Rossby Wave Instability of Keplerian Accretion Disks
Lovelace, R V E; Colgate, S A; Nelson, A F
1999-01-01
We find a linear instability of non-axisymmetric Rossby waves in a thin non-magnetized Keplerian disk when there is a local maximum in the radial profile of a key function ${\\cal L}(r) \\equiv {\\cal F}(r) S^{2/\\Gamma}(r)$, where ${\\cal F}^{-1} = \\hat {\\bf z}\\cdot ({\\bf \
The coupling instability of Rossby and topographic Rossby waves in the equatorial area
CHAO Jiping; LIU Lin; YU Weidong
2005-01-01
In case of considering the fact that the tropical ocean thermocline or the lower atmosphere height field has the meridional variation, the topographic Rossby wave will be excited. Also the background geostrophic current emerges. Under such conditions, the topographic Rossby wave can interact with the classical Rossby wave at some parameter band and thus brings a new kind of instability, which may be of potential application in understanding some phenomena of the ENSO cycle.
Quasi-periodic oscillations from Rossby Wave Instability
Vincent, F H; Meheut, H; Paumard, T; Torok, G; Wildner, M
2013-01-01
We study the Rossby wave instability model of high-frequency quasi-periodic oscillations (QPO) of microquasars. We show ray-traced light curves of QPO within this model and discuss perspectives of distinguishing alternative QPO models with the future Large Observatory For X-ray Timing (LOFT) observations.
Rossby Wave Instability of Thin Accretion Disks - III. Nonlinear Simulations
Li, H; Wendroff, B; Liska, R
2000-01-01
(abridged) We study the nonlinear evolution of the Rossby wave instability in thin disks using global 2D hydrodynamic simulations. The key questions we are addressing in this paper are: (1) What happens when the instability becomes nonlinear? Specifically, does it lead to vortex formation? (2) What is the detailed behavior of a vortex? (3) Can the instability sustain itself and can the vortex last a long time? Among various initial equilibria that we have examined, we generally find that there are three stages of the disk evolution: (1) The exponential growth of the initial small amplitude perturbations. This is in excellent agreement with the linear theory; (2) The production of large scale vortices and their interactions with the background flow, including shocks. Significant accretion is observed due to these vortices. (3) The coupling of Rossby waves/vortices with global spiral waves, which facilitates further accretion throughout the whole disk. Even after more than 20 revolutions at the radius of vortic...
Rossby Wave Instability in the Accretion Flows around Black Holes
Gholipour, Mahmoud
2017-01-01
The roles of the Rossby wave instability (RWI) have been significantly developed in some important processes, such as planet formation and angular momentum transport through thin accretion disks. However, their development on accretion flows with advection is insignificant. In this paper, we investigate the effect of advection in the occurrence of RWI through accretion flows around black holes (BHs). In the absence of advection, the occurrence of RWI is extremely low because of high viscosity in the accretion flows around BHs. The results of this paper show that there is a significant chance for the occurrence of RWI in some wavelengths if we consider advection even in low amounts. Therefore, the RWI can be a suitable candidate for angular momentum transport in the accretion flows around BHs. Also, the results show that the advection parameter and the ratio of heat capacity, which are special characters of advection flows, play important roles in the occurrence of RWI.
Rossby wave instability does not require sharp resistivity gradients
Lyra, W; McNally, C
2014-01-01
Rossby wave instability (RWI) at dead zone boundaries may play an important role in planet formation. Viscous hydrodynamics results suggest RWI is excited only when the viscosity changes over a radial distance less than two density scale heights. However in the disks around Solar-mass T Tauri stars, it is not viscosity but magnetic forces that provide the accretion stress beyond about 10 AU, where surface densities are low enough so stellar X-rays and interstellar cosmic rays can penetrate. Here we aim to explore the conditions for RWI in the smooth transition with increasing distance, from resistive and magnetically-dead to conducting and magnetically-active. We perform 3D unstratified MHD simulations with the Pencil Code, using static resistivity profiles. As a result, we find that in MHD, contrary to viscous models, the RWI is triggered even with a gradual change in resistivity extending from 10 to 40 AU (i.e., spanning 15 scale heights for aspect ratio 0.1). This is because magneto-rotational turbulence s...
Instability of combined gravity-inertial-Rossby waves in atmospheres and oceans
J. F. McKenzie
2011-06-01
Full Text Available The properties of the instability of combined gravity-inertial-Rossby waves on a β-plane are investigated. The wave-energy exchange equation shows that there is an exchange of energy with the background stratified medium. The energy source driving the instability lies in the background enthalpy released by the gravitational buoyancy force.
It is shown that if the phase speed of the westward propagating low frequency-long wavelength Rossby wave exceeds the Poincaré-Kelvin (or "equivalent" shallow water wave speed, instability arises from the merging of Rossby and Poincaré modes. There are two key parameters in this instability condition; namely, the equatorial/rotational Mach (or Froude number M and the latitude θ_{0} of the β-plane. In general waves equatorward of a critical latitude for given M can be driven unstable, with corresponding growth rates of the order of a day or so. Although these conclusions may only be safely drawn for short wavelengths corresponding to a JWKB wave packet propagating internally and located far from boundaries, nevertheless such a local instability may play a significant role in atmosphere-ocean dynamics.
Rossby Wave Instability of Thin Accretion Disks; 2, Detailed Linear Theory
Finn, J M; Colgate, S A
1999-01-01
In earlier work we identified a global, non-axisymmetric instability associated with the presence of an extreme in the radial profile of the key function ${\\cal L}(r) \\equiv (\\Sigma \\Omega/\\kappa^2) S^{2/\\Gamma}$ in a thin, inviscid, nonmagnetized accretion disk. Here, $\\Sigma(r)$ is the surface mass density of the disk, $\\Omega(r)$ the angular rotation rate, $S(r)$ the specific entropy, $\\Gamma$ the adiabatic index, and $\\kappa(r)$ the radial epicyclic frequency. The dispersion relation of the instability was shown to be similar to that of Rossby waves in planetary atmospheres. In this paper, we present the detailed linear theory of this Rossby wave instability and show that it exists for a wider range of conditions, specifically, for the case where there is a ``jump'' over some range of $r$ in $\\Sigma(r)$ or in the pressure $P(r)$. We elucidate the physical mechanism of this instability and its dependence on various parameters, including the magnitude of the ``bump'' or ``jump,'' the azimuthal mode number, ...
Impact of the gravity of a Schwarzschild black hole upon the Rossby wave instability
Casse, F.; Varniere, P.; Meliani, Z.
2017-01-01
In an early work, the Rossby wave instability was proposed to explain the variability thought to originate in the close vicinity of black holes but this was done in the pseudo-Newtonian approach. Here we present the first general relativistic (GR) hydrodynamics simulations of this instability not only proving its theorized existence in a full GR environment but also studying the effect of the strong gravity on the instability. To that end, we performed a set of simulations increasingly closer to the black hole with our new GR version of the MPI-AMRVAC code. This allows us to study the minute changes in the behaviour of the instability. We found that a pseudo-Newtonian approach gives adequate results provided that the time-shifting induced by the black hole gravity is taken into account. Hence, to view the disc as a distant observer would, a full GR ray-tracing post-treatment of the simulations is a must.
Quasi-biennial oscillations in the solar tachocline caused by magnetic Rossby wave instabilities
Zaqarashvili, T V; Oliver, R; Ballester, J L
2010-01-01
Quasi-biennial oscillations (QBO) are frequently observed in the solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength > 10^5 G triggers the instability of the m=1 magnetic Rossby wave harmonic with a period of 2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and the magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in the solar activity features. The period of QBO may change throughout the cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the...
Impact of Schwarzschild black hole's gravity upon the Rossby wave instability
Casse, F; Meliani, Z
2016-01-01
In an early work the Rossby Wave Instability (RWI) has been proposed to explain variability thought to originate in the close vicinity of black-holes but this was done in the pseudo-Newtonian approach. Here we present the first general relativistic hydrodynamics simulations of this instability not only proving its theorized existence in a full general relativistic (GR) environment but also studying the effect of the strong gravity on the instability. To that end we performed a set of simulations increasingly closer to the black hole with our new GR version of the MPI-AMRVAC code.This allows us to study the minute changes in the behaviour of the instability.We found that the pseudo-Newtonian approach gives adequate results provided that time shifting induced by the black hole gravity is taken into account. Hence, to view the disc as a distant observer would a full GR ray-tracing post treatment of the simulations is a must.
Instability of coupled gravity-inertial-Rossby waves on a β-plane in solar system atmospheres
J. F. McKenzie
2009-11-01
Full Text Available This paper provides an analysis of the combined theory of gravity-inertial-Rossby waves on a β-plane in the Boussinesq approximation. The wave equation for the system is fifth order in space and time and demonstrates how gravity-inertial waves on the one hand are coupled to Rossby waves on the other through the combined effects of β, the stratification characterized by the Väisälä-Brunt frequency N, the Coriolis frequency f at a given latitude, and vertical propagation which permits buoyancy modes to interact with westward propagating Rossby waves. The corresponding dispersion equation shows that the frequency of a westward propagating gravity-inertial wave is reduced by the coupling, whereas the frequency of a Rossby wave is increased. If the coupling is sufficiently strong these two modes coalesce giving rise to an instability. The instability condition translates into a curve of critical latitude Θ_{c} versus effective equatorial rotational Mach number M, with the region below this curve exhibiting instability. "Supersonic" fast rotators are unstable in a narrow band of latitudes around the equator. For example Θ_{c}~12° for Jupiter. On the other hand slow "subsonic" rotators (e.g. Mercury, Venus and the Sun's Corona are unstable at all latitudes except very close to the poles where the β effect vanishes. "Transonic" rotators, such as the Earth and Mars, exhibit instability within latitudes of 34° and 39°, respectively, around the Equator. Similar results pertain to Oceans. In the case of an Earth's Ocean of depth 4km say, purely westward propagating waves are unstable up to 26° about the Equator. The nonlinear evolution of this instability which feeds off rotational energy and gravitational buoyancy may play an important role in atmospheric dynamics.
The behavior of magnetic Prandtl number on the Rossby wave instability in the protoplanetary discs
Gholipour, Mahmoud; Ebadi, Hossein; Shaji, Zeynab
2017-07-01
In recent years, the Rossby wave instability (RWI) has become the target of intense theoretical and simulation investigations in dealing to some ambiguous problems such as the planet formation and angular momentum transport in the protoplanetary discs. The role of hydrodynamic turbulence on the RWI theory has been well understood by many theoretical and simulation works. However, less attention has been paid to the magnetohydrodynamic (MHD) turbulence in theoretical works related to the RWI. However, the turbulent magnetic Prandtl numbers (Prm), i.e., the ratio of the turbulent viscosity to the turbulent magnetic diffusivity, is one of the significant parameters in (MHD) turbulence. On the other hand, the gradient and strength of the toroidal magnetic field can affect some variables and parameters in the stationary and perturbation states in some radii which may be lead to important results. In this paper, the whole range of Prm is considered in details with considering the gradient and strength of the toroidal magnetic field. Although complicating the problem, it gives us a comprehensive view on the RWI occurrence in the cold and hot discs. The results show that the Prm can significantly control the RWI occurrence as well as the growth rate of unstable modes. While the magneto-rotational instability cannot be responsible for the angular momentum transport in the protoplanetary discs, our results indicate that the RWI is responsible about this subject in these discs.
Rossby Wave Instability and Long-Term Evolution of Dead Zones in Protoplanetary Discs
Miranda, Ryan; Meheut, Heloise
2015-01-01
The physical mechanism of angular momentum transport in poorly ionized regions of protoplanetary discs, the dead zones (DZs), is not understood. The presence of a DZ naturally leads to conditions susceptible to the Rossby wave instability (RWI), which produces vortices and spiral density waves that may revive the DZ and be responsible for observed large-scale disc structures. We present a series of two-dimensional hydrodynamic simulations to investigate the role of the RWI in DZs, including its impact on the long-term evolution of the disc and its morphology. The nonlinear RWI can generate Reynolds stresses (effective $\\alpha$ parameter) as large as $0.01 - 0.05$ in the DZ, helping to sustain quasi-steady accretion throughout the disc. It also produces novel disc morphologies, including azimuthal asymmetries with $m = 1, 2$, and atypical vortex shapes. The angular momentum transport strength and morphology are most sensitive to two parameters: the radial extent of the DZ and the disc viscosity. The largest Re...
Dual behavior of the toroidal magnetic field versus the Rossby wave instability
Gholipour, Mahmoud
2016-12-01
The Rossby wave instability (RWI) theory has been considered as one of the top topics in astrophysics due to the fact that it deals with some ambiguous questions, such as the angular momentum transport in the poorly ionized regions of the protoplanetary discs. Based on the theoretical and simulation works, two important factors in the study of the RWI are the viscosity and magnetic field, which are directly connected to each other because the large-scale toroidal magnetic fields are produced by the magnetohydrodynamic (MHD) turbulence. Therefore, it is essential to consider more details about the toroidal magnetic field both in the steady state and perturbation state. In this paper, the role of the strength and gradient of the toroidal magnetic field is investigated on the RWI at the dead zone in the regions of bump. The obtained results show that the gradient of the toroidal magnetic field or its strength have a major role in the RWI occurrence, which have received relatively less attention in previous works. Also, the role of the gradient of the toroidal magnetic field in the RWI is important even in the weak magnetic fields. Hence, the obtained results are very different from what we previously expected, and it seems crucial to research and develop this issue in the theoretical and simulation works. This paper can be helpful on the study of the angular momentum transport in the cold accretion discs, such as accretion discs in quiescent dwarf novae or around the white-dwarf primary.
Lyra, Wladimir
2012-01-01
It has been suggested that the transition between magnetorotationally active and dead zones in protoplanetary disks should be prone to the excitation of vortices via Rossby wave instability (RWI). However, the only numerical evidence for this has come from alpha disk models, where the magnetic field evolution is not followed, and the effect of turbulence is parametrized by Laplacian viscosity. We aim to establish the phenomenology of the flow in the transition in 3D resistive-magnetohydrodynamical models. We model the transition by a sharp jump in resistivity, as expected in the inner dead zone boundary, using the Pencil Code to simulate the flow. We find that vortices are readily excited in the dead side of the transition. We measure the mass accretion rate finding similar levels of Reynolds stress at the dead and active zones, at the $\\alpha\\approx 10^{-2}$ level. The vortex sits in a pressure maximum and does not migrate, surviving until the end of the simulation. A pressure maximum in the active zone also...
On the unstable mode merging of gravity-inertial waves with Rossby waves
J. F. McKenzie
2011-08-01
Full Text Available We recapitulate the results of the combined theory of gravity-inertial-Rossby waves in a rotating, stratified atmosphere. The system is shown to exhibit a "local" (JWKB instability whenever the phase speed of the low-frequency-long wavelength westward propagating Rossby wave exceeds the phase speed ("Kelvin" speed of the high frequency-short wavelength gravity-inertial wave. This condition ensures that mode merging, leading to instability, takes place in some intermediate band of frequencies and wave numbers. The contention that such an instability is "spurious" is not convincing. The energy source of the instability resides in the background enthalpy which can be released by the action of the gravitational buoyancy force, through the combined wave modes.
Scattering of Rossby and Poincare waves off rough lateral boundaries
Fernandes, A.A.; Prahalad, Y.S.; Sengupta, D.
be represented by an Ito-Wiener-Hermite series. To study the reflection of Rossby and Poincare waves from continental edges is used. The presence of new, roughness-generated trapped waves is predicted in both cases. An incoming Rossby wave is shown to transfer...
Generation of Solitary Rossby Waves by Unstable Topography
YANG Hong-Wei; YIN Bao-Shu; DONG Huan-He
2012-01-01
The effect of topography on generation of the solitary Rossby waves is researched. Here, the topography, as a forcing for waves generation, is taken as a function of longitude variable x and time variable t, which is called unstable topography. With the help of a perturbation expansion method, a forced mKdv equation governing the evolution of amplitude of the solitary Rossby waves is derived from quasi-geostrophic vortieity equation and is solved by the pseudo-spectral method. Basing on the waterfall plots, the generational features of the solitary Rossby waves under the influence of unstable topography and stable topography are compared and some conclusions are obtained.
Equatorial Rossby Solitary Wave Under the External Forcing
FU Zun-Tao; LIU Shi-Kuo; LIU Shi-Da
2005-01-01
A simple shallow-water model with influence of external forcing on a β-plane is applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By the perturbation method, the extended variable-coefficient KdV equation under an external forcing is derived for large amplitude equatorial Rossby wave in a shear flow. And then various periodic-like structures for these equatorial Rossby waves are obtained with the help of Jacobi elliptic functions.It is shown that the external forcing plays an important role in various periodic-like structures.
Rossby waves with linear topography in barotropic fluids
2008-01-01
Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.
2014-06-01
diabatic Rossby vortices. 14. SUBJECT TERMS Rossby wave train, downstream development, tropopause polar vortex, warm conveyor belt, diabatic Rossby...extratropical transition of tropical cyclones, and six (16%) by diabatic Rossby vortices. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS...9 3. Diabatic Rossby Vortex .....................................................................12 4. Extratropical
The dominant imprint of Rossby waves in the climate network
Wang, Yang; Ashkenazy, Yosef; Berezin, Yehiel; Guez, Oded; Havlin, Shlomo
2013-01-01
The connectivity pattern of networks, which are based on a correlation between ground level temperature time series, shows a dominant dense stripe of links in the southern ocean. We show that statistical categorization of these links yields a clear association with the pattern of an atmospheric Rossby wave, one of the major mechanisms associated with the weather system and with planetary scale energy transport. It is shown that alternating densities of negative and positive links (correlations) are arranged in half Rossby wave distances around 3,500 km, 7,000 km and 10,000 km and are aligned with the expected direction of energy flow, distribution of time delays and the seasonality of these waves. It is also shown that long distance links (i.e., of distances larger than 2,000 km) that are associated with Rossby waves are the most dominant in the climate network. Climate networks may thus be used as an efficient new way to detect and analyze Rossby waves, based on reliable and available ground level measuremen...
THE ANALYSIS OF INTRASEASONAL LONG ROSSBY WAVE SPEED IN THE SUBTROPICAL PACIFIC OCEAN
无
2006-01-01
The analysis of the satellite altimeter data suggests that the propagating speed of intraseasonal long Rossby wave amplified in the subtropical Pacific Ocean is faster than that of first-mode baroclinic free Rossby wave predicted by the liner theory and the propagating speed of intraseasonal long Rossby wave reflected in the eastern boundary of Pacific Ocean agrees basically with the liner theory speed of first-mode baroclinic free Rossby wave. If we do not distinguish the two kinds of long Rossby waves and estimate the Rossby wave speed in the whole basin, the phase speed is merely 25% higher than the linear theory long Rossby wave speed. The acceleration of the propagating speed of intraseasonal long Rossby wave amplified in the subtropical Pacific Ocean is due to the existence of westward thermolcline mean flow.
Raphaldini, Breno; Raupp, Carlos F. M., E-mail: brenorfs@gmail.com, E-mail: carlos.raupp@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Rua do Matão, 1226-Cidade Universitária São Paulo-SP 05508-090 (Brazil)
2015-01-20
The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.
Rossby wave Green's functions in an azimuthal wind
Webb, G. M.; Duba, C. T.; Hu, Q.
2016-05-01
Green's functions for Rossby waves in an azimuthal wind are obtained, in which the stream-function $\\psi$ depends on $r$, $\\phi$ and $t$, where $r$ is cylindrical radius and $\\phi$ is the azimuthal angle in the $\\beta$-plane relative to the easterly direction, in which the $x$-axis points east and the $y$-axis points north. The Rossby wave Green's function with no wind is obtained using Fourier transform methods, and is related to the previously known Green's function obtained for this case, which has a different but equivalent form to the Green's function obtained in the present paper. We emphasize the role of the wave eikonal solution, which plays an important role in the form of the solution. The corresponding Green's function for a rotating wind with azimuthal wind velocity ${\\bf u}=\\Omega r{\\bf e}_\\phi$ ($\\Omega=$const.) is also obtained by Fourier methods, in which the advective rotation operator in position space is transformed to a rotation operator in ${\\bf k}$ transform space. The finite Rossby deformation radius is included in the analysis. The physical characteristics of the Green's functions are delineated and applications are discussed. In the limit as $\\Omega\\to 0$, the rotating wind Green's function reduces to the Rossby wave Green function with no wind.
The arithmetic geometry of resonant Rossby wave triads
Kopp, Gene S
2016-01-01
Linear wave solutions to the Charney-Hasegawa-Mima partial differential equation with periodic boundary conditions have two physical interpretations: Rossby (atmospheric) waves, and drift (plasma) waves in a tokamak. These waves display resonance in triads. In the case of infinite Rossby deformation radius, the set of resonant triads may be described as the set of integer solutions to a particular homogeneous Diophantine equation, or as the set of rational points on a projective surface. We give a rational parametrization of the smooth points on this surface, answering the question: What are all resonant triads? We also give a fiberwise description, yielding a procedure to answer the question: For fixed $r \\in \\mathbb{Q}$, what are all wavevectors $(x,y)$ that resonate with a wavevector $(a,b)$ with $a/b = r$?
Rossby Wave Green's Functions in an Azimuthal Wind
Webb, G M; Hu, Q
2015-01-01
Green's functions for Rossby waves in an azimuthal wind are obtained, in which the stream-function $\\psi$ depends on $r$, $\\phi$ and $t$, where $r$ is cylindrical radius and $\\phi$ is the azimuthal angle in the $\\beta$-plane relative to the easterly direction, in which the $x$-axis points east and the $y$-axis points north. The Rossby wave Green's function with no wind is obtained using Fourier transform methods, and is related to the previously known Green's function obtained for this case, which has a different but equivalent form to the Green's function obtained in the present paper. We emphasize the role of the wave eikonal solution, which plays an important role in the form of the solution. The corresponding Green's function for a rotating wind with azimuthal wind velocity ${\\bf u}=\\Omega r{\\bf e}_\\phi$ ($\\Omega=$const.) is also obtained by Fourier methods, in which the advective rotation operator in position space is transformed to a rotation operator in ${\\bf k}$ transform space. The finite Rossby defo...
Adjustment time of the first baroclinic Rossby wave in the global oceans
FAN Haimei; LI Bingrui; XU Ren; ZHANG Zhenglong; LI Yihong
2006-01-01
According to the freely linear Rossby wave theory, global 1°×1° climatology of Rossby deformation radius and phase speed are studied under the flat bottom fluid approximation. Geographical variations in the contours of the phase speed are very similar to those of the Rossby radius of formation, which are mainly affected by stratification, rotation, water depth, topography, etc. The basin-crossing time of the first baroclinic Rossby wave is obtained and analyzed in the global ocean basins. The results are useful to learn the importance of Rossby wave and the adiabatic adjustment of large-scale ocean circulation.
Stationary Rossby wave propagation through easterly layers
Schneider, E. K.; Watterson, I. G.
1984-01-01
The zonal mean basic state sensitivity of the steady response to midlatitude mountain forcing is examined through the numerical solution of linearized shallow water equations on a sphere. The zonal mean basic state consists of meridionally varying zonal winds and meridional winds. Attention is given to cases in which the former are westerly everywhere, except within a tropical region in which they are easterly. A zonal wavenumber three mountain confined to the Northern Hemisphere midlatitudes provides the forcing. It is concluded that critical latitude effects on wave propagation are sensitive to mean meridional circulation structure in the critical latitude region of the model.
Structures of Equatorial Envelope Rossby Wave Under a Generalized External Forcing
FUZun-Tao; LIUShi-Da; LIUShi-Kuo
2004-01-01
The cubic nonlinear Schroedinger (NLS for short) equation with a generalized external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial cnvelope Rossby waves are obtained with the help of a new transformation, Jacobi elliptic functions,and elliptic equation. It is shown that different types of resonant phase-locked diabatic heating play different roles in structures of equatorial envelope Rossby wave.
Structures of Equatorial Envelope Rossby Wave Under a Generalized External Forcing
FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo
2004-01-01
The cubic nonlinear Schrodinger (NLS for short) equation with a generalized external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial envelope Rossby waves are obtained with the help of a new transformation, Jacobi elliptic functions,and elliptic equation. It is shown that different types of resonant phase-locked diabatic heating play different roles in structures of equatorial envelope Rossby wave.
Discovery Of A Rossby Wave In Jupiter's South Equatorial Region
Simon-Miller, Amy A.; Choi, D. S.; Rogers, J. H.; Gierasch, P. J.
2012-01-01
A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 deg S planetographic latitude shows variations in velocity with longitude and time. The chevrons move with velocities near the maximum wind jet velocity of approx.140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 deg N latitude. Their repetitive nature is consistent with an inertia-gravity wave (n = 75-100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a approx.7-day period. This oscillating motion has a wavelength of approx.20 deg and a speed of approx.100 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it, though they are not perfectly in phase. The transient anticyclonic South Equatorial Disturbance (SED) may be a similar wave feature, but moves at slower velocity. All data show chevron latitude variability, but it is unclear if this Rossby wave is present during other epochs, without time series movies that fully delineate it. In the presence of multiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S may be due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.
A new approximation for the dynamics of topographic Rossby waves
Yosef Ashkenazy
2012-04-01
Full Text Available A new theory of non-harmonic topographic Rossby waves over a slowly varying bottom depth of arbitrary, 1-D, profile is developed based on the linearised shallow water equations on the f-plane. The theory yields explicit approximate expressions for the phase speed and non-harmonic cross-slope structure of waves. Analytical expressions are derived in both Cartesian and Polar coordinates by letting the frequency vary in the cross-shelf direction and are verified by comparing them with the numerical results obtained by running an ocean general circulation model (the MITgcm. The proposed approximation may be suitable for studying open ocean and coastal shelf wave dynamics.
Rossby and Drift Wave Turbulence and Zonal Flows: the Charney-Hasegawa-Mima model and its extensions
Connaughton, Colm; Quinn, Brenda
2014-01-01
A detailed study of the Charney-Hasegawa-Mima model and its extensions is presented. These simple nonlinear partial differential equations suggested for both Rossby waves in the atmosphere and also drift waves in a magnetically-confined plasma exhibit some remarkable and nontrivial properties, which in their qualitative form survive in more realistic and complicated models, and as such form a conceptual basis for understanding the turbulence and zonal flow dynamics in real plasma and geophysical systems. Two idealised scenarios of generation of zonal flows by small-scale turbulence are explored: a modulational instability and turbulent cascades. A detailed study of the generation of zonal flows by the modulational instability reveals that the dynamics of this zonal flow generation mechanism differ widely depending on the initial degree of nonlinearity. A numerical proof is provided for the extra invariant in Rossby and drift wave turbulence -zonostrophy and the invariant cascades are shown to be characterised...
Rossby wave extra invariant in the Galerkin approximation
Balk, Alexander M.
2017-08-01
The non-linear system of Rossby waves or plasma drift waves is known to have a unique adiabatic-like extra invariant in addition to the energy and enstrophy. This invariant is physically significant because its presence implies the generation of zonal flow. The latter is known to slow down the anomalous transport of temperature and particles in nuclear fusion with magnetic confinement. However, the derivation of the extra invariant - unlike the energy and enstrophy - is based on the continuum of resonances, while in numerical simulations there are only finite number of resonances. We show that precisely the same invariant takes place in the Galerkin approximations (even of low order, with a few ODEs). To show this we make variation of boundary conditions, when the solution is periodic in different directions. We also simplify the derivation of the extra conservation.
Rossby-wave turbulence in a rapidly rotating sphere
N. Schaeffer
2005-01-01
Full Text Available We use a quasi-geostrophic numerical model to study the turbulence of rotating flows in a sphere, with realistic Ekman friction and bulk viscous dissipation. The forcing is caused by the destabilization of an axisymmetric Stewartson shear layer, generated by differential rotation, resulting in a forcing at rather large scales. The equilibrium regime is strongly anisotropic and inhomogeneous but exhibits a steep m-5 spectrum in the azimuthal (periodic direction, at scales smaller than the injection scale. This spectrum has been proposed by Rhines for a Rossby wave turbulence. For some parameter range, we observe a turbulent flow dominated by a large scale vortex located in the shear layer, reminding us of the Great Red Spot of Jupiter.
Network Analysis of Atmospheric Rossby Wave Patterns in the Northern Midlatitudes
Martin, P.; Stolbova, V.; Kurths, J.
2015-12-01
Rossby waves, the primary contributors to weather and storms in the midlatitudes, are a major phenomenon in the upper atmosphere, and play a large role in poleward heat transport. Understanding the mechanism and features of Rossby waves are crucial for millions of people, especially due to the extreme events caused by Rossby Waves such as the Russian Heat Wave and the flood in Pakistan, both occurring in 2010. In this study, we use an idealized, regional, quasi-geostrophic, coupled ocean-atmosphere model (The Quasi-Geostrophic Coupled Model, or QGCM) to create Rossby waves in the northern hemisphere. We analyze these waves using the emerging technique of climate networks - a useful statistical tool for a range of complex systems, which has proven to be extremely useful in giving new insight into the climate system's behavior. Here, we create networks using different climatic variables, and investigate the properties of Rossby waves, including propagation speed and energy transport. We look at network measures, such as degree and link length, to determine the major features of Rossby waves. Finally, we compare our results to observed data, and show how our findings provide a better understanding of the different regimes of Rossby Waves, their features, and mechanisms of their propagation, which is crucial for forecasting on short and long-range time scales.
Modified KdV equation for solitary Rossby waves with β effect in barotropic fluids
Song Jian; Yang Lian-Gui
2009-01-01
This paper uses the weakly nonlinear method and perturbation method to deal with the quasi-geostrophic vorticity equation, and the modified Korteweg-de Vries(mKdV) equations describing the evolution of the amplitude of solitary Rossby waves as the change of Rossby parameter β(y) with latitude y is obtained.
Qiu, B.; Chen, S.; Sasaki, H.; Rudnick, D. L.
2013-12-01
Formation processes responsible for the North Equatorial Undercurrent (NEUC) jets that appear across the tropical North Pacific Ocean near 9N, 13N, and 18N, are explored both theoretically and using numerical models with different complexities. Analyses of an eddy-resolving global ocean general circulation model output reveal that the NEUC jets have a mode-1 baroclinic vertical structure and are spatially persistent on the interannual and longer time scales. This OGCM-simulated vertical structure prompts us to adopt the simpler, nonlinear 1.5-layer reduced-gravity model, as well as the baroclinic Rossby wave triad interaction theory, to unravel the essential processes underlying the NEUC jets. The seed for the NEUC jets originates in annual baroclinic Rossby waves driven by the large-scale surface wind stress forcing. Emanating from the ocean basin's eastern boundary, these wind-forced ``primary'' waves are subject to nonlinear triad interactions and break down offshore where the e-folding timescale of the most unstable triad instability matches the advective timescale of the primary waves. The break-down boundary of the wind-forced primary waves tends to tilt northeast-southwestward and, west of this boundary, finite-amplitude eddies emerge, whose meridional scales are set by the most unstable short secondary waves participating in the triad interactions along the break-down boundary. With their meridional scales set similarly by the short secondary waves, the time-mean zonal jets of characteristics resembling the observed NEUC jets are formed by the converging potential vorticity fluxes of these finite-amplitude eddies.
Periodic Structure of Equatorial Envelope Rossby Wave Under Influence of Diabatic Heating
FUZun-Tao; CHENZhe; LIUShi-Da; LIUShi-Kuo
2004-01-01
A simple shallow-water model with influence of diabatic heating on a β-plane is applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By the asymptotic method of multiple scales, the cubic nonlinear Schroedinger (NLS for short) equation with an external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial envelope Rossby waves are obtained with the help of Jacob/elliptic functions and elliptic equation. It is shown that phase-locked diabatic heating plays an important role in periodic structures of rational form.
Periodic Structure of Equatorial Envelope Rossby Wave Under Influence of Diabatic Heating
FU Zun-Tao; CHEN Zhe; LIU Shi-Da; LIU Shi-Kuo
2004-01-01
A simple shallow-water model with influence of diabatic heating on aβ-plane is applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By the asymptotic method of multiple scales, the cubic nonlinear Schrodinger (NLS for short) equation with an external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial envelope Rossby waves are obtained with the help of Jacobi elliptic functions and elliptic equation. It is shown that phase-locked diabatic heating plays an important role in periodic structures of rational form.
Nonaxisymmetric Rossby vortex instability with toroidal magnetic fields in structured disks
Yu, Cong [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory
2009-01-01
We investigate the global nonaxisymmetric Rossby vortex instability (RVI) in a differentially rotating, compressible magnetized accretion disk with radial density structures. Equilibrium magnetic fields are assumed to have only the toroidal component. Using linear theory analysis, we show that the density structure can be unstable to nonaxisymmetric modes. We find that, for the magnetic field profiles we have studied, magnetic fields always provide a stabilizing effect to the unstable RVI modes. We discuss the physical mechanism of this stabilizing effect. The threshold and properties of the unstable modes are also discussed in detail. In addition, we present linear stability results for the global magnetorotational instability when the disk is compressible.
On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs
Yellin-Bergovoy, Ron; Umurhan, Orkan M
2015-01-01
The dynamical response of edge waves under the influence of self-gravity is examined in an idealized two-dimensional model of a proto-stellar disc, characterized in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius r0. The fluid in basic state is prescribed to rotate with a Keplerian profile $\\Omega_k(r)\\sim r^{-3/2}$ modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabilizer irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of...
Nonlinear features of equatorial baroclinic Rossby waves detected in Topex altimeter observations
R. E. Glazman
1996-01-01
Full Text Available Using a recently proposed technique for statistical analysis of non-gridded satellite altimeter data, regime of long equatorially-trapped baroclinic Rossby waves is studied. One-dimensional spatial and spatiotemporal autocorrelation functions of sea surface height (SSH variations yield a broad spectrum of baroclinic Rossby waves and permit determination of their propagation speed. The 1-d wavenumber spectrum of zonal variations is given by a power-law k-2 on scales from about 103 km to 104 km. We demonstrate that the observed wave regime exhibits features of soliton turbulence developing in the long baroclinic Rossby waves. However, being limited to second statistical moments, the present analysis does not allow us to rule out a possibility of weak wave turbulence.
Mechanism of destruction of transport barriers in geophysical jets with Rossby waves
Uleysky, M Yu; Prants, S V; 10.1103/PhysRevE.81.017202
2012-01-01
The mechanism of destruction of a central transport barrier in a dynamical model of a geophysical zonal jet current in the ocean or the atmosphere with two propagating Rossby waves is studied. We develop a method for computing a central invariant curve which is an indicator of existence of the barrier. Breakdown of this curve under a variation of the Rossby wave amplitudes and onset of chaotic cross-jet transport happen due to specific resonances producing stochastic layers in the central jet. The main result is that there are resonances breaking the transport barrier at unexpectedly small values of the amplitudes that may have serious impact on mixing and transport in the ocean and the atmosphere. The effect can be found in laboratory experiments with azimuthal jets and Rossby waves in rotating tanks under specific values of the wave numbers that are predicted in the theory.
On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs
Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.
2016-05-01
The dynamical response of edge waves under the influence of self-gravity is examined in an idealized two-dimensional model of a proto-stellar disc, characterized in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius r0. The fluid in basic state is prescribed to rotate with a Keplerian profile $\\Omega_k(r)\\sim r^{-3/2}$ modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabilizer irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non- Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density, in addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect . Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.
Contribution of vortex Rossby wave to spiral rainband formation in tropical cyclones
阮鲲; 查勇; 黄泓; 胡友彬
2014-01-01
The contribution of the vortex Rossby wave (VRW) to the spiral rainband in the tropical cyclones (TCs) is studied in the framework of a barotropic non-divergent TC-like vortex model. The spectral function expanding method is used to analyze the disturbance evolution of a defined basic state vortex. The results show that the numerical solution of the model is a superposition of the continuous spectrum component (non-normal modes) and the discrete spectrum component (normal modes). Only the eyewall and the rainbands in the inner core-region in a TC are related to the VRW normal modes, whereas the continuous spectrum wave components play an important role in the formation of secondary-, principal-, and distant- rainbands, especially the outer rainband, through an indirect way. The continuous spectrum can promote the development of the TC circulation for the occurrence of a mesoscale instability. The convection under a favorable moisture condition will trigger the inertial-gravitational wave to cause the formation of unstable spiral bandliked-disturbances outside of the eyewall. The complicated interaction between the basic state-vortex and the VRW disturbances will cause a positive feedback between the TC circulation and the rainband.
Dieter H. W. Peters
2015-05-01
Full Text Available At the beginning of September 2002, strong convection processes over south-eastern Indonesia and over south-eastern Africa have been observed. Due to the strong upper tropospheric divergent outflow, two Rossby wave trains (RWTs were generated. Their south-eastward propagation was controlled by the mean background flow. These two wave trains are visible in observations. It is hypothesised that these wave trains cause enhanced planetary wave activity fluxes which are a result of an amplified planetary wave 2 in the upper troposphere/lower stratosphere over Antarctica. Such a change of the planetary wave structure was diagnosed in September 2002, prior to the first observed major sudden stratospheric warming event on the Southern Hemisphere. A simplified version of GCM ECHAM4 is used to evaluate the hypothesis. Sensitivity experiments were performed for a mean background flow similar to September 2002. Furthermore, the wave maker approach was used to generate Rossby waves in the subtropical upper troposphere at two distinct locations which are corresponding to the observed regions of divergent outflow. As a main result, after about 2 weeks of model integration with wave maker forcing, we find two RWTs with a south-eastward propagation inducing a polar amplification of planetary wave 2 in the upper troposphere and lower/middle stratosphere. The poleward wave activity flux is enhanced in comparison to the control run without any wave maker forcing. The convergence of the Eliassen–Palm flux causes a 25% deceleration of zonal mean zonal wind in the model stratosphere but no wind reversal. Sensitivity runs support the robustness of these results. The obtained model results highlight the mechanism and confirm the hypothesis that enhanced planetary wave activity in austral polar region in 2002 is caused by enhanced subtropical forcing of two RWTs.
Rossby wave radiation by an eddy on the polar beta-plane
Zhang, Yang
2015-01-01
Results from the laboratory experiments on the evolution of vortices (eddies) generated in a rotating tank with topographic beta-effect are presented. The surface elevation and velocity fields are measured by the Altimetric Imaging Velocimetry. The experiments are supplemented by shallow water numerical simulations as well as a linear theory which describes the Rossby wave radiation by travelling vortices. The cyclonic vortices observed in the experiments travel to the northwest and continuously radiate Rossby waves. Measurements show that initially axisymmetric vortices develop a dipolar component which enables them to perform translational motion. A pattern of alternating zonal jets to the west of the vortex is created by Rossby waves with approximately zonal crests. Energy spectra of the flows in the wavenumber space indicate that a wavenumber similar to that introduced by Rhines for turbulent flows on the beta-plane can be introduced here. The wavenumber is based on the translational speed of a vortex rat...
Impact of ENSO on seasonal variations of Kelvin Waves and mixed Rossby-Gravity Waves
Rakhman, Saeful; Lubis, Sandro W.; Setiawan, Sonni
2017-01-01
Characteristics of atmospheric equatorial Kelvin waves and mixed Rossby-Gravity (MRG) waves as well as their relationship with tropical convective activity associated with El Niño-Southern Oscillation (ENSO) were analyzed. Kelvin waves and MRG waves were identified by using a Space-Time Spectral Analysis (STSA) technique, where the differences in the strength of both waves were quantified by taking the wave spectrum differences for each ENSO phase. Our result showed that Kelvin wave activity is stronger during an El Nino years, whereas the MRG wave activity is stronger during the La Nina years. Seasonal variations of Kelvin wave activity occurs predominantly in MAM over the central to the east Pacific in the El Nino years, while the strongest seasonal variation of MRG wave activity occus in MAM and SON over the northern and southern Pacific during La Nina years. The local variation of Kelvin wave and MRG wave activities are found to be controlled by variation in lower level atmospheric convection induced by sea surface temperature in the tropical Pacific Ocean.
Effect of scalar nonlinearity on zonal flow generation by Rossby waves
Mikhailovskii, A. B.; Lominadze, J. G.; Erokhin, N. N.; Erokhin, N. S.; Smolyakov, A. I.; Tsypin, V. S.
2007-01-01
Effects of scalar nonlinearity on the generation of zonal flow by Rossby waves in shallow rotating fluid are considered. Zonal flows are generated via the action of Reynolds stress due to vector nonlinearity together with the effects of scalar nonlinearity. It is shown that the scalar nonlinearity r
Cosmological Mestel Disks and the Rossby Vortex Instability: The Origin of Supermassive Black Holes
Colgate, S A; Li, H; Currier, N; Warren, M S; Colgate, Stirling A.; Cen, Renyue; Li, Hui; Currier, Nathan; Warren, Michael S.
2003-01-01
A scenario is put forth for the formation of supermassive black holes at the centers of galaxies. It depends upon the formation of a Mestel disk with a flat rotation curve, where the mass is proportional to r and thickness to 1/r. Such disks should form from the collapse of uniformly rotating, isolated, gaseous clouds, either proto-galactic, galaxy-mass damped Lyman alpha clouds or the gas that survives galaxy mergers. We propose that in any case the disk will be unstable to the Rossby vortex instability (RVI). This instability grows from any large, steep pressure gradient in an optically thick disk. Such pressure gradients either occur adjacent to compact objects or could be triggered by individual supernovae in and around the disk. Upon excitation, the RVI transports angular momentum far more efficiently than the turbulence of a viscosity-based Shakura-Sunyaev disk. The critical column density condition in a L* Mestel disk predicts that the black hole mass is ~ 10^8 Msolar and is also proportional to the 1/...
Complete classification of discrete resonant Rossby/drift wave triads on periodic domains
Bustamante, Miguel D
2013-01-01
We consider the set of Diophantine equations that arise in the context of the barotropic vorticity equation on periodic domains, when nonlinear wave interactions are studied to leading order in the amplitudes. The solutions to this set of Diophantine equations are of interest in atmosphere (Rossby waves) and Tokamak plasmas (drift waves), because they provide the values of the spectral wavevectors that interact resonantly via three-wave interactions. These come in "triads", i.e., groups of three wavevectors. We provide the full solution to the Diophantine equations in the case of infinite Rossby deformation radius. The method is completely new, and relies on mapping the unknown variables to rational points on quadratic forms of "Minkowski" type. Classical methods invented centuries ago by Fermat, Euler, Lagrange and Minkowski, are used to classify all solutions to our original Diophantine equations, thus providing a computational method to generate numerically all the resonant triads in the system. Our method...
Kharshiladze, O. A.; Chargazia, Kh.
2017-03-01
A theoretical-numerical description of zonal flow generation in the turbulent ionosphere by controlled inhomogeneous background wind is given. The generalized Charney-Obukhov equation, which describes the nonlinear interaction of five different-scale modes (primary modes, relatively short-wave ultra-low frequency (ULF) magnetized Rossby waves (MRWs) (pumping waves), two satellites of these MRWs, long-wave zonal mode, and large-scale background shear flows (inhomogeneous wind)) is used. New features of energy transfer from relatively small-scale waves and the background shear flow into that of largescale zonal flows and nonlinear self-organization of the five-wave collective activity in the ionospheric medium are identified based on the numerical solution of the corresponding system of equations for perturbation amplitudes (generalized eigenvalue problems). It is shown that if there is the background shear flow with a moderate amplitude growth the modulation instability increment and intensifies the zonal flow generation, while a very strong shear flow significantly reduces the modulation instability increment and can even suppress the generation process.
THE INTRUSION AND INFLUENCES OF INTRASEASONAL LONG ROSSBY WAVES IN THE EAST CHINA SEA
LIN Xiao-pei; WU De-xing; LAN Jian
2004-01-01
The analysis of sea level data from tide stations and ocean general circulation model(OGCM)shows that the intraseasonal long Rossby wave results in the intraseasonal variations of Kuroshio axis and transport in the upper reaches of the Kuroshio in the East China Sea(ECS).Due to the transport modulation induced by Ryukyu Islands,the intraseasonal variation is very weak in the lower reaches of the Kuroshio in the ECS.A two-layer model reveals the relation among Kuroshio frontal unstable wave with topography,transport and the axis position of the Kuroshio,from which we can infer that the intrusion of intraseasonal long Rossby wave may stimulate the Kuroshio frontal unstable wave in the upper reaches of the Kuroshio in the ECS.The altimeter data also shows that the sea level anomaly resulting from intraseasonal long Rossby wave could pass the channel between Taiwan and Ryukyu Islands and propagate northeastward in accord with the Kuroshio frontal unstable wave.However,the sea level anomalies passing through the gaps of Ryukyu Islands are relative weak and have negligible effects on the Kuroshio variation.
Hongwei Yang
2014-01-01
Full Text Available In the paper, by using multiple-scale method, the Benjamin-Ono-Burgers-MKdV (BO-B-MKdV equation is obtained which governs algebraic Rossby solitary waves in stratified fluids. This equation is first derived for Rossby waves. By analysis and calculation, some conservation laws are derived from the BO-B-MKdV equation without dissipation. The results show that the mass, momentum, energy, and velocity of the center of gravity of algebraic Rossby waves are conserved and the presence of a small dissipation destroys these conservations.
(2+1-Dimensional mKdV Hierarchy and Chirp Effect of Rossby Solitary Waves
Chunlei Wang
2015-01-01
Full Text Available By constructing a kind of generalized Lie algebra, based on generalized Tu scheme, a new (2+1-dimensional mKdV hierarchy is derived which popularizes the results of (1+1-dimensional integrable system. Furthermore, the (2+1-dimensional mKdV equation can be applied to describe the propagation of the Rossby solitary waves in the plane of ocean and atmosphere, which is different from the (1+1-dimensional mKdV equation. By virtue of Riccati equation, some solutions of (2+1-dimensional mKdV equation are obtained. With the help of solitary wave solutions, similar to the fiber soliton communication, the chirp effect of Rossby solitary waves is discussed and some conclusions are given.
The Role of Rossby-Wave Propagation in a North American Extreme Cold Event
Chunhua Shi
2017-01-01
Full Text Available The Eliassen–Palm flux and Plumb wave activity flux are calculated using the European Centre for Medium-Range Weather Forecasts interim reanalysis daily dataset to determine the propagation of Rossby waves before a North American cold wave in January 2014. The results show that the upward wave activity fluxes mainly come from planetary waves 1 and 2, which provide a stable circulation background for the influence of the subplanetary-scale waves 3 and 4. The Rossby-wave propagation anomalies between the troposphere and the stratosphere are due to the modulating effects of waves 3 and 4 on waves 1 and 2. During 9–14 January 2014, the modulating effects helped strengthen upward and eastward wave activity fluxes over the Atlantic region and enhance the Pacific high in the stratosphere in its early stage. Later in 19–24 January, the downward wave activity fluxes over the east Pacific due to the modulating effects were beneficial to downward development of the stratospheric high over the Pacific and the formation of a blocking high over the west coast of North America in the troposphere accompanied by a strong adjacent cold low on the east side. These circulations benefit the southward invasion of polar cold air reaching the lower latitudes of east North America, leading to the cold wave outbreak.
North American Drought and Links to Northern Eurasia: The Role of Stationary Rossby Waves
Wang, Hailan; Schubert, Siegfried D.; Koster, Randal D.
2017-01-01
This chapter provides an overview of the role of stationary Rossby waves in the sub-seasonal development of warm season drought over North America and subsequent downstream development of climate anomalies over northern Eurasia. The results are based on a case study of a stationary Rossby wave event that developed during 20 May 15 June 1988. Simulations with the NASA Goddard Earth Observing System (GEOS-5) atmospheric general circulation model highlight the importance of the mean jet streams in guiding and constraining the path and speed of wave energy propagation. In particular, convective anomalies that developed over the western Pacific in late May (in the presence of the strong North Pacific jet) produce a predilection for persistent upper-level high anomalies over central North America about ten days later, leading to the rapid development of severe dry conditions there. There are indications of continued downstream wave energy propagation that reaches northern Eurasia about two weeks later, leading to the development of dry conditions over eastern Europe and western Russia, and cool and wet conditions over western Europe and central northern Eurasia. The results suggest that stationary Rossby waves can serve as a source of predictability for sub-seasonal development of droughts over North America and northern Eurasia.
A New Look at the Physics and Energy Fluxes of Rossby Waves
Cai, Ming; Huang, Buhua
2016-04-01
The presence of the latitudinal variation of the Coriolis parameter serves as a mechanical barrier that causes a mass convergence for the poleward geostrophic flow and divergence for the equatorward flow, just as a sloped bottom terrain does to a crossover flow. Part of the mass convergence causes pressure to rise along the uphill pathway while the remaining part is detoured to cross isobars out of the pathway. This mechanically excited cross-isobar flow, being unbalanced geostrophically, is subject to a "half-cycle" Coriolis force that only turns it to the direction parallel to isobars without continuing to turn it further back to its opposite direction because the geostrophic balance is reestablished once the flow becomes parallel to isobars. Such oscillation, involving a barrier-induced mass convergence, a mechanical deflection, and a half-cycle Coriolis deflection, is referred to as a mechanical-Coriolis oscillation with a "barrier-induced half cycle Coriolis force" as its restoring force. Through a complete cycle of the mechanical-Coriolis oscillation, a new geostrophically balanced flow pattern emerges to the left of the existing flow when facing the uphill (downhill) direction of the barrier in the North(Southern) Hemisphere. The β-barrier is always sloped towards the pole in both hemispheres, responsible for the westward propagation of Rossby waves. The identification of the physical oscillation mechanism for Rossby waves enables us to recover the well-known "missing" term in energy flux of Rossby waves and reconcile the apparent inconsistency between pressure work and group velocity of Rossby waves.
冯俊乔; 白学志; 陈永利; 胡敦欣
2010-01-01
We investigate the influence of low-frequency Rossby waves on the thermal structure of the upper southwestern tropical Indian Ocean (SWTIO) using Argo profiles, satellite altimetric data, sea surface temperature, wind field data and the theory of linear vertical normal mode decomposition. Our results show that the SWTIO is generally dominated by the first baroclinic mode motion. As strong downwelling Rossby waves reach the SWTIO, the contribution of the second baroclinic mode motion in this region can be in...
Rossby waves and polar spots in rapidly rotating stars: Implications for stellar wind evolution
Zaqarashvili, T V; Ballester, J L; Carbonell, M; Khodachenko, M L; Lammer, H; Leitzinger, M; Odert, P
2011-01-01
Rapidly rotating stars show short-period oscillations in magnetic activity and polar appearance of starspots. The aim of this paper is to study large-scale shallow water waves in the tachoclines of rapidly rotating stars and their connection to the periodicity and the formation of starspots at high latitudes. Shallow-water magnetohydrodynamic equations were used to study the dynamics of large-scale waves at the rapidly rotating stellar tachoclines in the presence of toroidal magnetic field. Dispersion relations and latitudinal distribution of wave modes were derived. We found that low-frequency magnetic Rossby waves tend to be located at poles, but high-frequency magnetic Poincare waves are concentrated near the equator in rapidly rotating stars. These results have important implications for the evolution of the stellar wind in young Sun-like stars. Unstable magnetic Rossby waves may lead to the local enhancement of magnetic flux at high latitudes of tachoclines in rapidly rotating stars. The enhanced magneti...
