settings for the highly loaded rotor blades were experimentally investigated in a low-speed axial-flow fan. Rotor-tip flow fields were also numerically investigated to clarify the mechanism behind the rotating stall inception. The stall inception patterns depended on the rotor stagger-angle settings. The stall inception from a rotating instability was confirmed at the design stagger-angle settings. The stall inception from a short length-scale stall cell (spike) was also confirmed at the small stagger-angle setting. The spillage of tip-leakage flow and the tip-leakage vortex breakdown influence the rotating stall inception. An air-separator has been developed based on the clarified inception mechanism of rotating stall. The rotating stall was suppressed by the developed air-separator, and the operating range of fan was extended towards low flow rate. The effect of developed air-separator was also confirmed by application to a primary air fan used in a coal fired power plant. It is concluded from these results that the developed air-separator can provide a wide operating range for an axial-flow fan
Powerful Swirl Generation of Flow-driven Rotating Mixing Vane for Enhancing CHF
International Nuclear Information System (INIS)
Seo, Han; Seo, Seok Bin; Heo, Hyo; Bang, In Cheol
2014-01-01
Mixing vanes are utilized to improve CHF and heat transfer performance in the rod bundle during normal operation. Experimental measurement of the swirling flow from a split vane pair was conducted using particle image velocimetry (PIV) and boroscope. The lateral velocity fields show that the swirling flow was initially centered in the subchannel and the computational fluid dynamics (CFD) analysis was performed based on the experiment. To visualize flow patterns in the 5Χ5 subchannel using PIV, matching the refraction between the working fluid and the structure was considered and the experiment aimed to develop the experimental data for providing fundamental information of the CFD analysis. The fixed split vane is the main mixing inducer in the fuel assembly. In a heat exchanger research, propeller type swirl generates at several pitch ratios and different blades angles were used to enhance heat transfer rate. Significant improvements of the heat transfer rate using the propellers were confirmed due to creation of tangential flow. In the present study, the mixing effect of rotation vane which has a shape of propeller was studied using PIV. A split vane was considered in the experiment to show the effect of rotation vane. Vertical and horizontal flow analyses were conducted to show the possible use of rotation vane in a subchannel. In the present work, the study of flow visualization using three types of vanes is conducted to show the mixing effect. The vertical flow and the horizontal flow distributions were analyzed in the two experimental facilities. For the vertical flow facility, flow distributions, flow profiles, and the turbulence kinetic energy are analyzed at the centerline of the channel. The results show that the rotation vane has the highest flow and turbulence kinetic intensity at the centerline of the channel. For the horizontal flow facility, the results indicate that lateral flow of the rotation vane is generated and maintained along with the flow
Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung
2018-04-01
Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.
Rotating polygon instability of a swirling free surface flow
DEFF Research Database (Denmark)
Tophøj, Laust Emil Hjerrild; Bohr, Tomas; Mougel, J.
2013-01-01
We explain the rotating polygon instability on a swirling fluid surface [G. H. Vatistas, J. Fluid Mech. 217, 241 (1990)JFLSA70022-1120 and Jansson et al., Phys. Rev. Lett. 96, 174502 (2006)PRLTAO0031-9007] in terms of resonant interactions between gravity waves on the outer part of the surface...... behavior near the corners), and indeed we show that we can obtain the polygons transiently by violently stirring liquid nitrogen in a hot container....
Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field
Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves
2016-10-01
Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.
Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows
Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel
2017-11-01
We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.
Experimental dynamic characterizations and modelling of disk vibrations for HDDs.
Pang, Chee Khiang; Ong, Eng Hong; Guo, Guoxiao; Qian, Hua
2008-01-01
Currently, the rotational speed of spindle motors in HDDs (Hard-Disk Drives) are increasing to improve high data throughput and decrease rotational latency for ultra-high data transfer rates. However, the disk platters are excited to vibrate at their natural frequencies due to higher air-flow excitation as well as eccentricities and imbalances in the disk-spindle assembly. These factors contribute directly to TMR (Track Mis-Registration) which limits achievable high recording density essential for future mobile HDDs. In this paper, the natural mode shapes of an annular disk mounted on a spindle motor used in current HDDs are characterized using FEM (Finite Element Methods) analysis and verified with SLDV (Scanning Laser Doppler Vibrometer) measurements. The identified vibration frequencies and amplitudes of the disk ODS (Operating Deflection Shapes) at corresponding disk mode shapes are modelled as repeatable disturbance components for servo compensation in HDDs. Our experimental results show that the SLDV measurements are accurate in capturing static disk mode shapes without the need for intricate air-flow aero-elastic models, and the proposed disk ODS vibration model correlates well with experimental measurements from a LDV.
Lattice Boltzmann simulation of viscoelastic flow past a confined free rotating cylinder
Xia, Yi; Zhang, Peijie; Lin, Jianzhong; Ku, Xiaoke; Nie, Deming
2018-05-01
To study the dynamics of rigid body immersed in viscoelastic fluid, an Oldroyd-B fluid flow past an eccentrically situated, free rotating cylinder in a two-dimensional (2D) channel is simulated by a novel lattice Boltzmann method. Two distribution functions are employed, one of which is aimed to solve Navier-Stokes equation and the other to the constitutive equation, respectively. The unified interpolation bounce-back scheme is adopted to treat the moving curved boundary of cylinder, and the novel Galilean invariant momentum exchange method is utilized to obtain the hydrodynamic force and torque exerted on the cylinder. Results show that the center-fixed cylinder rotates inversely in the direction where a cylinder immersed in Newtonian fluid do, which generates a centerline-oriented lift force according to Magnus effect. The cylinder’s eccentricity, flow inertia, fluid elasticity and viscosity would affect the rotation of cylinder in different ways. The cylinder rotates more rapidly when located farther away from the centerline, and slows down when it is too close to the wall. The rotation frequency decreases with increasing Reynolds number, and larger rotation frequency responds to larger Weissenberg number and smaller viscosity ratio, indicating that the fluid elasticity and low solvent viscosity accelerates the flow-induced rotation of cylinder.
Heat transfer in rotating serpentine passages with trips normal to the flow
Wagner, J. H.; Johnson, B. V.; Graziani, R. A.; Yeh, F. C.
1991-01-01
Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.
Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1
Rigby, David L.
2000-01-01
Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number
International Nuclear Information System (INIS)
Armellini, A.; Casarsa, L.; Mucignat, C.
2011-01-01
The flow field inside a modern internal cooling channel specifically designed for the trailing edge of gas turbine blades has been experimentally investigated under static and rotating conditions. The passage is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers, while particular care was put in the implementation of proper pressure conditions at the channel exits to allow the comparison between data under static and rotating conditions. The flow velocity was measured by means of 2D and Stereo-PIV techniques applied in the absolute frame of reference. The relative velocity fields were obtained through a pre-processing procedure of the PIV images developed on purpose. Time averaged flow fields inside the stationary and rotating channels are analyzed and compared. A substantial modification of the whole flow behavior due to rotational effects is commented, nevertheless no trace of rotation induced secondary Coriolis vortices has been found because of the progressive flow discharge along the trailing edge. For Ro = 0.23, at the channel inlet the high aspect-ratio of the cross section enhances inviscid flow effects which determine a mass flow redistribution towards the leading edge side. At the trailing edge exits, the distortion of the flow path observed in the channel central portion causes a strong reduction in the dimensions of the 3D separation structures that surround the pedestals.
Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders
Energy Technology Data Exchange (ETDEWEB)
Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang (China); Kim, Hyoung Bum [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju (Korea, Republic of)
2016-12-15
The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition.
Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders
International Nuclear Information System (INIS)
Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng; Kim, Hyoung Bum
2016-01-01
The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition
International Nuclear Information System (INIS)
Seo, Jeongwook; Sankarasubramanian, Shrihari; Singh, Nikhilendra; Mizuno, Fuminori; Takechi, Kensuke; Prakash, Jai
2017-01-01
The kinetics of the oxygen reduction reaction (ORR) on the practical air cathode in a Lithium-air cell, which is conventionally composed of porous carbon with or without catalysts supported on it, was investigated. The mechanism and kinetics of the oxygen reduction reaction (ORR) was studied on a porous carbon electrode in an oxygen saturated solution of 0.1 M Lithium bis-trifluoromethanesulfonimide (LiTFSI) in Dimethoxyethane (DME) using cyclic voltammetery (CV) and the rotating ring-disk electrode (RRDE) technique. The oxygen reduction and evolution reactions were found to occur at similar potentials to those observed on a smooth, planar glassy carbon (GC) electrode. The effect of porosity and the resultant increase in surface area were readily observed in the increase in the transient time required for the intermediates to reach the ring and the much larger disk currents (compared to smooth, planar GC) recorded respectively. The RRDE data was analyzed using a kinetic model previously developed by us and the rate constants for the elementary reactions were calculated. The rates constant for the electrochemical reactions were found to be similar in magnitude to the rate constants calculated for smooth GC disks. The porosity of the electrode was found to decrease the rate of desorption of the intermediate and the product and delay their diffusion by shifting it from a Fickian regime in the electrolyte bulk to the Knudsen regime in the film pores. Thus, it is shown that the effect of the electrode porosity on the kinetics of the ORR is physical rather than electrochemical.
International Nuclear Information System (INIS)
Kambe, Tsutomu
2013-01-01
A new representation of the solution to Euler's equation of motion is presented by using a system of expressions for compressible rotational flows of an ideal fluid. This is regarded as a generalization of Bernoulli's theorem to compressible rotational flows. The present expressions are derived from the variational principle. The action functional for the principle consists of the main terms of the total kinetic, potential and internal energies, together with three additional terms yielding the equations of continuity, entropy and a third term that provides the rotational component of velocity field. The last term has the form of scalar product satisfying gauge symmetry with respect to both translation and rotation. This is a generalization of the Clebsch transformation from a physical point of view. It is verified that the system of new expressions, in fact, satisfies Euler's equation of motion. (paper)
Theoretical Investigation of Creeping Viscoelastic Flow Transition Around a Rotating Curved Pipe
Hamza, S. E. E.; El-Bakry, Mostafa Y.
2015-01-01
The study of creeping motion of viscoelastic fluid around a rotating rigid torus is investigated. The analysis of the problem is performed using a second-order viscoelastic model. The study is carried out in terms of the bipolar toroidal system of coordinates where the toroid is rotating about its axis of symmetry (z-axis). The problem is solved within the frame of slow flow approximation. Therefore, all variables in the governing equations are expanded in a power series of angular velocity. ...
Flows about a rotating circular cylinder by the discrete-vortex method
Kimura, Takeyoshi; Tsutahara, Michihisa
1987-01-01
A numerical study has been conducted for flows past a rotating circular cylinder at high Reynolds numbers, using the discrete-vortex method. It is noted that the reverse Magnus effect is caused by the retreat of the separation point on the acceleration side. At high rotating speed, the nascent vortices of opposite directions are mixed faster, the wake becomes narrower, and predominating frequencies in the lift force disappear.
Self-motion Perception from Optic Flow and Rotation Signals
J.A. Beintema (Jaap)
2000-01-01
textabstractThe value of optic flow for retrieving movement direction was recognised already two centuries ago by astronomers, searching the sky for meteorite showers. The point from which the shower appeared to emanate they termed the radiant, knowing it indicated the direction along which the
Large eddy simulation of rotating turbulent flows and heat transfer by the lattice Boltzmann method
Liou, Tong-Miin; Wang, Chun-Sheng
2018-01-01
Due to its advantage in parallel efficiency and wall treatment over conventional Navier-Stokes equation-based methods, the lattice Boltzmann method (LBM) has emerged as an efficient tool in simulating turbulent heat and fluid flows. To properly simulate the rotating turbulent flow and heat transfer, which plays a pivotal role in tremendous engineering devices such as gas turbines, wind turbines, centrifugal compressors, and rotary machines, the lattice Boltzmann equations must be reformulated in a rotating coordinate. In this study, a single-rotating reference frame (SRF) formulation of the Boltzmann equations is newly proposed combined with a subgrid scale model for the large eddy simulation of rotating turbulent flows and heat transfer. The subgrid scale closure is modeled by a shear-improved Smagorinsky model. Since the strain rates are also locally determined by the non-equilibrium part of the distribution function, the calculation process is entirely local. The pressure-driven turbulent channel flow with spanwise rotation and heat transfer is used for validating the approach. The Reynolds number characterized by the friction velocity and channel half height is fixed at 194, whereas the rotation number in terms of the friction velocity and channel height ranges from 0 to 3.0. A working fluid of air is chosen, which corresponds to a Prandtl number of 0.71. Calculated results are demonstrated in terms of mean velocity, Reynolds stress, root mean square (RMS) velocity fluctuations, mean temperature, RMS temperature fluctuations, and turbulent heat flux. Good agreement is found between the present LBM predictions and previous direct numerical simulation data obtained by solving the conventional Navier-Stokes equations, which confirms the capability of the proposed SRF LBM and subgrid scale relaxation time formulation for the computation of rotating turbulent flows and heat transfer.
Lattice gas automaton scheme with stochastic particle movement for a rotated fluid flow
International Nuclear Information System (INIS)
Ishiguro, Misako
2002-01-01
Lattice gas automaton (LGA) models developed so far are just for Cartesian geometries, and no direct approach to rotated fluid flows is found. In this paper, LGA method is applied to model a two-dimensional rotated flow. Several problems specific to the rotated flow are to be solved: hexagonal lattice geometry to effectively identify the neighbors, boundary condition for irregular walls, multi-speed scheme to represent angular-oriented fluid velocity υ θ ≅γω, shape of macroscopic domain for statistics, formula to obtain macroscopic quantities such as density and mean fluid velocities, application method of Fermi-Dirac function to the initial particle arrangement. For this purpose, FHP-I type hexagonal lattice model is revised and a new LGA model with stochastic particle movement is proposed. The results of the trial calculation are shown. It is also investigated whether or not the underlying microscopic Boolean equations newly introduced leads to Navier-Stokes equation. (author)
Ouazib, Nabila; Salhi, Yacine; Si-Ahmed, El-Khider; Legrand, Jack; Degrez, G.
2017-07-01
Numerical methods for solving convection-diffusion-reaction (CDR) scalar transport equation in three-dimensional flow are used in the present investigation. The flow is confined between two concentric cylinders both the inner cylinder and the outer one are allowed to rotate. Direct numerical simulations (DNS) have been achieved to study the effects of the gravitational and the centrifugal potentials on the stability of incompressible Taylor-Couette flow. The Navier-Stokes equations and the uncoupled convection-diffusion-reaction equation are solved using a spectral development in one direction combined together with a finite element discretization in the two remaining directions. The complexity of the patterns is highlighted. Since, it increases as the rotation rates of the cylinders increase. In addition, the effect of the counter-rotation of the cylinders on the mass transfer is pointed out.
Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao
2018-03-01
The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.
Controlling the structure of forced convective flow by means of rotating magnetic-field inductors
International Nuclear Information System (INIS)
Sorkin, M.Z.; Mozgirs, O.Kh.
1993-01-01
The forced convective flow generated by a rotating magnetic-field inductor is used in a melt as a means of controlling the transfer of mass and heat in the case of directed crystallization. An obvious advantage in using a rotating field is the generation of azimuthal twisting of the fluid, this providing for an evening out of the crystallization conditions in the azimuthal direction under nonsymmetrical boundary conditions in an actual technological process. From the standpoint of affecting the crystallization processes it would be preferable to use an inductor which would allow alteration of the intensity and of the direction of the meridional flow. Mixing in the form of velocity pulsations generated by the inductor within the melt would be if interest from the standpoint of affecting the crystallization processes, in particular to intensify the crystallization purification. The authors propose the use of a double magnetohydrodynmic rotator which consists of two rotating magnetic-field inductors, separated in altitude, with separate power supplies. The supply of power to the inductors with various current loads allows the generation of a controllable nonuniformity in field distribution and in the azimuthal velocity through the altitude and thus allows control of both the intensity and configuration of the meridional flows. The dual rotator makes it possible to purposefully control the structure of the meridional flows and the pulsation component of velocity and can be recommended for use in processes of directed crystallization as well as in crystallization purification. 4 refs., 3 figs
Lawless, Patrick B.; Fleeter, Sanford
1991-01-01
A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.
Transient flows occurring during the accelerated crucible rotation technique
International Nuclear Information System (INIS)
Horowitz, Atara; Horowitz, Yigal
1992-11-01
The transient flows occurring after a change in the angular velocity of the cylindrical container are described. The dependence of the transient (known as spin-up or spin-down time) on experimental parameters as kinematic viscosity, cylinder dimensions and the cylinder's initial and final angular velocities are elucidates by a review of the literature. It is emphasized that with large Rossby numbers the spin-up time is longer and the amount of fluid mixing is greater than small and moderate Rossby numbers. It is also elucidated that most crystal growth crucibles cannot be considered as infinitely-long cylinders for the evaluation of the fluid dynamics (authors)
Directory of Open Access Journals (Sweden)
N. Khan
2015-05-01
Full Text Available The investigation of heat transfer analysis on steady MHD axi-symmetric flow between two infinite stretching disks in the presence of viscous dissipation and Joule heating is basic objective of this paper. Attention has been focused to acquire the similarity solutions of the equations governing the flow and thermal fields. The transformed boundary value problem is solved analytically using homotopy analysis method. The series solutions are developed and the convergence of these solutions is explicitly discussed. The analytical expressions for fluid velocity, pressure and temperature are constructed and analyzed for various set of parameter values. The numerical values for skin friction coefficient and the Nusselt number are presented in tabular form. Particular attention is given to the variations of Prandtl and Eckert numbers. We examined that the dimensionless temperature field is enhanced when we increase the values of Eckert number and Prandtl number.
Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics
Bai, Xue-Ning
2017-08-01
The gas dynamics of weakly ionized protoplanetary disks (PPDs) are largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar and accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions (˜1-20 au), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With the net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magnetic field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane, which smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of the disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature, characterized by a mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.
Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics
Energy Technology Data Exchange (ETDEWEB)
Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138 (United States)
2017-08-10
The gas dynamics of weakly ionized protoplanetary disks (PPDs) are largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar and accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions (∼1–20 au), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With the net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magnetic field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane, which smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of the disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature, characterized by a mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.
[Hydrodynamics of disk artificial heart valves with different design characteristics].
Dobrova, N B; Zaretskiĭ, Iu V
1989-01-01
Bench tests for 38 models of artificial heart valves (AHV) with different design parameters allowed us to decide in favour of the valves with reduced eccentricity (compared to the serial AHV of the EMAHV type) according to its resistance in the constant flow. Out of the compatibility checks of the design parameters tested it was concluded that the disk did not make the complete calculated angle when rotated. The dependence of AHV resistance on the disk rotation angle showed that there is no necessity to increase that angle more than 70 degrees for the mitral valve and more than 75 degrees for the aortic AHV.
The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings
Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat
2018-06-01
In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.
Heat Transfer and Flows of Thermal Convection in a Fluid-Saturated Rotating Porous Medium
Directory of Open Access Journals (Sweden)
Jianhong Kang
2015-01-01
Full Text Available Thermal convection at the steady state for high Rayleigh number in a rotating porous half space is investigated. Taking into account the effect of rotation, Darcy equation is extended to incorporate the Coriolis force term in a rotating reference frame. The velocity and temperature fields of thermal convection are obtained by using the homotopy analysis method. The influences of Taylor number and Rayleigh number on the Nusselt number, velocity profile, and temperature distribution are discussed in detail. It is found that the Nusselt number decreases rapidly with the increase of Taylor number but tends to have an asymptotic value. Besides, the rotation can give rise to downward flow in contrast with the upward thermal convection.
Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields
DEFF Research Database (Denmark)
Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott
2016-01-01
a reduced order dynamic stall model that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional two-dimensional, non-rotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared...... Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D; and (3) data from...... with those from the dynamic stall model. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in two-dimensional flow to be investigated. Results indicated a good qualitative...
