WorldWideScience

Sample records for ros-gc membrane guanylate

  1. Membrane Guanylate Cyclase catalytic Subdomain: Structure and Linkage with Calcium Sensors and Bicarbonate

    Directory of Open Access Journals (Sweden)

    Sarangan Ravichandran

    2017-06-01

    Full Text Available Membrane guanylate cyclase (MGC is a ubiquitous multi-switching cyclic GMP generating signaling machine linked with countless physiological processes. In mammals it is encoded by seven distinct homologous genes. It is a single transmembrane spanning multi-modular protein; composed of integrated blocks and existing in homo-dimeric form. Its core catalytic domain (CCD module is a common transduction center where all incoming signals are translated into the production of cyclic GMP, a cellular signal second messenger. Crystal structure of the MGC’s CCD does not exist and its precise identity is ill-defined. Here, we define it at a sub-molecular level for the phototransduction-linked MGC, the rod outer segment guanylate cyclase type 1, ROS-GC1. (1 The CCD is a conserved 145-residue structural unit, represented by the segment V820-P964. (2 It exists as a homo-dimer and contains seven conserved catalytic elements (CEs wedged into seven conserved motifs. (3 It also contains a conserved 21-residue neurocalcin δ-modulated structural domain, V836-L857. (4 Site-directed mutagenesis documents that each of the seven CEs governs the cyclase’s catalytic activity. (5 In contrast to the soluble and the bacterium MGC which use Mn2+-GTP substrate for catalysis, MGC CCD uses the natural Mg2+-GTP substrate. (6 Strikingly, the MGC CCD requires anchoring by the Transmembrane Domain (TMD to exhibit its major (∼92% catalytic activity; in isolated form the activity is only marginal. This feature is not linked with any unique sequence of the TMD; there is minimal conservation in TMD. Finally, (7 the seven CEs control each of four phototransduction pathways- -two Ca2+-sensor GCAPs-, one Ca2+-sensor, S100B-, and one bicarbonate-modulated. The findings disclose that the CCD of ROS-GC1 has built-in regulatory elements that control its signal translational activity. Due to conservation of these regulatory elements, it is proposed that these elements also control the

  2. Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, transduces two independent signals, ANF and Ca2+

    Directory of Open Access Journals (Sweden)

    Teresa eDuda

    2014-03-01

    Full Text Available Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, was the first discovered member of the mammalian membrane guanylate cyclase family. The hallmark feature of the family is that a single protein contains both the site for recognition of the regulatory signal and the ability to transduce it into the production of the second messenger, cyclic GMP. For over two decades, the family has been classified into two subfamilies, the hormone receptor subfamily with ANF-RGC being its paramount member, and the Ca2+ modulated subfamily, which includes the rod outer segment guanylate cyclases, ROS-GC1 and 2, and the olfactory neuroepithelial guanylate cyclase, ONE-GC. ANF-RGC is the receptor and the signal transducer of the most hypotensive hormones, atrial natriuretic factor (ANF and B-type natriuretic peptide (BNP. After binding these hormones at the extracellular domain it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates the production of cyclic GMP. Cyclic GMP then serves the second messenger role in biological responses of ANF and BNP such as natriuresis, diuresis, vasorelaxation and anti-proliferation. Very recently another modus operandi for ANF-RGC was revealed. Its crux is that ANF-RGC activity is also regulated by Ca2+. The Ca2+ sensor neurocalcin  mediates this signaling mechanism. Strikingly, the Ca2+ and ANF signaling mechanisms employ separate structural motifs of ANF-RGC in modulating its core catalytic domain in accelerating the production of cyclic GMP. In this review the biochemistry and physiology of these mechanisms with emphasis on cardiovascular regulation will be discussed.

  3. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules

    OpenAIRE

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-01-01

    Membrane-associated guanylate kinases (MAGUK) family proteins contain an inactive guanylate kinase (GK) domain, whose function has been elusive. Here, this domain is revealed as a new type of phospho-peptide-binding module, in which the GMP-binding site has evolved to accommodate phospho-serines or -threonines.

  4. Molecular determinants of Guanylate Cyclase Activating Protein subcellular distribution in photoreceptor cells of the retina.

    Science.gov (United States)

    López-Begines, Santiago; Plana-Bonamaisó, Anna; Méndez, Ana

    2018-02-13

    Retinal guanylate cyclase (RetGC) and guanylate cyclase activating proteins (GCAPs) play an important role during the light response in photoreceptor cells. Mutations in these proteins are linked to distinct forms of blindness. RetGC and GCAPs exert their role at the ciliary outer segment where phototransduction takes place. We investigated the mechanisms governing GCAP1 and GCAP2 distribution to rod outer segments by expressing selected GCAP1 and GCAP2 mutants as transient transgenes in the rods of GCAP1/2 double knockout mice. We show that precluding GCAP1 direct binding to RetGC (K23D/GCAP1) prevented its distribution to rod outer segments, while preventing GCAP1 activation of RetGC post-binding (W94A/GCAP1) did not. We infer that GCAP1 translocation to the outer segment strongly depends on GCAP1 binding affinity for RetGC, which points to GCAP1 requirement to bind to RetGC to be transported. We gain further insight into the distinctive regulatory steps of GCAP2 distribution, by showing that a phosphomimic at position 201 is sufficient to retain GCAP2 at proximal compartments; and that the bovine equivalent to blindness-causative mutation G157R/GCAP2 results in enhanced phosphorylation in vitro and significant retention at the inner segment in vivo, as likely contributing factors to the pathophysiology.

  5. Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks

    KAUST Repository

    Irving, Helen R.; Kwezi, Lusisizwe; Wheeler, Janet I.; Gehring, Christoph A

    2012-01-01

    Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles.

  6. Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks

    KAUST Repository

    Irving, Helen R.

    2012-02-01

    Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles.

  7. Characterization of the functional domains of the natriuretic peptide receptor/guanylate cyclase by radiation inactivation

    International Nuclear Information System (INIS)

    Tremblay, J.; Huot, C.; Koch, C.; Potier, M.

    1991-01-01

    Radiation inactivation has been used to evaluate the molecular size of domains responsible for atrial natriuretic peptide (ANP)-binding and cyclase functions of the ANP receptor/guanylate cyclase. Two types of inactivation curves were observed for cyclase function in both adrenal cortex and aortic smooth muscle cells: (1) biphasic with enhanced guanylate cyclase activity after exposure to low radiation doses and (2) linear after preincubation of membrane proteins with 0.5 microM ANP or solubilization with Triton X-100. The existence of an inhibitory component was the simplest model that best explained the types of radiation curves obtained. Activation of guanylate cyclase by ANP or Triton X-100 could occur via the dissociation of this inhibitory component from the catalytic domain. On the other hand, the loss of ANP-binding activity was linear with increasing radiation exposures under basal, ANP treatment, and Triton X-100 solubilization conditions. Radiation inactivation sizes of about 30 kDa for cyclase function, 20 kDa for ANP-binding function, and 90 kDa for inhibitory function were calculated. These studies suggest that the ANP receptor/guanylate cyclase behaves as a multidomain protein. The results obtained by radiation inactivation of the various biological functions of this receptor are compatible with the hypothesis of an intramolecular inhibitory domain repressing the guanylate cyclase catalytic domain within its membrane environment

  8. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets.

    Science.gov (United States)

    Makhoul, Stephanie; Walter, Elena; Pagel, Oliver; Walter, Ulrich; Sickmann, Albert; Gambaryan, Stepan; Smolenski, Albert; Zahedi, René P; Jurk, Kerstin

    2018-06-01

    Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome. We also showed that the sGC stimulator riociguat is in vitro a highly specific inhibitor, via cGMP, of various functions of human platelets. Here, we review the regulatory role of the cGMP/protein kinase G (PKG) system in human platelet function, and our current approaches to establish and analyze the phosphoproteome after selective stimulation of the sGC/cGMP pathway by NO donors and riociguat. Present data indicate an extensive and diverse NO/riociguat/cGMP phosphoproteome, which has to be compared with the cAMP phosphoproteome. In particular, sGC/cGMP-regulated phosphorylation of many membrane proteins, G-proteins and their regulators, signaling molecules, protein kinases, and proteins involved in Ca 2+ regulation, suggests that the sGC/cGMP system targets multiple signaling networks rather than a limited number of PKG substrate proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Lentiviral expression of retinal guanylate cyclase-1 (RetGC1 restores vision in an avian model of childhood blindness.

    Directory of Open Access Journals (Sweden)

    Melissa L Williams

    2006-06-01

    Full Text Available Leber congenital amaurosis (LCA is a genetically heterogeneous group of retinal diseases that cause congenital blindness in infants and children. Mutations in the GUCY2D gene that encodes retinal guanylate cyclase-1 (retGC1 were the first to be linked to this disease group (LCA type 1 [LCA1] and account for 10%-20% of LCA cases. These mutations disrupt synthesis of cGMP in photoreceptor cells, a key second messenger required for function of these cells. The GUCY1*B chicken, which carries a null mutation in the retGC1 gene, is blind at hatching and serves as an animal model for the study of LCA1 pathology and potential treatments in humans.A lentivirus-based gene transfer vector carrying the GUCY2D gene was developed and injected into early-stage GUCY1*B embryos to determine if photoreceptor function and sight could be restored to these animals. Like human LCA1, the avian disease shows early-onset blindness, but there is a window of opportunity for intervention. In both diseases there is a period of photoreceptor cell dysfunction that precedes retinal degeneration. Of seven treated animals, six exhibited sight as evidenced by robust optokinetic and volitional visual behaviors. Electroretinographic responses, absent in untreated animals, were partially restored in treated animals. Morphological analyses indicated there was slowing of the retinal degeneration.Blindness associated with loss of function of retGC1 in the GUCY1*B avian model of LCA1 can be reversed using viral vector-mediated gene transfer. Furthermore, this reversal can be achieved by restoring function to a relatively low percentage of retinal photoreceptors. These results represent a first step toward development of gene therapies for one of the more common forms of childhood blindness.

  10. Effects of hydroxyl radical scavengers KCN and CO on ultraviolet light-induced activation of crude soluble guanylate cyclase

    International Nuclear Information System (INIS)

    Karlsson, J.O.; Axelsson, K.L.; Andersson, R.G.

    1985-01-01

    The crude soluble guanylate cyclase (GC) from bovine mesenteric artery was stimulated by ultraviolet (UV) light (366 nm). Addition of free radical scavengers, dimethylsulfoxide or superoxide dismutase and/or catalase to the GC assay did not abolish the stimulatory effect of UV light. On the contrary, the UV light-induced activation was enhanced in the presence of these scavengers. KCN (1 mM) did not affect the UV light-induced activation, while 0.1 mM of CO potentiated the activation. These results may indicate that UV light is operating through a direct interaction with the ferrous form of the GC-heme

  11. G protein-coupled receptor 30 (GPR30) forms a plasma membrane complex with membrane-associated guanylate kinases (MAGUKs) and protein kinase A-anchoring protein 5 (AKAP5) that constitutively inhibits cAMP production.

    Science.gov (United States)

    Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2014-08-08

    GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release

    Science.gov (United States)

    Zorov, Dmitry B.; Juhaszova, Magdalena; Sollott, Steven J.

    2014-01-01

    Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca2+, etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca2+). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo. PMID:24987008

  13. Photodynamic Action of LED-Activated Curcumin against Staphylococcus aureus Involving Intracellular ROS Increase and Membrane Damage

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-01-01

    Full Text Available Aim. To investigate the effect of photodynamic action of LED-activated curcumin on cell viability, membrane permeability, and intracellular reactive oxygen species of Staphylococcus aureus. Methods. Staphylococcus aureus was incubated with the different concentrations of curcumin for 60 min and then irradiated by blue light with the wavelength of 470 nm and with light dose of 3 J/cm2. The colony forming unit assay was used to investigate photocytotoxicity of curcumin on Staphylococcus aureus, confocal laser scanning microscopy (CLSM and flow cytometry (FCM for assaying membrane permeability, FCM analysis with DCFH-DA staining for measuring the intracellular ROS level, and transmission electron microscopy (TEM for observing morphology and structure. Results. Blue light-activated curcumin significantly killed Staphylococcus aureus in a curcumin dose-dependent manner. TEM observed remarkable structural damages in S. aureus after light-activated curcumin. More red fluorescence of PI dye was found in S. aureus treated by blue light-activated curcumin than in those of the controlled bacterial cells. Intracellular ROS increase was observed after light-activated curcumin. Conclusion. Blue light-activated curcumin markedly damaged membrane permeability, resulting in cell death of Staphylococcus aureus and highlighted that intracellular ROS increase might be an important event in photodynamic killing of Staphylococcus aureus in the presence of curcumin.

  14. Guanylin peptides: cyclic GMP signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Forte L.R.

    1999-01-01

    Full Text Available Guanylate cyclases (GC serve in two different signaling pathways involving cytosolic and membrane enzymes. Membrane GCs are receptors for guanylin and atriopeptin peptides, two families of cGMP-regulating peptides. Three subclasses of guanylin peptides contain one intramolecular disulfide (lymphoguanylin, two disulfides (guanylin and uroguanylin and three disulfides (E. coli stable toxin, ST. The peptides activate membrane receptor-GCs and regulate intestinal Cl- and HCO3- secretion via cGMP in target enterocytes. Uroguanylin and ST also elicit diuretic and natriuretic responses in the kidney. GC-C is an intestinal receptor-GC for guanylin and uroguanylin, but GC-C may not be involved in renal cGMP pathways. A novel receptor-GC expressed in the opossum kidney (OK-GC has been identified by molecular cloning. OK-GC cDNAs encode receptor-GCs in renal tubules that are activated by guanylins. Lymphoguanylin is highly expressed in the kidney and heart where it may influence cGMP pathways. Guanylin and uroguanylin are highly expressed in intestinal mucosa to regulate intestinal salt and water transport via paracrine actions on GC-C. Uroguanylin and guanylin are also secreted from intestinal mucosa into plasma where uroguanylin serves as an intestinal natriuretic hormone to influence body Na+ homeostasis by endocrine mechanisms. Thus, guanylin peptides control salt and water transport in the kidney and intestine mediated by cGMP via membrane receptors with intrinsic guanylate cyclase activity.

  15. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, M.; Frohlich, E.D.; Cole, F.E. (Alton Ochsner Medical Foundation, New Orleans, LA (USA))

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation. In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.

  16. Identification of a soluble guanylate cyclase in RBCs: preserved activity in patients with coronary artery disease.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Mergia, Evanthia; Kramer, Christian M; Lückstädt, Wiebke; Yang, Jiangning; Wolff, Georg; Panknin, Christina; Bracht, Thilo; Sitek, Barbara; Pernow, John; Stasch, Johannes-Peter; Feelisch, Martin; Koesling, Doris; Kelm, Malte

    2018-04-01

    Endothelial dysfunction is associated with decreased NO bioavailability and impaired activation of the NO receptor soluble guanylate cyclase (sGC) in the vasculature and in platelets. Red blood cells (RBCs) are known to produce NO under hypoxic and normoxic conditions; however evidence of expression and/or activity of sGC and downstream signaling pathway including phopshodiesterase (PDE)-5 and protein kinase G (PKG) in RBCs is still controversial. In the present study, we aimed to investigate whether RBCs carry a functional sGC signaling pathway and to address whether this pathway is compromised in coronary artery disease (CAD). Using two independent chromatographic procedures, we here demonstrate that human and murine RBCs carry a catalytically active α 1 β 1 -sGC (isoform 1), which converts 32 P-GTP into 32 P-cGMP, as well as PDE5 and PKG. Specific sGC stimulation by NO+BAY 41-2272 increases intracellular cGMP-levels up to 1000-fold with concomitant activation of the canonical PKG/VASP-signaling pathway. This response to NO is blunted in α1-sGC knockout (KO) RBCs, but fully preserved in α2-sGC KO. In patients with stable CAD and endothelial dysfunction red cell eNOS expression is decreased as compared to aged-matched controls; by contrast, red cell sGC expression/activity and responsiveness to NO are fully preserved, although sGC oxidation is increased in both groups. Collectively, our data demonstrate that an intact sGC/PDE5/PKG-dependent signaling pathway exists in RBCs, which remains fully responsive to NO and sGC stimulators/activators in patients with endothelial dysfunction. Targeting this pathway may be helpful in diseases with NO deficiency in the microcirculation like sickle cell anemia, pulmonary hypertension, and heart failure. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Soluble guanylate cyclase stimulation prevents fibrotic tissue remodeling and improves survival in salt-sensitive Dahl rats.

    Directory of Open Access Journals (Sweden)

    Sandra Geschka

    Full Text Available A direct pharmacological stimulation of soluble guanylate cyclase (sGC is an emerging therapeutic approach to the management of various cardiovascular disorders associated with endothelial dysfunction. Novel sGC stimulators, including riociguat (BAY 63-2521, have a dual mode of action: They sensitize sGC to endogenously produced nitric oxide (NO and also directly stimulate sGC independently of NO. Little is known about their effects on tissue remodeling and degeneration and survival in experimental malignant hypertension.Mortality, hemodynamics and biomarkers of tissue remodeling and degeneration were assessed in Dahl salt-sensitive rats maintained on a high salt diet and treated with riociguat (3 or 10 mg/kg/d for 14 weeks. Riociguat markedly attenuated systemic hypertension, improved systolic heart function and increased survival from 33% to 85%. Histological examination of the heart and kidneys revealed that riociguat significantly ameliorated fibrotic tissue remodeling and degeneration. Correspondingly, mRNA expression of the pro-fibrotic biomarkers osteopontin (OPN, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1 and plasminogen activator inhibitor-1 (PAI-1 in the myocardium and the renal cortex was attenuated by riociguat. In addition, riociguat reduced plasma and urinary levels of OPN, TIMP-1, and PAI-1.Stimulation of sGC by riociguat markedly improves survival and attenuates systemic hypertension and systolic dysfunction, as well as fibrotic tissue remodeling in the myocardium and the renal cortex in a rodent model of pressure and volume overload. These findings suggest a therapeutic potential of sGC stimulators in diseases associated with impaired cardiovascular and renal functions.

  18. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay.

    Science.gov (United States)

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco

    2011-04-01

    The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF.

  19. Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc.

    Directory of Open Access Journals (Sweden)

    Pablo Guardado-Calvo

    2016-10-01

    Full Text Available Hantaviruses are zoonotic viruses transmitted to humans by persistently infected rodents, giving rise to serious outbreaks of hemorrhagic fever with renal syndrome (HFRS or of hantavirus pulmonary syndrome (HPS, depending on the virus, which are associated with high case fatality rates. There is only limited knowledge about the organization of the viral particles and in particular, about the hantavirus membrane fusion glycoprotein Gc, the function of which is essential for virus entry. We describe here the X-ray structures of Gc from Hantaan virus, the type species hantavirus and responsible for HFRS, both in its neutral pH, monomeric pre-fusion conformation, and in its acidic pH, trimeric post-fusion form. The structures confirm the prediction that Gc is a class II fusion protein, containing the characteristic β-sheet rich domains termed I, II and III as initially identified in the fusion proteins of arboviruses such as alpha- and flaviviruses. The structures also show a number of features of Gc that are distinct from arbovirus class II proteins. In particular, hantavirus Gc inserts residues from three different loops into the target membrane to drive fusion, as confirmed functionally by structure-guided mutagenesis on the HPS-inducing Andes virus, instead of having a single "fusion loop". We further show that the membrane interacting region of Gc becomes structured only at acidic pH via a set of polar and electrostatic interactions. Furthermore, the structure reveals that hantavirus Gc has an additional N-terminal "tail" that is crucial in stabilizing the post-fusion trimer, accompanying the swapping of domain III in the quaternary arrangement of the trimer as compared to the standard class II fusion proteins. The mechanistic understandings derived from these data are likely to provide a unique handle for devising treatments against these human pathogens.

  20. The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants

    KAUST Repository

    Kwezi, Lusisizwe; Ruzvidzo, Oziniel; Wheeler, Janet I.; Govender, Kershini; Iacuone, Sylvana; Thompson, Philip E.; Gehring, Christoph A; Irving, Helen R.

    2011-01-01

    Phytosulfokines (PSKs) are sulfated pentapeptides that stimulate plant growth and differentiation mediated by the PSK receptor (PSKR1), which is a leucine-rich repeat receptor-like kinase. We identified a putative guanylate cyclase (GC) catalytic center in PSKR1 that is embedded within the kinase domain and hypothesized that the GC works in conjunction with the kinase in downstream PSK signaling. We expressed the recombinant complete kinase (cytoplasmic) domain of AtPSKR1 and show that it has serine/threonine kinase activity using the Ser/Thr peptide 1 as a substrate with an approximate Km of 7.5 μM and Vmax of 1800 nmol min-1 mg-1 of protein. This same recombinant protein also has GC activity in vitro that is dependent on the presence of either Mg2+ or Mn2+. Overexpression of the full-length AtPSKR1 receptor in Arabidopsis leaf protoplasts raised the endogenous basal cGMP levels over 20-fold, indicating that the receptor has GC activity in vivo. In addition, PSK-α itself, but not the non-sulfated backbone, induces rapid increases in cGMP levels in protoplasts. Together these results indicate that the PSKR1 contains dual GC and kinase catalytic activities that operate in vivo and that this receptor constitutes a novel class of enzymes with overlapping catalytic domains. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants

    KAUST Repository

    Kwezi, Lusisizwe

    2011-04-19

    Phytosulfokines (PSKs) are sulfated pentapeptides that stimulate plant growth and differentiation mediated by the PSK receptor (PSKR1), which is a leucine-rich repeat receptor-like kinase. We identified a putative guanylate cyclase (GC) catalytic center in PSKR1 that is embedded within the kinase domain and hypothesized that the GC works in conjunction with the kinase in downstream PSK signaling. We expressed the recombinant complete kinase (cytoplasmic) domain of AtPSKR1 and show that it has serine/threonine kinase activity using the Ser/Thr peptide 1 as a substrate with an approximate Km of 7.5 μM and Vmax of 1800 nmol min-1 mg-1 of protein. This same recombinant protein also has GC activity in vitro that is dependent on the presence of either Mg2+ or Mn2+. Overexpression of the full-length AtPSKR1 receptor in Arabidopsis leaf protoplasts raised the endogenous basal cGMP levels over 20-fold, indicating that the receptor has GC activity in vivo. In addition, PSK-α itself, but not the non-sulfated backbone, induces rapid increases in cGMP levels in protoplasts. Together these results indicate that the PSKR1 contains dual GC and kinase catalytic activities that operate in vivo and that this receptor constitutes a novel class of enzymes with overlapping catalytic domains. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Identification of a soluble guanylate cyclase in RBCs: preserved activity in patients with coronary artery disease

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott

    2018-04-01

    Full Text Available Endothelial dysfunction is associated with decreased NO bioavailability and impaired activation of the NO receptor soluble guanylate cyclase (sGC in the vasculature and in platelets. Red blood cells (RBCs are known to produce NO under hypoxic and normoxic conditions; however evidence of expression and/or activity of sGC and downstream signaling pathway including phopshodiesterase (PDE-5 and protein kinase G (PKG in RBCs is still controversial. In the present study, we aimed to investigate whether RBCs carry a functional sGC signaling pathway and to address whether this pathway is compromised in coronary artery disease (CAD. Using two independent chromatographic procedures, we here demonstrate that human and murine RBCs carry a catalytically active α1β1-sGC (isoform 1, which converts 32P-GTP into 32P-cGMP, as well as PDE5 and PKG. Specific sGC stimulation by NO+BAY 41-2272 increases intracellular cGMP-levels up to 1000-fold with concomitant activation of the canonical PKG/VASP-signaling pathway. This response to NO is blunted in α1-sGC knockout (KO RBCs, but fully preserved in α2-sGC KO. In patients with stable CAD and endothelial dysfunction red cell eNOS expression is decreased as compared to aged-matched controls; by contrast, red cell sGC expression/activity and responsiveness to NO are fully preserved, although sGC oxidation is increased in both groups. Collectively, our data demonstrate that an intact sGC/PDE5/PKG-dependent signaling pathway exists in RBCs, which remains fully responsive to NO and sGC stimulators/activators in patients with endothelial dysfunction. Targeting this pathway may be helpful in diseases with NO deficiency in the microcirculation like sickle cell anemia, pulmonary hypertension, and heart failure. Keywords: cGMP, Nitric oxide, Protein kinase G, Signaling, Non -canonical functions of RBCs

  3. Increases in guanylin and uroguanylin in a mouse model of osmotic diarrhea are guanylate cyclase C-independent.

    Science.gov (United States)

    Steinbrecher, K A; Mann, E A; Giannella, R A; Cohen, M B

    2001-11-01

    Guanylin and uroguanylin are peptide hormones that are homologous to the diarrhea-causing Escherichia coli enterotoxins. These secretagogues are released from the intestinal epithelia into the intestinal lumen and systemic circulation and bind to the receptor guanylate cyclase C (GC-C). We hypothesized that a hypertonic diet would result in osmotic diarrhea and cause a compensatory down-regulation of guanylin/uroguanylin. Gut-to-carcass weights were used to measure fluid accumulation in the intestine. Northern and/or Western analysis was used to determine the levels of guanylin, uroguanylin, and GC-C in mice with osmotic diarrhea. Wild-type mice fed a polyethylene glycol or lactose-based diet developed weight loss, diarrhea, and an increased gut-to-carcass ratio. Unexpectedly, 2 days on either diet resulted in increased guanylin/uroguanylin RNA and prohormone throughout the intestine, elevated uroguanylin RNA, and prohormone levels in the kidney and increased levels of circulating prouroguanylin. GC-C-deficient mice given the lactose diet reacted with higher gut-to-carcass ratios. Although they did not develop diarrhea, GC-C-sufficient and -deficient mice on the lactose diet responded with elevated levels of guanylin and uroguanylin RNA and protein. A polyethylene glycol drinking water solution resulted in diarrhea, higher gut-to-carcass ratios, and induction of guanylin and uroguanylin in both GC-C heterozygous and null animals. We conclude that this model of osmotic diarrhea results in a GC-C-independent increase in intestinal fluid accumulation, in levels of these peptide ligands in the epithelia of the intestine, and in prouroguanylin in the kidney and blood.