Rossby wave energy dispersion from tropical cyclone in zonal basic flows
Shi, Wenli; Fei, Jianfang; Huang, Xiaogang; Liu, Yudi; Ma, Zhanhong; Yang, Lu
2016-04-01
This study investigates tropical cyclone energy dispersion under horizontally sheared flows using a nonlinear barotropic model. In addition to common patterns, unusual features of Rossby wave trains are also found in flows with constant vorticity and vorticity gradients. In terms of the direction of the energy dispersion, the wave train can rotate clockwise and elongate southwestward under anticyclonic circulation (ASH), which contributes to the reenhancement of the tropical cyclone (TC). The wave train even splits into two obvious wavelike trains in flows with a southward vorticity gradient (WSH). Energy dispersed from TCs varies over time, and variations in the intensity of the wave train components typically occur in two stages. Wave-activity flux diagnosis and ray tracing calculations are extended to the frame that moves along with the TC to reveal the concrete progress of wave propagation. The direction of the wave-activity flux is primarily determined by the combination of the basic flow and the TC velocity. Along the flux, the distribution of pseudomomentum effectively illustrates the development of wave trains, particularly the rotation and split of wave propagation. Ray tracing involves the quantitative tracing of wave features along rays, which effectively coincide with the wave train regimes. Flows of a constant shear (parabolic meridional variation) produce linear (nonlinear) wave number variations. For the split wave trains, the real and complex wave number waves move along divergent trajectories and are responsible for different energy dispersion ducts.
The interaction between warm conveyor belts and breaking Rossby waves: a climatological perspective.
Madonna, Erica; Joos, Hanna; Martius, Olivia; Aebi, Christine; Limbach, Sebastian
2014-05-01
Warm conveyor belts (WCBs) are moist ascending airstreams in extratropical cyclones. Climatologically, they are key for the meridional and vertical transport of water vapour and heat. The rapid ascent of WCBs from the boundary layer to the upper troposphere in about 1-2 days leads to cloud formation, (intense) precipitation and the release of latent heat, which modifies their potential vorticity (PV) value in a significant way. Typically WCBs reach the tropopause level with low PV values (~0.5 pvu) and therefore the cross-isentropic transport of low-PV air in WCBs can amplify upper-level Rossby waves and contribute to the formation of PV streamers downstream. Here, filamentary PV streamers are regarded as clear signs of breaking Rossby waves. They in turn can act as precursors of extreme weather events and/or trigger the genesis of another cyclone, potentially generating a new WCB. The aim of this study is to quantify the interaction of WCBs and PV-streamers from a climatological point of view for the ERA-Interim data set for the period 1989-2010. WCBs are identified from comprehensive trajectory calculations that select air parcels in the vicinity of cyclones with a minimum ascent of 600 hPa in 48 hours. From these WCB trajectories, coherent features of WCB outflows are derived and checked for overlapping with PV streamers, which are identified using a contour searching algorithm. Both, WCBs and PV-streamers are then tracked using a novel feature tracking technique, which is based upon a modified region growing approach. With this technique, the interaction of WCBs and PV-streamers is analysed for a 22-years period leading to novel insight about the role of WCBs for triggering the breaking of Rossby waves, as well as, vice versa, about the importance of PV-streamers for the formation of new WCBs.
Bartels, J.; Peters, D. [Rostock Univ. (Germany). Inst. fuer Atmosphaerenphysik
1997-12-31
The poleward advection of upper-tropospheric air is investigated for poleward Rossby wave breaking events. During boreal winter months the isentropic deformations of the tropopause are examined using maps of Ertel`s potential vorticity (EPV) and contour advection (CA) calculations. The role of ambient baro-tropic flow is further examined by idealized numerical models. In the vicinity of the tropopause the characteristic Lagrangian transport of air masses for ECMWF-analysis data are compared with high resolution (T106) ECHAM4 experiments. (author) 3 refs.
Priestley, Matthew D. K.; Joaquim G. Pinto; Dacre, Helen F.; Shaffrey, Len C.
2017-01-01
Winter 2013/14 was the stormiest on record for the UK and was characterized by recurrent clustering of extratropical cyclones. This clustering was associated with a strong, straight and persistent North Atlantic jet and was also associated with Rossby wave breaking (RWB) on both flanks, pinning the jet in place. The occurrence of RWB and cyclone clustering is further studied in 36 years of the ERA-Interim Reanalysis. Clustering at 55°N is associated with an extended and anomalously strong edd...
An alternative view on the role of the β-effect in the Rossby wave propagation mechanism
Eyal Heifetz
2014-11-01
Full Text Available The role of the β-effect in the Rossby wave propagation mechanism is examined in the linearised shallow water equations directly in momentum–height variables, without recourse to potential vorticity (PV. Rigorous asymptotic expansion of the equations, with respect to the small non-dimensionalised β parameter, reveals in detail how the Coriolis force acting on the small ageostrophic terms translates the geostrophic leading-order solution to propagate westward in concert. This information cannot be obtained directly from the conventional PV perspective on the propagation mechanism. Furthermore, a comparison between the β-effect in planetary Rossby waves and the sloping-bottom effect in promoting topographic Rossby waves shows that the ageostrophic terms play different roles in the two cases. This is despite the fact that from the PV viewpoint whether the advection of mean PV gradient is set up by changes in planetary vorticity or by mean depth is inconsequential.
Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities
Zaqarashvili, T V; Oliver, R; Ballster, J L
2009-01-01
Apart from the 11-year solar cycle, another periodicity around 155-160 days was discovered during solar cycle 21 in high energy solar flares, and its presence in sunspot areas and strong magnetic flux has been also reported. This periodicity has an elusive and enigmatic character, since it usually appears only near the maxima of solar cycles, and seems to be related with a periodic emergence of strong magnetic flux at the solar surface. Therefore, it is probably connected with the tachocline, a thin layer located near the base of the solar convection zone, where strong dynamo magnetic field is stored. We study the dynamics of Rossby waves in the tachocline in the presence of a toroidal magnetic field and latitudinal differential rotation. Our analysis shows that the magnetic Rossby waves are generally unstable and that the growth rates are sensitive to the magnetic field strength and to the latitudinal differential rotation parameters. Variation of the differential rotation and the magnetic field strength thr...
Long-term variation in the Sun's activity caused by magnetic Rossby waves in the tachocline
Zaqarashvili, T V; Hanslmeier, A; Carbonell, M; Ballester, J L; Gachechiladze, T; Usoskin, I G
2015-01-01
Long-term records of sunspot number and concentrations of cosmogenic radionuclides (10Be and 14C) on the Earth reveal the variation of the Sun's magnetic activity over hundreds and thousands of years. We identify several clear periods in sunspot, 10Be, and 14C data as 1000, 500, 350, 200 and 100 years. We found that the periods of the first five spherical harmonics of the slow magnetic Rossby mode in the presence of a steady toroidal magnetic field of 1200-1300 G in the lower tachocline are in perfect agreement with the time scales of observed variations. The steady toroidal magnetic field can be generated in the lower tachocline either due to the steady dynamo magnetic field for low magnetic diffusivity or due to the action of the latitudinal differential rotation on the weak poloidal primordial magnetic field, which penetrates from the radiative interior. The slow magnetic Rossby waves lead to variations of the steady toroidal magnetic field in the lower tachocline, which modulate the dynamo magnetic field ...
Normal mode Rossby waves and their effects on chemical composition in the late summer stratosphere
D. Pendlebury
2007-08-01
Full Text Available During past MANTRA campaigns, ground-based measurements of several long-lived chemical species have revealed quasi-periodic fluctuations on time scales of several days. These fluctuations could confound efforts to detect long-term trends from MANTRA, and need to be understood and accounted for. Using the Canadian Middle Atmosphere Model, we investigate the role of dynamical variability in the late summer stratosphere due to normal mode Rossby waves and the impact of this variability on fluctuations in chemical species. Wavenumber~1, westward travelling waves are considered with average periods of 5, 10 and 16 days. Time-lagged correlations between the temperature and nitrous oxide, methane and ozone fields are calculated in order to assess the possible impact of these waves on the chemical species, although transport may be the dominant effect. Using Fourier-wavelet decomposition and correlating the fluctuations between the temperature and chemical fields, we determine that variations in the chemical species are well-correlated with the 5-day wave and the 10-day wave between 30 and 60 km. Interannual variability of the waves is also examined.
Variability of the central-North Atlantic subtropical gyre induced by Rossby waves
Vélez-Belchí, P.; Kwon, Y. O.; Yang, J.; Pérez-Hernández, M. D.; Hernandez-Guerra, A.
2014-12-01
The Atlantic Ocean meridional overturning circulation (AMOC) contributes to moderate of climate in Europe through the northward transport of 25% of the global heat flux, which is at maximum at around 24.50ºN. Consequently, transatlantic oceanographic sections at this latitude have become a benchmark for monitoring long-term changes in the Atlantic and to study the nature and causes of climate change. This has resulted in the occupation of the North Atlantic Ocean hydrographic transect along 24.5ºN seven times since 1957, more than any other transoceanic section in the world. The east-west slope in the dynamic height at 200dbar referenced to 1800dbar along 24.5ºN has decreased in 12-cm between 1957 and 2011, suggesting a spin-down of the central-North Atlantic subtropical gyre. Over imposed on this long-term trend in the slope there is a decadal variability in the slope with amplitudes up to 5 cm, that persist for several years, as the one during 2001-2004 that preceded large compensated changes in temperature and salinity at 24.5ºN. The hydrographic dataset show that this signal is predominantly due to vertical motion of the isopycnal surfaces, extending to depths of at least 1800 dbar. Using the linearized equations for a stratified ocean separated into vertical modes and for low-frequency, large-scale wind forcing, we explore the role of westward propagating linear Rossby waves in explaining these long-term and decadal changes. The results indicate the long-term change may be explained by the differential trend of wind stress curl between the eastern and western basins. The results are compared with simulations from a two-layer primitive equation model with realistic topography. Given the recent interests in Rossby waves, as the main mechanism explaining the observed seasonal cycle of the AMOC, an analysis of the impact of the seasonal variability induced by Rossby waves at 24.5ºN is also carried out.
The instability of counter-propagating kernel gravity waves in a constant shear flow
Umurhan, O M; Harnik, N; Lott, F
2007-01-01
The mechanism describing the recently developed notion of kernel gravity waves (KGWs) is reviewed and such structures are employed to interpret the unstable dynamics of an example stratified plane parallel shear flow. This flow has constant vertical shear, is infinite in the vertical extent, and characterized by two density jumps of equal magnitude each decreasing successively with height, in which the jumps are located symmetrically away from the midplane of the system. We find that for a suitably defined bulk-Richardson number there exists a band of horizontal wavenumbers which exhibits normal-mode instability. The instability mechanism closely parallels the mechanism responsible for the instability seen in the problem of counter-propagating Rossby waves. In this problem the instability arises out of the interaction of counter-propagating gravity waves. We argue that the instability meets the Hayashi-Young criterion for wave instability. We also argue that the instability is the simplest one that can arise ...
Coupling coefficients and kinetic equation for Rossby waves in multi-layer ocean
T. Soomere
2003-01-01
Full Text Available The kinetic description of baroclinic Rossby waves in multi-layer model ocean is analysed. Explicit analytical expressions for the coupling coefficients describing energy exchange intensity between different modes are obtained and their main properties are established for the three-layer model. It is demonstrated that several types of interactions vanish in the case of simple vertical structures of the ocean, e.g. when all layers have equal depth. These cases correspond to a zero component of the eigenvectors of the potential vorticity equations. The kinetic equation always possesses a fully barotropic solution. If energy is concentrated in the baroclinic modes, the barotropic mode will necessarily be generated. Motion systems consisting of a superposition of the barotropic and a baroclinic mode always transfer energy to other baroclinic modes.
Impact of Low-Level Southerly Surges on Mixed Rossby Gravity Waves over the Central Pacific.
Fukutomi, Y.
2014-12-01
This study examines dynamical impacts of lower-tropospheric southerly wind surges originating in midlatitudes of the Southern Hemisphere (SH) on the development of mixed Rossby gravity (MRG) waves over the central Pacific during June-August 1979-2012, through the statistical analysis of the JRA-55 products and NOAA outgoing long wave radiation data. The central Pacific MRG waves are identified by an extended EOF (EEOF) analysis on 2-8-day filtered daily 850-hPa meridional wind anomalies during June-August 1979-2012. Composite analysis based on the leading EEOF time coefficients is able to capture the development of the MRG waves associated with a southerly surge originating in the SH extratropics. As a weak clockwise gyre as a part of an off-equatorial easterly wavetrain moves eastward and southeastward from the off-equatorial eastern Pacific into the equatorial central Pacific, the southerly surge penetrates into the equatorial tropics at around 150W. Then, the clockwise gyre develops into a MRG-type gyre over the central Pacific. A transition from an easterly wave-type gyre into a MRG-type gyre occurs associated with the southerly surge. The southerly surge forms a cross-equatorial flow on the western flank of the MRG-type gyre. The gyre is amplified when the southerly surge reaches the equatorial tropics. At the same time, convection coupled with the MRG-type gyre is enhanced. The southerly surges are originated in the midlatitude South Pacific, and they are induced by synoptic-scale baroclinic disturbances propagating along the SH midlatitude westerly jet. An eddy vorticity budget analysis indicates that the southerly surge plays an important role in spinning up the MRG-type gyre through transient advection of absolute vorticiy. A case study of a MRG-wave event in mid-July 2006 also illustrates development of a MRG wave associated with the southerly surge and an easterly wave-to-MRG wave transition.
Atmospheric Transport and Mixing linked to Rossby Wave Breaking in GFDL Dynamical Core
Liu, C.; Barnes, E. A.
2015-12-01
Atmospheric transport and mixing plays an important role in the global energy balance and the distribution of health-related chemical constituents. Previous studies suggest a close linkage between large-scale transport and Rossby wave breaking (RWB). In this work, we use the GFDL spectral dynamical core to investigate this relationship and study the response of RWB-related transport in different climate scenarios. In a standard control run, we quantify the contribution of RWB to the total transport and mixing of an idealized tracer. In addition, we divide the contribution further into the two types of RWB - anticyclonic wave breaking (AWB) and cyclonic wave breaking (CWB) -- and contrast their efficiency at transport and mixing. Our results are compared to a previous study in which the transport ability of the two types of RWB is studied for individual baroclinic wave life-cycles. In a series of sensitivity runs, we study the response of RWB-related transport and mixing to various states of the jet streams. The responses of the mean strength, frequency, and the efficiency of RWB-related transport are documented and the implications for the transport and mixing in a warmer climate are discussed.
How strong are the Rossby vortices?
Meheut, H; Lai, D
2013-01-01
The Rossby wave instability, associated with density bumps in differentially rotating discs, may arise in several different astrophysical contexts, such as galactic or protoplanetary discs. While the linear phase of the instability has been well studied, the nonlinear evolution and especially the saturation phase remain poorly understood. In this paper, we test the non-linear saturation mechanism analogous to that derived for wave-particle interaction in plasma physics. To this end we perform global numerical simulations of the evolution of the instability in a two-dimensional disc. We confirm the physical mechanism for the instability saturation and show that the maximum amplitude of vorticity can be estimated as twice the linear growth rate of the instability. We provide an empirical fitting formula for this growth rate for various parameters of the density bump. We also investigate the effects of the azimuthal mode number of the instability and the energy leakage in the spiral density waves. Finally, we sh...
Frontal instability and the radiation of inertia gravity waves
Flór, J.-B.; Scolan, H.
2009-04-01
In this experimental study we consider the instability of a density front in a differentially rotating two-layer fluid. Within the rotating frame the upper layer is accelerated by the differential rotation of a lid at the surface. In contrast to former comparable experiments of this type, we consider miscible fluids in a relatively wide annular tank. Velocity and dye measurements (PIV and LIF) allow for the measurements of the velocity and density fields. In the parameter space set by rotational Froude number and dissipation (i.e. ratio of spin-down time to disk rotation time), different flow regimes are observed, ranging from axisymmetric to irregular baroclinic instable flows. The different regimes more or less adjoin those found for immiscible fluids by Williams et al. (J. Fluid Mech. 2005). In the present experiments, we find a new type of instability that is due to the resonant interaction between Kelvin and Rossby waves (first studied Sakai, J. Fluid Mech 1989) and compare our experimental results with the analytical results obtained on an annular domain by Gula, Zeitlin and Plougonven (2009). Further, observations in the unstable flow regimes suggest 'spontaneous emission' of inertia gravity waves. The origin of these waves is discussed in the light of Kelvin-Helmholtz instability Hölmböe instability, and geostrophic adjustment waves.
Spatiotemporal chaos involving wave instability
Berenstein, Igal; Carballido-Landeira, Jorge
2017-01-01
In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.
Kinoshita, T.; Sato, K.
2012-12-01
The Transformed Eulerian-Mean (TEM) equations formulated by Andrews and McIntyre (1976, 1978) has been widely used to examine wave-mean flow interaction in the meridional cross section. Although a lot of efforts have been made to generalize the TEM equations to three dimensions so far, formulae derived by previous studies are applicable to particular waves, mainly Rossby waves on the quasi-geostrophic (QG) equations or inertia-gravity waves on the primitive equations. This study has newly formulated three-dimensional (3D) TEM equations which are applicable to both Rossby waves and gravity waves. The formulae can be used to examine the 3D material transport driven by these waves. Moreover, two kinds of 3D wave activity flux have been derived respectively for describing the wave force to the mean flow and for the wave propagation. The residual mean flow is expressed with the sum of the Eulerian-mean flow and the Stokes drift in the 2D TEM equations. Thus, a formulation is made for the 3D Stokes drift on the primitive equation (PRSD) from its original definition using a small amplitude theory for a slowly-varying mean flow. The PRSD is equivalent to the 3D Stokes drift derived by Kinoshita et al. (2010) for gravity waves for the constant Coriolis parameter and to the 3D QG Stokes drift which is also derived in this study for the small Rossby number limit. The 3D wave activity flux (3D-flux-M), whose divergence corresponds to the wave force, is derived by using PRSD. The 3D residual mean flow associated with synoptic-scale wave disturbances in the upper troposphere in April is investigated by applying the new formulae to ERA-Interim data. It is found that the sum of time-mean unbalanced flow and PRSD is southward in the east end of the storm track although it is northward in the west as is consistent with the 2D residual flow. A case study is also made for dominant gravity waves around the Southern Andes by applying the PRSD and 3D-flux-M to the simulation data of a
北太平洋Rossby波研究进展%Rossby Waves in the North Pacific Ocean: A Review
张永垂; 张立凤
2009-01-01
系统地阐述了北太平洋Rossby波在卫星观测、理论扩展及模型应用3个方面的研究成果.随着卫星观测技术的发展,明显地探测到海表面信号的Rossby波特征,且观测到波速在热带外大于自由Rossby波理论值.为解释这个波动加速现象,在自由Rossby渡理论的基础上,考虑了大气强迫、非静止基流及海底地形等因子的作用,使得Rossby波的波动理论得到了扩展.而关于风应力强迫Rossby波的线性理论模型主要有3类:一阶斜压Rossby波模型、局地Ekman抽吸模型和Svetdrup平衡模型.这些模型被广泛地应用到北太平洋海表面高度和温度/密度跃层深度等要素变化的机理研究中,得到了不同的模型在大洋的不同区域有不同的作用等结论.最后,对线性Rossby波研究存在的问题进行了初步探讨,提出了需要进一步解决的新课题.%The baroclinic Rossby waves took a substantial role in the adjustment of dynamic processes in global ocean. The studies of the Rossby waves in the North Pacific Ocean were reviewed, focusing on the satellite observing, theories extended and models applied. Beside the satellite altimeter data detecting the ubiquitous Rossby waves in ocean, other oceanic surface signals ( sea surface temperature, ocean color and sea surface salinity) could also reflect the planetary waves' characteristics, which suggested that the Rossby waves not only functioned in dynamics, but also acted on thermodynamics and biology. Moreover, at mid and high-latitude, the phase speeds of the observed waves were faster than those given by standard linear Rossby waves theory. The two extended theories explaining the speedup phenomena were presented. First, the Rossby waves were forced by wind stress and were coupled with the overlying atmosphere, so were not free. Second, the ocean's background state was not at rest, and also the ocean had a varying bottom. The linear dynamic models forced by wind stress were
Laboratory blast wave driven instabilities
Kuranz, Carolyn
2008-11-01
This presentation discusses experiments involving the evolution of hydrodynamic instabilities in the laboratory under high-energy-density (HED) conditions. These instabilities are driven by blast waves, which occur following a sudden, finite release of energy, and consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. Instabilities evolving under HED conditions are relevant to astrophysics. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 μm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses an interface having a 2D or 3D sinusoidal structure that serves as a seed perturbation for hydrodynamic instabilities. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability in the nonlinear regime. We have detected the interface structure under these conditions using x-ray backlighting. Recent advances in our diagnostic techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed or predicted by current simulations. The observed effect is potentially of great importance as a source of mass transport to places not anticipated by current theory and simulation. I will discuss the amount of mass in these spike extensions, the associated uncertainties, and hypotheses regarding their origin We also plan to show comparisons of experiments using single mode and multimode as well as 2D and 3D initial conditions. This work is sponsored by DOE/NNSA Research Grants DE-FG52-07NA28058 (Stewardship Sciences Academic Alliances) and DE-FG52-04NA00064 (National Laser User
YANG Lianmei; Zhang Qingyun
2009-01-01
Characteristics of the wave sources, energy propagation and conversion for anomalous Rossby wave activ- ities (RWAs) along the West Asian jet stream (WAJS) in summer are examined based on the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanaiysis data from 1958 to 2003, using the vorticity source equation, the Eliassen-Palm (EP) flux, and the wave energy equation under diabatic heating. The study aims to find the dynamical causes for RWA anomalies along the WAJS and to improve the understanding of mid-high latitude circulation anomalies. The results show that the negative vorticity source and the strong EP flux divergence over the Mediterranean Sea and the North Atlantic - Scandinavian Peninsula area act as the wave sources for RWA anomalies along the WAJS. When the intensity and position of the wave sources are anomalous, the excited eastward-propagating RWA along the WAJS also behaves anomalously. In strong (weak) years of RWA, Rossby waves excited by the strong divergence of EP fluxes over the Iceland - Scandinavian Peninsula area (east to the Scandinavian Peninsula) propagate eastward and southeastward. The eastward propagating waves become strengthened (weakened) after turning southeastward near the Ural Mountains and then entering the Asian subtropi- cal westerly jet stream (ASWJS) over the Caspian Sea-Aral Sea-Xinjiang. The southeastward propagating waves also strengthen (weaken) after directly entering the ASWJS over the eastern Mediterranean-the Black Sea. Furthermore, the divergence of EP fluxes over the Mediterranean also strengthens (weakens) in the strong (weak) years, so they jointly bring about the strong (weak) RWA along the WAJS. Finally, the pertur- bation available potential energy (PAPE) along the WAJS (15°-60°E) produced by diabatic heating, is far greater than the conversion from the kinetic energy of the basic flow into the perturbation kinetic energy and from the available potential
Shu, Yeqiang; Xue, Huijie; Wang, Dongxiao; Chai, Fei; Xie, Qiang; Cai, Shuqun; Chen, Rongyu; Chen, Ju; Li, Jian; He, Yunkai
2016-04-14
Energetic fluctuations with periods of 9-14 days below a depth of 1400 m were observed in the southern South China Sea (SCS) from 5 years of direct measurements. We interpreted such fluctuations as topographic Rossby waves (TRWs) because they obey the dispersion relation. The TRWs persisted from May 24, 2009 to August 23, 2013, and their bottom current speed with a maximum of ~10 cm/s was one order of magnitude greater than the mean current and comparable to the tidal currents near the bottom. The bottom-trapped TRWs had an approximate trapping depth of 325 m and reference wavelength of ~82 km, which were likely excited by eddies above. Upper layer current speed that peaked approximately every 2 months could offer the energy sources for the persistent TRWs in the southern SCS. Energetic bottom-trapped TRWs may have a comparable role in deep circulation to tides in areas with complex topography.
Waves and instabilities in plasmas
Chen Liu
1987-01-01
The topics covered in these notes are selective and tend to emphasize more on kinetic-theory approaches to waves and instabilities in both uniform and non-uniform plasmas, students are assumed to have some basic knowledge of plasma dynamics in terms of single-particle and fluid descriptions.
BUEH Cholaw; SHI Ning; JI LiRen; WEI Jie; TAO ShiYan
2008-01-01
In this paper, features for the evolution of the East Asia/Pacific (EAP) events and their association with high-and mid-latitude Rossby waves during the Meiyu period are analyzed on the medium-range time scale. It is shown that life cycles of the positive and negative EAP events cannot be simply regarded as "mirror" each other, in the upper troposphere, downward propagations of Rossby wave packets both over high- and mid-latitude regions of Eurasian continent and over the Asian jet region are responsible for generating basic patterns of high- and mid-latitude anomaly centers of the events. In this layer, Rossby wave packets also propagate from the mid-latitude anomaly center to the high-latitude one. In the middle and lower troposphere, the formation of the subtropical anomaly center of the event is mainly attributed to the anomalous convective activity in the tropical Pacific warm pool. The northward Rossby wave energy dispersion from this center is favorable to the enhancement and maintenance of the mid-latitude anomaly center in the same layer. Finally, it might be hypothesized that typical features of the positive and negative EAP events in their mature phase result from the interaction between (or phase-locking of) respective anomalous circulations induced both by quasi-zonal Rossby wave packets embedded in upper troposphere westerly and by quasi-meridional Rossby wave packets in the background flow of the East Asian summer monsoon in the middle and lower troposphere.
The dynamical impact of Rossby wave breaking upon UK PM10 concentration
Webber, Christopher P.; Dacre, Helen F.; Collins, William J.; Masato, Giacomo
2017-01-01
Coarse particulate matter (PM10) has long been understood to be hazardous to human health, with mortality rates increasing as a result of raised ground level concentrations. We explore the influence of synoptic-scale meteorology on daily mean observed PM10 concentration ([PM10]) using Rossby wave breaking (RWB). Meteorological reanalysis data for the winter months (DJF) between January 1999 and December 2008 and observed PM10 data for three urban background UK (Midland) sites were analysed. Three RWB diagnostics were used to identify RWB that had significant influence on UK Midland PM10. RWB events were classified according to whether the RWB was cyclonic or anticyclonic in its direction of breaking and whether the RWB event was influenced more by poleward or equatorial air masses. We find that there is a strong link between RWB events and UK [PM10]. Significant increases (p UK [PM10] were seen 1 day following RWB occurring in spatially constrained northeast Atlantic-European regions. Analysis into episodic PM10 exceedance events shows increased probability of [PM10] exceedance associated with all RWB subsets. The greatest probability of exceeding the UK [PM10] threshold was associated with cyclonic RWB preceded by anticyclonic RWB forming an Ω block synoptic pattern. This mechanism suggests an easterly advection of European PM10 followed by prolonged stagnant conditions within the UK and led to an almost threefold increase in the probability of the UK Midlands exceeding a hazardous [PM10] threshold (0.383), when compared to days where no RWB was detected (0.129).
A note on free and forced Rossby wave solutions: The case of a straight coast and a channel
Graef, Federico
2017-03-01
The free Rossby wave (RW) solutions in an ocean with a straight coast when the offshore wavenumber of incident (l1) and reflected (l2) wave are equal or complex are discussed. If l1 = l2 the energy streams along the coast and a uniformly valid solution cannot be found; if l1,2 are complex it yields the sum of an exponentially decaying and growing (away from the coast) Rossby wave. The channel does not admit these solutions as free modes. If the wavenumber vectors of the RWs are perpendicular to the coast, the boundary condition of no normal flow is trivially satisfied and the value of the streamfunction does not need to vanish at the coast. A solution that satisfies Kelvin's theorem of time-independent circulation at the coast is proposed. The forced RW solutions when the ocean's forcing is a single Fourier component are studied. If the forcing is resonant, i.e. a free Rossby wave (RW), the linear response will depend critically on whether the wave carries energy perpendicular to the channel or not. In the first case, the amplitude of the response is linear in the direction normal to the channel, y, and in the second it has a parabolic profile in y. Examples of these solutions are shown for channels with parameters resembling the Mozambique Channel, the Tasman Sea, the Denmark Strait and the English Channel. The solutions for the single coast are unbounded, except when the forcing is a RW trapped against the coast. If the forcing is non-resonant, exponentially decaying or trapped RWs could be excited in the coast and both the exponentially ;decaying; and exponentially ;growing; RW could be excited in the channel.
李黎明; 黄锋; 迟东妍; 刘式适; 王彰贵
2002-01-01
From the diabatic quasi-geostrophic equations of motion, the authors analyze the characteristics ofdiabatic Rossby waves including the thermal effects of the Tibetan Plateau. When the basic zonal flow isbarotropic, it is demonstrated that the cooling of the Tibetan Plateau in winter not only facilitates themeridional propagation of Rossby waves but is an important driving mechanism of the intraseasonaloscillations in middle and high latitudes. When the basic zonal flow is baroclinic, it is found that the coolingof the Tibetan Plateau in winter facilitates the instability of Rossby waves, while in summer there is athreshold for the influence of the heating of the Tibetan Plateau on the stability of Rossby waves.%从含非绝热项的准地转运动方程组出发,分析了青藏高原大尺度热力作用下非绝热Rossby波的一些性质.从理论上证明当背景西风气流为正压时,冬季高原冷却作用有利于Rossby波的经向传播.又由非绝热Rossby波的频率方程说明冬季高原的热力作用是中高纬季节内振荡的重要激发机制.此外,当背景西风气流为斜压时,求解了高原热力作用下非绝热Rossby波的频率,并由频率方程说明冬季高原冷却作用有利于波动向不稳定方向发展,而夏季高原的大尺度热力作用对波动稳定性的影响存在临界值.
Yunlong Shi
2014-01-01
Full Text Available We solve the so-called dissipative nonlinear Schrödinger equation by means of multiple scales analysis and perturbation method to describe envelope solitary Rossby waves with dissipation effect in stratified fluids. By analyzing the evolution of amplitude of envelope solitary Rossby waves, it is found that the shear of basic flow, Brunt-Vaisala frequency, and β effect are important factors to form the envelope solitary Rossby waves. By employing trial function method, the asymptotic solution of dissipative nonlinear Schrödinger equation is derived. Based on the solution, the effect of dissipation on the evolution of envelope solitary Rossby wave is also discussed. The results show that the dissipation causes a slow decrease of amplitude of envelope solitary Rossby waves and a slow increase of width, while it has no effect on the propagation velocity. That is quite different from the KdV-type solitary waves. It is notable that dissipation has certain influence on the carrier frequency.
Ram, P.S.; Rao, S.A.; Sadhuram, Y.
in the direction of geostrophic currents. It is found that the locations of these thermal fronts in the Bay of Bengal are primarily determined by the Oceanic Rossby waves and local Ekman pumping. Key Words: Bay of Bengal, Circulation, Cyclonic and Anti... drawn with black dots shows the meandering path of the rest of the three turtles. Locations of the turtles at different times are also shown as white stars. A strong anti-cyclonic gyre (warm core eddy) centered at 17º N with SSHD above 30 cm...
McCrystall, M.; Hosking, J. S.; Maycock, A.; Pyle, J. A.
2016-12-01
Identifying the key drivers of Arctic climate is essential for understanding the recent changes in local climate and the mechanisms for these changes. Remote sea-surface temperatures (SSTs) have been identified by Ding et al. (2014) as a driver of these recent changes by inducing surface and mid-tropospheric warming and increase in 200 hPa geopotential heights (Z200), particularly over northern Canada and Greenland. This work further investigates the robustness of the Tropical-Arctic teleconnection by assessing the role of tropical SSTs in exciting planetary scale Rossby waves, and determining their effect on Arctic climate. We analyse a series of sensitivity experiments, using the Met Office HadGEM3 atmospheric model, forced by observed changes in SSTs between the periods 1979-1988 and 2003-2012 imposed for; [i] the entire tropics, [ii] the tropical Pacific Ocean and [iii] the tropical Atlantic Ocean. The spatial patterns of Z200 anomalies in the experiments are quantitatively compared to the 27-year Z200 trends from ERA-Interim reanalysis data and the model results of Ding et al. (2014). In contrast to their results, we found negative Z200 anomalies over northern Canada and Greenland in boreal winter in response to recent changes in tropical SSTs. We capture, however, an increase in Z200 of around 20 m over Scandinavia and the Aleutian Islands. To understand the direct influence of the tropical SST forcing on high latitudes, we analyse 3D wave activity flux anomalies, based on Plumb (1985). There is large variability in northern hemisphere wave flux anomalies but we do identify a Rossby wave train from the tropical Atlantic projecting onto the anomalous Z200 over Scandinavia. The results suggest changes in tropical SSTs can affect regional Arctic climate through their effect on poleward propagating Rossby waves, however from these experiments, it appears that this process has not contributed to the recent observed Z200 trends over northern Canada and Greenland
Liu, Fei; Wang, Bin
2017-01-01
The authors extend the original frictional wave dynamics and implement the moisture feedback (MF) to explore the effects of planetary boundary layer (PBL) process and the MF on the Madden-Julian Oscillation (MJO). This new system develops the original frictional wave dynamics by including the moisture tendency term (or the MF mode), along with a parameterized precipitation based on the Betts-Miller scheme. The linear instability analysis of this model provides solutions to elucidate the behaviors of the "pure" frictional convergence (FC) mode and the "pure" MF mode, respectively, as well as the behaviors of the combined FC-MF mode or the dynamical moisture mode. These results show that without the PBL frictional moisture convergence, the MF mode is nearly stationary and damped. Not only does the PBL frictional feedback make the damping MF mode grow with preferred planetary scale but it also enables the nearly stationary MF mode to move eastward slowly, resulting in an oscillation with a period of 30-90 days. This finding suggests the important role of the frictional feedback in generating eastward propagating unstable modes and selecting the preferred planetary scales. The MF process slows down the eastward-propagating short-wave FC mode by delaying the occurrence of deep convection and by enhancing the Rossby wave component. However, the longest wave (wavenumber one) is insensitive to the MF or the convective adjustment time, indicating that the unstable longest wave is primarily controlled by PBL frictional feedback process. Implications of these theoretical results in MJO simulation in general circulation models are discussed.
Boulanger, Jean-Philippe; Fu, Lee-Lueng
1996-01-01
The TOPEX/POSEIDON sea level data lead to new opportunities to investigate some theoretical mechanisms suggested to be involved in the El Nino-Southern Oscillation phenomenon in the tropical Pacific ocean. In particular, we are interested in studying the western boundary reflection, a process crucial for the delayed action oscillator theory, by using the TOPEX/POSEIDON data from November 1992 to May 1995. We first projected the sea level data onto Kelvin and first-mode Ross waves. Then we estimated the contribution of wind forcing to these waves by using a single baroclinic mode simple wave model forced by the ERS-1 wind data. Wave propagation was clearly observed with amplitudes well explained by the wind forcing in the ocean interior. Evidence of wave reflection was detected at both the western and eastern boundaries of the tropical Pacific ocean. At the eastern boundary, Kelvin waves were seen to reflect as first-mode Rossby waves during the entire period. The reflection efficiency (in terms of wave amplitude) of the South American coasts was estimated to be 80% of that of an infinite meridional wall. At the western boundary, reflection was observed in April-August 1993, in January-June 1994, and, later, in December 1994 to February 1995. Although the general roles of these reflection events in the variability observed in the equatorial Pacific ocean are not clear, the data suggest that the reflections in January-June 1994 have played a role in the onset of the warm conditions observed in late 1994 to early 1995. Indeed, during the January-June 1994 period, as strong downwelling first-mode Rossby waves reflected into downwelling Kelvin waves, easterly wind and cold sea surface temperature anomalies located near the date line weakened and eventually reversed in June-July 1994. The presence of the warm anomalies near the date line then favored convection and westerly wind anomalies that triggered strong downwelling Kelvin waves propagating throughout the basin
LONG-TERM VARIATION IN THE SUN’S ACTIVITY CAUSED BY MAGNETIC ROSSBY WAVES IN THE TACHOCLINE
Zaqarashvili, Teimuraz V. [Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz (Austria); Oliver, Ramon; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Hanslmeier, Arnold [Institute für Physik, Geophysik Astrophysik und Meteorologie, University of Graz, Univ.-Platz 5, 8010 Graz (Austria); Carbonell, Marc [Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Gachechiladze, Tamar [Abastumani Astrophysical Observatory at Ilia State University, Tbilisi, Georgia (United States); Usoskin, Ilya G., E-mail: teimuraz.zaqarashvili@oeaw.ac.at [Sodankylä Geophysical Observatory and ReSoLVE Centre of Excellence, University of Oulu, FI-90014 Oulo (Finland)
2015-06-01
Long-term records of sunspot number and concentrations of cosmogenic radionuclides (10Be and 14C) on the Earth reveal the variation of the Sun's magnetic activity over hundreds and thousands of years. We identify several clear periods in sunspot, 10Be, and 14C data as 1000, 500, 350, 200, and 100 years. We found that the periods of the first five spherical harmonics of the slow magnetic Rossby mode in the presence of a steady toroidal magnetic field of 1200–1300 G in the lower tachocline are in perfect agreement with the timescales of observed variations. The steady toroidal magnetic field can be generated in the lower tachocline either due to the steady dynamo magnetic field for low magnetic diffusivity or due to the action of the latitudinal differential rotation on the weak poloidal primordial magnetic field, which penetrates from the radiative interior. The slow magnetic Rossby waves lead to variations of the steady toroidal magnetic field in the lower tachocline, which modulate the dynamo magnetic field and consequently the solar cycle strength. This result constitutes a key point for long-term prediction of the cycle strength. According to our model, the next deep minimum in solar activity is expected during the first half of this century.
Hongwei Yang
2012-01-01
Full Text Available The paper presents an investigation of the generation, evolution of Rossby solitary waves generated by topography in finite depth fluids. The forced ILW- (Intermediate Long Waves- Burgers equation as a model governing the amplitude of solitary waves is first derived and shown to reduce to the KdV- (Korteweg-de Vries- Burgers equation in shallow fluids and BO- (Benjamin-Ono- Burgers equation in deep fluids. By analysis and calculation, the perturbation solution and some conservation relations of the ILW-Burgers equation are obtained. Finally, with the help of pseudospectral method, the numerical solutions of the forced ILW-Burgers equation are given. The results demonstrate that the detuning parameter α holds important implications for the generation of the solitary waves. By comparing with the solitary waves governed by ILW-Burgers equation and BO-Burgers equation, we can conclude that the solitary waves generated by topography in finite depth fluids are different from that in deep fluids.
Long-term trends in synoptic-scale Rossby wave-breaking and the jet strength at tropopause levels
Isotta, F.; Martius, O.; Sprenger, M.; Schwierz, C.
2009-04-01
Breaking synoptic-scale Rossby waves are frequent features of the upper troposphere and lower stratosphere (UTLS) which affect both global- and regional-scale dynamics. Furthermore, they directly influence ozone distribution through meridional transport of ozone-rich air towards the south and ozone-poor air towards the north. Here, trends in the frequency of these breaking waves are assessed by analysing a 44-year climatology (1958-2002) of potential vorticity (PV) streamers on isentropic surfaces from 310 to 350 K. These streamers are viewed as breaking Rossby waves. Two complementary techniques are used to analyse the trends. First, linear trends are computed using the least-squares regression technique. Statistically significant linear trends are found to vary in location and magnitude between isentropic levels and the four seasons. In winter significant trends are detected in the eastern Pacific between 340 and 350 K. A positive trend of stratospheric streamers in the Tropics is related to an increase of total column ozone, whereas the positive trend of tropospheric streamers in the mid-latitudes is associated with a decrease of total ozone. Secondly, a nonlinear trend analysis is performed using the seasonal-trend decomposition procedure based on Loess (STL). With this technique, the low-frequency variability of the time series is analysed during the 44-year period. For instance, over the eastern Atlantic on 350 K, a phase of decreasing PV streamer frequencies in the 1950s and 1960s is followed by a positive streamer tendency after the 1970s. Additionally, trends of the zonal wind are investigated. One prominent outcome of this analysis is the observation that equatorial easterlies over the Atlantic are weakening. A dynamically meaningful link exists between the trends observed in both wind velocity and PV streamers.
Nonlinear evolution of whistler wave modulational instability
Karpman, V.I.; Lynov, Jens-Peter; Michelsen, Poul;
1995-01-01
The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary different......The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary...
Yuyue Fan
2015-01-01
Full Text Available In January 2008, extreme freezing rain struck South China. At the same time, the Tibetan Plateau (TP was experiencing pronounced surface heating. The characteristics of this extreme weather and its linkage to the TP surface heating anomaly were analyzed in this paper. The results show that (1 anomalous heating of the TP helps to form and sustain the Siberian blocking high, which is important for persistent southward flow of dry and cold Siberian air; (2 TP heating helps the moisture flux move more north and strengthens the southerly wind above 850 hPa; (3 there are two Rossby wave trains at 500 hPa and the layers above it (at about 20∘N–40∘N. Correlation analysis reveals that TP heating anomalies are closely associated with these Rossby wave trains; (4 the Rossby wave propagates downstream from the TP to South China in the mid and high layers of the atmosphere when the TP changes swiftly from a heat sink to a heat source. This implies that anomalous heating of the TP may stimulate the Rossby wave train to propagate downward in midlatitudes.
Dongxiao Wang
2008-06-01
Full Text Available Data from a subsurface mooring deployed in the western South China Sea shows clear intra-seasonal oscillations (ISO at the period of 40~70 days. Analysis of remotelysensed sea surface height (SSH anomalies in the same area indicates that these ISO signals propagate both eastward and westward. Time-longitude diagrams of ISO signals in SSH anomalies and wind-stress curl indicate that the eastward propagating SSH anomalies is forced by wind-stress curl. This is also confirmed by lag correlation between SSH anomalies and the wind-stress-curl index (wind stress curl averaged over 109.5Ã‚ÂºE -115Ã‚ÂºE and 12Ã‚ÂºN -13.5Ã‚ÂºN. Lag correlation of SSH anomaly suggests that the westward propagating signals are free Rossby waves.
Wu, Xiangyu; Xie, Qiang; He, Zhigang; Wang, Dongxiao
2008-06-01
Data from a subsurface mooring deployed in the western South China Sea shows clear intra-seasonal oscillations (ISO) at the period of 40~70 days. Analysis of remotelysensed sea surface height (SSH) anomalies in the same area indicates that these ISO signals propagate both eastward and westward. Time-longitude diagrams of ISO signals in SSH anomalies and wind-stress curl indicate that the eastward propagating SSH anomalies is forced by wind-stress curl. This is also confirmed by lag correlation between SSH anomalies and the wind-stress-curl index (wind stress curl averaged over 109.5ºE -115ºE and 12ºN -13.5ºN). Lag correlation of SSH anomaly suggests that the westward propagating signals are free Rossby waves.
Ungermann, Joern; Friedl-Vallon, Felix; Höpfner, Michael; Preusse, Peter; Riese, Martin
2016-04-01
The Gimbaled Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb-imager combining a 2-D infrared detector with a Fourier transform spectrometer. It was operated aboard the German Gulfstream G550 research aircraft HALO during a series of simultaneous campaigns (POLSTRACC, SALSA, GWLCYCLE, GWEX) during the winter of 2015/2016 over Europe and the Arctic. This poster shows a set of GLORIA observations and analyses of 2-D trace gas cross-sections in the extratropical upper troposphere / lower stratosphere (UTLS). The spatially highly-resolved temperature, H2O, O3 and HNO3 data reveal an intricate layered structure in the extratropical Transition Layer (exTL). This heterogeneous structure was caused by Rossby wave breaking and is similar to the state found during previous measurements in summer 2012 over Europe. This study presents first analyses of the stirring and stratosphere-troposphere-exchange by means of backward-trajectory calculation.
Freitas, Ana C. V.; Frederiksen, Jorgen S.; O'Kane, Terence J.; Ambrizzi, Tércio
2017-07-01
Ensemble simulations, using both coupled ocean-atmosphere (AOGCM) and atmosphere only (AGCM) general circulation models, are employed to examine the austral winter response of the Hadley circulation (HC) and stationary Rossby wave propagation (SRW) to a warming climate. Changes in the strength and width of the HC are firstly examined in a set of runs with idealized sea surface temperature (SST) perturbations as boundary conditions in the AGCM. Strong and weak SST gradient experiments (SG and WG, respectively) simulate changes in the HC intensity, whereas narrow (5°S-5°N) and wide (30°S-30°N) SST warming experiments simulate changes in the HC width. To examine the combined impact of changes in the strength and width of the HC upon SRW propagation two AOGCM simulations using different scenarios of increasing carbon dioxide (CO2) concentrations are employed. We show that, in contrast to a wide SST warming, the atmospheric simulations with a narrow SST warming produce stronger and very zonally extended Rossby wave sources, leading to stronger and eastward shifted troughs and ridges. Simulations with SST anomalies, either in narrow or wide latitude bands only modify the intensity of the troughs and ridges. SST anomalies outside the narrow latitude band of 5°S-5°N do not significantly affect the spatial pattern of SRW propagation. AOGCM simulations with 1 %/year increasing CO2 concentrations or 4 times preindustrial CO2 levels reveal very similar SRW responses to the atmospheric only simulations with anomalously wider SST warming. Our results suggest that in a warmer climate, the changes in the strength and width of the HC act in concert to significantly alter SRW sources and propagation characteristics.
Freitas, Ana C. V.; Frederiksen, Jorgen S.; O'Kane, Terence J.; Ambrizzi, Tércio
2016-09-01
Ensemble simulations, using both coupled ocean-atmosphere (AOGCM) and atmosphere only (AGCM) general circulation models, are employed to examine the austral winter response of the Hadley circulation (HC) and stationary Rossby wave propagation (SRW) to a warming climate. Changes in the strength and width of the HC are firstly examined in a set of runs with idealized sea surface temperature (SST) perturbations as boundary conditions in the AGCM. Strong and weak SST gradient experiments (SG and WG, respectively) simulate changes in the HC intensity, whereas narrow (5°S-5°N) and wide (30°S-30°N) SST warming experiments simulate changes in the HC width. To examine the combined impact of changes in the strength and width of the HC upon SRW propagation two AOGCM simulations using different scenarios of increasing carbon dioxide (CO2) concentrations are employed. We show that, in contrast to a wide SST warming, the atmospheric simulations with a narrow SST warming produce stronger and very zonally extended Rossby wave sources, leading to stronger and eastward shifted troughs and ridges. Simulations with SST anomalies, either in narrow or wide latitude bands only modify the intensity of the troughs and ridges. SST anomalies outside the narrow latitude band of 5°S-5°N do not significantly affect the spatial pattern of SRW propagation. AOGCM simulations with 1 %/year increasing CO2 concentrations or 4 times preindustrial CO2 levels reveal very similar SRW responses to the atmospheric only simulations with anomalously wider SST warming. Our results suggest that in a warmer climate, the changes in the strength and width of the HC act in concert to significantly alter SRW sources and propagation characteristics.
F. K. Hunt
2011-05-01
Full Text Available Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories.
Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1 averaging vertical profiles of velocity, (2 diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3 EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT, SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects.
The model data supports the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model. The model structures were surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but is too surface intensified. SLT plus
F. K. Hunt
2012-01-01
Full Text Available Tests of the new Rossby wave theories that have been developed over the past decade to account for discrepancies between theoretical wave speeds and those observed by satellite altimeters have focused primarily on the surface signature of such waves. It appears, however, that the surface signature of the waves acts only as a rather weak constraint, and that information on the vertical structure of the waves is required to better discriminate between competing theories. Due to the lack of 3-D observations, this paper uses high-resolution model data to construct realistic vertical structures of Rossby waves and compares these to structures predicted by theory. The meridional velocity of a section at 24° S in the Atlantic Ocean is pre-processed using the Radon transform to select the dominant westward signal. Normalized profiles are then constructed using three complementary methods based respectively on: (1 averaging vertical profiles of velocity, (2 diagnosing the amplitude of the Radon transform of the westward propagating signal at different depths, and (3 EOF analysis. These profiles are compared to profiles calculated using four different Rossby wave theories: standard linear theory (SLT, SLT plus mean flow, SLT plus topographic effects, and theory including mean flow and topographic effects. Our results support the classical theoretical assumption that westward propagating signals have a well-defined vertical modal structure associated with a phase speed independent of depth, in contrast with the conclusions of a recent study using the same model but for different locations in the North Atlantic. The model structures are in general surface intensified, with a sign reversal at depth in some regions, notably occurring at shallower depths in the East Atlantic. SLT provides a good fit to the model structures in the top 300 m, but grossly overestimates the sign reversal at depth. The addition of mean flow slightly improves the latter issue, but
Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene
2012-01-01
In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.
Effect of wave localization on plasma instabilities
Levedahl, W.K.
1987-01-01
The Anderson model of wave localization in random media is invoked to study the effect of solar-wind density turbulence on plasma processes associated with the solar type-III radio burst. ISEE-3 satellite data indicate that a possible model for the type-III process is the parametric decay of Langmuir waves excited by solar-flare electron streams into daughter electromagnetic and ion-acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir-wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Riegel criteria for wave localization in the solar wind with observed density fluctuations {approximately}1%. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action-principle approach is used to develop a theory of nonlinear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability.
Mean flow-storm track relationship and Rossby wave breaking in two types of El-Niño
Liu, Chengji; Ren, Xuejuan; Yang, Xiuqun
2014-01-01
The features of large-scale circulation, storm tracks and the dynamical relationship between them were examined by investigating Rossby wave breaking (RWB) processes associated with Eastern Pacific (EP) and Central Pacific (CP) El-Niño. During EP El-Niño, the geopotential height anomaly at 500 hPa (Z500) exhibits a Pacific-North America (PNA) pattern. During CP El-Niño, the Z500 anomaly shows a north positive-south negative pattern over the North Pacific. The anomalous distributions of baroclinicity and storm track are consistent with those of upper-level zonal wind for both EP and CP El-Niño, suggesting impacts of mean flow on storm track variability. Anticyclonic wave breaking (AWB) occurs less frequently in EP El-Niño years, while cyclonic wave breaking (CWB) occurs more frequently in CP El-Niño years over the North Pacific sector. Outside the North Pacific, more CWB events occur over North America during EP El-Niño. When AWB events occur less frequently over the North Pacific during EP El-Niño, Z500 decreases locally and the zonal wind is strengthened (weakened) to the south (north). This is because AWB events reflect a monopole high anomaly at the centroid of breaking events. When CWB events occur more frequently over the North Pacific under CP El-Niño conditions, and over North America under EP El-Niño condition, Z500 increases (decreases) to the northeast (southwest), since CWB events are related to a northeast-southwest dipole Z500 anomaly. The anomalous RWB events act to invigorate and reinforce the circulation anomalies over the North Pacific-North America region linked with the two types of El-Niño.
Plasma wave instabilities in nonequilibrium graphene
Aryal, Chinta M.; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka
2016-01-01
We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene systems can support unstable charge-density waves whose amplitudes grow with time. We...... of the injected electrons that maximizes the growth rate increases with increasing | q |. We compare the range and strength of the instability in graphene to that of two- and three-dimensional parabolic band systems....