Unsteady flow of fractional Oldroyd-B fluids through rotating annulus
Tahir, Madeeha; Naeem, Muhammad Nawaz; Javaid, Maria; Younas, Muhammad; Imran, Muhammad; Sadiq, Naeem; Safdar, Rabia
2018-04-01
In this paper exact solutions corresponding to the rotational flow of a fractional Oldroyd-B fluid, in an annulus, are determined by applying integral transforms. The fluid starts moving after t = 0+ when pipes start rotating about their axis. The final solutions are presented in the form of usual Bessel and hypergeometric functions, true for initial and boundary conditions. The limiting cases for the solutions for ordinary Oldroyd-B, fractional Maxwell and Maxwell and Newtonian fluids are obtained. Moreover, the solution is obtained for the fluid when one pipe is rotating and the other one is at rest. At the end of this paper some characteristics of fluid motion, the effect of the physical parameters on the flow and a correlation between different fluid models are discussed. Finally, graphical representations confirm the above affirmation.
Hydrodynamic instabilities in the developing region of an axially rotating pipe flow
Energy Technology Data Exchange (ETDEWEB)
Miranda-Barea, A; Fabrellas-García, C; Parras, L; Pino, C del, E-mail: cpino@uma.es [Universidad de Málaga, Escuela Técnica Superior de Ingeniería Industrial, Ampliación Campus de Teatinos, 29071, Málaga, España (Spain)
2015-06-15
We conduct experiments in a rotating Hagen–Poiseuille flow (RHPF) through flow visualizations when the flow becomes convectively and absolutely unstable at low-to-moderate Reynolds numbers, Re. We characterize periodic patterns at a very high swirl parameter, L, when the flow overcomes the absolutely unstable region. These non-steady helical filaments wrapped around the axis appear in the developing region of the pipe. Experimentally, we compute the onset of these oscillations in the (L, Re)-plane finding that the rotation rate decreases as the Reynolds number increases in the process of achieving the time-dependent state. Additionally, we report information regarding frequencies and wavelengths that appear downstream of the rotating pipe for convectively and absolutely unstable flows, even for very high swirl parameters at which the flow becomes time-dependent in the developing region. We do not observe variations in the trends of these parameters, so these hydrodynamic instabilities in the developing region do not affect the unstable travelling waves downstream of the pipe. (paper)
Preferential states of rotating turbulent flows in a square container with a step topography
Tenreiro, M.; Trieling, R.R.; Zavala Sansón, L.; Heijst, van G.J.F.
2013-01-01
The self-organization of confined, quasi-two-dimensional turbulent flows in a rotating square container with a step-like topography is investigated by means of laboratory experiments and numerical simulations based on a rigid lid, shallow-water formulation. The domain is divided by a bottom
Numerical Modelling of Non-Newtonian Fluid in a Rotational Cross-Flow MBR
DEFF Research Database (Denmark)
Bentzen, Thomas Ruby; Ratkovic, Nicolas Rios; Rasmussen, Michael R.
2011-01-01
Fouling is the main bottleneck of the widespread of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid crossflow velocity. In rotational cross-flow MBR systems, this is attained by the spinning of e.g. impellers. Val...
Sustained turbulence and magnetic energy in non-rotating shear flows
DEFF Research Database (Denmark)
Nauman, Farrukh; Blackman, Eric G.
2017-01-01
From numerical simulations, we show that non-rotating magnetohydrodynamic shear flows are unstable to finite amplitude velocity perturbations and become turbulent, leading to the growth and sustenance of magnetic energy, including large scale fields. This supports the concept that sustained...... magnetic energy from turbulence is independent of the driving mechanism for large enough magnetic Reynolds numbers....
Numerical Investigation of Monodisperse Granular Flow Through an Inclined Rotating Chute
Shirsath, Sushil S.; Padding, J.T.; Kuipers, J.A.M.; Peeters, Tim W.J.; Clercx, H.J.H.
2014-01-01
A discrete element model of spherical glass particles flowing down a rotating chute is validated against high quality experimental data. The simulations are performed in a corotating frame of reference, taking into account Coriolis and centrifugal forces. In view of future extensions aimed at
Electromagnetic interaction of a rotating plasma flow with a conducting mesh
International Nuclear Information System (INIS)
Ikehata, Takashi; Sato, Hirofumi; Iwaya, Tohru; Sato, Naoyuki; Tanabe, Toshio; Mase, Hiroshi
2001-01-01
The effect of a conducting mesh (floating) on the penetrating current (a fraction of discharge current flowing in the downstream across a magnetic field) and the rotational velocity has been investigated and results have been compared with Simpson's model. The velocity was independent of the conductance of the mesh contrary to Simpson's model since the mesh is floating in the present study. (author)
Modelling of granular flows through inclined rotating chutes using a discrete particle model
Shirsath, S.S.; Padding, J.T.; Clercx, H.J.H.; Kuipers, J.A.M.
2012-01-01
In blast furnaces, particles like coke, sinter and pellets enter from a hopper and are distributed on the burden surface by a rotating chute. Such particulate flows suffer occasionally from chocking and particle segregation at bottlenecks, which hinders efficient throughflow. To get a more
Energy Technology Data Exchange (ETDEWEB)
Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani [Department of Mathematics, Jagannath University, Dhaka-1100 (Bangladesh); Roy, Titob [Department of Mathematics, Vikarunnesa Nun School and College, Boshundhara, Dhaka (Bangladesh); Yanase, Shinichiro, E-mail: yanase@okayama-u.ac.jp [Department of Mechanical and Systems Engineering, Okayama University, Okayama 700-8530 (Japan)
2016-07-12
Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.
Energy Technology Data Exchange (ETDEWEB)
Lin, Ming-Han [Ta-Hwa Institute of Technology, Department of Automation Engineering, Hsinchu (Taiwan); Chen, Chin-Tai [Ta-Hwa Institute of Technology, Department of Industrial Engineering and Management, Hsinchu (Taiwan)
2006-01-01
This paper presents a numerical study of the effect of rotation on the formation of longitudinal vortices in mixed convection flow over a flat plate. The criterion on the position of marking the onset of longitudinal vortices is defined in this paper. The onset position characterized by the Goertler number G{sub {delta}} depends on the Grashof number, the rotation number Ro, the Prandtl number Pr and the wave number. The results show that negative rotation stabilizes the boundary layer flow on the surface. On the contrary, positive rotation destabilizes the flow. The numerical data are compared with the experimental results. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sato, T; Okimoto, K [Government Industrial Research Inst., Kyushu, Tosu, Saga (Japan); Yasutake, R [Koeiseiko Co. Ltd., Fukuoka (Japan)
1992-07-08
Applicability of the ceramic coating on the rotating disk was studied. In regard to the synthesis of Cu-based rapidly solidified powders, centrifugal atomization with molten Cu-24.6Sn was carried out using rotating disks sprayed with four kinds of sprayed ceramic coatings. It was found that atomization of Al203-40%TiO2 sprayed coating has been the best, and the yield ratio has been about 60 %. The melt temperature in case of Fe-based rapidly solidified metal powders, has risen above 1600[degree]C, and the required conditions for rotating disk have been very difficult to meet. The reason for it is thought that there has also been limitations regarding the functions of the characteristics like heat transfer, heat capacity, etc. Fe-24Cr-5Ni-1Mo 2 phase stainless steel powder has shown the most suitable trend among the seven kinds of disk materials examined for ZrO2 ceramic sprayed coatings. 6 refs., 5 figs., 2 tabs.
On the inverse Magnus effect for flow past a rotating cylinder
John, Benzi; Gu, Xiao-Jun; Barber, Robert W.; Emerson, David R.
2016-11-01
Flow past a rotating cylinder has been investigated using the direct simulation Monte Carlo method. The study focuses on the occurrence of the inverse Magnus effect under subsonic flow conditions. In particular, the variations in the coefficients of lift and drag have been investigated as a function of the Knudsen and Reynolds numbers. Additionally, a temperature sensitivity study has been carried out to assess the influence of the wall temperature on the computed aerodynamic coefficients. It has been found that both the Reynolds number and the cylinder wall temperature significantly affect the drag as well as the onset of lift inversion in the transition flow regime.
Reconstruction of 3D flow structures in a cylindrical cavity with a rotating lid
DEFF Research Database (Denmark)
Meyer, Knud Erik
is difficult to capture experimentally since the flow is fully three-dimensional and also varies in time. A measurement in a point or in a plane will by itself not give the full picture of the flow.Measurement with Particle Image Velocimetry (PIV) analyzed with Proper Orthogonal Decomposition (POD......) and that the presence of helical vortices can be detected. However, the interpretation of the resulting flow still is done with an element of guessing on whether a specific variation is caused by an actual time variation of a structure or is caused by the rotation of a three-dimensional structure.The present work...
Near-Wall Turbulence Modelling of Rotating and Curved Shear Flows
Energy Technology Data Exchange (ETDEWEB)
Pettersson, Bjoern Anders
1997-12-31
This thesis deals with verification and refinement of turbulence models within the framework of the Reynolds-averaged approach. It pays special attention to modelling the near-wall region, where the turbulence is strongly non-homogeneous and anisotropic. It also studies in detail the effects associated with an imposed rotation of the reference frame or streamline curvature. The objective with near-wall turbulence closure modelling is to formulate a set of equations governing single point turbulence statistics, which can be solved in the region of the flow which extends to the wall. This is in contrast to the commonly adopted wall-function approach in which the wall-boundary conditions are replaced by matching conditions in the logarithmic region. The near-wall models allow more flexibility by not requiring any such universal behaviour. Assessment of the novel elliptic relaxation approach to model the proximity of a solid boundary reveals an encouraging potential used in conjunction with second-moment and eddy-viscosity closures. The most natural level of closure modelling to predict flows affected by streamline curvatures or an imposed rotation of the reference frame is at the second-moment closure (SMC) level. Although SMCs naturally accounts for the effects of system rotation, the usual application of a scalar dissipation rate equation is shown to require ad hoc corrections in some cases in order to give good results. The elliptic relaxation approach is also used in conjunction with non-linear pressure-strain models and very encouraging results are obtained for rotating flows. Rotational induced secondary motions are vital to predicting the effects of system rotation. Some severe weaknesses of non-linear pressure-strain models are also indicated. Finally, a modelling methodology for anisotropic dissipation in nearly homogeneous turbulence are proposed. 84 refs., 56 figs., 16 tabs.
Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres
Zhou, Qiang; Fan, Liang-Shih
2015-07-01
Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.
Effects of fluid flow on heat transfer in large rotating electrical machines
International Nuclear Information System (INIS)
Lancial, Nicolas
2014-01-01
EDF operates a large number of electrical rotating machines in its electricity generation capacity. Thermal stresses which affect them can cause local heating, sufficient to damage their integrity. The present work contributes to provide methodologies for detecting hot spots in these machines, better understanding the topology of rotating flows and identifying their effects on heat transfer. Several experimental scale model were used by increasing their complexity to understand and validate the numerical simulations. A first study on a turbulent wall jet over a non-confined backward-facing step (half-pole hydro-generator) notes significant differences compared to results from confined case: both of them are present in an hydro-generator. A second study was done on a small confined rotating scale model to determinate the effects of a Taylor-Couette-Poiseuille on temperature distribution and position of hot spots on the heated rotor, by studying the overall flow regimes flow. These studies have helped to obtain a reliable method based on conjugate heat transfer (CHT) simulations. Another method, based on FEM coupled with the use of an inverse method, has been studied on a large model of hydraulic generator so as to solve the computation time issue of the first methodology. It numerically calculates the convective heat transfer from temperature measurements, but depends on the availability of experimental data. This work has also developed new no-contact measurement techniques as the use of a high-frequency pyrometer which can be applied on rotating machines for monitoring temperature. (author)
The Rolling Transition in a Granular Flow along a Rotating Wall
Directory of Open Access Journals (Sweden)
Aurélie Le Quiniou
2011-11-01
Full Text Available The flow of a dry granular material composed of spherical particles along a rotating boundary has been studied by the discrete element method (DEM. This type of flow is used, among others, as a process to spread particles. The flow consists of several phases. A compression phase along the rotating wall is followed by an elongation of the flow along the same boundary. Eventually, the particles slide or roll independently along the boundary. We show that the main motion of the flow can be characterized by a complex deformation rate of traction/compression and shear. We define numerically an effective friction coefficient of the flow on the scale of the continuum and show a strong decrease of this effective friction beyond a certain critical friction coefficient μ*. We correlate this phenomenon with the apparition of a new transition from a sliding regime to a rolling without sliding regime that we called the rolling transition; this dynamic transition is controlled by the value of the friction coefficient between the particle and the wall. We show that the spherical shape for the particles may represent an optimum for the flow in terms of energetic.
Methods of measurement signal acquisition from the rotational flow meter for frequency analysis
Directory of Open Access Journals (Sweden)
Świsulski Dariusz
2017-01-01
Full Text Available One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.
Grants, Ilmars; Gerbeth, Gunter
2010-07-01
The stability of a thermally stratified liquid metal flow is considered numerically. The flow is driven by a rotating magnetic field in a cylinder heated from above and cooled from below. The stable thermal stratification turns out to destabilize the flow. This is explained by the fact that a stable stratification suppresses the secondary meridional flow, thus indirectly enhancing the primary rotation. The instability in the form of Taylor-Görtler rolls is consequently promoted. These rolls can only be excited by finite disturbances in the isothermal flow. A sufficiently strong thermal stratification transforms this nonlinear bypass instability into a linear one reducing, thus, the critical value of the magnetic driving force. A weaker temperature gradient delays the linear instability but makes the bypass transition more likely. We quantify the non-normal and nonlinear components of this transition by direct numerical simulation of the flow response to noise. It is observed that the flow sensitivity to finite disturbances increases considerably under the action of a stable thermal stratification. The capabilities of the random forcing approach to identify disconnected coherent states in a general case are discussed.
Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma
International Nuclear Information System (INIS)
Yoshimura, Shinji; Tanaka, Masayoshi Y.
2008-01-01
The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)
Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case
Directory of Open Access Journals (Sweden)
Irina Carmen ANDREI
2014-06-01
Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.
Sánchez, Carolina Ramírez; Taurino, Antonietta; Bozzini, Benedetto
2016-01-01
This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement. PMID:28042491
Directory of Open Access Journals (Sweden)
Patrizia Bocchetta
2016-01-01
Full Text Available This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM and Atomic Force Microscope (AFM; (ii local electrical conductivity, as measured by Scanning Probe Microscopy (SPM; and (iii molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt. Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement.
Free-fall dynamics of a pair of rigidly linked disks
Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum
2018-03-01
We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.
The sound field of a rotating dipole in a plug flow.
Wang, Zhao-Huan; Belyaev, Ivan V; Zhang, Xiao-Zheng; Bi, Chuan-Xing; Faranosov, Georgy A; Dowell, Earl H
2018-04-01
An analytical far field solution for a rotating point dipole source in a plug flow is derived. The shear layer of the jet is modelled as an infinitely thin cylindrical vortex sheet and the far field integral is calculated by the stationary phase method. Four numerical tests are performed to validate the derived solution as well as to assess the effects of sound refraction from the shear layer. First, the calculated results using the derived formulations are compared with the known solution for a rotating dipole in a uniform flow to validate the present model in this fundamental test case. After that, the effects of sound refraction for different rotating dipole sources in the plug flow are assessed. Then the refraction effects on different frequency components of the signal at the observer position, as well as the effects of the motion of the source and of the type of source are considered. Finally, the effect of different sound speeds and densities outside and inside the plug flow is investigated. The solution obtained may be of particular interest for propeller and rotor noise measurements in open jet anechoic wind tunnels.
Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique
International Nuclear Information System (INIS)
Huang, S; Guo, J; Yang, F X
2013-01-01
In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects
Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder
Leslie, G. A.
2013-01-29
The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder is investigated. Specifically, we study \\'full-ring\\' solutions, corresponding to a ring of continuous, finite and non-zero thickness that extends all of the way around the cylinder. In particular, it is found that there is a critical solution corresponding to either a critical load above which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation speed below which no full-ring solution exists (if the load is prescribed). We describe the behaviour of the critical solution and, in particular, show that the critical flux, the critical load, the critical semi-width and the critical ring profile are all increasing functions of the rotation speed. In the limit of small rotation speed, the critical flux is small and the critical ring is narrow and thin, leading to a small critical load. In the limit of large rotation speed, the critical flux is large and the critical ring is wide on the upper half of the cylinder and thick on the lower half of the cylinder, leading to a large critical load. We also describe the behaviour of the non-critical full-ring solution and, in particular, show that the semi-width and the ring profile are increasing functions of the load but, in general, non-monotonic functions of the rotation speed. In the limit of large rotation speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that, while for most values of the rotation speed and the load the azimuthal velocity is in the same direction as the rotation of the cylinder, there is a region of parameter space close to the critical solution for sufficiently small rotation speed in which backflow occurs in a small region on the upward-moving side of the cylinder. © 2013
Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder
Leslie, G. A.; Wilson, S. K.; Duffy, B. R.
2013-01-01
The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder is investigated. Specifically, we study 'full-ring' solutions, corresponding to a ring of continuous, finite and non-zero thickness that extends all of the way around the cylinder. In particular, it is found that there is a critical solution corresponding to either a critical load above which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation speed below which no full-ring solution exists (if the load is prescribed). We describe the behaviour of the critical solution and, in particular, show that the critical flux, the critical load, the critical semi-width and the critical ring profile are all increasing functions of the rotation speed. In the limit of small rotation speed, the critical flux is small and the critical ring is narrow and thin, leading to a small critical load. In the limit of large rotation speed, the critical flux is large and the critical ring is wide on the upper half of the cylinder and thick on the lower half of the cylinder, leading to a large critical load. We also describe the behaviour of the non-critical full-ring solution and, in particular, show that the semi-width and the ring profile are increasing functions of the load but, in general, non-monotonic functions of the rotation speed. In the limit of large rotation speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that, while for most values of the rotation speed and the load the azimuthal velocity is in the same direction as the rotation of the cylinder, there is a region of parameter space close to the critical solution for sufficiently small rotation speed in which backflow occurs in a small region on the upward-moving side of the cylinder. © 2013 Cambridge
Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans
Zhu, Tao; Lallier-Daniels, Dominic; Sanjosé, Marlène; Moreau, Stéphane; Carolus, Thomas
2018-03-01
Noise from axial fans typically increases significantly as the tip clearance is increased. In addition to the broadband tip clearance noise at the design flow rate, narrowband humps also associated with the tip flow are observed in the far-field acoustic spectra at lower flow rate. In this study, both experimental and numerical methods are used to shed more light on the noise generation mechanism of this narrowband tip clearance noise and provide a unified description of this source. Unsteady aeroacoustic predictions with the Lattice-Boltzmann Method (LBM) are successfully compared with experiment. Such a validation allows using LBM data to conduct a detailed modal analysis of the pressure field for detecting rotating coherent flow structures which might be considered as noise sources. As previously found in ring fans the narrowband humps in the far-field noise spectra are found to be related to the tip clearance noise that is generated by an interaction of coherent flow structures present in the tip region with the leading edge of the impeller blades. The visualization of the coherent structures shows that they are indeed part of the unsteady tip clearance vortex structures. They are hidden in a complex, spatially and temporally inhomogeneous flow field, but can be recovered by means of appropriate filtering techniques. Their pressure trace corresponds to the so-called rotational instability identified in previous turbomachinery studies, which brings a unified picture of this tip-noise phenomenon for the first time.
Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder
International Nuclear Information System (INIS)
Park, Tae Jun; Lee, Eun Hee; Kim, Kyung Mo; Kim, Hong Pyo
2012-01-01
Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work
Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields
Energy Technology Data Exchange (ETDEWEB)
Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)
2015-04-22
It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be
MHD rotating flow and heat transfer through a channel with Hall effects
International Nuclear Information System (INIS)
Ghosh, Sushil Kumar
2016-01-01
The present investigation is the flow and heat transfer of a viscous fluid through a rotating channel about the vertical axis under the influence of transverse magnetic field. The linear temperature dependent density has been introduced along with the induced magnetic field in horizontal directions. To study the temperature distribution, the energy equation consisting of viscous dissipation and joule heating term is solved analytically. The velocity distribution in axial and vertical directions is found to be interesting such as the magnetic Reynolds number and the parameter appears due to buoyancy forces have a substantial contribution to influence the flow pattern. Also the results obtained in the study for magnetic induction variables as well as temperature distribution put forward some significant insight in the fluid flow and heat transfer. The important observation of the present study is that the temperature distribution takes the higher values in the vicinity of the upper wall and this happens due to the fact of buoyancy force and channel rotation. This is a key parameter to worm up or cool down the fluid in a useful purposes. - Highlights: • The important observation of the present study is that the temperature distribution takes the higher values in the vicinity of the upper wall and this happens due to the fact of buoyancy force and channel rotation. • Buoyancy is a key parameter to worm up or cool down the fluid in useful purposes. • It may be predicted that the effect of buoyancy force and magnetic induction force suppress the flow at the lower wall and the effect of the forces lost its potential at the layers near to the upper walls. • It may suggest that the bouncy effect has more prominent role in the fluid flow phenomena as well as heat transfer than magnetic induction and Lorentz force. • The rotation enhances the advantage of circulation of fluid in up and down and tries to make the heat balance within the layers. Our result is true
Shear flow driven counter rotating vortices in an inhomogeneous dusty magnetoplasma
Masood, W.; Mirza, Arshad M.; Ijaz, Aisha; Haque, Q.