  4. Auranofin induces apoptosis by ROS-mediated ER stress and mitochondrial dysfunction and displayed synergistic lethality with piperlongumine in gastric cancer.

    Science.gov (United States)

    Zou, Peng; Chen, Minxiao; Ji, Jiansong; Chen, Weiqian; Chen, Xi; Ying, Shilong; Zhang, Junru; Zhang, Ziheng; Liu, Zhiguo; Yang, Shulin; Liang, Guang

    2015-11-03

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world. In addressing the need of treatments for relapsed disease, we report the identification of an existing U.S. Food and Drug Administration-approved small-molecule drug to repurpose for GC treatment. Auranofin (AF), clinically used to treat rheumatic arthritis, but it exhibited preclinical efficacy in GC cells. By increasing intracellular reactive oxygen species (ROS) levels, AF induces a lethal endoplasmic reticulum stress response and mitochondrial dysfunction in cultured GC cells. Blockage of ROS production reversed AF-induced ER stress and mitochondrial pathways activation as well as apoptosis. In addition, AF displays synergistic lethality with an ROS-generating agent piperlongumine, which is a natural product isolated from the long pepper Piper longum L. Taken together, this work provides a novel anticancer candidate for the treatment of gastric cancer. More importantly, it reveals that increased ROS generation might be an effective strategy in treating human gastric cancer.

  5. Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro

    KAUST Repository

    Mulaudzi, Takalani

    2011-09-01

    While there is evidence of nitric oxide (NO)-dependent signalling via the second messenger cyclic guanosine 3′,5′-monophosphate (cGMP) in plants, guanylate cyclases (GCs), enzymes that catalyse the formation of cGMP from guanosine 5′-triphosphate (GTP) have until recently remained elusive and none of the candidates identified to-date are NO-dependent. Using both a GC and heme-binding domain specific (H-NOX) search motif, we have identified an Arabidopsis flavin monooxygenase (At1g62580) and shown electrochemically that it binds NO, has a higher affinity for NO than for O 2 and that this molecule can generate cGMP from GTP in vitro in an NO-dependent manner. © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Cytoadhesion to gC1qR through Plasmodium falciparum erythrocyte membrane protein 1 in severe malaria

    DEFF Research Database (Denmark)

    Magallón-Tejada, Ariel; Machevo, Sónia; Cisteró, Pau

    2016-01-01

    Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed...

  7. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules.

    Science.gov (United States)

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-11-25

    Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell-cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated.

  8. Guanylic nucleotide starvation affects Saccharomyces cerevisiae mother-daughter separation and may be a signal for entry into quiescence

    Directory of Open Access Journals (Sweden)

    Sagot Isabelle

    2005-05-01

    Full Text Available Abstract Background Guanylic nucleotides are both macromolecules constituents and crucial regulators for a variety of cellular processes. Therefore, their intracellular concentration must be strictly controlled. Consistently both yeast and mammalian cells tightly correlate the transcription of genes encoding enzymes critical for guanylic nucleotides biosynthesis with the proliferation state of the cell population. Results To gain insight into the molecular relationships connecting intracellular guanylic nucleotide levels and cellular proliferation, we have studied the consequences of guanylic nucleotide limitation on Saccharomyces cerevisiae cell cycle progression. We first utilized mycophenolic acid, an immunosuppressive drug that specifically inhibits inosine monophosphate dehydrogenase, the enzyme catalyzing the first committed step in de novo GMP biosynthesis. To approach this system physiologically, we next developed yeast mutants for which the intracellular guanylic nucleotide pools can be modulated through changes of growth conditions. In both the pharmacological and genetic approaches, we found that guanylic nucleotide limitation generated a mother-daughter separation defect, characterized by cells with two unseparated daughters. We then showed that this separation defect resulted from cell wall perturbations but not from impaired cytokinesis. Importantly, cells with similar separation defects were found in a wild type untreated yeast population entering quiescence upon nutrient limitation. Conclusion Our results demonstrate that guanylic nucleotide limitation slows budding yeast cell cycle progression, with a severe pause in telophase. At the cellular level, guanylic nucleotide limitation causes the emergence of cells with two unseparated daughters. By fluorescence and electron microscopy, we demonstrate that this phenotype arises from defects in cell wall partition between mother and daughter cells. Because cells with two unseparated

  9. Comparison of soluble guanylate cyclase stimulators and activators in models of cardiovascular disease associated with oxidative stress

    Directory of Open Access Journals (Sweden)

    Melissa H Costell

    2012-07-01

    Full Text Available Soluble guanylate cyclase (sGC, the primary mediator of nitric oxide (NO bioactivity, exists as reduced (NO-sensitive and oxidized (NO-insensitive forms. We tested the hypothesis that the cardiovascular protective effects of NO-insensitive sGC activation would be potentiated under conditions of oxidative stress compared to NO-sensitive sGC stimulation. The cardiovascular effects of the NO-insensitive sGC activator GSK2181236A (a non-depressor dose and a higher dose which lowered mean arterial pressure [MAP] by 5-10mmHg and equi-efficacious doses of the NO-sensitive sGC stimulator BAY 60-4552 were assessed in Sprague Dawley rats during coronary artery ischemia/reperfusion (I/R and spontaneously hypertensive stroke prone rats (SHR-SP on a high salt/fat diet (HSFD. In I/R, neither compound reduced infarct size. In SHR-SP, HSFD increased MAP, urine output, microalbuminuria and mortality, caused left ventricular hypertrophy and impaired endothelium-dependent vasorelaxation. The low dose of BAY 60-4552 but not GSK2181236A decreased urine output and mortality. Conversely, the low dose of GSK2181236A attenuated cardiac hypertrophy. The high doses of both compounds similarly attenuated cardiac hypertrophy and mortality. In addition, the high dose of BAY 60-4552 reduced urine output, microalbuminuria and MAP. Neither compound improved endothelium-dependent vasorelaxation. In SHR-SP aorta, the vasodilatory responses to the NO-dependent compounds carbachol and sodium nitroprusside were attenuated by HSFD. In contrast, the vasodilatory responses to GSK2181236A and BAY 60-4552 were unaltered by HSFD, indicating that reduced NO-bioavailability and not changes in the sGC oxidative state is responsible for the vascular dysfunction. In summary, GSK2181236A and BAY 60-4552 provide partial benefit against hypertension-induced end organ damage. The differential beneficial effects observed between these compounds could reflect tissue-specific changes in the sGC

  10. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling.

    Science.gov (United States)

    Noctor, Graham; Foyer, Christine H

    2016-07-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Sensitive method for the assay of guanylate cyclase activity

    Energy Technology Data Exchange (ETDEWEB)

    Karczewski, P; Krause, E G [Akademie der Wissenschaften der DDR, Berlin-Buch. Zentralinstitut fuer Herz- und Kreislauf-Regulationsforschung

    1978-07-01

    A method for the assay of guanylate cyclase is described utilizing ..cap alpha..-(/sup 32/P)-GTP as substrate for the enzyme reaction. 100-150 ..mu..g of enzyme protein is incubated in a 15.6 mM Tris-HCl buffer incubation mixture, pH 7.6. The reaction is stopped by the addition of EDTA. The (/sup 32/P)-cyclic GMP formed is separated by a two-step column chromatography on Dowex 50W-X4 ion-exchange resin and neutral alumina. The recovery for cyclic GMP was about 70%. The blank values ranged from 0.001-0.003 % of the added ..cap alpha..-(/sup 32/P)-GTP which had been purified by Dowex 50W-X4 column chromatography. This method was employed for the assay of guanylate cyclase activities in different tissues.

  12. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes.

    Science.gov (United States)

    Fandy, Tamer E; Jiemjit, Anchalee; Thakar, Manjusha; Rhoden, Paulette; Suarez, Lauren; Gore, Steven D

    2014-03-01

    Azanucleoside DNA methyltransferase (DNMT) inhibitors are currently approved by the U.S. Food and Drug Administration for treatment of myelodysplastic syndrome. The relative contributions of DNMT inhibition and other off-target effects to their clinical efficacy remain unclear. Data correlating DNA methylation reversal and clinical response have been conflicting. Consequently, it is necessary to investigate so-called off-target effects and their impact on cell survival and differentiation. Flow cytometry was used for cell cycle, apoptosis, and reactive oxygen species (ROS) accumulation analysis. Gene expression analysis was performed using real-time PCR. DNA methylation was detected by methylation-specific PCR. Mitochondrial membrane potential was analyzed using JC-1 dye staining. Western blotting was used for quantitative protein expression analysis. 5-Aza-2'-deoxycytidine (DAC) induced cell-cycle arrest and apoptosis in leukemia cells. p53 expression was dispensable for DAC-induced apoptosis. DAC induced delayed ROS accumulation in leukemia cells but not in solid tumor cells and p53 expression was dispensable for ROS increase. ROS increase was deoxycytidine kinase dependent, indicating that incorporation of DAC into nuclear DNA is required for ROS generation. ROS accumulation by DAC was caspase-independent and mediated the dissipation of the mitochondrial membrane potential. Concordantly, ROS scavengers diminished DAC-induced apoptosis. DAC induced the expression of different NADPH oxidase isoforms and upregulated Nox4 protein expression in an ATM-dependent manner, indicating the involvement of DNA damage signaling in Nox4 upregulation. These data highlight the importance of mechanisms other than DNA cytosine demethylation in modulating gene expression and suggest investigating the relevance of ROS accumulation to the clinical activity of DAC. ©2014 AACR

  13. Determination of the Fatty Acid Content of Biological Membranes: A Highly Versatile GC-MS Experiment

    Science.gov (United States)

    Schultz, Emeric; Pugh, Michael Eugene

    2001-07-01

    The experiment involves the GC-MS of fatty acid methyl esters (FAMEs) obtained from bacterial membranes. It takes about 2 h, from cell harvest to injection. This experiment is done in a lab course for non-science majors and in biochemistry. For non-science majors the focus is on GC-MS as a technique for fingerprinting and on the underlying basis of that fingerprinting. In biochemistry the focus is on the composition of membranes and how this changes with temperature--specifically how the ratio of saturated to unsaturated fatty acids changes to maintain constant cell fluidity. Combined with a parallel DNA experiment, the two major types of intermolecular forces important for the structure and function of biomolecules are compared. How this versatile experiment could be adapted in other chemistry courses is presented. The experiment has obvious appeal to biology majors, can be used to develop several important chemistry concepts, involves teamwork, and employs an important instrument. It could be used in the laboratory portion of a course other than biochemistry to fulfill the new ACS biochemistry requirement.

  14. Structure reactivity relationship in the reaction of DNA guanyl radicals with hydroxybenzoates

    Energy Technology Data Exchange (ETDEWEB)

    Do, Trinh T.; Tang, Vicky J.; Aguilera, Joseph A. [Department of Radiology University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States); Milligan, Jamie R., E-mail: jmilligan@ucsd.ed [Department of Radiology University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States)

    2010-11-15

    In DNA, guanine bases are the sites from which electrons are most easily removed. As a result of hole migration to this stable location on guanine, guanyl radicals are major intermediates in DNA damage produced by the direct effect of ionizing radiation (ionization of the DNA itself and not through the intermediacy of water radicals). We have modeled this process by employing gamma irradiation in the presence of thiocyanate ions, a method which also produces single electron oxidized guanyl radicals in plasmid DNA in aqueous solution. The stable products formed in DNA from these radicals are detected as strand breaks after incubation with the FPG protein. When a phenolic compound is present in the solution during gamma irradiation, the formation of guanyl radical species is decreased by electron donation from the phenol to the guanyl radical. We have quantified the rate of this reaction for four different phenolic compounds bearing carboxylate substituents as proton acceptors. A comparison of the rates of these reactions with the redox strengths of the phenolic compounds reveals that salicylate reacts ca. 10-fold faster than its structural analogs. This observation is consistent with a reaction mechanism involving a proton coupled electron transfer, because intra-molecular transfer of a proton from the phenolic hydroxyl group to the carboxylate group is possible only in salicylate, and is favored by the strong 6-membered ring intra-molecular hydrogen bond in this compound.

  15. Protein and signaling networks in vertebrate photoreceptor cells

    Directory of Open Access Journals (Sweden)

    Karl-Wilhelm eKoch

    2015-11-01

    Full Text Available Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination. The photoexcitation and adaptation machinery in photoreceptor cells consists of protein complexes that can form highly ordered supramolecular structures and control the homeostasis and mutual dependence of the secondary messengers cGMP and Ca2+. The visual pigment in rod photoreceptors, the G protein-coupled receptor rhodopsin is organized in tracks of dimers thereby providing a signaling platform for the dynamic scaffolding of the G protein transducin. Illuminated rhodopsin is turned off by phosphorylation catalyzed by rhodopsin kinase GRK1 under control of Ca2+-recoverin. The GRK1 protein complex partly assembles in lipid raft structures, where shutting off rhodopsin seems to be more effective. Re-synthesis of cGMP is another crucial step in the recovery of the photoresponse after illumination. It is catalyzed by membrane bound sensory guanylate cyclases and is regulated by specific neuronal Ca2+-sensor proteins called GCAPs. At least one guanylate cyclase (ROS-GC1 was shown to be part of a multiprotein complex having strong interactions with the cytoskeleton and being controlled in a multimodal Ca2+-dependent fashion. The final target of the cGMP signaling cascade is a cyclic nucleotide-gated channel that is a hetero-oligomeric protein located in the plasma membrane and interacting with accessory proteins in highly organized microdomains. We summarize results and interpretations of findings related to the inhomogeneous organization of signaling units in photoreceptor outer segments.

  16. G-protein-mediated interconversions of cell-surface cAMP receptors and their involvement in excitation and desensitization of guanylate cyclase in Dictyostelium discoideum

    International Nuclear Information System (INIS)

    van Haastert, P.J.; de Wit, R.J.; Janssens, P.M.; Kesbeke, F.; DeGoede, J.

    1986-01-01

    In Dictyostelium discoideum cells, extracellular cAMP induces the rapid (within 2 s) activation of guanylate cyclase, which is followed by complete desensitization after about 10 s. cAMP binding to these cells is heterogeneous, showing a subclass of fast dissociating sites coupled to adenylate cyclase (A-sites) and a subclass of slowly dissociating sites coupled to guanylate cyclase (B-sites). The kinetics of the B-sites were further investigated on a seconds time scale. Statistical analysis of the association of [ 3 H]cAMP to the B-sites and dissociation of the complex revealed that the receptor can exist in three states which interconvert according to the following scheme. cAMP binds to the BF-state (off-rate 2.5 s) which rapidly (t1/2 = 3 s) converts to the BS-state (off-rate 15 s) and subsequently (without a detectable delay) into the BSS-state (off-rate 150 s). In membranes, both the BS- and BSS-states are converted to the BF-state by GTP and GDP, suggesting the involvement of a G-protein. Densensitized cells show a 80% reduction of the formation of the BSS-state, but no reduction of the BF- or BS-state. These data are combined into a model in which the transitions of the B-sites are mediated by a G-protein; activation of the G-protein and guanylate cyclase is associated with the transition of the BS- to the BSS-state of the receptor, whereas desensitization is associated with the inhibition of this transition

  17. UPP mediated Diabetic Retinopathy via ROS/PARP and NF-κB inflammatory factor pathways.

    Science.gov (United States)

    Luo, D-W; Zheng, Z; Wang, H; Fan, Y; Chen, F; Sun, Y; Wang, W-J; Sun, T; Xu, X

    2015-01-01

    Diabetic retinopathy (DR) is a leading cause of blindness in adults at working age. Human diabetic retinopathy is characterized by the basement membrane thick, pericytes loss, microaneurysms formation, retina neovascularization and vitreous hemorrhage. To investigate whether UPP activated ROS/PARP and NF-κB inflammatory factor pathways in Diabetic Retinopathy, human retinal endothelial cells (HRECs) and rats with streptozotocin-induced diabetes were used to determine the effect of UPP on ROS generation, cell apoptosis, mitochondrial membrane potential (ΔΨm) and inflammatory factor protein expression, through flow cytometry assay, immunohistochemistry, Real-time PCR, Western blot analysis and ELISA. The levels of ROS and apoptosis and the expressions of UPP (Ub and E3) and inflammatory factor protein were increased in high glucose-induced HRECs and retina of diabetic rats, while ΔΨm was decreased. The UPP inhibitor and UbshRNA could attenuate these effects through inhibiting the pathway of ROS/PARP and the expression of NF-κB inflammatory factors, and the increased UPP was a result of high glucose-induced increase of ROS generation and NF-κBp65 expression, accompanied with the decrease of ΔΨm. Clinical study showed the overexpression of UPP and detachment of epiretinal membranes in proliferative DR (PDR) patients. It has been indicated that the pathogenic effect of UPP on DR was involved in the increase of ROS generation and NF-κB expression, which associated with the ROS/PARP and NF-κB inflammatory factor pathways. Our study supports a new insight for further application of UPP inhibitor in DR treatment.

  18. ROS and ROS-Mediated Cellular Signaling

    Directory of Open Access Journals (Sweden)

    Jixiang Zhang

    2016-01-01

    Full Text Available It has long been recognized that an increase of reactive oxygen species (ROS can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt, ion channels and transporters (Ca2+ and mPTP, and modifying protein kinase and Ubiquitination/Proteasome System.

  19. Di-2-pyridylhydrazone Dithiocarbamate Butyric Acid Ester Exerted Its Proliferative Inhibition against Gastric Cell via ROS-Mediated Apoptosis and Autophagy

    Directory of Open Access Journals (Sweden)

    Xingshuang Guo

    2018-01-01

    Full Text Available Diversified biological activities of dithiocarbamates have attracted widespread attention; improving their feature or exploring their potent action of mechanism is a hot topic in medicinal research. Herein, we presented a study on synthesis and investigation of a novel dithiocarbamate, DpdtbA (di-2-pyridylhydrazone dithiocarbamate butyric acid ester, on antitumor activity. The growth inhibition assay revealed that DpdtbA had important antitumor activity for gastric cancer (GC cell lines (IC50 = 4.2 ± 0.52 μM for SGC-7901, 3.80 ± 0.40 μM for MGC-803. The next study indicated that growth inhibition is involved in ROS generation in mechanism; accordingly, the changes in mitochondrial membrane permeability, apoptotic genes, cytochrome c, bax, and bcl-2 were observed, implying that the growth inhibition of DpdtbA is involved in ROS-mediated apoptosis. On the other hand, the upregulated p53 upon DpdtbA treatment implied that p53 could also mediate the apoptosis. Yet the excess generation of ROS induced by DpdtbA led to cathepsin D translocation and increase of autophagic vacuoles and LC3-II, demonstrating that autophagy was also a contributor to growth inhibition. Further investigation showed that DpdtbA could induce cell cycle arrest at the G1 phase. This clearly indicated the growth inhibition of DpdtbA was via triggering ROS formation and evoking p53 response, consequently leading to alteration in gene expressions that are related to cell survival.

  20. Mucuna pruriens and its major constituent L-DOPA recover spermatogenic loss by combating ROS, loss of mitochondrial membrane potential and apoptosis.

    Science.gov (United States)

    Singh, Akhand Pratap; Sarkar, Saumya; Tripathi, Muktanand; Rajender, Singh

    2013-01-01

    The Ayurvedic medicinal system claims Mucuna pruriens (MP) to possess pro-male fertility, aphrodisiac and adaptogenic properties. Some scientific evidence also supports its pro-male fertility properties; however, the mechanism of its action is not yet clear. The present study aimed at demonstrating spermatogenic restorative efficacy of MP and its major constituent L-DOPA (LD), and finding the possible mechanism of action thereof in a rat model. Ethinyl estradiol (EE) was administered at a rate of 3 mg/kg body weight (BW)/day for a period of 14 days to generate a rat model with compromised spermatogenesis. MP and LD were administered in two separate groups of these animals starting 15(th) day for a period of 56 days, and the results were compared with an auto-recovery (AR) group. Sperm count and motility, testis histo-architecture, level of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), apoptosis, peripheral hormone levels and testicular germ cell populations were analysed, in all experimental groups. We observed efficient and quick recovery of spermatogenesis in MP and LD groups in comparison to the auto-recovery group. The treatment regulated ROS level, apoptosis, and mitochondrial membrane potential (MMP), recovered the hypothalamic-pituitary-gonadal axis and the number of testicular germ cells, ultimately leading to increased sperm count and motility. M. pruriens efficiently recovers the spermatogenic loss induced due to EE administration. The recovery is mediated by reduction in ROS level, restoration of MMP, regulation of apoptosis and eventual increase in the number of germ cells and regulation of apoptosis. The present study simplified the complexity of mechanism involved and provided meaningful insights into MP/LD mediated correction of spermatogenic impairment caused by estrogens exposure. This is the first study demonstrating that L-DOPA largely accounts for pro-spermatogenic properties of M. pruriens. The manuscript bears CDRI

  1. Calcium and ROS: A mutual interplay

    Science.gov (United States)

    Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga

    2015-01-01

    Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072

  2. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    International Nuclear Information System (INIS)

    Hong, Sung-Ha; Jenkins, A Toby A; Szili, Endre J; Short, Robert D

    2014-01-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine. (fast track communication)

  3. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    Science.gov (United States)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  4. Zinc and calcium alter the relationship between mitochondrial respiration, ROS and membrane potential in rainbow trout (Oncorhynchus mykiss) liver mitochondria.