C. T. Duba
2012-05-01
Full Text Available Using the shallow water equations for a rotating layer of fluid, the wave and dispersion equations for Rossby waves are developed for the cases of both the standard β-plane approximation for the latitudinal variation of the Coriolis parameter f and a zonal variation of the shallow water speed. It is well known that the wave normal diagram for the standard (mid-latitude Rossby wave on a β-plane is a circle in wave number (ky,kx space, whose centre is displaced −β/2 ω units along the negative kx axis, and whose radius is less than this displacement, which means that phase propagation is entirely westward. This form of anisotropy (arising from the latitudinal y variation of f, combined with the highly dispersive nature of the wave, gives rise to a group velocity diagram which permits eastward as well as westward propagation. It is shown that the group velocity diagram is an ellipse, whose centre is displaced westward, and whose major and minor axes give the maximum westward, eastward and northward (southward group speeds as functions of the frequency and a parameter m which measures the ratio of the low frequency-long wavelength Rossby wave speed to the shallow water speed. We believe these properties of group velocity diagram have not been elucidated in this way before. We present a similar derivation of the wave normal diagram and its associated group velocity curve for the case of a zonal (x variation of the shallow water speed, which may arise when the depth of an ocean varies zonally from a continental shelf.
Elliptic and magneto-elliptic instabilities
Lyra Wladimir
2013-04-01
Full Text Available Vortices are the fundamental units of turbulent flow. Understanding their stability properties therefore provides fundamental insights on the nature of turbulence itself. In this contribution I briely review the phenomenological aspects of the instability of elliptic streamlines, in the hydro (elliptic instability and hydromagnetic (magneto-elliptic instability regimes. Vortex survival in disks is a balance between vortex destruction by these mechanisms, and vortex production by others, namely, the Rossby wave instability and the baroclinic instability.
Holbrook, Neil J.; Goodwin, Ian D.; McGregor, Shayne; Molina, Ernesto; Power, Scott B.
2011-03-01
The connection between East Australian Current (EAC) transport variability and Australia's east coast sea level has received little treatment in the literature. This is due in part to the complex interacting physical processes operating in the coastal zone combined with the sparsity of observations available to improve our understanding of these possible connections. This study demonstrates a statistically significant (at the >90% level) relationship between interannual to decadal time scale variations in observed estimates of the EAC transport changes and east coast sea level measured at the high-quality, long record Fort Denison tide-gauge in Sydney Harbour, Australia (33°51'18″S, 151°13'32″E). We further demonstrate, using a linear reduced-gravity ocean model, that ENSO to decadal time-scale variations and the ocean-adjusted multi-decadal trend (approx. 1 cm/decade) in observed sea level at Fort Denison are strongly connected to modulations of EAC transports by incoming westward propagating oceanic Rossby waves. We show that EAC transport and Fort Denison sea level vary in a manner expected from both Tasman Sea generated Rossby waves, which account for the interannual and multi-annual variability, and remotely forced (from east of New Zealand) Rossby wave connections through the mid-latitudes, accounting for the ocean-adjusted multi-decadal trend observed at the New South Wales coast - with the regional-Tasman Sea forcing explaining the greatest overall proportion of EAC transport and sea-level variances.
Modulational instability in wind-forced waves
Brunetti, Maura
2014-01-01
We consider the wind-forced nonlinear Schroedinger (NLS) equation obtained in the potential flow framework when the Miles growth rate is of the order of the wave steepness. In this case, the form of the wind-forcing terms gives rise to the enhancement of the modulational instability and to a band of positive gain with infinite width. This regime is characterised by the fact that the ratio between wave momentum and norm is not a constant of motion, in contrast to what happens in the standard case where the Miles growth rate is of the order of the steepness squared.
Nonlinear Rossby waves near the equator with complete Coriolis force%近赤道完整Coriolis力作用下的非线性Rossby波
杨红丽; 刘福梅; 王丹妮; 杨联贵
2016-01-01
Nonlinear Rossby Waves near the equator in a potential vorticity equation which includes both the vertical and horizontal components of Coriolis force are studied.The wave evolution is described by the inhomo-geneous Boussinesq equation or the modified Korteweg-de Vries equation depending on the different perturbation methods.From the evolution equations,the effect of the horizontal components of Coriolis force on the nonlinear Rossby waves is evident.As expected,the equations derived also include,as special cases,those obtained before.%从既含有Coriolis力垂直分量又含有水平分量的位涡方程出发,采用不同的摄动方法推导了近赤道非线性Rossby波的演化方程,得到非线性Rossby波振幅演化满足非齐次Boussinesq方程或改进的Korteweg-de Vries方程.从演化方程可以看出Coriolis力水平分量对非线性Rossby波的影响,并且本文取特殊情况时包括了已有的一些结果.
Experimental study on modulational instability and evolution of crescent waves
Ya-long ZHOU
2012-12-01
Full Text Available A series of experiments on the instability of steep water wave trains in water with finite water depths and infinite water depths in a wide wave basin were performed. It was found that under the coupled development of modulational instability and class-II instability, the initial two-dimensional steep wave trains evolved into three-dimensional crescent waves, followed by the occurrence of disordered water surfaces, and that the wave energy transferred to sidebands in the amplitude spectrum of the water surface elevation. The results also show that water depth has a significant effect on the growth of modulational instability and the evolution of crescent waves. The larger the water depth, the more quickly the modulational instability suppresses class-II instability.
2010-01-01
day TIWs. 1. Introduction Mixed Rossby-Gravity waves (often referred to as Yanai waves) play an important role in a variety of phenomena in the...significant role in the SST and SSH variability caused by 17-day TIWs especially in the northern hemisphere. 3. Cross-correlation analysis The phase...penetrating from the upper troposphere into the lower strato - sphere. J. Meteor. Soc. Japan, 47, 167–182. Zangvil, A., 1975: Temporal and spatial
Nonlinear evolution of the modulational instability of whistler waves
Karpman, V.I.; Hansen, F.R.; Huld, T.
1990-01-01
The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves is investigated in two spatial dimensions by numerical simulations. The long time evolution of the modulational instability shows a quasirecurrent behavior with a slow spreading...... of the energy, originally confined to the lowest wave numbers, to larger and larger wave numbers resulting in an apparently chaotic or random wave field. © 1990 The American Physical Society...
Baerenzung, J; Mininni, P D; Pouquet, A
2009-01-01
We present a study of spectral laws for helical turbulence in the presence of solid body rotation up to Reynolds numbers Re~1*10^5 and down to Rossby numbers Ro~3*10^-3. The forcing function is a fully helical flow that can also be viewed as mimicking the effect of atmospheric convective motions. We test in the helical case variants of a model developed previously (Baerenzung et al. 2008a) against direct numerical simulations (DNS), using data from a run on a grid of 15363 points; we also contrast its efficiency against a spectral Large Eddy Simulation (LES) (Chollet and Lesieur 1981) as well as an under-resolved DNS. The model including the contribution of helicity to the spectral eddy dissipation and eddy noise behaves best, allowing to recover statistical features of the flow. An exploration of parameter space is then performed beyond what is feasible today using DNS. At fixed Reynolds number, lowering the Rossby number leads to a regime of wave-mediated inertial helicity cascade to small scales. However, ...
Experimental study of parametric subharmonic instability for internal waves
Bourget, Baptiste; Joubaud, Sylvain; Odier, Philippe
2013-01-01
Internal waves are believed to be of primary importance as they affect ocean mixing and energy transport. Several processes can lead to the breaking of internal waves and they usually involve non linear interactions between waves. In this work, we study experimentally the parametric subharmonic instability (PSI), which provides an efficient mechanism to transfer energy from large to smaller scales. It corresponds to the destabilization of a primary plane wave and the spontaneous emission of two secondary waves, of lower frequencies and different wave vectors. Using a time-frequency analysis, we observe the time evolution of the secondary waves, thus measuring the growth rate of the instability. In addition, a Hilbert transform method allows the measurement of the different wave vectors. We compare these measurements with theoretical predictions, and study the dependence of the instability with primary wave frequency and amplitude, revealing a possible effect of the confinement due to the finite size of the be...
Peevey, Tanya
The upper troposphere lower stratosphere (UTLS) is a region of minimum temperatures that contains the tropopause. As a transition region between the troposphere and the stratosphere, the UTLS contains various processes that facilitate stratosphere-troposphere exchange (STE) which can redistribute radiatively important species such as water vapor or ozone. One potential marker for STE is the double tropopause (DT). Therefore this study seeks to further understand how DTs form and how they could enhance the current understanding of some STE processes in the UTLS. Using data from the High Resolution Dynamic Limb Sounder (HIRDLS), a data set with high vertical and horizontal resolution, newly discovered DT structures are found over the Pacific and Atlantic oceans that suggest a relationship between the DT and both storm tracks and Rossby waves. The association between DTs and storm tracks is examined by further analyzing the recently discovered and unexpected relationship between the DT and the tropopause inversion layer (TIL) in a developing baroclinic disturbance. Results show an increase in the number of DTs when the lapse rate of the extratropical TIL is less than -2°C/km, i.e. when the TIL is stronger and the local stability is higher. Composites of ERA-Interim DT profiles for three different TIL strengths shows that the vertical motion and relative vorticity both decrease as the TIL increases, which suggests the warm conveyor belt as a mechanism. This is investigated further with a case study analysis of a developing extratropical cyclone in the Pacific Ocean. Additionally, an analysis of DTs in relation to the large scale flow responsible for storm development shows a strong correlation between monthly Rossby wave activity, ozone laminae and DT variability. Further examination shows that if these waves break a DT will be found with a wave breaking event about 30% of the time in the eastern Pacific and eastern Atlantic oceans, both regions of poleward wave
Waves and Instabilities in Accretion Disks MHD Spectroscopic Analysis
Keppens, R; Goedbloed, J P
2002-01-01
A complete analytical and numerical treatment of all magnetohydrodynamic waves and instabilities for radially stratified, magnetized accretion disks is presented. The instabilities are a possible source of anomalous transport. While recovering results on known hydrodynamicand both weak- and strong-field magnetohydrodynamic perturbations, the full magnetohydrodynamic spectra for a realistic accretion disk model demonstrates a much richer variety of instabilities accessible to the plasma than previously realized. We show that both weakly and strongly magnetized accretion disks are prone to strong non-axisymmetric instabilities.The ability to characterize all waves arising in accretion disks holds great promise for magnetohydrodynamic spectroscopic analysis.
A coupled "AB" system: Rogue waves and modulation instabilities.
Wu, C F; Grimshaw, R H J; Chow, K W; Chan, H N
2015-10-01
Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.
INSTABILITY OF TRAVELING WAVES OF THE KURAMOTO-SIVASHINSKY EQUATION
无
2002-01-01
Consider any traveling wave solution of the Kuramoto-Sivashinsky equation that is asymptotic to a constant as x → +∞. The authors prove that it is nonlinearly unstable under H1perturbations. The proof is based on a general theorem in Banach spaces asserting that linear instability implies nonlinear instability.
Instability wave control in turbulent jet by plasma actuators
Kopiev, V. F.; Akishev, Y. S.; Belyaev, I. V.; Berezhetskaya, N. K.; Bityurin, V. A.; Faranosov, G. A.; Grushin, M. E.; Klimov, A. I.; Kopiev, V. A.; Kossyi, I. A.; Moralev, I. A.; Ostrikov, N. N.; Taktakishvili, M. I.; Trushkin, N. I.; Zaytsev, M. Yu
2014-12-01
Instability waves in the shear layer of turbulent jets are known to be a significant source of jet noise, which makes their suppression important for the aviation industry. In this study we apply plasma actuators in order to control instability waves in the shear layer of a turbulent air jet at atmospheric pressure. Three types of plasma actuators are studied: high-frequency dielectric barrier discharge, slipping surface discharge, and surface barrier corona discharge. Particle image velocimetry measurements of the shear layer demonstrate that the plasma actuators have control authority over instability waves and effectively suppress the instability waves artificially generated in the shear layer. It makes these actuators promising for application in active control systems for jet noise mitigation.
On electromagnetic instabilities at ultra-relativistic shock waves
Lemoine, Martin
2009-01-01
(Abridged) This paper addresses the issue of magnetic field generation in a relativistic shock precursor through micro-instabilities. The level of magnetization of the upstream plasma turns out to be a crucial parameter, notably because the length scale of the shock precursor is limited by the Larmor rotation of the accelerated particles in the background magnetic field and the speed of the shock wave. We discuss in detail and calculate the growth rates of the following beam plasma instabilities seeded by the accelerated and reflected particle populations: for an unmagnetized shock, the Weibel and filamentation instabilities, as well as the Cerenkov resonant longitudinal and oblique modes; for a magnetized shock, in a generic oblique configuration, the Weibel instability and the resonant Cerenkov instabilities with Alfven, Whisler and extraordinary modes. All these instabilities are generated upstream, then they are transmitted downstream. The modes excited by Cerenkov resonant instabilities take on particula...
Waves and instability in a one-dimensional microfluidic array
Liu, Bin; Feng, Yan
2012-01-01
Motion in a one-dimensional (1D) microfluidic array is simulated. Water droplets, dragged by flowing oil, are arranged in a single row, and due to their hydrodynamic interactions spacing between these droplets oscillates with a wave-like motion that is longitudinal or transverse. The simulation yields wave spectra that agree well with experiment. The wave-like motion has an instability which is confirmed to arise from nonlinearities in the interaction potential. The instability's growth is spatially localized. By selecting an appropriate correlation function, the interaction between the longitudinal and transverse waves is described.
Real world ocean rogue waves explained without the modulational instability
Fedele, Francesco; Brennan, Joseph; Ponce de León, Sonia; Dudley, John; Dias, Frédéric
2016-01-01
Since the 1990s, the modulational instability has commonly been used to explain the occurrence of rogue waves that appear from nowhere in the open ocean. However, the importance of this instability in the context of ocean waves is not well established. This mechanism has been successfully studied in laboratory experiments and in mathematical studies, but there is no consensus on what actually takes place in the ocean. In this work, we question the oceanic relevance of this paradigm. In particular, we analyze several sets of field data in various European locations with various tools, and find that the main generation mechanism for rogue waves is the constructive interference of elementary waves enhanced by second-order bound nonlinearities and not the modulational instability. This implies that rogue waves are likely to be rare occurrences of weakly nonlinear random seas. PMID:27323897
Real world ocean rogue waves explained without the modulational instability
Fedele, Francesco; Brennan, Joseph; Ponce de León, Sonia; Dudley, John; Dias, Frédéric
2016-06-01
Since the 1990s, the modulational instability has commonly been used to explain the occurrence of rogue waves that appear from nowhere in the open ocean. However, the importance of this instability in the context of ocean waves is not well established. This mechanism has been successfully studied in laboratory experiments and in mathematical studies, but there is no consensus on what actually takes place in the ocean. In this work, we question the oceanic relevance of this paradigm. In particular, we analyze several sets of field data in various European locations with various tools, and find that the main generation mechanism for rogue waves is the constructive interference of elementary waves enhanced by second-order bound nonlinearities and not the modulational instability. This implies that rogue waves are likely to be rare occurrences of weakly nonlinear random seas.
Space-Charge Waves and Instabilities in Intense Beams
Wang, J. G.
1997-11-01
Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.
Hongwei Yang
2013-01-01
solitary waves generated by topography, especially in the resonant case; a large amplitude nonstationary disturbance is generated in the forcing region. This condition may explain the blocking phenomenon which exists in the atmosphere and ocean and generated by topographic forcing.
Effect of wave localization on plasma instabilities. Ph. D. Thesis
Levedahl, W.K.
1987-10-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
Geometric Effects on the Amplification of First Mode Instability Waves
Kirk, Lindsay C.; Candler, Graham V.
2013-01-01
The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.
Comment to the note "Counting of discrete Rossby/drift wave resonant triads", arXiv:1309.0405
Kartashov, A
2013-01-01
The main purpose of this note is clarify the following misunderstanding apparent in the note arXiv:1309.0405 by M. Bustamante, U. Hayat, P. Lynch, B. Quinn; [1]: the authors erroneously assume that in the manuscript arXiv:1307.8272 by A. Kartashov and E. Kartashova, [2], resonant triads with real amplitudes are counted whereas it can be seen explicitly from the form of dynamical system that wave amplitudes are complex.
Dark solitons, dispersive shock waves, and transverse instabilities
Hoefer, M A
2011-01-01
The nature of transverse instabilities to dark solitons and dispersive shock waves for the (2+1)-dimensional defocusing nonlinear Schrodinger equation / Gross-Pitaevskii (NLS / GP) equation is considered. Special attention is given to the small (shallow) amplitude regime, which limits to the Kadomtsev-Petviashvili (KP) equation. We study analytically and numerically the eigenvalues of the linearized NLS / GP equation. The dispersion relation for shallow solitons is obtained asymptotically beyond the KP limit. This yields 1) the maximum growth rate and associated wavenumber of unstable perturbations; and 2) the separatrix between convective and absolute instabilities. The latter result is used to study the transition between convective and absolute instabilities of oblique dispersive shock waves (DSWs). Stationary and nonstationary oblique DSWs are constructed analytically and investigated numerically by direct simulations of the NLS / GP equation. The instability properties of oblique DSWs are found to be dir...
Collisionless shock waves mediated by Weibel Instability
Naseri, Neda; Ruan, Panpan; Zhang, Xi; Khudik, Vladimir; Shvets, Gennady
2015-11-01
Relativistic collisionless shocks are common events in astrophysical environments. They are thought to be responsible for generating ultra-high energy particles via the Fermi acceleration mechanism. It has been conjectured that the formation of collisionless shocks is mediated by the Weibel instability that takes place when two initially cold, unmagnetized plasma shells counter-propagate into each other with relativistic drift velocities. Using a PIC code, VLPL, which is modified to suppress numerical Cherenkov instabilities, we study the shock formation and evolution for asymmetric colliding shells with different densities in their own proper reference frame. Plasma instabilities in the region between the shock and the precursor are also investigated using a moving-window simulation that advances the computational domain at the shock's speed. This method helps both to save computation time and avoid severe numerical Cherenkov instabilities, and it allows us to study the shock evolution in a longer time period. Project is supported by US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.
Instability of subharmonic resonances in magnetogravity shear waves.
Salhi, A; Nasraoui, S
2013-12-01
We study analytically the instability of the subharmonic resonances in magnetogravity waves excited by a (vertical) time-periodic shear for an inviscid and nondiffusive unbounded conducting fluid. Due to the fact that the magnetic potential induction is a Lagrangian invariant for magnetohydrodynamic Euler-Boussinesq equations, we show that plane-wave disturbances are governed by a four-dimensional Floquet system in which appears, among others, the parameter ɛ representing the ratio of the periodic shear amplitude to the vertical Brunt-Väisälä frequency N(3). For sufficiently small ɛ and when the magnetic field is horizontal, we perform an asymptotic analysis of the Floquet system following the method of Lebovitz and Zweibel [Astrophys. J. 609, 301 (2004)]. We determine the width and the maximal growth rate of the instability bands associated with subharmonic resonances. We show that the instability of subharmonic resonance occurring in gravity shear waves has a maximal growth rate of the form Δ(m)=(3√[3]/16)ɛ. This instability persists in the presence of magnetic fields, but its growth rate decreases as the magnetic strength increases. We also find a second instability involving a mixing of hydrodynamic and magnetic modes that occurs for all magnetic field strengths. We also elucidate the similarity between the effect of a vertical magnetic field and the effect of a vertical Coriolis force on the gravity shear waves considering axisymmetric disturbances. For both cases, plane waves are governed by a Hill equation, and, when ɛ is sufficiently small, the subharmonic instability band is determined by a Mathieu equation. We find that, when the Coriolis parameter (or the magnetic strength) exceeds N(3)/2, the instability of the subharmonic resonance vanishes.
Nonlinear internal wave penetration via parametric subharmonic instability
Ghaemsaidi, S J; Dauxois, T; Odier, P; Peacock, T
2016-01-01
We present the results of a laboratory experimental study of an internal wave field generated by harmonic, spatially-periodic boundary forcing from above of a density stratification comprising a strongly-stratified, thin upper layer sitting atop a weakly-stratified, deep lower layer. In linear regimes, the energy flux associated with relatively high frequency internal waves excited in the upper layer is prevented from entering the lower layer by virtue of evanescent decay of the wave field. In the experiments, however, we find that the development of parametric subharmonic instability (PSI) in the upper layer transfers energy from the forced primary wave into a pair of subharmonic daughter waves, each capable of penetrating the weakly-stratified lower layer. We find that around $10\\%$ of the primary wave energy flux penetrates into the lower layer via this nonlinear wave-wave interaction for the regime we study.
Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma
Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of)
2014-04-15
The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrödinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.
Shoreline instability under low-angle wave incidence
Idier, D.; Falqués, A.; Ruessink, B.G.; Garnier, R.
2011-01-01
The growth of megacusps as shoreline instabilities is investigated by examining the coupling between wave transformation in the shoaling zone, longshore transport in the surf zone, cross-shore transport, and morphological evolution. This coupling is known to drive a potential positive feedback in ca
Spin waves and spin instabilities in quantum plasmas
Andreev, P A
2014-01-01
We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Instabilities appearing due to interaction of magnetic moments of neutrons with plasma are described.
Cuevas, E.; Gómez-Peláez, A. J.; Rodríguez, S.; Terradellas, E.; Basart, S.; García, R. D.; García, O. E.; Alonso-Pérez, S.
2017-10-01
It was previously shown that during August the export of Saharan dust to the Atlantic was strongly affected by the difference of the 700-hPa geopotential height anomaly between the subtropics and the tropics over North Africa, which was termed the North African Dipole Intensity (NAFDI). In this work a more comprehensive analysis of the NAFDI is performed, focusing on the entire summer dust season (June-September), and examining the interactions between the mid-latitude Rossby waves (MLRWs) and NAFDI. Widespread and notable aerosol optical depth (AOD) monthly anomalies are found for each NAFDI-phase over the dust corridors off the Sahara, indicating that NAFDI presents intra-seasonal variability and drives dust transport over both the Mediterranean basin and the North Atlantic. Those summer months with the same NAFDI-phase show similar AOD-anomaly patterns. Variations in NAFDI-phase also control the displacement of the Saharan Heat Low (SHL) westwards or eastwards through horizontal advection of temperature over Morocco-Western Sahara or eastern Algeria-Western Libya, respectively. The connection between the SHL and the NAFDI is quantified statistically by introducing two new daily indexes that account for their respective phases (NAFDI daily index -NAFDIDI-, and SHL longitudinal shift index -SHLLSI-) and explained physically using the energy equation of the atmospheric dynamics. The Pearson's correlation coefficient between the one-day-lag SHLLSI and the NAFDIDI for an extended summer season (1980-2013) is 0.78. A positive NAFDI is associated with the West-phase of the SHL, dust sources intensification on central Algeria, and positive AOD anomalies over this region and the Subtropical North Atlantic. A negative NAFDI is associated with the East-phase of the SHL, and positive AOD anomalies over central-eastern Sahara and the central-western Mediterranean Sea. The results point out that the phase changes of NAFDI at intra-seasonal time scale are conducted by those
Magnetic instability in a dilute circular rarefaction wave
Dieckmann, M. E. [Department of Science and Technology (ITN), Linkoping University, 60174 Norrkoping (Sweden); Sarri, G.; Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)
2012-12-15
The growth of magnetic fields in the density gradient of a rarefaction wave has been observed in simulations and in laboratory experiments. The thermal anisotropy of the electrons, which gives rise to the magnetic instability, is maintained by the ambipolar electric field. This simple mechanism could be important for the magnetic field amplification in astrophysical jets or in the interstellar medium ahead of supernova remnant shocks. The acceleration of protons and the generation of a magnetic field by the rarefaction wave, which is fed by an expanding circular plasma cloud, is examined here in form of a 2D particle-in-cell simulation. The core of the plasma cloud is modeled by immobile charges, and the mobile protons form a small ring close to the cloud's surface. The number density of mobile protons is thus less than that of the electrons. The protons of the rarefaction wave are accelerated to 1/10 of the electron thermal speed, and the acceleration results in a thermal anisotropy of the electron distribution in the entire plasma cloud. The instability in the rarefaction wave is outrun by a TM wave, which grows in the dense core distribution, and its magnetic field expands into the rarefaction wave. This expansion drives a secondary TE wave.
Wave Instability and Spatiotemporal Chaos in Reaction-Diffusion System with Oscillatory Dynamics
XIE Fa-Gen; YANG Jun-Zhong; LI Hong-Gang
2006-01-01
We investigate the Turing-like wave instability of the uniform oscillator in oscillatory mediums using theoretical and numerical methods. A propagating wave pattern originated at the corner of the system emerges when the uniform oscillator becomes unstable via Turing-like wave instability. Bifurcations from periodically propagated wave patterns to quasi-periodically propagated wave patterns, then to spatiotemporal chaos occur, as the system size increases from the instability threshold of the uniform oscillator.
Kudo, Tadasuke; Kawamura, Ryuichi; Hirata, Hidetaka; Ichiyanagi, Kimpei; Tanoue, Masahiro; Yoshimura, Kei
2014-07-01
The modulation of large-scale moisture transport from the tropics into East Asia in response to typhoon-induced heating during the mature stage of the Baiu/Meiyu season is investigated using the Japanese 55-year reanalysis (JRA-55), aided by a Rayleigh-type global isotope circulation model (ICM). We highlighted the typhoons that migrate northward along the western periphery of the North Pacific subtropical high and approach the vicinity of Japan. Anomalous anticyclonic circulations to the northeast and southeast of typhoons and cyclonic circulation to their west become evident as they migrate toward Japan, which could be interpreted as a Rossby wave response to typhoon heating. These resultant anomalous circulation patterns form moisture conveyor belt (MCB) stretching from the South Asian monsoon region to East Asia via the confluence region between the monsoon westerlies and central Pacific easterlies. The ICM results confirm that the well-defined nature of the MCB leads to penetration of the Indian Ocean, South China Sea, Philippine Sea, and Pacific Ocean water vapors into western Japan. The typhoons have the potential to accumulate large amounts of moisture from distant tropical oceans through the interaction of their Rossby wave response with the background flow. In the case of a typical typhoon, the total precipitable water around the typhoon center as it approaches Japan is maintained by the moisture supply from distant oceans rather than from the underlying ocean, which indirectly leads to the occurrence of heavy rainfall over western Japan.
Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma
Bouzit, Omar; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)
2015-10-15
The polarization force-induced changes in the dust-acoustic waves (DAWs) modulational instability (MI) are examined. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the MI of the DAWs is obtained. It is found that the effect of the polarization term R is to narrow the wave number domain for the onset of instability. The amplitude of the wave envelope decreases as R increases, meaning that the polarization force effects render weaker the associated DA rogue waves. The latter may therefore completely damp in the vicinity of R ∼ 1, i.e., as the polarization force becomes close to the electrostatic one (the net force acting on the dust particles becomes vanishingly small). The DA rogue wave profile is very sensitive to any change in the restoring force acting on the dust particles. It turns out that the polarization effects may completely smear out the DA rogue waves.
The criterion of gravity wave instability induced by photochemistry in summer polar mesopause region
XU; Jiyao(徐寄遥); WU; Yongfu(吴永富); WANG; Yongmei(王咏梅); FU; Liping(傅利平)
2002-01-01
This paper studies the effect of photochemistry on the gravity wave instability in summer polar mesopause region. The calculation method of the effects of eddy viscosity, conductivity and eddy diffusion of chemical species on the gravity wave instability induced by photochemistry are studied. The critical wavelength of the instability is given in this paper. The influences of some parameters on it are discussed. The study shows that the gravity wave instability induced by photochemistry is sensitive to the temperature and atomic oxygen profiles.
Self-Destructing Spiral Waves: Global Simulations of a Spiral Wave Instability in Accretion Disks
Bae, Jaehan; Hartmann, Lee; Richard, Samuel
2016-01-01
We present results from a suite of three-dimensional global hydrodynamic simulations which show that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break-down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport, and vertical mixing, at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter $\\alpha \\sim 5 \\times 10^{-4}$ in our reference model). The instability is found to operate in a wide-range of ...
Self-destructing Spiral Waves: Global Simulations of a Spiral-wave Instability in Accretion Disks
Bae, Jaehan; Nelson, Richard P.; Hartmann, Lee; Richard, Samuel
2016-09-01
We present results from a suite of three-dimensional global hydrodynamic simulations that shows that spiral density waves propagating in circumstellar disks are unstable to the growth of a parametric instability that leads to break down of the flow into turbulence. This spiral wave instability (SWI) arises from a resonant interaction between pairs of inertial waves, or inertial-gravity waves, and the background spiral wave. The development of the instability in the linear regime involves the growth of a broad spectrum of inertial modes, with growth rates on the order of the orbital time, and results in a nonlinear saturated state in which turbulent velocity perturbations are of a similar magnitude to those induced by the spiral wave. The turbulence induces angular momentum transport and vertical mixing at a rate that depends locally on the amplitude of the spiral wave (we obtain a stress parameter α ˜ 5 × 10-4 in our reference model). The instability is found to operate in a wide range of disk models, including those with isothermal or adiabatic equations of state, and in viscous disks where the dimensionless kinematic viscosity ν ≤ 10-5. This robustness suggests that the instability will have applications to a broad range of astrophysical disk-related phenomena, including those in close binary systems, planets embedded in protoplanetary disks (including Jupiter in our own solar system) and FU Orionis outburst models. Further work is required to determine the nature of the instability and to evaluate its observational consequences in physically more complete disk models than we have considered in this paper.
Dust-trapping Rossby vortices in protoplanetary disks
Meheut, H; Varniere, P; Benz, W
2012-01-01
One of the most challenging steps in planet formation theory is the one leading to the formation of planetesimals of kilometre size. A promising scenario involves the existence of vortices able to concentrate a large amount of dust and grains in their centres. Up to now this scenario has been studied mostly in 2D razor thin disks. A 3D study including, simultaneously, the formation and resulting dust concentration of the vortices with vertical settling, was still missing. The Rossby wave instability self-consistently forms 3D vortices, which have the unique quality of presenting a large scale vertical velocity in their centre. Here we aim to study how this newly discovered effect can alter the dynamic evolution of the dust. We perform global 3D simulations of the RWI in a radially and vertically stratified disk using the code MPI-AMRVAC. After the growth phase of the instability, the gas and solid phases are modelled by a bi-fluid approach, where the dust is considered as a fluid without pressure. Both the dr...
Kaufman, A.N.; Brizard, A.J.; Morehead, J.J. [Lawrence Berkeley National Lab., CA (United States); Tracy, E.R. [College of William and Mary, Williamsburg, VA (United States)
1997-12-31
The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability.
Characteristics of gravity waves generated in a baroclinic instability simulation
Y.-H. Kim
2015-11-01
Full Text Available An idealized baroclinic instability case is simulated using a ~ 10 km resolution global model to investigate the characteristics of gravity waves (GWs generated in the baroclinic life cycle. Three groups of GWs (W1–W3 appear around the high-latitude surface trough at the mature stage of the baroclinic wave. They have horizontal and vertical wavelengths of 40–400 and 2.9–9.8 km, respectively, in the upper troposphere. The two-dimensional phase-velocity spectrum of the waves is arc-shaped with a peak at 17 m s−1 eastward, which is difficult for the waves to propagate upward through the tropospheric westerly jet. At the breaking stage of the baroclinic wave, a midlatitude surface low is isolated from the higher-latitude trough, and two groups of quasi-stationary GWs (W4 and W5 appear near the surface low. These waves have horizontal and vertical wavelengths of 60–400 and 4.9–14 km, respectively, and are able to propagate vertically for long distances. The generation mechanism of the simulated GWs is discussed.
Magnetic instability in a dilute circular rarefaction wave
Dieckmann, Mark Eric; Borghesi, Marco
2012-01-01
The generation of a magnetic field in a circular rarefaction wave is examined in form of a 2D particle-in-cell (PIC) simulation. Electrons with a temperature of 32 keV are uniformly distributed within a cloud with a radius of 14.2 electron skin depths. They expand under their thermal pressure and carry with them the cold protons, which are initially concentrated in a hollow ring at the boundary of the electron cloud. The interior of the ring contains an immobile positive charge background that compensates for the electron charge. The protons expand in form of a circularly symmetric rarefaction wave and they extract energy from the electrons. A thermal anisotropy of the electrons develops and triggers through a Weibel-type instability the growth of TM waves within the plasma cloud, which acts as a wave guide. The changing cross section of this waveguide introduces a coupling between the TM wave and a TE wave and in-plane magnetic fields grow. The relevance of the simulation results to a previous experimental s...
Resonant Dampers for Parametric Instabilities in Gravitational Wave Detectors
Gras, Slawek; Barsotti, Lisa; Evans, Matthew
2015-01-01
Advanced gravitational wave interferometric detectors will operate at their design sensitivity with nearly 1MW of laser power stored in the arm cavities. Such large power may lead to the uncontrolled growth of acoustic modes in the test masses due to the transfer of optical energy to the mechanical modes of the arm cavity mirrors. These parametric instabilities have the potential of significantly compromising the detector performance and control. Here we present the design of "acoustic mode dampers" that use the piezoelectric effect to reduce the coupling of optical to mechanical energy. Experimental measurements carried on an Advanced LIGO-like test mass shown a 10-fold reduction in the amplitude of several mechanical modes, thus suggesting that this technique can greatly mitigate the impact of parametric instabilities in advanced detectors.
Existence,Orbital Stability and Instability of Solitary Waves for Coupled BBM Equations
Li-wei Cui
2009-01-01
This paper is concerned with the orbital stability/instability of solitary waves for coupled BBM equations which have Hamiltonian form.The explicit solitary wave solutions will be worked out first.Then by detailed spectral analysis and decaying estimates of solutions for the initial value problem,we obtain the orbital stability/instability of solitary waves.
Waves, instabilities and turbulence properties in Depolarisation Fronts
Lapenta, Giovanni; Goldman, Martin; Newman, David L.; Olshevskyi, Vyacheslav; Eastwood, Jonathan; Divin, Andrey; Pucci, Francesco
2016-04-01
The new mission MMS is currently focusing on the magnetopause but we need to be ready for the study of the tail. An aspect of great importance there are the Dipolarization fronts (DF), formed by reconnection outflows interacting with the pre-existing environment. These regions are host of important energy and wave phenomena [1-3]. Our recent work has investigated these regions via fully kinetic 3D simulations [4-5]. As reported recently on Nature Physics [3], based on 3D fully kinetic simulations started with a well defined x-line, we observe that in the DF reconnection transitions towards a more chaotic regime. In the fronts an instability develops caused by the local gradients of the density and by the unfavourable acceleration and field line curvature. The consequence is the break up of the fronts in a fashion similar to the classical fluid Rayleigh-Taylor instability and the onset of waves and secondary instabilities, transitioning towards a turbulent state. We investigate here especially the wave signatures that are observed in fully 3D simulations, looking for signatures of interchange-type lower hybrid waves [8], of whistler waves [7]. The end result present a vast array of waves and it is best analysed relying on concepts mutated by the turbulence theory. The end result of these waves and particle flows [2,6] are energy exchanges. We evaluate the different terms of the energy exchanges (energy deposition, J.E, and energy fluxes) and evaluate their relative improtance. The results presented are contrasted against existing results [1,9] and will provided useful guidance in analysis of future MMS data. [1] Hamrin, Maria, et al. "The evolution of flux pileup regions in the plasma sheet: Cluster observations." Journal of Geophysical Research: Space Physics 118.10 (2013): 6279-6290. [2] Angelopoulos, V., et al. "Electromagnetic energy conversion at reconnection fronts." Science 341.6153 (2013): 1478-1482. [3] Zhou, Meng, et al. "THEMIS observation of multiple
Gabriela V. Müller
2009-03-01
Full Text Available Neste trabalho estudou-se a influência dos padrões de onda extratropicais, que favorecem o desenvolvimento de eventos extremos frios no sudeste Sul-Americano, e em particular na região conhecida como Pampa Úmida. O aquecimento anômalo observado na região do oceano Pacífico tropical ocidental a nordeste da Austrália, durante os invernos de máxima freqüência de ocorrência de Geadas Generalizadas (GG no centro-leste da Argentina, (região conhecida como Pampa Úmida - PU, atua como disparador de ondas de Rossby, as quais se propagam até o continente, favorecendo assim a ocorrência daqueles eventos. O padrão de propagação obtido nas simulações numéricas com um modelo baroclínico global, mostra o predomínio de um número de onda 3. Adicionalmente, foram analisadas as correlações do vento meridional em altos e baixos níveis observados para os eventos de GG, selecionados dentro dos invernos de máxima freqüência de ocorrência desses eventos. O vento meridional global em 250hPa apresenta regiões com correlação estatisticamente significativa com o vento meridional médio na PU. A configuração obtida no caso do vento meridional global em 250hPa, correlacionado com o vento meridional na PU, pode estar associada ao padrão de propagação das ondas simuladas numericamente a partir da forçante tropical. Igualmente importantes e significativos são os valores de correlação do vento sul nos baixos níveis, em particular para toda região da PU. O padrão de ondas simulado está bem representado pelas significativas correlações entre o vento meridional hemisférico em altos níveis e a temperatura no dia de evento de GG.The influence of extratropical waves on the development of extreme cold events over southeast South America, particularly on the Argentinean Wet Pampa region is studied in this work. An anomalous heating observed over the occidental tropical Pacific Ocean, northeast of Australia, during Austral winters of
Goldstein, M. E.
1984-01-01
Attention is given to the sound produced by artificially excited, spatially growing instability waves on subsonic shear layers. Real flows that always diverge in the downstream direction allow sound to be produced by the interaction of the instability waves with the resulting streamwise variations of the flow. The upstream influence, or feedback, can interact with the splitter plate lip to produce a downstream-propagating instability wave that may under certain conditions be the same instability wave that originally generated the upstream influence. The present treatment is restricted to very low Mach number flows, so that compressibility effects can only become important over large distances.
Two-fluid MHD Regime of Drift Wave Instability
Yang, Shang-Chuan; Zhu, Ping; Xie, Jin-Lin; Liu, Wan-Dong
2015-11-01
Drift wave instabilities contribute to the formation of edge turbulence and zonal flows, and thus are believed to play essential roles in the anomalous transport processes in tokamaks. Whereas drift waves are generally assumed to be local and electrostatic, experiments have often found regimes where the spatial scales and the magnetic components of drift waves approach those of magnetohydrodynamic (MHD) processes. In this work we study such a drift wave regime in a cylindrical magnetized plasma using a full two-fluid MHD model implemented in the NIMROD code. The linear dependency of growth rates on resistivity and the dispersion relation found in the NIMROD calculations qualitatively agree with theoretical analysis. As the azimuthal mode number increases, the drift modes become highly localized radially; however, unlike the conventional local approximation, the radial profile of the drift mode tends to shift toward the edge away from the center of the density gradient slope, suggesting the inhomogeneity of two-fluid effects. Supported by National Natural Science Foundation of China Grant 11275200 and National Magnetic Confinement Fusion Science Program of China Grant 2014GB124002.
Nonlinear instability and chaos in plasma wave-wave interactions. II. Numerical methods and results
Kueny, C.S.; Morrison, P.J.
1995-05-01
In Part I of this work and Physics of Plasmas, June 1995, the behavior of linearly stable, integrable systems of waves in a simple plasma model was described using a Hamiltonian formulation. It was shown that explosive instability arises from nonlinear coupling between modes of positive and negative energy, with well-defined threshold amplitudes depending on the physical parameters. In this concluding paper, the nonintegrable case is treated numerically. Several sets of waves are considered, comprising systems of two and three degrees of freedom. The time evolution is modelled with an explicit symplectic integration algorithm derived using Lie algebraic methods. When initial wave amplitudes are large enough to support two-wave decay interactions, strongly chaotic motion destroys the separatrix bounding the stable region for explosive triplets. Phase space orbits then experience diffusive growth to amplitudes that are sufficient for explosive instability, thus effectively reducing the threshold amplitude. For initial amplitudes too small to drive decay instability, small perturbations might still grow to arbitrary size via Arnold diffusion. Numerical experiments do not show diffusion in this case, although the actual diffusion rate is probably underestimated due to the simplicity of the model.
Ion streaming instabilities with application to collisionless shock wave structure
Golden, K. I.; Linson, L. M.; Mani, S. A.
1973-01-01
The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. Magnetic effects on the ion beams are included, but the electrons are treated as a magnetized fluid. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. These results are extensions of Kovner's analysis for weak beams. The parameters are then chosen to be applicable for parallel shocks. It is found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5.
A numerical study of lowest-order short-crested water wave instabilities
Fuhrman, David R.; Madsen, Per A.
2005-01-01
This work presents the first numerical simulations of the long-term evolution of doubly-periodic short-crested wave instabilities, which are the simplest cases involving the three-dimensional instability of genuinely three-dimensional progressive water waves. The simulated evolutions reveal...
African Easterly Jet: Barotropic Instability, Waves, and Cyclogenesis
Wu, Man-Li C; Reale, Oreste; Schubert, Siegfried D.; Suarez, Max J.; Thorncroft, Chris D.
2012-01-01
This study investigates the structure of the African easterly jet, focusing on instability processes on a seasonal and subseasonal scale, with the goal of identifying features that could provide increased predictability of Atlantic tropical cyclogenesis. The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is used as the main investigating tool. MERRA is compared with other reanalyses datasets from major operational centers around the world and was found to describe very effectively the circulation over the African monsoon region. In particular, a comparison with precipitation datasets from the Global Precipitation Climatology Project shows that MERRA realistically reproduces seasonal precipitation over that region. The verification of the generalized Kuo barotropic instability condition computed from seasonal means is found to have the interesting property of defining well the location where observed tropical storms are detected. This property does not appear to be an artifact of MERRA and is present also in the other adopted reanalysis datasets. Therefore, the fact that the areas where the mean flow is unstable seems to provide a more favorable environment for wave intensification, could be another factor to include-in addition to sea surface temperature, vertical shear, precipitation, the role of Saharan air, and others-among large-scale forcings affecting development and tropical cyclone frequency. In addition, two prominent modes of variability are found based on a spectral analysis that uses the Hilbert-Huang transform: a 2.5-6-day mode that corresponds well to the African easterly waves and also a 6-9-day mode that seems to be associated with tropical- extratropical interaction.
Parametric instabilities of large-amplitude parallel propagating Alfven waves: 2-D PIC simulation
Nariyuki, Yasuhiro; Hada, Tohru
2008-01-01
We discuss the parametric instabilities of large-amplitude parallel propagating Alfven waves using the 2-D PIC simulation code. First, we confirmed the results in the past study [Sakai et al, 2005] that the electrons are heated due to the modified two stream instability and that the ions are heated by the parallel propagating ion acoustic waves. However, although the past study argued that such parallel propagating longitudinal waves are excited by transverse modulation of parent Alfven wave, we consider these waves are more likely to be generated by the usual, parallel decay instability. Further, we performed other simulation runs with different polarization of the parent Alfven waves or the different ion thermal velocity. Numerical results suggest that the electron heating by the modified two stream instability due to the large amplitude Alfven waves is unimportant with most parameter sets.
Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma
Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)
2011-11-15
A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.
Fan-structure wave as a source of earthquake instability
Tarasov, Boris
2015-04-01
Today frictional shear resistance along pre-existing faults is considered to be the lower limit on rock shear strength at confined compression corresponding to the seismogenic layer. This determines the lithospheric strength and the primary earthquake mechanism associated with frictional stick-slip instability on pre-existing faults. This paper introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. In the new mechanism the rock failure, associated with consecutive creation of small slabs (known as 'domino-blocks') from the intact rock in the rupture tip, is driven by a fan-shaped domino structure representing the rupture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new domino-blocks), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the lower limit of the lithospheric strength and favours the generation of new faults in pristine rocks in preference to frictional stick-slip instability along pre-existing faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created
The role of gap edge instabilities in setting the depth of planet gaps in protoplanetary discs
Hallam, P. D.; Paardekooper, S.-J.
2017-08-01
It is known that an embedded massive planet will open a gap in a protoplanetary disc via angular momentum exchange with the disc material. The resulting surface density profile of the disc is investigated for one-dimensional and two-dimensional disc models and, in agreement with previous work, it is found that one-dimensional gaps are significantly deeper than their two-dimensional counterparts for the same initial conditions. We find, by applying one-dimensional torque density distributions to two-dimensional discs containing no planet, that the excitement of the Rossby wave instability and the formation of Rossby vortices play a critical role in setting the equilibrium depth of the gap. Being a two-dimensional instability, this is absent from one-dimensional simulations and does not limit the equilibrium gap depth there. We find similar gap depths between two-dimensional gaps formed by torque density distributions, in which the Rossby wave instability is present, and two-dimensional planet gaps, in which no Rossby wave instability is present. This can be understood if the planet gap is maintained at marginal stability, even when there is no obvious Rossby wave instability present. Further investigation shows the final equilibrium gap depth is very sensitive to the form of the applied torque density distribution, and using improved one-dimensional approximations from three-dimensional simulations can go even further towards reducing the discrepancy between one- and two-dimensional models, especially for lower mass planets. This behaviour is found to be consistent across discs with varying parameters.
Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands
Vinas, A. F.; Goldstein, M. L.
1992-01-01
This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.
Spike Penetration in Blast-Wave-Driven Instabilities
Drake, R. Paul
2010-05-01
Recent experiments by C. Kuranz and collaborators, motivated by structure in supernovae, have studied systems in which planar blast waves encounter interfaces where the density decreases. During the Rayleigh-Taylor (RT) phase of such experiments, they observed greater penetration of the RT spikes than tends to be seen in simulations. Here we seek to employ semi-analytic theory to understand the general nature and regimes of spike penetration for blast-wave-driven instabilities. This problem is not trivial as one must account for the initial vorticity deposition at the interface, for its time-dependent deceleration, for the expansion of the shocked material in time and space, and for the drag on the broadened tips of the spikes. We offer here an improved evaluation of the material expansion in comparison to past work. The goal is to use such models to increase our ability to interpret the behavior of simulations of such systems, in both the laboratory and astrophysics. Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03-00SF22021.
Near-inertial parametric subharmonic instability of internal wave beams
Karimi, Hussain H.; Akylas, T. R.
2017-07-01
Parametric subharmonic instability (PSI) of internal wave beams in a uniformly stratified fluid is discussed, for the case where the beam frequency is nearly twice the inertial frequency due to background rotation. Compared with generic PSI, beams of finite width are expected on physical grounds to be more vulnerable to subharmonic perturbations of near-inertial frequency, as these disturbances have small group velocity and stay in contact with the underlying beam longer, thus extracting more energy. A weakly nonlinear theory for such near-inertial PSI is developed in the "distinguished limit" where the effects of triad nonlinear interactions, dispersion, and viscous dissipation are equally important. This model is used to examine the linear stability of a uniform beam to infinitesimal perturbations under a "pump-wave" approximation, as well as the nonlinear development of PSI that takes into account the effect of the growing perturbations on the beam evolution. Near-inertial PSI is possible for beams of general locally confined profile, in sharp contrast to generic PSI which can arise only for quasimonochromatic beams whose profile comprises a sinusoidal carrier modulated by a locally confined envelope. The theoretical predictions are consistent with earlier numerical simulations of semidiurnal internal tide beams generated over the continental shelf break at latitudes above and below the critical value 28 .8∘N , at which the subharmonic semidiurnal frequency matches the local inertial frequency.
The gravity wave instability induced by photochemistry in summer polar mesopause region
无
2000-01-01
The effect of diabatic process due to the photochemical heating and cooling on the gravity wave propagation in middle atmosphere is studied. A linear gravity wave model which considers the diabatic process is established. The unstable region and the growth rate of the gravity wave caused by photochemistry are calculated. And the comparison between the model and the adiabatic gravity wave theory of pure dynamics is made. The results indicate that the photochemical heating process can induce the instability of gravity wave at mesopause. The intensity of the instability becomes stronger as the temperature decreases. The temperature feature and the altitude characteristics of the instability are consistent with the observation. Therefore, the instability of the gravity wave induced by photochemistry may be an important mechanism in polar mesopause region in summer.
Parametric instability induced by X-mode wave heating at EISCAT
Wang, Xiang; Zhou, Chen; Liu, Moran; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu
2016-10-01
In this paper, we present results of parametric instability induced by X-mode wave heating observed by EISCAT (European Incoherent Scatter Scientific Association) radar at Tromsø, Norway. Three typical X-mode ionospheric heating experiments on 22 October 2013, 19 October 2012, and 21 February 2013 are investigated in details. Both parametric decay instability (PDI) and oscillating two-stream instability are observed during the X-mode heating period. We suggest that the full dispersion relationship of the Langmuir wave can be employed to analyze the X-mode parametric instability excitation. A modified kinetic electron distribution is proposed and analyzed, which is able to satisfy the matching condition of parametric instability excitation. Parallel electric field component of X-mode heating wave can also exceed the parametric instability excitation threshold under certain conditions.
Modulational Instability of Dust Ion Acoustic Waves in a Collisional Dusty Plasma
XUEJu-Kui
2003-01-01
The modulational instability of dust ion accoustic waves in a dust plasma with ion-dust collision effects is studied.Using the perturbation method,a modified nonlinear Schroedinger equation contains a damping term that comes from the effect of the ion-dust collision is derived.It is found that the inclusion of the ion-dust collision would modify the modulational instability of the wave packet and could not admit any stationary envelope solitary waves.
Universal instability of dust ion-sound waves and dust-acoustic waves
Tsytovich, V.N. [General Physics Institute, Russian Academy of Science Moscow, Moscow (Russian Federation); Watanabe, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)
2002-01-01
It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)
Eduardo A Agosta
2012-12-01
nights (TN10 and warm nights (TN90 during winter (JJA over subtropical Argentina, to the north of 40°S and surrounding areas (ASA from meteorological stations and NCEP/DOE AMIP-II and ECMWF ERA-interim reanalysis data. It is found that the frequency of warm nights (Tmin over percentile 90, TN90 is modulated at interannual scales by quasi-stationary wave propagation induced by convection anomalies in the Indic and Pacific. The high frequency of warm nights is associated with anomalous warming over the central equatorial Pacific (positive phase of El Niño-Southern Oscillation, ENSO. The low frequency of warm nights is linked to anomalous convection over the monsoon Indian area and the western tropical southern Indic. Hence quasi-stationary Rossby wave activity propagation is favored over the Indic, Pacific and southern South America. Such a teleconnection favors in turn the high fequency of cold nights (Tmin below percentile 10, TN10. Instead, the low frequency of cold nights is linked to the low-frequency variability of the Southern Hemisphere high-latitude mode (SAM. It is found that winters with high (low frequency of cold (warm nights are characterized by a strengthening (weakening of the subtropical jet over southern South America and adjacent areas. The current remote forcings are related with atmospheric/oceanic processes that are interconnected at seasonal-interseasonal scales, which could allow us to develop statistical-dynamical forecasts for the higher or lower occurrence of warm or cold nights in winter.
Excitation of instability waves in a two-dimensional shear layer by sound
Tam, C. K. W.
1978-01-01
The excitation of instability waves in a plane compressible shear layer by sound waves is studied. The problem is formulated mathematically as an inhomogeneous boundary-value problem. A general solution for abitrary incident sound wave is found by first constructing the Green's function of the problem. Numerical values of the coupling constants between incident sound waves and excited instability waves for a range of flow Mach number are calculated. The effect of the angle of incidence in the case of a beam of acoustic waves is analyzed. It is found that for moderate subsonic Mach numbers a narrow beam aiming at an angle between 50 to 80 deg to the flow direction is most effective in exciting instability waves.
Observation of an Alfv\\'en Wave Parametric Instability in a Laboratory Plasma
Dorfman, S
2016-01-01
A shear Alfv\\'en wave parametric instability is observed for the first time in the laboratory. When a single finite $\\omega/\\Omega_i$ kinetic Alfv\\'en wave (KAW) is launched in the Large Plasma Device above a threshold amplitude, three daughter modes are produced. These daughter modes have frequencies and parallel wave numbers that are consistent with copropagating KAW sidebands and a low frequency nonresonant mode. The observed process is parametric in nature, with the frequency of the daughter modes varying as a function of pump wave amplitude. The daughter modes are spatially localized on a gradient of the pump wave magnetic field amplitude in the plane perpendicular to the background field, suggesting that perpendicular nonlinear forces (and therefore $k_{\\perp}$ of the pump wave) play an important role in the instability process. Despite this, modulational instability theory with $k_{\\perp}=0$ has several features in common with the observed nonresonant mode and Alfv\\'en wave sidebands.
Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru
2006-01-01
Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfven waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfven waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation.
A proof of Friedman's ergosphere instability for scalar waves
Moschidis, Georgios
2016-01-01
Let $(\\mathcal{M}^{3+1},g)$ be a real analytic, stationary and asymptotically flat spacetime with a non-empty ergoregion $\\mathscr{E}$ and no future event horizon $\\mathcal{H}^{+}$. On such spacetimes, Friedman provided a heuristic argument that the energy of certain solutions $\\phi$ of $\\square_{g}\\phi=0$ grows to $+\\infty$ as time increases. In this paper, we provide a rigorous proof of Friedman's instability. Our setting is, in fact, more general. We consider smooth spacetimes $(\\mathcal{M}^{d+1},g)$, for any $d\\ge2$, not necessarily globally real analytic. We impose only a unique continuation condition for the wave equation across the boundary $\\partial\\mathscr{E}$ of $\\mathscr{E}$ on a small neighborhood of a point $p\\in\\partial\\mathscr{E}$. This condition always holds if $(\\mathcal{M},g)$ is analytic in that neighborhood of $p$, but it can also be inferred in the case when $(\\mathcal{M},g)$ possesses a second Killing field $\\Phi$ such that the span of $\\Phi$ and the stationary Killing field $T$ is timel...
Tests of a numerical algorithm for the linear instability study of flows on a sphere
Perez Garcia, Ismael; Skiba, Yuri N [Univerisidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)
2001-04-01
A numerical algorithm for the normal mode instability of a steady nondivergent flow on a rotating sphere is developed. The algorithm accuracy is tested with zonal solutions of the nonlinear barotropic vorticity equation (Legendre polynomials, zonal Rossby-Harwitz waves and monopole modons). [Spanish] Ha sido desarrollado un algoritmo numerico para estudiar la inestabilidad lineal de un flujo estacionario no divergente en una esfera en rotacion. La precision del algoritmo se prueba con soluciones zonales de la ecuacion no lineal de vorticidad barotropica (polinomios de Legendre, ondas zonales Rossby-Harwitz y modones monopolares).
Dynamical instabilities in disc-planet interactions
Lin, Min-Kai
2012-01-01
Protoplanetary discs may become dynamically unstable due to structure induced by an embedded giant planet. In this thesis, I discuss the stability of such systems and explore the consequence of instability on planetary migration. I begin with non-self-gravitating, low viscosity discs and show that giant planets induce shocks inside its co-orbital region, leading to a profile unstable to vortex formation around a potential vorticity minimum. This instability is commonly known as the vortex or Rossby wave instability. Vortex-planet interaction lead to episodic phases of migration, which can be understood in the framework of type III migration. I then examine the effect of disc self-gravity on gap stability. The linear theory of the Rossby wave instability is extended to include disc gravity, which shows that self-gravity is effective at stabilising the vortex instability at small azimuthal wavenumber. This is consistent with the observation that more vortices develop with increasing disc mass in hydrodynamic si...
Formation and instability of spiral wave induced by Gaussian coloured noise
Gan Zheng-Ning; Ma Jun; Zhang Guo-Yong; Chen Yong
2008-01-01
In this paper,we studied the effect of Gauesian coloured noise on the formation and instability of spiral waves described by one class of modified FitzHugh-Nagumo equation.It was found that Gaussian coloured noise plays a constructive role in the formation,transition and instability of spiral wave.Too weak or too strong noise may act against the formation of spiral waves.At a certain noise level,spiral wave is maintained in a medium,in which spiral wave cannot be observed in the absence of the noise.It is difficult to make a stable spiral wave into unstable state by Gaussian coloured noise,unless the noise level is very high.The parameter regions of Gaussian coloured noise for spiral forming and spiral instability were given and discussed with numerical simulations.
Poplavskiy, Mikhail V.
Parametric oscillatory instability will be a serious problem restricting the power circulating in laser gravitation wave detectors (aLIGO). For parametric oscillatory instability suppression we suggest to use practically "single mode" Fabry-Perot (FP) cavity with little changed mirror's specular surface.
STABILITY AND INSTABILITY OF SOLITARY WAVES FOR ABSTRACT COMPLEX HAMILTONIAN SYSTEM
Zhao Ye
2005-01-01
This paper is concerned with the orbital stability and orbital instability of solitary waves for some complex Hamiltonian systems in abstract form. Under some assumptions on the spectra of the related operator and the decaying estimates of the semigroup, the sufficient conditions on orbital stability and instability are obtained.
Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru
2006-01-01
Parametric instabilities of parallel propagating,circularly polarized Alfv\\'en waves in a uniform background plasma is studied, within a framework of one-dimensional Vlasov equation for ions and massless electron fluid, so that kinetic perturbations in the longitudinal direction (ion Landau damping) are included. The present formulation also includes the Hall effect. The obtained results agree well with relevant analysis in the past, suggesting that kinetic effects in the longitudinal direction play essential roles in the parametric instabilities of Alfven waves when the kinetic effects react "passively". Furthermore, existence of the kinetic parametric instabilities is confirmed for the regime with small wave number daughter waves. Growth rates of these instabilities are sensitive to ion temperature.
Relativistic effects on the modulational instability of electron plasma waves in quantum plasma
Basudev Ghosh; Swarniv Chandra; Sailendra Nath Paul
2012-05-01
Relativistic effects on the linear and nonlinear properties of electron plasma waves are investigated using the one-dimensional quantum hydrodynamic (QHD) model for a twocomponent electron–ion dense quantum plasma. Using standard perturbation technique, a nonlinear Schrödinger equation (NLSE) containing both relativistic and quantum effects has been derived. This equation has been used to discuss the modulational instability of the wave. Through numerical calculations it is shown that relativistic effects signiﬁcantly change the linear dispersion character of the wave. Unlike quantum effects, relativistic effects are shown to reduce the instability growth rate of electron plasma waves.
Onorato, M; Osborne, A R; Serio, M
2006-01-13
Here we consider a simple weakly nonlinear model that describes the interaction of two-wave systems in deep water with two different directions of propagation. Under the hypothesis that both sea systems are narrow banded, we derive from the Zakharov equation two coupled nonlinear Schrödinger equations. Given a single unstable plane wave, here we show that the introduction of a second plane wave, propagating in a different direction, can result in an increase of the instability growth rates and enlargement of the instability region. We discuss these results in the context of the formation of rogue waves.
Instability of water jet: Aerodynamically induced acoustic and capillary waves
Broman, Göran I.; Rudenko, Oleg V.
2012-09-01
High-speed water jet cutting has important industrial applications. To further improve the cutting performance it is critical to understand the theory behind the onset of instability of the jet. In this paper, instability of a water jet flowing out from a nozzle into ambient air is studied. Capillary forces and compressibility of the liquid caused by gas bubbles are taken into account, since these factors have shown to be important in previous experimental studies. A new dispersion equation, generalizing the analogous Rayleigh equation, is derived. It is shown how instability develops because of aerodynamic forces that appear at the streamlining of an initial irregularity of the equilibrium shape of the cross-section of the jet and how instability increases with increased concentration of gas bubbles. It is also shown how resonance phenomena are responsible for strong instability. On the basis of the theoretical explanations given, conditions for stable operation are indicated.
The Effect of "Wave Breakers" on the Magnetohydrodynamic Instability in Aluminum Reduction Cells
Pedcenko, Alex; Molokov, Sergei; Bardet, Benoit
2017-02-01
We report the results of the experiments on the suppression of the MHD instability in a model of the aluminum reduction cells (Pedchenko et al. in EPL 88:24001, 2009). The idea behind the study is to introduce obstacles in the liquid metal to suppress the propagation of the rolling-pad instability wave. As a result, in some configurations with obstacles, we detect lowering of the wave amplitude, reduction of its propagation speed, and rise of the main parameters' thresholds, responsible for the instability onset.
Study of Parametric Instability of gravitational wave detectors using silicon test masses
Zhang, Jue; Ju, Li; Blair, David
2016-01-01
Parametric instability is an intrinsic risk in high power laser interferometer gravitational wave detectors, in which the optical cavity modes interact with the acoustic modes of the mirrors leading to exponential growth of the acoustic vibration. In this paper, we investigate the potential parametric instability for a proposed next generation gravitational wave detector based on cooled silicon test masses. It is shown that there would be about 2 unstable modes per test mass, with the highest parametric gain of ~76. The importance of developing suitable instability suppression schemes is emphasized.
Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M.
2016-12-01
Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose-Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics.
Investigation of Instability Wave Dynamics in High-Speed Turbulent Jets Using LES
Ryu, Jaiyoung; Lele, Sanjiva K.
2007-11-01
Instability waves have been frequently invoked to explain the dominant noise from high-speed jets. Current methods for predicting jet noise do not, as of yet, use the instability wave formalism. We decompose the results of the large-eddy simulation of high-speed jets (Bodony and Lele, 2005) by Fourier, adjoint (Ryu, Lele and Viswanathan, 2007) and POD methods (Suzuki, 2007) to extract the instability wave contribution to the fluctuations. Three operating conditions are analyzed. Jet instability modes at different frequencies and azimuthal mode numbers as a function of downstream position are traced. The deduced instability wave amplitude and phase dynamics are compared with the predictions of the parabolized stability equations (Cheung, 2007). The least square method is used to provide the amplitude estimate for the linear PSE results. The decomposed LES database shows ``the physics of instability waves'' to a limited extent. The agreement is best for the lowest frequency considered (St=0.1) and for the first azimuthal mode (n=1). For higher St and other modes larger discrepancies are observed.
Short-wave vortex instability in stratified flow
Bovard, Luke
2014-01-01
In this paper we investigate a new instability of the Lamb-Chaplygin dipole in a stratified fluid. Through numerical linear stability analysis, a secondary peak in the growth rate emerges at vertical scales about an order of magnitude smaller than the buoyancy scale $L_{b}=U/N$ where $U$ is the characteristic velocity and $N$ is the Brunt-V\\"{a}is\\"{a}l\\"{a} frequency. This new instability exhibits a growth rate that is similar to, and even exceeds, that of the zigzag instability, which has the characteristic length of the buoyancy scale. This instability is investigated for a wide range of Reynolds $Re=2000-20000$ and horizontal Froude numbers $F_{h}=0.05-0.2$, where $F_{h}=U/NR$, $Re=UR/\
Firing wave instability of the current filaments in a semiconductor. An analogy with neurodynamics
Aoki, K.; Yamamoto, K.
1983-10-01
Periodic oscillations and chaos have been observed in the firing density wave of the current filaments in n-GaAs at 4.2 K. The mechanism of the firing-wave instability has been discussed by an analogy with neurodynamics.
Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability
C. Krafft
Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.
Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions
Tropical Instability Wave Interactions within the Galápagos Archipelago.
In the boreal fall of 2005, the effects of tropical instability waves (TIW) appear as oscillations within the sea surface temperature (SST), meridional current (Vy), and thermocline (20°C) in the eastern equatorial Pacific. Within the Galápagos Archipelago, a strong 3-wave succes...
Numerical simulation of lowest-order short-crested wave instabilities
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2006-01-01
A numerical study of doubly periodic deep-water short-crested wave instabilities, arising from various quartet resonant interactions, is conducted using a high-order Boussinesq-type model. The model is first verified through a series of simulations involving classical class I plane wave...... demonstrates a reasonably similar evolution. These simulations consider the simplest physical situations involving three-dimensional instabilities of genuinely three-dimensional progressive waves, revealing qualitative differences from classical two-dimensional descriptions. This study is therefore...
Parametric Decay Instability of Near-Acoustic Waves in Fluid and Kinetic Regimes
Affolter, M.; Anderegg, F.; Driscoll, C. F.; Valentini, F.
2016-10-01
We present quantitative measurements of parametric wave-wave coupling rates and decay instabilities in the range 10 meV Δω /2. In contrast, at higher temperatures, the mz = 2 wave is more unstable. The instability threshold is reduced from the cold fluid prediction as the plasma temperature is increased, which is in qualitative agreement with Vlasov simulations, but is not yet understood theoretically. Supported by DOE/HEDLP Grant DE-SC0008693 and DOE Fusion Energy Science Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education.
Mironov, A. K.; Krasheninnikov, S. Yu.; Maslov, V. P.; Zakharov, D. E.
2016-07-01
An experimental study was conducted on the specific features of instability wave propagation in the mixing layer of a turbulent jet when the jet is excited by an external acoustic wave. We used the technique of conditional phase averaging of data obtained by particle image velocimetry using the reference signal of a microphone placed near the jet. The influence of the excitation frequency on the characteristics of large-scale structures in the mixing layer was investigated. It is shown that the propagation patterns of the instability waves agree well with previously obtained data on the localization of acoustic sources in turbulent jets.
Modulational instability of plasma waves in two dimensions
Karpman, V.I.; Lynov, Jens-Peter; Michelsen, Poul
1996-01-01
The nonlinear behavior of whistler waves coupled to either fast magnetosonic waves (FMS) or slow magnetosonic waves (SMS) is investigated in two spatial dimensions. For each branch our investigation is based on a numerical solution of a reduced set of equations consisting of two partial...... differential equations, of which one, describing the evolution of the whistler wave envelope, is complex of first order in time and the other, describing the slow response of the medium in which the whistler wave is propagating, is real and of second order in time. These equations were solved in a two...... of nonlinear waves in dispersive media....
On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas
L.-N. Hau
2007-09-01
Full Text Available Temperature or pressure anisotropies are characteristic of space plasmas, standard magnetohydrodynamic (MHD model for describing large-scale plasma phenomena however usually assumes isotropic pressure. In this paper we examine the characteristics of MHD waves, fire-hose and mirror instabilities in anisotropic homogeneous magnetized plasmas. The model equations are a set of gyrotropic MHD equations closed by the generalized Chew-Goldberger-Low (CGL laws with two polytropic exponents representing various thermodynamic conditions. Both ions and electrons are allowed to have separate plasma beta, pressure anisotropy and energy equations. The properties of linear MHD waves and instability criteria are examined and numerical examples for the nonlinear evolutions of slow waves, fire-hose and mirror instabilities are shown. One significant result is that slow waves may develop not only mirror instability but also a new type of compressible fire-hose instability. Their corresponding nonlinear structures thus may exhibit anticorrelated density and magnetic field perturbations, a property used for identifying slow and mirror mode structures in the space plasma environment. The conditions for nonlinear saturation of both fire-hose and mirror instabilities are examined.
A snapshot of internal waves and hydrodynamic instabilities in the southern Bay of Bengal
Lozovatsky, Iossif; Wijesekera, Hemantha; Jarosz, Ewa; Lilover, Madis-Jaak; Pirro, Annunziata; Silver, Zachariah; Centurioni, Luca; Fernando, H. J. S.
2016-08-01
Measurements conducted in the southern Bay of Bengal (BoB) as a part of the ASIRI-EBoB Program portray the characteristics of high-frequency internal waves in the upper pycnocline as well as the velocity structure with episodic events of shear instability. A 20 h time series of CTD, ADCP, and acoustic backscatter profiles down to 150 m as well as temporal CTD measurements in the pycnocline at z = 54 m were taken to the east of Sri Lanka. Internal waves of periods ˜10-40 min were recorded at all depths below a shallow (˜20-30 m) surface mixed layer in the background of an 8 m amplitude internal tide. The absolute values of vertical displacements associated with high-frequency waves followed the Nakagami distribution with a median value of 2.1 m and a 95% quintile 6.5 m. The internal wave amplitudes are normally distributed. The tails of the distribution deviate from normality due to episodic high-amplitude displacements. The sporadic appearance of internal waves with amplitudes exceeding ˜5 m usually coincided with patches of low Richardson numbers, pointing to local shear instability as a possible mechanism of internal-wave-induced turbulence. The probability of shear instability in the summer BoB pycnocline based on an exponential distribution of the inverse Richardson number, however, appears to be relatively low, not exceeding 4% for Ri generation of asymmetric breaking internal waves and Holmboe instabilities is above ˜25%.
First Laboratory Observation of a Shear Alfvén Wave Parametric Instability
Dorfman, S.; Carter, T.; Vincena, S.; Pribyl, P.; Rossi, G.; Lin, Y.; Sydora, R.
2016-10-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. The non-linear behavior of these modes is thought to play a key role in important problems such as the heating of the solar corona, solar wind turbulence, and Alfvén eigenmodes in tokamaks. In particular, theoretical predictions show that these Alfvén waves may be unstable to various parametric instabilities. Recent results from the Large Plasma Device at UCLA have recorded the first observation of a sheer Alfvén wave parametric instability in the laboratory [Dorfman and Carter, PRL 2016]. When a single finite ω /Ωi , finite k⊥ Alfvén wave is launched above a threshold amplitude, three daughter waves are observed: two sideband Alfvén waves co-propagating with the pump and a low frequency nonresonant mode. Frequency and parallel wave number matching relations are satisfied. Although these features are consistent with the k⊥ = 0 modulational instability theory, the theoretical growth rate is too small to explain observations. Efforts are underway to determine the nature of the perpendicular (to the background magnetic field) nonlinear drive, conduct comparative simulation studies, and identify parametric instabilities in spacecraft data. Supported by DOE, NSF, and NASA Eddy Postdoctoral Fellowship.
ORBITAL INSTABILITY OF STANDING WAVES FOR THE COUPLED NONLINEAR KLEIN-GORDON EQUATIONS
Gan Zaihui; Guo Boling; Zhang Jian
2008-01-01
This paper deals with a type of standing waves for the coupled nonlin-ear Klein-Gordon equations in three space dimensions. First we construct a suitable constrained variational problem and obtain the existence of the standing waves with ground state by using variational argument. Then we prove the orbital instability of the standing waves by defining invariant sets and applying some priori estimates.
Modulational instability of ion-acoustic waves in a warm plasma
薛具奎; 段文山; 郎和
2002-01-01
Using the standard reductive perturbation technique, a nonlinear Schrodinger equation is derived to study themodulational instability of finite-amplitude ion-acoustic waves in a non-magnetized warm plasma. It is found thatthe inclusion of ion temperature in the equation modifies the nature of the ion-acoustic wave stability and the solitonstructures. The effects of ion plasma temperature on the modulational stability and ion-acoustic wave properties areinvestigated in detail.
Rivera, Gustavo; Diamessis, Peter
2016-11-01
The shoaling of an internal solitary wave (ISW) of depression over gentle slopes is explored through fully nonlinear and non-hydrostatic simulations based on a high-accuracy deformed spectral multidomain penalty method. As recently observed in the South China Sea, in high-amplitude shoaling ISWs, the along-wave current can exceed the wave celerity resulting in convective instabilities. If the slope is less than 3%, the wave does not disintegrate as in the case of steeper slope shoaling but, instead, maintains its symmetric shape; the above convective instability may drive the formation of a turbulent recirculating core. The sensitivity of convective instabilities in an ISW is examined as a function of the bathymetric slope and wave steepness. ISWs are simulated propagating over both idealized and realistic bathymetry. Emphasis is placed on the structure of the above instabilities, the persistence of trapped cores and their potential for particle entrainment and transport. Additionally, the role of the baroclinic background current on the development of convective instabilities is explored. A preliminary understanding is obtained of the transition to turbulence within a high-amplitude ISW shoaling over progressively varying bathymetry.
Multiple harmonic ULF waves in the plasma sheet boundary layer: Instability analysis
Denton, R. E.; Engebretson, M. J.; Keiling, A.; Walsh, A. P.; Gary, S. P.; DéCréAu, P. M. E.; Cattell, C. A.; RèMe, H.
2010-12-01
Multiple-harmonic electromagnetic waves in the ULF band have occasionally been observed in Earth's magnetosphere, both near the magnetic equator in the outer plasmasphere and in the plasma sheet boundary layer (PSBL) in Earth's magnetotail. Observations by the Cluster spacecraft of multiple-harmonic electromagnetic waves with fundamental frequency near the local proton cyclotron frequency, Ωcp, were recently reported in the plasma sheet boundary layer by Broughton et al. (2008). A companion paper surveys the entire magnetotail passage of Cluster during 2003, and reports 35 such events, all in the PSBL, and all associated with elevated fluxes of counterstreaming ions and electrons. In this study we use observed pitch angle distributions of ions and electrons during a wave event observed by Cluster on 9 September 2003 to perform an instability analysis. We use a semiautomatic procedure for developing model distributions composed of bi-Maxwellian components that minimizes the difference between modeled and observed distribution functions. Analysis of wave instability using the WHAMP electromagnetic plasma wave dispersion code and these model distributions reveals an instability near Ωcp and its harmonics. The observed and model ion distributions exhibit both beam-like and ring-like features which might lead to instability. Further instability analysis with simple beam-like and ring-like model distribution functions indicates that the instability is due to the ring-like feature. Our analysis indicates that this instability persists over an enormous range in the effective ion beta (based on a best fit for the observed distribution function using a single Maxwellian distribution), β', but that the character of the instability changes with β'. For β' of order unity (for instance, the observed case with β' ˜ 0.4), the instability is predominantly electromagnetic; the fluctuating magnetic field has components in both the perpendicular and parallel directions, but the
The Instability of Void Fraction Waves in Vertical Gas—Liquid Two—Phase Flow
BaojiangSUN; DachunYAN; 等
1999-01-01
The measuring and analyzing results of void fraction waves in different flow regimes show that the propagating velocity of void fraction waves depends on flow regimes and mean void fraction.The disturbance at some frequencies can enhance the void fraction wave velocity.Non-linear analysis show that the instability process of bubble flow is a chaotic process.Before the bubbly flow transits to cap-bubbly flow the growth rate of void fraction waves becomes the maximum value when the disturbance frequency is around the main frequency of void fraction waves.
Lu Ke-Qing; Zhao Wei; Yang Yan-Long; Zhu Xiang-Ping; Li Jin-Ping; Zhang Yan-Peng
2004-01-01
We investigate the modulation instability of quasi-plane-wave optical beams in biased photorefractive-photovoltaic crystals by globally treating the space-charge field. The modulation instability growth rate is obtained, which depends on the external bias field, on the bulk photovoltaic effect, and on the ratio of the optical beam's intensity to that of the dark irradiance. Our analysis indicates that this modulation instability growth rate is identical to the modulation instability growth rate studied previously in biased photorefractive-nonphotovoltaic crystals when the bulk photovoltaic effect is negligible for shorted circuits, and predicts the modulation instability growth rate in open- and closed-circuit photorefractive-photovoltaic crystals when the external bias field is absent.
Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.
2015-12-01
Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.
Observations of Two-Stream Ion Wave Instability
Christoffersen, G.B.; Prahm, L.P.
1973-01-01
A double‐humped ion velocity distribution function is produced in a Q‐machine cesium plasma. When the plasma becomes unstable, a growing wave amplitude and a characteristic change in the phase velocity of a grid‐excited ion‐acoustic wave are observed.......A double‐humped ion velocity distribution function is produced in a Q‐machine cesium plasma. When the plasma becomes unstable, a growing wave amplitude and a characteristic change in the phase velocity of a grid‐excited ion‐acoustic wave are observed....
Oscillating two-stream instability of laser wakefield-driven plasma wave
Nafis Ahmad; V K Tripathi; Moiz Ahmad; M Rafat
2016-01-01
The laser wakefield-driven plasma wave in a low-density plasma is seen to be susceptible to the oscillating two-stream instability (OTSI). The plasma wave couples to two short wavelength plasma wave sidebands. The pump plasma wave and sidebands exert a ponderomotive force on the electrons driving a low-frequency quasimode. The electron density perturbation associated with this mode couples with the pump-driven electron oscillatory velocity to produce nonlinear currents driving the sidebands. At large pump amplitude, the instability grows faster than the ion plasma frequency and ions do not play a significant role. The growth rate of the quasimode, at large pump amplitude scales faster than linear. The growth rate is maximum for an optimum wave number of the quasimode and also increases with pump amplitude. Nonlocal effects, however reduce the growth rate by about half.
TENG Hong-Hui; JIANG Zong-Lin
2011-01-01
@@ One-dimensional detonation waves are simulated with the three-step chain branching reaction model, and the instability criterion is studied.The ratio of the induction zone length and the reaction zone length may be used to decide the instability, and the detonation becomes unstable with the high ratio.However, the ratio is not invariable with different heat release values.The critical ratio, corresponding to the transition from the stable detonation to the unstable detonation, has a negative correlation with the heat release.An empirical relation of the Chapman-Jouguet Mach number and the length ratio is proposed as the instability criterion.
Quantitative study of the trapped particle bunching instability in Langmuir waves
Hara, Kentaro, E-mail: kenhara@umich.edu; Boyd, Iain D. [Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Chapman, Thomas; Joseph, Ilon; Berger, Richard L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Banks, Jeffrey W. [Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Brunner, Stephan [Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Ecole Polytechnique Fédérale de Lausanne, CRPP-PPB, CH-1015 Lausanne (Switzerland)
2015-02-15
The bunching instability of particles trapped in Langmuir waves is studied using Vlasov simulations. A measure of particle bunching is defined and used to extract the growth rate from numerical simulations, which are compared with theory [Dodin et al., Phys. Rev. Lett. 110, 215006 (2013)]. In addition, the general theory of trapped particle instability in 1D is revisited and a more accurate description of the dispersion relation is obtained. Excellent agreement between numerical and theoretical predictions of growth rates of the bunching instability is shown over a range of parameters.
Dynamical Hamiltonian-Hopf instabilities of periodic traveling waves in Klein-Gordon equations
Marangell, R.; Miller, P. D.
2015-07-01
We study the unstable spectrum close to the imaginary axis for the linearization of the nonlinear Klein-Gordon equation about a periodic traveling wave in a co-moving frame. We define dynamical Hamiltonian-Hopf instabilities as points in the stable spectrum that are accumulation points for unstable spectrum, and show how they can be determined from the knowledge of the discriminant of Hill's equation for an associated periodic potential. This result allows us to give simple criteria for the existence of dynamical Hamiltonian-Hopf instabilities in terms of instability indices previously shown to be useful in stability analysis of periodic traveling waves. We also discuss how these methods can be applied to more general nonlinear wave equations.
One-armed spiral instability in neutron star mergers and its detectability in gravitational waves
Radice, David; Bernuzzi, Sebastiano; Ott, Christian D.
2016-09-01
We study the development and saturation of the m =1 one-armed spiral instability in remnants of binary neutron star mergers by means of high-resolution long-term numerical relativity simulations. Our results suggest that this instability is a generic outcome of neutron star mergers in astrophysically relevant configurations, including both "stiff" and "soft" nuclear equations of state. We find that, once seeded at merger, the m =1 mode saturates within ˜10 ms and persists over secular time scales. Gravitational waves emitted by the m =1 instability have a peak frequency around 1-2 kHz and, if detected, they could be used to constrain the equation of state of neutron stars. We construct hybrid waveforms spanning the entire Advanced LIGO band by combining our high-resolution numerical data with state-of-the-art effective-one-body waveforms including tidal effects. We use the complete hybrid waveforms to study the detectability of the one-armed spiral instability for both Advanced LIGO and the Einstein Telescope. We conclude that the one-armed spiral instability is not an efficient gravitational wave emitter. Even under very optimistic assumptions, Advanced LIGO will only be able to detect the one-armed instability up to ˜3 Mpc , which corresponds to an event rate of 10-7 yr-1 to 10-4 yr-1 . Third-generation detectors or better will likely be required to observe the one-armed instability.
An estimate of equatorial wave energy flux at 9- to 90-day periods in the Central Pacific
Eriksen, Charles C.; Richman, James G.
1988-01-01
Deep fluctuations in current along the equator in the Central Pacific are dominated by coherent structures which correspond closely to narrow-band propagating equatorial waves. Currents were measured roughly at 1500 and 3000 m depths at five moorings between 144 and 148 deg W from January 1981 to March 1983, as part of the Pacific Equatorial Ocean Dynamics program. In each frequency band resolved, a single complex empirical orthogonal function accounts for half to three quarters of the observed variance in either zonal or meridional current. Dispersion for equatorial first meridional Rossby and Rossby gravity waves is consistent with the observed vertical-zonal coherence structure. The observations indicate that energy flux is westward and downward in long first meridional mode Rossby waves at periods 45 days and longer, and eastward and downward in short first meridional mode Rossby waves and Rossby-gravity waves at periods 30 days and shorter. A local minimum in energy flux occurs at periods corresponding to a maximum in upper-ocean meridional current energy contributed by tropical instability waves. Total vertical flux across the 9- to 90-day period range is 2.5 kW/m.
Quantum Treatment of Kinetic Alfv\\'en Waves instability in a dusty plasma: Magnetized ions
Rubab, N
2016-01-01
The dispersion relation of kinetic Alfv\\'en wave in inertial regime is studied in a three component non-degenerate streaming plasma. A lin- ear dispersion relation using fluid- Vlasov equation for quantum plasma is also derived. The quantum correction CQ raised due to the insertion of Bohm potential in Vlasov model causes the suppression in the Alfven wave frequency and the growth rates of instability. A number of analytical expressions are derived for various modes of propagation. It is also found that many system parameters, i.e, streaming velocity, dust charge, num- ber density and quantum correction significantly influence the dispersion relation and the growth rate of instability.
Hydromagnetic Waves and Instabilities in Kappa Distribution Plasma
2009-01-01
perpendicular effective particle temperatures, respec- tively. Two other parameters related to pM and pnl which naturally occur in the study of...role in determin- ing the excitation conditions of the field swelling and mirror instabilities [see Eqs. (60) and (65)]. Calculating pnl /pni from Eq...more convenient form of the perturbed distribution function /„ that may be used in- stead of Eq. (12) to obtain nn, pM, and pnl given by Eqs. (72
Rossby Waves in the Arctic Ocean
Hjorth, Poul G.; Schmith, Torben
The Arctic Ocean has a characteristic stable stratification with fresh and cold water occupying the upper few hundred meters and the warm and more saline Atlantic waters underneath. These water masses are separated by the cold halocline. The stability of the cold halocline regulates the upward...... directed turbulent heat flux from the Atlantic water to the Arctic water. This heat flux is a part of the arctic energy budget and is important for large scale sea ice formation and melting. Due to the strong vertical stratification combined with its almost circular boundary, the Arctic Ocean supports...
Rossby Waves in the Arctic Ocean
Hjorth, Poul G.; Schmith, Torben
The Arctic Ocean has a characteristic stable stratification with fresh and cold water occupying the upper few hundred meters and the warm and more saline Atlantic waters underneath. These water masses are separated by the cold halocline. The stability of the cold halocline regulates the upward...... directed turbulent heat flux from the Atlantic water to the Arctic water. This heat flux is a part of the arctic energy budget and is important for large scale sea ice formation and melting. Due to the strong vertical stratification combined with its almost circular boundary, the Arctic Ocean supports...... of the thermohaline circulation....
Elliptical instabilities of stratified, hydromagnetic waves and the Earth's outer core
Kerswell, R.R.
1992-01-01
The streamlines of the basic rotating flow within the Earth's outer core are thought to be slightly elliptical due to tidal and precessional effects. Such a 2-dimensional elliptical flow is inertially unstable to 3-dimensional disturbances. This thesis assesses the relevance of this elliptical instability for the Earth's outer core and discusses possible implications for the geodynamo. Elliptical instability arises through a triad-type resonance of two linear waves with the underlying distorted state. When the fluid is stratified and carries a magnetic field, three different sets of waves, categorized by their dominant restoring mechanism, can exist and may potentially excite each other through the elliptical distortion. Simple cylindrical models are constructed to examine these various couplings using Earth-like parameters. It is estimated that resonances between fast (frequency comparable to the basic rotation) hydromagnetic waves can produce growth with an e-folding time of 100,000 years in the outer core, comparing favorably with typical geomagnetic inter-reversal times of O(10[sup 5]/10[sup 6]) years. Extension is made to the more geophysically-relevant, elliptically-distorted spheroidal container, in which an upper bound of 9/16 [beta] is deduced for the exponential growth rate ([beta] is the ratio of strain to rotation rate for the elliptical flow). The breakdown of a slightly distorted, rotating spheroid through an elliptical instability in commonplace. The effect of an orbiting moon is discussed and connection made between the well known middle-moment-of-inertia instability of rotating, rigid bodies and the elliptical instability. To assess the effect of ohmic and viscous dissipations upon these instabilities, a boundary layer analysis is undertaken to calculate hydromagnetic decay rates for the relevant fast waves in the outer core. The elliptical excitation of these fast hydromagnetic waves is just insufficient to overcome dissipative processes.
Formation of coastline features by large-scale instabilities induced by high-angle waves.
Ashton, A; Murray, A B; Arnault, O
2001-11-15
Along shore sediment transport that is driven by waves is generally assumed to smooth a coastline. This assumption is valid for small angles between the wave crest lines and the shore, as has been demonstrated in shoreline models. But when the angle between the waves and the shoreline is sufficiently large, small perturbations to a straight shoreline will grow. Here we use a numerical model to investigate the implications of this instability mechanism for large-scale morphology over long timescales. Our simulations show growth of coastline perturbations that interact with each other to produce large-scale features that resemble various kinds of natural landforms, including the capes and cuspate forelands observed along the Carolina coast of southeastern North America. Wind and wave data from this area support our hypothesis that such an instability mechanism could be responsible for the formation of shoreline features at spatial scales up to hundreds of kilometres and temporal scales up to millennia.
Dey, Santanu; Sensarma, Rajdeep
2016-12-01
We propose an experimental setup using ultracold atoms to implement a bilayer honeycomb lattice with Bernal stacking. In the presence of a potential bias between the layers and at low densities, fermions placed in this lattice form an annular Fermi sea. The presence of two Fermi surfaces leads to interesting patterns in Friedel oscillations and RKKY interactions in the presence of impurities. Furthermore, a repulsive fermion-fermion interaction leads to a Stoner instability towards an incommensurate spin density wave order with a wave vector equal to the thickness of the Fermi sea. The instability occurs at a critical interaction strength which goes down with the density of the fermions. We find that the instability survives interaction renormalization due to vertex corrections and discuss how this can be seen in experiments. We also track the renormalization group flows of the different couplings between the fermionic degrees of freedom, and find that there are no perturbative instabilities, and that Stoner instability is the strongest instability which occurs at a critical threshold value of the interaction. The critical interaction goes to zero as the chemical potential is tuned towards the band bottom.
Four-wave mixing instabilities in tapered and photonic crystal fibers
Biancalana, Fabio; Skryabin, Dmitry V.; Ortigosa-Blanch, Arturo
2002-01-01
We present an analytical study of four-wave mixing instabilities in tapered fibers and photonic crystal fibers. Our approach avoids the use of Taylor expansion for the linear susceptibility and the slowly-varying envelope approximation. This allows us to describe the generation of sidebands strongly detuned from the pump wave with simultaneous account for the entire dispersion characteristic of a fiber, which is found to be important for describing properly the key role of the parametric inst...
Experimental, Numerical and Analytical Studies of the MHD-driven plasma jet, instabilities and waves
Zhai, Xiang
This thesis describes a series of experimental, numerical, and analytical studies involving the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes system. The jet is collimated and accelerated by the MHD forces. We present three-dimensional ideal MHD finite-volume simulations of the plasma jet experiment using an astrophysical magnetic tower as the baseline model. A compact magnetic energy/helicity injection is exploited in the simulation analogous to both the experiment and to astrophysical situations. Detailed analysis provides a comprehensive description of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms. When the experimental jet is sufficiently long, it undergoes a global kink instability and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface. In the experiment, this instability cascade from macro-scale to micro-scale eventually leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe and
Dimensionality-driven phonon softening and incipient charge density wave instability in TiS2
Dolui, Kapildeb; Sanvito, Stefano
2016-08-01
Density functional theory and density functional perturbation theory are used to investigate the electronic and vibrational properties of TiS2. Within the local density approximation the material is a semimetal both in the bulk and in the monolayer form. Most interestingly we observe a Kohn anomaly in the bulk phonon dispersion, which turns into a charge density wave instability when TiS2 is thinned to less than four monolayers. Such instability, however, disappears when one calculates the electronic structure with a functional, such as the LDA+U, which returns an insulating ground state. In this situation charge-doping or strain does not bring back the charge density wave instability, whereas the formation of the TiSSe alloy does.
Study of parametric instability in gravitational wave detectors with silicon test masses
Zhang, Jue; Zhao, Chunnong; Ju, Li; Blair, David
2017-03-01
Parametric instability is an intrinsic risk in high power laser interferometer gravitational wave detectors, in which the optical cavity modes interact with the acoustic modes of the mirrors, leading to exponential growth of the acoustic vibration. In this paper, we investigate the potential parametric instability for a proposed next generation gravitational wave detector, the LIGO Voyager blue design, with cooled silicon test masses of size 45 cm in diameter and 55 cm in thickness. It is shown that there would be about two unstable modes per test mass at an arm cavity power of 3 MW, with the highest parametric gain of ∼76. While this is less than the predicted number of unstable modes for Advanced LIGO (∼40 modes with max gain of ∼32 at the designed operating power of 830 kW), the importance of developing suitable instability suppression schemes is emphasized.
Suppression of parametric oscillatory instability in third generation gravitational wave detectors
Strigin, S.E., E-mail: strigin@phys.msu.ru
2015-08-28
We discuss one possible method for suppression of the nonlinear effect of a parametric oscillatory instability in a Fabry–Perot cavity of the next generation of gravitational wave detectors by determination of optimal radii of curvature of interferometers' mirrors. Varying the radii of curvature of the mirrors we can change the frequencies of the optical modes of the Fabry–Perot resonators and distributions of optical fields in optical modes, which, in turn, can change the number of unstable modes, leading to parametric oscillatory instability. The determination of the optimal values of the radii of curvature of mirrors to reduce the number of unstable modes by thermal lensing is fulfilled. - Highlights: • We examine the parametric instability in Einstein Telescope. • We calculate all unstable optical and elastic modes. • We present the method how to suppress the parametric instability.
Thermally-induced vacuum instability in a single plane wave
King, B; Di Piazza, A
2012-01-01
Ever since Schwinger published his influential paper [J. Schwinger, Phys. Rev. \\textbf{82}, 664 (1951)], it has been unanimously accepted that the vacuum is stable in the presence of an electromagnetic plane wave. However, we advance an analysis that indicates this statement is not rigorously valid in a real situation, where thermal effects are present. We show that the thermal vacuum, in the presence of a single plane-wave field, even in the limit of zero frequency (a constant crossed field), decays into electron-positron pairs. Interestingly, the pair-production rate is found to depend nonperturbatively on both the amplitude of the constant crossed field and on the temperature.
Zheng-de Dai
2002-01-01
In the present paper, the existence of global attractor for dissipative Hamiltonian amplitude equation governing the modulated wave instabilities in E0 is considered. By a decomposition of solution operator, it is shown that the global attractor in E0 is actually equal to a global attractor in E1.
Dynamics of Zonal FLow Instability and Saturation in Drift Wave Turbulence
Katt, S. T.; Kim, E.; Diamond, P. H.
2001-10-01
We study generalized Kelvin-Helmholtz (GKH) instability as a saturation mechanism for a collisionless zonal flow in the background of drift waves. By treating drift waves as adiabatically modified by GKH, we investigate the modulation instability of drift waves due to GKH modes as well as the linear inflection-type instability of zonal flow. In the case where zonal flows evolve on the time scale much larger than GKH mode, GKH mode is shown to become destabilized not only by the linear instability of zonal flow but also by coupling to drift waves, with a growth rate which is enhanced over the linear value. Furthermore, the nonlinear (modulational) generation of a zonal flow is estimated to dominate over that of GKH. Our results indicate that GKH may not play an important role in a collisionless saturation of zonal flow, in contrast to [1] and [2]. The effect of temperature fluctuation will be discussed. [1] B.N. Rogers, W. Dorland, and M. Kotschenreuther, PRL, 85, 5336, (2000). [2] Y. Idomura, M. Wakatani, and S. Tokuda, PoP, 7, 3551, (2000).
New numerical tools to study waves and instabilities of flowing plasmas
Beliën, A.J.C.; Botchev, M.A.; Goedbloed, J.P.; Holst, van der B.; Keppens, R.
2002-01-01
Studying plasma waves and instabilities is an indispensable part of present thermonuclear fusion and astrophysical magnetohydrodynamics (MHD). Up till recently, spectral analysis was mostly restricted to static plasmas. However, the assumption of a static plasma is unrealistic not only for astrophys
Tsai, Shirley C; Tsai, Chen S
2013-08-01
A linear theory on temporal instability of megahertz Faraday waves for monodisperse microdroplet ejection based on mass conservation and linearized Navier-Stokes equations is presented using the most recently observed micrometer- sized droplet ejection from a millimeter-sized spherical water ball as a specific example. The theory is verified in the experiments utilizing silicon-based multiple-Fourier horn ultrasonic nozzles at megahertz frequency to facilitate temporal instability of the Faraday waves. Specifically, the linear theory not only correctly predicted the Faraday wave frequency and onset threshold of Faraday instability, the effect of viscosity, the dynamics of droplet ejection, but also established the first theoretical formula for the size of the ejected droplets, namely, the droplet diameter equals four-tenths of the Faraday wavelength involved. The high rate of increase in Faraday wave amplitude at megahertz drive frequency subsequent to onset threshold, together with enhanced excitation displacement on the nozzle end face, facilitated by the megahertz multiple Fourier horns in resonance, led to high-rate ejection of micrometer- sized monodisperse droplets (>10(7) droplets/s) at low electrical drive power (<;1 W) with short initiation time (<;0.05 s). This is in stark contrast to the Rayleigh-Plateau instability of a liquid jet, which ejects one droplet at a time. The measured diameters of the droplets ranging from 2.2 to 4.6 μm at 2 to 1 MHz drive frequency fall within the optimum particle size range for pulmonary drug delivery.
Modulational instability and solitary waves in polariton topological insulators
Kartashov, Yaroslav V
2016-01-01
Optical microcavities supporting exciton-polariton quasi-particles offer one of the most powerful platforms for investigation of rapidly developing area of topological photonics in general, and of photonic topological insulators in particular. Energy bands of the microcavity polariton graphene are readily controlled by magnetic field and influenced by the spin-orbit coupling effects, a combination leading to formation of linear unidirectional edge states in polariton topological insulators as predicted very recently. In this work we depart from the linear limit of non-interacting polaritons and predict instabilities of the nonlinear topological edge states resulting in formation of the localized topological quasi-solitons, which are exceptionally robust and immune to backscattering wavepackets propagating along the graphene lattice edge. Our results provide a background for experimental studies of nonlinear polariton topological insulators and can influence other subareas of photonics and condensed matter phy...
Instability of P-waves just below the transition region in a global solar wind simulation
Grappin, R; Pinto, R; Wang, Y -M
2007-01-01
We investigate how wave propagation is modified by the presence of heat sources and sinks, in the simple 1D, hydrodynamical case, including chromosphere and solar wind. We integrate the time-dependent hydrodynamic equations of the solar wind with spherical symmetry, including conduction, radiative cooling and a prescribed mechanical heat flux. Once a quasi-stationary wind is established, we study the response of the system to pressure oscillations at the photospheric boundary. We use transparent boundary conditions. We find that wavepackets with high enough amplitude propagating upward from the photosphere implode just below the transition region. This implosion is due to the radiative cooling term generating pressure holes close to the wave crests of the wave, which make the wave collapse. In the case where heat sources and sinks are not present in the equations, the wave remains stable whatever the initial wave amplitude, which is compatible with published work. Instability should be observable when and whe...
Nonlinear damping of a finite amplitude whistler wave due to modified two stream instability
Saito, Shinji, E-mail: saito@stelab.nagoya-u.ac.jp [Graduate School of Science, Nagoya University, Nagoya (Japan); Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya (Japan); Nariyuki, Yasuhiro, E-mail: nariyuki@edu.u-toyama.ac.jp [Faculty of Human Development, University of Toyama, Toyama (Japan); Umeda, Takayuki, E-mail: umeda@stelab.nagoya-u.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya (Japan)
2015-07-15
A two-dimensional, fully kinetic, particle-in-cell simulation is used to investigate the nonlinear development of a parallel propagating finite amplitude whistler wave (parent wave) with a wavelength longer than an ion inertial length. The cross field current of the parent wave generates short-scale whistler waves propagating highly oblique directions to the ambient magnetic field through the modified two-stream instability (MTSI) which scatters electrons and ions parallel and perpendicular to the magnetic field, respectively. The parent wave is largely damped during a time comparable to the wave period. The MTSI-driven damping process is proposed as a cause of nonlinear dissipation of kinetic turbulence in the solar wind.
Four-wave mixing instabilities in photonic-crystal and tapered fibers.
Biancalana, F; Skryabin, D V; Russell, P St J
2003-10-01
Four-wave mixing instabilities are theoretically studied for continuous wave propagation in ultrasmall core photonic-crystal and tapered fibers. The waveguide, or geometrical, contribution to the overall dispersion of these structures is much stronger than in conventional fibers. This leads to the appearance of unstable frequency bands that are qualitatively and quantitatively different from those seen in conventional fibers. The four-wave mixing theory developed here is based on the full wave equation, which allows rigorous study of the unstable bands even when the detunings are of the order of the pump frequency itself. Solutions obtained using the generalized nonlinear Schrödinger equation, which is an approximate version of the full wave equation, reveal that it suffers from several deficiencies when used to describe four-wave mixing processes.
Wave instabilities in the presence of non vanishing background in nonlinear Schrödinger systems.
Trillo, S; Gongora, J S Totero; Fratalocchi, A
2014-12-03
We investigate wave collapse ruled by the generalized nonlinear Schrödinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that the system can favor the formation of dispersive shock waves. The general findings are illustrated with a model of interest to both classical and quantum physics (cubic-quintic NLS equation), demonstrating a radically novel scenario of instability, where solitons identify a marginal condition between blow-up and occurrence of shock waves, triggered by arbitrarily small mass perturbations of different sign.
Wave instabilities in the presence of non vanishing background in nonlinear Schrödinger systems
Trillo, S.
2014-12-03
We investigate wave collapse ruled by the generalized nonlinear Schrödinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that the system can favor the formation of dispersive shock waves. The general findings are illustrated with a model of interest to both classical and quantum physics (cubic-quintic NLS equation), demonstrating a radically novel scenario of instability, where solitons identify a marginal condition between blow-up and occurrence of shock waves, triggered by arbitrarily small mass perturbations of different sign.
Timofeev, I. V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)
2013-01-15
The impact of superthermal electrons on dispersion properties of isotropic plasmas and on the modulational instability of a monochromatic Langmuir wave is studied for the case when the power-law tail of the electron distribution function extends to relativistic velocities and contains most of the plasma kinetic energy. Such an energetic tail of electrons is shown to increase the thermal correction to the Langmuir wave frequency, which is equivalent to the increase of the effective electron temperature in the fluid approach, and has almost no impact on the dispersion of ion-acoustic waves, in which the role of temperature is played by the thermal spread of low-energy core electrons. It is also found that the spectrum of modulational instability in the non-maxwellian plasma narrows significantly, as compared to the equilibrium case, without change of the maximum growth rate and the corresponding wavenumber.
Timofeev, I V
2012-01-01
The impact of superthermal electrons on dispersion properties of isotropic plasmas and on the modulational instability of a monochromatic Langmuir wave is studied for the case when the power-law tail of the electron distribution function extends to relativistic velocities and contains most of the plasma kinetic energy. Such an energetic tail of electrons is shown to increase the thermal correction to the Langmuir wave frequency, which is equivalent to the increase of the effective electron temperature in the fluid approach, and has almost no impact on the dispersion of ion-acoustic waves, in which the role of temperature is played by the thermal spread of low-energy core electrons. It is also found that the spectrum of modulational instability in the non-maxwellian plasma narrows significantly, as compared to the equilibrium case, without change of the maximum growth rate and the corresponding wavenumber.
Kinetic Alfven wave instability in a Lorentzian dusty plasma: Non-resonant particle approach
Rubab, N.; Biernat, H. K. [Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz (Austria); Institute of Physics, University of Graz, Universitaetplatz 5, A-8010 Graz (Austria); Erkaev, V. [Institute of Computational Modelling, 660036 Krasnoyarsk, Russia and Siberian Federal University, 660041 Krasnoyarsk (Russian Federation); Langmayr, D. [Virtual Vehicle Competence Center (vif), Inffeldgasse 21a, 8010 Graz (Austria)
2011-07-15
Analysis of the electromagnetic streaming instability is carried out which is related to the cross field drift of kappa distributed ions. The linear dispersion relation for electromagnetic wave using Vlasov-fluid equations in a dusty plasma is derived. Modified two stream instability (MTSI) in a dusty plasma has been discussed in the limit {omega}{sub pd}{sup 2}/c{sup 2}k{sub perpendicular}{sup 2}<<1. Numerical calculations of the growth rate of instability have been carried out. Growth rates of kinetic Alfven instability are found to be small as compared to MTSI. Maximum growth rates for both instabilities occur in oblique directions for V{sub 0}{>=}V{sub A}. It is shown that the presence of both the charged dust particles and perpendicular ion beam sensibly modify the dispersion relation of low-frequency electromagnetic wave. The dispersion characteristics are found to be insensible to the superthermal character of the ion distribution function. Applications to different intersteller regions are discussed.
Gravitational waves from the evolution of the f-mode instability in neutron stars
Passamonti, A; Kokkotas, K
2012-01-01
We study the dynamical evolution of the gravitational-wave driven instability of the f-mode in rapidly rotating relativistic stars. With an approach based on linear perturbation theory we describe the evolution of the mode amplitude and follow the trajectory of a newborn neutron star through its instability window. The influence on the f-mode instability of the magnetic field and the presence of an unstable r-mode is also considered. Two different configurations are studied in more detail; a standard N = 1 polytrope with a typical mass and radius and a more extreme polytropic N = 2/3 model which describes a supramassive neutron star. We study several evolutions with different initial rotation rates and temperature and determine the gravitational waves radiated during the instability. For reasonable values of the mode saturation amplitude, i.e. with a mode energy of about 1e6 Msun c^2, the gravitational-wave signal can be detected by the Einstein Telescope detector from the Virgo cluster. The magnetic field af...
Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris
2013-01-01
A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.
Numerical simulation of lowest-order short-crested wave instabilities
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2006-01-01
instabilities. These correctly lead to well-known (nearly symmetric) recurrence cycles below a previously established breaking threshold steepness, and to an asymmetric evolution (characterized by a permanent transfer of energy to the lower side-band) above this threshold, with dissipation from a smoothing......-bands. At larger steepness, the evolution leads to a permanent downshift of both the mean and peak frequencies, driven in part by dissipation, effectively breaking the quasi-recurrence cycle. A single case involving a class Ib short-crested wave instability at relatively large steepness is also considered, which...
Wave Instabilities and Unidirectional Light Flow in a Cavity with Rotating Walls
Lannebère, Sylvain
2016-01-01
We investigate the conditions for the emergence of wave instabilities in a vacuum cavity delimited by cylindrical metallic walls in relative rotation. It is shown that for a small vacuum gap and for a rotation velocity exceeding a certain threshold, the interactions between the surface plasmon polaritons supported by each wall give rise to an unstable behavior of the electromagnetic field manifested in an exponential growth with time. The instabilities occur only for certain modes of oscillation and are due to the transformation of kinetic energy into electromagnetic energy. We also study the possibility of having asymmetric light flows and optical isolation relying on the relative motion of the cavity walls.