2014-02-01
The coupling of Shukla-Varma (SV) and convective cell modes is discussed in the presence of non-Boltzmannian electron response and parallel equilibrium shear flow. In the linear case, a new dispersion relation is derived and analyzed. It is found that the coupled SV and convective cell modes destabilize in the presence of electron shear flow. On the other hand, in the nonlinear regime, it is shown that Shukla-Varma mode driven counter rotating vortices can be formed for the system under consideration. It is found that these vortices move slowly by comparison with the ion acoustic or electron drift-wave driven counter rotating vortices. The relevance of the present investigation with regard to space plasmas is also pointed out.
Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi
2018-04-01
A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.
A numerical study for off-centered stagnation flow towards a rotating disc
Directory of Open Access Journals (Sweden)
M. Heydari
2015-09-01
Full Text Available In this investigation, a semi-numerical method based on Bernstein polynomials for solving off-centered stagnation flow towards a rotating disc is introduced. This method expands the desired solutions in terms of a set of Bernstein polynomials over a closed interval and then makes use of the tau method to determine the expansion coefficients to construct approximate solutions. This method can satisfy boundary conditions at infinity. The properties of Bernstein polynomials are presented and are utilized to reduce the solution of governing nonlinear equations and their associated boundary conditions to the solution of algebraic equations. Graphical results are presented to investigate the influence of the rotation ratio α on the radial velocity, azimuthal velocity and the induced velocities. A comparative study with the previous results of viscous fluid flow in the literature is made.
Local instabilities in magnetized rotational flows: A short-wavelength approach
Kirillov, Oleg N.; Stefani, Frank; Fukumoto, Yasuhide
2014-01-01
We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the cas...
International Nuclear Information System (INIS)
Torbett, M.V.
1984-01-01
A general mechanism is presented for generating pressure-driven winds that are intrinsically bipolar from objects undergoing disk accretion. The energy librated in a boundary layer shock as the disk matter impacts the central object is shown to be sufficient to eject a fraction βapprox.10 -2 to 10 -3 of the accreted mass. These winds are driven by a mechanism that accelerates the flow perpendicular to the plane of the disk and can therefore account for the bipolar geometry of the mass loss observed near young stars. The mass loss contained in these winds is comparable to that inferred for young stars. Thus, disk accretion-driven winds may constitute the T Tauri phase of stellar evolution. This mechanism is generally applicable, and thus massive pre-main-sequence objects as well as cataclysmic variables at times of enhanced accretion are predicted to eject bipolar outflows as well. Unmagnetized accreting neutron stas are also expected to eject bipolar flows. Since this mechanism requires stellar surfaces, however, it will not operate in disk accretion onto black holes
Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang
2018-04-01
In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.
Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa
2018-05-01
The aim of this research work is to find the EFGM solutions of the unsteady magnetohydromagnetic natural convection heat transfer flow of a rotating, incompressible, viscous, Boussinesq fluid is presented in this study in the presence of radiative heat transfer. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. Numerical results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t is increased. These findings are in quantitative agreement with earlier reported studies.
Entropy Generation in a Rotating Couette Flow with Suction/Injection
Directory of Open Access Journals (Sweden)
S. Das
2015-05-01
Full Text Available The present paper is concerned with an analytical study of entropy generation in viscous incompressible Couette flow with suction/injection in a rotating frame of reference. One of the plate is held at rest and the other one moves with an uniform velocity.The flow induced by the moving plate. An exact solution of governing equations has been obtained in closed form. The entropy generation number and the Bejan number are also obtained. The influences of each of the governing parameters on velocity, temperature, entropy generation and Bejan number are discussed with the help of graphs.
Droplet rotation model apply in steam uniform flow and gravitational field
International Nuclear Information System (INIS)
Zhang Jinyi; Bo Hanliang; Sun Yuliang; Wang Dazhong
2012-01-01
The mechanism droplet movement behavior and the qualitative description of droplet trajectory in the steam uniform flow field in the gravitational field were researched with droplet rotation model. According to the mechanism of gravitational field and uniform flow fields, the effects on droplets movement were analyzed and the importance of lift forces was also discussed. Finally, a general trajectory and mechanism of the droplets movement was derived which lays the groundwork for the qualitative analysis of the single-drop model and could be general enough to be used in many applications. (authors)
Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight
Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.
2017-12-01
Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.
CFD Modeling of Flow and Ion Exchange Kinetics in a Rotating Bed Reactor System
DEFF Research Database (Denmark)
Larsson, Hilde Kristina; Schjøtt Andersen, Patrick Alexander; Byström, Emil
2017-01-01
A rotating bed reactor (RBR) has been modeled using computational fluid dynamics (CFD). The flow pattern in the RBR was investigated and the flow through the porous material in it was quantified. A simplified geometry representing the more complex RBR geometry was introduced and the simplified...... model was able to reproduce the main characteristics of the flow. Alternating reactor shapes were investigated, and it was concluded that the use of baffles has a very large impact on the flows through the porous material. The simulations suggested, therefore, that even faster reaction rates could...... be achieved by making the baffles deeper. Two-phase simulations were performed, which managed to reproduce the deflection of the gas–liquid interface in an unbaffled system. A chemical reaction was implemented in the model, describing the ion-exchange phenomena in the porous material using four different...
Calibrationless rotating Lorentz-force flowmeters for low flow rate applications
Hvasta, M. G.; Dudt, D.; Fisher, A. E.; Kolemen, E.
2018-07-01
A ‘weighted magnetic bearing’ has been developed to improve the performance of rotating Lorentz-force flowmeters (RLFFs). Experiments have shown that the new bearing reduces frictional losses within a double-sided, disc-style RLFF to negligible levels. Operating such an RLFF under ‘frictionless’ conditions provides two major benefits. First, the steady-state velocity of the RLFF magnets matches the average velocity of the flowing liquid at low flow rates. This enables an RLFF to make accurate volumetric flow measurements without any calibration or prior knowledge of the fluid properties. Second, due to minimized frictional losses, an RLFF is able to measure low flow rates that cannot be detected when conventional, high-friction bearings are used. This paper provides a brief background on RLFFs, gives a detailed description of weighted magnetic bearings, and compares experimental RLFF data to measurements taken with a commercially available flowmeter.
Czech Academy of Sciences Publication Activity Database
Deuring, P.; Kračmar, S.; Nečasová, Šárka
2017-01-01
Roč. 68, č. 1 (2017), č. článku 16. ISSN 0044-2275 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : asymptotic profile * Pointwise decay * rotating body * stationary incompressible Navier–Stokes system Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.687, year: 2016 http://link.springer.com/article/10.1007%2Fs00033-016-0760-x
Czech Academy of Sciences Publication Activity Database
Deuring, P.; Kračmar, S.; Nečasová, Šárka
2017-01-01
Roč. 68, č. 1 (2017), č. článku 16. ISSN 0044-2275 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : asymptotic profile * Pointwise decay * rotating body * stationary incompressible Navier–Stokes system Subject RIV: BA - General Math ematics OBOR OECD: Pure math ematics Impact factor: 1.687, year: 2016 http://link.springer.com/article/10.1007%2Fs00033-016-0760-x
Directory of Open Access Journals (Sweden)
Jongyul Kim
2017-05-01
Full Text Available We propose a position control method for a helical magnetic robot (HMR that uses the rotating frequency of the external rotating magnetic field (ERMF to minimize the position fluctuation of the HMR caused by pulsatile flow in human blood vessels. We prototyped the HMR and conducted several experiments in pseudo blood vessel environments with a peristaltic pump. We experimentally obtained the relation between the flow rate and the rotating frequency of the ERMF required to make the HMR stationary in a given pulsatile flow. Then we approximated the pulsatile flow by Fourier series and applied the required ERMF rotating frequency to the HMR in real time. Our proposed position control method drastically reduced the position fluctuation of the HMR under pulsatile flow.
Directory of Open Access Journals (Sweden)
Sharf Abdusalam M.
2014-03-01
Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.
Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo
Takahashi, F.
2011-12-01
Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.
A numerical study on the flow development around a rotating square-sectioned U-Bend( II )
International Nuclear Information System (INIS)
Lee, Gong Hee; Baek, Je Hyun
2002-01-01
The present study investigates in detail the combined effects of the Coriolis force and centrifugal force on the development of turbulent flows in a square-sectioned U-bend rotating about an axis parallel to the center of bend curvature. When a viscous fluid flows through a curved region of U-bend, two types of secondary flow occur. One is caused by the Coriolis force due to the rotation of U-bend and the other by the centrifugal force due to the curvature of U-bend. For positive rotation, where the rotation is in the same direction as that of the main flow, both the Coriolis force and the centrifugal force act radially outwards. Therefore, the flow structure is qualitatively similar to that observed in a stationary curved duct. On the other hand, under negative rotation, where these two forces act in opposite direction, more complex flow fields can be observed depending on the relative magnitudes of the forces. Under the condition that the value of Rossby number and curvature ratio is large, the flow field in a rotating U-bend can be represented by two dimensionless parameters : K LC = Re 1/4 / √ λ and a body force ratio F= λ/Ro. Here, K TC has the same dynamical meaning as K LC = Re/√ λ for laminar flow
Habib, Komal; Parajuly, Keshav; Wenzel, Henrik
2015-10-20
Recovery of resources, in particular, metals, from waste flows is widely seen as a prioritized option to reduce their potential supply constraints in the future. The current waste electrical and electronic equipment (WEEE) treatment system is more focused on bulk metals, where the recycling rate of specialty metals, such as rare earths, is negligible compared to their increasing use in modern products, such as electronics. This study investigates the challenges in recovering these resources in the existing WEEE treatment system. It is illustrated by following the material flows of resources in a conventional WEEE treatment plant in Denmark. Computer hard disk drives (HDDs) containing neodymium-iron-boron (NdFeB) magnets were selected as the case product for this experiment. The resulting output fractions were tracked until their final treatment in order to estimate the recovery potential of rare earth elements (REEs) and other resources contained in HDDs. The results further show that out of the 244 kg of HDDs treated, 212 kg comprising mainly of aluminum and steel can be finally recovered from the metallurgic process. The results further demonstrate the complete loss of REEs in the existing shredding-based WEEE treatment processes. Dismantling and separate processing of NdFeB magnets from their end-use products can be a more preferred option over shredding. However, it remains a technological and logistic challenge for the existing system.
Directory of Open Access Journals (Sweden)
Nemati Hasan
2011-01-01
Full Text Available A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using Multi-Relaxation-Time Lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1 and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number and Nusselt numbers are studied.
Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow
Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph
2016-04-01
We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most
International Nuclear Information System (INIS)
Jaouen, F.; Goellner, V.; Lefèvre, M.; Herranz, J.; Proietti, E.; Dodelet, J.P.
2013-01-01
In the past three years, two novel synthesis methods for non-precious metal catalysts resulting in a breakthrough of their activity and performance at the cathode of the proton-exchange membrane fuel cell (PEMFC) have been reported by the group of Prof. Dodelet. While the activity of these novel Fe-based catalysts for the oxygen reduction reaction is very high in PEMFC, our preliminary activity measurements with the rotating disk electrode (RDE) technique on one of them showed an activity being a factor 30–100 lower than the one measured in PEMFC at 80 °C. The present work explains to a large extent this huge difference. Two Fe-N-C catalysts synthesized via our novel approaches and one Fe-N-C catalyst synthesized via our classical approach were investigated in RDE and PEMFC. In both systems, the effect of the ink formulation (Nafion-to-catalyst ratio) was investigated. Optimization of the RDE ink formulation explains a factor between 5 and 10 in the two-decade gap mentioned above. Then, the effect of temperature in the RDE system was investigated. An increase from 20 to 80 °C was found to result in a theoretical maximum twofold increase in activity. However, in practice, decreased O 2 solubility with increased temperature cancels this effect. After taking into account these two parameters, a difference in ORR activity between RDE and PEMFC of ca a factor five still remained for one of the two novel Fe-N-C catalysts investigated here. The lower initial activity measured in RDE for this catalyst is shown to be due to the fast adsorption of anions (HSO 4 − ) from the liquid H 2 SO 4 electrolyte on protonated nitrogen atoms (NH + ) found on its surface. The phenomenon of anion adsorption and associated decreased ORR activity also applies to the other novel Fe-N-C catalyst, but is slower and does not immediately occur in RDE.
Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.
2017-12-01
Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.
Elastic unloading of a disk after plastic deformation by a circular heat source
International Nuclear Information System (INIS)
Gamer, U.; Mack, W.
1987-01-01
Subject of the investigation is the transient stress distribution in an elastic-plastic disk acted upon by a circular heat source. The disk serves as a mechanical model of the rotating anode of an X-ray-tube. The calculation is based on Tresca's yield criterion and the flow rule associatd to it. During heating, a plastic region spreads around the source, which is absorbed by an unloaded zone after the removal of the source. (orig.) [de
Breakdown of the large-scale circulation in $\\Gamma = 1/2$ rotating Rayleigh-Bénard flow
Stevens, Richard Johannes Antonius Maria; Clercx, H.J.H.; Lohse, Detlef
2012-01-01
Experiments and simulations of rotating Rayleigh-Bénard convection in cylindrical samples have revealed an increase in heat transport with increasing rotation rate. This heat transport enhancement is intimately related to a transition in the turbulent flow structure from a regime dominated by a
Shah, Zahir; Islam, Saeed; Gul, Taza; Bonyah, Ebenezer; Altaf Khan, Muhammad
2018-06-01
The current research aims to examine the combined effect of magnetic and electric field on micropolar nanofluid between two parallel plates in a rotating system. The nanofluid flow between two parallel plates is taken under the influence of Hall current. The flow of micropolar nanofluid has been assumed in steady state. The rudimentary governing equations have been changed to a set of differential nonlinear and coupled equations using suitable similarity variables. An optimal approach has been used to acquire the solution of the modelled problems. The convergence of the method has been shown numerically. The impact of the Skin friction on velocity profile, Nusslet number on temperature profile and Sherwood number on concentration profile have been studied. The influences of the Hall currents, rotation, Brownian motion and thermophoresis analysis of micropolar nanofluid have been mainly focused in this work. Moreover, for comprehension the physical presentation of the embedded parameters that is, coupling parameter N1 , viscosity parameter Re , spin gradient viscosity parameter N2 , rotating parameter Kr , Micropolar fluid constant N3 , magnetic parameter M , Prandtl number Pr , Thermophoretic parameter Nt , Brownian motion parameter Nb , and Schmidt number Sc have been plotted and deliberated graphically.
On the phase lag of turbulent dissipation in rotating tidal flows
Zhang, Qianjiang; Wu, Jiaxue
2018-03-01
Field observations of rotating tidal flows in a shallow tidally swept sea reveal that a notable phase lag of both shear production and turbulent dissipation increases with height above the seafloor. These vertical delays of turbulent quantities are approximately equivalent in magnitude to that of squared mean shear. The shear production approximately equals turbulent dissipation over the phase-lag column, and thus a main mechanism of phase lag of dissipation is mean shear, rather than vertical diffusion of turbulent kinetic energy. By relating the phase lag of dissipation to that of the mean shear, a simple formulation with constant eddy viscosity is developed to describe the phase lag in rotating tidal flows. An analytical solution indicates that the phase lag increases linearly with height subjected to a combined effect of tidal frequency, Coriolis parameter and eddy viscosity. The vertical diffusion of momentum associated with eddy viscosity produces the phase lag of squared mean shear, and resultant delay of turbulent quantities. Its magnitude is inhibited by Earth's rotation. Furthermore, a theoretical formulation of the phase lag with a parabolic eddy viscosity profile can be constructed. A first-order approximation of this formulation is still a linear function of height, and its magnitude is approximately 0.8 times that with constant viscosity. Finally, the theoretical solutions of phase lag with realistic viscosity can be satisfactorily justified by realistic phase lags of dissipation.
Mahanthesh, B.; Gireesha, B. J.; Shashikumar, N. S.; Hayat, T.; Alsaedi, A.
2018-06-01
Present work aims to investigate the features of the exponential space dependent heat source (ESHS) and cross-diffusion effects in Marangoni convective heat mass transfer flow due to an infinite disk. Flow analysis is comprised with magnetohydrodynamics (MHD). The effects of Joule heating, viscous dissipation and solar radiation are also utilized. The thermal and solute field on the disk surface varies in a quadratic manner. The ordinary differential equations have been obtained by utilizing Von Kármán transformations. The resulting problem under consideration is solved numerically via Runge-Kutta-Fehlberg based shooting scheme. The effects of involved pertinent flow parameters are explored by graphical illustrations. Results point out that the ESHS effect dominates thermal dependent heat source effect on thermal boundary layer growth. The concentration and temperature distributions and their associated layer thicknesses are enhanced by Marangoni effect.
Horn, S.; Schmid, P. J.; Aurnou, J. M.
2016-12-01
The Earth's metal core acts as a dynamo whose efficiency in generating and maintaining the magnetic field is essentially determined by the rotation rate and the convective motions occurring in its outer liquid part. For the description of the primary physics in the outer core the idealized system of rotating Rayleigh-Bénard convection is often invoked, with the majority of studies considering only working fluids with Prandtl numbers of Pr ≳ 1. However, liquid metals are characterized by distinctly smaller Prandtl numbers which in turn result in an inherently different type of convection. Here, we will present results from direct numerical simulations of rapidly rotating convection in a fluid with Pr ≈ 0.025 in cylindrical containers and Ekman numbers as low as 5 × 10-6. In this system, the Coriolis force is the source of two types of inertial modes, the so-called wall modes, that also exist at moderate Prandtl numbers, and cylinder-filling oscillatory modes, that are a unique feature of small Prandtl number convection. The obtained flow fields were analyzed using the Dynamic Mode Decomposition (DMD). This technique allows to extract and identify the structures that govern the dynamics of the system as well as their corresponding frequencies. We have investigated both the regime where the flow is purely oscillatory and the regime where wall modes and oscillatory modes co-exist. In the purely oscillatory regime, high and low frequency oscillatory modes characterize the flow. When both types of modes are present, the DMD reveals that the wall-attached modes dominate the flow dynamics. They precess with a relatively low frequency in retrograde direction. Nonetheless, also in this case, high frequency oscillations have a significant contribution.
Directory of Open Access Journals (Sweden)
Wei Tong
2001-01-01
Full Text Available An important characteristic of wall rotating-driven flows is the tendency of fluid with high angular momentum to be flung radially outward. For a generator, the rotor rotating-driven flow, usually referred to as the rotating pumping flow, plays an important role in rotor winding cooling. In this study, three-dimensional numerical analyzes are presented for turbulent pumping flow in the inter-coil rotor cavity and short cooling grooves of a generator. Calculations of the flow field and the mass flux distribution through the grooves were carried out in a sequence of four related cases Under an isothermal condition: (a pumping flow, which is the self-generated flow resulted from the rotor pumping action; (b mixing flow, which is the combination of the ventilating flow and pumping flow, under a constant density condition; (c mixing flow, with density modeled by the ideal gas law; and (d mixing flow, with different pressure differentials applied on the system. The comparisons of the results from these cases can provide useful information regarding the impacts of the ventilating flow, gas density, and system pressure differential on the mass flux distribution in the short cooling grooves. Results show that the pumping effect is strong enough to generate the cooling flow for rotor winding cooling. Therefore, for small- or mid-size generators ventilation fans may be eliminated. It also suggests that increasing the chimney dimension can improve the distribution uniformity of mass flux through the cooling grooves.