    Science.gov (United States)

    Sharaf, Mahmoud S; Stevens, Don; Kamunde, Collins

    2017-08-01

    At excess levels, zinc (Zn) disrupts mitochondrial functional integrity and induces oxidative stress in aquatic organisms. Although much is known about the modulation of Zn toxicity by calcium (Ca) in fish, their interactions at the mitochondrial level have scarcely been investigated. Here we assessed the individual and combined effects of Zn and Ca on the relationship between mitochondrial respiration, ROS and membrane potential (ΔΨ mt ) in rainbow trout liver mitochondria. We tested if cation uptake through the mitochondrial calcium uniporter (MCU) is a prerequisite for Zn- and/or Ca-induced alteration of mitochondrial function. Furthermore, using our recently developed real-time multi-parametric method, we investigated the changes in respiration, ΔΨ mt , and reactive oxygen species (ROS, as hydrogen peroxide (H 2 O 2 )) release associated with Ca-induced mitochondrial depolarization imposed by transient and permanent openings of the mitochondrial permeability transition pore (mPTP). We found that independent of the MCU, Zn precipitated an immediate depolarization of the ΔΨ mt that was associated with relatively slow enhancement of H 2 O 2 release, inhibition of respiration and reversal of the positive correlation between ROS and ΔΨ mt . In contrast, an equitoxic dose of Ca caused transient depolarization, and stimulation of both respiration and H 2 O 2 release, effects that were completely abolished when the MCU was blocked. Contrary to our expectation that mitochondrial transition ROS Spike (mTRS) would be sensitive to both Zn and Ca, only Ca suppressed it. Moreover, Zn and Ca in combination immediately depolarized the ΔΨ mt , and caused transient and sustained stimulation of respiration and H 2 O 2 release, respectively. Lastly, we uncovered and characterized an mPTP-independent Ca-induced depolarization spike that was associated with exposure to moderately elevated levels of Ca. Importantly, we showed the stimulation of ROS release associated with

  5. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis.

    Science.gov (United States)

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-11-06

    To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα(-/-)) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα(-/-) mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. This is the first-ever study reporting

  6. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

    Directory of Open Access Journals (Sweden)

    Lufang Zhou

    2010-01-01

    Full Text Available Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS. Here, we develop a mathematical model of ROS-induced ROS release (RIRR based on reaction-diffusion (RD-RIRR in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA cycle, oxidative phosphorylation, and Ca(2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.- diffusion and the O2.(--dependent activation of an inner membrane anion channel (IMAC. In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.- diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m depolarization is mediated specifically by O2.-. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the

  7. Mucuna pruriens and its major constituent L-DOPA recover spermatogenic loss by combating ROS, loss of mitochondrial membrane potential and apoptosis.

    Directory of Open Access Journals (Sweden)

    Akhand Pratap Singh

    Full Text Available BACKGROUND: The Ayurvedic medicinal system claims Mucuna pruriens (MP to possess pro-male fertility, aphrodisiac and adaptogenic properties. Some scientific evidence also supports its pro-male fertility properties; however, the mechanism of its action is not yet clear. The present study aimed at demonstrating spermatogenic restorative efficacy of MP and its major constituent L-DOPA (LD, and finding the possible mechanism of action thereof in a rat model. METHODOLOGY/FINDINGS: Ethinyl estradiol (EE was administered at a rate of 3 mg/kg body weight (BW/day for a period of 14 days to generate a rat model with compromised spermatogenesis. MP and LD were administered in two separate groups of these animals starting 15(th day for a period of 56 days, and the results were compared with an auto-recovery (AR group. Sperm count and motility, testis histo-architecture, level of reactive oxygen species (ROS, mitochondrial membrane potential (MMP, apoptosis, peripheral hormone levels and testicular germ cell populations were analysed, in all experimental groups. We observed efficient and quick recovery of spermatogenesis in MP and LD groups in comparison to the auto-recovery group. The treatment regulated ROS level, apoptosis, and mitochondrial membrane potential (MMP, recovered the hypothalamic-pituitary-gonadal axis and the number of testicular germ cells, ultimately leading to increased sperm count and motility. CONCLUSION/SIGNIFICANCE: M. pruriens efficiently recovers the spermatogenic loss induced due to EE administration. The recovery is mediated by reduction in ROS level, restoration of MMP, regulation of apoptosis and eventual increase in the number of germ cells and regulation of apoptosis. The present study simplified the complexity of mechanism involved and provided meaningful insights into MP/LD mediated correction of spermatogenic impairment caused by estrogens exposure. This is the first study demonstrating that L-DOPA largely accounts for pro

  8. MAP17, a ROS-dependent oncogene

    International Nuclear Information System (INIS)

    Carnero, Amancio

    2012-01-01

    MAP17 is a small 17 kDa non-glycosylated membrane protein previously identified as being overexpressed in carcinomas. Breast tumor cells that overexpress MAP17 show an increased tumoral phenotype with enhanced proliferative capabilities both in the presence or the absence of contact inhibition, decreased apoptotic sensitivity, and increased migration. MAP17-expressing clones also grow better in nude mice. The increased malignant cell behavior induced by MAP17 is associated with an increase in reactive oxygen species (ROS) production, and the treatment of MAP17-expressing cells with antioxidants results in a reduction in the tumorigenic properties of these cells. The MAP17-dependent increase in ROS and tumorigenesis relies on its PDZ-binding domain because disruption of this sequence by point mutations abolishes the ability of MAP17 to enhance ROS production and tumorigenesis. MAP17 is overexpressed in a great variety of human carcinomas, including breast tumors. Immunohistochemical analysis of MAP17 during cancer progression demonstrates that overexpression of the protein strongly correlates with tumoral progression. Generalized MAP17 overexpression in human carcinomas indicates that MAP17 can be a good marker for tumorigenesis and, especially, for malignant progression.

  9. SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia.

    Science.gov (United States)

    Resseguie, Emily A; Brookes, Paul S; O'Reilly, Michael A

    Supplemental oxygen (hyperoxia) used to treat individuals in respiratory distress causes cell injury by enhancing the production of toxic reactive oxygen species (ROS) and inhibiting mitochondrial respiration. The suppressor of morphogenesis of genitalia (SMG-1) kinase is activated during hyperoxia and promotes cell survival by phosphorylating the tumor suppressor p53 on serine 15. Here, we investigate whether SMG-1 and p53 blunt this vicious cycle of progressive ROS production and decline in mitochondrial respiration seen during hyperoxia. Human lung adenocarcinoma A549 and H1299 or colon carcinoma HCT116 cells were depleted of SMG-1, UPF-1, or p53 using RNA interference, and then exposed to room air (21% oxygen) or hyperoxia (95% oxygen). Immunoblotting was used to evaluate protein expression; a Seahorse Bioanalyzer was used to assess cellular respiration; and flow cytometry was used to evaluate fluorescence intensity of cells stained with mitochondrial or redox sensitive dyes. Hyperoxia increased mitochondrial and cytoplasmic ROS and suppressed mitochondrial respiration without changing mitochondrial mass or membrane potential. Depletion of SMG-1 or its cofactor, UPF1, significantly enhanced hyperoxia-induced mitochondrial but not cytosolic ROS abundance. They did not affect mitochondrial mass, membrane potential, or hyperoxia-induced deficits in mitochondrial respiration. Genetic depletion of p53 in A549 cells and ablation of the p53 gene in H1299 or HCT116 cells revealed that SMG-1 influences mitochondrial ROS through activation of p53. Our findings show that hyperoxia does not promote a vicious cycle of progressive mitochondrial ROS and dysfunction because SMG-1-p53 signaling attenuates production of mitochondrial ROS without preserving respiration. This suggests antioxidant therapies that blunt ROS production during hyperoxia may not suffice to restore cellular respiration.

  10. NO-sGC Pathway Modulates Ca2+ Release and Muscle Contraction in Zebrafish Skeletal Muscle.

    Science.gov (United States)

    Xiyuan, Zhou; Fink, Rainer H A; Mosqueira, Matias

    2017-01-01

    Vertebrate skeletal muscle contraction and relaxation is a complex process that depends on Ca 2+ ions to promote the interaction of actin and myosin. This process can be modulated by nitric oxide (NO), a gas molecule synthesized endogenously by (nitric oxide synthase) NOS isoforms. At nanomolar concentrations NO activates soluble guanylate cyclase (sGC), which in turn activates protein kinase G via conversion of GTP into cyclic GMP. Alternatively, NO post-translationally modifies proteins via S-nitrosylation of the thiol group of cysteine. However, the mechanisms of action of NO on Ca 2+ homeostasis during muscle contraction are not fully understood and we hypothesize that NO exerts its effects on Ca 2+ homeostasis in skeletal muscles mainly through negative modulation of Ca 2+ release and Ca 2+ uptake via the NO-sGC-PKG pathway. To address this, we used 5-7 days-post fecundation-larvae of zebrafish, a well-established animal model for physiological and pathophysiological muscle activity. We evaluated the response of muscle contraction and Ca 2+ transients in presence of SNAP, a NO-donor, or L-NAME, an unspecific NOS blocker in combination with specific blockers of key proteins of Ca 2+ homeostasis. We also evaluate the expression of NOS in combination with dihydropteridine receptor, ryanodine receptor and sarco/endoplasmic reticulum Ca 2+ ATPase. We concluded that endogenous NO reduced force production through negative modulation of Ca 2+ transients via the NO-sGC pathway. This effect could be reversed using an unspecific NOS blocker or sGC blocker.

  11. Macranthoidin B Modulates Key Metabolic Pathways to Enhance ROS Generation and Induce Cytotoxicity and Apoptosis in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Xing Fan

    2018-04-01

    Full Text Available Background/Aims: Induction of oxidative stress and reactive oxygen species (ROS mediated-apoptosis have been utilized as effective strategies in anticancer therapy. Macranthoidin B (MB is a potent inducer of ROS-mediated apoptosis in cancer, but its mechanism of action is poorly understood. Method: Superoxide production with MB exposure in colorectal cancer (CRC cells was measured using lucigenin chemiluminescence and real-time PCR. MB’s inhibitory effect on proliferation and viability of CRC cells was determined by proliferation assays. MB’s effect on apoptosis of CRC cells was determined by Western blotting and annexin V-FITC/PI staining. MB’s effect on the growth of CRC xenografts in mice was assessed. An established metabolomics profiling platform combining ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS with gas chromatography-mass spectrometry (GC-MS was performed to determine MB’s effect on total metabolite variation in CRC cells. Results: We found that MB increases ROS generation via modulating key metabolic pathways. Using metabolomics profiling platform combining LC-MS with GC-MS, a total of 236 metabolites were identified in HCT-116 cells in which 31 metabolites were determined to be significantly regulated (p ≤ 0.05 after MB exposure. A number of key metabolites revealed by metabolomics analysis include glucose, fructose, citrate, arginine, phenylalanine, and S-adenosylhomocysteine (SAH, suggesting specific modulation of metabolism on carbohydrates, amino acids and peptides, lipids, nucleotide, cofactors and vitamins in HCT-116 CRC cells with MB treatment highly associated with apoptosis triggered by enhanced ROS and activated caspase-3. Conclusion: Our results demonstrate that MB represses CRC cell proliferation by inducing ROS-mediated apoptosis.

  12. Macranthoidin B Modulates Key Metabolic Pathways to Enhance ROS Generation and Induce Cytotoxicity and Apoptosis in Colorectal Cancer.

    Science.gov (United States)

    Fan, Xing; Rao, Jun; Zhang, Ziwei; Li, Dengfeng; Cui, Wenhao; Zhang, Jun; Wang, Hua; Tou, Fangfang; Zheng, Zhi; Shen, Qiang

    2018-01-01

    Induction of oxidative stress and reactive oxygen species (ROS) mediated-apoptosis have been utilized as effective strategies in anticancer therapy. Macranthoidin B (MB) is a potent inducer of ROS-mediated apoptosis in cancer, but its mechanism of action is poorly understood. Superoxide production with MB exposure in colorectal cancer (CRC) cells was measured using lucigenin chemiluminescence and real-time PCR. MB's inhibitory effect on proliferation and viability of CRC cells was determined by proliferation assays. MB's effect on apoptosis of CRC cells was determined by Western blotting and annexin V-FITC/PI staining. MB's effect on the growth of CRC xenografts in mice was assessed. An established metabolomics profiling platform combining ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS) with gas chromatography-mass spectrometry (GC-MS) was performed to determine MB's effect on total metabolite variation in CRC cells. We found that MB increases ROS generation via modulating key metabolic pathways. Using metabolomics profiling platform combining LC-MS with GC-MS, a total of 236 metabolites were identified in HCT-116 cells in which 31 metabolites were determined to be significantly regulated (p ≤ 0.05) after MB exposure. A number of key metabolites revealed by metabolomics analysis include glucose, fructose, citrate, arginine, phenylalanine, and S-adenosylhomocysteine (SAH), suggesting specific modulation of metabolism on carbohydrates, amino acids and peptides, lipids, nucleotide, cofactors and vitamins in HCT-116 CRC cells with MB treatment highly associated with apoptosis triggered by enhanced ROS and activated caspase-3. Our results demonstrate that MB represses CRC cell proliferation by inducing ROS-mediated apoptosis. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. ROS signaling and stomatal movement in plant responses to drought stress and pathogen attack.

    Science.gov (United States)

    Qi, Junsheng; Song, Chun-Peng; Wang, Baoshan; Zhou, Jianmin; Kangasjärvi, Jaakko; Zhu, Jian-Kang; Gong, Zhizhong

    2018-04-16

    Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO 2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors including water status, light, CO 2 levels and pathogen attack, as well as endogenous signals such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO 2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. This article is protected by copyright. All rights reserved.

  14. TOR Complex 2-Ypk1 Signaling Maintains Sphingolipid Homeostasis by Sensing and Regulating ROS Accumulation

    Directory of Open Access Journals (Sweden)

    Brad J. Niles

    2014-02-01

    Full Text Available Reactive oxygen species (ROS are produced during normal metabolism and can function as signaling molecules. However, ROS at elevated levels can damage cells. Here, we identify the conserved target of rapamycin complex 2 (TORC2/Ypk1 signaling module as an important regulator of ROS in the model eukaryotic organism, S. cerevisiae. We show that TORC2/Ypk1 suppresses ROS produced both by mitochondria as well as by nonmitochondrial sources, including changes in acidification of the vacuole. Furthermore, we link vacuole-related ROS to sphingolipids, essential components of cellular membranes, whose synthesis is also controlled by TORC2/Ypk1 signaling. In total, our data reveal that TORC2/Ypk1 act within a homeostatic feedback loop to maintain sphingolipid levels and that ROS are a critical regulatory signal within this system. Thus, ROS sensing and signaling by TORC2/Ypk1 play a central physiological role in sphingolipid biosynthesis and in the maintenance of cell growth and viability.

  15. Hyperthermia enhances radiosensitivity of colorectal cancer cells through ROS inducing autophagic cell death.

    Science.gov (United States)

    Ba, Ming-Chen; Long, Hui; Wang, Shuai; Wu, Yin-Bing; Zhang, Bo-Huo; Yan, Zhao-Fei; Yu, Fei-Hong; Cui, Shu-Zhong

    2018-04-01

    Hyperthermia (HT) enhances the anti-cancer effects of radiotherapy (RT), but the precise biochemical mechanisms involved are unclear. This study was aim to investigate if mild HT sensitizes colorectal cancer cells to RT through reactive oxygen species (ROS)-inducing autophagic cell death in a mice model of HCT116 human colorectal cancer. HCT116 mice model were randomly divided into five groups: mock group, hyperthermia group (HT), radiotherapy group (RT), HT + RT group, and HT + RT +N-acetyl L-cysteine (NAC) group (HT + CT + NAC). After four weeks of treatment, cancer growth inhibition, rate and mitochondrial membrane potential were measured with MTT and JC-1 assays, respectively, while ROS were estimated fluorimetrically. The relationship of these parameters to expressions of autophagy-related genes Beclin1, LC3B, and mTOR was analyzed. Gene expression was measured by Real-Time polymerase chain reaction (RT-PCR). There were significant increases in ROS levels and mitochondrial membrane potential in the HT + RT group. ROS levels in the HT + RT group increased more significantly than in any other group. In contrast, ROS levels in the HT + RT + NAC group were significantly decreased relative to the HT + RT group. The number of autophagic bodies in HT + RT group was higher than that of mock group. There were significant increases in the expression of Beclin1 and LC3B genes, while mTOR expression was significantly decreased in the HT + CT group. Treatment with NAC reversed the pattern of these changes. These results indicate that HT enhances the radiosensitivity of colorectal cancer cells to RT through ROS inducing autophagic cell death. © 2017 Wiley Periodicals, Inc.

  16. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.

    Science.gov (United States)

    Dutta, R K; Nenavathu, Bhavani P; Gangishetty, Mahesh K; Reddy, A V R

    2012-06-01

    Recent studies indicated the role of ROS toward antibacterial activity. In our study we report ROS mediated membrane lipid oxidation of Escherichia coli treated with ZnO nanoparticles (NPs) as supported by detection and spectrophotometric measurement of malondialdehyde (MDA) by TBARS (thiobarbituric acid-reactive species) assay. The antibacterial effects of ZnO NPs were studied by measuring the growth curve of E. coli, which showed concentration dependent bacteriostatic and bacteriocidal effects of ZnO NPs. The antibacterial effects were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further, antibacterial effect of ZnO NPs was found to decrease by introducing histidine to the culture medium treated with ZnO NPs. The ROS scavenging action of histidine was confirmed by treating histidine to the batch of Escherichia coli+ZnO NPs at the end of the lag phase of the growth curve (Set-I) and during inoculation (Set-II). A moderate bacteriostatic effect (lag in the E. coli growth) was observed in Set-II batch while Set-I showed no bacteriostatic effect. From these evidences we confirmed that the antibacterial effect of bare as well as TG capped ZnO NPs were due to membrane lipid peroxidation caused by the ROS generated during ZnO NPs interaction in culture medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. ROS Hexapod

    Science.gov (United States)

    Davis, Kirsch; Bankieris, Derek

    2016-01-01

    As an intern project for NASA Johnson Space Center (JSC), my job was to familiarize myself and operate a Robotics Operating System (ROS). The project outcome converted existing software assets into ROS using nodes, enabling a robotic Hexapod to communicate to be functional and controlled by an existing PlayStation 3 (PS3) controller. Existing control algorithms and current libraries have no ROS capabilities within the Hexapod C++ source code when the internship started, but that has changed throughout my internship. Conversion of C++ codes to ROS enabled existing code to be compatible with ROS, and is now controlled using an existing PS3 controller. Furthermore, my job description was to design ROS messages and script programs that enabled assets to participate in the ROS ecosystem by subscribing and publishing messages. Software programming source code is written in directories using C++. Testing of software assets included compiling code within the Linux environment using a terminal. The terminal ran the code from a directory. Several problems occurred while compiling code and the code would not compile. So modifying code to where C++ can read the source code were made. Once the code was compiled and ran, the code was uploaded to Hexapod and then controlled by a PS3 controller. The project outcome has the Hexapod fully functional and compatible with ROS and operates using the PlayStation 3 controller. In addition, an open source software (IDE) Arduino board will be integrated into the ecosystem with designing circuitry on a breadboard to add additional behavior with push buttons, potentiometers and other simple elements in the electrical circuitry. Other projects with the Arduino will be a GPS module, digital clock that will run off 22 satellites to show accurate real time using a GPS signal and an internal patch antenna to communicate with satellites. In addition, this internship experience has led me to pursue myself to learn coding more efficiently and

  18. Protocols for the measurement of the F2-isoprostane, 15(S)-8-iso-prostaglandin F2α, in biological samples by GC-MS or GC-MS/MS coupled with immunoaffinity column chromatography.

    Science.gov (United States)

    Tsikas, Dimitrios; Suchy, Maria-Theresia

    2016-04-15

    Arachidonic acid, the origin of the eicosanoids family, occurs in biological samples as free acid and as ester in lipids. Free arachidonic acid is oxidized to numerous metabolites by means of enzymes including cyclooxygenase (COX). Arachidonic acid esterified to lipids is attacked by reactive oxygen species (ROS) to generate numerous oxidized arachidonic acid derivatives. Generally, it is assumed that ROS-derived arachidonic acid derivatives are distinct from those generated by enzymes such as COX. Therefore, ROS-generated eicosanoids are considered specific biomarkers of oxidative stress. However, there are serious doubts concerning a strict distinction between the enzyme-derived eicosanoids and the ROS-derived iso-eicosanoids. Prominent examples are prostaglandin F2α (PGF2α) and 15(S)-8-iso-prostaglandin F2α (15(S)-8-iso-PGF2α) which have been originally considered to exclusively derive from COX and ROS, respectively. There is convincing evidence that both COX and ROS can oxidize arachidonic acid to PGF2α and 15(S)-8-iso-PGF2α. Thus, many results previously reported for 15(S)-8-iso-PGF2α as exclusive ROS-dependent reaction product, and consequently as a specific biomarker of oxidative stress, require a careful re-examination which should also consider the analytical methods used to measure 15(S)-8-iso-PGF2α. This prominent but certainly not the only example underlines more than ever the importance of the analytical chemistry in basic and clinical research areas of oxidative stress. In the present work, we report analytical protocols for the reliable quantitative determination of 15(S)-8-iso-PGF2α in human biological samples including plasma and urine by mass spectrometry coupled to gas chromatography (GC-MS, GC-MS/MS) after specific isolation of endogenous 15(S)-8-iso-PGF2α and the externally added internal standard [3,3',4,4'-(2)H4]-15(S)-8-iso-PGF2α by immunoaffinity column chromatography (IAC). 15(S)-8-iso-PGF2α esterified to plasma lipids is

  19. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.

    Science.gov (United States)

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi

    2005-01-01

    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  20. Genomic Insights and Its Comparative Analysis with Yersinia enterocolitica Reveals the Potential Virulence Determinants and Further Pathogenicity for Foodborne Outbreaks.

    Science.gov (United States)

    Gnanasekaran, Gopalsamy; Na, Eun Jung; Chung, Han Young; Kim, Suyeon; Kim, You-Tae; Kwak, Woori; Kim, Heebal; Ryu, Sangryeol; Choi, Sang Ho; Lee, Ju-Hoon

    2017-02-28

    Yersinia enterocolitica is a well-known foodborne pathogen causing gastrointestinal infections worldwide. The strain Y. enterocolitica FORC_002 was isolated from the gill of flatfish (plaice) and its genome was sequenced. The genomic DNA consists of 4,837,317 bp with a GC content of 47.1%, and is predicted to contain 4,221 open reading frames, 81 tRNA genes, and 26 rRNA genes. Interestingly, genomic analysis revealed pathogenesis and host immune evasion-associated genes encoding guanylate cyclase (Yst), invasin (Ail and Inv), outer membrane protein (Yops), autotransporter adhesin A (YadA), RTX-like toxins, and a type III secretion system. In particular, guanylate cyclase is a heat-stable enterotoxin causing Yersinia -associated diarrhea, and RTX-like toxins are responsible for attachment to integrin on the target cell for cytotoxic action. This genome can be used to identify virulence factors that can be applied for the development of novel biomarkers for the rapid detection of this pathogen in foods.

  1. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc.

    Science.gov (United States)

    Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D

    2016-07-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.

  2. Gamma Interferon-Induced Guanylate Binding Protein 1 Is a Novel Actin Cytoskeleton Remodeling Factor

    OpenAIRE

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J. K.; Schubert, Dirk W.; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin a...