Amplitude equations for coupled electrostatic waves in the limit of weak instability
Crawford, J D; Crawford, John David; Knobloch, Edgar
1997-01-01
We consider the simplest instabilities involving multiple unstable electrostatic plasma waves corresponding to four-dimensional systems of mode amplitude equations. In each case the coupled amplitude equations are derived up to third order terms. The nonlinear coefficients are singular in the limit in which the linear growth rates vanish together. These singularities are analyzed using techniques developed in previous studies of a single unstable wave. In addition to the singularities familiar from the one mode problem, there are new singularities in coefficients coupling the modes. The new singularities are most severe when the two waves have the same linear phase velocity and satisfy the spatial resonance condition $k_2=2k_1$. As a result the short wave mode saturates at a dramatically smaller amplitude than that predicted for the weak growth rate regime on the basis of single mode theory. In contrast the long wave mode retains the single mode scaling. If these resonance conditions are not satisfied both mo...
Suhl instabilities for spin waves in ferromagnetic nanostripes and ultrathin films
Haghshenasfard, Zahra; Nguyen, Hoa T.; Cottam, Michael G.
2017-03-01
A microscopic (or Hamiltonian-based) theory is employed for the spin-wave instability thresholds of nonlinear processes in ultrathin ferromagnetic stripes and films under perpendicular pumping with an intense microwave field. The spatially-quantized linear spin waves in these nanostructures may participate in parametric processes through the three-magnon interactions (the first-order Suhl process) and the four-magnon interactions (the second-order Suhl process) when pumped. By contrast with most previous studies of spin-wave instabilities made for larger samples, where macroscopic (or continuum) theories involving Maxwell's equations for magnetic dipolar effects are used, a discrete lattice of effective spins is employed. Then a dipole-exchange spin Hamiltonian is employed to investigate the behavior of the quantized spin waves under perpendicular pumping, when modifications due to the more extensive spatial confinement and edges effects in these nanostructures become pronounced. The instability thresholds versus applied magnetic field are calculated, with emphasis on the size effects and geometries of the nanostructures and on the different relative strengths of the magnetic dipole-dipole and exchange interactions in materials. Numerical results are presented using parameters for Permalloy, YIG, and EuS.
Orozco-Santillán, Arturo; Ruiz-Boullosa, Ricardo; Cutanda Henríquez, Vicente
2007-01-01
published on the topic predicts that these instabilities appear when the levitator is driven with a frequency above the resonant frequency of the empty device. The theory also shows that the instabilities can either saturate to a state with constant amplitude, or they can grow without limit until the object...... pressure amplitude in the cavity because of the presence of the sample. The theory predicts that the phase difference depends on the speed of the oscillating object. In this paper, we give for the first time experimental evidence that shows the existence of the phase difference, and that it is negatively...... proportional to the oscillation frequency of the levitated sample. We also present experimental results that show that the oscillational instabilities can be reduced if the amplitude of the acoustic wave is increased; as a result, stable conditions can be obtained where the oscillations of the sphere...
Influence of collisions on parametric instabilities induced by lower hybrid waves in tokamak plasmas
Castaldo, C.; Di Siena, A.; Fedele, R.; Napoli, F.; Amicucci, L.; Cesario, R.; Schettini, G.
2016-01-01
Parametric instabilities induced at the plasma edge by lower hybrid wave power externally coupled to tokamak plasmas have, via broadening of the antenna spectrum, strong influence on the power deposition and current drive in the core. For modeling the parametric instabilities at the tokamak plasma edge in lower hybrid current drive experiments, the effect of the collisions has been neglected so far. In the present work, a specific collisional parametric dispersion relation, useful to analyze these nonlinear phenomena near the lower hybrid antenna mouth, is derived for the first time, based on a kinetic model. Numerical solutions show that in such cold plasma regions the collisions prevent the onset of the parametric instabilities. This result is important for present lower hybrid current drive experiments, as well as in fusion reactor scenarios.
Shock wave, fluid instability and implosion studies with a kinetic particle approach
Sagert, Irina; Even, Wesley P.; Strother, Terrance T.
2016-10-01
Many problems in laboratory plasma physics are subject to flows that move between the continuum and the kinetic regime. The correct description of these flows is crucial in order to capture their impact on the system's dynamical evolution. Examples are capsule implosions in inertial confinement fusion (ICF). Although their dynamics is predominantly shaped by shock waves and fluid instabilities, non-equilibrium flows in form of deuterium/tritium ions have been shown to play a significant role. We present recent studies with our Monte Carlo kinetic particle code that is designed to capture continuum and kinetic flows in large physical systems with possible applications in ICF studies. Discussed results will include standard shock wave and fluid instability tests and simulations that are adapted towards future ICF studies with comparisons to hydrodynamic simulations. This work used the Wolf TriLAB Capacity Cluster at LANL. I.S. acknowledges support through a Director's fellowship (20150741PRD3) from Los Alamos National Laboratory.
PIC simulation of a thermal anisotropy-driven Weibel instability in a circular rarefaction wave
Dieckmann, M E; Murphy, G C; Bret, A; Romagnani, L; Kourakis, I; Borghesi, M; Ynnerman, A; Drury, L O'C; 10.1088/1367-2630/14/2/023007
2012-01-01
The expansion of an initially unmagnetized planar rarefaction wave has recently been shown to trigger a thermal anisotropy-driven Weibel instability (TAWI), which can generate magnetic fields from noise levels. It is examined here if the TAWI can also grow in a curved rarefaction wave. The expansion of an initially unmagnetized circular plasma cloud, which consists of protons and hot electrons, into a vacuum is modelled for this purpose with a two-dimensional particle-in-cell (PIC) simulation. It is shown that the momentum transfer from the electrons to the radially accelerating protons can indeed trigger a TAWI. Radial current channels form and the aperiodic growth of a magnetowave is observed, which has a magnetic field that is oriented orthogonal to the simulation plane. The induced electric field implies that the electron density gradient is no longer parallel to the electric field. Evidence is presented here for that this electric field modification triggers a second magnetic instability, which results i...
Krupa, Katarzyna; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan
2016-01-01
Spatio-temporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-nanosecond pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parame...
Brunner, S. [Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, Lausanne, (Switzerland); Berger, R. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cohen, B. I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hausammann, L. [Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, Lausanne, (Switzerland); Valeo, E. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2014-10-01
Kinetic Vlasov simulations of one-dimensional finite amplitude Electron Plasma Waves are performed in a multi-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and quasi- wavenumber δk, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are successfully compared against numerical and analytical solutions to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] for the Trapped Particle Instability (TPI). A model recently suggested by Dodin et al. [Phys. Rev. Lett. 110, 215006 (2013)], which in addition to the TPI accounts for the so-called Negative Mass Instability because of a more detailed representation of the trapped particle dynamics, is also studied and compared with simulations.
A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability
Schrittwieser, R.; Juul Rasmussen, Jens
1985-01-01
Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means of a positi......Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means...... of a positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....
A nonlinear lattice model for Heisenberg helimagnet and spin wave instabilities
Ludvin Felcy, A.; Latha, M. M.; Christal Vasanthi, C.
2016-10-01
We study the dynamics of a Heisenberg helimagnet by presenting a square lattice model and proposing the Hamiltonian associated with it. The corresponding equation of motion is constructed after averaging the Hamiltonian using a suitable wavefunction. The stability of the spin wave is discussed by means of Modulational Instability (MI) analysis. The influence of various types of inhomogeneities in the lattice is also investigated by improving the model.
Hydrothermal surface-wave instability and the Kuramoto-Sivashinsky equation
Kraenkel, R A; Manna, M A
1994-01-01
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient, and a basic nonlinear bulk velocity profile. In the limit of long-wavelength and large nondimensional surface tension, we show that hydrothermal surface-wave instabilities may give rise to disturbances governed by the Kuramoto-Sivashinsky equation. A possible connection to hot-wire experiments is also discussed.
Suppression of transverse instabilities of dark solitons and their dispersive shock waves
Armaroli, Andrea
2009-11-03
We investigate the impact of nonlocality, owing to diffusive behavior, on transverse instabilities of a dark stripe propagating in a defocusing cubic medium. The nonlocal response turns out to have a strongly stabilizing effect both in the case of a single soliton input and in the regime where dispersive shock waves develop (multisoliton regime). Such conclusions are supported by the linear stability analysis and numerical simulation of the propagation. © 2009 The American Physical Society.
Determination of the threshold for instability in four-wave mixing mediated by Brillouin scattering
Watkins, D.E. (Los Alamos National Lab., NM (United States)); Scott, A.M.; Ridley, K.D. (Royal Signals and Radar Establishment, Malvern (United Kingdom))
1990-12-01
The threshold for instability in Brillouin-enhanced four-wave mixing has been experimentally determined as a function of both the phase mismatch and the ratio of the pump beam intensities, and is shown to agree with theoretical modeling. The effective input noise intensity for four-wave mixing in the unstable regime is compared to the noise in a stimulated Brillouin scattering amplifier and is found to be higher by a factor of three in the forward direction. Competition between two input signals has been investigated and it is shown that the signal which arrives first dominates the interaction in the unstable regime.
Karjanto, N
2016-01-01
A number of qualitative comparisons of experimental results on unidirectional freak wave generation in a hydrodynamic laboratory are presented in this paper. A nonlinear dispersive type of wave equation, the nonlinear Schr\\"{o}dinger equation, is chosen as the theoretical model. A family of exact solutions of this equation the so-called Soliton on Finite Background describing modulational instability phenomenon is implemented in the experiments. It is observed that all experimental results show an amplitude increase according to the phenomenon. Both the carrier wave frequency and the modulation period are preserved during the wave propagation. As predicted by the theoretical model, a phase singularity is also observed in the experiments. Due to frequency downshift phenomenon, the experimental signal and spectrum lose their symmetric property. Another qualitative comparison indicates that the Wessel curves for the experimental results are the perturbed version of the theoretical ones.
Modulational Instability in Basic Plasma and Geophysical Models
Quinn, Brenda; Connaughton, Colm; Gallagher, Steven; Hnat, Bogdan
2013-01-01
This is a review of the theory of the modulational instability in idealised fluid models of strongly magnetised plasmas and reduced models of geophysical fluid dynamics, particularly the role it plays in the formation of zonal flows. The discussion focusses on the Charney-Hasegawa-Mima and Hasegawa-Wakatani models. Particular attention is paid to the wave turbulence - zonal flow feedback loop whereby large scale zonal flows which are initially generated by modulational instability of small-scale drift/Rossby waves tend to subsequently suppress these small scale waves by their shearing action. This negative feedback can result in a dynamic equilibrium in which large scale zonal flows grow by drawing energy from small scale turbulence but suppress the small scale turbulence in the process until a balance is reached. In this regime, the level of small scale turbulence is greatly reduced compared to the level one would observe in the absence of the zonal flows.
Kirichok, A V; Pryjmak, A V; Zagorodny, A G
2014-01-01
Nonlinear regimes of one-dimensional parametric instabilities of long-wave plasma waves are considered for the cases when the average plasma field energy density is less (Zakharov's model) or greater (Silin's model) than the plasma thermal energy density. The hybrid models presented in this paper treat the electrons as a fluid by way of an equation for the high-frequency wave and treat the ions kinetically with a super-particle simulation. This makes possible consideration of non-resonant particles trapped by high-frequency oscillations and the influence of trajectory crossing on the development of the parametric instability. The evolution of ion energy distribution is studied. It is shown that after saturation of the instability, the ion kinetic energy density normalized to the initial field energy density is of the order of the ratio of linear growth rate to the plasma frequency, for the case when the initial field energy far exceeds the plasma thermal energy. In this case, the ion energy distribution is di...
The radiation of sound by the instability waves of a compressible plane turbulent shear layer
Tam, C. K. W.; Morris, P. J.
1980-01-01
The problem of acoustic radiation generated by instability waves of a compressible plane turbulent shear layer is solved. The solution provided is valid up to the acoustic far-field region. It represents a significant improvement over the solution obtained by classical hydrodynamic-stability theory which is essentially a local solution with the acoustic radiation suppressed. The basic instability-wave solution which is valid in the shear layer and the near-field region is constructed in terms of an asymptotic expansion using the method of multiple scales. This solution accounts for the effects of the slightly divergent mean flow. It is shown that the multiple-scales asymptotic expansion is not uniformly valid far from the shear layer. Continuation of this solution into the entire upper half-plane is described. The extended solution enables the near- and far-field pressure fluctuations associated with the instability wave to be determined. Numerical results show that the directivity pattern of acoustic radiation into the stationary medium peaks at 20 degrees to the axis of the shear layer in the downstream direction for supersonic flows. This agrees qualitatively with the observed noise-directivity patterns of supersonic jets.
Alfvén wave coupled with flow-driven fluid instability in interpenetrating plasmas
Vranjes, J. [Instituto de Astrofisica de Canarias, 38205 La Laguna, Tenerife, Spain and Departamento de Astrofisica, Universidad de La Laguna, 38205 La Laguna, Tenerife (Spain)
2015-05-15
The Alfvén wave is analyzed in case of one quasineutral plasma propagating with some constant speed v{sub 0} through another static quasineutral plasma. A dispersion equation is derived describing the Alfvén wave coupled with the flow driven mode ω=kv{sub 0} and solutions are discussed analytically and numerically. The usual solutions for two oppositely propagating Alfvén waves are substantially modified due to the flowing plasma. More profound is modification of the solution propagating in the negative direction with respect to the magnetic field and the plasma flow. For a large enough flow speed (exceeding the Alfvén speed in the static plasma), this negative solution may become non-propagating, with frequency equal to zero. In this case, it represents a spatial variation of the electromagnetic field. For greater flow speed it becomes a forward mode, and it may merge with the positive one. This merging of the two modes represents the starting point for a flow-driven instability, with two complex-conjugate solutions. The Alfvén wave in interpenetrating plasmas is thus modified and coupled with the flow-driven mode and this coupled mode is shown to be growing when the flow speed is large enough. The energy for the instability is macroscopic kinetic energy of the flowing plasma. The dynamics of plasma particles caused by such a coupled wave still remains similar to the ordinary Alfvén wave. This means that well-known stochastic heating by the Alfvén wave may work, and this should additionally support the potential role of the Alfvén wave in the coronal heating.
Shokri, B. [Physics Department and Laser-Plasma Research Institute of Shahid Beheshti University, Tehran (Iran, Islamic Republic of) and Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 19395-1795, Tehran (Iran, Islamic Republic of)]. E-mail: b-shokri@cc.sbu.ac.ir; Khorashadizadeh, S.M. [Physics Department of Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department of Birjand University, Birjand (Iran, Islamic Republic of)
2005-09-19
The possibility of the dissipative instability of a relativistic electron beam streaming near a conducting medium is investigated. The development of this dissipative beam instability through the surface wave excitation slightly disturbs the beam leading to the slightly heating of the conducting medium.
华建军; 刘金远; 马腾才
2002-01-01
The effect of the charge fluctuation of dust particles on ion acoustic wave (IAW) excited through ionization instability was investigated. The hydrodynamic equations and linear time-dependent perturbation theory served as the starting point of theory, by which the dispersion relation and growth rate of the IAW were given. By comparing the results with the case of constant dust charges, it was found that the charge fluctuation of dust particles reduces the instability of the wave mode.
The Blast-Wave-Driven Instability as a Vehicle for Understanding Supernova Explosion Structure
Miles, A R
2008-05-27
Blast-wave-driven instabilities play a rich and varied role throughout the evolution of supernovae from explosion to remnant, but interpreting their role is difficult due to the enormous complexity of the stellar systems. We consider the simpler and fundamental hydrodynamic instability problem of a material interface between two constant-density fluids perturbed from spherical and driven by a divergent central Taylor-Sedov blast wave. The existence of unified solutions at high Mach number and small density ratio suggests that general conclusions can be drawn about the likely asymptotic structure of the mixing zone. To this end we apply buoyancy-drag and bubble merger models modified to include the effects of divergence and radial velocity gradients. In general, these effects preclude the true self-similar evolution of classical Raleigh-Taylor, but can be incorporated into a quasi-self-similar growth picture. Loss of memory of initial conditions can occur in the quasi-self-similar model, but requires initial mode numbers higher than those predicted for pre-explosion interfaces in Type II SNe, suggesting that their late-time structure is likely strongly influenced by details of the initial perturbations. Where low-modes are dominant, as in the Type Ia Tycho remnant, they result from initial perturbations rather than generation from smaller scales. Therefore, structure observed now contains direct information about the explosion process. When large-amplitude modes are present in the initial conditions, the contribution to the perturbation growth from the Richtmyer-Meshkov instability is significant or dominant compared to Rayleigh-Taylor. Such Richtmyer-Meshkov growth can yield proximity of the forward shock to the growing spikes and structure that strongly resembles that observed in the Tycho. Laser-driven high-energy-density laboratory experiments offer a promising avenue for testing model and simulation descriptions of blast-wave-driven instabilities and making
Controlled generation of high-intensity optical rogue waves by induced modulation instability.
Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun
2017-01-04
Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum.
Miles, Aaron
2004-11-01
In this talk we discuss the nature of late-time, broad-banded instability development at an interface when a strong blast wave travels from a heavier to lighter fluid, as is the case in a supernova explosion. After a short period of Richtmyer-Meshkov growth, the interface is unstable via the Rayleigh-Taylor mechanism, which rapidly becomes the dominant energy source for growth. This situation is distinct from the classical case in two important ways, both of which can be understood in terms of a bubble merger model we have developed for blast-wave-driven systems. Rather than the constant acceleration feeding the instability to spawn ever larger scales and accelerate the growth, the decaying acceleration in the blast-wave case leads to a decay in the RT growth rate, and a freezing in of a preferred largest scale, which is dependent on the precise details of the system. In the language of bubble-merger models, this can be understood in terms of the time for the generation of the next largest scale being longer than the lifetime of the blast wave. Secondly, the continual expansion behind the blast front precludes the emergence of a self-similar regime, independent of the initial conditions, in the planar case. Self-similarity may be recovered in diverging systems but may be difficult to observe in reality because of rather restrictive conditions that must be met. These observations are borne out by hi-resolution numerical simulations using the higher order Godunov AMR hydrocode Raptor in 2 and 3D, and explain other simulations of instability growth in supernovae explosions; the initial "interfacial" structure is likely very important in determining the late-time growth. The model predictions are also consistent with numerous images of natural and manmade explosions.
Radice, David; Ott, Christian D
2016-01-01
We study the development and saturation of the $m=1$ one-armed spiral instability in remnants of binary neutron star mergers by means of high-resolution long-term numerical relativity simulations. Our results suggest that this instability is a generic outcome of neutron stars mergers in astrophysically relevant configurations; including both "stiff" and "soft" nuclear equations of state. We find that, once seeded at merger, the $m=1$ mode saturates within $\\sim 10\\ \\mathrm{ms}$ and persists over secular timescales. Gravitational waves emitted by the $m=1$ instability have a peak frequency around $1-2\\ \\mathrm{kHz}$ and, if detected, could be used to constrain the equation of state of neutron stars. We construct hybrid waveforms spanning the entire Advanced LIGO band by combining our high-resolution numerical data with state-of-the-art effective-one-body waveforms including tidal effects. We use the complete hybrid waveforms to study the detectability of the one-armed spiral instability for both Advanced LIGO ...
Instabilities in Beam-Plasma Waves in a Model of the Beam-Driven FRC
Nicks, Bradley Scott; Necas, Ales; Tajima, Toshi; Tri Alpha Energy Team
2016-10-01
Using a semi-analytic solver, the kinetic properties of plasma waves are analyzed in various regimes in the presence of a beam. This analysis is done to model the strong beam-driven Field-Reversed Configuration (FRC) plasma kinetic instabilities in the neighborhood of the ion cyclotron frequency. As the frequency is relatively high, and wavelength small, the plasma is taken to be local and thus homogeneous, comprised of bulk ions, electrons, and beam ions, with a uniform background magnetic field. The beam ions are given an azimuthal drift velocity with respect to the magnetic field, but otherwise have various Maxwellian velocity distributions. First, the magnetic field is varied to create regimes of low and high β, and the mode structures are compared. The low- β case (corresponding to the scrape-off layer and near the separatrix) features primarily the beam-driven ion Bernstein instability. The high- β case (the core of FRC) is primarily electromagnetic and features the AIC instability when temperature anisotropy is included. The most unstable modes are incited by near-perpendicular beam injection with respect to the magnetic field. Finally, the results of the semi-analytic solver are compared with those from the EPOCH PIC code to evaluate the influence of nonlinear effects. This theoretical modeling was used in conjunction with EPOCH to investigate the beam driven instabilities in Tri Alpha Energy's C-2U experiment.
Prajapati, R. P., E-mail: prajapati-iter@yahoo.co.in [Department of Pure and Applied Physics, Guru Ghasidas Central University, Bilaspur-495009 (C.G.) (India)
2014-11-15
In this work, the low frequency waves and gravitational (Jeans) instability of a homogeneous gyrotropic, magnetized, quantum plasma is investigated using the quantum magnetohydrodynamic and Chew-Goldberger-Low fluid models. An analytical dispersion relation for the considered system is obtained solving the linearized perturbations equations employing the Fourier transformation. The onset criterion of the “firehose” instability is retained in parallel propagation, which is unaffected due to the presence of quantum corrections. The gravitational mode modified by the quantum corrections is obtained separately along with the “firehose” mode. In perpendicular propagation, the quantum diffraction term is coupled with the Jeans and Alfven modes whereas in parallel propagation, the Alfven mode does not contribute to the dispersion characteristics as it leads to the “firehose” instability criterion in terms of quantum pressure anisotropy. The stabilizing influences of the quantum diffraction parameter and magnetic field on the growth rates of Jeans instability are examined. It is observed that the growth rate stabilizes much faster in transverse mode due to Alfven stabilization as compared to the longitudinal mode of propagation.
Passamonti, A
2011-01-01
We study the damping of the gravitational radiation-driven f-mode instability in ro- tating neutron stars by nonlinear bulk viscosity in the so-called supra-thermal regime. In this regime the dissipative action of bulk viscosity is known to be enhanced as a result of nonlinear contributions with respect to the oscillation amplitude. Our anal- ysis of the f-mode instability is based on a time-domain code that evolves linear perturbations of rapidly rotating polytropic neutron star models. The extracted mode frequency and eigenfunctions are subsequently used in standard energy integrals for the gravitational wave growth and viscous damping. We find that nonlinear bulk vis- cosity has a moderate impact on the size of the f-mode instability window, becoming an important factor and saturating the mode's growth at a relatively large oscillation amplitude. We show that a similar result holds for the damping of the inertial r-mode instability by nonlinear bulk viscosity. In addition, we show that the action of bulk v...
Jaberian Hamedan, V.; Blair, C.; Liu, J.; Bossilkov, V.; Zhao, C.; Ju, L.; Blair, D. G.
2017-07-01
Laser interferometer gravitational wave detectors such as Advanced LIGO use large fused silica test masses in which temperature perturbations take many hours to reach dynamic equilibrium. When environmental disturbances cause the optical cavities to lose optical power there is a sudden thermal transient which causes the mirror profile to change significantly over time. This causes time dependent tuning of transverse optical mode frequencies, some of which cause parametric instability. These transient parametric instabilities greatly increase the complexity of active control of parametric instability. Here we report on modeling and testing of a system in which a low power CO2 laser is designed to maintain a constant heat flux when cavity power is lost, thereby enabling thermal transients to be minimized and cavity locking to be re-established. We demonstrate a reduction in the thermal transient in the optical mode spacing to <3% of the transient without compensation. For advanced LIGO this would reduce the complexity of control systems for controlling parametric instabilities.
Bouzit, Omar, E-mail: omar.bouzit@yahoo.fr; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Plasma Physics Group (PPG), Theoretical Physics Laboratory (TPL), Faculty of Physics, University of Bab-Ezzouar, U.S.T.H.B, B.P. 32, El Alia, Algiers 16111 (Algeria); Bains, A. S., E-mail: bainsphysics@yahoo.co.in [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E2 (Canada)
2015-08-15
Modulation instability of ion-acoustic waves (IAWs) is investigated in a collisionless unmagnetized one dimensional plasma, containing positive ions and electrons following the mixed nonextensive nonthermal distribution [Tribeche et al., Phys. Rev. E 85, 037401 (2012)]. Using the reductive perturbation technique, a nonlinear Schrödinger equation which governs the modulation instability of the IAWs is obtained. Valid range of plasma parameters has been fixed and their effects on the modulational instability discussed in detail. We find that the plasma supports both bright and dark solutions. The valid domain for the wave number k where instabilities set in varies with both nonextensive parameter q as well as non thermal parameter α. Moreover, the analysis is extended for the rational solutions of IAWs in the instability regime. Present study is useful for the understanding of IAWs in the region where such mixed distribution may exist.
Theory of the corrugation instability of a piston-driven shock wave.
Bates, J W
2015-01-01
We analyze the two-dimensional stability of a shock wave driven by a steadily moving corrugated piston in an inviscid fluid with an arbitrary equation of state. For h≤-1 or h>h(c), where h is the D'yakov parameter and h(c) is the Kontorovich limit, we find that small perturbations on the shock front are unstable and grow--at first quadratically and later linearly--with time. Such instabilities are associated with nonequilibrium fluid states and imply a nonunique solution to the hydrodynamic equations. The above criteria are consistent with instability limits observed in shock-tube experiments involving ionizing and dissociating gases and may have important implications for driven shocks in laser-fusion, astrophysical, and/or detonation studies.
Absolute parametric instability of low-frequency waves in a 2D nonuniform anisotropic warm plasma
N G Zaki
2010-05-01
Using the separation method, absolute parametric instability (API) of electrostatic waves in a magnetized pumped warm plasma is investigated. In this case the effect of static strong magnetic field is considered. The problem of strong magnetic field is solved in two-dimensional (2D) nonuniform plane plasma. Equations which describe the spatial part of the electric potential are obtained. Also, the growth rates and conditions of the parametric instability for periodic and aperiodic cases are obtained. It is found that the spatial nonuniformity of the plasma exerts a stabilizing effect on the API. It is shown that the growth rates of periodic and aperiodic API in warm plasma are less when compared to that in cold plasma.
Xu, Jian-Jun
1989-01-01
The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.
Rogue waves lead to the instability in GaN semiconductors
Yahia, M. E.; Tolba, R. E.; El-Bedwehy, N. A.; El-Labany, S. K.; Moslem, W. M.
2015-01-01
A new approach to understand the electron/hole interfaced plasma in GaN high electron mobility transistors (HEMTs). A quantum hydrodynamic model is constructed to include electrons/holes degenerate pressure, Bohm potential, and the exchange/correlation effect and then reduced to the nonlinear Schrödinger equation (NLSE). Numerical analysis of the latter predicts the rough (in)stability domains, which allow for the rogue waves to occur. Our results might give physical solution rather than the engineering one to the intrinsic problems in these high frequency/power transistors. PMID:26206731
First Principles Justification of a "Single Wave Model" for Electrostatic Instabilities
Crawford, J D; Crawford, John David; Jayaraman, Anandhan
1998-01-01
The nonlinear evolution of a unstable electrostatic wave is considered for a multi-species Vlasov plasma. From the singularity structure of the associated amplitude expansions, the asymptotic features of the electric field and distribution functions are determined in the limit of weak instability, i.e. electric field is monochromatic at the wavelength of the linear mode with a nonlinear time dependence. The structure of the distibutions outside the resonant region is given by the linear eigenfunction but in the resonant region the distribution is nonlinear. The details depend on whether the ions are fixed or mobile; in either case the physical picture corresponds to the single wave model originally proposed by O"Neil, Winfrey, and Malmberg for the interaction of a cold weak beam with a plasma of fixed ions.
Yang, Yunqing; Malomed, Boris A
2015-01-01
We analytically study rogue-wave (RW) solutions and rational solitons of an integrable fifth-order nonlinear Schr\\"odinger (FONLS) equation with three free parameters. It includes, as particular cases, the usual NLS, Hirota, and Lakshmanan-Porsezian-Daniel (LPD) equations. We present continuous-wave (CW) solutions and conditions for their modulation instability in the framework of this model. Applying the Darboux transformation to the CW input, novel first- and second-order RW solutions of the FONLS equation are analytically found. In particular, trajectories of motion of peaks and depressions of profiles of the first- and second-order RWs are produced by means of analytical and numerical methods. The solutions also include newly found rational and W-shaped one- and two-soliton modes. The results predict the corresponding dynamical phenomena in extended models of nonlinear fiber optics and other physically relevant integrable systems.
Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Gusakov, E. Z., E-mail: evgeniy.gusakov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)
2015-01-15
A parametric decay instability (PDI) of an extraordinary wave leading to excitation of two upper hybrid (UH) plasmons at frequencies close to half the pump wave frequency is analyzed. It is shown that the two-plasmon PDI power threshold can be significantly reduced under conditions of electron cyclotron resonance heating (ECRH) experiments in toroidal magnetic devices, where the plasma density profile is often nonmonotonic, which leads to the localization of UH waves.
Bayly, P V; Dutcher, S K
2016-10-01
Cilia and flagella are highly conserved organelles that beat rhythmically with propulsive, oscillatory waveforms. The mechanism that produces these autonomous oscillations remains a mystery. It is widely believed that dynein activity must be dynamically regulated (switched on and off, or modulated) on opposite sides of the axoneme to produce oscillations. A variety of regulation mechanisms have been proposed based on feedback from mechanical deformation to dynein force. In this paper, we show that a much simpler interaction between dynein and the passive components of the axoneme can produce coordinated, propulsive oscillations. Steady, distributed axial forces, acting in opposite directions on coupled beams in viscous fluid, lead to dynamic structural instability and oscillatory, wave-like motion. This 'flutter' instability is a dynamic analogue to the well-known static instability, buckling. Flutter also occurs in slender beams subjected to tangential axial loads, in aircraft wings exposed to steady air flow and in flexible pipes conveying fluid. By analysis of the flagellar equations of motion and simulation of structural models of flagella, we demonstrate that dynein does not need to switch direction or inactivate to produce autonomous, propulsive oscillations, but must simply pull steadily above a critical threshold force.
Richtmyer-Meshkov instability of a flat interface subjected to a rippled shock wave
Zou, Liyong; Liu, Jinhong; Liao, Shenfei; Zheng, Xianxu; Zhai, Zhigang; Luo, Xisheng
2017-01-01
The Richtmyer-Meshkov (RM) instability of a nominally flat interface (N2/SF6 ) subjected to a rippled shock, as the counterpart of a corrugated interface interacting with a planar shock, is studied experimentally in a vertical shock tube using both schlieren photography and fog visualization diagnostics. The nonplanar incident shock wave is produced by a planar shock diffracting around a rigid cylinder, and the flat interface is created by a membraneless technique. Three different distances η (the ratio of spacing from cylinder to interface over cylinder diameter) are considered. Schlieren images indicate that the nonplanar incident shock can be divided into three different segments separated by two triple points. Fog visualization pictures show the formation of overall "Λ " shaped interface structures and a N2 cavity at the center and two interface steps at both sides. With the increase of the dimensionless time, the dimensionless interface amplitude increases as well as the penetration depth of the cavity, and both curves exhibit reasonable collapse for different η numbers. Through equating the preinterface perturbation of the rippled shock with a preshock perturbation of a corrugated interface, the growth rate of this instability is found to be noticeably smaller than that of the standard RM instability.
Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients
Fryer, C L; Heger, A
2001-01-01
Growing theoretical evidence suggests that the first generation of stars may have been quite massive (~100-300 solar masses). If they retain their high mass until death, such stars will, after about 3Myr, make pair-instability supernovae. We consider the complete evolution of two zero-metallicity stars of 250 and 300 solar masses. Explosive oxygen and silicon burning cause the 130 solar mass helium core to explode, but explosive burning is unable to drive an explosion in the 300 solar mass star and it collapses to a black hole. For this star, the calculated angular momentum in the presupernova model is sufficient to delay black hole formation and the star initially forms a 50 solar mass, 1000km core within which neutrinos are trapped. Although the star does not become dynamically unstable, the calculated growth time of secular rotational instabilities is shorter than the black hole formation time, and such instabilities may develop. We estimate the energy and amplitude of the gravitational waves emitted durin...
Wang, Xiang; Cannon, Patrick; Zhou, Chen; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu
2016-04-01
Recent ionospheric modification experiments performed at Tromsø, Norway, have indicated that X-mode pump wave is capable of stimulating high-frequency enhanced plasma lines, which manifests the excitation of parametric instability. This paper investigates theoretically how the observation can be explained by the excitation of parametric instability driven by X-mode pump wave. The threshold of the parametric instability has been calculated for several recent experimental observations at Tromsø, illustrating that our derived equations for the excitation of parametric instability for X-mode heating can explain the experimental observations. According to our theoretical calculation, a minimum fraction of pump wave electric field needs to be directed along the geomagnetic field direction in order for the parametric instability threshold to be met. A full-wave finite difference time domain simulation has been performed to demonstrate that a small parallel component of pump wave electric field can be achieved during X-mode heating in the presence of inhomogeneous plasma.
Observations of near-inertial waves induced by parametric subharmonic instability
Li, Bingtian; Cao, Anzhou; Lü, Xianqing
2017-06-01
Near-inertial waves (NIWs), which can be generated by wind or the parametric subharmonic instability (PSI) of internal tides, are common in the South China Sea (SCS). Moored current observations from the northern SCS have revealed that the PSI of semidiurnal (D2) internal tides is another source of NIWs. The objective of this study was to examine the energy variance in the PSI of D2 tides. The PSI of D2 internal tides generated NIWs and waves with frequencies around the difference frequency of D2 and f. The observed NIWs induced by PSI could be distinguished clearly from those elicited by typhoon Krosa. Shortly after Krosa entered the SCS, NIWs began to intensify on the surface and they propagated downward over subsequent days. The near-inertial currents were damped quickly and they became relatively weak before the waves were reinforced beneath the mixed layer when wind stress was relatively weak. Rotation spectra indicated an energy peak at exactly the difference frequency D2-f of the NIWs and D2, indicating nonlinear wave-wave interaction among D2, f, and D2-f. Depth-time maps of band-pass filtered velocities of D2-f showed the waves amplified when the NIWs were reinforced, and they intensified at depths with strong D2 tides. The energies of the NIWs and D2-f had high correlation with the D2 tides. The PSI transferred energy of low-mode D2 internal tides to high-mode NIWs and D2-f waves. For the entire observational period, PSI reinforcement was observed only when mesoscale eddies emerged and when D2 was in spring tide, revealing a close connection between mesoscale eddies and NIWs. Mesoscale eddies could increase the energy in the f-band by enhancing the PSI of D2 internal tides. Thus, this represents another mechanism linking the energy of mesoscale eddies to that of NIWs.
Antolin, P.; De Moortel, I.; Van Doorsselaere, T.; Yokoyama, T.
2017-02-01
Magnetohydrodynamic (MHD) waves permeate the solar atmosphere and constitute potential coronal heating agents. Yet, the waves detected so far may be but a small subset of the true existing wave power. Detection is limited by instrumental constraints but also by wave processes that localize the wave power in undetectable spatial scales. In this study, we conduct 3D MHD simulations and forward modeling of standing transverse MHD waves in coronal loops with uniform and non-uniform temperature variation in the perpendicular cross-section. The observed signatures are largely dominated by the combination of the Kelvin–Helmholtz instability (KHI), resonant absorption, and phase mixing. In the presence of a cross-loop temperature gradient, we find that emission lines sensitive to the loop core catch different signatures compared to those that are more sensitive to the loop boundary and the surrounding corona, leading to an out-of-phase intensity and Doppler velocity modulation produced by KHI mixing. In all of the considered models, common signatures include an intensity and loop width modulation at half the kink period, a fine strand-like structure, a characteristic arrow-shaped structure in the Doppler maps, and overall line broadening in time but particularly at the loop edges. For our model, most of these features can be captured with a spatial resolution of 0.″33 and a spectral resolution of 25 km s‑1, although we do obtain severe over-estimation of the line width. Resonant absorption leads to a significant decrease of the observed kinetic energy from Doppler motions over time, which is not recovered by a corresponding increase in the line width from phase mixing and KHI motions. We estimate this hidden wave energy to be a factor of 5–10 of the observed value.
On Fermi acceleration and MHD-instabilities at ultra-relativistic magnetized shock waves
Pelletier, Guy; Marcowith, Alexandre
2008-01-01
Fermi acceleration can take place at ultra-relativistic shock waves if the upstream or downstream magnetic field has been remodeled so that most of the magnetic power lies on short spatial scales. The relevant conditions under which Fermi acceleration become efficient in the presence of both a coherent and a short scale turbulent magnetic field are addressed. Within the MHD approximation, this paper then studies the amplification of a pre-existing magnetic field through the streaming of cosmic rays upstream of a relativistic shock wave. The magnetic field is assumed to be perpendicular in the shock front frame, as generally expected in the limit of large shock Lorentz factor. In the MHD regime, compressive instabilities seeded by the net cosmic-ray charge in the shock precursor (as seen in the shock front frame) develop on the shortest spatial scales but saturate at a moderate level $\\delta B/B \\sim 1$, which is not sufficient for Fermi acceleration. As we argue, it is possible that other instabilities outsid...
Kinetic study of electrostatic twisted waves instability in nonthermal dusty plasmas
Arshad, Kashif; Lazar, M.; Mahmood, Shahzad; Aman-ur-Rehman, Poedts, S.
2017-03-01
The kinetic theory of electrostatic twisted waves' instability in a dusty plasma is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons, ions, and dust particles. The kappa distributed electrons are considered to have a drift velocity. The perturbed distribution function and helical electric field are decomposed by Laguerre-Gaussian mode functions defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to investigate the growth rates of the electrostatic twisted waves in a non-thermal dusty plasma. The growth rates of the dust ion acoustic twisted mode (DIATM) and dust acoustic twisted mode (DATM) are obtained analytically and also pictorial presented numerically. The instability condition for the DIATM and DATM is also discussed with different plasma parameters. The growth rates of DIATM and DATM are larger when the drifted electrons are non-Maxwellian distributed and smaller for the Maxwellian distributed drifted electrons in the presence of the helical electric field.
Modulational instability of dust ion-acoustic waves in a magnetized dusty superthermal plasma
Shalini, A P Misra
2016-01-01
The amplitude modulation of three dimensional (3D) dust ion-acoustic wave (DIAW) packets is studied in a collisionless magnetized plasma with inertial positive ions, superthermal electrons and negatively charged immobile dust grains. By using the reductive perturbation technique, a 3D-nonlinear Schr{\\"o}dinger (NLS) equation is derived, which governs the slow modulation of DIAW packets. The latter are found to be stable in the low-frequency $(\\omega\\omega_c$, and the modulational instability (MI) is related to the modulational obliqueness $(\\theta)$. Here, $\\omega~(\\omega_c)$ is the nondimensional wave (ion-cyclotron) frequency. It is shown that the superthermal parameter $\\kappa$, the frequency $\\omega_c$ as well as the charged dust impurity $(0<\\mu<1)$ shift the MI domains around the $\\omega-\\theta$ plane, where $\\mu$ is the ratio of electron to ion number densities. Furthermore, it is found that the decay rate of instability is quenched by the superthermal parameter $\\kappa$ with cut-offs at lower wa...
Dust kinetic Alfvén waves and streaming instability in a non-Maxwellian magnetoplasma
Rubab, N.; Jaffer, G. [Department of Space Science, Institute of Space Technology (IST), Islamabad Expressway, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)
2014-06-15
The dust kinetic Alfvén wave (DKAW) instability is studied in a uniform dusty magnetoplasma by incorporating the superthermality effects of the electrons and perpendicularly streaming κ-distributed ions. The dispersion relation of the DKAW instability is investigated in the low-β{sub d} Lorentzian plasma limit. The solutions are analyzed for various scenarios of dusty and dusty-free plasmas. It is shown that the presence of dust particles and the cross-field superthermal ions sensibly modify the dispersion characteristics of the low-frequency DKAW. The present results are only valid for a frequency regime well below the dust cyclotron frequency. Numerical calculations are carried out for the growth rates by taking different dust parameters into account. It is found that the nonthermality is more effective for the dust kinetic Alfvén waves in the perpendicular direction as compared to the parallel one. The relevance of the results to the low-β{sub d} regions of space and astrophysical plasmas is highlighted.
Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan
2016-05-06
Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.
Kadry Zakaria; Magdy A.Sirwah; Ahmed Assaf
2008-01-01
The problem of nonlinear instability of interfa-cial waves between two immiscible conducting cylindrical fluids of a weak Oldroyd 3-constant kind is studied. The sys-tem is assumed to be influenced by an axial magnetic field, where the effect of surface tension is taken into account. The analysis, based on the method of multiple scale in both space and time, includes the linear as well as the nonlinear effects. This scheme leads to imposing of two levels of the solv-ability conditions, which are used to construct like-nonlinear Schrodinger equations (1-NLS) with complex coefficients. These equations generally describe the competition between nonlinearity and dispersion. The stability criteria are theoret-ically discussed and thereby stability diagrams are obtained for different sets of physical parameters. Proceeding to the nonlinear step of the problem, the results show the appear-ance of dual role of some physical parameters. Moreover, these effects depend on the wave kind, short or long, except for the ordinary viscosity parameter. The effect of the field on the system stability depends on the existence of viscosity and differs in the linear case of the problem from the non-linear one. There is an obvious difference between the effect of the three Oldroyd constants on the system stability. New instability regions in the parameter space, which appear due to nonlinear effects, are shown.
Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability
Belyaev, Mikhail
2016-01-01
We present an instability for exciting incompressible modes (e.g. gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic CFS instability, because of the direct analogy to the Chandrasekhar-Friedman-Schutz instability for exciting modes on a rotating star by emission of energy in the form of gravitational waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (i.e.\\ the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of o...
Incompressible Modes Excited by Supersonic Shear in Boundary Layers: Acoustic CFS Instability
Belyaev, Mikhail A.
2017-02-01
We present an instability for exciting incompressible modes (e.g., gravity or Rossby modes) at the surface of a star accreting through a boundary layer. The instability excites a stellar mode by sourcing an acoustic wave in the disk at the boundary layer, which carries a flux of energy and angular momentum with the opposite sign as the energy and angular momentum density of the stellar mode. We call this instability the acoustic Chandrasekhar–Friedman–Schutz (CFS) instability, because of the direct analogy to the CFS instability for exciting modes on a rotating star by emission of energy in the form of gravitational waves. However, the acoustic CFS instability differs from its gravitational wave counterpart in that the fluid medium in which the acoustic wave propagates (i.e., the accretion disk) typically rotates faster than the star in which the incompressible mode is sourced. For this reason, the instability can operate even for a non-rotating star in the presence of an accretion disk. We discuss applications of our results to high-frequency quasi-periodic oscillations in accreting black hole and neutron star systems and dwarf nova oscillations in cataclysmic variables.
Tam, C. K. W.; Burton, D. E.
1984-01-01
An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.
CHEN Xianyan; Masahide KIMOTO
2009-01-01
Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s-1 and wavelengths of 1000-2000 km during boreal summer and fall.They are generally called tropical instability waves (TIWs).This study investigates TIWs simulated by a high-resolution coupled atmosphere-ocean general circulation model (AOGCM).The horizontal resolution of the model is 120 km in the atmosphere,and 30 km longitude by 20 km latitude in the ocean.Model simulations show good agreement with the observed main features associated with TIWs.The results of energetics analysis reveal that barotropic energy conversion is responsible for providing the main energy source for TIWs by extracting energy from the meridional shear of the climatological-mean equatorial currents in the mixed layer.This deeper and northward-extended wave activity appears to gain its energy through baroclinic conversion via buoyancy work,which further contributes to the asymmetric distribution of TIWs.It is estimated that the strong cooling effect induced by equatorial upwelling is partially (～30%-40%)offset by the equatorward heat flux due to TIWs in the eastern tropical Pacific during the seasons when TIWs are active.The atmospheric mixed layer just above the sea surface responds to the waves with enhanced or reduced vertical mixing.Furthermore,the changes in turbulent mixing feed back to sea surface evaporation,favoring the westward propagation of TIWs.The atmosphere to the south of the Equator also responds to TIWs in a similar way,although TIWs are much weaker south of the Equator.
Particle image velocimetry measurement of an instability wave over a porous wall in a duct with flow
Alomar, Antoni; Aurégan, Yves
2017-01-01
The flow in a rectangular channel lined with a porous material and acoustically excited with an upstream loudspeaker has been investigated using particle image velocimetry. The measurements are phase-locked to the loudspeaker signal so that the phase-averaged velocity in the lined section is obtained during an excitation period. Most features of the phase-averaged velocity field in the lined section are found to be well described from the sum of three single duct modes: the hydrodynamic instability wave, a standing wave and an acoustic wave. The hydrodynamic instability wave travels at half the mean flow velocity, and its structure shows differences to the case of a locally reacting liner. The relative phase lag between the hydrodynamic and acoustic waves at the liner end dictates the interference between both waves, giving rise to the oscillations of the acoustical transmission coefficient as a function of the frequency. A detachment of the instability wave from the porous wall is observed in the vicinity of the liner downstream edge, together with the separation of the mean vorticity core.
Alfven wave coupled with flow-driven fluid instability in interpenetrating plasmas
Vranjes, J
2015-01-01
The Alfven wave is analyzed in case of one quasineutral plasma propagating with some constant speed $v_0$ through another static quasineutral plasma. A dispersion equation is derived describing the Alfven wave coupled with the flow driven mode $\\omega= k v_0$ and solutions are discussed analytically and numerically. The usual solutions for two oppositely propagating Alfv\\'en waves are substantially modified due to the flowing plasma. More profound is modification of the solution propagating in the negative direction with respect to the magnetic field and the plasma flow. For a large enough flow speed (exceeding the Alfven speed in the static plasma), this negative solution may become non-propagating, with frequency equal to zero. In this case it represents a spatial variation of the electromagnetic field. For greater flow speed it becomes a forward mode, and it may merge with the positive one. This merging of the two modes represents the starting point for a flow-driven instability, with two complex-conjugate...
Oceanic El-Ni\\~{n}o wave dynamics and climate networks
Wang, Yang; Ashkenazy, Yosef; Havlin, Shlomo
2015-01-01
Oceanic Kelvin and Rossby waves play an important role in tropical climate and \\en dynamics. Here we develop and apply a climate network approach to quantify the characteristics of \\en related oceanic waves, based on sea surface height satellite data. We associate the majority of dominant long distance ($\\geq 500$ km) links of the network with (i) equatorial Kelvin waves, (ii) off-equatorial Rossby waves, and (iii) tropical instability waves. Notably, we find that the location of the hubs of out-going ($\\sim 180^{\\circ}\\rm{E}$) and in-coming ($\\sim 140^{\\circ}\\rm{W}$) links of the climate network coincide with the locations of the Kelvin wave initiation and dissipation, respectively. We also find that this dissipation at $\\sim 140^{\\circ}\\rm{W}$ is much weaker during \\en times. Moreover, the hubs of the off-equatorial network coincide with the locations of westerly wind burst activity and high wind vorticity, two mechanisms that were associated with Rossby waves activity. The quantitative methodology and meas...
Grishanov, N. I.; Azarenkov, N. A.
2016-08-01
> Dispersion characteristics have been analysed for field-aligned electron-cyclotron waves (also known as right-hand polarized waves, extraordinary waves or whistlers) in a cylindrical magnetic mirror plasma including electrons with anisotropic temperature. It is shown that the instability of these waves is possible only in the range below the minimal electron-cyclotron frequency, which is much lower than the gyrotron frequency used for electron-cyclotron resonance power input into the plasma, under the condition where the perpendicular temperature of the resonant electrons is larger than their parallel temperature. The growth rates of whistler instability in the two magnetized plasma models, where the stationary magnetic field is either uniform or has a non-uniform magnetic mirror configuration, are compared.
Gusakov, E Z
2016-01-01
Novel mechanism leading to excitation of absolute two plasmon parametric decay instability (TPDI) of a pump extraordinary (X) wave is discussed. It is shown that the upper hybrid (UH) plasmon can be 3D trapped in the presence of both a nonmonotonous density profile and a finite-size pump beam in a plane perpendicular to the plasma inhomogeneity direction. This leads to excitation of the absolute TPDI of the pump X wave, which manifests itself in temporal exponential growth of the trapped daughter UH wave amplitude and is perhaps the most dangerous instability for mm-waves, widely utilized nowadays in tokamak and stellarators for local plasma heating and current drive and being considered for application in ITER.
First principles justification of a ``single wave model'' for a general electrostatic instability
Crawford, J. D.; Jayaraman, A.
1997-11-01
The coefficients in the amplitude equation for an unstable mode in a multi-species Vlasov plasma are singular as the growth rate γ approaches zero. Rescaling the mode amplitude |A(t)|=γ^5/2r(γ t) cancels these singularities to all orders. (J.D. Crawford and A. Jayaraman, submitted to J. Math. Phys.; available from http://xxx.lanl.gov/abs/patt-sol/9706001) In addition, singularities arise in the asymptotic form of f(x,v,t); there are poles in the complex-velocity plane that approach the real velocity axis at the phase velocity vp as γarrow0^+. However the numerators contain factors of A(t), and we analyze the resulting product by introducing a singular velocity variable u=(v-v_p)/γ. In an \\cal O(γ) neighborhood of v_p, the weighted coefficients have finite, non-zero limits; outside this neighborhood, the coefficients vanish at γ=0. The complete asymptotic description of the instability contains non-resonant particles driven linearly by a monochromatic electric field E while the resonant particles at vp remain strongly nonlinear and yield a density spectrum with many wavenumbers. This picture recalls the single wave model of O'Neil et al. introduced for a cold beam-plasma instability with fixed ions.
A Black-Hole Primer: Particles, Waves, Critical Phenomena and Superradiant Instabilities
Berti, Emanuele
2014-01-01
These notes were prepared for a lecture on black holes delivered at the DPG Physics School "General Relativity @ 99" (Physikzentrum Bad Honnef, Germany, September 2014). The common thread of the lecture is the relation between geodesic stability and black-hole perturbations in the geometric optics limit. Chapter 1 establishes notation and discusses a common misconception on Michell's "Newtonian black holes". Chapters 2 and 3 deal with particle dynamics and wave dynamics in black-hole spacetimes, respectively. All calculations should be simple enough that they can be done with pen and paper. Chapter 4 builds on this introduction to discuss two exciting topics in current research: critical phenomena in black-hole mergers and the black-hole bomb instability.
Gravitational Wave Signatures from Low-mode Spiral Instabilities in Rapidly Rotating Supernova Cores
Kuroda, Takami; Kotake, Kei
2013-01-01
We study properties of gravitational waves (GWs) from rotating core-collapse of a 15 solar mass star by performing three-dimensional general-relativistic hydrodynamic simulations with an approximate neutrino transport. By parametrically changing the precollapse angular momentum, we focus on the effects of rotation on the GW signatures in the early postbounce evolution. Regarding three-flavor neutrino transport, we solve the energy-averaged set of radiation energy and momentum. In addition to the gravitational quadrupole radiation from matter motions, we take into account GWs from anisotropic neutrino emission. With these computations, our results present evidence that non-axisymmetric instabilities play an essential role in determining the GW signatures in the rotating postbounce evolution. For our rapidly rotating models, we show that precollapse density inhomogeneities give rise to millisecond variations in the waveforms. During prompt convection, we find that the waveforms show narrow-band and highly quasi...
Laboratory and numerical simulation of internal wave attractors and their instability.