The effects of curvature on the flow field in rapidly rotating gas centrifuges
International Nuclear Information System (INIS)
Wood, H.G.; Jordan, J.A.
1984-01-01
The effects of curvature on the fluid dynamics of rapidly rotating gas centrifuges are studied. A governing system of a linear partial differential equation and boundary conditions is derived based on a linearization of the equations for viscous compressible flow. This system reduces to the Onsager pancake model if the effects of curvature are neglected. Approximations to the solutions of the governing equations with and without curvature terms are obtained via a finite-element method. Two examples are considered: first where the flow is driven by a thermal gradient at the wall of the centrifuge, and then for the flow being driven by the introduction and removal of mass through the ends of the centrifuge. Comparisons of the results obtained show that, especially for the second example, the inclusion of the terms due to curvature in the model can have an appreciable effect on the solution. (author)
Unsteady magnetohydrodynamics mixed convection flow in a rotating medium with double diffusion
Energy Technology Data Exchange (ETDEWEB)
Jiann, Lim Yeou; Ismail, Zulkhibri; Khan, Ilyas; Shafie, Sharidan [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)
2015-05-15
Exact solutions of an unsteady Magnetohydrodynamics (MHD) flow over an impulsively started vertical plate in a rotating medium are presented. The effects of thermal radiative and thermal diffusion on the fluid flow are also considered. The governing equations are modelled and solved for velocity, temperature and concentration using Laplace transforms technique. Expressions of velocity, temperature and concentration profiles are obtained and their numerical results are presented graphically. Skin friction, Sherwood number and Nusselt number are also computed and presented in tabular forms. The determined solutions can generate a large class of solutions as special cases corresponding to different motions with technical relevance. The results obtained herein may be used to verify the validation of obtained numerical solutions for more complicated fluid flow problems.
Temporal flow instability for Magnus-Robins effect at high rotation rates
Sengupta, T. K.; Kasliwal, A.; de, S.; Nair, M.
2003-06-01
The lift and drag coefficients of a circular cylinder, translating and spinning at a supercritical rate is studied theoretically to explain the experimentally observed violation of maximum mean lift coefficient principle, that was proposed heuristically by Prandtl on the basis of inviscid flow model. It is also noted experimentally that flow past a rotating and translating cylinder experiences temporal instability-a fact not corroborated by any theoretical studies so far. In the present paper we report very accurate solution of Navier-Stokes equation that displays the above-mentioned instability and the violation of the maximum limit. The calculated lift coefficient exceeds the limit of /4π, instantaneously as well as in time-averaged sense. The main purpose of the present paper is to explain the observed temporal instability sequence in terms of a new theory of instability based on full Navier-Stokes equation that does not require making any assumption about the flow field, unlike other stability theories.
Fallback disks & magnetars: prospects & possibilities
Alpar, M. A.
Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth which along with the initial rotation rate and dipole and higher multipole magnetic moments determines the evolution of neutron stars and the categories into which they fall This talk reviews the strengths and difficulties of fallback disk models in explaining properties of isolated neutron stars of different categories Evidence for and observational limits on fallback disks will also be discussed
Wall shear stress from a rotating cylinder in cross flow using the electrochemical technique
International Nuclear Information System (INIS)
Labraga, L.; Bourabaa, N.; Berkah, T.
2002-01-01
The wall shear rate from a rotating cylinder in a uniform flow was measured with flush-mounted electrochemical mass transfer probes. The experiments were performed using two rectangular electrodes in a sandwich arrangement. Initially, the frequency response of that probe was numerically studied using an inverse mass transfer method in order to restore the whole wall shear stress in the time domain starting from the measured transfer coefficients given by the split probe. The experiments were performed in the range of velocity ratios 0 4, points of zero shear stress on the rotating cylinder vanish, which is in fact consistent with the previous arguments that the cylinder is surrounded by a set of closed streamlines. This experimental study shows that, when their dynamic behaviour is known, the electrochemical probes are able to sense complex fine structures not observed up to now by previous analytical, numerical or experimental methods, even when non-linear effects are not negligible. (orig.)
Unsteady flow field in a mini VAWT with relative rotation blades: analysis of temporal results
International Nuclear Information System (INIS)
Bayeul-Lainé, A C; Simonet, S; Bois, G
2013-01-01
The present wind turbine is a small one which can be used on roofs or in gardens. This turbine has a vertical axis. Each turbine blade combines a rotating movement around its own axis and around the main rotor axis. Due to this combination of movements, flow around this turbine is highly unsteady and needs to be modelled by unsteady calculation. The present work is an extended study starting in 2009. The benefits of combined rotating blades have been shown. The performance coefficient of this kind of turbine is very good for some blade stagger angles. Spectral analysis of unsteady results on specific points in the domain and temporal forces on blades was already presented for elliptic blades. The main aim here is to compare two kinds of blades in case of the best performances
Measurement of the translation and rotation of a sphere in fluid flow
Barros, Diogo; Hiltbrand, Ben; Longmire, Ellen K.
2018-06-01
The problem of determining the translation and rotation of a spherical particle moving in fluid flow is considered. Lagrangian tracking of markers printed over the surface of a sphere is employed to compute the center motion and the angular velocity of the solid body. The method initially calculates the sphere center from the 3D coordinates of the reconstructed markers, then finds the optimal rotation matrix that aligns a set of markers tracked at sequential time steps. The parameters involved in the experimental implementation of this procedure are discussed, and the associated uncertainty is estimated from numerical analysis. Finally, the proposed methodology is applied to characterize the motion of a large spherical particle released in a turbulent boundary layer developing in a water channel.
Fluorescence Imaging of Rotational and Vibrational Temperature in a Shock Tunnel Nozzle Flow
Palma, Philip C.; Danehy, Paul M.; Houwing, A. F. P.
2003-01-01
Two-dimensional rotational and vibrational temperature measurements were made at the nozzle exit of a free-piston shock tunnel using planar laser-induced fluorescence. The Mach 7 flow consisted predominantly of nitrogen with a trace quantity of nitric oxide. Nitric oxide was employed as the probe species and was excited at 225 nm. Nonuniformities in the distribution of nitric oxide in the test gas were observed and were concluded to be due to contamination of the test gas by driver gas or cold test gas.The nozzle-exit rotational temperature was measured and is in reasonable agreement with computational modeling. Nonlinearities in the detection system were responsible for systematic errors in the measurements. The vibrational temperature was measured to be constant with distance from the nozzle exit, indicating it had frozen during the nozzle expansion.
Mathematical modeling and exact solutions to rotating flows of a Burgers' fluid
International Nuclear Information System (INIS)
Hayat, T.
2005-12-01
The aim of this study is to provide the modeling and exact analytic solutions for hydromagnetic oscillatory rotating flows of an incompressible Burgers' fluid bounded by a plate. The governing time-dependent equation for the Burgers' fluid is different than those from the Navier-Stokes' equation. The entire system is assumed to rotate around an axis normal to the plate. The governing equations for this investigation are solved analytically for two physical problems. The solutions for the three cases, when the two times angular velocity is greater than the frequency of oscillation or it is smaller than the frequency or it is equal to the frequency (resonant case), are discussed in second problem. In Burgers' fluid, it is also found that hydromagnetic solution in the resonant case satisfies the boundary condition at infinity. Moreover, the obtained analytical results reduce to several previously published results as the special cases. (author)
Verheijen, Marc A. W.; Bershady, Matthew A.; Swaters, Rob A.; Andersen, David R.; Westfall, Kyle B.; de Jong, Roelof Sybe
2007-01-01
Little is known about the content and distribution of dark matter in spiral galaxies. To break the degeneracy in galaxy rotation curve decompositions, which allows a wide range of dark matter halo density profiles, an independent measure of the mass surface density of stellar disks is needed. Here,
Effect of wall conductances on hydromagnetic flow and heat transfer in a rotating channel
International Nuclear Information System (INIS)
Mazumder, B.S.
1977-01-01
Wall conductance effects on the hydromagnetic flow and heat transfer between two parallel plates in a rotating frame of reference has been studied when the liquid is permeated by a transverse magnetic field. An exact solution of the governing equation has been obtained. It is found that the velocity current density and the temperature depend only on the sum of the wall conductances phi 1 + phi 2 = phi but magnetic field depends on the individual values of phi 1 and phi 2 where phi 1 and phi 2 are respectively the wall conductance ratios of the upper and lower walls. (Auth.)
Flow of Giesekus viscoelastic fluid in a concentric annulus with inner cylinder rotation
International Nuclear Information System (INIS)
Ravanchi, Maryam Takht; Mirzazadeh, Mahmoud; Rashidi, Fariborz
2007-01-01
An approximate analytical solution is derived for the steady state, purely tangential flow of a viscoelastic fluid obeying the Giesekus constitutive equation in a concentric annulus with inner cylinder rotation. An approximation is used for the estimation of radial normal stress. The effect of Weissenberg number (We), radius ratio (κ) and mobility factor (α) on velocity distribution and fRe are investigated. The results show that the velocity gradient near the inner cylinder increases as the fluid elasticity increases. The results also show that fRe decreases with increasing fluid elasticity
Effects of curvature on rarefied gas flows between rotating concentric cylinders
Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.
2013-05-01
The gas flow between two concentric rotating cylinders is considered in order to investigate non-equilibrium effects associated with the Knudsen layers over curved surfaces. We investigate the nonlinear flow physics in the near-wall regions using a new power-law (PL) wall-scaling approach. This PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. We also report new direct simulation Monte Carlo results covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Our simulation data are compared with both the classical slip flow theory and the PL model, and we find that non-equilibrium effects are not only dependent on Knudsen number and accommodation coefficient but are also significantly affected by the surface curvature. The relative merits and limitations of both theoretical models are explored with respect to rarefaction and curvature effects. The PL model is able to capture some of the nonlinear trends associated with Knudsen layers up to the early transition flow regime. The present study also illuminates the limitations of classical slip flow theory even in the early slip flow regime for higher curvature test cases, although the model does exhibit good agreement throughout the slip flow regime for lower curvature cases. Torque and velocity profile comparisons also convey that a good prediction of integral flow properties does not necessarily guarantee the accuracy of the theoretical model used, and it is important to demonstrate that field variables are also predicted satisfactorily.
Kinematic morphology of large-scale structure: evolution from potential to rotational flow
International Nuclear Information System (INIS)
Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L.
2014-01-01
As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.
Kinematic morphology of large-scale structure: evolution from potential to rotational flow
Energy Technology Data Exchange (ETDEWEB)
Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)
2014-09-20
As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.
Energy Technology Data Exchange (ETDEWEB)
Fiscal-Ladino, Jhon A.; Obando-Ceballos, Mónica; Rosero-Moreano, Milton [Grupo de Investigación en Cromatografía y Técnicas Afines GICTA, Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales (Colombia); Montaño, Diego F.; Cardona, Wilson; Giraldo, Luis F. [Química de Plantas Colombianas, Instituto de Química, Escuela de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, A.A, 1226, Medellín (Colombia); Richter, Pablo, E-mail: prichter@ciq.uchile.cl [Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago (Chile)
2017-02-08
Montmorillonite (MMT) clays were modified by the intercalation into their galleries of ionic liquids (IL) based on imidazolium quaternary ammonium salts. This new eco-materials exhibited good features for use as a sorptive phase in the extraction of low-polarity analytes from aqueous samples. Spectroscopic analyses of the modified clays were conducted and revealed an increase in the basal spacing and a shifting of the reflection plane towards lower values as a consequence of the effective intercalation of organic cations into the MMT structure. The novel sorbent developed herein was assayed as the sorptive phase in rotating-disk sorptive extraction (RDSE), using polychlorinated biphenyls (PCBs), representative of low-polarity pollutants, as model analytes. The final determination was made by gas chromatography with electron capture detection. Among the synthetized sorptive phases, the selected system for analytical purposes consisted of MMT modified with the 1-hexadecyl-3-methylimidazolium bromide (HDMIM-Br) IL. Satisfactory analytical features were achieved using a sample volume of 5 mL: the relative recoveries from a wastewater sample were higher than 80%, the detection limits were between 3 ng L{sup −1} and 43 ng L{sup −1}, the precision (within-run precision) expressed as the relative standard deviation ranged from 2% to 24%, and the enrichment factors ranged between 18 and 28. Using RDSE, the extraction efficiency achieved for the selected MMT-HDMIM-Br phase was compared with other commercial solid phases/supports, such as polypropylene, polypropylene with 1-octanol (as a supported liquid membrane), octadecyl (C18) and octyl (C8), and showed the highest response for all the studied analytes. Under the optimized extraction conditions, this new device was applied in the analysis of the influent of a wastewater treatment plant in Santiago (Chile), demonstrating its applicability through the good recoveries and precision achieved with real samples
Flow field investigations in rotating facilities by means of stationary PIV systems
International Nuclear Information System (INIS)
Armellini, A; Mucignat, C; Casarsa, L; Giannattasio, P
2012-01-01
The flow field inside rotating test sections can be investigated by means of particle image velocimetry (PIV) operated in the phase-locked mode. With this experimental approach, the measurement system is kept fixed and it is synchronized with the periodical passage of the test section. Therefore, the direct output of the PIV measurements is the absolute velocity field, while the relative one is indirectly obtained from proper data processing that relies on accurate knowledge of the peripheral velocity field. This work provides an uncertainty analysis about the evaluation of the peripheral displacement field in phase-locked PIV measurements. The analysis leads to the detection of the levels of accuracy required in the estimation of both the angular velocity and the position of the center of rotation to ensure correct evaluation of the peripheral displacement field. In this regard, a simple methodology is proposed to evaluate the center of rotation position with an accuracy below 1 px. Finally, a procedure to pre-process the PIV images by subtracting the peripheral displacement is described. The advantages of its implementation are highlighted by the comparison with the performance of a more standard methodology where the peripheral field is subtracted from the absolute velocity field and not directly from the PIV raw data
Analysis of high-speed rotating flow inside gas centrifuge casing
Pradhan, Sahadev
2017-11-01
The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.
Instability modes on a solid-body-rotation flow in a finite-length pipe
Feng, Chunjuan; Liu, Feng; Rusak, Zvi; Wang, Shixiao
2017-09-01
Numerical solutions of the incompressible Navier-Stokes equations are obtained to study the time evolution of both axisymmetric and three-dimensional perturbations to a base solid-body-rotation flow in a finite-length pipe with non-periodic boundary conditions imposed at the pipe inlet and outlet. It is found that for a given Reynolds number there exists a critical swirl number beyond which the initial perturbations grow, in contrast to the solid-body rotation flow in an infinitely-long pipe or a finite-length pipe with periodic inlet and exit boundary conditions for which the classical Kelvin analysis and Rayleigh stability criterion affirm neutrally stable for all levels of swirl. This paper uncovers for the first time the detailed evolution of the perturbations in both the axisymmetric and three-dimensional situations. The computations reveal a linear growth stage of the perturbations with a constant growth rate after a brief initial period of decay of the imposed initial perturbations. The fastest growing axisymmetric and three-dimensional instability modes and the associated growth rates are identified numerically for the first time. The computations show that the critical swirl number increases and the growth rate of instability decreases at the same swirl number with decreasing Reynolds number. The growth rate of the axisymmetric mode at high Reynolds number agrees well with previous stability theory for inviscid flow. More importantly, three-dimensional simulations uncover that the most unstable mode is the spiral type m = 1 mode, which appears at a lower critical swirl number than that for the onset of the axisymmetric mode. This spiral mode grows faster than the unstable axisymmetric mode at the same swirl. Moreover, the computations reveal that after the linear growing stage of the perturbation the flow continues to evolve nonlinearly to a saturated axisymmetric vortex breakdown state.
Instability modes on a solid-body-rotation flow in a finite-length pipe
Directory of Open Access Journals (Sweden)
Chunjuan Feng
2017-09-01
Full Text Available Numerical solutions of the incompressible Navier-Stokes equations are obtained to study the time evolution of both axisymmetric and three-dimensional perturbations to a base solid-body-rotation flow in a finite-length pipe with non-periodic boundary conditions imposed at the pipe inlet and outlet. It is found that for a given Reynolds number there exists a critical swirl number beyond which the initial perturbations grow, in contrast to the solid-body rotation flow in an infinitely-long pipe or a finite-length pipe with periodic inlet and exit boundary conditions for which the classical Kelvin analysis and Rayleigh stability criterion affirm neutrally stable for all levels of swirl. This paper uncovers for the first time the detailed evolution of the perturbations in both the axisymmetric and three-dimensional situations. The computations reveal a linear growth stage of the perturbations with a constant growth rate after a brief initial period of decay of the imposed initial perturbations. The fastest growing axisymmetric and three-dimensional instability modes and the associated growth rates are identified numerically for the first time. The computations show that the critical swirl number increases and the growth rate of instability decreases at the same swirl number with decreasing Reynolds number. The growth rate of the axisymmetric mode at high Reynolds number agrees well with previous stability theory for inviscid flow. More importantly, three-dimensional simulations uncover that the most unstable mode is the spiral type m = 1 mode, which appears at a lower critical swirl number than that for the onset of the axisymmetric mode. This spiral mode grows faster than the unstable axisymmetric mode at the same swirl. Moreover, the computations reveal that after the linear growing stage of the perturbation the flow continues to evolve nonlinearly to a saturated axisymmetric vortex breakdown state.
RINGED ACCRETION DISKS: INSTABILITIES
Energy Technology Data Exchange (ETDEWEB)
Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)
2016-04-01
We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.
Directory of Open Access Journals (Sweden)
Wen Zhuqing
2017-06-01
Full Text Available A rotor-stator spinning disk reactor for intensified biodiesel synthesis is described and numerically simulated in the present research. The reactor consists of two flat disks, located coaxially and parallel to each other with a gap ranging from 0.1 mm to 0.2 mm between the disks. The upper disk is located on a rotating shaft while the lower disk is stationary. The feed liquids, triglycerides (TG and methanol are injected into the reactor from centres of rotating disk and stationary disk, respectively. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction multicomponent transport model with the CFD software ANSYS©Fluent v. 13.0. Effect of operating conditions on TG conversion is particularly investigated. Simulation results indicate that there is occurrence of back flow close to the stator at the outlet zone. Small gap size and fast rotational speed generally help to intensify mixing among reagents, and consequently enhance TG conversion. However, increasing rotational speed of spinning disk leads to more backflow, which decreases TG conversion. Large flow rate of TG at inlet is not recommended as well because of the short mean residence time of reactants inside the reactor.
DEFF Research Database (Denmark)
Meyer, Knud Erik; Sørensen, Jens Nørkær; Naumov, Igor
2009-01-01
variations. The flow in a cylindrical cavity with a rotating lid of a height of three radii and a Reynolds number of about 3500 is used as example. The reconstruction identifies a series of flow structures including axisymmetric vortex breakdown and distinct vortex structures along the cylinder wall....
Directory of Open Access Journals (Sweden)
Najwa Maqsood
Full Text Available This study provides a numerical treatment for rotating flow of viscoelastic (Maxwell fluid bounded by a linearly deforming elastic surface. Mass transfer analysis is carried out in the existence of homogeneous-heterogeneous reactions. By means of usual transformation, the governing equations are changed into global similarity equations which have been tackled by an expedient shooting approach. A contemporary numerical routine bvp4c of software MATLAB is also opted to develop numerical approximations. Both methods of solution are found in complete agreement in all the cases. Velocity and concentration profiles are computed and elucidated for certain range of viscoelastic fluid parameter. The solutions contain a rotation-strength parameter λ that has a considerable impact on the flow fields. For sufficiently large value of λ, the velocity fields are oscillatory decaying function of the non-dimensional vertical distance. Concentration distribution at the surface is found to decrease upon increasing the strengths of chemical reactions. A comparison of present computations is made with those of already published ones and such comparison appears convincing. Keywords: Maxwell fluid, Similarity solution, Numerical method, Chemical reaction, Stretching sheet
Maqsood, Najwa; Mustafa, M.; Khan, Junaid Ahmad
This study provides a numerical treatment for rotating flow of viscoelastic (Maxwell) fluid bounded by a linearly deforming elastic surface. Mass transfer analysis is carried out in the existence of homogeneous-heterogeneous reactions. By means of usual transformation, the governing equations are changed into global similarity equations which have been tackled by an expedient shooting approach. A contemporary numerical routine bvp4c of software MATLAB is also opted to develop numerical approximations. Both methods of solution are found in complete agreement in all the cases. Velocity and concentration profiles are computed and elucidated for certain range of viscoelastic fluid parameter. The solutions contain a rotation-strength parameter λ that has a considerable impact on the flow fields. For sufficiently large value of λ , the velocity fields are oscillatory decaying function of the non-dimensional vertical distance. Concentration distribution at the surface is found to decrease upon increasing the strengths of chemical reactions. A comparison of present computations is made with those of already published ones and such comparison appears convincing.