  3. Structure of the caspase-recruitment domain from a zebrafish guanylate-binding protein

    International Nuclear Information System (INIS)

    Jin, Tengchuan; Huang, Mo; Smith, Patrick; Jiang, Jiansheng; Xiao, T. Sam

    2013-01-01

    The crystal structure of the first zebrafish caspase-recruitment domain at 1.47 Å resolution illustrates a six-helix bundle fold similar to that of the human NLRP1 CARD. The caspase-recruitment domain (CARD) mediates homotypic protein–protein interactions that assemble large oligomeric signaling complexes such as the inflammasomes during innate immune responses. Structural studies of the mammalian CARDs demonstrate that their six-helix bundle folds belong to the death-domain superfamily, whereas such studies have not been reported for other organisms. Here, the zebrafish interferon-induced guanylate-binding protein 1 (zIGBP1) was identified that contains an N-terminal GTPase domain and a helical domain typical of the mammalian guanylate-binding proteins, followed by a FIIND domain and a C-terminal CARD similar to the mammalian inflammasome proteins NLRP1 and CARD8. The structure of the zIGBP1 CARD as a fusion with maltose-binding protein was determined at 1.47 Å resolution. This revealed a six-helix bundle fold similar to the NLRP1 CARD structure with the bent α1 helix typical of all known CARD structures. The zIGBP1 CARD surface contains a positively charged patch near its α1 and α4 helices and a negatively charged patch near its α2, α3 and α5 helices, which may mediate its interaction with partner domains. Further studies using binding assays and other analyses will be required in order to address the physiological function(s) of this zebrafish protein

  4. Guanylation of thiosemicarbazones: a new synthetic route to polysubstituted guanylhydrazones with antimicrobial activity

    International Nuclear Information System (INIS)

    Cunha, Silvio; Macedo Junior, Fernando Cesar de; Costa, Giselle A.N.; Neves, Daniela C.; Souza Neta, Lourdes Cardoso de

    2009-01-01

    Thiosemicarbazones were employed for the first time as electrophiles in the guanylation reaction promoted by HgCl 2 , affording polysubstituted guanylhydrazones, with regioselective introduction of each nitrogen substituent. The antibacterial and antifungal activities of guanylhydrazones were evaluated by determination of minimal inhibitory concentrations. Some of them exhibited very low minimal inhibitory concentrations (MIC) and broad-spectrum activities. The configurations of two guanylhydrazones were assigned by X-ray analysis that also revealed intramolecular interactions of the type N-H...N and C-H...N. (author)

  5. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis

    Science.gov (United States)

    Kwak, June M.; Mori, Izumi C.; Pei, Zhen-Ming; Leonhardt, Nathalie; Torres, Miguel Angel; Dangl, Jeffery L.; Bloom, Rachel E.; Bodde, Sara; Jones, Jonathan D.G.; Schroeder, Julian I.

    2003-01-01

    Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca2+ increases and ABA- activation of plasma membrane Ca2+-permeable channels in guard cells. Exogenous H2O2 rescues both Ca2+ channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction. PMID:12773379

  6. N-hydroxylamine is not an intermediate in the conversion of L-arginine to an activator of soluble guanylate cyclase in neuroblastoma N1E-115 cells.

    Science.gov (United States)

    Pou, S; Pou, W S; Rosen, G M; el-Fakahany, E E

    1991-01-01

    This study evaluates the role of N-hydroxylamine (NH2OH) in activating soluble guanylate cyclase in the mouse neuroblastoma clone N1E-115. It has been proposed that NH2OH is a putative intermediate in the biochemical pathway for the generation of nitric oxide (NO)/endothelium-derived relaxing factor (EDRF) from L-arginine. NH2OH caused a time- and concentration-dependent increase in cyclic GMP formation in intact cells. This response was not dependent on Ca2+. In cytosol preparations the activation of guanylate cyclase by L-arginine was dose-dependent and required Ca2+ and NADPH. In contrast, NH2OH itself did not activate cytosolic guanylate cyclase but it inhibited the basal activity of this enzyme in a concentration-dependent manner. The formation of cyclic GMP in the cytosolic fractions in response to NH2OH required the addition of catalase and H2O2. On the other hand, catalase and/or H2O2 lead to a decrease in L-arginine-induced cyclic GMP formation. Furthermore, NH2OH inhibited L-arginine- and sodium nitroprusside-induced cyclic GMP formation in the cytosol. The inhibition of L-arginine-induced cyclic GMP formation in the cytosol by NH2OH was not reversed by the addition of superoxide dismutase. These data strongly suggest that NH2OH is not a putative intermediate in the metabolism of L-arginine to an activator of guanylate cyclase. PMID:1671745

  7. Toll-like Receptor 4 Signaling Confers Cardiac Protection Against Ischemic Injury via Inducible Nitric Oxide Synthase- and Soluble Guanylate Cyclase-dependent Mechanisms

    Science.gov (United States)

    Wang, E; Feng, Yan; Zhang, Ming; Zou, Lin; Li, Yan; Buys, Emmanuel S.; Huang, Peigen; Brouckaert, Peter; Chao, Wei

    2011-01-01

    Background Prior administration of a small dose of lipopolysaccharide confers a cardiac protection against ischemia-reperfusion injury. However, the signaling mechanisms that control the protection are incompletely understood. We tested the hypothesis that TLR4 mediates the ability of lipopolysaccharide to protect against cardiac ischemia-reperfusion injury through distinct intracellular pathways involving myeloid differentiation factor 88 (MyD88), TIR-domain-containing adaptor protein inducing interferon-β–mediated transcription-factor (Trif), inducible nitric-oxide synthase (iNOS), and soluble guanylate cyclase (sGC). Methods Wild-type mice and the genetically modified mice, i.e., TLR4-deficient (TLR4-def), TLR2 knockout (TLR2−/−), MyD88−/−, Trif−/−, iNOS−/−, and sGCα1−/−, were treated with normal saline or 0.1 mg/kg of lipopolysaccharide, intraperitoneally. Twenty-four hours later, isolated hearts were perfused in a Langendorff apparatus and subsequently subjected to 30 min of global ischemia and reperfusion for up to 60 min. Left ventricular function and myocardial infarction sizes were examined. Results Compared to saline-treated mice, lipopolysaccharide-treated mice had markedly improved left ventricular developed pressure and dP/dtmax (P < 0.01) and reduced MI sizes (37.2 ± 3.4% vs. 19.8 ± 4.9%, P < 0.01) after ischemia-reperfusion. The cardiac protective effect of lipopolysaccharide was abolished in the TLR4-def and MyD88−/− mice, but remained intact in TLR2−/− or Trif−/− mice. iNOS−/− mice or wild-type mice treated with the iNOS inhibitor 1400W failed to respond to the TLR4-induced nitric oxide production and were not protected by the lipopolysaccharide preconditioning. While sGC 1−/− mice had robust nitric oxide production in response to lipopolysaccharide, they were not protected by the TLR4-elicited cardiac protection. Conclusions TLR4 activation confers a potent cardiac protection against ischemia

  8. ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment.

    Science.gov (United States)

    Frank, Tobias; Krieger, Axel; Leonard, Simon; Patel, Niravkumar A; Tokuda, Junichi

    2017-08-01

    With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.

  9. Wrapping up : nidovirus membrane structures and innate immunity

    NARCIS (Netherlands)

    Oudshoorn, D.

    2017-01-01

    The replication of all positive-stranded RNA viruses of eukaryotes is thought to take place at cytoplasmic membranous replication organelles. One of the most prominent types of viral ROs induced by a number of these viruses, including coronaviruses and arteriviruses, are double-membrane vesicles

  10. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1

    KAUST Repository

    Muleya, Victor

    2014-09-23

    Background: A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. Findings: Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. Conclusions: Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.

  11. Basal and T₃-induced ROS production in lymphocyte mitochondria is increased in type 2 diabetic patients

    DEFF Research Database (Denmark)

    Anthonsen, S; Larsen, J; Pedersen, P L

    2013-01-01

    in human lymphocytes in patients with diabetes mellitus type 2 (T2DM). Lymphocytes from 10 controls and 10 persons with T2DM were examined. Mitochondrial membrane potential (MMP) was examined by flow cytometry after staining with MitoTracker Green (MTG). Similarly ROS was measured following staining...

  12. Analysis of Alkaloids from Physalis peruviana by Capillary GC, Capillary GC-MS, and GC-FTIR.

    Science.gov (United States)

    Kubwabo, C; Rollmann, B; Tilquin, B

    1993-04-01

    The alkaloid composition of the aerial parts and roots of PHYSALIS PERUVIANA was analysed by capillary GC (GC (2)), GC (2)-MS and GC (2)-FTIR. Eight alkaloids were identified, three of those alkaloids are 3beta-acetoxytropane and two N-methylpyrrolidinylhygrine isomers, which were not previously found in the genus PHYSALIS. A reproduction of the identification of alkaloids detected in the plant by the use of retention indices has been proposed.

  13. Development of membranes and a study of their interfaces for rechargeable lithium-air battery

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jitendra; Kumar, Binod [Electrochemical Power Group, Metals and Ceramics Division, University of Dayton Research Institute, OH 45469-0171 (United States)

    2009-12-01

    This paper describes an investigation with an objective to screen and select high performance membrane materials for a working, rechargeable lithium-air battery. Membrane laminates comprising glass-ceramic (GC) and polymer-ceramic (PC) membranes were assembled, evaluated and analyzed. A superionic conducting GC membrane with a chemical composition of Li{sub 1+x}Al{sub x}Ge{sub 2-x}(PO{sub 4}){sub 3} (x = 0.5) was used. Polymer membranes comprising of PC(BN), PC(AlN), PC(Si{sub 3}N{sub 4}) and PC(Li{sub 2}O) electrochemically coupled the GC membrane with the lithium anode. The cell and membrane laminates were characterized by determining cell conductivity, open circuit voltage and carrier concentration and its mobility. The measurements identified Li{sub 2}O and BN as suitable dopants in polymer matrix which catalyzed anodic charge transfer reaction, formed stable SEI layer and provided high lithium ion conductivity. (author)

  14. LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.

    Science.gov (United States)

    Clayton, R N; Shakespear, R A; Marshall, J C

    1978-06-01

    Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.

  15. Androgen-sensitive hypertension associated with soluble guanylate cyclase-α1 deficiency is mediated by 20-HETE.

    Science.gov (United States)

    Dordea, Ana C; Vandenwijngaert, Sara; Garcia, Victor; Tainsh, Robert E T; Nathan, Daniel I; Allen, Kaitlin; Raher, Michael J; Tainsh, Laurel T; Zhang, Fan; Lieb, Wolfgang S; Mikelman, Sarah; Kirby, Andrew; Stevens, Christine; Thoonen, Robrecht; Hindle, Allyson G; Sips, Patrick Y; Falck, John R; Daly, Mark J; Brouckaert, Peter; Bloch, Kenneth D; Bloch, Donald B; Malhotra, Rajeev; Schwartzman, Michal L; Buys, Emmanuel S

    2016-06-01

    Dysregulated nitric oxide (NO) signaling contributes to the pathogenesis of hypertension, a prevalent and often sex-specific risk factor for cardiovascular disease. We previously reported that mice deficient in the α1-subunit of the NO receptor soluble guanylate cyclase (sGCα1 (-/-) mice) display sex- and strain-specific hypertension: male but not female sGCα1 (-/-) mice are hypertensive on an 129S6 (S6) but not a C57BL6/J (B6) background. We aimed to uncover the genetic and molecular basis of the observed sex- and strain-specific blood pressure phenotype. Via linkage analysis, we identified a suggestive quantitative trait locus associated with elevated blood pressure in male sGCα1 (-/-)S6 mice. This locus encompasses Cyp4a12a, encoding the predominant murine synthase of the vasoconstrictor 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE). Renal expression of Cyp4a12a in mice was associated with genetic background, sex, and testosterone levels. In addition, 20-HETE levels were higher in renal preglomerular microvessels of male sGCα1 (-/-)S6 than of male sGCα1 (-/-)B6 mice. Furthermore, treating male sGCα1 (-/-)S6 mice with the 20-HETE antagonist 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE) lowered blood pressure. Finally, 20-HEDE rescued the genetic background- and testosterone-dependent impairment of acetylcholine-induced relaxation in renal interlobar arteries associated with sGCα1 deficiency. Elevated Cyp4a12a expression and 20-HETE levels render mice susceptible to hypertension and vascular dysfunction in a setting of sGCα1 deficiency. Our data identify Cyp4a12a as a candidate sex-specific blood pressure-modifying gene in the context of deficient NO-sGC signaling. Copyright © 2016 the American Physiological Society.

  16. Investigation of the chemical mechanisms involved in the electropulsation of membranes at the molecular level.

    Science.gov (United States)

    Breton, Marie; Mir, Lluis M

    2018-02-01

    The chemical consequences of electropulsation on giant unilamellar vesicles (GUVs), in particular the possible oxidation of unsaturated phospholipids, have been investigated by mass spectrometry, flow cytometry and absorbance methods. Pulse application induced oxidation of the GUV phospholipids and the oxidation level depended on the duration of the pulse. Light and O 2 increased the level of pulse-induced lipid peroxidation whereas the presence of antioxidants either in the membrane or in the solution completely suppressed peroxidation. Importantly, pulse application did not create additional reactive oxygen species (ROS) in GUV-free solution. Lipid peroxidation seems to result from a facilitation of the lipid peroxidation by the ROS already present in the solution before pulsing, not from a direct pulse-induced peroxidation. The pulse would facilitate the entrance of ROS in the core of the membrane, allowing the contact between ROS and lipid chains and provoking the oxidation. Our findings demonstrate that the application of electric pulses on cells could induce the oxidation of the membrane phospholipids since cell membranes contain unsaturated lipids. The chemical consequences of electropulsation will therefore have to be taken into account in future biomedical applications of electropulsation since oxidized phospholipids play a key role in many signaling pathways and diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. ROS (Robot Operating System) für Automotive

    OpenAIRE

    Bubeck, Alexander

    2014-01-01

    - Introduction into the Robot Operating System - Open Source in the automotive industries - Application of ROS in the automotive industry - ROS navigation - ROS with real time control - ROS in the embedded world - Outlook: ROS 2.0 - Summary

  18. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis.

    Science.gov (United States)

    Kim, Young-Mee; Kim, Seok-Jo; Tatsunami, Ryosuke; Yamamura, Hisao; Fukai, Tohru; Ushio-Fukai, Masuko

    2017-06-01

    Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H 2 O 2 ) or overexpression of Nox4, which produces H 2 O 2 , increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H 2 O 2 to promote mtROS production. Mechanistically, H 2 O 2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H 2 O 2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program. Copyright © 2017 the American Physiological Society.

  19. Effect of Vericiguat, a Soluble Guanylate Cyclase Stimulator, on Natriuretic Peptide Levels in Patients With Worsening Chronic Heart Failure and Reduced Ejection Fraction

    DEFF Research Database (Denmark)

    Gheorghiade, Mihai; Greene, Stephen J; Butler, Javed

    2015-01-01

    IMPORTANCE: Worsening chronic heart failure (HF) is a major public health problem. OBJECTIVE: To determine the optimal dose and tolerability of vericiguat, a soluble guanylate cyclase stimulator, in patients with worsening chronic HF and reduced left ventricular ejection fraction (LVEF). DESIGN, ...

  20. Targeted Modification of Mitochondrial ROS Production Converts High Glucose-Induced Cytotoxicity to Cytoprotection: Effects on Anesthetic Preconditioning.

    Science.gov (United States)

    Sedlic, Filip; Muravyeva, Maria Y; Sepac, Ana; Sedlic, Marija; Williams, Anna Marie; Yang, Meiying; Bai, Xiaowen; Bosnjak, Zeljko J

    2017-01-01

    Contradictory reports on the effects of diabetes and hyperglycemia on myocardial infarction range from cytotoxicity to cytoprotection. The study was designed to investigate acute effects of high glucose-driven changes in mitochondrial metabolism and osmolarity on adaptive mechanisms and resistance to oxidative stress of isolated rat cardiomyocytes. We examined the effects of high glucose on several parameters of mitochondrial bioenergetics, including changes in oxygen consumption, mitochondrial membrane potential, and NAD(P)H fluorometry. Effects of high glucose on the endogenous cytoprotective mechanisms elicited by anesthetic preconditioning (APC) and the mediators of cell injury were also tested. These experiments included real-time measurements of reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening in single cells by laser scanning fluorescence confocal microscopy, and cell survival assay. High glucose rapidly enhanced mitochondrial energy metabolism, observed by increase in NAD(P)H fluorescence intensity, oxygen consumption, and mitochondrial membrane potential. This substantially elevated production of ROS, accelerated opening of the mPTP, and decreased survival of cells exposed to oxidative stress. Abrogation of high glucose-induced mitochondrial hyperpolarization with 2,4 dinitrophenol (DNP) significantly, but not completely, attenuated ROS production to a level similar to hyperosmotic mannitol control. DNP treatment reversed high glucose-induced cytotoxicity to cytoprotection. Hyperosmotic mannitol treatment also induced cytoprotection. High glucose abrogated APC-induced mitochondrial depolarization, delay in mPTP opening and cytoprotection. In conclusion, high glucose-induced mitochondrial hyperpolarization abolishes APC and augments cell injury. Attenuation of high glucose-induced ROS production by eliminating mitochondrial hyperpolarization protects cardiomyocytes. J. Cell. Physiol. 232: 216-224, 2017

  1. ROS Installation and Commissioning

    CERN Multimedia

    Gorini, B

    The ATLAS Readout group (a sub-group of TDAQ) has now completed the installation and commissioning of all of the Readout System (ROS) units. Event data from ATLAS is initially handled by detector specific hardware and software, but following a Level 1 Accept the data passes from the detector specific Readout Drivers (RODs) to the ROS, the first stage of the central ATLAS DAQ. Within the final ATLAS TDAQ system the ROS stores the data and on request makes it available to the Level 2 Trigger (L2) processors and to the Event Builder (EB) as required. The ROS is implemented as a large number of PCs housing custom built cards (ROBINs) and running custom multi-threaded software. Each ROBIN card (shown below) contains buffer memories to store the data, plus a field programmable gate array ( FPGA ) and an embedded PowerPC processor for management of the memories and data requests, and is implemented as a 64-bit 66 MHz PCI card. Both the software and the ROBIN cards have been designed and developed by the Readout g...

  2. T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of Vibrio parahaemolyticus.

    Directory of Open Access Journals (Sweden)

    Marcela de Souza Santos

    2017-06-01

    Full Text Available The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS production using the Type III Secretion System 2 (T3SS2 effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.

  3. ROS signalling - specificity is required

    DEFF Research Database (Denmark)

    Møller, Ian M; Sweetlove, Lee J

    2010-01-01

    Reactive oxygen species (ROS) production increases in plants under stress. ROS can damage cellular components, but they can also act in signal transduction to help the cell counteract the oxidative damage in the stressed compartment. H2O2 might induce a general stress response, but it does not have...... the required specificity to selectively regulate nuclear genes required for dealing with localized stress, e.g. in chloroplasts or mitochondria. Here we argue that peptides deriving from proteolytic breakdown of oxidatively damaged proteins have the requisite specificity to act as secondary ROS messengers...... and regulate source-specific genes and in this way contribute to retrograde ROS signalling during oxidative stress. Likewise, unmodified peptides deriving from the breakdown of redundant proteins could help coordinate organellar and nuclear gene expression...

  4. Gc protein-derived macrophage activating factor (GcMAF): isoelectric focusing pattern and tumoricidal activity.

    Science.gov (United States)

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Nakagawa, Yoshinori; Kawashima, Ken; Hori, Hitoshi

    2003-01-01

    Gc protein is the precursor for Gc protein-derived macrophage activating factor (GcMAF), with three phenotypes: Gc1f, Gc1s and Gc2, based on its electrophoretic mobility. The difference in electrophoretic mobility is because of the difference in its posttranslational sugar moiety composition. We compared the difference between Gc protein and GcMAF electrophoretic mobility using the isoelectric focusing (IEF) method. The tumoricidal activity of GcMAF-treated macrophage was evaluated after coculture with L-929 cell. The tumoricidal mechanism was investigated using TNF bioassay and nitric oxide (NO) release. The difference in Gc protein and GcMAF electrophoretic mobility was detected. The tumoricidal activity of GcMAF-treated macrophage was detected, but no release of TNF and NO was detected. The difference of isoelectric focusing mobility in Gc protein and GcMAF would be useful to develop a GcMAF detection method. GcMAF increased macrophage tumoricidal activity but TNF and NO release were not involved in the mechanism.

  5. Effects of stimulation of soluble guanylate cyclase on diabetic nephropathy in diabetic eNOS knockout mice on top of angiotensin II receptor blockade.

    Directory of Open Access Journals (Sweden)

    Ina M Ott

    Full Text Available The prevalence of diabetes mellitus and its complications, such as diabetic nephropathy (DN, is rising worldwide and prevention and treatment are therefore becoming increasingly important. Therapy of DN is particularly important for patients who do not adequately respond to angiotensin receptor blocker (ARB treatment. Novel approaches include the stimulation of soluble guanylate cyclase (sGC as it is reported to have beneficial effects on cardiac and renal damage. We aimed to investigate the effects of the sGC stimulator riociguat and ARB telmisartan on kidney function and structure in a hypertensive model of diabetic nephropathy. Seventy-six diabetic male eNOS knockout C57BL/6J mice were randomly divided after having received streptozotocin: telmisartan (1 mg/kg/d, riociguat (3 mg/kg/d, riociguat+telmisartan (3+1 mg/kg/d, and vehicle. Fourteen mice were used as non-diabetic controls. Treatment duration was 11 weeks. Glucose concentrations were increased and similar in all diabetic groups. Telmisartan insignificantly reduced blood pressure by 5.9 mmHg compared with diabetic controls (111.2±2.3 mmHg vs. 117.1±2.2 mmHg; p = 0.071. Treatment with riociguat both alone and in combination with telmisartan led to a significant reduction of blood pressure towards diabetic vehicle (105.2±2.5 mmHg and 105.0±3.2 mmHg, respectively, vs. 117.1±2.2 mmHg. Combined treatment also significantly decreased albuminuria compared with diabetic controls (47.3±9.6 µg/24 h vs. 170.8±34.2 µg/24 h; p = 0.002 reaching levels similar to those of non-diabetic controls (34.4±10.6 µg/24 h, whereas the reduction by single treatment with either telmisartan (97.8±26.4 µg/24 h or riociguat (97.1±15.7 µg/24 h was not statistically significant. The combination treatment led to a significant (p<0.01 decrease of tissue immunoreactivity of malondialdehyde, as consequence of reduced oxidative stress. In conclusion, stimulation of sGC significantly reduced urinary

  6. Cytotoxic effects induced by interferon-ω gene lipofection through ROS generation and mitochondrial membrane potential disruption in feline mammary carcinoma cells.

    Science.gov (United States)

    Villaverde, Marcela Solange; Targovnik, Alexandra Marisa; Miranda, María Victoria; Finocchiaro, Liliana María Elena; Glikin, Gerardo Claudio

    2016-08-01

    Progress in comparative oncology promises advances in clinical cancer treatments for both companion animals and humans. In this context, feline mammary carcinoma (FMC) cells have been proposed as a suitable model to study human breast cancer. Based on our previous data about the advantages of using type I interferon gene therapy over the respective recombinant DNA derived protein, the present work explored the effects of feline interferon-ω gene (fIFNω) transfer on FMC cells. Three different cell variants derived from a single spontaneous highly aggressive FMC tumor were successfully established and characterized. Lipofection of the fIFNω gene displayed a significant cytotoxic effect on the three cell variants. The extent of the response was proportional to ROS generation, mitochondrial membrane potential disruption and calcium uptake. Moreover, a lower sensitivity to the treatment correlated with a higher malignant phenotype. Our results suggest that fIFNω lipofection could offer an alternative approach in veterinary oncology with equal or superior outcome and with less adverse effects than recombinant fIFNω therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. ROS signalling – Specificity is required

    DEFF Research Database (Denmark)

    Møller, Ian Max; Sweetlove, Lee J

    2011-01-01

    The production of reactive oxygen species (ROS) increases in plants under stress. ROS can damage cellular components, but they can also act in signal transduction to help the cell counteract the oxidative damage in the stressed compartment. H2O2 may induce a general stress response, but it does...... messengers and regulate source-specific genes and in this way contribute to retrograde ROS signalling during oxidative stress. (This is a new project funded by FNU) References: Møller, I.M. & Sweetlove, L.J. 2010. ROS signalling – Specificity is required. Trends Plant Sci. 15: 370-374...... not have the required specificity to selectively regulate nuclear genes required for dealing with localized stress, e.g., in chloroplasts or mitochondria. We here argue that peptides deriving from proteolytic breakdown of oxidatively damaged proteins have the requisite specificity to act as secondary ROS...