Brouzet, Christophe; Dauxois, Thierry; Ermanyuk, Evgeny; Joubaud, Sylvain; Sibgatullin, Ilias
2015-04-01
Internal wave attractors are formed as result of focusing of internal gravity waves in a confined domain of stably stratified fluid due to peculiarities of reflections properties [1]. The energy injected into domain due to external perturbation, is concentrated along the path formed by the attractor. The existence of attractors was predicted theoretically and proved both experimentally and numerically [1-4]. Dynamics of attractors is greatly influenced by geometrical focusing, viscous dissipation and nonlinearity. The experimental setup features Schmidt number equal to 700 which impose constraints on resolution in numerical schemes. Also for investigation of stability on large time intervals (about 1000 periods of external forcing) numerical viscosity may have significant impact. For these reasons, we have chosen spectral element method for investigation of this problem, what allows to carefully follow the nonlinear dynamics. We present cross-comparison of experimental observations and numerical simulations of long-term behavior of wave attractors. Fourier analysis and subsequent application of Hilbert transform are used for filtering of spatial components of internal-wave field [5]. The observed dynamics shows a complicated coupling between the effects of local instability and global confinement of the fluid domain. The unstable attractor is shown to act as highly efficient mixing box providing the efficient energy pathway from global-scale excitation to small-scale wave motions and mixing. Acknowledgement, IS has been partially supported by Russian Ministry of Education and Science (agreement id RFMEFI60714X0090) and Russian Foundation for Basic Research, grant N 15-01-06363. EVE gratefully acknowledges his appointment as a Marie Curie incoming fellow at Laboratoire de physique ENS de Lyon. This work has been partially supported by the ONLITUR grant (ANR-2011-BS04-006-01) and achieved thanks to the resources of PSMN from ENS de Lyon 1. Maas, L. R. M. & Lam, F
Guo, Shimin, E-mail: gsm861@126.com [School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049 (China); Research Group MAC, Centrum Wiskunde and Informatica, Amsterdam, 1098XG (Netherlands); Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn [School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049 (China); Center for Computational Geosciences, Xi’an Jiaotong University, Xi’an, 710049 (China); Sun, Anbang [Research Group MAC, Centrum Wiskunde and Informatica, Amsterdam, 1098XG (Netherlands)
2013-05-15
The nonlinear propagation of planar and nonplanar (cylindrical and spherical) ion-acoustic waves in an unmagnetized electron–positron–ion–dust plasma with two-electron temperature distributions is investigated in the context of the nonextensive statistics. Using the reductive perturbation method, a modified nonlinear Schrödinger equation is derived for the potential wave amplitude. The effects of plasma parameters on the modulational instability of ion-acoustic waves are discussed in detail for planar as well as for cylindrical and spherical geometries. In addition, for the planar case, we analyze how the plasma parameters influence the nonlinear structures of the first- and second-order ion-acoustic rogue waves within the modulational instability region. The present results may be helpful in providing a good fit between the theoretical analysis and real applications in future spatial observations and laboratory plasma experiments. -- Highlights: ► Modulational instability of ion-acoustic waves in a new plasma model is discussed. ► Tsallis’s statistics is considered in the model. ► The second-order ion-acoustic rogue wave is studied for the first time.
Bae, Jaehan; Hartmann, Lee
2016-01-01
We have recently shown that spiral density waves propagating in accretion disks can undergo a parametric instability by resonantly coupling with and transferring energy into pairs of inertial waves (or inertial-gravity waves when buoyancy is important). In this paper, we perform inviscid three-dimensional global hydrodynamic simulations to examine the growth and consequence of this instability operating on the spiral waves driven by a Jupiter-mass planet in a protoplanetary disk. We find that the spiral waves are destabilized via the spiral wave instability (SWI), generating hydrodynamic turbulence and sustained radially-alternating vertical flows that appear to be associated with long wavelength inertial modes. In the interval $0.3~R_p \\leq R \\leq 0.7~R_p$, where $R_p$ denotes the semi-major axis of the planetary orbit (assumed to be 5~au), the estimated vertical diffusion rate associated with the turbulence is characterized by $\\alpha_{\\rm diff} \\sim (0.2-1.2) \\times 10^{-2}$. For the disk model considered ...
Essick, Reed; Weinberg, Nevin N
2016-01-01
Recent studies suggest that coalescing neutron stars are subject to a fluid instability involving the nonlinear coupling of the tide to $p$-modes and $g$-modes. Its influence on the inspiral dynamics and thus the gravitational wave signal is, however, uncertain because we do not know precisely how the instability saturates. Here we construct a simple, physically motivated model of the saturation that allows us to explore the instability's impact as a function of the model parameters. We find that for plausible assumptions about the saturation, current gravitational wave detectors might miss $> 70\\%$ of events if only point particle waveforms are used. Parameters such as the chirp mass, component masses, and luminosity distance might also be significantly biased. On the other hand, we find that relatively simple modifications to the point particle waveform can alleviate these problems and enhance the science that emerges from the detection of binary neutron stars.
The instability and non-existence of multi-stranded loops, when driven by transverse waves
Magyar, N
2016-01-01
In recent years, omni-present transverse waves have been observed in all layers of the solar atmosphere. Coronal loops are often modeled as a collection of individual strands, in order to explain their thermal behaviour and appearance. We perform 3D ideal MHD simulations to study the effect of a continuous small amplitude transverse footpoint driving on the internal structure of a coronal loop composed of strands. The output is also converted to synthetic images, corresponding to the AIA 171 A and 193 A passbands, using FoMo. We show that the multi-stranded loop ceases to exist in the traditional sense of the word, because the plasma is efficiently mixed perpendicularly to the magnetic field, with the Kelvin-Helmholtz instability acting as the main mechanism. The final product of our simulation is mixed loop with density structures on a large range of scales, resembling a power-law. Thus, multi-stranded loops are unstable to driving by transverse waves, and this raises a strong doubt on the usability and appl...
Saleem, H.; Ali Shan, S.; Haque, Q.
2016-11-01
It is shown that the inhomogeneous field-aligned flow of heavier ions into the stationary plasma of the upper ionosphere produces very low frequency (of the order of a few Hz) electrostatic unstable ion acoustic waves (IAWs). This instability is an oscillatory instability unlike D'Angelo's purely growing mode. The growth rate of the ion acoustic wave (IAW) corresponding to heavier ions is due to shear flow and is larger than the ion Landau damping. However, the ion acoustic waves corresponding to non-flowing lighter ions are Landau damped. It is found that even if D'Angelo's instability condition is satisfied, the unstable mode develops its real frequency in this coupled system. Hence, the shear flow of one type of ions in a bi-ion plasma system produces ion acoustic wave activity. If the density non-uniformity is taken into account, then the drift wave becomes unstable. The coupled nonlinear equations for stationary ions "a," flowing ions "b," and inertialess electrons are also solved using the small amplitude limit. The solutions predict the existence of the order of a few kilometers electric field structures in the form of solitons and vortices, which is in agreement with the satellite observations.
Various regimes of instability and formation of coastal eddies along the shelf bathymetry
Cimoli, Laura; Stegner, Alexandre; Roullet, Guillaume
2016-04-01
The impact of shelf slope on the stability of coastal currents and the nonlinear formation of coastal meanders and eddies are investigated by linear analysis and numerical simulations using an idealized channel configuration of the ROMS model. The impact of the shelf bathymetry leads to different regimes of instability of coastal currents that can both enhance or prevent the cross-shore transport. While keeping unchanged a coastal jet, we tested its unstable evolution for various depth and topographic slopes. Unlike standard linear stability analysis devoted to the very first stage of instability we focus on the non-linear end state, i.e. the formation of coastal eddies or meanders, to classify the various dynamical regimes. Two dimensionless numbers are used to quantify the parameter space of theses various regimes: the vertical aspect ratio gamma and the topographic parameter Tp, which is defined as the ratio of the topographic Rossby waves speed over the jet speed and is proportional to the shelf slope. We found four distinct regimes of instability, namely: standard baroclinic instability, horizontal shear instability, trapped coastal instability and quasi-stable jet. Our results show that Tp is the key parameter that controls the non-linear saturation of the coastal current, while gamma controls the transition from the standard baroclinic instability to the horizontal shear instability. Moreover, our analysis exhibit a new regime of formation of submeso-scale eddies. Contrary to the standard baroclinic instability regime, these eddies are trapped over the slope and never escape off-shore.
Ion Bernstein instability as a possible source for oxygen ion cyclotron harmonic waves
Min, Kyungguk; Denton, Richard E.; Liu, Kaijun; Gary, S. Peter; Spence, Harlan E.
2017-05-01
This paper demonstrates that an ion Bernstein instability can be a possible source for recently reported electromagnetic waves with frequencies at or near the singly ionized oxygen ion cyclotron frequency, ΩO+, and its harmonics. The particle measurements during strong wave activity revealed a relatively high concentration of oxygen ions (˜15%) whose phase space density exhibits a local peak at energy ˜20 keV. Given that the electron plasma-to-cyclotron frequency ratio is ωpe/Ωe≳1, this energy corresponds to the particle speed v/vA≳0.3, where vA is the oxygen Alfvén speed. Using the observational key plasma parameters, a simplified ion velocity distribution is constructed, where the local peak in the oxygen ion velocity distribution is represented by an isotropic shell distribution. Kinetic linear dispersion theory then predicts unstable Bernstein modes at or near the harmonics of ΩO+ and at propagation quasi-perpendicular to the background magnetic field, B0. If the cold ions are mostly protons, these unstable modes are characterized by a low compressibility (|δB∥|2/|δB|2≲0.01), a small phase speed (vph˜0.2vA), a relatively small ratio of the electric field energy to the magnetic field energy (between 10-4 and 10-3), and the Poynting vector directed almost parallel to B0. These linear properties are overall in good agreement with the properties of the observed waves. We demonstrate that superposition of the predicted unstable Bernstein modes at quasi-perpendicular propagation can produce the observed polarization properties, including the minimum variance direction on average almost parallel to B0.
Prajapati, Ramprasad
2016-07-01
The Rayleigh-Taylor (R-T) instability is recently investigated is strongly coupled plasma looking to its importance in dense stellar systems and Inertial Confinement Fusion [1-3]. In the present work, the effect of quantum corrections are studied on Rayleigh-Taylor (R-T) instability and internal wave propagation in a strongly coupled, magnetized, viscoelastic fluid. The modified generalized hydrodynamic model is used to derive the analytical dispersion relation. The internal wave mode and dispersion relation are modified due to the presence of quantum corrections and viscoelastic effects. We observe that strong coupling effects and quantum corrections significantly modifies the dispersion characteristics. The dispersion relation is also discussed in weakly coupled (hydrodynamic) and strongly coupled (kinetic) limits. The explicit expression of R-T instability criterion is derived which is influenced by shear velocity and quantum corrections. Numerical calculations are performed in astrophysical and experimental relevance and it is examined that both the shear and quantum effects suppresses the growth rate of R-T instability. The possible application of the work is discussed in Inertial Confinement Fusion (ICF) to discuss the suppression of R-T instability under considered situation. References: [1] R. P. Prajapati, Phys. Plasmas 23, 022106 (2016). [2] K. Avinash and A. Sen, Phys. Plasmas 22, 083707 (2015). [3] A. Das and P. Kaw, Phys. Plasmas 21 (2014) 062102.
Hysteresis-controlled instability waves in a scale-free driven current sheet model
V. M. Uritsky
2005-01-01
Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.
Chefranov, Sergey; Chefranov, Alexander
2016-04-01
Linear hydrodynamic stability theory for the Hagen-Poiseuille (HP) flow yields a conclusion of infinitely large threshold Reynolds number, Re, value. This contradiction to the observation data is bypassed using assumption of the HP flow instability having hard type and possible for sufficiently high-amplitude disturbances. HP flow disturbance evolution is considered by nonlinear hydrodynamic stability theory. Similar is the case of the plane Couette (PC) flow. For the plane Poiseuille (PP) flow, linear theory just quantitatively does not agree with experimental data defining the threshold Reynolds number Re= 5772 ( S. A. Orszag, 1971), more than five-fold exceeding however the value observed, Re=1080 (S. J. Davies, C. M. White, 1928). In the present work, we show that the linear stability theory conclusions for the HP and PC on stability for any Reynolds number and evidently too high threshold Reynolds number estimate for the PP flow are related with the traditional use of the disturbance representation assuming the possibility of separation of the longitudinal (along the flow direction) variable from the other spatial variables. We show that if to refuse from this traditional form, conclusions on the linear instability for the HP and PC flows may be obtained for finite Reynolds numbers (for the HP flow, for Re>704, and for the PC flow, for Re>139). Also, we fit the linear stability theory conclusion on the PP flow to the experimental data by getting an estimate of the minimal threshold Reynolds number as Re=1040. We also get agreement of the minimal threshold Reynolds number estimate for PC with the experimental data of S. Bottin, et.al., 1997, where the laminar PC flow stability threshold is Re = 150. Rogue waves excitation mechanism in oppositely directed currents due to the PC flow linear instability is discussed. Results of the new linear hydrodynamic stability theory for the HP, PP, and PC flows are published in the following papers: 1. S.G. Chefranov, A
Influence of Convective Momentum Transport on Tropical Waves
Zhou, L.
2012-12-01
Convective momentum transport (CMT) has been found to play an important role during the Madden-Julian Oscillation (MJO). Influences of CMT on tropical waves are analytically studied in a two-layer model, which captures the first-order baroclinic structure in the vertical. Since CMT is the momentum exchange between the lower and the upper troposphere during convection, the easterly and westerly vertical shears of background zonal winds lead to different CMT influences. Generally, CMT plays more important roles than a damping term to tropical waves. CMT is a critical factor for determining the meridional scale of tropical waves and leads to kinetic energy transfer against the direction of background wind shear in the vertical. CMT can also be favorable for internal instability and induce upscale momentum transfer. Specifically, due to CMT, the meridional scale in the two-layer model is wider than the Rossby radius of deformation (RL, the meridional scale of tropical waves in the classical theory) over the Indo-Pacific warm pool, but narrower than RL from the central to the eastern Pacific Ocean and over the Atlantic Ocean. Such variation is consistent with observations. CMT results in minor modifications to the speeds of Rossby waves, inertial gravity waves, and Kelvin waves. Nevertheless, CMT has significant influences on the mixed Rossby-gravity (MRG) waves, especially over the Indo-Pacific warm pool where the vertical wind shear in easterly. Westward propagating MRG waves with small wavenumber become unstable under the influence of CMT. The phase relation between the convergence and geopotential is no longer in quadrature, which is different from classical MRG waves. As a result, there is a net source of mechanical energy within one period and there is an upscale momentum transfer from the perturbed field to large scale velocities. This theoretical study sheds lights on the relation between CMT and slow variations in the atmosphere, including MJO.
Nonlinear Evolution of a Baroclinic Wave and Imbalanced Dissipation
Nadiga, Balasubramanya T
2015-01-01
We consider the nonlinear evolution of an unstable baroclinic wave in a regime of rotating stratified flow that is of relevance to interior circulation in the oceans and in the atmosphere---a regime characterized by small large-scale Rossby and Froude numbers, a small vertical to horizontal aspect ratio, and no bounding horizontal surfaces. Using high-resolution simulations of the non-hydrostatic Boussinesq equations and companion integrations of the balanced quasi-geostrophic equations, we present evidence for a local route to dissipation of balanced energy directly through interior turbulent cascades. Analysis of simulations presented in this study suggest that a developing baroclinic instability can lead to secondary instabilities that can cascade a small fraction of the energy forward to unbalanced scales. Mesoscale shear and strain resulting from the hydrostatic geostrophic baroclinic instability drive frontogenesis. The fronts in turn support ageostrophic secondary circulation and instabilities. These t...
Kegerise, Michael A.; Rufer, Shann J.
2016-08-01
In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.
Kerner, Boris S
2015-12-01
We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S→F instability. Whereas the S→F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S→F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S→F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S→F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S→F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S→F instability governs traffic breakdown-a phase transition from free flow to synchronized flow (F→S transition) at the bottleneck: The nucleation nature of the S→F instability explains the metastability of free flow with respect to an F→S transition at the bottleneck.
Kerner, Boris S.
2015-12-01
We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S →F instability. Whereas the S →F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S →F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S →F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S →F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S →F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S →F instability governs traffic breakdown—a phase transition from free flow to synchronized flow (F →S transition) at the bottleneck: The nucleation nature of the S →F instability explains the metastability of free flow with respect to an F →S transition at the bottleneck.
Bayly, Philip V; Wilson, Kate S
2014-10-07
The motion of flagella and cilia arises from the coordinated activity of dynein motor protein molecules arrayed along microtubule doublets that span the length of axoneme (the flagellar cytoskeleton). Dynein activity causes relative sliding between the doublets, which generates propulsive bending of the flagellum. The mechanism of dynein coordination remains incompletely understood, although it has been the focus of many studies, both theoretical and experimental. In one leading hypothesis, known as the geometric clutch (GC) model, local dynein activity is thought to be controlled by interdoublet separation. The GC model has been implemented as a numerical simulation in which the behavior of a discrete set of rigid links in viscous fluid, driven by active elements, was approximated using a simplified time-marching scheme. A continuum mechanical model and associated partial differential equations of the GC model have remained lacking. Such equations would provide insight into the underlying biophysics, enable mathematical analysis of the behavior, and facilitate rigorous comparison to other models. In this article, the equations of motion for the flagellum and its doublets are derived from mechanical equilibrium principles and simple constitutive models. These equations are analyzed to reveal mechanisms of wave propagation and instability in the GC model. With parameter values in the range expected for Chlamydomonas flagella, solutions to the fully nonlinear equations closely resemble observed waveforms. These results support the ability of the GC hypothesis to explain dynein coordination in flagella and provide a mathematical foundation for comparison to other leading models.
A New Gravitational-wave Signature from Standing Accretion Shock Instability in Supernovae
Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya
2016-09-01
We present results from fully relativistic three-dimensional core-collapse supernova simulations of a non-rotating 15{M}⊙ star using three different nuclear equations of state (EoSs). From our simulations covering up to ˜350 ms after bounce, we show that the development of the standing accretion shock instability (SASI) differs significantly depending on the stiffness of nuclear EoS. Generally, the SASI activity occurs more vigorously in models with softer EoS. By evaluating the gravitational-wave (GW) emission, we find a new GW signature on top of the previously identified one, in which the typical GW frequency increases with time due to an accumulating accretion to the proto-neutron star (PNS). The newly observed quasi-periodic signal appears in the frequency range from ˜100 to 200 Hz and persists for ˜150 ms before neutrino-driven convection dominates over the SASI. By analyzing the cycle frequency of the SASI sloshing and spiral modes as well as the mass accretion rate to the emission region, we show that the SASI frequency is correlated with the GW frequency. This is because the SASI-induced temporary perturbed mass accretion strikes the PNS surface, leading to the quasi-periodic GW emission. Our results show that the GW signal, which could be a smoking-gun signature of the SASI, is within the detection limits of LIGO, advanced Virgo, and KAGRA for Galactic events.
Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves?
Heyer, M; Yildiz, U A; Snell, R L; Falgarone, E; Pineda, J
2016-01-01
The origin of striations aligned along the local magnetic field direction in the translucent envelope of the Taurus molecular cloud is examined with new observations of 12CO and 13CO J=2-1 emission obtained with the 10~m submillimeter telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsible for the striations. For both 12CO and 13CO, spatial variations of the J=2-1 to J=1-0 line ratio are small and are not spatially correlated with the striation locations. A medium comprised of unresolved CO emitting substructures (cells) with a beam area filling factor less than unity at any velocity is required to explain the average line ratios and brightness temperatures. We propose that the striations result from the modulation of velocities and the beam filling factor of the cells as a result of either the Kelvin-Helmholtz instability or magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Both processes ar...
Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves?
Heyer, M.; Goldsmith, P. F.; Yıldız, U. A.; Snell, R. L.; Falgarone, E.; Pineda, J. L.
2016-10-01
The origin of striations aligned along the local magnetic field direction in the translucent envelope of the Taurus molecular cloud is examined with new observations of 12CO and 13CO J = 2-1 emission obtained with the 10-m Submillimeter Telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsible for the striations. For both 12CO and 13CO, spatial variations of the J = 2-1 to J = 1-0 line ratio are small and are not spatially correlated with the striation locations. A medium comprised of unresolved CO emitting substructures (cells) with a beam area filling factor less than unity at any velocity is required to explain the average line ratios and brightness temperatures. We propose that the striations are generated from the modulation of velocities and beam filling factor of the cells as a result of either the Kelvin-Helmholtz instability or magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Both processes are likely common features in molecular clouds that are sub-Alfvénic and may explain low column density, cirrus-like features similarly aligned with the magnetic field observed throughout the interstellar medium in far-infrared surveys of dust emission.
Hall, Philip; Bennett, James
1986-01-01
The Taylor-Goertler vortex instability equations are formulated for steady and unsteady interacting boundary-layer flows. The effective Goertler number is shown to be a function of the wall shape in the boundary layer and the possibility of both steady and unsteady Taylor-Goertler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Goertler vortices exist before the boundary layers at the wall develop the Goldstein singularity discussed by Smith and Daniels (1981). As an example of an unsteady spatially varying basic state, it is considered the instability of high-frequency large-amplitude two- and three-dimensional Tollmien-Schlichting waves in a curved channel. It is shown that they are unstable in the first 'Stokes-layer stage' of the hierarchy of nonlinear states discussed by Smith and Burggraf (1985). This instability of Tollmien-Schlichting waves in an internal flow can occur in the presence of either convex or concave curvature. Some discussion of this instability in external flows is given.
Hall, P.
1985-01-01
The Taylor-Gortler vortex instability equations are formulated for steady and unsteady interacting boundary layer flows of the type which arise in triple-deck theory. The effective Gortler number is shown to be a function of the all shape in the boundary layer and the possibility of both steady and unsteady Taylor-Gortler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Gortler vortices exist before the boundary layers at the wall develop the Goldstein singularity. As an example of an unsteady spatially varying basic state the instability of high frequency large amplitude Tollmien-Schlichting waves in a curved channel were considered. It is shown that they are unstable in the first Stokes layer stage of the hierarchy of nonlinear states. The Tollmien-Schlichting waves are shown to be unstable in the presence of both convex and concave curvature.
Self-similar wave produced by local perturbation of the Kelvin-Helmholtz shear-layer instability.
Hoepffner, Jérôme; Blumenthal, Ralf; Zaleski, Stéphane
2011-03-11
We show that the Kelvin-Helmholtz instability excited by a localized perturbation yields a self-similar wave. The instability of the mixing layer was first conceived by Helmholtz as the inevitable growth of any localized irregularity into a spiral, but the search and uncovering of the resulting self-similar evolution was hindered by the technical success of Kelvin's wavelike perturbation theory. The identification of a self-similar solution is useful since its specific structure is witness of a subtle nonlinear equilibrium among the forces involved. By simulating numerically the Navier-Stokes equations, we analyze the properties of the wave: growth rate, propagation speed and the dependency of its shape upon the density ratio of the two phases of the mixing layer.
Rax, J.M.
1992-04-01
The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10{sup 18}W/cm{sup 2}) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed.
1985-12-30
14 DTIC. .. .... ,-.---:T’JAN 1 3 198 _1. V , -’• ""iii . . . PRODUCTION AND CONTROL OF ION CYCLOTRON INSTABILITIES IN...tri,;gered in the collioionaa bottomse ionosphere m.Chaturvedi, 1976; Satyanarayana et al., ?35; 7eJer er. ai., 1984] by a radio-wave at the .ocal...equatzed the zero-order current to an equilibrium electron drift V ~ and have used the so-called dipole approxiation for the pump wave which is valid when
Silantyev, Denis A.; Lushnikov, Pavel M.; Rose, Harvey A.
2017-04-01
A nonlinear Langmuir wave in the kinetic regime k λ D ≳ 0.2 may have a filamentation instability, where k is the wavenumber and λD is the Debye length. The nonlinear stage of that instability develops into the filamentation of Langmuir waves which in turn leads to the saturation of the stimulated Raman scattering in laser-plasma interaction experiments. Here, we study the linear stage of the filamentation instability of the particular family (H. A. Rose and D. A. Russell, Phys. Plasmas 8, 4784 (2001)) of Bernstein-Greene-Kruskal (BGK) modes (I. B. Bernstein et al., Phys. Rev. 108, 546 (1957)) that is a bifurcation of the linear Langmuir wave. Performing direct 2 + 2D Vlasov-Poisson simulations of collisionless plasma, we find the growth rates of oblique modes of the electric field as a function of BGK's amplitude, wavenumber, and the angle of the oblique mode's wavevector relative to the BGK's wavevector. Simulation results are compared to theoretical predictions.
Das, Ipsita
2008-01-01
An analysis of MHD wave propagating in a gravitating and rotating medium permeated by non-uniform magnetic field has been done. It has been found that the Gradient of Magnetic Field when coupled with Rotation becomes capable to generate few instabilities (Temporal or Spatial) leading to the damping or amplification of MHD waves. The Jean's criterion is not sufficient for stability always. Rather, the waves will suffer instability unless their wave length (frequency) is less (greater) than certain critical values. Otherwise, those will smoothly propagate outward. Out of different scenarioes depending on the direction of the magnetic field, its gradient, rotation and wave propagation three important Special Cases have been discussed and different stability criteria have been derived. Finally, using the above theory we have obtained the stability/instability criteria for the waves moving parallel and perpendicular to the galactic plane in the Core and Periphery of the Central Region of Galaxy (C.R.G.) due to the...
Badin, Gualtiero
2015-01-01
The role of short-wave instabilities on geostrophic turbulence is studied in a simplified model consisting of three layers in the quasi-geostrophic approximation. The linear stability analysis shows that short-wave instabilities are created by the interplay between the shear in the upper and the lower layers. If the stratification is non-uniform, in particular surface intensified, the linear growth rate is larger for short-wave instabilities than for long-wave instabilities and the layers are essentially decoupled, with the small scales growing independently. The fully developed homogeneous turbulence is studied in a number of numerical experiments. Results show that in both the case of equal layer depths and surface intensified stratification an inverse cascade in kinetic energy is observed. The modal kinetic energy spectra for the case with surface intensified stratification show higher energy for higher baroclinic numbers at small scales, due to the decoupling of the layers. As a result, while the case wit...
Characterization of onset of parametric decay instability of lower hybrid waves
Baek, S. G.; Bonoli, P. T.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Porkolab, M.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B. L.; Lau, C. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States); Takase, Y. [The University of Tokyo, Kashiwa (Japan)
2014-02-12
The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (nÐœ„{sub e}) increases above 10{sup 20}m{sup −3}. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmas 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near nÐœ„{sub e}≈1.2×10{sup 20}m{sup −3}. In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an
Mahinder Singh
2016-10-01
Full Text Available The generation mechanism of the electromagnetic radiation in case of inhomogeneous plasma on the basis of plasma-maser interaction in presence of drift wave turbulence is studied. The drift wave turbulence is taken as the low-frequency mode field and is found to be strongly in phase relation with thermal particles and may transfer its wave energy nonlinearly through a modulated field of high-frequency extraordinary mode (X-mode wave. It has been found that amplification of X-mode wave is possible at the expense of drift wave turbulent energy. This type of high-frequency instability can leads to auroral kilometric radiation (AKR. The growth rate of the X-mode wave, in the form of AKR, has been calculated with the involvement of spatial density gradient parameter. This result may be particularly important for stability of various drift modes in magnetically confined plasma as well as for transport of momentum and energy in such inhomogeneous plasma
Catastrophic instabilities of modified DA-DC hybrid surface waves in a semi-bounded plasma system
Lee, Myoung-Jae; Jung, Young-Dae
2016-06-01
We find the catastrophic instabilities and derive the growth rates for the dust-cyclotron resonance (DCR) and dust-rotation resonance (DRR) modes of the modified dust-acoustic and dust-cyclotron (DA-DC) hybrid surface waves propagating at the plasma-vacuum interface where the plasma is semi-bounded and composed of electrons and rotating dust grains. The effects of magnetic field and dust rotation frequency on the DCR- and DDR-modes are also investigated. We find that the dust rotation frequency enhances the growth rate of DCR-mode and the effect of dust rotation on this resonance mode decreases with an increase of the wave number. We also find that an increase of magnetic field strength enhances the DCR growth rate, especially, for the short wavelength regime. In the case of DRR-mode, the growth rate is found to be decreased less sensitively with an increase of the wave number compared with the case of DCR, but much significantly enhanced by an increase of dust rotation frequency. The DRR growth rate also decreases with an increase of the magnetic field strength, especially in the long wavelength regime. Interestingly, we find that catastrophic instabilities occur for both DCR- and DRR-modes of the modified DA-DC hybrid surface waves when the rotational frequency is close to the dust-cyclotron frequency. Both modes can also be excited catastrophically due to the cooperative interaction between the DCR-mode and the DRR-mode.
M Singh; P N Deka
2006-03-01
A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.
Meier, Patrick; Glassmeier, Karl-Heinz; Motschmann, Uwe
2016-08-01
We analytically discuss wave excitation in a homogeneous three component plasma consisting of solar wind protons, electrons and a beam of cometary water ions applied to the plasma environment of comet 67P/Churyumov-Gerasimenko. The resulting dispersion relations are studied in a solar wind rest frame, where a cometary current is solely generated by the water ion beam, and a cometary rest frame representing the rest frame of the Rosetta spacecraft. A modified ion-Weibel instability is excited by the cometary current and predominantly grows perpendicular to this current. The corresponding water ion mode is connected to a frequency of about 40 mHz in agreement with wave measurements of Rosetta's magnetometer in the cometary rest frame. Furthermore, the superposition of the strongest growing waves result in a fan-like phase structure close to the comet.
Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D
2014-01-01
The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].
Kerner, Boris S
2015-01-01
We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability as an S$\\rightarrow$F instability. Whereas the S$\\rightarrow$F instability leads to a local {\\it increase in speed} (growing acceleration wave), in contrast, the classical traffic flow instability introduced in 50s--60s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local {\\it decrease in speed} (growing deceleration wave). We have found that the S$\\rightarrow$F instability can occur only, if there is a finite time delay in driver over-acceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S$\\rightarrow$F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that ...
Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons
Yao, Yuangen; Deng, Haiyou; Yi, Ming; Ma, Jun
2017-02-01
Spiral waves in the neocortex may provide a spatial framework to organize cortical oscillations, thus help signal communication. However, noise influences spiral wave. Many previous theoretical studies about noise mainly focus on unbounded Gaussian noise, which contradicts that a real physical quantity is always bounded. Furthermore, non-Gaussian noise is also important for dynamical behaviors of excitable media. Nevertheless, there are no results concerning the effect of bounded noise on spiral wave till now. Based on Hodgkin-Huxley neuron model subjected to bounded noise with the form of Asin[ωt + σW(t)], the influences of bounded noise on the formation and instability of spiral wave in a two-dimensional (2D) square lattice of neurons are investigated in detail by separately adjusting the intensity σ, amplitude A, and frequency f of bounded noise. It is found that the increased intensity σ can facilitate the formation of spiral wave while the increased amplitude A tends to destroy spiral wave. Furthermore, frequency of bounded noise has the effect of facilitation or inhibition on pattern synchronization. Interestingly, for the appropriate intensity, amplitude and frequency can separately induce resonance-like phenomenon.
Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons
Yao, Yuangen; Deng, Haiyou; Yi, Ming; Ma, Jun
2017-01-01
Spiral waves in the neocortex may provide a spatial framework to organize cortical oscillations, thus help signal communication. However, noise influences spiral wave. Many previous theoretical studies about noise mainly focus on unbounded Gaussian noise, which contradicts that a real physical quantity is always bounded. Furthermore, non-Gaussian noise is also important for dynamical behaviors of excitable media. Nevertheless, there are no results concerning the effect of bounded noise on spiral wave till now. Based on Hodgkin-Huxley neuron model subjected to bounded noise with the form of Asin[ωt + σW(t)], the influences of bounded noise on the formation and instability of spiral wave in a two-dimensional (2D) square lattice of neurons are investigated in detail by separately adjusting the intensity σ, amplitude A, and frequency f of bounded noise. It is found that the increased intensity σ can facilitate the formation of spiral wave while the increased amplitude A tends to destroy spiral wave. Furthermore, frequency of bounded noise has the effect of facilitation or inhibition on pattern synchronization. Interestingly, for the appropriate intensity, amplitude and frequency can separately induce resonance-like phenomenon. PMID:28220877
Chekanov, V. V.; Kandaurova, N. V.; Chekanov, V. S.
2014-09-01
A variation in the reflection coefficient of an interface of two liquids (water and magnetic liquid) in the presence of an electric field is experimentally studied. An increase in the reflection coefficient of the interface is demonstrated. A surface instability of the water-magnetic liquid interface, the wave motion at the interface, and wave interference are observed.
Sato, Masanori; Matsuura, Kazuo; Fujii, Toshitaka
2001-02-01
We show the experimental data of selective ethanol separation from ethanol-water solution, using ultrasonic atomization. Pure ethanol could be obtained directly from a solution with several mol% ethanol-water solution at 10 °C. This result can be explained in terms of parametric decay instability of capillary wave, in which high localization and accumulation of acoustic energy occur, leading to ultrasonic atomization. That is, parametric decay instability condenses the energy of longitudinal waves in a highly localized surface area of the capillary wave, and causes ultrasonic atomization.
On phase change in Marangoni-driven flows and its effects on the hydrothermal-wave instabilities
Sáenz, P. J.; Valluri, P.; Sefiane, K.; Karapetsas, G.; Matar, O. K.
2014-02-01
This paper investigates the effects of phase change on the stability of a laterally heated liquid layer for the first time. The interface is open to the atmosphere and vapor diffusion is the rate-limiting mechanism for evaporation. In this configuration, the planar layer is naturally vulnerable to the formation of travelling thermal instabilities, i.e., hydrothermal waves (HTWs), due to the presence of temperature gradients along the gas-liquid interface. Recent work carried out for deformable interfaces and negligible evaporation indicates that the HTWs additionally give rise to interface deformations of similar features, i.e., physical waves. The study presented here reveals that phase change plays a dual role through its effect on these instabilities: the latent energy required during the evaporation process tends to inhibit the HTWs while the accompanying level reduction enhances the physical waves by minimizing the role of gravity. The dynamics of the gas phase are also discussed. The HTW-induced convective patterns in the gas along with the travelling nature of the instabilities have a significant impact on the local evaporation flux and the vapor distribution above the interface. Interestingly, high (low) concentrations of vapor are found above cold (hot) spots. The phase-change mechanism for stable layers is also investigated. The Marangoni effect plays a major role in the vapor distribution generating a vacuum effect in the warm region and vapor accumulations at the cold boundary capable of inverting the phase change, i.e., the capillary flow can lead to local condensation. This work also demonstrates the inefficiencies of the traditional phase change models based on pure vapor diffusion to capture the dynamics of thermocapillary flows.
Vortex formation in protoplanetary discs induced by the vertical shear instability
Richard, Samuel; Umurhan, Orkan M
2016-01-01
We present the results of 2D and 3D hydrodynamic simulations of idealized protoplanetary discs that examine the formation and evolution of vortices by the vertical shear instability (VSI). In agreement with recent work, we find that discs with radially decreasing temperature profiles and short thermal relaxation time-scales, are subject to the axisymmetric VSI. In three dimensions, the resulting velocity perturbations give rise to quasi-axisymmetric potential vorticity perturbations that break-up into discrete vortices, in a manner that is reminiscent of the Rossby wave instability. Discs with very short thermal evolution time-scales (i.e. {\\tau}<0.1 local orbit periods) develop strong vorticity perturbations that roll up into vortices that have small aspect ratios ({\\chi}<2) and short lifetimes (~ a few orbits). Longer thermal time-scales give rise to vortices with larger aspect ratios (6<{\\chi}<10), and lifetimes that depend on the entropy gradient. A steeply decreasing entropy profile leads to ...
Rax, J.M. (Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540 (United States))
1992-12-01
The dynamics of an electron in a finite set of linearly or circularly polarized ultra-high-intensity (above 10{sup 18} W/cm{sup 2}) laser waves is investigated within the framework of a Hamiltonian analysis. The Compton harmonic resonances are identified as the source of various stochastic instabilities. The stochasticity threshold due to resonance overlap is calculated and the structure of the resonances is analyzed. The quasilinear kinetic equation describing the evolution of the electron distribution function is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed.
Ghizzo, A. [Institut Jean Lamour UMR 7163, Université de Lorraine, BP 239 F-54506 Vandoeuvre les Nancy (France)
2013-08-15
The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the “multiring” model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al.[Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.
Belmonte-Beitia, Juan [Departamento de Matematicas, E. T. S. de Ingenieros Industriales, Universidad de Castilla-La Mancha 13071, Ciudad Real (Spain); Perez-Garcia, Victor M. [Departamento de Matematicas, E. T. S. de Ingenieros Industriales, Universidad de Castilla-La Mancha 13071, Ciudad Real (Spain); Vekslerchik, Vadym [Departamento de Matematicas, E. T. S. de Ingenieros Industriales, Universidad de Castilla-La Mancha 13071, Ciudad Real (Spain)
2007-05-15
In this paper, we study a system of coupled nonlinear Schroedinger equations modelling a quantum degenerate mixture of bosons and fermions. We analyze the stability of plane waves, give precise conditions for the existence of solitons and write explicit solutions in the form of periodic waves. We also check that the solitons observed previously in numerical simulations of the model correspond exactly to our explicit solutions and see how plane waves destabilize to form periodic waves.
Role of Vortex Rossby Waves on Tropical Cyclone Intensity
2016-06-07
These mechanisms include internal dynamic and thermodynamic processes, external forcing, and scale interactions. Only after we understand these...from convection will be prescribed. Diagnostic tools will be developed to analyze results from model integrations. For the second part of the... law , no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control
Spin-density-wave instability in graphene doped near the van Hove singularity
Makogon, D.; van Gelderen, R.; Roldan, R.; de Morais Smith, C.
2011-01-01
We study the instability of the metallic state toward the formation of a different ground state in graphene doped near the van Hove singularity. The system is described by the Hubbard model and a field theoretical approach is used to calculate the charge and spin susceptibility. We find that for
Spin-density-wave instability in graphene doped near the van Hove singularity
Makogon, D.; van Gelderen, R.; Roldan, R.; de Morais Smith, C.
2011-01-01
We study the instability of the metallic state toward the formation of a different ground state in graphene doped near the van Hove singularity. The system is described by the Hubbard model and a field theoretical approach is used to calculate the charge and spin susceptibility. We find that for rep
Generation of Electrostatic Waves via Parametric Instability and Heating of Solar Corona
Krasnoselskikh, George Machabeli Giorgi Dalakishvili Vladimir
2013-01-01
In the upper layers of the solar atmosphere the temperature increases sharply. We studied possibility of the transfer of neutrals motion energy into the electrostatic waves.Electrostatic waves could damp in the upper layers of the solar atmosphere and their energy could be transformed into the thermal energy of the solar atmosphere plasma. When studying the plasma dynamics in the low altitudes of the solar atmosphere, we investigated hydrodynamics of the plasma which consists of thee components-electrons, ions and neutrals. In order to study evolution of disturbances of high amplitudes the parametric resonance technique is used. The dispersion relation for the electrostatic waves excited due tot he motion of neutrals is derived. The frequencies of electromagnetic waves which could be excited due to existence of the acoustic wave are found. The increment of excited electrostatic waves are determined. The motion of the neutrals in the lower solar atmosphere, where ionization rate is low, could excite electrosta...
Plasma Instability and Wave Propagation in Gate-Controlled GaN Conduction Channels
Rudin, Sergey; Rupper, Greg
2013-08-01
The plasma wave in the conduction channel of a semiconductor heterostructure high electron mobility transistor (HEMT) can be excited at frequencies significantly higher than the cut-off frequency in a short channel device. The hydrodynamic model predicts a resonance response to applied harmonic signal at the plasma oscillation frequency. When either the ac voltage induced in the channel by the signal at the gate or the current applied at the drain or source contact are not very small, the plasma waves in the semiconductor channel will propagate as a shock wave. The device can be used either as a detector or a tunable source of terahertz range radiation. Using the parameters appropriate for the GaN channel we show that in both configurations the charge flow develops shock waves due to hydrodynamic nonlinearities. In a sufficiently wide channel the wave propagation separates into two or more different bands giving a two-dimensional structure to the waves.
Misra, A P
2010-01-01
We consider the nonlinear propagation of electrostatic wave packets in an ultra-relativistic (UR) degenerate dense electron-ion plasma, whose dynamics is governed by the nonlocal two-dimensional nonlinear Schroedinger-like equations. The coupled set of equations are then used to study the modulational instability (MI) of a uniform wave train to an infinitesimal perturbation of multi-dimensional form. The condition for the MI is obtained, and it is shown that the nondimensional parameter, $\\beta\\propto\\lambda_C n_0^{1/3}$ (where $\\lambda_C$ is the reduced Compton wavelength and $n_0$ is the particle number density), associated with the UR pressure of degenerate electrons, shifts the stable (unstable) regions at $n_{0}\\sim10^{30}$ cm$^{-3}$ to unstable (stable) ones at higher densities, i.e. $n_{0}\\gtrsim7\\times10^{33}$. It is also found that higher the values of $n_{0}$, the lower is the growth rate of MI with cut-offs at lower wave numbers of modulation. Furthermore, the dynamical evolution of the wave packet...
Superconducting pairing and density-wave instabilities in quasi-one-dimensional conductors
Nickel, J. C.; Duprat, R.; Bourbonnais, C.; Dupuis, N.
2006-04-01
Using a renormalization group approach, we determine the phase diagram of an extended quasi-one-dimensional electron gas model that includes interchain hopping, nesting deviations, and both intrachain and interchain repulsive interactions. d -wave superconductivity, which dominates over the spin-density-wave (SDW) phase at large nesting deviations, becomes unstable to the benefit of a triplet f -wave phase for a weak repulsive interchain backscattering term g1⊥>0 , despite the persistence of dominant SDW correlations in the normal state. Antiferromagnetism becomes unstable against the formation of a charge-density-wave state when g1⊥ exceeds some critical value. While these features persist when both Umklapp processes and interchain forward scattering (g2⊥) are taken into account, the effect of g2⊥ alone is found to frustrate nearest-neighbor interchain d - and f -wave pairing and instead favor next-nearest-neighbor interchain singlet or triplet pairing. We argue that the close proximity of SDW and charge-density-wave phases, singlet d -wave, and triplet f -wave superconducting phases in the theoretical phase diagram provides a possible explanation for recent puzzling experimental findings in the Bechgaard salts, including the coexistence of SDW and charge-density-wave phases and the possibility of a triplet pairing in the superconducting phase.
Batool, Nazia [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); National Center of Physics (NCP), Quaid-i-Azam University campus, Islamabad (Pakistan); Masood, W. [National Center of Physics (NCP), Quaid-i-Azam University campus, Islamabad (Pakistan); Theoretical Plasma Physics Division, PINSTECH P. O. Nilore, Islamabad (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)
2012-08-15
The effects of nonthermal electron distributions on electrostatic ion-temperature-gradient (ITG) driven drift-wave instabilities in the presence of equilibrium density, temperature, and magnetic field gradients are investigated here. By using Braginskii's transport equations for ions and Cairns as well as Kappa distribution for electrons, the coupled mode equations are derived. The modified ITG driven modes are derived, and it is found both analytically as well as numerically that the nonthermal distribution of electrons significantly modify the real frequencies as well as the growth rate of the ITG driven drift wave instability. The growth rate of ion-temperature-gradient driven instability is found to be maximum for Cairns, intermediate for Kappa, and minimum for the Maxwellian distributed electron case. The results of present investigation might be helpful to understand several wave phenomena in space and laboratory plasmas in the presence of nonthermal electrons.
Self-induced dipole force and filamentation instability of a matter wave
Saffman, M.
1998-01-01
The interaction of copropagating electromagnetic and matter waves is described with a set of coupled higher-order nonlinear Schrodinger equations. Optical self-focusing modulates an initially planar wave leading to the generation of dipole forces on the atoms. Atomic channeling due to the dipole...
An Experimental Study of Nonstationary Instabilities of Planar Shock Waves in Ionizing Argon
1980-08-01
amplification of acoustic disturbances in an electrically -heated two-temperature (Te >> Ta) plasma. Since 4the thermally-heated ionizing argon plasma...the schlieren system. In the present study it was felt that any sensitibity ’ 3st by using a diffused slit-source instead of an undiff’used point...parameters such as XE, it can help stimulate discussion on the instability phenomenon. Experimental and analytical research into acoustic stability
Gusakov, E. Z., E-mail: Evgeniy.Gusakov@mail.ioffe.ru; Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Irzak, M. A., E-mail: irzak@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)
2016-10-15
The most probable scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an electron cyclotron extraordinary wave has been analyzed. Within this scenario two upperhybrid plasmons at frequencies close to half the pump wave frequency radially trapped in the vicinity of the local maximum of the plasma density profile are excited due to the excitation of primary instability. The primary instability saturation results from the decays of the daughter upper-hybrid waves into secondary upperhybrid waves that are also radially trapped in the vicinity of the local maximum of the plasma density profile and ion Bernstein waves.
Gusakov, E. Z.; Popov, A. Yu.; Irzak, M. A.
2016-10-01
The most probable scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an electron cyclotron extraordinary wave has been analyzed. Within this scenario two upperhybrid plasmons at frequencies close to half the pump wave frequency radially trapped in the vicinity of the local maximum of the plasma density profile are excited due to the excitation of primary instability. The primary instability saturation results from the decays of the daughter upper-hybrid waves into secondary upperhybrid waves that are also radially trapped in the vicinity of the local maximum of the plasma density profile and ion Bernstein waves.
Guo, Shimin; Mei, Liquan; He, Ya-Ling; Ma, Chenchen; Sun, Youfa
2016-10-01
The nonlinear behavior of an ion-acoustic wave packet is investigated in a three-component plasma consisting of warm ions, nonthermal electrons and positrons. The nonthermal components are assumed to be inertialess and hot where they are modeled by the kappa distribution. The relevant processes, including the kinematic viscosity amongst the plasma constituents and the collision between ions and neutrals, are taken into consideration. It is shown that the dynamics of the modulated ion-acoustic wave is governed by the generalized complex Ginzburg-Landau equation with a linear dissipative term. The dispersion relation and modulation instability criterion for the generalized complex Ginzburg-Landau equation are investigated numerically. In the general dissipation regime, the effect of the plasma parameters on the dissipative solitary (dissipative soliton) and shock waves is also discussed in detail. The project is supported by NSF of China (11501441, 11371289, 11371288), National Natural Science Foundation of China (U1261112), China Postdoctoral Science Foundation (2014M560756), and Fundamental Research Funds for the Central Universities (xjj2015067).
Wave instabilities in nonlinear Schrödinger systems with non vanishing background
Trillo, Stefano
2014-01-01
We investigate wave collapse in the generalized nonlinear Schrödinger (NLS) equation and in the presence of a non vanishing background. Through the use of virial identities, we establish a new criterion for blow-up.
Vladimirov, Andrey E; Ellison, Donald C
2009-01-01
We model strong forward shocks in young supernova remnants with efficient particle acceleration where a nonresonant instability driven by the cosmic ray current amplifies magnetic turbulence in the shock precursor. Particle injection, magnetic field amplification (MFA) and the nonlinear feedback of particles and fields on the bulk flow are derived consistently. The shock structure depends critically on the efficiency of turbulence cascading. If cascading is suppressed, MFA is strong, the shock precursor is stratified, and the turbulence spectrum contains several discrete peaks. These peaks, as well as the amount of MFA, should influence synchrotron X-rays, allowing observational tests of cascading and other assumptions intrinsic to the nonlinear model of nonresonant wave growth.
Liu, X. M.
2010-04-01
Based on a piece of highly-nonlinear near-zero-dispersion-flattened photonic crystal fiber (PCF), a broadly tunable multiwavelength erbium-doped fiber laser is proposed by using a bi-directionally pumping scheme. This kind of PCF induces the modulation-instability-assisted four-wave mixing to generate new wavelengths. The proposed laser with excellent stability is tunable and switchable by adjusting the fiber Bragg gratings and the variable optical attenuators. The outstanding merits of the proposed multiwavelength laser are the flexible tuning and the ultrabroad spectral range over 150 nm. Especially, the proposed laser source can work at the wavelength of less than 1460 nm, overcoming the limit of gain bandwidth of erbium-doped fiber.
Henri, Pierre; Briand, Carine; Mangeney, André; 10.1029/2009JA014969
2013-01-01
Recent observation of large amplitude Langmuir waveforms during a Type III event in the solar wind have been interpreted as the signature of the electrostatic decay of beam-driven Langmuir waves. This mechanism is thought to be a first step to explain the generation of solar Type III radio emission. The threshold for this parametric instability in typical solar wind condition is investigated here by means of 1D-1V Vlasov-Poisson simulations. We show that the amplitude of the observed Langmuir beat-like waveforms is of the order of the effective threshold computed from the full kinetic simulations. The expected level of associated ion acoustic density fluctuations have also been computed for comparison with observations.
The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability
Wang, Yanjin
2011-01-01
We consider the free boundary problem for two layers of immiscible, viscous, incompressible fluid in a uniform gravitational field, lying above a rigid bottom in a three-dimensional horizontally periodic setting. The effect of surface tension is either taken into account at both free boundaries or neglected at both. We are concerned with the Rayleigh-Taylor instability, so we assume that the upper fluid is heavier than the lower fluid. When the surface tension at the free internal interface is below a critical value, which we identify, we establish that the problem under consideration is nonlinearly unstable.
Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe;
2012-01-01
The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain...... spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source....
Sarkar, Jayati; Sharma, Ashutosh
2010-06-01
A general unified theory of field (van der Waals, electric, etc.)-induced surface instabilities in thin viscoelastic films that accounts for a destabilizing field and stabilizing effects of elastic strain and surface energy is presented. The present theory seamlessly covers the instability and its different regimes in films ranging from elastic to viscous, from adhesive (confined) to wetting (free surface), and from short- to long-wave instabilities. The critical conditions for the onset of instability are found to be strongly dependent on elastic properties such as the shear modulus of the film, but the dominant wavelength is strikingly independent of the film rheology. Different regimes based on a nondimensional parameter (gamma/mu h) are uncovered, where gamma is the surface energy, mu is the elastic shear modulus, and h is the film thickness. A short-wave, elasticlike response with wavelength lambda approximately = 2.96 h is obtained for gamma/mu h 1. Owing to their small critical thickness, wetting films destabilized by intermolecular forces always display long-wave instability regardless of their viscoelasticity. Furthermore, our numerical simulations based on energy minimization for unstable wetting elastic films show the formation of islands for ultrathin films and a morphological phase transition to holes embedded in the film for relatively thicker films. Unlike viscous films, however, unstable elastic films do not display a unique dominant wavelength but a bimodal distribution of wavelengths.
Winjum, B. J.; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Chapman, T.; Hittinger, J. A. F.; Rozmus, W.; Strozzi, D. J.; Brunner, S.
2012-10-01
We present results on the kinetic filamentation of finite-width nonlinear electron plasma waves (EPW). Using 2D simulations with the PIC code BEPS, we excite a traveling EPW with a Gaussian transverse profile and a wavenumber k0λDe= 1/3. The transverse wavenumber spectrum broadens during transverse EPW localization for small width (but sufficiently large amplitude) waves, while the spectrum narrows to a dominant k as the initial EPW width increases to the plane-wave limit. For large EPW widths, filaments can grow and destroy the wave coherence before transverse localization destroys the wave; the filaments in turn evolve individually as self-focusing EPWs. Additionally, a transverse electric field develops that affects trapped electrons, and a beam-like distribution of untrapped electrons develops between filaments and on the sides of a localizing EPW. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061. Supported also under Grants DE-FG52-09NA29552 and NSF-Phy-0904039. Simulations were performed on UCLA's Hoffman2 and NERSC's Hopper.