THICK-DISK EVOLUTION INDUCED BY THE GROWTH OF AN EMBEDDED THIN DISK
International Nuclear Information System (INIS)
Villalobos, Alvaro; Helmi, Amina; Kazantzidis, Stelios
2010-01-01
We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically common 5:1 encounters between initially thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale lengths and scale heights of thick disks. Kinematically, a growing thin disk can induce a notable increase in the mean rotation and velocity dispersions of thick-disk stars. We conclude that the reformation of a thin disk via gas accretion may play a significant role in setting the structure and kinematics of thick disks, and thus it is an important ingredient in models of thick-disk formation.
Influence of nuclear burning of the stability of degenerate and nondegenerate accretion disks
International Nuclear Information System (INIS)
Taam, R.E.; Fryxell, B.A.
1985-01-01
The structure and stability of accretion disks composed of hydrogen-rich matter rotating about a central neutron star have been investigated for known sources of viscosity. Two general classes of solutions have been found. For one class the energy generated in the disk is provided by hydrogen burning, whereas for the other class the gravitational binding energy released by viscous dissipation dominates. The former solutions are thermally unstable (stable) whenever hydrogen burns via the normal CNO cycle ( pp chain) in a partially or fully degenerate region of the disk. Solutions characterized by nuclear burning via the β-limited CNO cycle or by viscous dissipation only are always stable. On the basis of a local analysis it is shown that modulations of the mass flow in the disk are possible for a range of mass inflow rates into the disk. In such circumstances the disk can undergo a phase transition from a cold, low-viscosity state to a hot, high-viscosity state as a result of the thermonuclear flash instability. Phase transitions from the hot state to the cold state also occur whenever the mass input rate into the disk is less than the equilibrium mass flow rate corresponding to the hot state. It is also shown that for sufficiently high mass flow rates all the hydrogen-rich matter can be processed to helium in the inner regions of the disk before it can be accreted by a neutron star
The flow and hydrodynamic stability of a liquid film on a rotating disc
International Nuclear Information System (INIS)
Kim, Tae-Sung; Kim, Moon-Uhn
2009-01-01
The flow of a liquid film on a rotating disc is investigated in the case where a liquid is supplied at a constant flow rate. We propose thin film equations by the integral method with a simple approach to satisfy the boundary conditions on a disc and a free surface, and the results are compared with those of the Navier-Stokes equations. The radial film velocity is assumed to be a quartic profile in our analysis, whereas it was assumed to be a quadratic one, neglecting the inertia force so that the boundary conditions were not completely satisfied, in the analysis of Sisoev et al (2003 J. Fluid Mech. 229 531-54). The basic flow and its stability are analyzed using the thin film equations even in the region where the inertia force is not negligible. A local stability analysis of the flow is conducted using the linearized disturbance equations and correctly predicts Needham's simple instability criterion. The present thin film equations give a good approximation of the Navier-Stokes equations.
Chemical Kinetics in the expansion flow field of a rotating detonation-wave engine
Kailasanath, Kazhikathra; Schwer, Douglas
2014-11-01
Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. A key step towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release.
Development of Powered Disk Type Sugar Cane Stubble Saver
Directory of Open Access Journals (Sweden)
Radite P.A.S.
2009-04-01
Full Text Available The objective of this research was to design, fabricate and test a prototype of sugar cane stubble saver based on powered disk mechanism. In this research, a heavy duty disk plow or disk harrow was used as a rotating knife to cut the sugarcane stubble. The parabolic disk was chosen because it is proven reliable as soil working tools and it is available in the market as spare part of disk plow or disk harrow unit. The prototype was mounted on the four wheel tractor’s three point hitch, and powered by PTO of the tractor. Two kinds of disks were used in these experiments, those were disk with regular edge or plain disk and disk with scalloped edge or scalloped disk. Both disks had diameter of 28 inch. Results of field test showed that powered disk mechanism could satisfy cut sugar cane’s stubble. However, scalloped disk type gave smoother stubble cuts compared to that of plain disk. Plain disk type gave broken stubble cut. Higher rotation (1000 rpm resulted better cuts as compared to lower rotation (500 rpm both either on plain disk and scalloped disk. The developed prototype could work below the soil surface at depth of 5 to 10 cm. With tilt angle setting 20O and disk angle 45O the width of cut was about 25 cm.
International Nuclear Information System (INIS)
Adamovich, Igor V.
2014-01-01
A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes
On Fallback Disks around Young Neutron Stars
Alpar, M. Ali; Ertan, Ü.; Erkut, M. H.
2006-08-01
Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth, which, along with the initial rotation rate and dipole (and higher multipole) magnetic moments, determines the evolution of neutron stars and the categories into which they fall. This talk reviews the possibilities of fallback disk models in explaining properties of isolated neutron stars of different categories. Recent observations of a fallback disk and observational limits on fallback disks will also be discussed.
Feonychev, A. I.
It is well known that numerous experiments on crystal growth by the Bridgman method in space had met with only limited success. Because of this, only floating zone method is promising at present. However, realization of this method demands solution of some problems, in particular reduction of dopant micro- and macrosegregation. Rotating magnetic field is efficient method for control of flow in electrically conducting fluid and transfer processes. Investigation of rotating magnetic field had initiated in RIAME MAI in 1994 /3/. Results of the last investigations had been presented in /4/. Mathematical model of flow generated by rotating magnetic field and computer program were verified by comparison with experiment in area of developed oscillatory flow. Nonlinear analysis of flow stability under combination of thermocapillary convection and secondary flow generated by rotating magnetic field shows that boundary of transition from laminar to oscillatory flow is nonmonotone function in the plane of Marangoni number (Ma) - combined parameter Reω Ha2 (Ha is Hartman number, Reω is dimensionless velocity of magnetic field rotation). These data give additional knowledge of mechanism of onset of oscillations. In this case, there is reason to believe that the cause is Eckman's viscous stresses in rotating fluid on solid end-walls. It was shown that there is a possibility to increase stability of thermocapillary convection and in doing so to remove the main cause of dopant microsegregation. In doing so, if parameters of rotating magnetic field had been incorrectly chosen the dangerous pulsating oscillations are to develop. Radial macrosegregation of dopant can result from correct choosing of parameters of rotating magnetic field. As example, optimization of rotating magnetic field had been carried out for Ge(Ga) under three values of Marangoni number in weightlessness conditions. In the case when rotating magnetic field is used in terrestrial conditions, under combination of
Counter-rotating type axial flow pump unit in turbine mode for micro grid system
International Nuclear Information System (INIS)
Kasahara, R; Takano, G; Komaki, K; Murakami, T; Kanemoto, T
2012-01-01
Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.
Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.
2017-10-01
Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.
Directory of Open Access Journals (Sweden)
Butrymowicz Dariusz
2016-09-01
Full Text Available The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper. The methodology of this measurement approach dedicated to the matrix of the rotating regenerative gas heater was discussed in detail. The testing stand consisted of a dedicated experimental tunnel with auxiliary equipment and a measurement system are presented. Selected experimental results are presented and discussed for selected types of matrices of regenerative air preheaters for the wide range of Reynolds number of gas. The agreement between the theoretically predicted and measured temperature profiles was demonstrated. The exemplary dimensionless relationships between Colburn heat transfer factor, Darcy flow resistance factor and Reynolds number were presented for the investigated matrices of the regenerative gas heater.
Low-density, radiatively inefficient rotating-accretion flow on to a black hole
Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf
2018-05-01
We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(
International Nuclear Information System (INIS)
Mucignat, C.; Armellini, A.; Casarsa, L.
2013-01-01
Highlights: • Detailed PIV and Stereo PIV investigation on a rotating test section. • Static channel: absence of guiding effect for inclined ribs. • Static channel: the ribs influence significantly the flow also at the trailing edge. • Rotating channel: opposite flow features with respect to the static case. • The analyzed flow features justify the previously observed thermal performances. -- Abstract: The present work is part of a wider research program which concerns the aero-thermal characterization of cooling channels for the trailing edge of gas turbine blades. The selected passage model is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. In this contribution, a new channel configuration provided with inclined ribs installed inside the radial development region is analyzed, extending the previous results and completing the already available data base, thus providing an overall review of the aero-thermal performance of the considered passage. The velocity field inside the channel was measured by means of 2D and Stereo-PIV techniques in multiple flow planes under static and rotating conditions. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers. Time averaged flow fields and velocity fluctuation data inside the stationary and rotating channels are analyzed and also critically compared with the data acquired without ribs. In this way the effects on the flow field induced by both rotation and ribs are clearly described. In particular, the ribs modify substantially both the flow field on the channel walls where they are installed and the 3D separation structures that surround the pedestals. If also rotation is taken into account, the relative flow field is characterized by a considerable guiding effect of the ribs coupled
International Nuclear Information System (INIS)
Bianchini, Alessandro; Balduzzi, Francesco; Ferrara, Giovanni; Ferrari, Lorenzo
2016-01-01
Highlights: • New method to calculate the incidence angle from a computed CFD flow field. • Applicable to each airfoil rotating around an axis orthogonal to flow direction. • Composed by four, easily automatable steps explained in details. • Robustness of the model assessed on two Darrieus turbine study cases. - Abstract: Numerical simulations provided in the last few years a significant contribution for a better understanding of many phenomena connected to the flow past rotating blades. In case of airfoils rotating around an axis orthogonal to flow direction, one of the most critical issues is represented by the definition of the incidence angle on the airfoil from the computed flow field. Incidence indeed changes continuously as a function of the azimuthal position of the blade and a distribution of peripheral speed is experienced along the airfoil’s thickness due to radius variation. The possibility of reducing the flow to lumped parameters (relative speed modulus and direction), however, would be of capital relevance to transpose accurate CFD numerical results into effective inputs to low-order models that are often exploited for preliminary design analyses. If several techniques are available for this scope in the case of blades rotating around an axis parallel to flow direction (e.g., horizontal-axis wind turbines), the definition of a robust procedure in case the revolution axis is orthogonal to the flow is still missing. In the study, a novel technique has been developed using data from Darrieus-like rotating airfoils. The method makes use of the virtual camber theory to define a virtual airfoil whose pressure coefficient distributions in straight flow are used to match those of the real airfoil in curved flow. Even if developed originally for vertical-axis wind turbines, the method is of general validity and is thought to represent in the near future a valuable tool for researchers to get a new insight on many complex phenomena connected to flow
MIGRATION OF EXTRASOLAR PLANETS: EFFECTS FROM X-WIND ACCRETION DISKS
International Nuclear Information System (INIS)
Adams, Fred C.; Cai, Mike J.; Lizano, Susana
2009-01-01
Magnetic fields are dragged in from the interstellar medium during the gravitational collapse that forms star/disk systems. Consideration of mean field magnetohydrodynamics in these disks shows that magnetic effects produce sub-Keplerian rotation curves and truncate the inner disk. This Letter explores the ramifications of these predicted disk properties for the migration of extrasolar planets. Sub-Keplerian flow in gaseous disks drives a new migration mechanism for embedded planets and modifies the gap-opening processes for larger planets. This sub-Keplerian migration mechanism dominates over Type I migration for sufficiently small planets (m P ∼ + ) and/or close orbits (r ∼< 1 AU). Although the inclusion of sub-Keplerian torques shortens the total migration time by only a moderate amount, the mass accreted by migrating planetary cores is significantly reduced. Truncation of the inner disk edge (for typical system parameters) naturally explains final planetary orbits with periods P ∼ 4 days. Planets with shorter periods, P ∼ 2 days, can be explained by migration during FU-Orionis outbursts, when the mass accretion rate is high and the disk edge moves inward. Finally, the midplane density is greatly increased at the inner truncation point of the disk (the X-point); this enhancement, in conjunction with continuing flow of gas and solids through the region, supports the in situ formation of giant planets.
Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.
Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A
2013-11-01
This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced
RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS
Energy Technology Data Exchange (ETDEWEB)
Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)
2015-12-15
We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.
Steady flow instability in an annulus with deflectors at rotational vibration
Energy Technology Data Exchange (ETDEWEB)
Kozlov, Nikolai V [Lab. Vibrational Hydromechanics, Perm State-Humanitarian Pedagogical University 24 Sibirskaya av., 614990 Perm (Russian Federation); Pareau, Dominique; Stambouli, Moncef [Lab. Chemical Engineering, CentraleSupélec-Université Paris Saclay, Grande Voie des Vignes, 92295 Châtenay-Malabry (France); Ivantsov, Andrey, E-mail: kozlov.n@icmm.ru [Lab. Computational Hydrodynamics Institute of Continuous Media Mechanics UB RAS1 Acad. Korolev st., 614013 Perm (Russian Federation)
2016-12-15
Experimental study and direct numerical simulation of the dynamics of an isothermal low-viscosity fluid are done in a coaxial gap of a cylindrical container making rotational vibrations relative to its axis. On the inner surface of the outer wall of the container, semicircular deflectors are regularly situated, playing the role of flow activators. As a result of vibrations, the activators oscillate tangentially. In the simulation, a 2D configuration is considered, excluding the end-wall effects. In the experiment, a container with a large aspect ratio is used. Steady streaming is generated in the viscous boundary layers on the activators. On each of the latter, beyond the viscous domain, a symmetric vortices pair is formed. The steady streaming in the annulus has an azimuthal periodicity. With an increase in the vibration intensity, a competition between the vortices occurs, as a result of which one of the vortices (let us call it even) approaches the activator and the other one (odd) rolls away and couples with the vortices from the neighbouring pairs. Streamlines of the odd vortices close on each other, forming a cog-wheel shaped flow that encircles the inner wall. Comparison of the experiment and the simulation reveals an agreement at moderate vibration intensity. (paper)
National Research Council Canada - National Science Library
Prian, Vasily
1951-01-01
An analysis was made of the flow in the rotating passages of a 48-inch diameter radial-inlet centrifugal impeller at a tip speed of 700 feet per second in order to provide more knowledge on the flow...
Energy Technology Data Exchange (ETDEWEB)
Iga, Keita, E-mail: iga@aori.u-tokyo.ac.jp [Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564 (Japan)
2017-12-15
Axisymmetric flow in a cylindrical tank over a rotating bottom is investigated and its approximate solution with an analytic expression is obtained. The interior region, comprising the majority of the fluid, consists of two sub-regions. It is easily shown that a rigid-body rotational flow with the same rotation rate as that of the bottom is formed in the inner interior and that a potential flow with constant angular momentum occurs in the outer interior sub-region. However, the radius that divides these two sub-regions has not been determined. To determine this radius, the structures of the boundary layers are investigated in detail. These boundary layers surround the interior regions, and include the boundaries between the interior region and the side wall of the tank, between the interior and the bottom, and between the inner and outer interior sub-regions. By connecting the flows in the boundary layers, the vertical circulation as a whole is established, and consequently the radius dividing the two interior sub-regions is successfully determined as a function of the aspect ratio of the water layer region. This axisymmetric flow will be utilized as the basic state for investigating theoretically various non-axisymmetric phenomena observed in laboratory experiments. (paper)
Directory of Open Access Journals (Sweden)
G. Nath
2012-12-01
Full Text Available Self-similar solutions are obtained for unsteady, one-dimensional isothermal flow behind a shock wave in a rotational axisymmetric non-ideal gas in the presence of an azimuthal magnetic field. The shock wave is driven out by a piston moving with time according to power law. The fluid velocities and the azimuthal magnetic field in the ambient medium are assumed to be varying and obeying a power law. The density of the ambient medium is assumed to be constant. The gas is assumed to be non-ideal having infinite electrical conductivity and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars. The effects of the non-idealness of the gas and the Alfven-Mach number on the flow-field are obtained. It is shown that the presence of azimuthal magnetic field and the rotation of the medium has decaying effect on the shock wave. Also, a comparison is made between rotating and non-rotating cases.
Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator
Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)
2014-01-01
A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.
Swarnalathamma, B. V.; Krishna, M. Veera
2017-07-01
We studied heat transfer on MHD convective flow of viscous electrically conducting heat generating/absorbing fluid through porous medium in a rotating channel under uniform transverse magnetic field normal to the channel and taking Hall current. The flow is governed by the Brinkman's model. The diagnostic solutions for the velocity and temperature are obtained by perturbation technique and computationally discussed with respect to flow parameters through the graphs. The skin friction and Nusselt number are also evaluated and computationally discussed with reference to pertinent parameters in detail.
Angular momentum transfer in steady disk accretion
International Nuclear Information System (INIS)
Gorbatskij, V.G.
1977-01-01
The conditions of steady disk accretion have been investigated. The disk axisymmetric model is considered. It is shown that the gas is let at the outer boundary of the disk with the azimuthal velocity which is slightly less than the Kepler circular one. Gas possesses the motion quality moment which is transferred from the outer layers of the disk to the surface of the star. The steady state of the disk preserved until the inflow of the moment to the star increases its rotation velocity up to magnitudes close to the critical one
Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G
2016-08-15
A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Deng Xiao; Deng Liping; Huang Wei
2015-01-01
Water-lubricated thrust bearing is one of the key parts in canned motor pump, for example, the RCP in AP1000, and it functions to balance axial loads. A calculation model which can handle all flow state lubrication performance for water-lubricated thrust bearing has been presented. The model first includes laminar and turbulent Reynolds' equation. Then to get continuous viscosity coefficients cross critical Reynolds number, a transition zone which ranges based on engineering experience is put up, through which Hermite interpolation is employed. The model is numerically solved in finite difference method with uniform grids. To accelerate the calculation process, multigrid method and line relaxation is adopted within the iteration procedure. A medium sized water-lubricated tilting pad thrust bearing is exampled to verify the calculation model. Results suggest that as rotating speed enlarges, lubrication state distribution of the thrust bearing gradually tends to turbulent lubrication from the intersection corner of pad outer diameter and pad inlet to the opposite, minimum water film thickness increases approximately linearly, maximum water film pressure has little change, meanwhile the friction power grows nearly in exponential law which could result in bad effect by yielding much more heat. (author)
Directory of Open Access Journals (Sweden)
Matteo Pascotto
2013-01-01
Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.
International Nuclear Information System (INIS)
Viecelli, J.A.
1993-01-01
The Hamiltonian flow of a set of point vortices of like sign and strength has a low-temperature phase consisting of a rotating triangular lattice of vortices, and a normal temperature turbulent phase consisting of random clusters of vorticity that orbit about a common center along random tracks. The mean-field flow in the normal temperature phase has similarities with turbulent quasi-two-dimensional rotating laboratory and geophysical flows, whereas the low-temperature phase displays effects associated with quantum fluids. In the normal temperature phase the vortices follow power-law clustering distributions, while in the time domain random interval modulation of the vortex orbit radii fluctuations produces singular fractional exponent power-law low-frequency spectra corresponding to time autocorrelation functions with fractional exponent power-law tails. Enhanced diffusion is present in the turbulent state, whereas in the solid-body rotation state vortices thermally diffuse across the lattice. Over the entire temperature range the interaction energy of a single vortex in the field of the rest of the vortices follows positive temperature Fermi--Dirac statistics, with the zero temperature limit corresponding to the rotating crystal phase, and the infinite temperature limit corresponding to a Maxwellian distribution. Analyses of weather records dependent on the large-scale quasi-two-dimensional atmospheric circulation suggest the presence of singular fractional exponent power-law spectra and fractional exponent power-law autocorrelation tails, consistent with the theory
Directory of Open Access Journals (Sweden)
Nor Athirah Mohd Zin
Full Text Available In this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs are dispersed in the Kerosene Oil (KO which is chosen as conventional base fluid. Appropriate dimensionless variables are used and the system of equations is transformed into dimensionless form. The resulting problem is solved using the Laplace transform technique. The impact of pertinent parameters including volume fraction Ï, material parameters of Jeffrey fluid Î»1, Î», rotation parameter r, Hartmann number Ha, permeability parameter K, Grashof number Gr, Prandtl number Pr, radiation parameter Rd and dimensionless time t on velocity and temperature profiles are presented graphically with comprehensive discussions. It is observed that, the rotation parameter, due to the Coriolis force, tends to decrease the primary velocity but reverse effect is observed in the secondary velocity. It is also observed that, the Lorentz force retards the fluid flow for both primary and secondary velocities. The expressions for skin friction and Nusselt number are also evaluated for different values of emerging parameters. A comparative study with the existing published work is provided in order to verify the present results. An excellent agreement is found. Keywords: Jeffrey nanofluid, AgNPs, MHD and Porosity, Rotating flow, Laplace transform technique
Energy Technology Data Exchange (ETDEWEB)
Stacey, W. M. [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Bae, C. [National Fusion Research Institute, Daejoen (Korea, Republic of)
2015-06-15
A systematic formalism for the calculation of rotation in non-axisymmetric tokamaks with 3D magnetic fields is described. The Braginskii Ωτ-ordered viscous stress tensor formalism, generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry, and the resulting fluid moment equations provide a systematic formalism for the calculation of toroidal and poloidal rotation and radial ion flow in tokamaks in the presence of various non-axisymmetric “neoclassical toroidal viscosity” mechanisms. The relation among rotation velocities, radial ion particle flux, ion orbit loss, and radial electric field is discussed, and the possibility of controlling these quantities by producing externally controllable toroidal and/or poloidal currents in the edge plasma for this purpose is suggested for future investigation.