  8. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    Science.gov (United States)

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  9. siRNA-based Analysis of the Abrogation of the Protective Function of Membrane-associated Catalase of Tumor Cells.

    Science.gov (United States)

    Bauer, Georg

    2017-02-01

    Tumor cells, in contrast to non-malignant cells, show sustained expression of membrane-associated NADPH oxidase-1 and therefore generate extracellular superoxide anions and their dismutation product H 2 O 2 In order to prevent intercellular reactive oxygen species/reactive nitrogen species (ROS/RNS)-dependent apoptosis-inducing signaling, tumor cells need to express membrane-associated catalase that interferes with HOCl and nitric oxide/peroxynitrite signaling. Catalase is attached to tumor cells through the activity of transglutaminase-2 and is prevented from superoxide anion-dependent inhibition through coexpression of membrane-associated superoxide dismutase. Therefore, specific inhibition of membrane-associated catalase should reactivate intercellular ROS/RNS-dependent apoptosis-inducing signaling. These processes are analyzed here through small interfering RNA-mediated knockdown of essential signaling compounds. This allows to establish a rather comprehensive picture of intercellular ROS/RNS signaling that may be instrumental for future therapeutic approaches. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Targeting TRPM2 in ROS-Coupled Diseases

    Directory of Open Access Journals (Sweden)

    Shinichiro Yamamoto

    2016-09-01

    Full Text Available Under pathological conditions such as inflammation and ischemia-reperfusion injury large amounts of reactive oxygen species (ROS are generated which, in return, contribute to the development and exacerbation of disease. The second member of the transient receptor potential (TRP melastatin subfamily, TRPM2, is a Ca2+-permeable non-selective cation channel, activated by ROS in an ADP-ribose mediated fashion. In other words, TRPM2 functions as a transducer that converts oxidative stress into Ca2+ signaling. There is good evidence that TRPM2 plays an important role in ROS-coupled diseases. For example, in monocytes the influx of Ca2+ through TRPM2 activated by ROS contributes to the aggravation of inflammation via chemokine production. In this review, the focus is on TRPM2 as a molecular linker between ROS and Ca2+ signaling in ROS-coupled diseases.

  11. Targeting TRPM2 in ROS-Coupled Diseases.

    Science.gov (United States)

    Yamamoto, Shinichiro; Shimizu, Shunichi

    2016-09-07

    Under pathological conditions such as inflammation and ischemia-reperfusion injury large amounts of reactive oxygen species (ROS) are generated which, in return, contribute to the development and exacerbation of disease. The second member of the transient receptor potential (TRP) melastatin subfamily, TRPM2, is a Ca(2+)-permeable non-selective cation channel, activated by ROS in an ADP-ribose mediated fashion. In other words, TRPM2 functions as a transducer that converts oxidative stress into Ca(2+) signaling. There is good evidence that TRPM2 plays an important role in ROS-coupled diseases. For example, in monocytes the influx of Ca(2+) through TRPM2 activated by ROS contributes to the aggravation of inflammation via chemokine production. In this review, the focus is on TRPM2 as a molecular linker between ROS and Ca(2+) signaling in ROS-coupled diseases.

  12. The ROS Workshop

    CERN Multimedia

    Francis, D.

    The first week of February saw the taking place of the ReadOut Subsystem (ROS) workshop. The ROS is the subsystem of the Trigger, DAQ & DCS project which receives and buffers data from the detector ReadOut Drivers (RODs). On request it then provides a subset of this buffered data, the so-called Regions of Interest (RoI), to the Level 2 trigger. Using the subsequent Level 2 trigger decision, the ROS either removes the buffered event data from its buffers or sends the full event data to the Event Filter for further processing. The workshop took place over a four-day period at a location in the Jura. The average daily attendance was twenty people, which mainly represented the five main ATLAS institutes currently engaged in this Trigger, DAQ & DCS activity. The aim of the workshop was to bring to an end the current prototyping activities in this area and launch the next, final, phase of prototyping. This new phase of prototyping will build on the successful activities of the previous phase and will focus...

  13. ROS-related redox regulation and signaling in plants.

    Science.gov (United States)

    Noctor, Graham; Reichheld, Jean-Philippe; Foyer, Christine H

    2017-07-18

    As sessile oxygenic organisms with a plastic developmental programme, plants are uniquely positioned to exploit reactive oxygen species (ROS) as powerful signals. Plants harbor numerous ROS-generating pathways, and these oxidants and related redox-active compounds have become tightly embedded into plant function and development during the course of evolution. One dominant view of ROS-removing systems sees them as beneficial antioxidants battling to keep damaging ROS below dangerous levels. However, it is now established that ROS are a necessary part of subcellular and intercellular communication in plants and that some of their signaling functions require ROS-metabolizing systems. For these reasons, it is suggested that "ROS processing systems" would be a more accurate term than "antioxidative systems" to describe cellular components that are most likely to interact with ROS and, in doing so, transmit oxidative signals. Within this framework, our update provides an overview of the complexity and compartmentation of ROS production and removal. We place particular emphasis on the importance of ROS-interacting systems such as the complex cellular thiol network in the redox regulation of phytohormone signaling pathways that are crucial for plant development and defense against external threats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Learning ROS for robotics programming

    CERN Document Server

    Martinez, Aaron

    2013-01-01

    The book will take an easy-to-follow and engaging tutorial approach, providing a practical and comprehensive way to learn ROS.If you are a robotic enthusiast who wants to learn how to build and program your own robots in an easy-to-develop, maintainable and shareable way, ""Learning ROS for Robotics Programming"" is for you. In order to make the most of the book, you should have some C++ programming background, knowledge of GNU/Linux systems, and computer science in general. No previous background on ROS is required, since this book provides all the skills required. It is also advisable to hav

  15. Protein chemical characterization of Gc globulin (vitamin D-binding protein) isoforms; Gc-1f, Gc-1s and Gc-2

    DEFF Research Database (Denmark)

    Christiansen, Maja; Jørgensen, Charlotte S; Laursen, Inga

    2007-01-01

    -survival of patients with fulminant hepatic failure and trauma. Here, we characterize the dominant isoforms of plasma-derived Gc globulin from Cohn fraction IV paste with respect to amino acid sequence and posttranslational modifications. Gc globulin was purified in large scale and the isoforms separated by ion...

  16. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate

    International Nuclear Information System (INIS)

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto; Rivera, Io-Guané; Ordoñez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Muñoz, Antonio

    2012-01-01

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A 2 and protein kinase C-α, and NADPH oxidase activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-α and cPLA 2 -α in this pathway. -- Highlights: ► Ceramide 1-phosphate (C1P) stimulates reactive oxygen species (ROS) formation. ► The enzyme responsible for ROS generation by C1P in macrophages is NADPH oxidase. ► NADPH oxidase lies downstream of cPLA 2 -α and PKC-α in this pathway. ► ROS generation is essential for the stimulation of macrophage proliferation by C1P.

  17. Soluble products of Escherichia coli induce mitochondrial dysfunction-related sperm membrane lipid peroxidation which is prevented by lactobacilli.

    Directory of Open Access Journals (Sweden)

    Arcangelo Barbonetti

    Full Text Available Unidentified soluble factors secreted by E. coli, a frequently isolated microorganism in genitourinary infections, have been reported to inhibit mitochondrial membrane potential (ΔΨm, motility and vitality of human spermatozoa. Here we explore the mechanisms involved in the adverse impact of E. coli on sperm motility, focusing mainly on sperm mitochondrial function and possible membrane damage induced by mitochondrial-generated reactive oxygen species (ROS. Furthermore, as lactobacilli, which dominate the vaginal ecosystem of healthy women, have been shown to exert anti-oxidant protective effects on spermatozoa, we also evaluated whether soluble products from these microorganisms could protect spermatozoa against the effects of E. coli. We assessed motility (by computer-aided semen analysis, ΔΨm (with JC-1 dye by flow cytometry, mitochondrial ROS generation (with MitoSOX red dye by flow cytometry and membrane lipid-peroxidation (with the fluorophore BODIPY C11 by flow cytometry of sperm suspensions exposed to E. coli in the presence and in the absence of a combination of 3 selected strains of lactobacilli (L. brevis, L. salivarius, L. plantarum. A Transwell system was used to avoid direct contact between spermatozoa and microorganisms. Soluble products of E. coli induced ΔΨm loss, mitochondrial generation of ROS and membrane lipid-peroxidation, resulting in motility loss. Soluble factors of lactobacilli prevented membrane lipid-peroxidation of E. coli-exposed spermatozoa, thus preserving their motility. In conclusion, sperm motility loss by soluble products of E. coli reflects a mitochondrial dysfunction-related membrane lipid-peroxidation. Lactobacilli could protect spermatozoa in the presence of vaginal disorders, by preventing ROS-induced membrane damage.

  18. Robot operating system (ROS) the complete reference

    CERN Document Server

    The objective of this book is to provide the reader with a comprehensive coverage on the Robot Operating Systems (ROS) and latest related systems, which is currently considered as the main development framework for robotics applications. The book includes twenty-seven chapters organized into eight parts. Part 1 presents the basics and foundations of ROS. In Part 2, four chapters deal with navigation, motion and planning. Part 3 provides four examples of service and experimental robots. Part 4 deals with real-world deployment of applications. Part 5 presents signal-processing tools for perception and sensing. Part 6 provides software engineering methodologies to design complex software with ROS. Simulations frameworks are presented in Part 7. Finally, Part 8 presents advanced tools and frameworks for ROS including multi-master extension, network introspection, controllers and cognitive systems. This book will be a valuable companion for ROS users and developers to learn more ROS capabilities and features.   ...

  19. Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling

    Directory of Open Access Journals (Sweden)

    Marcondes Alves Barbosa Da Silva

    2015-10-01

    Full Text Available Type 2 diabetes (DM2 increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR with spironolactone decreases ROS-associated vascular dysfunction and improves vascular NO signaling in diabetes. Leptin receptor knockout [LepRdb/LepRdb (db/db] mice, a model of DM2, and their counterpart controls [LepRdb/LepR+, (db/+ mice] received spironolactone (50 mg/kg body weight/day or vehicle (ethanol 1% via oral per gavage for 6 weeks. Spironolactone treatment abolished the endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS phosphorylation (Ser1177, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 (SOD1 and catalase expression, improved sodium nitroprusside (SNP and BAY 41-2272-induced relaxation, as well as increased soluble guanylyl cyclase (sGC subunit β protein expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes.

  20. Alanine Enhances Aminoglycosides-Induced ROS Production as Revealed by Proteomic Analysis

    Directory of Open Access Journals (Sweden)

    Jin-zhou Ye

    2018-01-01

    Full Text Available Metabolite-enabled killing of antibiotic-resistant pathogens by antibiotics is an attractive strategy to manage antibiotic resistance. Our previous study demonstrated that alanine or/and glucose increased the killing efficacy of kanamycin on antibiotic-resistant bacteria, whose action is through up-regulating TCA cycle, increasing proton motive force and enhancing antibiotic uptake. Despite the fact that alanine altered several metabolic pathways, other mechanisms could be potentially involved in alanine-mediated kanamycin killing of bacteria which remains to be explored. In the present study, we adopted proteomic approach to analyze the proteome changes induced by exogenous alanine. Our results revealed that the expression of three outer membrane proteins was altered and the deletion of nagE and fadL decreased the intracellular kanamycin concentration, implying their possible roles in mediating kanamycin transport. More importantly, the integrated analysis of proteomic and metabolomic data pointed out that alanine metabolism could connect to riboflavin metabolism that provides the source for reactive oxygen species (ROS production. Functional studies confirmed that alanine treatment together with kanamycin could promote ROS production that in turn potentiates the killing of antibiotic-resistant bacteria. Further investigation showed that alanine repressed the transcription of antioxidant-encoding genes, and alanine metabolism to riboflavin metabolism connected with riboflavin metabolism through TCA cycle, glucogenesis pathway and pentose phosphate pathway. Our results suggest a novel mechanism by which alanine facilitates kanamycin killing of antibiotic-resistant bacteria via promoting ROS production.

  1. Crizotinib-Resistant ROS1 Mutations Reveal a Predictive Kinase Inhibitor Sensitivity Model for ROS1- and ALK-Rearranged Lung Cancers.

    Science.gov (United States)

    Facchinetti, Francesco; Loriot, Yohann; Kuo, Mei-Shiue; Mahjoubi, Linda; Lacroix, Ludovic; Planchard, David; Besse, Benjamin; Farace, Françoise; Auger, Nathalie; Remon, Jordi; Scoazec, Jean-Yves; André, Fabrice; Soria, Jean-Charles; Friboulet, Luc

    2016-12-15

    The identification of molecular mechanisms conferring resistance to tyrosine kinase inhibitor (TKI) is a key step to improve therapeutic results for patients with oncogene addiction. Several alterations leading to EGFR and anaplastic lymphoma kinase (ALK) resistance to TKI therapy have been described in non-small cell lung cancer (NSCLC). Only two mutations in the ROS1 kinase domain responsible for crizotinib resistance have been described in patients thus far. A patient suffering from a metastatic NSCLC harboring an ezrin (EZR)-ROS1 fusion gene developed acquired resistance to the ALK/ROS1 inhibitor crizotinib. Molecular analysis (whole-exome sequencing, CGH) and functional studies were undertaken to elucidate the mechanism of resistance. Based on this case, we took advantage of the structural homology of ROS1 and ALK to build a predictive model for drug sensitivity regarding future ROS1 mutations. Sequencing revealed a dual mutation, S1986Y and S1986F, in the ROS1 kinase domain. Functional in vitro studies demonstrated that ROS1 harboring either the S1986Y or the S1986F mutation, while conferring resistance to crizotinib and ceritinib, was inhibited by lorlatinib (PF-06463922). The patient's clinical response confirmed the potency of lorlatinib against S1986Y/F mutations. The ROS1 S1986Y/F and ALK C1156Y mutations are homologous and displayed similar sensitivity patterns to ALK/ROS1 TKIs. We extended this analogy to build a model predicting TKI efficacy against potential ROS1 mutations. Clinical evidence, in vitro validation, and homology-based prediction provide guidance for treatment decision making for patients with ROS1-rearranged NSCLC who progressed on crizotinib. Clin Cancer Res; 22(24); 5983-91. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Characterization of beta-adrenergic receptors in synaptic membranes from rat cerebral cortex and cerebellum

    International Nuclear Information System (INIS)

    Lautens, L.

    1986-01-01

    Beta-adrenergic receptor ligand binding sites have been characterized in synaptic membranes from rat cerebral cortex and cerebellum using radioligand binding techniques. The equilibrium and kinetic properties of binding were assessed. The binding sites were non-interacting and exhibited two states of agonist binding which were sensitive to guanyl nucleotide. Synaptic membranes from cerebral cortex contained an equal number of beta 1 - and beta 2 -receptors; membranes from cerebellum possessed more beta 2 -than beta 1 -receptors. Photoaffinity labeling experiments revealed two different beta-adrenergic receptor polypeptides, R 1 and R 2 (and possibly a third, R 3 ) in synaptic membranes. The ratios of incorporation of photoaffinity label into R 1 : 2 were approximately 1:1 (cerebral cortex) and 5:1 (cerebellum). Photoaffinity labeling of R 1 and R 2 was inhibited equally well by both agonist and antagonist in synaptic membranes from cerebellum; whereas agonist was a less potent inhibitor in membranes from cerebral cortex. Both subtypes of beta-adrenergic receptors exhibited the same apparent molecular weight in synaptic membranes from cerebral cortex. The beta-adrenergic receptors in synaptic membranes from cerebral cortex and cerebellum were glycoproteins which exhibited the same apparent molecular weight after exposure to endoglycosidase F. The partial proteolytic digest maps of photoaffinity labeled beta-adrenergic receptors from rat cerebral cortex, cerebellum, lung and heart were compared

  3. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon; Kim, Young-Myeong; Ha, Kwon-Soo, E-mail: ksha@kangwon.ac.kr

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainly comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.

  4. Theoretical study of GC+/GC base pair derivatives

    International Nuclear Information System (INIS)

    Meng Fancui; Wang Huanjie; Xu Weiren; Liu Chengbu

    2005-01-01

    The geometries of R (R=CH 3 , CH 3 O, F, NO 2 ) substituted GC base pair derivatives and their cations have been optimized at B3LYP/6-31G* level and the substituent effects on the neutral and cationic geometric structures and energies have been discussed. The inner reorganization energies of various base pair derivatives and the native GC base pair have been calculated to discuss the substituent effects on the reorganization energy. NBO (natural bond orbital) analysis has been carried out on both the neutral and the cationic systems to investigate the differences of the charge distributions and the electronic structures. The outcomes indicate that 8-CH 3 O-G:C has the greatest reorganization energy and 8-NO 2 -G:C has the least, while the other substituted base pairs have a reorganization energy close to that of G:C. The one charge is mostly localized on guanine part after ionization and as high as 0.95e. The bond distances of N1-N3'andN2-O2' in the cationic base pair derivatives shortened and that of O6-N4' elongated as compared with the corresponding bond distances of the neutral GC base pair derivatives

  5. Methylcholanthrene-Induced Sarcomas Develop Independently from NOX2-Derived ROS.

    Directory of Open Access Journals (Sweden)

    Maarten A Ligtenberg

    Full Text Available Reactive oxygen species (ROS produced by the inducible NADPH oxidase type 2 (NOX2 complex are essential for clearing certain infectious organisms but may also have a role in regulating inflammation and immune response. For example, ROS is involved in myeloid derived suppressor cell (MDSC- and regulatory T cell (T(reg mediated T- and NK-cell suppression. However, abundant ROS produced within the tumor microenvironment, or by the tumor itself may also yield oxidative stress, which can blunt anti-tumor immune responses as well as eventually leading to tumor toxicity. In this study we aimed to decipher the role of NOX2-derived ROS in a chemically (by methylcholanthrene (MCA induced sarcoma model. Superoxide production by NOX2 requires the p47(phox (NCF1 subunit to organize the formation of the NOX2 complex on the cell membrane. Homozygous mutant mice (NCF1*/* have a functional loss of their super oxide burst while heterozygous mice (NCF1*/+ retain this key function. Mice harboring either a homo- or a heterozygous mutation were injected intramuscularly with MCA to induce sarcoma formation. We found that NOX2 functionality does not determine tumor incidence in the tested MCA model. Comprehensive immune monitoring in tumor bearing mice showed that infiltrating immune cells experienced an increase in their oxidative state regardless of the NOX2 functionality. While MCA-induced sarcomas where characterized by a T(reg and MDSC accumulation, no significant differences could be found between NCF1*/* and NCF1*/+ mice. Furthermore, infiltrating T cells showed an increase in effector-memory cell phenotype markers in both NCF1*/* and NCF1*/+ mice. Tumors established from both NCF1*/* and NCF1*/+ mice were tested for their in vitro proliferative capacity as well as their resistance to cisplatin and radiation therapy, with no differences being recorded. Overall our findings indicate that NOX2 activity does not play a key role in tumor development or immune cell

  6. Optimal ROS Signaling Is Critical for Nuclear Reprogramming

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-05-01

    Full Text Available Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox-inducible mouse embryonic fibroblasts (MEFs carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM] into induced pluripotent stem cells (iPSCs. ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22phox—a critical subunit of the Nox (1–4 complex—decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency.

  7. MG132, a proteasome inhibitor, induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion.

    Science.gov (United States)

    Park, Woo Hyun; Kim, Suhn Hee

    2012-04-01

    MG132 as a proteasome inhibitor can induce apoptotic cell death in lung cancer cells. However, little is known about the toxicological cellular effects of MG132 on normal primary lung cells. Here, we investigated the effects of N-acetyl cysteine (NAC) and vitamin C (well known antioxidants) or L-buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) on MG132-treated human pulmonary fibroblast (HPF) cells in relation to cell death, reactive oxygen species (ROS) and glutathione (GSH). MG132 induced growth inhibition and death in HPF cells, accompanied by the loss of mitochondrial membrane potential (MMP; ∆ψm). MG132 increased ROS levels and GSH-depleted cell numbers in HPF cells. Both antioxidants, NAC and vitamin C, prevented growth inhibition, death and MMP (∆ψm) loss in MG132-treated HPF cells and also attenuated ROS levels in these cells. BSO showed a strong increase in ROS levels in MG132-treated HPF cells and slightly enhanced the growth inhibition, cell death, MMP (∆ψm) loss and GSH depletion. In addition, NAC decreased anonymous ubiquitinated protein levels in MG132-treated HPF cells. Furthermore, superoxide dismutase (SOD) 2, catalase (CTX) and GSH peroxidase (GPX) siRNAs enhanced HPF cell death by MG132, which was not correlated with ROS and GSH level changes. In conclusion, MG132 induced the growth inhibition and death of HPF cells, which were accompanied by increasing ROS levels and GSH depletion. Both NAC and vitamin C attenuated HPF cell death by MG132, whereas BSO slightly enhanced the death.

  8. The role of mitochondrial ROS in the aging brain.

    Science.gov (United States)

    Stefanatos, Rhoda; Sanz, Alberto

    2018-03-01

    The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging. © 2017 Federation of European Biochemical Societies.

  9. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years.

  10. Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment

    Directory of Open Access Journals (Sweden)

    Piersiak Tomasz

    2010-11-01

    Full Text Available Abstract Background Rhizobium leguminosarum bv. trifolii is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Trifolium spp. Bacterial surface polysaccharides are crucial for establishment of a successful symbiosis with legumes that form indeterminate-type nodules, such as Trifolium, Pisum, Vicia, and Medicago spp. and aid the bacterium in withstanding osmotic and other environmental stresses. Recently, the R. leguminosarum bv. trifolii RosR regulatory protein which controls exopolysaccharide production has been identified and characterized. Results In this work, we extend our earlier studies to the characterization of rosR mutants which exhibit pleiotropic phenotypes. The mutants produce three times less exopolysaccharide than the wild type, and the low-molecular-weight fraction in that polymer is greatly reduced. Mutation in rosR also results in quantitative alterations in the polysaccharide constituent of lipopolysaccharide. The rosR mutants are more sensitive to surface-active detergents, antibiotics of the beta-lactam group and some osmolytes, indicating changes in the bacterial membranes. In addition, the rosR mutants exhibit significant decrease in motility and form a biofilm on plastic surfaces, which differs significantly in depth, architecture, and bacterial viability from that of the wild type. The most striking effect of rosR mutation is the considerably decreased attachment and colonization of root hairs, indicating that the mutation affects the first stage of the invasion process. Infection threads initiate at a drastically reduced rate and frequently abort before they reach the base of root hairs. Although these mutants form nodules on clover, they are unable to fix nitrogen and are outcompeted by the wild type in mixed inoculations, demonstrating that functional rosR is important for competitive nodulation. Conclusions This report demonstrates the significant role RosR regulatory protein plays in

  11. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling.

    Science.gov (United States)

    Wang, Ying; Branicky, Robyn; Noë, Alycia; Hekimi, Siegfried

    2018-04-18

    Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling. © 2018 Wang et al.