Inertia-less convectively-driven dynamo models in the limit of low Rossby number
Calkins, Michael A; Tobias, Steven M
2016-01-01
Compositional convection is thought to be an important energy source for magnetic field generation within planetary interiors. The Prandtl number, $Pr$, characterizing compositional convection is significantly larger than unity, suggesting that the inertial force may not be important on the small scales of convection. We develop asymptotic dynamo models for the case of small Rossby number and large Prandtl number in which inertia is absent on the convective scale. The relevant diffusivity parameter for this limit is the compositional Roberts number, $q = D/\\eta$, which is the ratio of compositional and magnetic diffusivities. Dynamo models are developed for both order one $q$ and the more geophysically relevant low $q$ limit. For both cases the ratio of magnetic to kinetic energy densities, $M$, is asymptotically large and reflects the fact that Alfv\\'en waves have been filtered from the dynamics. Taken together with previous investigations of asymptotic dynamo models for $Pr=O(1)$, our results show that the ...
Plasma instability and wave propagation in gate-controlled semiconductor conduction channels
Rudin, Sergey; Rupper, Greg
2013-03-01
The plasma wave in the conduction channel of a semiconductor heterostructure high electron mobility transistor is an electron density excitation, possible at frequencies significantly higher than the cut-off frequency in a short channel device. When the electron-electron collision limited mean free path is much smaller than the wavelength of the density variations, the electron gas in the channel can be treated as a two-dimensional fluid. The flow is described by the Navier-Stokes equation and the heat conduction equation. The quality of the plasma resonance is limited by the electron mobility and the viscosity of the electron fluid. We use the hydrodynamic model derived as the balance equations from the quasi-classical Boltzmann equation, starting with a drifted Fermi-Dirac distribution as a zero order term in the expansion of the distribution function in orders of the Knudsen number. The charge flow can become unstable because of plasma wave amplification at the boundaries. The device then can be used as a tunable source of terahertz range radiation. We show that in such configuration the charge flow also develops shock waves due to hydrodynamic nonlinearities.
Instability analysis of resonant standing waves in a parametrically excited boxed basin
Sirwah, Magdy A [Department of Mathematics, Faculty of Science, Tanta University, Tanta (Egypt)], E-mail: magdysirwah@yahoo.com
2009-06-15
Two-mode parametric excited interfacial waves of incompressible immiscible liquids in an infinite boxed basin subjected to a vertical excitation are studied. The method of multiple time scales is used to obtain uniform solutions of the second-order system as well as the third-order one, which in turn leads to the solvability conditions of the two orders including the cubic interaction terms. The different cases of resonance that arise among the natural frequencies together with the frequency of the vertical vibration of the box are demonstrated theoretically and numerical computations of one of these cases (the two-to-one internal resonance and the principal parametric resonance) have been performed in detail in order to investigate the behavior of the resonant waves, especially the qualitative one. The autonomous system of four first-order differential equations for the modulation of the amplitudes and phases of the resonant waves is derived. Some numerical applications are achieved to show the stability criteria of the excited liquids inside the considered basin.
Foury-Leylekian, Pascale; Pouget, Jean-Paul; Lee, Young-Joo; Nieminen, Risto M.; Ordejón, Pablo; Canadell, Enric
2010-10-01
α-(BEDT-TTF)2KHg(SCN)4 develops a density wave ground state below 8 K whose origin is still debated. Here we report a combined x-ray diffuse scattering and first-principles density functional theory study supporting the charge density wave (CDW) scenario. In particular, we observe a triply incommensurate anharmonic lattice modulation with intralayer wave vector components which coincide within experimental errors to the maximum of the calculated Lindhard response function. A detailed study of the structural aspects of the modulation shows that the CDW instability in α-(BEDT-TTF)2KHg(SCN)4 is considerably more involved than those following a standard Peierls mechanism. We thus propose a microscopic mechanism where the CDW instability of the BEDT-TTF layer is triggered by the anion sublattice. Our mechanism also emphasizes the key role of the coupling of the BEDT-TTF and anion layers via the hydrogen bond network to set the global modulation.
Behavior of substorm auroral arcs and Pi2 waves: implication for the kinetic ballooning instability
T. F. Chang
2012-06-01
Full Text Available We present synoptic observations of the 21 December 2006 substorm event by the THEMIS ground-based All-Sky-Imagers, the ISUAL CCD Imager aboard the FORMOSAT-2 satellite, the geosynchronous satellites and the ground-based magnetometers, and discuss the implication of the observations. There are three subsequent arc breakups with time separation of <1 min during the substorm expansion phase. In particular, we investigated the mode number of the substorm arc bead-like structure and the concurrent behavior of the arc intensity, the westward electroject intensity, and the ground Pi2 pulsation amplitude. Prior to each arc breakup there was a clear azimuthally-spaced bright spot structure along the arc with high mode number (~140–180 and the arc intensity increased together with the westward electrojet and the ground Pi2 pulsation amplitude under the arc. The Pi1 perturbations observed under the arc appeared at or after the arc breakup started. This suggests that the Pi2 pulsation is related to the arc formation. The Pi2 pulsation may be caused by the kinetic ballooning instability (KBI that is excited in the strong cross-tail current region. The longitudinal extent of the earthward expansion front of the substorm dipolarization region at the geosynchronous orbit is estimated from timings of the energetic proton and electron injections and is roughly located between ~19.50 MLT and ~23.00 MLT, which is consistent with the corresponding longitudinal extent of the auroral substorm activity.
An Experimantal Study of The Rayleigh—Taylor Instability Critical Wave Length
KongXujing
1992-01-01
A physical model has been constructed to represent the condensate film pattern on a horizontal downward-facing surface with fins,which is based on visual observation in experiment,The results of analysis using this model confirums the validity of the critical wave length formula obtained from Rayleigh-Taylor staility analysis .This formula may be used as a criterion to design horzontal downward-facing surfaces with fins that can best destabilize the condensate film,thus enhancing condensation heat transfer.
Formation and Development of Diabatic Rossby Vortices in a 10-Year Climatology
2012-06-01
DEVELOPMENT OF DIABATIC ROSSBY VORTICES IN A 10-YEAR CLIMATOLOGY by Nengwei “Tom” Shih June 2012 Thesis Advisor: Richard W. Moore Second...TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Formation and Development of Diabatic Rossby Vortices in a 10-Year Climatology 5...release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) A diabatic Rossby vortex (DRV) is a short-scale
Instability results for the wave equation in the interior of Kerr black holes
Luk, Jonathan
2015-01-01
We prove that a large class of smooth solutions $\\psi$ to the linear wave equation $\\Box_g\\psi=0$ on subextremal rotating Kerr spacetimes which are regular and decaying along the event horizon become singular at the Cauchy horizon. More precisely, we show that assuming appropriate upper and lower bounds on the energy along the event horizon, the solution has infinite (non-degenerate) energy on any spacelike hypersurfaces intersecting the Cauchy horizon transversally. Extrapolating from known results in the Reissner--Nordstr\\"om case, the assumed upper and lower bounds required for our theorem are conjectured to hold for solutions arising from generic smooth and compactly supported initial data on a Cauchy hypersurface. This result is motivated by the strong cosmic censorship conjecture in general relativity.
On the viability of the single wave model for the beam plasma instability
Carlevaro, Nakia; Terzani, Davide
2016-01-01
We analyze the interaction of a cold fast electron beam with a thermalized plasma, in the presence of many Langmuir modes. The work aims at characterizing the deviation of the system behavior from the single mode approximation, both with respect to a consistent spectral analysis of the most unstable mode harmonics and to the presence of a dense spectrum, containing linearly unstable and stable modes. We demonstrate how, on the one hand, the total energy fraction adsorbed by the harmonics is negligible at all; and, on the other hand, the additional Langmuir modes can be excite via an avalanche mechanism, responsible for a transport in the particle velocity space. In particular, we show that the spectral broadening outlines a universal shape and the distribution function, associated to the avalanche mechanism, has an asymptotic plateau, differently from the coherent structures characterizing the single wave model.
Baek, S. G., E-mail: sgbaek@mit.edu; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Porkolab, M.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Lau, C. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Takase, Y. [University of Tokyo, Kashiwa 277-8561 (Japan)
2014-06-15
The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize reactor-relevant steady-state plasmas by controlling current density profile. However, current drive efficiency precipitously decreases as the line averaged density (n{sup ¯}{sub e}) increases above ∼1 × 10{sup 20} m{sup −3}. Previous simulations show that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer plasmas [Wallace et al., Phys. Plasmas 19, 062505 (2012)]. A recent observation [Baek et al., Plasma Phys. Controlled Fusion 55, 052001 (2013)] shows that the configuration dependent ion cyclotron parametric decay instability (PDI) is excited in the density range where the discrepancy between the experiments and simulations remains. Comparing the observed spectra with the homogeneous growth rate spectra indicates that the observed ion cyclotron PDI can be excited not only at the low-field-side but also at the high-field-side (HFS) edge of the tokamak. The model analysis shows that a relevant PDI process to Alcator C-Mod LHCD experiments is decay into ion cyclotron quasi-mode driven by parallel coupling. The underlying cause of the observed onset of ion cyclotron PDI is likely due to the weaker radial penetration of the LH wave in high density plasmas, which can lead to enhanced convective growth. Configuration-dependent PDIs are found to be correlated with different edge density profiles in different magnetic configurations. While the HFS edge of the tokamak can be potentially susceptible to PDI, as evidenced by experimental observations and ray-tracing analyses, enhancing single-pass absorption is expected to help recover the LHCD efficiency at reactor-relevant densities because it could suppress several parasitic loss mechanisms that are exacerbated in multi-pass regimes.
El-Tantawy, S. A.; Wazwaz, A. M.; Rahman, Ata-ur
2017-02-01
The three-dimensional (3D) modulational instability (MI) of the nonlinear ion-acoustic wave propagating in a non-Maxwellian electron-positron-ion magnetoplasma is investigated. The plasma electrons and positrons obey the Kappa distribution function, which has been proved to be appropriate for modeling the nonthermal features of different plasma environments. The derivative expansion method is carried out to derive the three-dimensional nonlinear Schrödinger equation governing the modulation of the ion-acoustic wavepacket. Criteria under which the MI occurs are discussed in detail. It is found that the conditions, which indicate where the 3D MI sets in, are totally different from the one-dimensional MI. The impact of the relevant plasma parameters, particularly, superthermal parameters, on the MI of the ion-acoustic envelope wavepacket is discussed, and a comparison with previous results is presented. It is noticed that the spectrum of MI in the non-Maxwellian (superthermal) plasma is significantly different, as compared to the equilibrium case.
Impact of Ion Acoustic Wave Instabilities in the Flow Field of a Hypersonic Vehicle on EM Signals
Mudaliar, Saba; Sotnikov, Vladimir
2016-10-01
Flow associated with a high speed air vehicle (HSAV) can get partially ionized. In the absence of external magnetic field the flow field turbulence is due to ion acoustic wave (IAW) instabilities. Our interest is in studying the impact of this turbulence on the radiation characteristics of EM signals from the HSAV. We decompose the radiated signal into coherent and diffuse parts. We find that the coherent part has the same spectrum as that of the source signal, but it is distorted because of dispersive coherent attenuation. The diffuse part is expressed as a convolution (in wavenumber and frequency) of the source signal with the spectrum of electron density fluctuations. This is a constrained convolution in the sense that the spectrum has to satisfy the IAW dispersion relation. A quantity that characterizes the flow is the mean free path (MFP). When the MFP is large compared to the thickness of the flow the coherent part is significant. If the MFP is larger than the thickness of the flow the diffuse part is the dominant part of the received signal. In the special case when the source signal frequency is close the electron plasma frequency, there can exist in the flow region Langmuir modes in addition to the EM modes. The radiation characteristics of EM source signals from the HSAV in this case are quite different.
Kirichok, A V; Pryimak, A V; Zagorodny, A G
2015-01-01
The development of one-dimensional parametric instabilities of intense long-wave plasma waves is considered in terms of the so-called hybrid models, when electrons are treated as a fluid and ions are regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model -- ZHM) or greater (Silin's hybrid model -- SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency (LF) oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. Reduced absorption of the HF field leads to the retardation of the HF field burnout within plasma density cavities and to the broadening of the HF spectrum. At the same time, the i...
Wang, Lei; Qi, Feng-Hua; Tang, Bing; Shi, Yu-Ying
2016-12-01
Under investigation in this paper is a variable-coefficient AB (vcAB) system, which describes marginally unstable baroclinic wave packets in geophysical fluids and ultra-short pulses in nonlinear optics. The modulation instability analysis of solutions with variable coefficients in the presence of a small perturbation is studied. The modified Darboux transformation (mDT) of the vcAB system is constructed via a gauge transformation. The first-order non-autonomous rogue wave solutions of the vcAB system are presented based on the mDT. It is found that the wave amplitude of B exhibits two types of structures, i.e. the double-peak structure appears if the plane-wave solution parameter ω is equal to zero, while selecting ω≠0 yields a single-peak one. Effects of the variable coefficients on the rogue waves are graphically discussed in detail. The periodic rogue wave and composite rogue wave are obtained with different inhomogeneous parameters. Additionally, the nonlinear tunneling of the rogue waves through a conventional hyperbolic nonlinear well and barrier are investigated.
PMP-2 Report: Equatorial Wave Dynamics
Hirota, I.
1982-01-01
The activities of the pre-MAP project 2 (PMP-2) from 1978 through 1981 are described. The following topics relating to the equatorial middle atmosphere are discussed briefly: (1) the semi-annual oscillation and Kelvin waves; (2) planetary Rossby waves; (3) upper mesospheric waves; and (4) gravity waves.
Shock instability in dissipative gases
Radulescu, Matei I.; Sirmas, Nick
2011-01-01
Previous experiments have revealed that shock waves in thermally relaxing gases, such as ionizing, dissociating and vibrationally excited gases, can become unstable. To date, the mechanism controlling this instability has not been resolved. Previous accounts of the D'yakov-Kontorovich instability, and Bethe-Zel'dovich-Thompson behaviour could not predict the experimentally observed instability. To address the mechanism controlling the instability, we study the propagation of shock waves in a ...
无
2010-01-01
A parallel algorithm and code MVFT(multi-viscous-fluid and turbulence) of large-eddy simulation(LES) is developed from our MVPPM(multi-viscous-fluid piecewise parabolic method),and performed to solve the multi compressible Navier-Stokes(N-S) equations.The effect of the unresolved subgrid-scale(SGS) motions on the large scales is represented by different SGS stress models in LES.A Richtmyer-Meshkov instability experiment of the evolution of a rectangular block of SF6,which occupies half of the height of the shock tube test section,following the interaction with a planar shock wave,is numerically and exhaustively simulated by this code.The comparison between experimental and simulated images of the evolving SF6 block shows that they are consistent.The numerical simulations reproduce the complex developing process of SF6 block,which grows overturningly.The geometric quantities that characterize the extents of SF6 block are also compared in detail between numerical simulations and experiment with good agreements between them,a quantitative demonstration of the developing law of SF6 block.There is an evident discrepancy between the three numerical simulations for the maximum position of the right edge of block at the late stage,because the right interface grows complicated and the dissipation is different for different SGS models.The SGS turbulent dissipation,molecular viscosity dissipation and SGS turbulent kinetic energy have been studied and analyzed.They have a similar distribution to the large eddy structures.The SGS turbulent dissipation is much greater than the molecular viscosity dissipation;the SGS turbulent dissipation of Vreman model is smaller than the Smagorinsky model.In general,the simulated results of Vreman SGS model are better compared with the dynamic viscosity and Smagorinsky SGS model.The vorticity and circulation deposition on the block interface have also been investigated.
Electron heat flux instability
Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.
2017-02-01
The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.
Wen, Xiao-Yong; Yan, Zhenya
2015-12-01
We study higher-order rogue wave (RW) solutions of the coupled integrable dispersive AB system (also called Pedlosky system), which describes the evolution of wave-packets in a marginally stable or unstable baroclinic shear flow in geophysical fluids. We propose its continuous-wave (CW) solutions and existent conditions for their modulation instability to form the rogue waves. A new generalized N-fold Darboux transformation (DT) is proposed in terms of the Taylor series expansion for the spectral parameter in the Darboux matrix and its limit procedure and applied to the CW solutions to generate multi-rogue wave solutions of the coupled AB system, which satisfy the general compatibility condition. The dynamical behaviors of these higher-order rogue wave solutions demonstrate both strong and weak interactions by modulating parameters, in which some weak interactions can generate the abundant triangle, pentagon structures, etc. Particularly, the trajectories of motion of peaks and depressions of profiles of the first-order RWs are explicitly analyzed. The generalized DT method used in this paper can be extended to other nonlinear integrable systems. These results may be useful for understanding the corresponding rogue-wave phenomena in fluid mechanics and related fields.
Wen, Xiao-Yong; Yan, Zhenya
2015-12-01
We study higher-order rogue wave (RW) solutions of the coupled integrable dispersive AB system (also called Pedlosky system), which describes the evolution of wave-packets in a marginally stable or unstable baroclinic shear flow in geophysical fluids. We propose its continuous-wave (CW) solutions and existent conditions for their modulation instability to form the rogue waves. A new generalized N-fold Darboux transformation (DT) is proposed in terms of the Taylor series expansion for the spectral parameter in the Darboux matrix and its limit procedure and applied to the CW solutions to generate multi-rogue wave solutions of the coupled AB system, which satisfy the general compatibility condition. The dynamical behaviors of these higher-order rogue wave solutions demonstrate both strong and weak interactions by modulating parameters, in which some weak interactions can generate the abundant triangle, pentagon structures, etc. Particularly, the trajectories of motion of peaks and depressions of profiles of the first-order RWs are explicitly analyzed. The generalized DT method used in this paper can be extended to other nonlinear integrable systems. These results may be useful for understanding the corresponding rogue-wave phenomena in fluid mechanics and related fields.
M EGHBALI; B FAROKHI; M ESLAMIFAR
2017-01-01
The nonlinear propagation of cylindrical and spherical dust-ion-acoustic (DIA) envelope solitary waves in unmagnetized dusty plasma consisting of dust particles with opposite polarity and non-extensive distribution of electron is investigated. By using the reductive perturbation method, the modified nonlinear Schrödinger (NLS) equation in cylindrical and spherical geometry is obtained. The modulational instability (MI) of DIA waves governed by the NLS equation is also presented. The effects of different ranges of the non-extensive parameter $q$ on the MI are studied. The growth rate of the MI is also given for different values of $q$. It is found that the basic features of the DIA waves are significantly modified by non-extensive electron distribution, polarity of the netdust-charge number density and non-planar geometry.
Eghbali, M.; Farokhi, B.; Eslamifar, M.
2017-01-01
The nonlinear propagation of cylindrical and spherical dust-ion-acoustic (DIA) envelope solitary waves in unmagnetized dusty plasma consisting of dust particles with opposite polarity and non-extensive distribution of electron is investigated. By using the reductive perturbation method, the modified nonlinear Schrödinger (NLS) equation in cylindrical and spherical geometry is obtained. The modulational instability (MI) of DIA waves governed by the NLS equation is also presented. The effects of different ranges of the non-extensive parameter q on the MI are studied. The growth rate of the MI is also given for different values of q. It is found that the basic features of the DIA waves are significantly modified by non-extensive electron distribution, polarity of the net dust-charge number density and non-planar geometry.
Kirichok, A. V., E-mail: sandyrcs@gmail.com; Kuklin, V. M.; Pryimak, A. V. [Institute for High Technologies, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022 (Ukraine); Zagorodny, A. G. [Bogolyubov Institute for Theoretical Physics, 14-b, Metrolohichna str., Kiev 03680 (Ukraine)
2015-09-15
The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.
Kirichok, A. V.; Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.
2015-09-01
The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.
刘铁路; 王云良; 路彦珍
2015-01-01
The nonlinear propagation of quantum ion acoustic wave (QIAW) is investigated in a four-component plasma com-posed of warm classical positive ions and negative ions, as well as inertialess relativistically degenerate electrons and positrons. A nonlinear Schr ¨odinger equation is derived by using the reductive perturbation method, which governs the dynamics of QIAW packets. The modulation instability analysis of QIAWs is considered based on the typical parameters of the white dwarf. The results exhibit that both in weakly relativistic limit and in ultrarelativistic limit, the modulational instability regions are sensitively dependent on the ratios of temperature and number density of negative ions to those of positive ions respectively, and on relativistically degenerate effect as well.
Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming; Ma, Jun
2017-01-01
Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed.
Yao, Yuangen; Deng, Haiyou; Ma, Chengzhang; Yi, Ming
2017-01-01
Spiral waves are observed in the chemical, physical and biological systems, and the emergence of spiral waves in cardiac tissue is linked to some diseases such as heart ventricular fibrillation and epilepsy; thus it has importance in theoretical studies and potential medical applications. Noise is inevitable in neuronal systems and can change the electrical activities of neuron in different ways. Many previous theoretical studies about the impacts of noise on spiral waves focus an unbounded Gaussian noise and even colored noise. In this paper, the impacts of bounded noise and rewiring of network on the formation and instability of spiral waves are discussed in small-world (SW) network of Hodgkin-Huxley (HH) neurons through numerical simulations, and possible statistical analysis will be carried out. Firstly, we present SW network of HH neurons subjected to bounded noise. Then, it is numerically demonstrated that bounded noise with proper intensity σ, amplitude A, or frequency f can facilitate the formation of spiral waves when rewiring probability p is below certain thresholds. In other words, bounded noise-induced resonant behavior can occur in the SW network of neurons. In addition, rewiring probability p always impairs spiral waves, while spiral waves are confirmed to be robust for small p, thus shortcut-induced phase transition of spiral wave with the increase of p is induced. Furthermore, statistical factors of synchronization are calculated to discern the phase transition of spatial pattern, and it is confirmed that larger factor of synchronization is approached with increasing of rewiring probability p, and the stability of spiral wave is destroyed. PMID:28129401
Prediction of Algebraic Instabilities
Zaretzky, Paula; King, Kristina; Hill, Nicole; Keithley, Kimberlee; Barlow, Nathaniel; Weinstein, Steven; Cromer, Michael
2016-11-01
A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A new methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to the governing differential equation (or dispersion relation) describing wave propagation in dispersive media. Several types of algebraic instabilities are explored in the context of both linear and nonlinear waves.
Eddy heat fluxes and stability of planetary waves. I, II
Lin, C. A.
1980-01-01
The stability of baroclinic Rossby waves in a zonal shear flow was analyzed by a linear, quasigeostrophic, two-level, adiabatic, and frictionless midlatitude beta-plane model. The ratio of the basic wave scale and the radius of deformation together with two nondimensional parameters which describe the amplitudes of the barotropic and baroclinic components of the basic wave constitute the three parameters of the stability problem. The parameter space is partitioned according to the dominant energy source for instability; the Lorenz and Kim conditions are characterized by significant horizontal and vertical shears of the basic wave, while the Phillips regime has a strong zonal flow. The stability analysis is then applied to the atmosphere, with the primary motivation being to examine the midlatitude planetary scale (zonal wavenumbers 1, 2, 3) transient waves that transport heat. It is found that the most unstable mode consists of a spectrum of waves, with a maximum amplitude at wavenumber 3; the response is thus maximum at a zonal scale intermediate between the basic wave scale and the radius of deformation.
Yano, T.; Nishino, K.; Ueno, I.; Matsumoto, S.; Kamotani, Y.
2017-04-01
This paper reports the sensitivity of hydrothermal wave (HTW) instability of Marangoni convection to the interfacial heat transfer in liquid bridges (LBs) of high Prandtl number fluids (Pr = 67, 112, and 207) formed under the microgravity environment on the International Space Station. The data for instability are collected for a wide range of AR and for TC = 15 and 20 °C, where AR is the aspect ratio (=height/diameter) of the LB and TC is the cooled disk temperature. A significant decrease in critical oscillation frequency as well as an appreciable decrease in the critical Marangoni number is observed for AR > 1.25. This drastic change of instability mechanisms is associated with the reversal of axial traveling direction of HTWs and roll-structures as reported previously. It is found that this reversal is closely related to the interfacial heat transfer, which is evaluated numerically through accounting for both convective and radiative components. A heat transfer ratio, QI/QH, is introduced as a dimensionless parameter for interfacial heat transfer, where QI and QH are the heat transfer rates at the LB-gas and LB-heated disk interfaces, respectively. It is found that HTWs travel in the same direction as the surface flow for QI/QH > 0 (heat-loss condition) while in the opposite direction for QI/QH alters slightly but appreciably the basic temperature and flow field, the alteration that is not accounted for in the previous linear stability analyses for an infinite LB.
di Fiore, Vincenzo; Aiello, Gemma; D'Argenio, Bruno
2011-02-01
We discuss a mathematical model for wave and run-up generated submarine landslides in the canyons of the Bay of Naples (Magnaghi-Dohrn canyon system). The morpho-bathymetry and submarine gravity instabilities of such incisions have been investigated through the interpretation of a high resolution DEM. The canyons are located in a sector of the bay where there is a variable interaction of volcanic activity (Phlegrean Fields and Ischia and Procida Islands) with sedimentary processes due to the Sarno-Sebeto rivers. At present the Naples canyon-system is inactive, as is shown by the Holocene sedimentary drapes deposited during the present sea-level highstand, but gravity instabilities occurred in the recent past at the canyons' heads. In particular the Dohrn Canyon is characterized by a double regressive head, while the Magnaghi Canyon shows a trilobate head, formed by the junction of three main tributary channels and coincident with the retreat of the shelf break around the 140 m isobath. The results of a simulation of failures in the above source areas show that the amplitude of wave run-up, expressed in terms of the sea floor depth percentage, may range up to 2.5 % of the water depth at the sea bottom.
Instability windows and evolution of rapidly rotating neutron stars
Gusakov, Mikhail E; Kantor, Elena M
2013-01-01
We consider an instability of rapidly rotating neutron stars in low-mass X-ray binaries (LMXBs) with respect to excitation of r-modes (which are analogous to Earth's Rossby waves controlled by the Coriolis force). We argue that finite temperature effects in the superfluid core of a neutron star lead to a resonance coupling and enhanced damping (and hence stability) of oscillation modes at certain stellar temperatures. We demonstrate that neutron stars with high spin frequency spend a substantial amount of time at these `resonance' temperatures. This finding allows us to explain puzzling observations of hot rapidly rotating neutron stars in LMXBs and to predict a new class of hot non-accreting rapidly rotating neutron stars, some of which may have already been observed and tentatively identified as quiescent LMXB (qLMXB) candidates. We also impose a new theoretical limit on the neutron star spin frequency, explaining the cut-off spin frequency ~730 Hz, following from the statistical analysis of accreting milli...
Coastal Kelvin waves and dynamics of Gulf of Aden eddies
Valsala, Vinu K.; Rao, Rokkam R.
2016-10-01
The Gulf of Aden (GA) is a small semi-enclosed oceanic region between the Red Sea and the western Arabian Sea. The GA is characterised with westward propagating cyclonic and anti-cyclonic eddies throughout the year. The genesis and propagation of these eddies into the GA have been the focus of several studies which concluded that oceanic instabilities (both barotropic and baroclinic) as well as the Rossby waves from the Arabian Sea are the responsible mechanisms for the presence and maintenance of these eddies. Using a high-resolution (~11 km) reduced gravity hydrodynamic layered model with controlled lateral boundary conditions at the three sides of the GA here we show yet another factor, the coastally propagating Kelvin waves along the coastal Arabia (coasts of Oman and Yemen), is also critically important in setting up a favourable condition for the oceanic instabilities and sustenance of meso-scale eddies in the GA. These Kelvin waves at both seasonal and intra-seasonal time scales are found play an important role in the timing and amplitudes of eddies observed in the GA.
Siddiki, Foisal B T; Amin, M R
2016-01-01
The basic features of linear and nonlinear quantum electron-acoustic (QEA) waves in a degenerate quantum plasma (containing non-relativistically degenerate electrons, superthermal or $\\kappa$-distributed electrons, and stationary ions) are theoretically investigated. The nonlinear Sch\\"{o}dinger (NLS) equation is derived by employing thereductive perturbation method. The stationary solitonic solution of the NLS equation are obtained, and examined analytically as well as numerically to identify the basic features of the QEA envelope solitons. It has been found that the effects of the degeneracy and exchange/Bohm potentials of cold electrons, and superthermality of hot electrons significantly modify the basic properties of linear and nonlinear QEA waves. It is observed that the QEA waves are modulationally unstable for $k
Modulation instability: The beginning
Zakharov, V. E.; Ostrovsky, L. A.
2009-03-01
We discuss the early history of an important field of “sturm and drang” in modern theory of nonlinear waves. It is demonstrated how scientific demand resulted in independent and almost simultaneous publications by many different authors on modulation instability, a phenomenon resulting in a variety of nonlinear processes such as envelope solitons, envelope shocks, freak waves, etc. Examples from water wave hydrodynamics, electrodynamics, nonlinear optics, and convection theory are given.
Wahlund, J.E.; Opgenoorth, H.J.; Persson, M.A.L. (Swedish Institute of Space Physics, Uppsala (Sweden)); Mishin, E.V.; Volokitin, A.S. (IZMIRAN, Troitsk, Moscow Region (Russian Federation)); Forme, F.R.E. (CNRS/CRPE (France))
1992-10-02
The authors propose an explanation for ion acoustic line spectra which have been observed by the EISCAT and Millstone Hill radars in the topside auroral ionosphere. They show that such lines can be generated in plasmas which are unstable to the ion-ion two-stream instability. This mechanism has the advantage of explaining the observed phenomena, and being consistent with typical conditions in the topside ionosphere.
Global 3D MHD Simulations of Waves in Accretion Discs
Romanova M.M.
2013-04-01
Full Text Available We discuss results of the first global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star’s magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zw|/r ~ 0.3 between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.
Csernai, László P; Papp, G
1995-01-01
The evolution of dynamical perturbations is examined in nuclear multifragmentation in the frame of Vlasov equation. Both plane wave and bubble type of perturbations are investigated in the presence of surface (Yukawa) forces. An energy condition is given for the allowed type of instabilities and the time scale of the exponential growth of the instabilities is calculated. The results are compared to the mechanical spinodal region predictions. PACS: 25.70 Mn
Machrafi, H.; Rednikov, A.; Colinet, P.; Dauby, P. C.
2015-05-01
A one-sided model of the thermal Marangoni instability owing to evaporation into an inert gas is developed. Two configurations are studied in parallel: a horizontal liquid layer and a spherical droplet. With the dynamic gas properties being admittedly negligible, one-sided approaches typically hinge upon quantifying heat and mass transfer through the gas phase by means of transfer coefficients (like in the Newton's cooling law), which in dimensionless terms eventually corresponds to using Biot numbers. Quite a typical arrangement encountered in the literature is a constant Biot number, the same for perturbations of different wavelengths and maybe even the same as for the reference state. In the present work, we underscore the relevance of accounting for its wave-number dependence, which is especially the case in the evaporative context with relatively large values of the resulting effective Biot number. We illustrate the effect in the framework of the Marangoni instability thresholds. As a concrete example, we consider HFE-7100 (a standard refrigerant) for the liquid and air for the inert gas.
Machrafi, H; Rednikov, A; Colinet, P; Dauby, P C
2015-05-01
A one-sided model of the thermal Marangoni instability owing to evaporation into an inert gas is developed. Two configurations are studied in parallel: a horizontal liquid layer and a spherical droplet. With the dynamic gas properties being admittedly negligible, one-sided approaches typically hinge upon quantifying heat and mass transfer through the gas phase by means of transfer coefficients (like in the Newton's cooling law), which in dimensionless terms eventually corresponds to using Biot numbers. Quite a typical arrangement encountered in the literature is a constant Biot number, the same for perturbations of different wavelengths and maybe even the same as for the reference state. In the present work, we underscore the relevance of accounting for its wave-number dependence, which is especially the case in the evaporative context with relatively large values of the resulting effective Biot number. We illustrate the effect in the framework of the Marangoni instability thresholds. As a concrete example, we consider HFE-7100 (a standard refrigerant) for the liquid and air for the inert gas.
Ohlin, Kjell; Berggren, Karl Fredrik
2016-07-01
Faraday first characterised the behaviour of a fluid in a container subjected to vertical periodic oscillations. His study pertaining to hydrodynamic instability, the ‘Faraday instability’, has catalysed a myriad of experimental, theoretical, and numerical studies shedding light on the mechanisms responsible for the transition of a system at rest to a new state of well-ordered vibrational patterns at fixed frequencies. Here we study dual strata in a shallow vessel containing distilled water and high-viscosity lubrication oil on top of it. At elevated driving power, beyond the Faraday instability, the top stratum is found to ‘freeze’ into a rigid pattern with maxima and minima. At the same time there is a dynamic crossover into a new state in the form of a lattice of recirculating vortices in the lower layer containing the water. Instrumentation and the physics behind are analysed in a phenomenological way together with a basic heuristic modelling of the wave field. The study, which is based on relatively low-budget equipment, stems from related art projects that have evolved over the years. The study is of value within basic research as well as in education, especially as more advanced collective project work in e.g. engineering physics, where it invites further studies of pattern formation, the emergence of vortex lattices and complexity.
Otubo, Kosuke; Ogura, Kazuo; Yamakawa, Mitsuhisa; Takashima, Yusuke
2010-01-01
Three kinds of models are used for beam instability analyses: those based on a solid beam, an infinitesimally thin annular beam, and a finitely thick annular beam. In high-power experiments, the electron beam is an annulus of finite thickness. In this paper, a numerical code for a sinusoidally corrugated waveguide with a finitely thick annular beam is presented and compared with other models. Our analysis is based on a new version of the self-consistent linear theory that takes into account t...
Assessing Upper Tropospheric Jet Streak Proximity Using the Rossby Radius of Deformation
Joshua S. Kastman
2016-12-01
Full Text Available The Rossby radius of deformation is a parameter that describes the relative role of buoyant and inertial forces for atmospheric phenomena in a flow regime. It will be demonstrated that it can also be used to determine whether or not forcing for vertical motions in the region between upper level tropospheric jet streaks overlaps or interacts. Using predefined points in the entrance and exit regions of neighboring upper level jet streaks, the distance between them is calculated for each event. If they are closer than twice the Rossby radius of deformation, the resulting region affected by both streaks is termed the Rossby Radius of Deformation Overlap Zone (RRDOZ. Plan-view and cross-sectional analysis shows that ageostrophic transverse circulations within the RRDOZ led to enhanced upward vertical velocities as predicted in prior research. Lastly, a short-term climatology for overlap events in North America is derived, and these are classified according to three proposed archetypes.
Observation and backward trajectory of an inertio-gravity wave in the lower stratosphere
A. Hertzog
Full Text Available A Doppler lidar observation of an inertio-gravity wave in the mid-latitude lower stratosphere is presented. The wave packet characteristics (vertical and horizontal wavenumbers, intrinsic and apparent frequencies are inferred from the analysis of the hodograph of the horizontal wind fluctuations. Those parameters are used as initial conditions for the calculation of the wave packet trajectory backwards in time in the atmosphere. These calculations are realized by ray-tracing techniques, with background fields (wind and stability provided by the European Center for Medium-Range Weather Forecasting analyses. Sensitivity tests are performed in order to estimate the robustness of the computed trajectory. It is argued that the generation of the wave has taken place in the upper troposphere, where evidence of large synoptic scale Rossby wave disturbances are found. Our results support the fact that geostrophic adjustment (and possibly shear instabilities associated with such disturbances could be an effective mechanism for the generation of inertia-gravity waves in the mid-latitude.
Key words. Meteorology and atmospheric dynamics, mesoscale meteorology, waves and tides, instruments and techniques
Secondary instabilities of linearly heated falling films
HU Jun; SUN Dejun; HU Guohui; YIN Xieyuan
2005-01-01
Secondary instabilities of linearly heated failing films are studied through three steps. Firstly, the analysis of the primary linear instability on Miladinova's long wave equation of the linearly heated film is performed. Secondly, the similar Landau equation is derived through weak nonlinear theory, and a two-dimensional nonlinear saturation solution of primary instability is obtained within the weak nonlinear domain. Thirdly, the secondary (three-dimensional) instability of the two-dimensional wave is studied by the Floquet theorem.Our secondary instability analysis shows that the Marangoni number has destabilization effect on the secondary instability.
Antonelli, L.; Köster, P.; Folpini, G.; Maheut, Y.; Baffigi, F.; Cristoforetti, G.; Labate, L.; Levato, T.; Gizzi, L. A.; Consoli, F.; De Angelis, R.; Kalinowska, Z.; Chodukowski, T.; Rosinski, M.; Parys, P.; Pisarczyk, T.; Raczka, P.; Ryc, L.; Badziak, J.; Wolowski, J.; Smid, M.; Renner, O.; Krousky, E.; Pfeifer, M.; Skala, J.; Ullschmied, J.; Nicolaï, P.; Ribeyre, X.; Shurtz, G.; Atzeni, S.; Marocchino, A.; Schiavi, A.; Spindloe, C.; Dell, T. O.; Rhee, Y. J.; Richetta, M.; Batani, D.
2016-03-01
We present experimental results at intensities relevant to Shock Ignition obtained at the sub-ns Prague Asterix Laser System in 2012. We studied shock waves produced by laser-matter interaction in presence of a pre-plasma. We used a first beam at 1ω (1315 nm) at 7 x 1013 W/cm2 to create a pre-plasma on the front side of the target and a second at 3ω (438 nm) at ∼ 1016 W/cm2 to create the shock wave. Multilayer targets composed of 25 (or 40 µm) of plastic (doped with Cl), 5 µm of Cu (for Kα diagnostics) and 20 µm of Al for shock measurement were used. We used X-ray spectroscopy of Cl to evaluate the plasma temperature, Kα imaging and spectroscopy to evaluate spatial and spectral properties of the fast electrons and a streak camera for shock breakout measurements. Parametric instabilities (Stimulated Raman Scattering, Stimulated Brillouin Scattering and Two Plasmon Decay) were studied by collecting the back scattered light and analysing its spectrum. Back scattered energy was measured with calorimeters. To evaluate the maximum pressure reached in our experiment we performed hydro simulations with CHIC and DUED codes. The maximum shock pressure generated in our experiment at the front side of the target during laser-interaction is 90 Mbar. The conversion efficiency into hot electrons was estimated to be of the order of ∼ 0.1% and their mean energy in the order ∼50 keV.
Eddy length scales and the Rossby radius in the Arctic Ocean
A. J. G. Nurser
2013-10-01
Full Text Available The first (and second baroclinic deformation (or Rossby radii are presented and discussed north of ~60° N, focusing on deep basins and shelf seas in the high Arctic Ocean, the Nordic Seas, Baffin Bay, Hudson Bay and the Canadian Arctic Archipelago, derived from high-resolution ice-ocean general circulation model output. Comparison of the model output with measured results shows that low values of the Rossby radius (in shallow water and high values (in the Canada Basin are accurately reproduced, while intermediate values (in the region of the Makarov and Amundsen Basins are overestimated. In the high Arctic Ocean, the first Rossby radius increases from ~5 km in the Nansen Basin to ~15 km in the central Canadian Basin. In the shelf seas and elsewhere, values are low (1–7 km, reflecting weak density stratification, shallow water, or both. Seasonality only strongly impacts the Rossby radii in shallow seas where winter homogenisation of the water column can reduce it to the order of 100 m. We also offer an interpretation and explanation of the observed scales of Arctic Ocean eddies.
Yakovenko, S. N.
2016-06-01
Scenarios of the transition to turbulence in overturning lee waves generated by the two-dimensional obstacle in a stably stratified flow have been explored by visualization of velocity and scalar (density) fields, with analysis of spanwise spectra. The results are obtained by numerical solution of the continuity, Navier-Stokes and scalar equations for stratified fluid with the Boussinesq approximation, for varied Reynolds and Prandtl numbers relating to tank experiments, situations in atmosphere and oceans. Based on the computed data, the dependence of the most unstable perturbation wavelength on Reynolds and Prandtl numbers is derived.
Streaming instability in negative ion plasma
Kumar, Ajith; Mathew, Vincent
2017-09-01
The streaming instability in an unmagnetized negative ion plasma has been studied by computational and theoretical methods. A one dimensional electrostatic Particle In Cell Simulation and fluid dynamical description of negative ion plasma showed that, if the positive ions are having a relative streaming velocity, four different wave modes corresponding to Langmuir wave, fast and slow ion waves and ion acoustic waves are produced. Below a critical wave number, instead of two distinct fast and slow ion waves, we observed a coupled wave mode. The value of the critical wave number is strongly determined by the ion streaming velocity. The thermal velocities of electrons and ions influence the growth rate of instability.
Cai, Xuguang; Yuan, Tao; Zhao, Yucheng; Pautet, Pierre-Dominique; Taylor, Mike J.; Pendleton, W. R.
2014-08-01
The impacts of gravity wave (GW) on the thermal and dynamic characteristics within the mesosphere/lower thermosphere, especially on the atmospheric instabilities, are still not fully understood. In this paper, we conduct a comprehensive and detailed investigation on one GW breaking event during a collaborative campaign between the Utah State University Na lidar and the Advanced Mesospheric Temperature Mapper (AMTM) on 9 September 2012. The AMTM provides direct evidence of the GW breaking as well as the horizontal parameters of the GWs involved, while the Na lidar's full diurnal cycle observations are utilized to uncover the roles of tide and GWs in generating a dynamical instability layer. By studying the changes of the OH layer peak altitude, we located the wave breaking altitude as well as the significance of a 2 h wave that are essential to this instability formation. By reconstructing the mean fields, tidal and GW variations during the wave breaking event, we find that the large-amplitude GWs significantly changed the Brunt-Vaisala frequency square and the horizontal wind shear when superimposed on the tidal wind, producing a transient dynamic unstable region between 84 km and 87 km around 11:00 UT that caused a subsequent small-scale GW breaking.
Das, Tanmoy
2016-07-01
We study directional dependent band gap evolutions and metal-insulator transitions (MITs) in model quantum wire systems within the spin-orbit density wave (SODW) model. The evolution of MIT is studied as a function of varying anisotropy between the intra-wire hopping ({{t}\\parallel} ) and inter-wire hopping ({{t}\\bot} ) with Rashba spin-orbit coupling. We find that as long as the anisotropy ratio (β ={{t}\\bot}/{{t}\\parallel} ) remains below 0.5, and the Fermi surface nesting is tuned to {{\\mathbf{Q}}1}=≤ft(π,0\\right) , an exotic SODW induced MIT easily develops, with its critical interaction strength increasing with increasing anisotropy. As β \\to 1 (2D system), the nesting vector switches to {{\\mathbf{Q}}2}=≤ft(π,π \\right) , making this state again suitable for an isotropic MIT. Finally, we discuss various physical consequences and possible applications of the directional dependent MIT.
Observation of Parametric Instability in Advanced LIGO
Evans, Matthew; Fritschel, Peter; Miller, John; Barsotti, Lisa; Martynov, Denis; Brooks, Aidan; Coyne, Dennis; Abbott, Rich; Adhikari, Rana; Arai, Koji; Bork, Rolf; Kells, Bill; Rollins, Jameson; Smith-Lefebvre, Nicolas; Vajente, Gabriele; Yamamoto, Hiroaki; Derosa, Ryan; Effler, Anamaria; Kokeyama, Keiko; Betzweiser, Joseph; Frolov, Valera; Mullavey, Adam; O`Reilly, Brian; Dwyer, Sheila; Izumi, Kiwamu; Kawabe, Keita; Landry, Michael; Sigg, Daniel; Ballmer, Stefan; Massinger, Thomas J; Staley, Alexa; Mueller, Chris; Grote, Hartmut; Ward, Robert; King, Eleanor; Blair, David; Ju, Li; Zhao, Chunnong
2015-01-01
Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this work we describe the first observation of parametric instability in an Advanced LIGO detector, and the means by which it has been removed as a barrier to progress.
Circulation in blast driven instabilities
Henry de Frahan, Marc; Johnsen, Eric
2016-11-01
Mixing in many natural phenomena (e.g. supernova collapse) and engineering applications (e.g. inertial confinement fusion) is often initiated through hydrodynamic instabilities. Explosions in these systems give rise to blast waves which can interact with perturbations at interfaces between different fluids. Blast waves are formed by a shock followed by a rarefaction. This wave profile leads to complex time histories of interface acceleration. In addition to the instabilities induced by the acceleration field, the rarefaction from the blast wave decompresses the material at the interface, further increasing the perturbation growth. After the passage of the wave, circulation circulation generated by the blast wave through baroclinic vorticity continues to act upon the interface. In this talk, we provide scaling laws for the circulation and amplitude growth induced by the blast wave. Numerical simulations of the multifluid Euler equations solved using a high-order accurate Discontinuous Galerkin method are used to validate the theoretical results.
A dispersive wave pattern on Jupiter's fastest retrograde jet at 20°S
Rogers, J. H.; Fletcher, L. N.; Adamoli, G.; Jacquesson, M.; Vedovato, M.; Orton, G. S.
2016-10-01
A compact wave pattern has been identified on Jupiter's fastest retrograding jet at 20°S (the SEBs) on the southern edge of the South Equatorial Belt. The wave has been identified in both reflected sunlight from amateur observations between 2010 and 2015, thermal infrared imaging from the Very Large Telescope and near infrared imaging from the Infrared Telescope Facility. The wave pattern is present when the SEB is relatively quiescent and lacking large-scale disturbances, and is particularly notable when the belt has undergone a fade (whitening). It is generally not present when the SEB exhibits its usual large-scale convective activity ('rifts'). Tracking of the wave pattern and associated white ovals on its southern edge over several epochs have permitted a measure of the dispersion relationship, showing a strong correlation between the phase speed (-43.2 to -21.2 m/s) and the longitudinal wavelength, which varied from 4.4 to 10.0° longitude over the course of the observations. Infrared imaging sensing low pressures in the upper troposphere suggest that the wave is confined to near the cloud tops. The wave is moving westward at a phase speed slower (i.e., less negative) than the peak retrograde wind speed (-62 m/s), and is therefore moving east with respect to the SEBs jet peak. Unlike the retrograde NEBn jet near °N, which is a location of strong vertical wind shear that sometimes hosts Rossby wave activity, the SEBs jet remains retrograde throughout the upper troposphere, suggesting the SEBs pattern cannot be interpreted as a classical Rossby wave. 2D windspeeds and thermal gradients measured by Cassini in 2000 are used to estimate the quasi-geostrophic potential vorticity gradient as a means of understanding the origin of the a wave. We find that the vorticity gradient is dominated by the baroclinic term and becomes negative (changes sign) in a region near the cloud-top level (400-700 mbar) associated with the SEBs. Such a sign reversal is a necessary (but
2016-12-13
their mitigation with applications in scaling of pulsed and continuous- wave high- energy lasers Balaji Srinivasan INDIAN INSTITUTE OF TECHNOLOGY...high- energy lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-15-1-5044 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Balaji Srinivasan 5d...use of vortex beams to mitigate thermal mode instability in high energy fiber amplifiers. The investigation is carried out through (1) the
Secondary instability in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1979-01-01
The stability of a secondary Tollmien-Schlichting wave, whose wavenumber and frequency are nearly one half those of a fundamental Tollmien-Schlichting instability wave is analyzed using the method of multiple scales. Under these conditions, the fundamental wave acts as a parametric exciter for the secondary wave. The results show that the amplitude of the fundamental wave must exceed a critical value to trigger this parametric instability. This value is proportional to a detuning parameter which is the real part of k - 2K, where k and K are the wavenumbers of the fundamental and its subharmonic, respectively. For Blasius flow, the critical amplitude is approximately 29% of the mean flow, and hence many other secondary instabilities take place before this parametric instability becomes significant. For other flows where the detuning parameter is small, such as free-shear layer flows, the critical amplitude can be small, thus the parametric instability might play a greater role.
The Relationship Between Mixed Rossby-Gravity Waves and Convection in a General Circulation Model
Peter G., Hess; Harry H., Hendon; David S., Battisti; 米国大気研究センター; 米国コロラド大学大気理論・解析センター; ワシントン大学大気科学教室; National Center for Atmospheric Research; Center for Atmospheric Theory and Analysis, University of Colorado; Department of Atmospheric Sciences, University of Washington
1993-01-01
大気大循環モデルで再現された混合ロスビー・重力波(MRGW)と対流との関係を調べた。下層の境界条件として全領域で海洋を与えた大気大循環モデルを用いて数値実験を行った。対流のパラメタリゼーションの方式(修正したKuo方式と対流調節法)や熱帯の海面水温(東西方向には一様)を変えて幾つかの数値実験を行った。その結果、実験毎にITCZ(熱帯収束帯)の位置が変化することがわかった。赤道を挟んで2つのITCZが存在するような海面水温分布を与えた時、活発なMRGWが現れる。モデルに現れたMRGWの構造や強さは、海面水温分布や対流のパラメタリゼーションに左右される。MRGWが最も活発な実験の時の波の垂直構造を調べた。その結果、対流圏中・下層では対流活動に呼応して異なった東西スケールを持った幾つかのMRGWが存在するが、上部対流圏や下部成層圏では長い波長の波しか存在しないことがわかった。...
Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves
2017-05-09
to the vertical velocity such as vertical mixing or Ekman pumping, or any combination thereof, an ML heat budget is calculated using observations and...achievable using observations for the region and time periods of interest. As a result, the residual, R, includes temperature tendencies due to Ekman pumping
Observational evidence of mixed rossby gravity waves at the central equatorial Indian Ocean
Muraleedharan, P.M.; PrasannaKumar, S.; Mohankumar, K.; Sijikumar, S.; Sivakumar, K.U.; Mathew, T.
campaign. One-degree interval soundings were also taken along a meridional section at 83ºE from 5ºN to 5ºS during 12–20 October 2011 to supplement the time series data. Relative humidity (RH) and meridional wind component exhibit downward propagation of air...
Krysinski, Tomasz
2013-01-01
This book presents a study of the stability of mechanical systems, i.e. their free response when they are removed from their position of equilibrium after a temporary disturbance. After reviewing the main analytical methods of the dynamical stability of systems, it highlights the fundamental difference in nature between the phenomena of forced resonance vibration of mechanical systems subjected to an imposed excitation and instabilities that characterize their free response. It specifically develops instabilities arising from the rotor-structure coupling, instability of control systems, the se
K.Y. Ng
2003-08-25
The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.
Instability in Shocked Granular Gases
Sirmas, Nick; Radulescu, Matei
2013-01-01
Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.
Instability in shocked granular gases
Sirmas, Nick; Falle, Sam; Radulescu, Matei
2014-05-01
Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.