Premixed direct injection disk
York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho
2013-04-23
A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.
Possible Analog for Early Solar System Disk Found
1998-10-01
, although tiny when compared to some suspected planet-forming systems recently discovered by other astronomical techniques, contains several compact clusters of water molecules that amplify microwave radio emissions in a manner similar to the way a laser amplifies light. By tracking the motions of these powerful, naturally occurring amplifiers, or "masers," the researchers could determine that a mass about the size of our Sun lies at the center of this disk. The researchers also detected a powerful radio jet, centered on the disk of water masers but perpendicular to it, shooting out of NGC 2071. Theorists have speculated that such jets are produced by accretion disks around very young stars, where flowing winds are driven outward by material that fails to fall onto the star. This may represent the smallest -- and perhaps earliest -- example of this disk-jet phenomenon seen to date. "We're pretty sure that systems like this, with disks of gas and dust surrounding a young star, turn into solar systems containing planets, moons and comets, but we don't know exactly how they do it," said Dr. Luis Rodriguez of the National Autonomous University of Mexico. "This particular object, because we can see all these phenomena and measure the rotation speeds and masses, is going to provide us an ideal laboratory for studying the mysterious process of planet formation." In addition to Torrelles and Ho, the other authors of the report published in the 1 October 1998 issue of the Astrophysical Journal were Drs. Jose F. Gomez of the Laboratory for Space and Astrophysics, Guillem Anglada of the Institute of Astrophysics of Andalucia, Spain, and Rodriguez and Dr. Salvador Curiel of the National Autonomous University of Mexico. The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by the Associated Universities, Inc.
Zaleski, Daniel P.; Prozument, Kirill
2017-06-01
Chirped-pulsed (CP) Fourier transform rotational spectroscopy invented by Brooks Pate and coworkers a decade ago is an attractive tool for gas phase chemical dynamics and kinetics studies. A good reactor for such a purpose would have well-defined (and variable) temperature and pressure conditions to be amenable to accurate kinetic modeling. Furthermore, in low pressure samples with large enough number of molecular emitters, reaction dynamics can be observable directly, rather than mediated by supersonic expansion. In the present work, we are evaluating feasibility of in situ time-resolved CP spectroscopy in a room temperature flow tube reactor. Vinyl cyanide (CH_2CHCN), neat or mixed with inert gasses, flows through the reactor at pressures 1-50 μbar (0.76-38 mTorr) where it is photodissociated by a 193 nm laser. Millimeter-wave beam of the CP spectrometer co-propagates with the laser beam along the reactor tube and interacts with nascent photoproducts. Rotational transitions of HCN, HNC, and HCCCN are detected, with ≥10 μs time-steps for 500 ms following photolysis of CH_2CHCN. The post-photolysis evolution of the photoproducts' rotational line intensities is investigated for the effects of rotational and vibrational thermalization of energized photoproducts. Possible contributions from bimolecular and wall-mediated chemistry are evaluated as well.
Flow shear stabilization of rotating plasmas due to the Coriolis effect
Haverkort, J. W.; de Blank, H. J.
2012-01-01
A radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that induces a restoring pressure gradient force when plasma is perturbed radially. In a rotating
International Nuclear Information System (INIS)
Memon, R.A.; Solangi, M.A.
2013-01-01
The impacts of rotational velocity and inertia on velocity gradients and stresses are addressed under present study. The non-Newtonian behaviour of inelastic rotating flows is predicted by employing Power law model. A numerical model has been developed for mixing flow within a cylindrical vessel along a couple of stirrers. A time marching FEM (Finite Element Method) is employed to predict the required solution. Predicted solutions are presented for minimum to maximum values in terms of contour plots of velocity gradients and shear stresses, over the range. The long term application of this research will be used to improve the design of mixers and processing products. The predicted results are used to generate the capability and are in good agreement with numerical results to the mixer design that will ultimately effect the processing of dough products. (author)
Instabilities and spin-up behaviour of a rotating magnetic field driven flow in a rectangular cavity
Galindo, V.; Nauber, R.; Räbiger, D.; Franke, S.; Beyer, H.; Büttner, L.; Czarske, J.; Eckert, S.
2017-11-01
This study presents numerical simulations and experiments considering the flow of an electrically conducting fluid inside a cube driven by a rotating magnetic field (RMF). The investigations are focused on the spin-up, where a liquid metal (GaInSn) is suddenly exposed to an azimuthal body force generated by the RMF and the subsequent flow development. The numerical simulations rely on a semi-analytical expression for the induced electromagnetic force density in an electrically conducting medium inside a cuboid container with insulating walls. Velocity distributions in two perpendicular planes are measured using a novel dual-plane, two-component ultrasound array Doppler velocimeter with continuous data streaming, enabling long term measurements for investigating transient flows. This approach allows identifying the main emerging flow modes during the transition from stable to unstable flow regimes with exponentially growing velocity oscillations using the Proper Orthogonal Decomposition method. Characteristic frequencies in the oscillating flow regimes are determined in the super critical range above the critical magnetic Taylor number T ac≈1.26 ×1 05, where the transition from the steady double vortex structure of the secondary flow to an unstable regime with exponentially growing oscillations is detected. The mean flow structures and the temporal evolution of the flow predicted by the numerical simulations and observed in experiments are in very good agreement.
The Disk Mass Project: breaking the disk-halo degeneracy
Verheijen, Marc A. W.; Bershady, Matthew A.; Swaters, Rob A.; Andersen, David R.; Westfall, Kyle B.; DE JONG, R. S.
2007-01-01
Little is known about the content and distribution of dark matter in spiral galaxies. To break the degeneracy in galaxy rotation curve decompositions, which allows a wide range of dark matter halo density profiles, an independent measure of the mass surface density of stellar disks is needed. Here,
Grinding Glass Disks On A Belt Sander
Lyons, James J., III
1995-01-01
Small machine attached to table-top belt sander makes possible to use belt sander to grind glass disk quickly to specified diameter within tolerance of about plus or minus 0.002 in. Intended to be used in place of production-shop glass grinder. Held on driveshaft by vacuum, glass disk rotated while periphery ground by continuous sanding belt.
International Nuclear Information System (INIS)
Bestman, A.R.; Adjepong, S.K.
1987-11-01
We study the unsteady free convection flow near a moving infinite flat plate in a rotating medium by imposing a time dependent perturbation on a constant plate temperature. The temperatures involved are assumed to be very large so that radiative heat transfer is significant, which renders the problem very nonlinear even on the assumption of a differential approximation for the radiative flux. When the perturbation is small, the transient flow is tackled by the Laplace transform technique. Complete first order solutions are deduced for an impulsive motion. (author). 12 refs, 2 figs
Directory of Open Access Journals (Sweden)
Brahim Berrabah
2017-02-01
Full Text Available Numerical predictions of three-dimensional flow and heat transfer are performed for a two-pass square channel with 45° staggered ribs in non-orthogonally mode-rotation using the second moment closure model. At Reynolds number of 25,000, the rotation numbers studied were 0, 0.24, 0.35 and 1.00. The density ratios were 0.13, 0.23 and 0.50. The results show that at high buoyancy parameter and high rotation number with a low density ratio, the flow in the first passage is governed by the secondary flow induced by the rotation whereas the secondary flow induced by the skewed ribs was almost distorted. As a result the heat transfer rate is enhanced on both co-trailing and co-leading sides compared to low and medium rotation number. In contrast, for the second passage, the rotation slightly reduces the heat transfer rate on co-leading side at high rotation number with a low density ratio and degrades it significantly on both co-trailing and co-leading sides at high buoyancy parameter compared to the stationary, low and medium rotation numbers. The numerical results are in fair agreement with available experimental data in the bend region and the second passage, while in the first passage were overestimated at low and medium rotation numbers.
Equilibrium of current driven rotating liquid metal
International Nuclear Information System (INIS)
Velikhov, E.P.; Ivanov, A.A.; Zakharov, S.V.; Zakharov, V.S.; Livadny, A.O.; Serebrennikov, K.S.
2006-01-01
In view of great importance of magneto-rotational instability (MRI) as a fundamental mechanism for angular momentum transfer in magnetized stellar accretion disks, several research centers are involved in experimental study of MRI under laboratory conditions. The idea of the experiment is to investigate the rotation dynamics of well conducting liquid (liquid metal) between two cylinders in axial magnetic field. In this Letter, an experimental scheme with immovable cylinders and fluid rotation driven by radial current is considered. The analytical solution of a stationary flow was found taking into account the external current. Results of axially symmetric numerical simulations of current driven fluid dynamics in experimental setup geometry are presented. The analytical solution and numerical simulations show that the current driven fluid rotation in axial magnetic field provides the axially homogeneous velocity profile suitable for MRI study in classical statement
Directory of Open Access Journals (Sweden)
Govindarajan Arunachalam
2014-01-01
Full Text Available An investigation of unsteady MHD free convective flow and mass transfer during the motion of a viscous incompressible fluid through a porous medium, bounded by an infinite vertical porous surface, in a rotating system is presented. The porous plane surface and the porous medium are assumed to rotate in a solid body rotation. The vertical surface is subjected to uniform constant suction perpendicular to it and the temperature at this surface fluctuates in time about a non-zero constant mean. Analytical expressions for the velocity, temperature and concentration fields are obtained using the perturbation technique. The effects of R (rotation parameter, k0 (permeability parameter, M (Hartmann number and w (frequency parameter on the flow characteristics are discussed. It is observed that the primary velocity component decreases with the increase in either of the rotation parameter R, the permeability parameter k0, or the Hartmann number M. It is also noted that the primary skin friction increases whenever there is an increase in the Grashof number Gr or the modified Grashof number Gm. It is clear that the heat transfer coefficient in terms of the Nusselt number decreases in the case of both air and water when there is an increase in the Hartmann number M. It is observed that the magnitude of the secondary velocity profiles increases whenever there is an increase in either of the Grashof number or the modified Grashof number for mass transfer or the permeability of the porous media. Concentration profiles decreases with an increase in the Schmidt number.
Breakdown of the large-scale circulation in Γ=1/2 rotating Rayleigh-Bénard flow.
Stevens, Richard J A M; Clercx, Herman J H; Lohse, Detlef
2012-11-01
Experiments and simulations of rotating Rayleigh-Bénard convection in cylindrical samples have revealed an increase in heat transport with increasing rotation rate. This heat transport enhancement is intimately related to a transition in the turbulent flow structure from a regime dominated by a large-scale circulation (LSC), consisting of a single convection roll, at no or weak rotation to a regime dominated by vertically aligned vortices at strong rotation. For a sample with an aspect ratio Γ=D/L=1 (D is the sample diameter and L is its height) the transition between the two regimes is indicated by a strong decrease in the LSC strength. In contrast, for Γ=1/2, Weiss and Ahlers [J. Fluid Mech. 688, 461 (2011)] revealed the presence of a LSC-like sidewall temperature signature beyond the critical rotation rate. They suggested that this might be due to the formation of a two-vortex state, in which one vortex extends vertically from the bottom into the sample interior and brings up warm fluid while another vortex brings down cold fluid from the top; this flow field would yield a sidewall temperature signature similar to that of the LSC. Here we show by direct numerical simulations for Γ=1/2 and parameters that allow direct comparison with experiment that the spatial organization of the vertically aligned vortical structures in the convection cell do indeed yield (for the time average) a sinusoidal variation of the temperature near the sidewall, as found in the experiment. This is also the essential and nontrivial difference with the Γ=1 sample, where the vertically aligned vortices are distributed randomly.
A compact active grid for stirring pipe flow
Verbeek, A.A.; Pos, R.C.; Stoffels, G.G.M.; Geurts, B.J.; Meer, van der Th.
2013-01-01
A compact active grid is developed with which a pipe flow can be stirred in order to enhance the turbulence. The active grid is composed of a stationary and a rotating disk with characteristic hole patterns. This active grid is placed inside the pipe, allowing flow to pass through it. With only one
A compact active grid for stirring pipe flow
Verbeek, Antonie Alex; Pos, R.C.; Stoffels, Genie G.M.; Geurts, Bernardus J.; van der Meer, Theodorus H.
A compact active grid is developed with which a pipe flow can be stirred in order to enhance the turbulence. The active grid is composed of a stationary and a rotating disk with characteristic hole patterns. This active grid is placed inside the pipe, allowing flow to pass through it. With only one
A giant protogalactic disk linked to the cosmic web
Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Cantalupo, Sebastiano; Prochaska, J. Xavier; Chang, Daphne
2015-08-01
The specifics of how galaxies form from, and are fuelled by, gas from the intergalactic medium remain uncertain. Hydrodynamic simulations suggest that `cold accretion flows'--relatively cool (temperatures of the order of 104 kelvin), unshocked gas streaming along filaments of the cosmic web into dark-matter halos--are important. These flows are thought to deposit gas and angular momentum into the circumgalactic medium, creating disk- or ring-like structures that eventually coalesce into galaxies that form at filamentary intersections. Recently, a large and luminous filament, consistent with such a cold accretion flow, was discovered near the quasi-stellar object QSO UM287 at redshift 2.279 using narrow-band imaging. Unfortunately, imaging is not sufficient to constrain the physical characteristics of the filament, to determine its kinematics, to explain how it is linked to nearby sources, or to account for its unusual brightness, more than a factor of ten above what is expected for a filament. Here we report a two-dimensional spectroscopic investigation of the emitting structure. We find that the brightest emission region is an extended rotating hydrogen disk with a velocity profile that is characteristic of gas in a dark-matter halo with a mass of 1013 solar masses. This giant protogalactic disk appears to be connected to a quiescent filament that may extend beyond the virial radius of the halo. The geometry is strongly suggestive of a cold accretion flow.
Direct numerical simulation of rotating fluid flow in a closed cylinder
DEFF Research Database (Denmark)
Sørensen, Jens Nørkær; Christensen, Erik Adler
1995-01-01
, is validated against experimental visualizations of both transient and stable periodic flows. The complexity of the flow problem is illuminated numerically by injecting flow tracers into the flow domain and following their evolution in time. The vortex dynamics appears as stretching, folding and squeezing...
Suppression of turbulent resistivity in turbulent Couette flow
Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe
2015-07-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Suppression of turbulent resistivity in turbulent Couette flow
Energy Technology Data Exchange (ETDEWEB)
Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2015-07-15
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Suppression of turbulent resistivity in turbulent Couette flow
International Nuclear Information System (INIS)
Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.
2015-01-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations
Dabir, Hossein; Davarpanah, Morteza; Ahmadpour, Ali
2015-07-01
The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. According to the results, smaller AgCl particles are obtained under higher supersaturations and also higher disk rotation speeds. Moreover, in the range of our investigation, the use of lower reactants flow rates and larger disk diameter can reduce the particle size of products. The non-stoichiometric condition of reactants has a significant influence on the reduction in particle aggregation. It was also found that by optimizing the operating conditions, uniform AgCl nanoparticles with the mean size of around 37 nm can be produced.
Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai
2016-09-01
We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.
Rotational effects of polymeric fluids on shape of filaments in melt extruded net structures
CSIR Research Space (South Africa)
Rawal, A
2006-01-01
Full Text Available -circular geometries on their peripheries and the filaments are produced when the slots in disk and annulus are offset from each other. The effect of die rotation on the shape of filament is investigated by analysing the polymer flow inside the complex die slots...
Directory of Open Access Journals (Sweden)
Uday Singh Rajput
2017-11-01
Full Text Available Effects of rotation and radiation on unsteady MHD flow past a vertical plate with variable wall temperature and mass diffusion in the presence of Hall current is studied here. Earlier we studied chemical reaction effect on unsteady MHD flow past an exponentially accelerated inclined plate with variable temperature and mass diffusion in the presence of Hall current. We had obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering radiation effect on fluid, and changing the geometry of the model. Here in this paper we are taking the plate positioned vertically upward and rotating with velocity Ω . Further, medium of the flow is taken as porous. The plate temperature and the concentration level near the plate increase linearly with time. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations under consideration have been solved by Laplace transform technique. The model contains equations of motion, diffusion equation and equation of energy. To analyze the solution of the model, desirable sets of the values of the parameters have been considered. The governing equations involved in the flow model are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters. The numerical values obtained for the drag at boundary and Nusselt number have been tabulated. We found that the values obtained for velocity, concentration and temperature are in concurrence with the actual flow of the fluid
Directory of Open Access Journals (Sweden)
Tasawar Hayat
Full Text Available The present article has been arranged to study the Hall current and Joule heating effects on peristaltic flow of viscous fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Convective conditions for heat transfer in the formulation are adopted. Viscous dissipation in energy expression is taken into account. Resulting differential systems after invoking small Reynolds number and long wavelength considerations are numerically solved. Runge-Kutta scheme of order four is implemented for the results of axial and secondary velocities, temperature and heat transfer coefficient. Comparison with previous limiting studies is shown. Outcome of new parameters of interest is analyzed. Keywords: Rotating frame, Hall current, Joule heating, Convective conditions, Wall properties
Flow curves of Sn and Sn-3.5Ag obtained by rotational viscometry using a stainless steel cone
International Nuclear Information System (INIS)
Yamazaki, Takahisa; Oishi, Shinya; Gamou, Hirosato; Ikeshoji, Toshi-Taka; Suzumura, Akio
2014-01-01
Corrosion of stainless steel in a flow soldering bath by a lead-free solder was investigated using a cone-plate-type rotational viscometer. The rotational torque of the stainless-steel cone in contact with a molten solder was measured at various shear rates. The delicate measured torque was related to the change of the viscosity of the solder owing to dissolution of materials originating from the cone. The estimated viscosity coefficient was ten times greater than the values which have been reported. The result was attributed to the tin content of the solder combined with oxygen from the passive state oxide film on the cone surface. The increase of the viscosity of the silver-containing solder was much greater than in case of pure Sn
Energy Technology Data Exchange (ETDEWEB)
Kheradmand, Saeid; Esmailian, Mojtaba; Fatahy, A. [Malek-Ashtar University of Technology (MUT), Isfahan (Iran, Islamic Republic of)
2017-04-15
Finishing of a workpiece is a main process in the production. This affects the quality and lifetime. Finishing in order of nanometer, nowadays, is a main demand of the industries. Thus, some new finishing process, such as abrasive flow finishing, is introduced to respond this demand. This may be aided by rotating workpiece and imposing a magnetic field. Numerical simulation of this process can be beneficial to reduce the expense and predict the result in a minimum time. Accordingly, in this study, magnetorheological fluid finishing is numerically simulated. The working medium contains magnetic and abrasive particles, blended in a base fluid. Some hydrodynamic parameters and surface roughness variations are studied. It is found that combination of rotating a workpiece and imposing a magnetic field can improve the surface roughness up to 15 percent.