  12. Mitogen-activated protein kinase kinase kinase (MAPKKK) 4 from rapeseed (Brassica napus L.) is a novel member inducing ROS accumulation and cell death

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liang, E-mail: 18710470987@163.com; Ye, Chaofei, E-mail: yechaofei001@163.com; Zhao, Rui, E-mail: 571828628@qq.com; Li, Xin, E-mail: 1458272138@qq.com; Liu, Wu-zhen, E-mail: happywuzhenliu@163.com; Wu, Feifei, E-mail: 283915941@qq.com; Yan, Jingli, E-mail: yanjingli512@163.com; Jiang, Yuan-Qing, E-mail: jiangyq@nwafu.edu.cn; Yang, Bo, E-mail: yangwl@nwafu.edu.cn

    2015-11-27

    MAPKKK is the largest family of MAPK cascade, which is known to play important roles in plant growth, development and immune responses. So far, only a few have been functionally characterized even in the model plant, Arabidopsis due to the potential functional redundancy of MAPKKK. We previously identified and cloned a few MAPKKK family genes from rapeseed. In this study, BnaMAPKKK4 was characterized as a member in eliciting accumulation of reactive oxygen species (ROS) and hypersensitive response (HR)-like cell death. This is accompanied with accumulation of malondialdehyde (MDA), anthocyanin as well as nuclear DNA fragmentation. The transcript abundance of a series of ROS accumulation, cell death, and defense response related genes were up-regulated by the expression of MAPKKK4. Further investigation identified BnaMAPKKK4 elicited ROS through the downstream MPK3. These results indicate that BnaMAPKKK4 and its downstream components function in the ROS-induced cell death. - Highlights: • Expression of rapeseed MAPKKK4 induced ROS accumulation and cell death in leaves. • Cell death induced by MAPKKK4 is associated with membrane lipid peroxidation and DNA fragmentation. • MAPKKK4 interacts with MKK5 and MPK3. • MAPKKK4-induced ROS accumulation and cell death require downstream WIPK and SIPK. • MAPKKK4 is a novel MAPKKK modulating ROS accumulation and cell death.

  13. Mitogen-activated protein kinase kinase kinase (MAPKKK) 4 from rapeseed (Brassica napus L.) is a novel member inducing ROS accumulation and cell death

    International Nuclear Information System (INIS)

    Li, Liang; Ye, Chaofei; Zhao, Rui; Li, Xin; Liu, Wu-zhen; Wu, Feifei; Yan, Jingli; Jiang, Yuan-Qing; Yang, Bo

    2015-01-01

    MAPKKK is the largest family of MAPK cascade, which is known to play important roles in plant growth, development and immune responses. So far, only a few have been functionally characterized even in the model plant, Arabidopsis due to the potential functional redundancy of MAPKKK. We previously identified and cloned a few MAPKKK family genes from rapeseed. In this study, BnaMAPKKK4 was characterized as a member in eliciting accumulation of reactive oxygen species (ROS) and hypersensitive response (HR)-like cell death. This is accompanied with accumulation of malondialdehyde (MDA), anthocyanin as well as nuclear DNA fragmentation. The transcript abundance of a series of ROS accumulation, cell death, and defense response related genes were up-regulated by the expression of MAPKKK4. Further investigation identified BnaMAPKKK4 elicited ROS through the downstream MPK3. These results indicate that BnaMAPKKK4 and its downstream components function in the ROS-induced cell death. - Highlights: • Expression of rapeseed MAPKKK4 induced ROS accumulation and cell death in leaves. • Cell death induced by MAPKKK4 is associated with membrane lipid peroxidation and DNA fragmentation. • MAPKKK4 interacts with MKK5 and MPK3. • MAPKKK4-induced ROS accumulation and cell death require downstream WIPK and SIPK. • MAPKKK4 is a novel MAPKKK modulating ROS accumulation and cell death.

  14. Differential distribution of proteins and lipids in detergent-resistant and detergent-soluble domains in rod outer segment plasma membranes and disks.

    Science.gov (United States)

    Elliott, Michael H; Nash, Zack A; Takemori, Nobuaki; Fliesler, Steven J; McClellan, Mark E; Naash, Muna I

    2008-01-01

    Membrane heterogeneity plays a significant role in regulating signal transduction and other cellular activities. We examined the protein and lipid components associated with the detergent-resistant membrane (DRM) fractions from retinal rod outer segment (ROS) disk and plasma membrane-enriched preparations. Proteomics and correlative western blot analysis revealed the presence of alpha and beta subunits of the rod cGMP-gated ion channel and glucose transporter type 1, among other proteins. The glucose transporter was present exclusively in ROS plasma membrane (not disks) and was highly enriched in DRMs, as was the cGMP-gated channel beta-subunit. In contrast, the majority of rod opsin and ATP-binding cassette transporter A4 was localized to detergent-soluble domains in disks. As expected, the cholesterol : fatty acid mole ratio was higher in DRMs than in the corresponding parent membranes (disk and plasma membranes, respectively) and was also higher in disks compared to plasma membranes. Furthermore, the ratio of saturated : polyunsaturated fatty acids was also higher in DRMs compared to their respective parent membranes (disk and plasma membranes). These results confirm that DRMs prepared from both disks and plasma membranes are enriched in cholesterol and in saturated fatty acids compared to their parent membranes. The dominant fatty acids in DRMs were 16 : 0 and 18 : 0; 22 : 6n3 and 18 : 1 levels were threefold higher and twofold lower, respectively, in disk-derived DRMs compared to plasma membrane-derived DRMs. We estimate, based on fatty acid recovery that DRMs account for only approximately 8% of disks and approximately 12% of ROS plasma membrane.

  15. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Aibin; Liu, Jingyi [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China); Institute of Cardiovascular Disease, General Hospital of Beijing Command, PLA, Beijing (China); Liu, Peilin; Jia, Min; Wang, Han [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China); Tao, Ling, E-mail: lingtao2006@gmail.com [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China)

    2014-04-18

    Highlights: • Metabolic syndrome exacerbated MI/R induced injury accompanied by decreased Nur77. • ROS led to Nur77 translocation in metabolic syndrome. • Inhibiting relocation of Nur77 to mitochondria reduced ROS-induced cardiomyocyte injury in metabolic syndrome. - Abstract: Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H{sub 2}O{sub 2} led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H{sub 2}O{sub 2} and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the

  16. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome

    International Nuclear Information System (INIS)

    Xu, Aibin; Liu, Jingyi; Liu, Peilin; Jia, Min; Wang, Han; Tao, Ling

    2014-01-01

    Highlights: • Metabolic syndrome exacerbated MI/R induced injury accompanied by decreased Nur77. • ROS led to Nur77 translocation in metabolic syndrome. • Inhibiting relocation of Nur77 to mitochondria reduced ROS-induced cardiomyocyte injury in metabolic syndrome. - Abstract: Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H 2 O 2 led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H 2 O 2 and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the process

  17. Demodicidosis en pacientes con rosácea

    Directory of Open Access Journals (Sweden)

    Edhizon Trejo Mucha

    2007-01-01

    Full Text Available Objetivo: Determinar la frecuencia de demodicidosis y sus características clínicas en pacientes con rosácea. Materiales y métodos: Estudio de casos y controles en 42 pacientes con rosácea y 42 controles para describir la presencia y densidad de D. folliculorum. El estudio se realizó en el Hospital Nacional Cayetano Heredia entre marzo y setiembre del 2004, utilizándose la técnica de Tello. Resultados: Demodex folliculorum fue encontrado en los 42 pacientes con rosácea (100% y en 13 (31,0% del grupo control, (p= 0,000. La exposición a gatos, la crianza de roedores y cerdos, la seborrea y el uso de corticoides tópicos fueron mas frecuentes en los pacientes con rosácea. Conclusiones: La presencia de Demodex folliculorum fue más frecuente en los pacientes con rosácea. (Rev Med Hered 2007;18:15-21.

  18. Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats.

    Science.gov (United States)

    Wang, Jin-Ye; Sekine, Seiji; Saito, Morio

    2003-04-01

    Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.

  19. Analysis of Biogenic Amines by GC/FID and GC/MS

    OpenAIRE

    Nakovich, Laura

    2003-01-01

    Low levels of biogenic amines occur naturally, but high levels (FDA sets 50 ppm of histamine in fish as the maximum allowable level) can lead to scombroid poisoning. Amines in general are difficult to analyze by Gas Chromatography (GC) due to their lack of volatility and their interaction with the GC column, often leading to significant tailing and poor reproducibility. Biogenic amines need to be derivatized before both GC and HPLC analyses. The objective of this research was to devel...

  20. Endogenous mechanisms of reactive oxygen species (ROS generation

    Directory of Open Access Journals (Sweden)

    Agata Sarniak

    2016-11-01

    Full Text Available The main cellular source of reactive oxygen species (ROS is mitochondrial respiratory chain and active NADPH responsible for “respiratory burst” of phagocytes. Whatsmore ROS are produced in endoplasmic reticulum, peroxisomes, with the participation of xanthine and endothelial oxidase and during autoxidation process of small molecules. Mitochondrial respiratory chain is the main cellular source of ROS. It is considered that in aerobic organisms ROS are mainly formed during normal oxygen metabolism, as byproducts of oxidative phosphorylation, during the synthesis of ATP. The intermembranous phagocyte enzyme – activated NADPH oxidase, responsible for the “respiratory burst” of phagocytes, which is another source of ROS, plays an important role in defense of organism against infections.The aim of this article is to resume actuall knowledge about structure and function of the mitochondrial electron transport chain in which ROS are the byproducts and about NADPH oxidase as well as the function of each of its components in the “respiratory burst” of phagocytes.

  1. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    Science.gov (United States)

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized β-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years. PMID:18633461

  2. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities.

    Science.gov (United States)

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-01-01

    Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.

  3. ROS - Robotiikan tutkimustyökalusta kohti kaupallista menestystarinaa

    OpenAIRE

    Ahonen, Mika

    2017-01-01

    Avoimen lähdekoodin ROS-käyttöjärjestelmä on yleisesti tutkimushankkeissa käytetty robotiikan kehitysalusta. Tutkielman tavoitteena on ollut arvioida onko ROS järjestelmä, joka tulee yleistymään myös robotiikan kaupallisissa ratkaisuissa. ROS-pohjaisia kaupallisia tuotteita on jo olemassa ja sen käyttöä on pilotoitu runsaasti erilaisilla sovellusalueilla. Erityisesti palvelu- ja pilvirobotiikan alueilla ROSilla on kasvavaa potentiaalia. ROS on vielä kehittyvä järjestelmä ja ei nykyisellään...

  4. [Study on essential oil separation from Forsythia suspensa oil-bearing water body based on vapor permeation membrane separation technology].

    Science.gov (United States)

    Zhang, Qian; Zhu, Hua-Xu; Tang, Zhi-Shu; Pan, Yong-Lan; Li, Bo; Fu, Ting-Ming; Yao, Wei-Wei; Liu, Hong-Bo; Pan, Lin-Mei

    2018-04-01

    To investigate the feasibility of vapor permeation membrane technology in separating essential oil from oil-water extract by taking the Forsythia suspensa as an example. The polydimethylsiloxane/polyvinylidene fluoride (PDMS/PVDF) composite flat membrane and a polyvinylidene fluoride (PVDF) flat membrane was collected as the membrane material respectively. Two kinds of membrane osmotic liquids were collected by self-made vapor permeation device. The yield of essential oil separated and enriched from two kinds of membrane materials was calculated, and the microscopic changes of membrane materials were analyzed and compared. Meanwhile, gas chromatography-mass spectrometry (GC-MS) was used to compare and analyze the differences in chemical compositions of essential oil between traditional steam distillation, PVDF membrane enriched method and PDMS/PVDF membrane enriched method. The results showed that the yield of essential oil enriched by PVDF membrane was significantly higher than that of PDMS/PVDF membrane, and the GC-MS spectrum showed that the content of main compositions was higher than that of PDMS/PVDF membrane; The GC-MS spectra showed that the components of essential oil enriched by PVDF membrane were basically the same as those obtained by traditional steam distillation. The above results showed that vapor permeation membrane separation technology shall be feasible for the separation of Forsythia essential oil-bearing water body, and PVDF membrane was more suitable for separation and enrichment of Forsythia essential oil than PDMS/PVDF membrane. Copyright© by the Chinese Pharmaceutical Association.

  5. Optimizing the Universal Robots ROS driver

    DEFF Research Database (Denmark)

    Andersen, Thomas Timm

    improvement both in terms of faster reaction as well as making it possible to control the robot using either ros_control or ordinary joint speed commands, which is required for many types of sensory based control like visual servoing. The developed driver is compared to the drivers already existing in the ROS...

  6. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    Science.gov (United States)

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  7. Arctigenin induces apoptosis in colon cancer cells through ROS/p38MAPK pathway.

    Science.gov (United States)

    Li, Qing-chun; Liang, Yun; Tian, Yuan; Hu, Guang-rui

    2016-01-01

    In the current study the antiproliferative effect of arctigenin, plant lignin, was evaluated on human colon cancer cell line HT-29. Furthermore, attempts were made to explore the signaling mechanism which may be responsible for its effect. Cell growth inhibition was assessed by MTT and LDH assays. Flow cytometric analysis was performed to determine cell arrest in the cell cycle phase and apoptosis. Furthermore, to confirm the apoptotic activity of arctigenin, caspase-9 and -3 activities analysis was performed. The levels of reactive oxygen species (ROS) and p38 mitogen activated protein kinase (MAPK) were investigated to determine their role in inducing apoptosis in arctigenin-treated HT-29 colon cancer cell line. MTT and LDH results demonstrated significant cell growth inhibitory effect of arctigenin on HT-29 cells in a dose-dependent manner. Furthermore, increase in cell number arrested at G2/M phase was observed in flow cytometric analysis upon arctigenin treatment. In addition, arctigenin increased the apoptotic ratio in a dose-dependent manner. The involvement of intrinsic apoptotic pathway was indicated by the activation of caspase-9 and -3. Moreover, increased ROS production, activation of p38 MAPK and changes in mitochondrial membrane potential (ΔΨm) also revealed the role of intrinsic apoptotic signaling pathway in cell growth inhibition after arctigenin exposure. Arctigenin induces apoptosis in HT-29 colon cancer cells by regulating ROS and p38 MAPK pathways.

  8. Role of ROS-mediated autophagy in radiation-induced bystander effect of hepatoma cells.

    Science.gov (United States)

    Wang, Xiangdong; Zhang, Jianghong; Fu, Jiamei; Wang, Juan; Ye, Shuang; Liu, Weili; Shao, Chunlin

    2015-05-01

    Autophagy plays a crucial role in cellular response to ionizing radiation, but it is unclear whether autophagy can modulate radiation-induced bystander effect (RIBE). Here, we investigated the relationship between bystander damage and autophagy in human hepatoma cells of HepG2. HepG2 cells were treated with conditioned medium (CM) collected from 3 Gy γ-rays irradiated hepatoma HepG2 cells for 4, 12, or 24 h, followed by the measurement of micronuclei (MN), intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and protein expressions of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 in the bystander HepG2 cells. In some experiments, the bystander HepG2 cells were respectively transfected with LC3 small interfering RNA (siRNA), Beclin-1 siRNA or treated with 1% dimethyl sulfoxide (DMSO). Additional MN and mitochondrial dysfunction coupled with ROS were induced in the bystander cells. The expressions of protein markers of autophagy, LC3-II/LC3-I and Beclin-1, increased in the bystander cells. The inductions of bystander MN and overexpressions of LC3 and Beclin-1 were significantly diminished by DMSO. However, when the bystander cells were transfected with LC3 siRNA or Beclin-1 siRNA, the yield of bystander MN was significantly enhanced. The elevated ROS have bi-functions in balancing the bystander effects. One is to cause MN and the other is to induce protective autophagy.

  9. Purification of equine Gc-globulin

    DEFF Research Database (Denmark)

    Houen, Gunnar; Pihl, Tina Holberg; Andersen, Pia Haubro

    Objectives With the aim of producing antibodies for an equine Group specific component (Gc)-globulin assay, the protein was purified from normal equine plasma. Methods Equine Gc-globulin was purified from healthy horse plasma using ion exchange chromatography (Q-Sepharose, CM......-Sepharose) and preparative PAGE. Results Equine Gc-globulin has successfully been purified from healthy horse plasma and rabbits and mice are being immunized to produce specific antibodies. Conclusions Purification of equine Gc-globulin and the production of specific antibodies will make it possible to develop an assay...... to be a sensitive marker of acute tissue injury and fatal outcome in humans. Patients with a low plasma concentration of Gc-globulin due to severe tissue injury might potentially benefit from infusions with purified Gc-globulin [1]. With an equine Gc-globulin assay, future studies will investigate the concentration...

  10. Radio-oxidative membrane damage and its possible role as an indicator of radiation exposure

    International Nuclear Information System (INIS)

    Amit Kumar; Pandey, B.N.; Mishra, K.P.

    2004-01-01

    Cellular membranes have been recognized as a sensitive target in the mechanism of ionizing radiation-induced cell killing. In our laboratory, studies have been devoted to investigations on gamma radiation induced oxidative damage to model and cellular membrane damage by employing fluorescence and electron spin resonance (ESR) methods Considerable evidences has accumulated to suggest that radiation induced oxidative damage was related to apoptotic death of a variety of cells in culture. Radiation induced damage involving lipid peroxidation, altered bilayer fluidity, permeability changes and intracellular generated ROS have been evaluated by chemical and physical methods. Modification of damage by structural modulating agents such as cholesterol and antioxidants such as eugenol, ascorbic acid, ellagic acid, triphala have been extensively investigated. Generation of intracellular ROS in radiation stressed normal cell e.g. mouse thymocytes, tumor cells e.g. Ehrlich ascites cells and human cervical cell line were evaluated after exposure from low to moderate doses of α-radiation. Results suggest that modulation of intracellular ROS level may be an important approach to alter radio-cytotoxicity of cells. This presentation would describe results of our study together with an overview of free radical mediated oxidative damage to cellular membrane as an indicator of radiation exposure. (author)

  11. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF1

    OpenAIRE

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of pu...

  12. SkiROS

    DEFF Research Database (Denmark)

    Rovida, Francesco; Schou, Casper; Andersen, Rasmus Skovgaard

    During the last decades, the methods for intuitive task level programming of robots have become a fundamental point of interest for industrial application. The paper in hand presents SkiROS (Skill-based Robot Operating System) a novel software architecture based on the skills paradigm. The skill ...... of a flexible, highly modular system for the development of cognitive robot tasks....

  13. Cyclic guanosine monophosphate in the regulation of the cell function

    Directory of Open Access Journals (Sweden)

    Małgorzata Zbrojkiewicz

    2016-12-01

    Full Text Available Intracellular concentration of cGMP depends on the activity of guanylate cyclase, responsible for its synthesis, on the activity of cyclic nucleotide degrading enzymes - phosphodiesterases (PDEs. There are two forms of guanylate cyclase: the membrane-bound cyclase and the soluble form. The physiological activators of the membrane guanylate cyclase are natriuretic peptides (NPs, and of the cytosolic guanylate cyclase - nitric oxide (NO and carbon monoxide (CO. Intracellular cGMP signaling pathways arise from its direct effect on the activity of G protein kinases, phosphodiesterases and cyclic nucleotide dependent cation channels. It has been shown in recent years that cGMP can also affect other signal pathways in cell signaling activity involving Wnt proteins and sex hormones. The increased interest in the research on the role of cGMP, resulted also in the discovery of its role in the regulation of phototransduction in the eye, neurotransmission, calcium homeostasis, platelet aggregation, heartbeat, bone remodeling, lipid metabolism and the activity of the cation channels. Better understanding of the mechanisms of action of cGMP in the regulation of cell function can create new opportunities for the cGMP affecting drugs use in the pharmacotherapy.

  14. An artemisinin-mediated ROS evolving and dual protease light-up nanocapsule for real-time imaging of lysosomal tumor cell death.

    Science.gov (United States)

    Huang, Liwei; Luo, Yingping; Sun, Xian; Ju, Huangxian; Tian, Jiangwei; Yu, Bo-Yang

    2017-06-15

    Lysosomes are critical organelles for cellular homeostasis and can be used as potential targets to kill tumor cells from inside. Many photo-therapeutic methods have been developed to overproduce reactive oxygen species (ROS) to trigger lysosomal membrane permeabilization (LMP)-associated cell death pathway. However, these technologies rely on extra irradiation to activate the photosensitizers, which limits the applications in treating deep seated tumors and widespread metastatic lesions. This work reports a multifunctional nanocapsule to achieve targeted lysosomal tumor cell death without irradiation and real-time monitoring of drug effect through encapsulating artemisinin and dual protease light-up nanoprobe in a folate-functionalized liposome. The nanocapsule can be specifically uptaken by tumor cells via folate receptor-mediated endocytosis to enter lysosomes, in which artemisinin reacts with ferrous to generate ROS for LMP-associated cell death. By virtue of confocal fluorescence imaging, the artemisinin location in lysosome, ROS-triggered LMP and ultimate cell apoptosis can be visualized with the cathepsin B and caspase-3 activatable nanoprobe. Notably, the artemisinin-mediated ROS evolving for tumor therapy and real-time therapeutic monitoring were successfully implemented by living imaging in tumor-bearing mice, which broaden the nanocapsule for in vivo theranostics and may offer new opportunities for precise medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The regulation of cellular apoptosis by the ROS-triggered PERK/EIF2α/chop pathway plays a vital role in bisphenol A-induced male reproductive toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Li [Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Dai, Yanlin [Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Medical Laboratory Technology Department, Chuxiong Medical College, Yunnan 675005 (China); Cui, Zhihong; Jiang, Xiao; Liu, Wenbin; Han, Fei; Lin, Ao; Cao, Jia [Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Liu, Jinyi, E-mail: jinyiliutmmu@163.com [Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038 (China)

    2017-01-01

    Bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA) is ubiquitous in the environment, wildlife, and humans. Evidence from past studies suggests that BPA is associated with decreased semen quality. However, the molecular basis for the adverse effect of BPA on male reproductive toxicity remains unclear. We evaluated the effect of BPA on mouse spermatocytes GC-2 cells and adult mice, and we explored the potential mechanism of its action. The results showed that BPA inhibited cell proliferation and increased the apoptosis rate. The testes from BPA-treated mice showed fewer spermatogenic cells and sperm in the seminiferous tubules. In addition, BPA caused reactive oxygen species (ROS) accumulation. Previous study has verified that mitochondrion was the organelle affected by the BPA-triggered ROS accumulation. We found that BPA induced damage to the endoplasmic reticulum (ER) in addition to mitochondria, and most ER stress-related proteins were activated in cellular and animal models. Knocking down of the PERK/EIF2α/chop pathway, one of the ER stress pathways, partially recovered the BPA-induced cell apoptosis. In addition, an ROS scavenger attenuated the expression of the PERK/EIF2α/chop pathway-related proteins. Taken together, these data suggested that the ROS regulated PERK/EIF2α/chop pathway played a vital role in BPA-induced male reproductive toxicity. - Highlights: • BPA exposure caused the damage of the endoplasmic reticulum. • BPA exposure activated ER stress related proteins in male reproductive system. • ROS regulated PERK/EIF2α/chop pathway played a vital role in BPA-induced toxicity.

  16. Literature-based discovery of diabetes- and ROS-related targets

    Directory of Open Access Journals (Sweden)

    Pande Manjusha

    2010-10-01

    Full Text Available Abstract Background Reactive oxygen species (ROS are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/. Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy.

  17. Polymorphic ROS scavenging revealed by CCCP in a lizard

    Science.gov (United States)

    Olsson, Mats; Wilson, Mark; Isaksson, Caroline; Uller, Tobias

    2009-07-01

    Ingestion of antioxidants has been argued to scavenge circulating reactive molecules (e.g., free radicals), play a part in mate choice (by mediating access to this important resource), and perhaps increase life span. However, recent work has come to question these relationships. We have shown elsewhere in the polychromatic lizard, Ctenophorus pictus, that diet supplementation of carotenoids as antioxidants does not depress circulating natural reactive oxygen species (ROS) levels and leads to no corresponding improvement of color traits. However, a much stronger test would be to experimentally manipulate the ROS levels themselves and assess carotenoid-induced ROS depression. Here, we achieve this by using carbonyl cyanide 3-chlorophenylhydrazone, which elevates superoxide (SO) formation approximately threefold at 10 μM in this model system. We then look for depressing effects on ROS of the carotenoids in order to assess whether ‘super-production’ of SO makes carotenoid effects on elevated ROS levels detectable. The rationale for this treatment was that if not even such elevated levels of SO are reduced by carotenoid supplementation, the putative link carotenoids, ROS depression, and mate quality (in terms of antioxidant capacity) is highly questionable. We conclude that there is no significant effect of carotenoids on mean SO levels even at the induced ROS levels. However, our results showed a significant interaction effect between carotenoid treatment and male color, with red males having higher ROS levels than yellow males. We suggest that this may be because different pigments are differently involved in the generation of the integumental colors in the two morphs with concomitant effects on ROS depletion depending on carotenoid uptake or allocation to coloration and antioxidation.