李旦望; 李晓东; 李小艳; 胡方强
2012-01-01
在管道后传声的数值模拟中,必须考虑平均流剪切层的散射效应,然而在非均匀剪切流动下时域求解线化欧拉方程会面临Kelvin-Helmholtz不稳定波产生和放大的难题。已有的不稳定波抑制技术通常很难获得令人满意的结果。本文采用一种混合方法,首先引入有限时段的宽频声源波包将声波和不稳定波分离,进而采用声源滤波器技术对不稳定波进行抑制。数值验证算例选择半无限长轴对称环形硬壁直管道,采用计算气动声学方法时域求解2.5维线化欧拉方程,无背景流动的数值解与解析解符合很好,验证了程序的精度与可靠性,非均匀流动算例则表明所采用波包加声源滤波器混合方法对不稳定波抑制效果明显,对声场影响很小,充分显示了该方法的精度与可行性。%The scattering effects from mean flow shear layer should be accounted for in the numerical simulation of sound propagation from aft ducts.However,the time domain simulation of the linearized Euler equation has to face the difficulties of the generation and amplification of Kelvin-Helmholtz instability waves in non-uniform shear flows.The available methods for the suppression of the instability waves are difficult to give satisfactory results.The main objective of this paper is to check the feasibility of a hybrid method.Firstly,a broadband sound source wave packet with limited time span is introduced for the separation of acoustic waves from instability waves.Then,a source filtering technique is adopted to suppress the instability waves.Half infinitely length annular ducts are selected for numerical validations.The 2.5D linearized Euler equations are solved in the time domain with a computational aeroacoustics approach.Numerical results agree fairly well with analytical solutions for no mean flow cases which show the accuracy and reliability.Furthermore,it is demonstrated that the wave packet method with the help of source
Jinzhong Min
2013-05-01
Full Text Available Recent satellite data and modeling studies indicate a pronounced role Tropical Instability Waves (TIW-induced wind feedback plays in the tropical Pacific climate system. Previously, remotely sensed data were used to derive a diagnostic model for TIW-induced wind stress perturbations (τTIW, which was embedded into an ocean general circulation model (OGCM to take into account TIW-induced ocean-atmosphere coupling in the tropical Pacific. While the previous paper by Zhang (2013 is concerned with the effect on the mean ocean state, the present paper is devoted to using the embedded system to examine the effects on TIW activity in the ocean, with τTIW being interactively determined from TIW-scale sea surface temperature (SSTTIW fields generated in the OGCM, written as τTIW = αTIW·F(SSTTIW, where αTIW is a scalar parameter introduced to represent the τTIW forcing intensity. Sensitivity experiments with varying αTIW (representing TIW-scale wind feedback strength are performed to illustrate a negative feedback induced by TIW-scale air-sea coupling and its relationship with TIW variability in the ocean. Consistent with previous modeling studies, TIW wind feedback tends to have a damping effect on TIWs in the ocean, with a general inverse relationship between the τTIW intensity and TIWs. It is further shown that TIW-scale coupling does not vary linearly with αTIW: the coupling increases linearly with intensifying τTIW forcing at low values of αTIW (in a weak τTIW forcing regime; it becomes saturated at a certain value of αTIW; it decreases when αTIW goes above a threshold value as the τTIW forcing increases further. This work presents a clear demonstration of using satellite data to effectively represent TIW-scale wind feedback and its multi-scale interactions with large-scale ocean processes in the tropical Pacific.
Zhang, Rong-Hua
2016-10-01
Tropical Instability Waves (TIWs) and the El Niño-Southern Oscillation (ENSO) are two air-sea coupling phenomena that are prominent in the tropical Pacific, occurring at vastly different space-time scales. It has been challenging to adequately represent both of these processes within a large-scale coupled climate model, which has led to a poor understanding of the interactions between TIW-induced feedback and ENSO. In this study, a novel modeling system was developed that allows representation of TIW-scale air-sea coupling and its interaction with ENSO. Satellite data were first used to derive an empirical model for TIW-induced sea surface wind stress perturbations (τTIW). The model was then embedded in a basin-wide hybrid-coupled model (HCM) of the tropical Pacific. Because τTIW were internally determined from TIW-scale sea surface temperatures (SSTTIW) simulated in the ocean model, the wind-SST coupling at TIW scales was interactively represented within the large-scale coupled model. Because the τTIW-SSTTIW coupling part of the model can be turned on or off in the HCM simulations, the related TIW wind feedback effects can be isolated and examined in a straightforward way. Then, the TIW-scale wind feedback effects on the large-scale mean ocean state and interannual variability in the tropical Pacific were investigated based on this embedded system. The interactively represented TIW-scale wind forcing exerted an asymmetric influence on SSTs in the HCM, characterized by a mean-state cooling and by a positive feedback on interannual variability, acting to enhance ENSO amplitude. Roughly speaking, the feedback tends to increase interannual SST variability by approximately 9%. Additionally, there is a tendency for TIW wind to have an effect on the phase transition during ENSO evolution, with slightly shortened interannual oscillation periods. Additional sensitivity experiments were performed to elucidate the details of TIW wind effects on SST evolution during ENSO
The Hilsch Tube, Rossby Vortices, and a Carnot Engine: Angular Momentum Transport in Astrophysics
Beckley, Howard F.; Klein, B.; Milburn, M.; Schindel, P.; Westpfahl, D. J.; Teare, S.; Li, H.; Colgate, S. A.
2008-05-01
We are attempting to demonstrate that the common laboratory vortex or Hilsch tube is a paradigm for the angular momentum transport by Rossby vortices in Keplerian accretion disks, either in super massive black hole formation or in star formation. Near supersonic rotating flow is induced in a cylinder by gas pressure injected through a tangential nozzle in a typical Ranque vortex or Hilsch tube. The gas exits through both an on-axis hole and a peripheral radially-aligned hole. The surprising result, demonstrated in hundreds of class rooms, is that one of the exit gas streams is hot and the other is cold. Depressing is that the typical explanation is given in terms of a "Maxwell daemon” that separates hot molecules from cold molecules, just as is the basis of any perpetual motion machine that violates the second law of thermodynamics. Instead we believe that the rotational flow is unstable to the formation of Rossby vortices that co-rotate with the azimuthal flow and act like semi-ridged turbine vanes. These quasi-vanes act like a Carnot turbine engine to the flow that escapes on axis and is therefore cooled by doing work. With the resulting free-energy, the vortices accelerate the peripheral flow which in turn becomes hot by friction with the cylinder wall. As a first step we expect to demonstrate that a free-running turbine, where metal vanes form the Carnot engine, will demonstrate the temperature effect. Such a suggestive result may lead to funding of time-dependent Schlerian photography of a vortex tube that can demonstrate the formation and pressure distribution of the Rossby vortices and coherent transport of angular momentum. This work is supported by a cooperative agreement between the New Mexico Institute of Mining and Technology, the University of California, Los Alamos National Laboratory, and the U.S. Dept. of Energy.
Equatorial Oceanic Waves and the Evolution of 2007 Positive Indian Ocean Dipole
Iskhaq Iskandar
2014-01-01
Full Text Available The role of equatorial oceanic waves on the evolution of the 2007 positive Indian Ocean Dipole (pIOD event was evaluated using available observations and output from a quasi-analytical linear wave model. It was found that the 2007 pIOD event was a weak and short-lived event: developed in the mid-summer (July, matured in the early-fall (September, and terminated in the mid-fall (October. The evolution of the 2007 pIOD event was linked to the equatorial wave dynamics. The event development was associated with the generation of upwelling equatorial Kelvin waves (westward current anomalies generated by easterly wind anomalies. The event termination was associated with the occurrence of eastward zonal current anomalies resulting from a complex interplay between the wind-forced down welling Kelvin waves and the eastern-boundary-reflected Rossby waves. Results from a quasi-analytical linear wave model show that during the event development and maturation, the wind-forced Kelvin waves played a dominant role in generating zonal current anomalies along the equatorial Indian Ocean, while the eastern-boundary-reflected Rossby waves tended to weaken the wind-forced Kelvin wave signals. During the event termination our model shows that the initiation of anomalous eastward current resulted from the reflected Rossby waves at the eastern boundary. The wind-forced Kelvin waves associated with the seasonal reversal of the monsoon further strengthened the eastward zonal currents generated by the boundary-generated Rossby waves in late-October/early-November. This highlights the importance of the eastern-boundary-reflected Rossby waves on the IOD event termination.
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...
Wang, Chun-Ni; Ma, Jun; Tang, Jun; Li, Yan-Long
2010-02-01
Spiral wave could be observed in the excitable media, the neurons are often excitable within appropriate parameters. The appearance and formation of spiral wave in the cardiac tissue is linked to monomorphic ventricular tachycardia that can denervate into polymorphic tachycardia and ventricular fibrillation. The neuronal system often consists of a large number of neurons with complex connections. In this paper, we theoretically study the transition from spiral wave to spiral turbulence and homogeneous state (death of spiral wave) in two-dimensional array of the Hindmarsh-Rose neuron with completely nearest-neighbor connections. In our numerical studies, a stable rotating spiral wave is developed and selected as the initial state, then the bifurcation parameters are changed to different values to observe the transition from spiral wave to homogeneous state, breakup of spiral wave and weak change of spiral wave, respectively. A statistical factor of synchronization is defined with the mean field theory to analyze the transition from spiral wave to other spatial states, and the snapshots of the membrane potentials of all neurons and time series of mean membrane potentials of all neurons are also plotted to discuss the change of spiral wave. It is found that the sharp changing points in the curve for factor of synchronization vs. bifurcation parameter indicate sudden transition from spiral wave to other states. And the results are independent of the number of neurons we used.
2009-01-01
Las ondas de Rossby son fundamentales en la dinámica de gran escala del océano. No obstante, sólo a partir del análisis de altimetría satelital durante la década pasada, su presencia fue confirmada en gran parte de los océanos del mundo. Uno de los resultados más relevantes de estas observaciones fue que las velocidades de fase estimadas para las ondas de Rossby en latitudes medias fueron alrededor del doble de las velocidades predichas por la teoría estándar. Desde entonces, se han realizado...
2009-01-01
Las ondas de Rossby son fundamentales en la dinámica de gran escala del océano. No obstante, sólo a partir del análisis de altimetría satelital durante la década pasada, su presencia fue confirmada en gran parte de los océanos del mundo. Uno de los resultados más relevantes de estas observaciones fue que las velocidades de fase estimadas para las ondas de Rossby en latitudes medias fueron alrededor del doble de las velocidades predichas por la teoría estándar. Desde entonces, se han realiz...
D'Angelo, N.
1967-01-01
A recombination instability is considered which may arise in a plasma if the temperature dependence of the volume recombination coefficient, alpha, is sufficiently strong. Two cases are analyzed: (a) a steady-state plasma produced in a neutral gas by X-rays or high energy electrons; and (b) an af...
Resonance Van Hove Singularities in Wave Kinetics
Shi, Yi-Kang
2015-01-01
Wave kinetic theory has been developed to describe the statistical dynamics of weakly nonlinear, dispersive waves. However, we show that systems which are generally dispersive can have resonant sets of wave modes with identical group velocities, leading to a local breakdown of dispersivity. This shows up as a geometric singularity of the resonant manifold and possibly as an infinite phase measure in the collision integral. Such singularities occur widely for classical wave systems, including acoustical waves, Rossby waves, helical waves in rotating fluids, light waves in nonlinear optics and also in quantum transport, e.g. kinetics of electron-hole excitations (matter waves) in graphene. These singularities are the exact analogue of the critical points found by Van Hove in 1953 for phonon dispersion relations in crystals. The importance of these singularities in wave kinetics depends on the dimension of phase space $D=(N-2)d$ ($d$ physical space dimension, $N$ the number of waves in resonance) and the degree ...
The acoustic instabilities in magnetized collisional dusty plasmas
Pandey, B. P., E-mail: birendra.pandey@mq.edu.au [Department of Physics and Astrophysics, Macquarie University, Sydney, NSW 2109 (Australia); Vladimirov, S. V., E-mail: s.vladimirov@physics.usyd.edu.au [Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St. Petersburg 199034 (Russian Federation); Dwivedi, C. B., E-mail: jagatpurdwivedi@gmail.com [Ved–Vijnanam Pravartanam Samitihi, Pratapgarh (Awadh), Jagatpur, Bharat (India)
2014-09-15
The present work investigates the wave propagation in collisional dusty plasmas in the presence of electric and magnetic field. It is shown that the dust ion-acoustic waves may become unstable to the reactive instability whereas dust-acoustic waves may suffer from both reactive and dissipative instabilities. If the wave phase speed is smaller than the plasma drift speed, the instability is of reactive type whereas in the opposite case, the instability becomes dissipative in nature. Plasma in the vicinity of dust may also become unstable to reactive instability with the instability sensitive to the dust material: dielectric dust may considerably quench this instability. This has implications for the dust charging and the use of dust as a probe in the plasma sheath.
Singlet and triplet instability theorems
Yamada, Tomonori; Hirata, So
2015-09-01
A useful definition of orbital degeneracy—form-degeneracy—is introduced, which is distinct from the usual energy-degeneracy: Two canonical spatial orbitals are form-degenerate when the energy expectation value in the restricted Hartree-Fock (RHF) wave function is unaltered upon a two-electron excitation from one of these orbitals to the other. Form-degenerate orbitals tend to have isomorphic electron densities and occur in the highest-occupied and lowest-unoccupied molecular orbitals (HOMOs and LUMOs) of strongly correlated systems. Here, we present a mathematical proof of the existence of a triplet instability in a real or complex RHF wave function of a finite system in the space of real or complex unrestricted Hartree-Fock wave functions when HOMO and LUMO are energy- or form-degenerate. We also show that a singlet instability always exists in a real RHF wave function of a finite system in the space of complex RHF wave functions, when HOMO and LUMO are form-degenerate, but have nonidentical electron densities, or are energy-degenerate. These theorems provide Hartree-Fock-theory-based explanations of Hund's rule, a singlet instability in Jahn-Teller systems, biradicaloid electronic structures, and a triplet instability during some covalent bond breaking. They also suggest (but not guarantee) the spontaneous formation of a spin density wave (SDW) in a metallic solid. The stability theory underlying these theorems extended to a continuous orbital-energy spectrum proves the existence of an oscillating (nonspiral) SDW instability in one- and three-dimensional homogeneous electron gases, but only at low densities or for strong interactions.
Nonlinear electrostatic drift Kelvin-Helmholtz instability
Sharma, Avadhesh C.; Srivastava, Krishna M.
1993-01-01
Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves, and the nonlinear behavior is governed by the nonlinear Burger's equation.
Evaporative instabilities in climbing films
Hosoi, A. E.; Bush, John W. M.
2001-09-01
We consider flow in a thin film generated by partially submerging an inclined rigid plate in a reservoir of ethanol or methanol water solution and wetting its surface. Evaporation leads to concentration and surface tension gradients that drive flow up the plate. An experimental study indicates that the climbing film is subject to two distinct instabilities. The first is a convective instability characterized by flattened convection rolls aligned in the direction of flow and accompanied by free-surface deformations; in the meniscus region, this instability gives rise to pronounced ridge structures aligned with the mean flow. The second instability, evident when the plate is nearly vertical, takes the form of transverse surface waves propagating up the plate.
Jeans instability in the linearized Burnett regime
García-Colin, L S
2005-01-01
Jeans instability is derived for the case of a low density self-gravitating gas beyond the Navier-Stokes equations. The Jeans instability criterium is shown to depend on a Burnett coefficient if the formalism is taken up to fourth order in the wave number. It is also shown that previously known viscosity corrections to the Jeans wave-number are enhanced if the full fourth order formalism is applied to the stability analysis.
Instabilities at planetary gap edges in 3D self-gravitating disks
Lin Min-Kai
2013-04-01
Full Text Available Numerical simulations are presented to study the stability of gaps opened by giant planets in 3D self-gravitating disks. In weakly self-gravitating disks, a few vortices develop at the gap edge and merge on orbital time-scales. The result is one large but weak vortex with Rossby number -0.01. In moderately self-gravitating disks, more vortices develop and their merging is resisted on dynamical time-scales. Self-gravity can sustain multi-vortex configurations, with Rossby number -0.2 to -0.1, over a time-scale of order 100 orbits. Self-gravity also enhances the vortex vertical density stratification, even in disks with initial Toomre parameter of order 10. However, vortex formation is suppressed in strongly self-gravitating disks and replaced by a global spiral instability associated with the gap edge which develops during gap formation.
Instabilities at planetary gap edges in 3D self-gravitating disks
Lin, Min-Kai
2013-01-01
Numerical simulations are presented to study the stability of gaps opened by giant planets in 3D self-gravitating disks. In weakly self-gravitating disks, a few vortices develop at the gap edge and merge on orbital time-scales. The result is one large but weak vortex with Rossby number -0.01. In moderately self-gravitating disks, more vortices develop and their merging is resisted on dynamical time-scales. Self-gravity can sustain multi-vortex configurations, with Rossby number -0.2 to -0.1, over a time-scale of order 100 orbits. Self-gravity also enhances the vortex vertical density stratification, even in disks with initial Toomre parameter of order 10. However, vortex formation is suppressed in strongly self-gravitating disks and replaced by a global spiral instability associated with the gap edge which develops during gap formation.
Redeker, J; Vogt, P M
2011-01-01
Carpal instability can be understood as a disturbed anatomical alignment between bones articulating in the carpus. This disturbed balance occurs either only dynamically (with movement) under the effect of physiological force or even statically at rest. The most common cause of carpal instability is wrist trauma with rupture of the stabilizing ligaments and adaptive misalignment following fractures of the radius or carpus. Carpal collapse plays a special role in this mechanism due to non-healed fracture of the scaphoid bone. In addition degenerative inflammatory alterations, such as chondrocalcinosis or gout, more rarely aseptic bone necrosis of the lunate or scaphoid bones or misalignment due to deposition (Madelung deformity) can lead to wrist instability. Under increased pressure the misaligned joint surfaces lead to bone arrosion with secondary arthritis of the wrist. In order to arrest or slow down this irreversible process, diagnosis must occur as early as possible. Many surgical methods have been thought out to regain stability ranging from direct reconstruction of the damaged ligaments, through ligament replacement to partial stiffening of the wrist joint.
Krakau, S.; Schlickeiser, R., E-mail: steffen.krakau@rub.de, E-mail: rsch@tp4.rub.de [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)
2016-02-20
The linear instability of an ultrarelativistic hadron beam in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of parallel electrostatic and electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays from their distant sources to Earth. As opposed to the previous paper, we calculate the minimum instability growth time for Lorentz-distributed cosmic rays which traverse the hot IGM. The growth times are orders of magnitude higher than the cosmic-ray propagation time in the IGM. Since the backreaction of the generated plasma fluctuations (plateauing) lasts longer than the propagation time, the cosmic-ray hadron beam can propagate to the Earth without losing a significant amount of energy to electrostatic turbulence.
Calkins, Michael A; Tobias, Steven M; Aurnou, Jonathan M; Marti, Philippe
2015-01-01
The onset of dynamo action is investigated within the context of a newly developed low Rossby, low magnetic Prandtl number, convection-driven dynamo model. The model represents an asymptotically exact form of an $\\alpha^2$ mean field dynamo model in which the small-scale convection is represented explicitly by the finite amplitude, single mode convective solutions first investigated by Bassom and Zhang (Geophys.~Astrophys.~Fluid Dyn., \\textbf{76}, p.223, 1994). Both steady and oscillatory convection are considered for a variety of horizontal planforms. The kinematic helicity is observed to be a monotonically increasing function of the Rayleigh number; as a result, very small magnetic Prandtl number dynamos can be found for a sufficiently large Rayleigh number. All dynamos are found to be oscillatory with an oscillation frequency that increases as the strength of the convection is increased and the magnetic Prandtl number is reduced. Single mode solutions which exhibit boundary layer behavior in the kinematic ...
Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers
Calkins, Michael A; Nieves, David; Julien, Keith; Tobias, Steven M
2016-01-01
Most large-scale planetary magnetic fields are thought to be driven by low Rossby number convection of a low magnetic Prandtl number fluid. Here kinematic dynamo action is investigated with an asymptotic, rapidly rotating dynamo model for the plane layer geometry that is intrinsically low magnetic Prandtl number. The thermal Prandtl number and Rayleigh number are varied to illustrate fundamental changes in flow regime, ranging from laminar cellular convection to geostrophic turbulence in which an inverse energy cascade is present. A decrease in the efficiency of the convection to generate a dynamo, as determined by an increase in the critical magnetic Reynolds number, is observed as the buoyancy forcing is increased. This decreased efficiency may result from both the loss of correlations associated with the increasingly disordered states of flow that are generated, and boundary layer behavior that enhances magnetic diffusion locally. We find that the spatial characteristics of $\\alpha$, and thus the large-sca...
Bernstein instability driven by thermal ring distribution
Yoon, Peter H.; Hadi, Fazal; Qamar, Anisa
2014-07-01
The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.
Instabilities of flows and transition to turbulence
Sengupta, Tapan K
2012-01-01
Introduction to Instability and TransitionIntroductionWhat Is Instability?Temporal and Spatial InstabilitySome Instability MechanismsComputing Transitional and Turbulent FlowsFluid Dynamical EquationsSome Equilibrium Solutions of the Basic EquationBoundary Layer TheoryControl Volume Analysis of Boundary LayersNumerical Solution of the Thin Shear Layer (TSL) EquationLaminar Mixing LayerPlane Laminar JetIssues of Computing Space-Time Dependent FlowsWave Interaction: Group Velocity and Energy FluxIssues of Space-Time Scale Resolution of FlowsTemporal Scales in Turbulent FlowsComputing Time-Averag
FINANCIAL INSTABILITY AND POLITICAL INSTABILITY
Ionescu Cristian
2012-12-01
Full Text Available There is an important link between the following two variables: financial instability and political instability. Often, the link is bidirectional, so both may influence each other. This is way the lately crisis are becoming larger and increasingly complex. Therefore, the academic environment is simultaneously talking about economic crises, financial crises, political crises, social crises, highlighting the correlation and causality between variables belonging to the economic, financial, political and social areas, with repercussions and spillover effects that extend from one area to another. Given the importance, relevance and the actuality of the ones described above, I consider that at least a theoretical analysis between economic, financial and political factors is needed in order to understand the reality. Thus, this paper aims to find links and connections to complete the picture of the economic reality.
Rotational effects on the negative magnetic pressure instability
Losada, Illa R; Kleeorin, N; Mitra, Dhrubaditya; Rogachevskii, I
2012-01-01
The surface layers of the Sun are strongly stratified. In the presence of turbulence with a weak mean magnetic field, a large-scale instability resulting in the formation of non-uniform magnetic structures, can be excited over the scale of many turbulent eddies or convection cells. This instability is caused by a negative contribution of turbulence to the effective (mean-field) magnetic pressure and has previously been discussed in connection with the formation of active regions and perhaps sunspots. We want to understand the effects of rotation on this instability in both two and three dimensions. We use mean-field magnetohydrodynamics in a parameter regime in which the properties of the negative effective magnetic pressure instability have previously been found to be in agreement with those of direct numerical simulations. We find that the instability is suppressed already for relatively slow rotation with Coriolis numbers (i.e. inverse Rossby numbers) around 0.2. The suppression is strongest at the equator...
Edge instabilities of topological superconductors
Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.
2016-05-01
Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.
Instability of enclosed horizons
Kay, Bernard S
2013-01-01
We study the classical massless scalar wave equation on the region of 1+1-dimensional Minkowski space between the two branches of the hyperbola $x^2-t^2=1$ with vanishing boundary conditions on it. We point out that there are initially finite-energy initially, say, right-going waves for which the stress-energy tensor becomes singular on the null-line $t+x=0$. We also construct the quantum theory of this system and show that, while there is a regular Hartle-Hawking-Israel-like state, there are coherent states built on this for which there is a similar singularity in the expectation value of the renormalized stress-energy tensor. We conjecture that in 1+3-dimensional situations with 'enclosed horizons' such as a (maximally extended) Schwarzschild black hole in equilibrium in a stationary box or the (maximally extended) Schwarzschild-AdS spacetime, there will be a similar singularity at the horizon and that would signal an instability when matter perturbations and/or gravity are switched on. Such an instability ...
Zimik, Soling
2016-01-01
Fibroblast-myocyte coupling can modulate electrical-wave dynamics in cardiac tissue. In diseased hearts, the distribution of fibroblasts is heterogeneous, so there can be gradients in the fibroblast density (henceforth we call this GFD) especially from highly injured regions, like infarcted or ischemic zones, to less-wounded regions of the tissue. Fibrotic hearts are known to be prone to arrhythmias, so it is important to understand the effects of GFD in the formation and sustenance of arrhythmic re- entrant waves, like spiral or scroll waves. Therefore, we investigate the effects of GFD on the stability of spiral and scroll waves of electrical activation in a state-of-the- art mathematical model for cardiac tissue in which we also include fibroblasts. By introducing GFD in controlled ways, we show that spiral and scroll waves can be unstable in the presence of GFDs because of regions with varying spiral or scroll-wave frequency {\\omega}, induced by the GFD. We examine the effects of the resting membrane pote...
Vector-Resonance-Multimode Instability
Sergeyev, S. V.; Kbashi, H.; Tarasov, N.; Loiko, Yu.; Kolpakov, S. A.
2017-01-01
The modulation and multimode instabilities are the main mechanisms which drive spontaneous spatial and temporal pattern formation in a vast number of nonlinear systems ranging from biology to laser physics. Using an Er-doped fiber laser as a test bed, here for the first time we demonstrate both experimentally and theoretically a new type of a low-threshold vector-resonance-multimode instability which inherits features of multimode and modulation instabilities. The same as for the multimode instability, a large number of longitudinal modes can be excited without mode synchronization. To enable modulation instability, we modulate the state of polarization of the lasing signal with the period of the beat length by an adjustment of the in-cavity birefringence and the state of polarization of the pump wave. As a result, we show the regime's tunability from complex oscillatory to periodic with longitudinal mode synchronization in the case of resonance matching between the beat and cavity lengths. Apart from the interest in laser physics for unlocking the tunability and stability of dynamic regimes, the proposed mechanism of the vector-resonance-multimode instability can be of fundamental interest for the nonlinear dynamics of various distributed systems.
Innocenti, M. E.; Norgren, C.; Newman, D.; Goldman, M.; Markidis, S.; Lapenta, G.
2016-05-01
The newly developed fully kinetic, semi-implicit, adaptive multi-level multi-domain (MLMD) method is used to simulate, at realistic mass ratio, the development of the lower hybrid drift instability (LHDI) in the terrestrial magnetotail over a large wavenumber range and at a low computational cost. The power spectra of the perpendicular electric field and of the fluctuations of the parallel magnetic field are studied at wavenumbers and times that allow to appreciate the onset of the electrostatic and electromagnetic LHDI branches and of the kink instability. The coupling between electric and magnetic field fluctuations observed by Norgren et al. ["Lower hybrid drift waves: Space observations," Phys. Rev. Lett. 109, 055001 (2012)] for high wavenumber LHDI waves in the terrestrial magnetotail is verified. In the MLMD simulations presented, a domain ("coarse grid") is simulated with low resolution. A small fraction of the entire domain is then simulated with higher resolution also ("refined grid") to capture smaller scale, higher frequency processes. Initially, the MLMD method is validated for LHDI simulations. MLMD simulations with different levels of grid refinement are validated against the standard semi-implicit particle in cell simulations of domains corresponding to both the coarse and the refined grid. Precious information regarding the applicability of the MLMD method to turbulence simulations is derived. The power spectra of MLMD simulations done with different levels of refinements are then compared. They consistently show a break in the magnetic field spectra at k⊥di˜30 , with di the ion skin depth and k⊥ the perpendicular wavenumber. The break is observed at early simulated times, Ωcit <6 , with Ωci the ion cyclotron frequency. It is due to the initial decoupling of electric and magnetic field fluctuations at intermediate and low wavenumbers, before the development of the electromagnetic LHDI branch. Evidence of coupling between electric and magnetic
Rolland, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1969-05-01
The character, stable or unstable, of a medium can be deduced from the behavior of an ideal model of a semi-infinite medium which is subjected to an excitation only at the boundary. A new analytic method is used to solve this problem. The results obtained show a connection between the character of the medium and certain properties of the dispersion equation, and agree with those derived from other methods. Then, the energy exchange between a medium and a source of excitation is investigated. In order to include the case of growing waves associated with convective instabilities, this problem is treated in the context of the wave packet theory. We find that - even in the absence of collisions - there still is a power exchange. Thus a connexion can be established with the kinematic theories of growing waves and the modes generating power can be found. Moreover, the power absorbed by spatial dispersion is found to be identical with that due to Landau's effect for long waves. This confirms the kinematic character of the latter and bridges a gap between macroscopic and microscopic theories. (author) [French] Le caractere, stable ou instable, d'un milieu peut etre deduit du comportement d'un milieu semi-indefini soumis a une excitation a la frontiere. Une nouvelle methode analytique est developpee pour resoudre ce probleme. Les resultats obtenus montrent une connexion entre le comportement du milieu et certaines proprietes de l'equation de dispersion, et generalisent les resultats obtenus par d'autres methodes. On etudie ensuite les echanges d'energie entre un milieu et une source d'excitation. Pour inclure le cas des ondes croissantes associees aux instabilites convectives, on traite ce probleme dans le cadre de la theorie du paquet d'ondes. On trouve que meme en l'absence de collisions, la puissance echangee n'est pas nulle. Ceci permet d'etablir une connexion avec les theories cinematiques des ondes croissantes
Engebretson, M. J.; Yeoman, T. K.; Oksavik, K.
2013-01-01
An isolated burst of 0.35 Hz electromagnetic ion cyclotron (EMIC) waves was observed at four sites on Svalbard from 0947 to 0954 UT 2 January 2011, roughly 1 h after local noon. This burst was associated with one of a series of ~50 nT magnetic impulses observed at the northernmost stations......-based observations of the Hα line at Longyearbyen indicated proton precipitation at the same time as the EMIC wave burst, and NOAA-19, which passed over the west coast of Svalbard between 0951 and 0952, observed a clear enhancement of ring current protons at the same latitude. Electron precipitation from this same...... satellite indicated that the EMIC burst was located on closed field lines, but near to the polar cap boundary. We believe these are the first simultaneous observations of EMIC waves and precipitating energetic protons so near to the boundary of the dayside magnetosphere. Although several spacecraft upstream...
White-light parametric instabilities in plasmas.
Santos, J E; Silva, L O; Bingham, R
2007-06-08
Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.
Internal wave coupling processes in Earth's atmosphere
Yiğit, Erdal
2014-01-01
This paper presents a contemporary review of vertical coupling in the atmosphere and ionosphere system induced by internal waves of lower atmospheric origin. Atmospheric waves are primarily generated by meteorological processes, possess a broad range of spatial and temporal scales, and can propagate to the upper atmosphere. A brief summary of internal wave theory is given, focusing on gravity waves, solar tides, planetary Rossby and Kelvin waves. Observations of wave signatures in the upper atmosphere, their relationship with the direct propagation of waves into the upper atmosphere, dynamical and thermal impacts as well as concepts, approaches, and numerical modeling techniques are outlined. Recent progress in studies of sudden stratospheric warming and upper atmospheric variability are discussed in the context of wave-induced vertical coupling between the lower and upper atmosphere.
Zhong, Jin-Qiang; Wang, Xue-ying
2016-01-01
We present measurements of the azimuthal orientation {\\theta}(t) and thermal amplitude {\\delta}(t) of the large-scale circulation (LSC) of turbulent rotating convection within an unprecedented large Rossby number range 170. We identify the mechanism through which the mean retrograde rotation speed can be enhanced by stochastic cessations in the presence of weak Coriolis force, and show that a low-dimensional, stochastic model provides predictions of the observed large-scale flow dynamics and interprets its retrograde rotation.
Understanding Wave-mean Flow Feedbacks and Tropospheric Annular Variability
Lorenz, D. J.
2016-12-01
The structure of internal tropospheric variability is important for determining the impact of the stratosphere on the troposphere. This study aims to better understand the fundamental dynamical mechanisms that control the feedbacks between the eddies and the mean flow, which in turn select the tropospheric annular mode. Recent work using Rossby Wave Chromatography suggests that "barotropic processes", which directly impact the meridional propagation of wave activity (specifically the reflectivity of the poleward flank of the mid-latitude jet), are more important for the positive feedback between the annular mode and the eddies than "baroclinic processes", which involve changes in the generation of wave activity by baroclinic instability. In this study, experiments with a fully nonlinear quasi-geostrophic model are discussed which provide independent confirmation of the importance of barotropic versus baroclinic processes. The experiments take advantage of the steady-state balance at upper-levels between the meridional gradient in diabatic heating and the second derivative of the upper-level EP flux divergence. Simulations with standard Newtonian heating are compared to simulations with constant-in-time heating taken from the climatology of the standard run and it is found that the forced annular mode response to changes in surface friction is very similar. Moreover, as expected from the annular mode response, the eddy momentum fluxes are also very similar. This is despite the fact that the upper-level EP flux divergence is very different between the two simulations (upper-level EP flux divergence must remain constant in the constant heating simulation while in the standard simulation there is no such constraint). The upper-level balances are maintained by a large change in the baroclinic wave source (i.e. vertical EP flux), which is accompanied by little momentum flux change. Therefore the eddy momentum fluxes appear to be relatively insensitive to the wave
Afeyan, Bedros; Won, K; Montgomery, D S; Hammer, J; Kirkwood, R K; Schmitt, A J
2012-01-01
In a series of experiments on the Omega laser facility at LLE, we have demonstrated the suppression of SRS in prescribed spectral windows due to the presence of externally controlled levels of ion acoustic waves (IAW, by crossing two blue beams at the Mach -1 surface) and electron plasma waves (EPW, by crossing a blue and a green beam around a tenth critical density plasma) generated via optical mixing. We have further observed SRS backscattering of a green beam when crossed with a blue pump beam, in whose absence, that (green beam) backscattering signature was five times smaller. This is direct evidence for green beam amplification when crossed with the blue. Additional proof comes from transmitted green beam measurements. A combination of these techniques may allow the suppression of unacceptable levels of SRS near the light entrance hole of large-scale hohlraums on the NIF or LMJ.
Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers
Calkins, Michael A.; Long, Louie; Nieves, David; Julien, Keith; Tobias, Steven M.
2016-12-01
Most large-scale planetary magnetic fields are thought to be driven by low Rossby number convection of a low magnetic Prandtl number fluid. Here kinematic dynamo action is investigated with an asymptotic, rapidly rotating dynamo model for the plane layer geometry that is intrinsically low magnetic Prandtl number. The thermal Prandtl number and Rayleigh number are varied to illustrate fundamental changes in flow regime, ranging from laminar cellular convection to geostrophic turbulence in which an inverse energy cascade is present. A decrease in the efficiency of the convection to generate a dynamo, as determined by an increase in the critical magnetic Reynolds number, is observed as the buoyancy forcing is increased. This decreased efficiency may result from both the loss of correlations associated with the increasingly disordered states of flow that are generated, and boundary layer behavior that enhances magnetic diffusion locally. We find that the spatial characteristics of the large-scale magnetic field is dependent only weakly on changes in flow behavior. In contrast, the behavior of the small-scale magnetic field is directly dependent on, and therefore shows significant variations with, the small-scale convective flow field. However, our results are limited to the linear, kinematic dynamo regime; future simulations that include the Lorentz force are therefore necessary to assess the robustness of these results.
Global aspects of elliptical instability in tidally distorted accretion disks
Ryu, D; Vishniac, E T; Ryu, Dongsu; Goodman, Jeremy; Vishniac, Ethan T
1995-01-01
Tidally distorted accretion disks in binary star systems are subject to a local hydrodynamic instability which excites m=1 internal waves. This instability is three dimensional and approximately incompressible. We study the global aspects of this local instability using equations derived under the shearing sheet approximation, where the effects of the azimuthal variation along distorted orbital trajectories are included in source terms which oscillate with local orbital phase. Linear analyses show that the excitation of the instability is essentially local, i.e. insensitive to radial boundary conditions. The region of rapid growth feeds waves into the region of slow or negligible growth, allowing the instability to become global. The global growth rate depends the maximum local growth rate, the size of the rapid growth region, and the local group velocity. We present an empirical expression for the global growth rate. We note that the local nature of the instability allows the excitation of waves with m\
Transient spirals as superposed instabilities
Sellwood, J A
2014-01-01
We present evidence that recurrent spiral activity, long manifested in simulations of disk galaxies, results from the super-position of a few transient spiral modes. Each mode lasts between five and ten rotations at its corotation radius where its amplitude is greatest. The scattering of stars as each wave decays takes place over narrow ranges of angular momentum, causing abrupt changes to the impedance of the disk to subsequent traveling waves. Partial reflections of waves at these newly created features, allows new standing-wave instabilities to appear that saturate and decay in their turn, scattering particles at new locations, creating a recurring cycle. The spiral activity causes the general level of random motion to rise, gradually decreasing the ability of the disk to support further activity unless the disk contains a dissipative gas component from which stars form on near-circular orbits. We also show that this interpretation is consistent with the behavior reported in other recent simulations with l...
Mapping Instabilities in Polymer Friction
Rand, Charles; Crosby, Alfred
2005-03-01
Schallamach waves are instabilities that occur as interfaces between a soft elastomer and rigid surface slide past each other.(1) The presence of Schallamach waves can lead to drastic changes in frictional properties. Although the occurrence of Schallamach waves has been studied for the past several decades, a general map relating fundamental material properties, geometry, and operating conditions (i.e. speed and temperature) has not been established. Using a combinatorial approach, we illustrate the role of modulus, testing velocity and surface energetics of crosslinked poly(dimethyl siloxane) on the generation Schallamach waves. This knowledge will be used with polymer patterning processes to fabricate responsive coatings for applications such as anti-fouling coatings. (1)Schallamach, A.;Wear 1971,17, 301-312.
Two-Fluid Interface Instability Being Studied
Niederhaus, Charles E.
2003-01-01
The interface between two fluids of different density can experience instability when gravity acts normal to the surface. The relatively well known Rayleigh-Taylor (RT) instability results when the gravity is constant with a heavy fluid over a light fluid. An impulsive acceleration applied to the fluids results in the Richtmyer-Meshkov (RM) instability. The RM instability occurs regardless of the relative orientation of the heavy and light fluids. In many systems, the passing of a shock wave through the interface provides the impulsive acceleration. Both the RT and RM instabilities result in mixing at the interface. These instabilities arise in a diverse array of circumstances, including supernovas, oceans, supersonic combustion, and inertial confinement fusion (ICF). The area with the greatest current interest in RT and RM instabilities is ICF, which is an attempt to produce fusion energy for nuclear reactors from BB-sized pellets of deuterium and tritium. In the ICF experiments conducted so far, RM and RT instabilities have prevented the generation of net-positive energy. The $4 billion National Ignition Facility at Lawrence Livermore National Laboratory is being constructed to study these instabilities and to attempt to achieve net-positive yield in an ICF experiment.
Kelvin-Helmholtz instability in solar spicules
H Ebadi
2016-12-01
Full Text Available Magneto hydrodynamic waves, propagating along spicules, may become unstable and the expected instability is of Kelvin-Helmholtz type. Such instability can trigger the onset of wave turbulence leading to an effective plasma heating and particle acceleration. In present study, two-dimensional magneto hydrodynamic simulations performed on a Cartesian grid is presented in spicules with different densities, moving at various speeds depending on their environment. Simulations being applied in this study show the onset of Kelvin-Helmholtz type instability and transition to turbulent flow in spicules. Development of Kelvin-Helmholtz instability leads to momentum and energy transport, dissipation, and mixing of fluids. When magnetic fields are involved, field amplification is also possible to take place
Uribe; Velasco; Garcia-Colin
2000-10-01
In 1982 Bobylev [A.V. Bobylev, Sov. Phys. Dokl. 27, 29 (1982)] made a linear stability analysis of the Burnett equations and showed that beyond a certain critical reduced wave number there exist normal modes that grow exponentially, concluding that the Burnett equations are linearly unstable. We have partially extended his analysis, originally made for Maxwellian molecules, for any interaction potential and argue that his results can be reinterpreted as to give a bound for the Knudsen number above which the Burnett equations are not valid.
Resonant Triad Instability in Stratified Fluids
Joubaud, Sylvain; Odier, Philippe; Dauxois, Thierry
2012-01-01
Internal gravity waves contribute to fluid mixing and energy transport, not only in oceans but also in the atmosphere and in astrophysical bodies. We provide here the first experimental measurement of the growth rate of a resonant triad instability (also called parametric subharmonic instability) transferring energy to smaller scales where it is dissipated. We make careful and quantitative comparisons with theoretical predictions for propagating vertical modes in laboratory experiments.
ON THE INSTABILITY OF THE RAILWAY VEHICLES
Traian MAZILU
2011-11-01
Full Text Available The railway vehicles have two sources of instability. The most common is the hunting induced by the reversed conic shape of the rolling surfaces of the wheels. The other one is related by the anomalous Doppler effect that can occurs when the train velocity exceeds the phase velocity of the waves induced in the track structure. Some aspects regarding the two sources of instability are presented.
Weibel instability in relativistic quantum plasmas
Mendonça, J. T.; Brodin, G.
2015-08-01
Generation of quasi-static magnetic fields, due to the Weibel instability is studied in a relativistic quantum plasma. This instability is induced by a temperature anisotropy. The dispersion relation and growth rates for low frequency electromagnetic perturbations are derived using a wave-kinetic equation which describes the evolution of the electron Wigner quasi-distribution. The influence of parallel kinetic effects is discussed in detail.
V. Paoletti
2012-07-01
Full Text Available Shear wave velocities have a fundamental role in connection with the mitigation of seismic hazards, as their low values are the main causes of site amplification phenomena and can significantly influence the susceptibility of a territory to seismic-induced landslides. The shear wave velocity (Vs and modulus (G of each lithological unit are influenced by factors such as the degree of fracturing and faulting, the porosity, the clay amount and the precipitation, with the latter two influencing the unit water content. In this paper we discuss how these factors can affect the Vs values and report the results of different analyses that quantify the reduction in the rock Vs and shear modulus values connected to the presence of clay and water. We also show that significant results in assessing seismic-induced slope failure susceptibility for land planning targets could be achieved through a careful evaluation, based only on literature studies, of the geo-lithological and geo-seismic features of the study area.
The subcritical baroclinic instability in local accretion disc models
Lesur, G
2009-01-01
(abridged) Aims: We present new results exhibiting a subcritical baroclinic instability (SBI) in local shearing box models. We describe the 2D and 3D behaviour of this instability using numerical simulations and we present a simple analytical model describing the underlying physical process. Results: A subcritical baroclinic instability is observed in flows stable for the Solberg-Hoiland criterion using local simulations. This instability is found to be a nonlinear (or subcritical) instability, which cannot be described by ordinary linear approaches. It requires a radial entropy gradient weakly unstable for the Schwartzchild criterion and a strong thermal diffusivity (or equivalently a short cooling time). In compressible simulations, the instability produces density waves which transport angular momentum outward with typically alpha<3e-3, the exact value depending on the background temperature profile. Finally, the instability survives in 3D, vortex cores becoming turbulent due to parametric instabilities...
Interfacial instabilities in vibrated fluids
Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier
2016-07-01
Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced
The Farley Instability: A Laboratory Test
D'Angelo, N.; Pécseli, Hans; Petersen, P. I.
1974-01-01
An experiment is described that was performed in an alkali plasma (Cs) device in order to test the theory of the Farley instability. With υ E×B > Cs (the speed of sound) and νι ≳ ω cι (ν e ≪ ω ce ) wave excitation occurs, the waves traveling normal to the magnetic field B at the υ E×B speed....... The perturbations are strongly elongated along the B field lines, with λ∥ ≫ λ⊥. A comparison with theoretical predictions is given for the observed excitation conditions of the instability....
Nonconservative higher-order hydrodynamic modulation instability
Kimmoun, O.; Hsu, H. C.; Kibler, B.; Chabchoub, A.
2017-08-01
The modulation instability (MI) is a universal mechanism that is responsible for the disintegration of weakly nonlinear narrow-banded wave fields and the emergence of localized extreme events in dispersive media. The instability dynamics is naturally triggered, when unstable energy sidebands located around the main energy peak are excited and then follow an exponential growth law. As a consequence of four wave mixing effect, these primary sidebands generate an infinite number of additional sidebands, forming a triangular sideband cascade. After saturation, it is expected that the system experiences a return to initial conditions followed by a spectral recurrence dynamics. Much complex nonlinear wave field motion is expected, when the secondary or successive sideband pair that is created is also located in the finite instability gain range around the main carrier frequency peak. This latter process is referred to as higher-order MI. We report a numerical and experimental study that confirms observation of higher-order MI dynamics in water waves. Furthermore, we show that the presence of weak dissipation may counterintuitively enhance wave focusing in the second recurrent cycle of wave amplification. The interdisciplinary weakly nonlinear approach in addressing the evolution of unstable nonlinear waves dynamics may find significant resonance in other nonlinear dispersive media in physics, such as optics, solids, superfluids, and plasma.
THE DIABATIC WAVES IN BAROTROPIC MODEL
无
2000-01-01
The equations of barotropic model are used to discuss the effects of diabatic factors such as heating of convective condensation, evaporation-wind feedback and CISK on the Rossby wave and the Kelvin wave. In low latitudes we have obtained the angular frequency and analyzed the period and stability of waves. The result shows the existence of the diabatic factors not only enlarges the period of adiabatic waves but also changes the stability of waves. Thus we think that the so-called intraseasonal oscillation and some other low-frequency oscillations are a kind of diabatic waves which are important factors producing the long-term weather changes and short-term climatic evolution.
Nonlinear Shock and Kink Waves with Complete Coriolis Force in Earth's Atmosphere
YU Xin; ZHAO Qiang
2009-01-01
Nonlinear waves in a Boussinesq fluid model which includes both the vertical and horizontal components of Coriolis force are studied by using the semi-geostrophic approximation and the method of travelling-wave solution.Taylor series expansion has been employed to isolate the characteristics of the linear Rossby waves and to identify the nonlinear shock and kink waves.The KdV-Burgers and the compound KdV-Burgers equations are derived,their shock wave and kink wave solution are also obtained.
Nonlinear evolution of drift instabilities
Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.
1984-01-01
The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.
Streaming Instabilities in Protoplanetary Disks
Youdin, A N; Youdin, Andrew N.; Goodman, Jeremy
2004-01-01
Interpenetrating streams of solids and gas in a Keplerian disk produce a local, linear instability. The two components mutually interact via aerodynamic drag, which generates radial drift and triggers unstable modes. The secular instability does not require self-gravity, yet it generates growing particle density perturbations that could seed planetesimal formation. Growth rates are slower than dynamical, but faster than radial drift, timescales. Growth rates, like streaming velocities, are maximized for marginal coupling (stopping times comparable dynamical times). Fastest growth occurs when the solid to gas density ratio is order unity and feedback is strongest. Curiously, growth is strongly suppressed when the densities are too nearly equal. The relation between background drift and wave properties is explained by analogy with Howard's semicircle theorem. The three-dimensional, two-fluid equations describe a sixth order (in the complex frequency) dispersion relation. A terminal velocity approximation allows...
PrasannaKumar, S.; Unnikrishnan, A.S.; Muraleedharan, P.M.
The climatological monthly mean sea surface height (SSH) anomalies derived from T/P altimeter in the northern Indian Ocean, during 1993 to 1997, are used to prepare time-longitude plots. Along the equator they reveal strong semi-annual variability...
Evaluating shoulder instability treatment
van der Linde, J.A.
2016-01-01
Shoulder instability common occurs. When treated nonoperatively, the resulting societal costs based on health care utilization and productivity losses are significant. Shoulder function can be evaluated using patient reported outcome measurements (PROMs). For shoulder instability, these include the
Jeans instability in superfluids
Hason, Itamar; Oz, Yaron [Tel-Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv (Israel)
2014-11-15
We analyze the effect of a gravitational field on the sound modes of superfluids. We derive an instability condition that generalizes the well-known Jeans instability of the sound mode in normal fluids. We discuss potential experimental implications. (orig.)
Modulation of precipitation over West Africa by equatorial waves
Schlüter, Andreas; van der Linden, Roderick; Vogel, Peter; Fink, Andreas H.; Knippertz, Peter
2017-04-01
Equatorial waves can couple with deep convection and thus modulate rainfall on the synoptic timescale throughout the tropics. Until now, however, no comparative study of the influence of all the different wave types on precipitation has been performed specifically for West Africa. To fill this gap, the following wave types were analyzed for the pre-/post- and full monsoon season (April to October): (1) the Madden-Julian Oscillation (MJO), (2) Kelvin waves, (3) equatorial Rossby waves, (4) eastward-propagating inertia gravity waves, (5) mixed Rossby-gravity waves and (6) tropical disturbances/African Easterly Waves. The different wave types were filtered in the wavenumber-frequency spectrum of outgoing longwave radiation. Eight different wave phases were defined from a phase diagram that can be calculated from the time-derivative of the filtered wave signal. Subsequently, composites of dynamical and thermodynamical fields for each wave phase of the different wave types were plotted using the ERA Interim reanalysis from the European Centre for Medium-Range Weather Forecasts. This way the propagation of the wave can be depicted. All aforementioned wave types, except the fast eastward-propagating inertia gravity wave, show consistent and significant influence on West African rainfall. The influence of the waves can be seen far into the subtropics for some wave types. The expected theoretical structure is confirmed by the analysis of upper- and lower-level divergence, wind and geopotential height. An interaction between the tropical and extratropical regime appears to occur for the MJO and equatorial Rossby waves. The mechanism involved in this interaction, however, is not fully understood. Composites of low-level wind shear, convective available potential energy and mid-level moisture are used to analyze whether waves create favorable conditions for the organization of convection. Additionally, the source regions of moisture were identified using moisture fields and
Magnetorotational Explosive Instability in Keplerian Disks
Shtemler, Yuri; Mond, Michael
2015-01-01
In this paper it is shown that deferentially rotating disks that are in the presence of weak axial magnetic field are prone to a new nonlinear explosive instability. The latter occurs due to the near-resonance three-wave interactions of a magnetorotational instability with stable Alfven-Coriolis and magnetosonic modes. The dynamical equations that govern the temporal evolution of the amplitudes of the three interacting modes are derived. Numerical solutions of the dynamical equations indicate that small frequency mismatch gives rise to two types of behavior: 1. explosive instability which leads to infinite values of the three amplitudes within a finite time, and 2. bounded irregular oscillations of all three amplitudes. Asymptotic solutions of the dynamical equations are obtained for the explosive instability regimes and are shown to match the numerical solutions near the explosion time.
Shear instabilities in shallow-water magnetohydrodynamics
Mak, Julian; Hughes, D W
2016-01-01
Within the framework of shallow-water magnetohydrodynamics, we investigate the linear instability of horizontal shear flows, influenced by an aligned magnetic field and stratification. Various classical instability results, such as H{\\o}iland's growth rate bound and Howard's semi-circle theorem, are extended to this shallow-water system for quite general profiles. Two specific piecewise-constant velocity profiles, the vortex sheet and the rectangular jet, are studied analytically and asymptotically; it is found that the magnetic field and stratification (as measured by the Froude number) are generally both stabilising, but weak instabilities can be found at arbitrarily large Froude number. Numerical solutions are computed for corresponding smooth velocity profiles, the hyperbolic-tangent shear layer and the Bickley jet, for a uniform background field. A generalisation of the long-wave asymptotic analysis of Drazin & Howard (1962) is employed in order to understand the instability characteristics for both ...
Modulational instability in periodic quadratic nonlinear materials
Corney, Joel Frederick; Bang, Ole
2001-01-01
We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never complete...
Nonlinear Kinetic Dynamics of Magnetized Weibel Instability
Palodhi, L; Pegoraro, F
2010-01-01
Kinetic numerical simulations of the evolution of the Weibel instability during the full nonlinear regime are presented. The formation of strong distortions in the electron distribution function resulting in formation of strong peaks in it and their influence on the resulting electrostatic waves are shown.