The drift force on an object in an inviscid weakly-varying rotational flow
Energy Technology Data Exchange (ETDEWEB)
Wallis, G.B. [Dartmouth College, Hanover, NH (United States)
1995-12-31
The force on any stationary object in an inviscid incompressible extensive steady flow is derived in terms of the added mass tensor and gradient of velocity of the undisturbed fluid. Taylor`s theorem is extended to flows with weak vorticity. There are possible applications to constitutive equations for two-phase flow.
Scaling relations for plasma production and acceleration of rotating plasma flows
International Nuclear Information System (INIS)
Ikehata, Takashi; Tanabe, Toshio; Mase, Hiroshi; Sekine, Ryusuke; Hasegawa, Kazuyuki.
1989-01-01
Scaling relations are investigated theoretically and experimentally of the plasma production and acceleration in the rotating plasma gun which has been developed as a new means of plasma centrifuge. Two operational modes: the gas-discharge mode for gaseous elements and the vacuum-discharge mode for solid elements are studied. Relations of the plasma density and velocities to the discharge current and the magnetic field are derived. The agreement between experiment and theory is quite well. It is found that fully-ionized rotating plasmas produced in the gas-discharge mode is most advantageous to realize efficient plasma centrifuge. (author)
Guervilly, C.; Cardin, P.
2017-12-01
Convection is the main heat transport process in the liquid cores of planets. The convective flows are thought to be turbulent and constrained by rotation (corresponding to high Reynolds numbers Re and low Rossby numbers Ro). Under these conditions, and in the absence of magnetic fields, the convective flows can produce coherent Reynolds stresses that drive persistent large-scale zonal flows. The formation of large-scale flows has crucial implications for the thermal evolution of planets and the generation of large-scale magnetic fields. In this work, we explore this problem with numerical simulations using a quasi-geostrophic approximation to model convective and zonal flows at Re 104 and Ro 10-4 for Prandtl numbers relevant for liquid metals (Pr 0.1). The formation of intense multiple zonal jets strongly affects the convective heat transport, leading to the formation of a mean temperature staircase. We also study the generation of magnetic fields by the quasi-geostrophic flows at low magnetic Prandtl numbers.
Rotational microfluidic motor for on-chip microcentrifugation
Shilton, Richie J.; Glass, Nick R.; Chan, Peggy; Yeo, Leslie Y.; Friend, James R.
2011-06-01
We report on the design of a surface acoustic wave (SAW) driven fluid-coupled micromotor which runs at high rotational velocities. A pair of opposing SAWs generated on a lithium niobate substrate are each obliquely passed into either side of a fluid drop to drive rotation of the fluid, and the thin circular disk set on the drop. Using water for the drop, a 5 mm diameter disk was driven with rotation speeds and start-up torques up to 2250 rpm and 60 nN m, respectively. Most importantly for lab-on-a-chip applications, radial accelerations of 172 m/s2 was obtained, presenting possibilities for microcentrifugation, flow sequencing, assays, and cell culturing in truly microscale lab-on-a-chip devices.
THE DARK DISK OF THE MILKY WAY
International Nuclear Information System (INIS)
Purcell, Chris W.; Bullock, James S.; Kaplinghat, Manoj
2009-01-01
Massive satellite accretions onto early galactic disks can lead to the deposition of dark matter in disk-like configurations that co-rotate with the galaxy. This phenomenon has potentially dramatic consequences for dark matter detection experiments. We utilize focused, high-resolution simulations of accretion events onto disks designed to be Galaxy analogues, and compare the resultant disks to the morphological and kinematic properties of the Milky Way's thick disk in order to bracket the range of co-rotating accreted dark matter. In agreement with previous results, we find that the Milky Way's merger history must have been unusually quiescent compared to median Λ cold dark matter expectations and, therefore, its dark disk must be relatively small: the fraction of accreted dark disk material near the Sun is about 20% of the host halo density or smaller and the co-rotating dark matter fraction near the Sun, defined as particles moving with a rotational velocity lag less than 50 km s -1 , is enhanced by about 30% or less compared to a standard halo model. Such a dark disk could contribute dominantly to the low energy (of order keV for a dark matter particle with mass 100 GeV) nuclear recoil event rate of direct detection experiments, but it will not change the likelihood of detection significantly. These dark disks provide testable predictions of weakly interacting massive particle dark matter models and should be considered in detailed comparisons to experimental data. Our findings suggest that the dark disk of the Milky Way may provide a detectable signal for indirect detection experiments, contributing up to about 25% of the dark matter self-annihilation signal in the direction of the center of the Galaxy, lending the signal a noticeably oblate morphology.
Equilibrium figures for beta Lyrae type disks
International Nuclear Information System (INIS)
Wilson, R.E.
1981-01-01
Accumulated evidence for a geometrically and optically thick disk in the β Lyrae system has now established the disk's basic external configuration. Since the disk has been constant in its main properties over the historical interval of β Lyrae observations and also seems to have a basically well-defined photosphere, it is now time to being consideration of its sturcture. Here, we compute equilibrium figures for self-gravitating disks around stars in binary systems as a start toward eventual computation of complete disk models. A key role is played by centrifugally limited rotation of the central star, which would naturally arise late in the rapid phase of mass transfer. Beta Lyrae is thus postulated to be a double-contact binary, which makes possible nonarbitrary separation of star and disk into separate structures. The computed equilibrium figures are three-dimensional, as the gravitation of the second star is included. Under the approximation that the gravitational potential of the disk is that of a thin wire and that the local disk angular velocity is proportional to u/sup n/ (u = distance from rotation axis), we comptue the total potential and locate equipotential surfaces. The centrifugal potential is written in a particularly convenient form which permits one to change the rotation law discontinuously (for example, at the star-disk coupling point) while ensuring that centrifugal potential and centrifigual force are continuous functions of position. With such a one-parameter rotation law, one can find equilibrium disk figures with dimensions very similar to those found in β Lyrae, but considerations of internal consistency demand at least a two-parameter law
Flow shear stabilization of rotating plasmas due to the Coriolis effect
J.W. Haverkort (Willem); H.J. de Blank
2012-01-01
htmlabstractA radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that induces a restoring pressure gradient force when plasma is perturbed radially. In a
On the relative rotational motion between rigid fibers and fluid in turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Marchioli, C. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Zhao, L., E-mail: lihao.zhao@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Andersson, H. I. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)
2016-01-15
In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin show that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)
Anchoring Polar Magnetic Field in a Stationary Thick Accretion Disk
Energy Technology Data Exchange (ETDEWEB)
Samadi, Maryam; Abbassi, Shahram, E-mail: samadimojarad@um.ac.ir [Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, 91775-1436 (Iran, Islamic Republic of)
2017-08-20
We investigate the properties of a hot accretion flow bathed in a poloidal magnetic field. We consider an axisymmetric viscous-resistive flow in the steady-state configuration. We assume that the dominant mechanism of energy dissipation is due to turbulence viscosity and magnetic diffusivity. A certain fraction of that energy can be advected toward the central compact object. We employ the self-similar method in the radial direction to find a system of ODEs with just one varible, θ in the spherical coordinates. For the existence and maintenance of a purely poloidal magnetic field in a rotating thick disk, we find that the necessary condition is a constant value of angular velocity along a magnetic field line. We obtain an analytical solution for the poloidal magnetic flux. We explore possible changes in the vertical structure of the disk under the influences of symmetric and asymmetric magnetic fields. Our results reveal that a polar magnetic field with even symmetry about the equatorial plane makes the disk vertically thin. Moreover, the accretion rate decreases when we consider a strong magnetic field. Finally, we notice that hot magnetized accretion flows can be fully advected even in a slim shape.
International Nuclear Information System (INIS)
Bestman, A.R.; Adjepong, S.K.
1987-11-01
This paper investigates transient effect on the flow of a thermally radiating and electrically conducting compressible gas in a rotating medium bounded by a vertical flat plate. The transience is provoked by a time dependent perturbation on a constant plate temperature. The problem particularly focusses on an optically thick gas and a gas of arbitrary optical thickness when the difference between the wall and free stream temperatures is small. Analytical results are possible only for limiting values of time and these results are discussed quantitatively. Indeed the assumption of small temperature difference is more appropriate for plates which are opaque rather than transparent. (author). 3 refs
Energy Technology Data Exchange (ETDEWEB)
Zhang, Quan-Zhuang; Peng, Lan; Liu, Jia [Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, College of Power Engineering, Chongqing University, Chongqing, 400044 (China); Wang, Fei, E-mail: penglan@cqu.edu.cn [Chongqing Special Equipment Inspection and Research Institute, Chongqing, 401121 (China)
2016-08-15
In order to understand the effect of pool rotation on silicon melt flow with the bidirectional temperature gradients, we conducted a series of unsteady three-dimensional (3D) numerical simulations in a shallow annular pool. The bidirectional temperature gradients are produced by the temperature difference between outer and inner walls as well as a constant heat flux at the bottom. Results show that when Marangoni number is small, a 3D steady flow is common without pool rotation. But it bifurcates to a 3D oscillatory flow at a low rotation Reynolds number. Subsequently, the flow becomes steady and axisymmetric at a high rotation Reynolds number. When the Marangoni number is large, pool rotation can effectively suppress the temperature fluctuation on the free surface, meanwhile, it improves the flow stability. The critical heat flux density diagrams are mapped, and the effects of radial and vertical temperature gradients on the flow are discussed. Additionally, the transition process from the flow dominated by the radial temperature gradient to the one dominated by the vertical temperature gradient is presented. (paper)
Energy Technology Data Exchange (ETDEWEB)
Li, Xing; Morgan, Huw; Leonard, Drew; Jeska, Lauren, E-mail: xxl@aber.ac.uk [Sefydliad Mathemateg a Ffiseg, Prifysgol Aberystwyth, Ceredigion, Cymru SY23 3BZ (United Kingdom)
2012-06-20
During 2011 September 24, as observed by the Atmospheric Imaging Assembly instrument of the Solar Dynamic Observatory and ground-based H{alpha} telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011 September 25 8:00 UT, material flows upward from the prominence core along a narrow loop-like structure, accompanied by a rise ({>=}50,000 km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, with emission in both hot ({approx}1 MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between prominence and cavity suggests that they are structurally linked. Complexity is great due to the combined effect of these actions and the line-of-sight integration through the structure which contains tangled fields.
Alias Suba, Subbu; Muthucumaraswamy, R.
2018-04-01
A numerical analysis of transient radiative MHD(MagnetoHydroDynamic) natural convective flow of a viscous, incompressible, electrically conducting and rotating fluid along a semi-infinite isothermal vertical plate is carried out taking into consideration Hall current, rotation and first order chemical reaction.The coupled non-linear partial differential equations are expressed in difference form using implicit finite difference scheme. The difference equations are then reduced to a system of linear algebraic equations with a tri-diagonal structure which is solved by Thomas Algorithm. The primary and secondary velocity profiles, temperature profile, concentration profile, skin friction, Nusselt number and Sherwood Number are depicted graphically for a range of values of rotation parameter, Hall parameter,magnetic parameter, chemical reaction parameter, radiation parameter, Prandtl number and Schmidt number.It is recognized that rate of heat transfer and rate of mass transfer decrease with increase in time but they increase with increasing values of radiation parameter and Schmidt number respectively.
Directory of Open Access Journals (Sweden)
Liou Tong-Miin
2005-01-01
Full Text Available The local turbulent fluid flow and heat transfer in a rotating two-pass square duct with 19 pairs of in-line 90 ∘ ribs have been investigated computationally. A Reynolds-averaged Navier-Stokes equation (RANS with a two-layer k − ϵ turbulence model was solved. The in-line 90 ∘ ribs were arranged on the leading and trailing walls with rib height-to-hydraulic diameter ratio and pitch-to-height ratio of 0.136 and 10, respectively. The Reynolds number, based on duct hydraulic diameter and bulk mean velocity, was fixed at 1.0 × 10 4 whereas the rotational number varied from 0 to 0.2 . Results are validated with previous measured velocity field and heat transfer coefficient distributions. The validation shows that the effect of rotation on the passage-averaged Nusselt number ratio can be predicted reasonably well; nevertheless, the transverse mean velocity and, in turn, the distribution of regional-averaged Nusselt number ratio are markedly underpredicted in the regions toward which the Coriolis force is directed. Further CFD studies are needed.
Zhu, Yunzeng; Chen, Yiqi; Meng, Xiangrui; Wang, Jing; Lu, Ying; Xu, Youchun; Cheng, Jing
2017-09-05
Centrifugal microfluidics has been widely applied in the sample-in-answer-out systems for the analyses of nucleic acids, proteins, and small molecules. However, the inherent characteristic of unidirectional fluid propulsion limits the flexibility of these fluidic chips. Providing an extra degree of freedom to allow the unconstrained and reversible pumping of liquid is an effective strategy to address this limitation. In this study, a wirelessly charged centrifugal microfluidic platform with two rotation axes has been constructed and the flow control strategy in such platform with two degrees of freedom was comprehensively studied for the first time. Inductively coupled coils are installed on the platform to achieve wireless power transfer to the spinning stage. A micro servo motor is mounted on both sides of the stage to alter the orientation of the device around a secondary rotation axis on demand during stage rotation. The basic liquid operations on this platform, including directional transport of liquid, valving, metering, and mixing, are comprehensively studied and realized. Finally, a chip for the simultaneous determination of hexavalent chromium [Cr(VI)] and methanal in water samples is designed and tested based on the strategy presented in this paper, demonstrating the potential use of this platform for on-site environmental monitoring, food safety testing, and other life science applications.
Mishra, A.; Sharma, B. K.
2017-11-01
A numerical study of an oscillatory unsteady MHD flow and heat and mass transfer in a vertical rotating channel with an inclined uniform magnetic field and the Hall effect is carried out. The conservation equations of momentum, energy, and species are formulated in a rotating frame of reference with inclusion of the buoyancy effects and Lorentz forces. The Lorentz forces are determined by using the generalized Ohm law with the Hall parameter taken into account. The obtained coupled partial differential equations are nondimensionalized and solved numerically by using the explicit finite difference method. The effects of various model parameters, like the Hall parameter, Hartmann number, wall suction/injection parameter, rotation parameter, angle of magnetic field inclination, Prandtl number, Schmidt number, etc., on the channel velocities, skin friction coefficients, Nusselt number, and the Sherwood number are examined. It is found that the influence of the Hartmann number and Hall parameter on the channel velocities and skin friction coefficients is dependent on the value of the wall suction/injection parameter.
Directory of Open Access Journals (Sweden)
F. Mabood
Full Text Available This article addresses the combined effects of chemical reaction and viscous dissipation on MHD radiative heat and mass transfer of nanofluid flow over a rotating stretching surface. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis in the presence of heat source. Similarity transformation variables have been used to model the governing equations of momentum, energy, and nanoparticles concentration. Runge-Kutta-Fehlberg method with shooting technique is applied to solve the resulting coupled ordinary differential equations. Physical features for all pertinent parameters on the dimensionless velocity, temperature, skin friction coefficient, and heat and mass transfer rates are analyzed graphically. The numerical comparison has also presented for skin friction coefficient and local Nusselt number as a special case for our study. It is noted that fluid velocity enhances when rotational parameter is increased. Surface heat transfer rate enhances for larger values of Prandtl number and heat source parameter while mass transfer rate increases for larger values of chemical reaction parameter. Keywords: Nanofluid, MHD, Chemical reaction, Rotating stretching sheet, Radiation
An efficient numerical technique for solving navier-stokes equations for rotating flows
International Nuclear Information System (INIS)
Haroon, T.; Shah, T.M.
2000-01-01
This paper simulates an industrial problem by solving compressible Navier-Stokes equations. The time-consuming tri-angularization process of a large-banded matrix, performed by memory economical Frontal Technique. This scheme successfully reduces the time for I/O operations even for as large as (40, 000 x 40, 000) matrix. Previously, this industrial problem can solved by using modified Newton's method with Gaussian elimination technique for the large matrix. In the present paper, the proposed Frontal Technique is successfully used, together with Newton's method, to solve compressible Navier-Stokes equations for rotating cylinders. By using the Frontal Technique, the method gives the solution within reasonably acceptance computational time. Results are compared with the earlier works done, and found computationally very efficient. Some features of the solution are reported here for the rotating machines. (author)
Numerical study of swirling flow in a cylinder with rotating top and bottom
DEFF Research Database (Denmark)
Shen, Wen Zhong; Sørensen, Jens Nørkær; Michelsen, Jess
2006-01-01
(xi=Omega(bottom)/Omega(top)). Earlier linear stability analysis (LSA) using the Galerkin spectral method by Gelfgat [Phys. Fluids, 8, 2614 (1996)] revealed that the curve of the critical Reynolds number behaves like an "S" around xi=0.54 in the co-rotation branch and around xi=-0.63 in the counter...... that the S shape does exist. The S shape of the stability diagram predicted by LSA is thus confirmed by a finite-volume based Navier-Stokes solver. The additional computations at aspect ratio lambda=2 show that the curve of critical Reynolds number has a wider S shape in the co-rotating branch for xi about 0.7...
Linearized stationary incompressible flow around rotating and translating bodies- Leray solution
Czech Academy of Sciences Publication Activity Database
Deuring, P.; Kračmar, S.; Nečasová, Šárka
2014-01-01
Roč. 7, č. 5 (2014), s. 967-979 ISSN 1937-1632 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : stationary Oseen problem * rotating body * Leray solution Subject RIV: BA - General Mathematics Impact factor: 0.567, year: 2014 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9874
Czech Academy of Sciences Publication Activity Database
Deuring, P.; Kračmar, S.; Nečasová, Šárka
2013-01-01
Roč. 255, č. 7 (2013), s. 1576-1606 ISSN 0022-0396 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : stationary incompressible Navier-Stokes system * rotating body * fundamental solution Subject RIV: BA - General Mathematics Impact factor: 1.570, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022039613002106
Flow-driven simulation on variation diameter of counter rotating wind turbines rotor
Directory of Open Access Journals (Sweden)
Littik Y. Fredrika
2018-01-01
Full Text Available Wind turbines model in this paper developed from horizontal axis wind turbine propeller with single rotor (HAWT. This research aims to investigating the influence of front rotor diameter variation (D1 with rear rotor (D2 to the angular velocity optimal (ω and tip speed ratio (TSR on counter rotating wind turbines (CRWT. The method used transient 3D simulation with computational fluid dynamics (CFD to perform the aerodynamics characteristic of rotor wind turbines. The counter rotating wind turbines (CRWT is designed with front rotor diameter of 0.23 m and rear rotor diameter of 0.40 m. In this research, the wind velocity is 4.2 m/s and variation ratio between front rotor and rear rotor (D1/D2 are 0.65; 0.80; 1.20; 1.40; and 1.60 with axial distance (Z/D2 0.20 m. The result of this research indicated that the variation diameter on front rotor influence the aerodynamics performance of counter rotating wind turbines.
Hydrodynamical winds from a geometrically thin disk
International Nuclear Information System (INIS)
Fukue, Jun
1989-01-01
Hydrodynamical winds emanating from the surface of a geometrically thin disk under the gravitational field of the central object are examined. The attention is focused on the transonic nature of the flow. For a given configuration of streamlines, the flow fields are divided into three regions: the inner region where the gas near the disk plane is gravitationally bound to form a corona; the intermediate wind region where multiple critical points appear and the gas flows out from the disk passing through critical points; and the outer region where the gas is unbound to escape to infinity without passing through critical points. This behavior of disk winds is due to the shape of the gravitational potential of the central object along the streamline and due to the energy source distribution at the flow base on the disk plane where the potential in finite. (author)
Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system
Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang
2017-08-01
In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.
Nath, G; Sahu, P K
2016-01-01
A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.
Energy Technology Data Exchange (ETDEWEB)
Tobias, B.; Grierson, B. A.; Okabayashi, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Chen, M.; Domier, C. W.; Luhmann, N. C.; Muscatello, C. M. [University of California at Davis, Davis, California 95616 (United States); Classen, I. G. J. [Dutch Institute for Fundamental Fusion Energy Research, DIFFER, Rhinjuizen (Netherlands); Fitzpatrick, R. [University of Texas at Austin, Austin, Texas 78705 (United States); Olofsson, K. E. J.; Paz-Soldan, C. [General Atomics, San Diego, California 92121 (United States)
2016-05-15
The electromagnetic coupling of helical modes, even those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. With increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lock to each other without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q{sub 95}, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. The additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor—a key issue for ITER.