  18. Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways.

    Science.gov (United States)

    Duan, Fengsen; Yu, Yuejin; Guan, Rijian; Xu, Zhiliang; Liang, Huageng; Hong, Ling

    2016-01-01

    The effects of vitamin K2 on apoptosis in a variety of cancer cells have been well established in previous studies. However, the apoptotic effect of vitamin K2 on bladder cancer cells has not been evaluated. The aim of this study is to examine the apoptotic activity of Vitamin K2 in bladder cancer cells and investigate the underlying mechanism. In this study, Vitamin K2 induced apoptosis in bladder cancer cells through mitochondria pathway including loss of mitochondria membrane potential, cytochrome C release and caspase-3 cascade. Furthermore, the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK was detected in Vitamin K2-treated cells and both SP600125 (an inhibitor of JNK) and SB203580 (an inhibitor of p38 MAPK) completely abolished the Vitamin K2-induced apoptosis and loss of mitochondria membrane potential. Moreover, the generation of reactive oxygen species (ROS) was detected in bladder cancer cells, upon treatment of vitamin K2 and the anti-oxidant N-acetyl cysteine (NAC) almost blocked the Vitamin K2-triggered apoptosis, loss of mitochondria membrane potential and activation of JNK and p38 MAPK. Taken together, these findings revealed that Vitamin K2 induces apoptosis in bladder cancer cells via ROS-mediated JNK/p38 MAPK and Mitochondrial pathways.

  19. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction.

    Science.gov (United States)

    Resseguie, Emily A; Staversky, Rhonda J; Brookes, Paul S; O'Reilly, Michael A

    2015-08-01

    High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Clinical and pathological significance of ROS1 expression in intrahepatic cholangiocarcinoma

    International Nuclear Information System (INIS)

    Lee, Kyung-Hun; Lee, Kyoung-Bun; Kim, Tae-Yong; Han, Sae-Won; Oh, Do-Youn; Im, Seock-Ah; Kim, Tae-You; Yi, Nam-Joon; Lee, Kwang-Woong; Suh, Kyung-Suk; Jang, Ja-June; Bang, Yung-Jue

    2015-01-01

    More knowledge about genetic and molecular features of cholangiocarcinoma is needed to develop effective therapeutic strategies. We investigated the clinical and pathological significance of ROS1 expression in intrahepatic cholangiocarcinoma. One hundred ninety-four patients with curatively resected intrahepatic cholangiocarcinoma were included in this study. Tumor tissue specimens were collected and analyzed for ROS1 gene rearrangement using fluorescence in situ hybridization (FISH) and ROS1 protein expression using immunohistochemistry (IHC). ROS1 immunohistochemistry was positive (moderate or strong staining) in 72 tumors (37.1 %). ROS1 protein expression was significantly correlated with well differentiated tumors, papillary or mucinous histology, oncocytic/hepatoid or intestinal type tumors, and periductal infiltrating or intraductal growing tumors (vs. mass-forming cholangiocarcinoma). ROS-expressing tumors were associated with better disease-free survival (30.1 months for ROS1 expression (+) tumors vs. 9.0 months for ROS1 (−) tumors, p = 0.006). Moreover, ROS1 expression was an independent predictor of better disease-free survival in a multivariate analysis (HR 0.607, 95 % CI 0.377–0.976; p = 0.039). Although break-apart FISH was successfully performed in 102 samples, a split pattern indicative of ROS1 gene rearrangement was not found in the examined samples. ROS1 protein expression was associated with well-differentiated histology and better survival in our patients with resected intrahepatic cholangiocarcinoma. ROS1 gene rearrangement by break-apart FISH was not found in the examined samples

  1. SPG7 Variant Escapes Phosphorylation-Regulated Processing by AFG3L2, Elevates Mitochondrial ROS, and Is Associated with Multiple Clinical Phenotypes

    Directory of Open Access Journals (Sweden)

    Naif A.M. Almontashiri

    2014-05-01

    Full Text Available Mitochondrial production of reactive oxygen species (ROS affects many processes in health and disease. SPG7 assembles with AFG3L2 into the mAAA protease at the inner membrane of mitochondria, degrades damaged proteins, and regulates the synthesis of mitochondrial ribosomes. SPG7 is cleaved and activated by AFG3L2 upon assembly. A variant in SPG7 that replaces arginine 688 with glutamine (Q688 is associated with several phenotypes, including toxicity of chemotherapeutic agents, type 2 diabetes mellitus, and (as reported here coronary artery disease. We demonstrate that SPG7 processing is regulated by tyrosine phosphorylation of AFG3L2. Carriers of Q688 bypass this regulation and constitutively process and activate SPG7 mAAA protease. Cells expressing Q688 produce higher ATP levels and ROS, promoting cell proliferation. Our results thus reveal an unexpected link between the phosphorylation-dependent regulation of the mitochondria mAAA protease affecting ROS production and several clinical phenotypes.

  2. The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPK{sub ERK}

    Energy Technology Data Exchange (ETDEWEB)

    Fouda, Mohamed A.; El-Gowelli, Hanan M.; El-Gowilly, Sahar M.; El-Mas, Mahmoud M., E-mail: mahelm@hotmail.com

    2015-12-15

    We have previously reported that estrogen (E2) exacerbates the depressant effect of chronic nicotine on arterial baroreceptor activity in female rats. Here, we tested the hypothesis that this nicotine effect is modulated by nitric oxide synthase (NOS) and/or heme oxygenase (HO) and their downstream soluble guanylate cyclase (sGC)/phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinases (MAPKs) signaling. We investigated the effects of (i) inhibition or facilitation of NOS or HO on the interaction of nicotine (2 mg/kg/day i.p., 2 weeks) with reflex bradycardic responses to phenylephrine in ovariectomized (OVX) rats treated with E2 or vehicle, and (ii) central pharmacologic inhibition of sGC, PI3K, or MAPKs on the interaction. The data showed that the attenuation by nicotine of reflex bradycardia in OVXE2 rats was abolished after treatment with hemin (HO inducer) or L-arginine (NOS substrate). The hemin or L-arginine effect disappeared after inhibition of NOS (Nω-Nitro-L-arginine methyl ester hydrochloride, L-NAME) and HO (zinc protoporphyrin IX, ZnPP), respectively, denoting the interaction between the two enzymatic pathways. E2-receptor blockade (ICI 182,780) reduced baroreflexes in OVXE2 rats but had no effect on baroreflex improvement induced by hemin or L-arginine. Moreover, baroreflex enhancement by hemin was eliminated following intracisternal (i.c.) administration of wortmannin, ODQ, or PD98059 (inhibitors of PI3K, sGC, and extracellular signal-regulated kinases, MAPK{sub ERK}, respectively). In contrast, the hemin effect was preserved after inhibition of MAPK{sub p38} (SB203580) or MAPK{sub JNK} (SP600125). Overall, NOS/HO interruption underlies baroreflex dysfunction caused by nicotine in female rats and the facilitation of NOS/HO-coupled sGC/PI3K/MAPK{sub ERK} signaling might rectify the nicotine effect. - Highlights: • Hemin or L-arginine blunts baroreflex dysfunction caused by nicotine in OVXE2 rats. • NO/CO crosstalk mediates

  3. Regulation of ROS in transmissible gastroenteritis virus-activated apoptotic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Zhao, Xiaomin; Huang, Yong; Du, Qian; Dong, Feng; Zhang, Hongling; Song, Xiangjun; Zhang, Wenlong [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2013-12-06

    Highlights: •TGEV infection induced ROS accumulation. •ROS accumulation is involved in TGEV-induced mitochondrial integrity impairment. •ROS is associated with p53 activation and apoptosis occurrence in TGEV-infected cells. -- Abstract: Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, causes severe lethal watery diarrhea and dehydration in piglets. Previous studies indicate that TGEV infection induces cell apoptosis in host cells. In this study, we investigated the roles and regulation of reactive oxygen species (ROS) in TGEV-activated apoptotic signaling. The results showed that TGEV infection induced ROS accumulation, whereas UV-irradiated TGEV did not promote ROS accumulation. In addition, TGEV infection lowered mitochondrial transmembrane potential in PK-15 cell line, which could be inhibited by ROS scavengers, pyrrolidinedithiocarbamic (PDTC) and N-acetyl-L-cysteine (NAC). Furthermore, the two scavengers significantly inhibited the activation of p38 MAPK and p53 and further blocked apoptosis occurrence through suppressing the TGEV-induced Bcl-2 reduction, Bax redistribution, cytochrome c release and caspase-3 activation. These results suggest that oxidative stress pathway might be a key element in TGEV-induced apoptosis and TGEV pathogenesis.

  4. Moringa oleifera's Nutritious Aqueous Leaf Extract Has Anticancerous Effects by Compromising Mitochondrial Viability in an ROS-Dependent Manner.

    Science.gov (United States)

    Madi, Niveen; Dany, Mohammed; Abdoun, Salah; Usta, Julnar

    2016-01-01

    Moringa oleifera (MO) is an important dietary component for many populations in West Africa and the Indian subcontinent. In addition to its highly nutritious value, almost all parts of this plant have been widely used in folk medicine in curing infectious, cardiovascular, gastrointestinal, hepatic, and other diseases. Evidence-based research supported its versatile medicinal properties; however, more rigorous research is required to establish it in cancer therapy. As such, in this study we aim to investigate the in vitro anticancerous effect of Moringa oleifera's aqueous leaf extract. Moringa extract was prepared by soaking pulverized leaves in hot water mimicking the people's mode of the leaf drink preparation. Several assays were used to study the effect of different percentage concentrations of the extract on viability of A549 cells; levels of adenosine triphosphate (ATP), reactive oxygen species (ROS), and glutathione (GSH) generated; as well as percentage of lactate dehydrogenase (LDH) released at different time points. In addition to mitochondrial membrane potential, apoptotic events were assessed using western blotting for apoptotic markers and immunoflourescent flourescent labeled inhibitor of caspases (FLICA) assay. MO extract treatment resulted in a significant decrease in mitochondrial membrane potential (1 hour) and ATP levels (3 hours), followed by an increase in (6 hours) ROS, caspase activation, proapoptotic proteins expression (p53, SMAC/Diablo, AIF), and PARP-1 cleavage. This eventually resulted in decreased GSH levels and a decrease in viability. The cytotoxic effect was prevented upon pretreatment with antioxidant N-acetyl-cysteine. MO decreased as well the viability of HepG2, CaCo2, Jurkat, and HEK293 cells. Our findings identify a plant extract with an anticancerous effect on cancer cell lines. MO extract exerts its cytotoxic effect in A549 cancer cells by affecting mitochondrial viability and inducing apoptosis in an ROS-dependent manner.

  5. Sodium Lauryl Sulfate Stimulates the Generation of Reactive Oxygen Species through Interactions with Cell Membranes.

    Science.gov (United States)

    Mizutani, Taeko; Mori, Ryota; Hirayama, Misaki; Sagawa, Yuki; Shimizu, Kenji; Okano, Yuri; Masaki, Hitoshi

    2016-12-01

    Sodium lauryl sulfate (SLS), a representative anionic surfactant, is well-known to induce rough skin following single or multiple topical applications. The mechanism by which SLS induces rough skin is thought to result from the disruption of skin moisture function consisting of NMF and epidermal lipids. However, a recent study demonstrated that topically applied SLS easily penetrates into the living cell layers of the epidermis, which suggests that physiological alterations of keratinocytes might cause the SLS-induced rough skin. This study was conducted to clarify the effects of SLS on keratinocytes to demonstrate the contribution of SLS to the induction of rough skin. In addition, the potentials of other widely used anionic surfactants to induce rough skin were evaluated. HaCaT keratinocytes treated with SLS had increased levels of intracellular ROS and IL-1α secretion. Application of SLS on the surface of a reconstructed epidermal equivalent also showed the increased generation of ROS. Further, SLS-treated cells showed an increase of intracellular calpain activity associated with the increase of intracellular Ca 2+ concentration. The increase of intracellular ROS was abolished by the addition of BAPTA-AM, a specific chelator of Ca 2+ . In addition, IL-1α also stimulated ROS generation by HaCaT keratinocytes. An ESR spin-labeling study demonstrated that SLS increased the fluidity of membranes of liposomes and cells. Together, those results indicate that SLS initially interacts with cell membranes, which results in the elevation of intracellular Ca 2+ influx. Ca 2+ stimulates the secretion of IL-1α due to the activation of calpain, and also increases ROS generation. IL-1α also stimulates ROS generation by HaCaT keratinocytes. We conclude from these results that the elevation of intracellular ROS levels is one of the causes of SLS-induced rough skin. Finally, among the other anionic surfactants tested, sodium lauryl phosphate has less potential to induce rough

  6. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    Science.gov (United States)

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  7. ROS and myokines promote muscle adaptation to exercise

    DEFF Research Database (Denmark)

    Scheele, Camilla; Nielsen, Søren; Pedersen, Bente K

    2009-01-01

    in skeletal muscle. In fact, it seems that exercise-induced ROS are able to stimulate cytokine production from skeletal muscle. Despite the initial view that ROS were potentially cell damaging, it now seems possible that these substances have important roles in the regulation of cell signaling. Muscle......-derived cytokines, so-called 'myokines', are distinguished from inflammation and instead possess important anti-inflammatory and metabolic properties. In this opinion piece, we suggest that both ROS and myokines are important players in muscle adaptation to exercise....

  8. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Md Sultan Ahamad

    Full Text Available A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01 with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001 dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation.

  9. Endoplasmic Reticulum Stress and Associated ROS

    Directory of Open Access Journals (Sweden)

    Hafiz Maher Ali Zeeshan

    2016-03-01

    Full Text Available The endoplasmic reticulum (ER is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS. Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI-endoplasmic reticulum oxidoreductin (ERO-1, glutathione (GSH/glutathione disuphide (GSSG, NADPH oxidase 4 (Nox4, NADPH-P450 reductase (NPR, and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.

  10. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase.

    Energy Technology Data Exchange (ETDEWEB)

    Misono, K. S.; Philo, J. S.; Arakawa, T.; Ogata, C. M.; Qiu, Y.; Ogawa, H.; Young, H. S. (Biosciences Division); (Univ. of Nevada); (Alliance Protein Labs.)

    2011-06-01

    Atrial natriuretic peptide (ANP) and the homologous B-type natriuretic peptide are cardiac hormones that dilate blood vessels and stimulate natriuresis and diuresis, thereby lowering blood pressure and blood volume. ANP and B-type natriuretic peptide counterbalance the actions of the renin-angiotensin-aldosterone and neurohormonal systems, and play a central role in cardiovascular regulation. These activities are mediated by natriuretic peptide receptor-A (NPRA), a single transmembrane segment, guanylyl cyclase (GC)-linked receptor that occurs as a homodimer. Here, we present an overview of the structure, possible chloride-mediated regulation and signaling mechanism of NPRA and other receptor GCs. Earlier, we determined the crystal structures of the NPRA extracellular domain with and without bound ANP. Their structural comparison has revealed a novel ANP-induced rotation mechanism occurring in the juxtamembrane region that apparently triggers transmembrane signal transduction. More recently, the crystal structures of the dimerized catalytic domain of green algae GC Cyg12 and that of cyanobacterium GC Cya2 have been reported. These structures closely resemble that of the adenylyl cyclase catalytic domain, consisting of a C1 and C2 subdomain heterodimer. Adenylyl cyclase is activated by binding of G{sub s}{alpha} to C2 and the ensuing 7{sup o} rotation of C1 around an axis parallel to the central cleft, thereby inducing the heterodimer to adopt a catalytically active conformation. We speculate that, in NPRA, the ANP-induced rotation of the juxtamembrane domains, transmitted across the transmembrane helices, may induce a similar rotation in each of the dimerized GC catalytic domains, leading to the stimulation of the GC catalytic activity.

  11. YARP-ROS Inter-Operation in a 2D Navigation Task

    Directory of Open Access Journals (Sweden)

    Marco Randazzo

    2018-02-01

    Full Text Available This paper presents some recent developments in YARP middleware, aimed to improve its integration with ROS. They include a new mechanism to read/write ROS transform frames and a new set of standard interfaces to intercommunicate with the ROS navigation stack. A novel set of YARP companion modules, which provide basic navigation functionalities for robots unable to run ROS, is also presented. These modules are optional, independent from each other, and they provide compatible functionalities to well-known packages available inside ROS framework. This paper also discusses how developers can customize their own hybrid YARP-ROS environment in the way it best suits their needs (e.g., the system can be configured to have a YARP application sending navigation commands to a ROS path planner, or vice versa. A number of available possibilities is presented through a set of chosen test cases applied to both real and simulated robots. Finally, example applications discussed in this paper are also made available to the community by providing snippets of code and links to source files hosted on github repository https://github.com/robotology.1

  12. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals.

    Science.gov (United States)

    Prasad, Sahdeo; Gupta, Subash C; Tyagi, Amit K

    2017-02-28

    Extensive research over the past half a century indicates that reactive oxygen species (ROS) play an important role in cancer. Although low levels of ROS can be beneficial, excessive accumulation can promote cancer. One characteristic of cancer cells that distinguishes them from normal cells is their ability to produce increased numbers of ROS and their increased dependence on an antioxidant defense system. ROS are produced as a byproduct intracellularly by mitochondria and other cellular elements and exogenously by pollutants, tobacco, smoke, drugs, xenobiotics, and radiation. ROS modulate various cell signaling pathways, which are primarily mediated through the transcription factors NF-κB and STAT3, hypoxia-inducible factor-1α, kinases, growth factors, cytokines and other proteins, and enzymes; these pathways have been linked to cellular transformation, inflammation, tumor survival, proliferation, invasion, angiogenesis, and metastasis of cancer. ROS are also associated with epigenetic changes in genes, which is helpful in diagnosing diseases. This review considers the role of ROS in the various stages of cancer development. Finally, we provide evidence that nutraceuticals derived from Mother Nature are highly effective in eliminating cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Recent developments in comprehensive two-dimensional gas chromatography (GC X GC) I. Introduction and instrumental set-up

    NARCIS (Netherlands)

    Adahchour, M.; Beens, J.; Vreuls, R.J.J.; Brinkman, U.A.T.

    2006-01-01

    We review the literature on comprehensive two-dimensional gas chromatography (GC × GC), emphasizing developments in the period 2003-2005. The review opens with a general introduction, the principles of the technique and the set-up of GC × GC systems. It also discusses theoretical aspects, trends in

  14. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    Science.gov (United States)

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.

  15. ROS and RNS in plant physiology: an overview.

    Science.gov (United States)

    Del Río, Luis A

    2015-05-01

    The production of reactive oxygen species (ROS) is the unavoidable consequence of aerobic life. ROS is a collective term that includes both oxygen radicals, like superoxide (O 2. -) and hydroxyl (·OH) radicals, and other non-radicals such as hydrogen peroxide (H2O2), singlet oxygen ((1)O2 or (1)Δg), etc. In plants, ROS are produced in different cell compartments and are oxidizing species, particularly hydroxyl radicals and singlet oxygen, that can produce serious damage in biological systems (oxidative stress). However, plant cells also have an array of antioxidants which, normally, can scavenge the excess oxidants produced and so avoid deleterious effects on the plant cell bio-molecules. The concept of 'oxidative stress' was re-evaluated in recent years and the term 'oxidative signalling' was created. This means that ROS production, apart from being a potentially harmful process, is also an important component of the signalling network that plants use for their development and for responding to environmental challenges. It is known that ROS play an important role regulating numerous biological processes such as growth, development, response to biotic and environmental stresses, and programmed cell death. The term reactive nitrogen species (RNS) includes radicals like nitric oxide (NO· ) and nitric dioxide (NO2.), as well as non-radicals such as nitrous acid (HNO2) and dinitrogen tetroxide (N2O4), among others. RNS are also produced in plants although the generating systems have still not been fully characterized. Nitric oxide (NO·) has an important function as a key signalling molecule in plant growth, development, and senescence, and RNS, like ROS, also play an important role as signalling molecules in the response to environmental (abiotic) stress. Similarly, NO· is a key mediator, in co-operation with ROS, in the defence response to pathogen attacks in plants. ROS and RNS have been demonstrated to have an increasingly important role in biology and medicine

  16. Heme-induced ROS in Trypanosoma cruzi activates CaMKII-like that triggers epimastigote proliferation. One helpful effect of ROS.

    Directory of Open Access Journals (Sweden)

    Natália Pereira de Almeida Nogueira

    Full Text Available Heme is a ubiquitous molecule that has a number of physiological roles. The toxic effects of this molecule have been demonstrated in various models, based on both its pro-oxidant nature and through a detergent mechanism. It is estimated that about 10 mM of heme is released during blood digestion in the blood-sucking bug's midgut. The parasite Trypanosoma cruzi, the agent of Chagas' disease, proliferates in the midgut of the insect vector; however, heme metabolism in trypanosomatids remains to be elucidated. Here we provide a mechanistic explanation for the proliferative effects of heme on trypanosomatids. Heme, but not other porphyrins, induced T. cruzi proliferation, and this phenomenon was accompanied by a marked increase in reactive oxygen species (ROS formation in epimastigotes when monitored by ROS-sensitive fluorescent probes. Heme-induced ROS production was time- and concentration-dependent. In addition, lipid peroxidation and the formation of 4-hydroxy-2-nonenal (4-HNE adducts with parasite proteins were increased in epimastigotes in the presence of heme. Conversely, the antioxidants urate and GSH reversed the heme-induced ROS. Urate also decreased parasite proliferation. Among several protein kinase inhibitors tested only specific inhibitors of CaMKII, KN93 and Myr-AIP, were able to abolish heme-induced ROS formation in epimastigotes leading to parasite growth impairment. Taken together, these data provide new insight into T. cruzi- insect vector interactions: heme, a molecule from the blood digestion, triggers epimastigote proliferation through a redox-sensitive signalling mechanism.

  17. Effect of the Gc-derived macrophage-activating factor precursor (preGcMAF) on phagocytic activation of mouse peritoneal macrophages.

    Science.gov (United States)

    Uto, Yoshihiro; Yamamoto, Syota; Takeuchi, Ryota; Nakagawa, Yoshinori; Hirota, Keiji; Terada, Hiroshi; Onizuka, Shinya; Nakata, Eiji; Hori, Hitoshi

    2011-07-01

    The 1f1f subtype of the Gc protein (Gc(1f1f) protein) was converted into Gc-derived macrophage-activating factor (GcMAF) by enzymatic processing in the presence of β-galactosidase of an activated B-cell and sialidase of a T-cell. We hypothesized that preGc(1f1f)MAF, the only Gc(1f1f) protein lacking galactose, can be converted to GcMAF in vivo because sialic acid is cleaved by residual sialidase. Hence, we investigated the effect of preGc(1f1f)MAF on the phagocytic activation of mouse peritoneal macrophages. We examined the sugar moiety of preGc(1f1f)MAF with a Western blot using peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA) lectin. We also found that preGc(1f1f)MAF significantly enhanced phagocytic activity in mouse peritoneal macrophages but only in the presence of the mouse peritoneal fluid; the level of phagocytic activity was the same as that observed for GcMAF. PreGc(1f1f)MAF can be used as an effective macrophage activator in vivo.