International Nuclear Information System (INIS)
Matsuda, Hiroshi; Seki, Hiroyasu; Ishida, Hiroko
1985-01-01
Thirty-one regional cerebral blood flow (rCBF) measurements were performed on 26 patients with cerebrovascular accidents using N-Isopropyl-p-[ 123 I] Iodoamphetamine ( 123 I-IMP) and rotating gamma camera emission computed tomography (ECT). The equation for determining rCBF is as follows: F=100.R.Cb/(N.A), where F is rCBF in ml/100 g/min., R is the constant withdrawal rate of arterial blood in ml/min., Cb is the brain activity concentration in μCi/g, A is the total activity (5 min.) in the withdrawal arterial whole blood in μCi and N is the fraction of A that is true tracer activity (0.75). In determining Cb at 5 min. after injection, reconstructed counts from 35 min. to 59 min. were corrected to represent those from 4 min. to 5 min. with the use of time activity curve for the entire brain immediately after injection to 30 min. Reconstructed counts of central region in tomographic image were corrected 118% of the obtained values from the result of the countingrate ratio between peripheral and central regions of interests obtained from phantom study. Brain mean blood flow values were distributed from 11 to 39 ml/100 g/min. In 119 cortical regions obtained from 11 measurements in 9 patients, there was a significant correlation (r=0.41, p 123 I-IMP and rotating gamma camera ECT and those from 133 Xe inhalation method. rCBF measurement using 123 I-IMP and rotating gamma camera ECT is not only relatively noninvasive measurement for the entire brain but also three-dimensional evaluation. Besides, it is superior in spatial resolution and accuracy to conventional 133 Xe clearance method. (author)
International Nuclear Information System (INIS)
Sevec, J.B.
1978-01-01
A protective device to provide a warning if a piece of rotating machinery slows or stops is comprised of a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal
Directory of Open Access Journals (Sweden)
R. Mantovani
2002-01-01
Full Text Available This paper presents the analysis of symmetric circulations of a rotating baroclinic flow, forced by a steady thermal wind and dissipated by Laplacian friction. The analysis is performed with numerical time-integration. Symmetric flows, vertically bound by horizontal walls and subject to either periodic or vertical wall lateral boundary conditions, are investigated in the region of parameter-space where unstable small amplitude modes evolve into stable stationary nonlinear solutions. The distribution of solutions in parameter-space is analysed up to the threshold of chaotic behaviour and the physical nature of the nonlinear interaction operating on the finite amplitude unstable modes is investigated. In particular, analysis of time-dependent energy-conversions allows understanding of the physical mechanisms operating from the initial phase of linear instability to the finite amplitude stable state. Vertical shear of the basic flow is shown to play a direct role in injecting energy into symmetric flow since the stage of linear growth. Dissipation proves essential not only in limiting the energy of linearly unstable modes, but also in selecting their dominant space-scales in the finite amplitude stage.
Rotating Turbulent Flow Simulation with LES and Vreman Subgrid-Scale Models in Complex Geometries
Directory of Open Access Journals (Sweden)
Tao Guo
2014-07-01
Full Text Available The large eddy simulation (LES method based on Vreman subgrid-scale model and SIMPIEC algorithm were applied to accurately capture the flowing character in Francis turbine passage under the small opening condition. The methodology proposed is effective to understand the flow structure well. It overcomes the limitation of eddy-viscosity model which is excessive, dissipative. Distributions of pressure, velocity, and vorticity as well as some special flow structure in guide vane near-wall zones and blade passage were gained. The results show that the tangential velocity component of fluid has absolute superiority under small opening condition. This situation aggravates the impact between the wake vortices that shed from guide vanes. The critical influence on the balance of unit by spiral vortex in blade passage and the nonuniform flow around guide vane, combined with the transmitting of stress wave, has been confirmed.
Hall effects on hydromagnetic Couette flow of Class-II in a rotating ...
African Journals Online (AJOL)
International Journal of Engineering, Science and Technology ... Couette flow of class-II of a viscous, incompressible and electrically conducting fluid with ... Numerical solution of energy equation and numerical values of rate of heat transfer at ...
Numerical analysis of the thermally induced flow in a strongly rotating gas centrifuge
Energy Technology Data Exchange (ETDEWEB)
Novelli, P.
1982-04-01
The present work is concerned with the numerical analysis of the thermally induced flow in a rapidly gas centrifuge. The primary purpose for this work is to investigate the dependence of the flow field on the thermal boundary conditions, angular speed, aspect ratio of the cylinder, holdup. Some of our results are compared with the predictions of asymptotic theories, particularly those of Sakurai-Mtsuda and Brouwers, and with the numerical results of Dickinson-Jones.
Wu, Chung-Hua
1993-01-01
This report represents a general theory applicable to axial, radial, and mixed flow turbomachines operating at subsonic and supersonic speeds with a finite number of blades of finite thickness. References reflect the evolution of computational methods used, from the inception of the theory in the 50's to the high-speed computer era of the 90's. Two kinds of relative stream surfaces, S(sub 1) and S(sub 2), are introduced for the purpose of obtaining a three-dimensional flow solution through the combination of two-dimensional flow solutions. Nonorthogonal curvilinear coordinates are used for the governing equations. Methods of computing transonic flow along S(sub 1) and S(sub 2) stream surfaces are given for special cases as well as for fully three-dimensional transonic flows. Procedures pertaining to the direct solutions and inverse solutions are presented. Information on shock wave locations and shapes needed for computations are discussed. Experimental data from a Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. (DFVLR) rotor and from a Chinese Academy of Sciences (CAS) transonic compressor rotor are compared with the computed flow properties.
Navier-Stokes flow around a rotating obstacle mathematical analysis of its asymptotic behavior
Necasova, Sarka
2016-01-01
The book provides a comprehensive, detailed and self-contained treatment of the fundamental mathematical properties of problems arising from the motion of viscous incompressible fluids around rotating obstacles. It offers a new approach to this type of problems. We derive the fundamental solution of the steady case and we give pointwise estimates of velocity and its gradient (first and second one). Each chapter is preceded by a thorough discussion of the investigated problems, along with their motivation and the strategy used to solve them. The book will be useful to researchers and graduate students in mathematics, in particular mathematical fluid mechanics and differential equations.
Energy Technology Data Exchange (ETDEWEB)
Kwon, Kyung [Tuskegee Univ., Tuskegee, AL (United States); Fan, Liang-Shih [The Ohio State Univ., Columbus, OH (United States); Zhou, Qiang [The Ohio State Univ., Columbus, OH (United States); Yang, Hui [The Ohio State Univ., Columbus, OH (United States)
2014-09-30
A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a
Transient stress control of aeroengine disks based on active thermal management
International Nuclear Information System (INIS)
Ding, Shuiting; Wang, Ziyao; Li, Guo; Liu, Chuankai; Yang, Liu
2016-01-01
Highlights: • The essence of cooling in turbine system is a process of thermal management. • Active thermal management is proposed to control transient stress of disks. • The correlation between thermal load and transient stress of disks is built. • Stress level can be declined by actively adjusting the thermal load distribution. • Artificial temperature gradient can be used to counteract stress from rotating. - Abstract: The physical essence of cooling in the turbine system is a process of thermal management. In order to overcome the limits of passive thermal management based on thermal protection, the concept of active thermal management based on thermal load redistribution has been proposed. On this basis, this paper focuses on a near real aeroengine disk during a transient process and studies the stress control mechanism of active thermal management in transient conditions by a semi-analytical method. Active thermal management is conducted by imposing extra heating energy on the disk hub, which is represented by the coefficient of extra heat flow η. The results show that the transient stress level can be effectively controlled by actively adjusting the thermal load distribution. The decline ratio of the peak equivalent stress of the disk hub can be 9.0% for active thermal management load condition (η = 0.2) compared with passive condition (η = 0), even at a rotation speed of 10,000 r/min. The reason may be that the temperature distribution of the disk turns into an artificial V-shape because of the extra heating energy on the hub, and the resulting thermal stresses induced by the negative temperature gradients counteract parts of the stress from rotating.
Development of a Surface Micromachined On-Chip Flat Disk Micropump
Directory of Open Access Journals (Sweden)
M. I. KILANI
2009-08-01
Full Text Available The paper presents research progress in the development of a surface micromachined flat disk micropump which employs the viscous and centrifugal effects acting on a layer of fluid sandwiched between a rotating flat disk and a stationary plate. The pump is fabricated monolithically on-chip using Sandia’s Ultraplanar Multilevel MEMS Technology (SUMMiT™ where an electrostatic comb-drive Torsional Ratcheting Actuator (TRA drives the flat disk through a geared transmission. The paper reviews available analytical models for flow geometries similar to that of the described pump, and presents a set of experiments which depict its performance and possible failure modes. Those experiments highlight future research directions in the development of electrostatically-actuated, CMOS-compatible, surface micromachined pumps.
International Nuclear Information System (INIS)
Ofei, T N; Irawan, S; Pao, W
2015-01-01
During oil and gas drilling operations, frictional pressure loss is experienced as the drilling fluid transports the drilled cuttings from the bottom-hole, through the annulus, to the surface. Estimation of these pressure losses is critical when designing the drilling hydraulic program. Two-phase frictional pressure loss in the annulus is very difficult to predict, and even more complex when there is drillpipe rotation. Accurate prediction will ensure that the correct equivalent circulating density (ECD) is applied in the wellbore to prevent formation fracture, especially in formations with narrow window between the pore pressure and fracture gradient. Few researchers have attempted to propose cuttings-liquid frictional pressure loss models, nevertheless, these models fail when they are applied to narrow wellbores such as in casing- while-drilling and slimhole applications. This study proposes improved cuttings-liquid frictional pressure loss models for narrow horizontal annuli with drillpipe rotation using Dimensional Analysis. Both Newtonian and non-Newtonian fluids were considered. The proposed model constants were fitted by generated data from a full-scale simulation study using ANSYS-CFX. The models showed improvement over existing cuttings-liquid pressure loss correlations in literature. (paper)
International Nuclear Information System (INIS)
Mukhopadhyay, Banibrata; Saha, Kanak
2011-01-01
The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle. Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity. Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T > or approx. 10 5 . However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability. This flow is similar to plane Couette flow including the Coriolis force, at least locally. What drives their turbulence and then transport, when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 ∼ t ∼< 0.1, which can explain transport in accretion flows.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries.
Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries
Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
Chaotic cold accretion on to black holes in rotating atmospheres
Gaspari, M.; Brighenti, F.; Temi, P.
2015-07-01
The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images reproduce the main features of cold gas observations in massive ellipticals, as the line fluxes and the filaments versus disk morphology. Such dichotomy is key for the long-term AGN feedback cycle. As gas cools, filamentary CCA develops and boosts AGN heating; the cold mode is thus reduced and the rotating disk remains the sole cold structure. Its consumption leaves the atmosphere in hot mode with suppressed accretion and feedback, reloading the cycle.
Examination of forced unsteady separated flow fields on a rotating wind turbine blade
Energy Technology Data Exchange (ETDEWEB)
Huyer, S [Univ. of Colorado, Boulder, CO (US)
1993-04-01
The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.
Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming
2013-05-24
We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant kb, were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0×10(-8) to 2.0×10(-5) mol L(-1), with a low limit of detection (LOD) of 1.25×10(-8) mol L(-1) for SY and 1.43×10(-8) mol L(-1) for TT (SN(-1)=3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant differences were found. By the treatment of the experimental data, the electrochemical reaction mechanisms of SY and TT both involved a one-electron-one-proton-transfer process. Copyright © 2013 Elsevier B.V. All rights reserved.
Wernet, Mark P.; Georgiadis, Nicholas J.; Locke, Randy J.
2018-01-01
Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient thin film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better turbulence models. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity and also the mean temperature and normalized root mean square (rms) temperatures in a single injector cooling flow arrangement. In addition to flowfield measurements, thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures and Mach numbers, across a 30.48cm long plate equipped with a single injector cooling hole. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 15 axial stations were collected in the same flows. The velocity and temperature data were then compared against Wind-US CFD code predictions for the same flow conditions. The results of this and planned follow-on studies will support NASA's development and assessment of turbulence models for heated flows.
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries
Dong, S.; Wang, X.
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909
Magnetorotational Instability in a Rotating Liquid Metal Annulus
International Nuclear Information System (INIS)
Hantao Ji; Jeremy Goodman; Akira Kageyama
2001-01-01
Although the magnetorotational instability (MRI) has been widely accepted as a powerful accretion mechanism in magnetized accretion disks, it has not been realized in the laboratory. The possibility of studying MRI in a rotating liquid-metal annulus (Couette flow) is explored by local and global stability analysis and magnetohydrodynamic (MHD) simulations. Stability diagrams are drawn in dimensionless parameters, and also in terms of the angular velocities at the inner and outer cylinders. It is shown that MRI can be triggered in a moderately rapidly rotating table-top apparatus, using easy-to-handle metals such as gallium. Practical issues of this proposed experiment are discussed
Weighted L2 and Lq approaches to fluid flow past a rotating body
Czech Academy of Sciences Publication Activity Database
Farwig, R.; Kračmar, S.; Krbec, Miroslav; Nečasová, Šárka; Penel, P.
2009-01-01
Roč. 86, - (2009), s. 59-81 ISSN 0137-6934 R&D Projects: GA AV ČR IAA100190505; GA AV ČR IAA100190804 Institutional research plan: CEZ:AV0Z10190503 Keywords : variational approach * maximal operator * Littlewood-Paley theory * Oseen flow Subject RIV: BA - General Mathematics
The effect of shear flow on the rotational diffusivity of a single axisymmetric particle
Leahy, Brian; Koch, Donald; Cohen, Itai
2014-11-01
Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.
Locally-rotationally-symmetric Bianchi type-V cosmology with heat flow
Indian Academy of Sciences (India)
LRS) Bianchi type-V cosmological model with perfect fluid and heat flow. A general approach is introduced to solve Einstein's field equations using a law of variation for the mean Hubble parameter, which is related to average scale factor of the ...
Experimental investigation of three-dimensional flow instabilities in a rotating lid-driven cavity
DEFF Research Database (Denmark)
Sørensen, Jens Nørkær; Naumov, I.; Mikkelsen, Robert Flemming
2006-01-01
liquid. For the first time the onset of three-dimensionality and transition are analysed by combining the high spatial resolution of Particle Image Velocimetry (PIV) and the temporal accuracy of Laser Doppler Anemometry (LDA). A detailed mapping of the transition from steady and axisymmetric flow...
International Nuclear Information System (INIS)
Xu, Y.; Shesterikov, I.; Berte, M.; Dumortier, P.; Van Schoor, M.; Vergote, M.; Hidalgo, C.; Krämer-Flecken, A.; Koslowski, R.
2013-01-01
Direct measurements of residual stress (force) have been executed at the edge of the TEXTOR tokamak using multitip Langmuir and Mach probes, together with counter-current NBI torque to balance the existing toroidal rotation. Substantial residual stress and force have been observed at the plasma boundary, confirming the existence of a finite residual stress as possible mechanisms to drive the intrinsic toroidal rotation. In low-density discharges, the residual stress displays a quasi-linear dependence on the local pressure gradient, consistent with theoretical predictions. At high-density shots the residual stress and torque are strongly suppressed. The results show close correlation between the residual stress and the E r × B flow shear rate, suggesting a minimum threshold of the E × B flow shear required for the k ∥ symmetry breaking. These findings provide the first experimental evidence of the role of E r × B sheared flows in the development of residual stresses and intrinsic rotation. (letter)
International Nuclear Information System (INIS)
Derks, Didi; Wisman, Hans; Blaaderen, Alfons van; Imhof, Arnout
2004-01-01
We report on novel possibilities for studying colloidal suspensions in a steady shear field in real space. Fluorescence confocal microscopy is combined with the use of a counter-rotating cone-plate shear cell. This allows imaging of individual particles in the bulk of a sheared suspension in a stationary plane. Moreover, this plane of zero velocity can be moved in the velocity gradient direction while keeping the shear rate constant. The colloidal system under study consists of rhodamine labelled PMMA spheres in a nearly density and refractive index matched mixture of cyclohexylbromide and cis-decalin. We show measured flow profiles in both the fluid and the crystalline phase and find indications for shear banding in the case of a sheared crystal. Furthermore, we show that, thanks to the counter-rotating principle of the cone-plate shear cell, a layer of particles in the bulk of a sheared crystalline suspension can be imaged for a prolonged time, with the result that their positions can be tracked
Chemical evolution of the galactic disk
International Nuclear Information System (INIS)
Wyse, R.F.G.; Gilmore, G.
1987-01-01
The distribution of enriched material in the stars and gas of their Galaxy contains information pertaining to the chemical evolution of the Milky Way from its formation epoch to the present day, and provides general constraints on theories of galaxy formation. The separate stellar components of the Galaxy cannot readily be understood if treated in isolation, but a reasonably self-consistent model for Galactic chemical evolution may be found if one considers together the chemical properties of the extreme spheroid, thick disk and thin disk populations of the Galaxy. The three major stellar components of the Galaxy are characterized by their distinct spatial distributions, metallicity structure, and kinematics, with the newly-identified thick disk being approximately three times more massive than the classical metal-poor, non-rotating extreme spheroid. Stellar evolution in the thick disk straightforwardly provides the desired pre-enrichment for resolution of the thin disk G dwarf problem
Directory of Open Access Journals (Sweden)
Muthucumaraswamy R.
2010-01-01
Full Text Available An exact analysis of rotation effects on unsteady flow of an incompressible and electrically conducting fluid past a uniformly accelerated infinite isothermal vertical plate, under the action of transversely applied magnetic field has been presented. The plate temperature is raised to Tw and the concentration level near the plate is also raised to C′w . The dimensionless governing equations are solved using Laplace-transform technique. The velocity profiles, temperature and concentration are studied for different physical parameters like thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing magnetic field parameter.
International Nuclear Information System (INIS)
Zhang, J.; Li, X.
2005-01-01
An experimental study has been conducted to investigate cooling dielectric oil flow in oil naturally cooled (ON) transformer windings. Static pressure in winding ducts has been measured at various strategic locations. Experimental results have been used for the validation of an existing hydraulic network simulation model developed earlier by the authors. It is found that minor losses in ON transformer windings are on the same order of magnitude as frictional loss. Since empirical correlations in literature overestimate the minor losses in low Reynolds number laminar flow regime, an implicit nonlinear optimization approach has been used to calibrate the existing hydraulic model. Consequently, an accurate correlation for minor loss coefficients has been developed, and is valid for Reynolds numbers ranging from 1.1 to 20.9 in horizontal cooling ducts and up to 102.0 in vertical ducts. It is shown that the improved hydraulic network model is in good agreement with the present experimental results and previous results in the literature. (author)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-04-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
z~2: An Epoch of Disk Assembly
Simons, Raymond C.; Kassin, Susan A.; Weiner, Benjamin; Heckman, Timothy M.; Trump, Jonathan; SIGMA, DEEP2
2018-01-01
At z = 0, the majority of massive star-forming galaxies contain thin, rotationally supported gas disks. It was once accepted that galaxies form thin disks early: collisional gas with high velocity dispersion should dissipate energy, conserve angular momentum, and develop strong rotational support in only a few galaxy crossing times (~few hundred Myr). However, this picture is complicated at high redshift, where the processes governing galaxy assembly tend to be violent and inhospitable to disk formation. We present results from our SIGMA survey of star-forming galaxy kinematics at z = 2. These results challenge the simple picture described above: galaxies at z = 2 are unlike local well-ordered disks. Their kinematics tend to be much more disordered, as quantified by their low ratios of rotational velocity to gas velocity dispersion (Vrot/σg): less than 35% of galaxies have Vrot/σg > 3. For comparison, nearly 100% of local star-forming galaxies meet this same threshold. We combine our high redshift sample with a similar low redshift sample from the DEEP2 survey. This combined sample covers a continuous redshift baseline over 0.1 < z < 2.5, spanning 10 Gyrs of cosmic time. Over this period, galaxies exhibit remarkably smooth kinematic evolution on average. All galaxies tend towards rotational support with time, and it is reached earlier in higher mass systems. This is due to both a significant decline in gas velocity dispersion and a mild rise in ordered rotational motions. These results indicate that z = 2 is a period of disk assembly, during which the strong rotational support present in today’s massive disk galaxies is only just beginning to emerge.