  18. Middleware Interoperability for Robotics: A ROS-YARP Framework

    Directory of Open Access Journals (Sweden)

    Plinio Moreno

    2016-10-01

    Full Text Available Middlewares are fundamental tools for progress in research and applications in robotics. They enable the integration of multiple heterogeneous sensing and actuation devices, as well as providing general purpose modules for key robotics functions (kinematics, navigation, planning. However, no existing middleware yet provides a complete set of functionalities for all robotics applications, and many robots may need to rely on more than one framework. This paper focuses on the interoperability between two of the most prevalent middleware in robotics: YARP and ROS. Interoperability between middlewares should ideally allow users to execute existing software without the necessity of: (i changing the existing code, and (ii writing hand-coded ``bridges'' for each use-case. We propose a framework enabling the communication between existing YARP modules and ROS nodes for robotics applications in an automated way. Our approach generates the ``bridging gap'' code from a configuration file, connecting YARP ports and ROS topics through code-generated YARP Bottles. %%The configuration file must describe: (i the sender entities, (ii the way to group and convert the information read from the sender, (iii the structure of the output message and (iv the receiving entity. Our choice for the many inputs to one output is the most common use-case in robotics applications, where examples include filtering, decision making and visualization. %We support YARP/ROS and ROS/YARP sender/receiver configurations, which are demonstrated in a humanoid on wheels robot that uses YARP for upper body motor control and visual perception, and ROS for mobile base control and navigation algorithms.

  19. The sulfated laminarin triggers a stress transcriptome before priming the SA- and ROS-dependent defenses during grapevine's induced resistance against Plasmopara viticola.

    Directory of Open Access Journals (Sweden)

    Adrien Gauthier

    Full Text Available Grapevine (Vitis vinifera is susceptible to many pathogens which cause significant losses to viticulture worldwide. Chemical control is available, but agro-ecological concerns have raised interest in alternative methods, especially in triggering plant immunity by elicitor treatments. The β-glucan laminarin (Lam and its sulfated derivative (PS3 have been previously demonstrated to induce resistance in grapevine against downy mildew (Plasmopara viticola. However, if Lam elicits classical grapevine defenses such as oxidative burst, pathogenesis-related (PR-proteins and phytoalexin production, PS3 triggered grapevine resistance via a poorly understood priming phenomenon. The aim of this study was to identify the molecular mechanisms of the PS3-induced resistance. For this purpose we studied i the signaling events and transcriptome reprogramming triggered by PS3 treatment on uninfected grapevine, ii grapevine immune responses primed by PS3 during P. viticola infection. Our results showed that i PS3 was unable to elicit reactive oxygen species (ROS production, cytosolic Ca(2+ concentration variations, mitogen-activated protein kinase (MAPK activation but triggered a long lasting plasma membrane depolarization in grapevine cells, ii PS3 and Lam shared a common stress-responsive transcriptome profile that partly overlapped the salicylate- (SA and jasmonate-(JA-dependent ones. After P. viticola inoculation, PS3 specifically primed the SA- and ROS-dependent defense pathways leading to grapevine induced resistance against this biotroph. Interestingly pharmacological approaches suggested that the plasma membrane depolarization and the downstream ROS production are key events of the PS3-induced resistance.

  20. Oxidative stress activates the TRPM2-Ca2+-CaMKII-ROS signaling loop to induce cell death in cancer cells.

    Science.gov (United States)

    Wang, Qian; Huang, Lihong; Yue, Jianbo

    2017-06-01

    High intracellular levels of reactive oxygen species (ROS) cause oxidative stress that results in numerous pathologies, including cell death. Transient potential receptor melastatin-2 (TRPM2), a Ca 2+ -permeable cation channel, is mainly activated by intracellular adenosine diphosphate ribose (ADPR) in response to oxidative stress. Here we studied the role and mechanisms of TRPM2-mediated Ca 2+ influx on oxidative stress-induced cell death in cancer cells. We found that oxidative stress activated the TRPM2-Ca 2+ -CaMKII cascade to inhibit early autophagy induction, which ultimately led to cell death in TRPM2 expressing cancer cells. On the other hand, TRPM2 knockdown switched cells from cell death to autophagy for survival in response to oxidative stress. Moreover, we found that oxidative stress activated the TRPM2-CaMKII cascade to further induce intracellular ROS production, which led to mitochondria fragmentation and loss of mitochondrial membrane potential. In summary, our data demonstrated that oxidative stress activates the TRPM2-Ca 2+ -CaMKII-ROS signal loop to inhibit autophagy and induce cell death. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cudraflavone C Induces Apoptosis of A375.S2 Melanoma Cells through Mitochondrial ROS Production and MAPK Activation.

    Science.gov (United States)

    Lee, Chiang-Wen; Yen, Feng-Lin; Ko, Horng-Huey; Li, Shu-Yu; Chiang, Yao-Chang; Lee, Ming-Hsueh; Tsai, Ming-Horng; Hsu, Lee-Fen

    2017-07-13

    Melanoma is the most malignant form of skin cancer and is associated with a very poor prognosis. The aim of this study was to evaluate the apoptotic effects of cudraflavone C on A375.S2 melanoma cells and to determine the underlying mechanisms involved in apoptosis. Cell viability was determined using the MTT and real-time cytotoxicity assays. Flow cytometric evaluation of apoptosis was performed after staining the cells with Annexin V-FITC and propidium iodide. The mitochondrial membrane potential was evaluated using the JC-1 assay. Cellular ROS production was measured using the CellROX assay, while mitochondrial ROS production was evaluated using the MitoSOX assay. It was observed that cudraflavone C inhibited growth in A375.S2 melanoma cells, and promoted apoptosis via the mitochondrial pathway mediated by increased mitochondrial ROS production. In addition, cudraflavone C induced phosphorylation of MAPKs (p38, ERK, and JNK) and up-regulated the expression of apoptotic proteins (Puma, Bax, Bad, Bid, Apaf-1, cytochrome C, caspase-9, and caspase-3/7) in A375.S2 cells. Pretreatment of A375.S2 cells with MitoTEMPOL (a mitochondria-targeted antioxidant) attenuated the phosphorylation of MAPKs, expression of apoptotic proteins, and the overall progression of apoptosis. In summary, cudraflavone C induced apoptosis in A375.S2 melanoma cells by increasing mitochondrial ROS production; thus, activating p38, ERK, and JNK; and increasing the expression of apoptotic proteins. Therefore, cudraflavone C may be regarded as a potential form of treatment for malignant melanoma.

  2. Causation by Diesel Exhaust Particles of Endothelial Dysfunctions in Cytotoxicity, Pro-inflammation, Permeability, and Apoptosis Induced by ROS Generation.

    Science.gov (United States)

    Tseng, Chia-Yi; Wang, Jhih-Syuan; Chao, Ming-Wei

    2017-10-01

    Epidemiological studies suggest that an increase of diesel exhaust particles (DEP) in ambient air corresponds to an increase in hospital-recorded myocardial infarctions within 48 h after exposure. Among the many theories to explain this data are endothelial dysfunction and translocation of DEP into vasculature. The mechanisms for such DEP-induced vascular permeability remain unknown. One of the major mechanisms underlying the effects of DEP is suggested to be oxidative stress. Experiments have shown that DEP induce the generation of reactive oxygen species (ROS), such as superoxide anion and H 2 O 2 in the HUVEC tube cells. Transcription factor Nrf2 is translocated to the cell nucleus, where it activates transcription of the antioxidative enzyme HO-1 and sequentially induces the release of vascular permeability factor VEGF-A. Furthermore, a recent study shows that DEP-induced intracellular ROS may cause the release of pro-inflammatory TNF-α and IL-6, which may induce endothelial permeability as well by promoting VEGF-A secretion independently of HO-1 activation. These results demonstrated that the adherens junction molecule, VE-cadherin, becomes redistributed from the membrane at cell-cell borders to the cytoplasm in response to DEP, separating the plasma membranes of adjacent cells. DEP were occasionally found in endothelial cell cytoplasm and in tube lumen. In addition, the induced ROS is cytotoxic to the endothelial tube-like HUVEC. Acute DEP exposure stimulates ATP depletion, followed by depolarization of their actin cytoskeleton, which sequentially inhibits PI3K/Akt activity and induces endothelial apoptosis. Nevertheless, high-dose DEP augments tube cell apoptosis up to 70 % but disrupts the p53 negative regulator Mdm2. In summary, exposure to DEP affects parameters influencing vasculature permeability and viability, i.e., oxidative stress and its upregulated antioxidative and pro-inflammatory responses, which sequentially induce vascular permeability

  3. Intra-genomic GC heterogeneity in sauropsids: evolutionary insights from cDNA mapping and GC3 profiling in snake

    Science.gov (United States)

    2012-01-01

    Background Extant sauropsids (reptiles and birds) are divided into two major lineages, the lineage of Testudines (turtles) and Archosauria (crocodilians and birds) and the lineage of Lepidosauria (tuatara, lizards, worm lizards and snakes). Karyotypes of these sauropsidan groups generally consist of macrochromosomes and microchromosomes. In chicken, microchromosomes exhibit a higher GC-content than macrochromosomes. To examine the pattern of intra-genomic GC heterogeneity in lepidosaurian genomes, we constructed a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 183 cDNA clones by fluorescence in situ hybridization, and examined the correlation between the GC-content of exonic third codon positions (GC3) of the genes and the size of chromosomes on which the genes were localized. Results Although GC3 distribution of snake genes was relatively homogeneous compared with those of the other amniotes, microchromosomal genes showed significantly higher GC3 than macrochromosomal genes as in chicken. Our snake cytogenetic map also identified several conserved segments between the snake macrochromosomes and the chicken microchromosomes. Cross-species comparisons revealed that GC3 of most snake orthologs in such macrochromosomal segments were GC-poor (GC3 < 50%) whereas those of chicken orthologs in microchromosomes were relatively GC-rich (GC3 ≥ 50%). Conclusion Our results suggest that the chromosome size-dependent GC heterogeneity had already occurred before the lepidosaur-archosaur split, 275 million years ago. This character was probably present in the common ancestor of lepidosaurs and but lost in the lineage leading to Anolis during the diversification of lepidosaurs. We also identified several genes whose GC-content might have been influenced by the size of the chromosomes on which they were harbored over the course of sauropsid evolution. PMID:23140509

  4. Mutational Biases and GC-Biased Gene Conversion Affect GC Content in the Plastomes of Dendrobium Genus

    Directory of Open Access Journals (Sweden)

    Zhitao Niu

    2017-11-01

    Full Text Available The variation of GC content is a key genome feature because it is associated with fundamental elements of genome organization. However, the reason for this variation is still an open question. Different kinds of hypotheses have been proposed to explain the variation of GC content during genome evolution. However, these hypotheses have not been explicitly investigated in whole plastome sequences. Dendrobium is one of the largest genera in the orchid species. Evolutionary studies of the plastomic organization and base composition are limited in this genus. In this study, we obtained the high-quality plastome sequences of D. loddigesii and D. devonianum. The comparison results showed a nearly identical organization in Dendrobium plastomes, indicating that the plastomic organization is highly conserved in Dendrobium genus. Furthermore, the impact of three evolutionary forces—selection, mutational biases, and GC-biased gene conversion (gBGC—on the variation of GC content in Dendrobium plastomes was evaluated. Our results revealed: (1 consistent GC content evolution trends and mutational biases in single-copy (SC and inverted repeats (IRs regions; and (2 that gBGC has influenced the plastome-wide GC content evolution. These results suggest that both mutational biases and gBGC affect GC content in the plastomes of Dendrobium genus.

  5. Mutational Biases and GC-Biased Gene Conversion Affect GC Content in the Plastomes of Dendrobium Genus

    Science.gov (United States)

    Niu, Zhitao; Xue, Qingyun; Wang, Hui; Xie, Xuezhu; Zhu, Shuying; Liu, Wei; Ding, Xiaoyu

    2017-01-01

    The variation of GC content is a key genome feature because it is associated with fundamental elements of genome organization. However, the reason for this variation is still an open question. Different kinds of hypotheses have been proposed to explain the variation of GC content during genome evolution. However, these hypotheses have not been explicitly investigated in whole plastome sequences. Dendrobium is one of the largest genera in the orchid species. Evolutionary studies of the plastomic organization and base composition are limited in this genus. In this study, we obtained the high-quality plastome sequences of D. loddigesii and D. devonianum. The comparison results showed a nearly identical organization in Dendrobium plastomes, indicating that the plastomic organization is highly conserved in Dendrobium genus. Furthermore, the impact of three evolutionary forces—selection, mutational biases, and GC-biased gene conversion (gBGC)—on the variation of GC content in Dendrobium plastomes was evaluated. Our results revealed: (1) consistent GC content evolution trends and mutational biases in single-copy (SC) and inverted repeats (IRs) regions; and (2) that gBGC has influenced the plastome-wide GC content evolution. These results suggest that both mutational biases and gBGC affect GC content in the plastomes of Dendrobium genus. PMID:29099062

  6. Detection of ROS Induced Proteomic Signatures by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2017-07-01

    Full Text Available Reversible and irreversible post-translational modifications (PTMs induced by endogenously generated reactive oxygen species (ROS in regulatory enzymes and proteins plays an essential role in cellular signaling. Almost all cellular processes including metabolism, transcription, translation and degradation have been identified as containing redox regulated proteins. Specific redox modifications of key amino acids generated by ROS offers a dynamic and versatile means to rapidly alter the activity or functional structure of proteins in response to biochemical, environmental, genetic and pathological perturbations. How the proteome responds to these stimuli is of critical importance in oxidant physiology, as it can regulate the cell stress response by reversible and irreversible PTMs, affecting protein activity and protein-protein interactions. Due to the highly labile nature of many ROS species, applying redox proteomics can provide a signature footprint of the ROS species generated. Ideally redox proteomic approaches would allow; (1 the identification of the specific PTM, (2 identification of the amino acid residue that is modified and (3 the percentage of the protein containing the PTM. New developments in MS offer the opportunity of a more sensitive targeted proteomic approach and retrospective data analysis. Subsequent bioinformatics analysis can provide an insight into the biochemical and physiological pathways or cell signaling cascades that are affected by ROS generation. This mini-review will detail current redox proteomic approaches to identify and quantify ROS induced PTMs and the subsequent effects on cellular signaling.

  7. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    Science.gov (United States)

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  8. β-Galactosidase treatment is a common first-stage modification of the three major subtypes of Gc protein to GcMAF.

    Science.gov (United States)

    Uto, Yoshihiro; Yamamoto, Syota; Mukai, Hirotaka; Ishiyama, Noriko; Takeuchi, Ryota; Nakagawa, Yoshinori; Hirota, Keiji; Terada, Hiroshi; Onizuka, Shinya; Hori, Hitoshi

    2012-06-01

    The 1f1f subtype of the group-specific component (Gc) protein is converted into Gc protein-derived macrophage-activating factor (GcMAF) by enzymatic processing with β-galactosidase and sialidase. We previously demonstrated that preGc(1f1f)MAF, a full Gc(1f1f) protein otherwise lacking a galactosyl moiety, can be converted to GcMAF by treatment with mouse peritoneal fluid. Here, we investigated the effects of the β-galactosidase-treated 1s1s and 22 subtypes of Gc protein (preGc(1s1s)MAF and preGc₂₂MAF) on the phagocytic activation of mouse peritoneal macrophages. We demonstrated the presence of Gal-GalNAc disaccharide sugar structures in the Gc(1s1s) protein by western blotting using peanut agglutinin and Helix pomatia agglutinin lectin. We also found that preGc(1s1s)MAF and preGc₂₂MAF significantly enhanced the phagocytic activity of mouse peritoneal macrophages in the presence and absence of mouse peritoneal fluid. We demonstrate that preGc(1s1s)MAF and preGc₂₂MAF proteins can be used as effective macrophage activators.

  9. Admission levels of serum Gc-globulin

    DEFF Research Database (Denmark)

    Schiødt, F V; Bondesen, S; Petersen, I

    1996-01-01

    Gc-globulin scavenges actin released from necrotic hepatocytes to the extracellular space. In 77 patients with fulminant hepatic failure (FHF) (excluding patients treated with liver transplantation), admission levels of serum Gc-globulin and degree of complexing with monomeric actin (complex ratio...... in the same range as the KCH criteria. An advantage of Gc-globulin is that it gives an estimate of the outcome already on admission. Acute liver transplantation should be considered in FHF patients with Gc-globulin less than 100 mg/L....

  10. Separation of fatty acid methyl esters by GC-online hydrogenation × GC.

    Science.gov (United States)

    Delmonte, Pierluigi; Fardin-Kia, Ali Reza; Rader, Jeanne I

    2013-02-05

    The separation of fatty acid methyl esters (FAME) provided by a 200 m × 0.25 mm SLB-IL111 capillary column is enhanced by adding a second dimension of separation ((2)D) in a GC × GC design. Rather than employing two GC columns of different polarities or using different elution temperatures, the separation in the two-dimensional space is achieved by altering the chemical structure of selected analytes between the two dimensions of separation. A capillary tube coated with palladium is added between the first dimension of separation ((1)D) column and the cryogenic modulator, providing the reduction of unsaturated FAMEs to their fully saturated forms. The (2)D separation is achieved using a 2.5 m × 0.10 mm SLB-IL111 capillary column and separates FAMEs based solely on their carbon skeleton. The two-dimensional separation can be easily interpreted based on the principle that all the saturated FAMEs lie on a straight diagonal line bisecting the separation plane, while the FAMEs with the same carbon skeleton but differing in the number, geometric configuration or position of double bonds lie on lines parallel to the (1)D time axis. This technique allows the separation of trans fatty acids (FAs) and polyunsaturated FAs (PUFAs) in a single experiment and eliminates the overlap between PUFAs with different chain lengths. To our knowledge, this the first example of GC × GC in which a chemical change is instituted between the two dimensions to alter the relative retentions of components and identify unsaturated FAMEs.

  11. Effects of hepatitis B virus S protein exposure on sperm membrane integrity and functions.

    Directory of Open Access Journals (Sweden)

    XiangJin Kang

    Full Text Available BACKGROUND: Hepatitis B is a public health problem worldwide. Viral infection can affect a man's fertility, but only scant information about the influence of hepatitis B virus (HBV infection on sperm quality is available. The purpose of this study was to investigate the effect of hepatitis B virus S protein (HBs on human sperm membrane integrity and functions. METHODS/PRINCIPAL FINDINGS: Reactive oxygen species (ROS, lipid peroxidation (LP, total antioxidant capacity (TAC and phosphatidylserine (PS externalization were determined. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL assays and flow cytometric analyses were performed. (1 After 3 h incubation with 25 µg/ml of HBs, the average rates of ROS positive cells, annexin V-positive/propidium iodide (PI-negative cells, Caspases-3,-8,-9 positive cells and TUNEL-positive cells were significantly increased in the test groups as compared to those in the control groups, while TAC level was decreased when compared with the control. The level of malondialdehyde (MDA in the sperm cells exposed to 50 µg/ml of HBs for 3 h was significantly higher than that in the control (P<0.05-0.01. (2 HBs increased the MDA levels and the numbers of ROS positive cells, annexin V-positive/PI-negative cells, caspases-3, -8, -9 positive cells and TUNEL-positive cells in a dose-dependent manner. (3 HBs monoclonal antibody (MAb and N-Acetylcysteine (NAC reduced the number of ROS-positive sperm cells. (4 HBs decreased the TAC levels in sperm cells in a dose-dependent manner. CONCLUSION: HBs exposure could lead to ROS generation, lipid peroxidation, TAC reduction, PS externalization, activation of caspases, and DNA fragmentation, resulting in increased apoptosis of sperm cells and loss of sperm membrane integrity and causing sperm dysfunctions.

  12. Towards Interactive, Incremental Programming of ROS Nodes

    DEFF Research Database (Denmark)

    Adam, Marian Sorin; Schultz, Ulrik Pagh

    Writing software for controlling robots is a complex task, usually demanding command of many programming languages and requiring significant experimentation. We believe that a bottom-up development process that complements traditional component- and MDSD-based approaches can facilitate...... experimentation. We propose the use of an internal DSL providing both a tool to interactively create ROS nodes and a behaviour-replacement mechanism to interactively reshape existing ROS nodes by wrapping the external interfaces (the publish/subscribe topics), dynamically controlled using the Python command line...

  13. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria - An amazing defence tool against hyperosmotic stress

    Directory of Open Access Journals (Sweden)

    Daniela eTrono

    2015-12-01

    Full Text Available In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about fifteen years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP. Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous and tissues/organs (etiolated and green have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane towards the matrix, so collapsing membrane potential (ΔΨ, the main component of the protonmotive force (Δp in plant mitochondria; moreover, cooperation between PmitoKATP and the K+/H+ antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate

  14. Is chondroitin sulfate responsible for the biological effects attributed to the GC protein-derived Macrophage Activating Factor (GcMAF)?

    Science.gov (United States)

    Ruggiero, Marco; Reinwald, Heinz; Pacini, Stefania

    2016-09-01

    We hypothesize that a plasma glycosaminoglycan, chondroitin sulfate, may be responsible for the biological and clinical effects attributed to the Gc protein-derived Macrophage Activating Factor (GcMAF), a protein that is extracted from human blood. Thus, Gc protein binds chondroitin sulfate on the cell surface and such an interaction may occur also in blood, colostrum and milk. This interpretation would solve the inconsistencies encountered in explaining the effects of GcMAF in vitro and in vivo. According to our model, the Gc protein or the GcMAF bind to chondroitin sulfate both on the cell surface and in bodily fluids, and the resulting multimolecular complexes, under the form of oligomers trigger a transmembrane signal or, alternatively, are internalized and convey the signal directly to the nucleus thus eliciting the diverse biological effects observed for both GcMAF and chondroitin sulfate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    Science.gov (United States)

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  16. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes.

    Directory of Open Access Journals (Sweden)

    Chia-Yi Tseng

    Full Text Available Exposure to diesel exhaust particles (DEP is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione.

  17. Under fungal attack on a metalliferous soil: ROS or not ROS? Insights from Silene paradoxa L. growing under copper stress

    International Nuclear Information System (INIS)

    Taiti, Cosimo; Giorni, Elisabetta; Colzi, Ilaria; Pignattelli, Sara; Bazihizina, Nadia; Buccianti, Antonella; Luti, Simone; Pazzagli, Luigia; Mancuso, Stefano; Gonnelli, Cristina

    2016-01-01

    We investigated how the adaptation to metalliferous environments can influence the plant response to biotic stress. In a metallicolous and a non-metallicolous population of Silene paradoxa the induction of oxidative stress and the production of callose and volatiles were evaluated in the presence of copper and of the PAMP fungal protein cerato-platanin, separately and in combination. Our results showed incompatibility between the ordinary ROS-mediated response to fungal attack and the acquired mechanisms of preventing oxidative stress in the tolerant population. A similar situation was also demonstrated by the sensitive population growing in the presence of copper but, in this case, with a lack of certain responses, such as callose production. In addition, in terms of the joint behaviour of emitted volatiles, multivariate statistics showed that not only did the populations respond differently to the presence of copper or biotic stress, but also that the biotic and abiotic stresses interacted in different ways in the two populations. Our results demonstrated that the same incompatibility of hyperaccumulators in ROS-mediated biotic stress signals also seemed to be exhibited by the excluder metallophyte, but without the advantage of being able to rely on the elemental defence for plant protection from natural enemies. - Highlights: • Silene paradoxa plants from metalliferous and nonmetalliferous soil were studied. • Plants were exposed to Cerato-platanin in presence/absence of Cu in culture media. • ROS response was fully present in nonmetallicolous plants only in the absence of Cu. • Similar ROS response in metallicolous plants with or without Cu. - The adaptation to high concentrations of copper was found to interfere with the ordinary ROS-mediated response to fungal attack in an excluder metallophyte.

  18. Inhibition of free radical scavenging enzymes affects mitochondrial membrane permeability transition during growth and aging of yeast cells.

    Science.gov (United States)

    Deryabina, Yulia; Isakova, Elena; Sekova, Varvara; Antipov, Alexey; Saris, Nils-Erik L

    2014-12-01

    In this study, we investigated the change in the antioxidant enzymes activity, cell respiration, reactive oxygen species (ROS), and impairment of membrane mitochondria permeability in the Endomyces magnusii yeasts during culture growth and aging. We showed that the transition into stationary phase is the key tool to understanding interaction of these processes. This growth stage is distinguished by two-fold increase in ROS production and respiration rate as compared to those in the logarithmic phase. It results in induction of alternative oxidase (AO) in the stationary phase, decline of the main antioxidant enzymes activities, ROS-production, and mitochondria membrane permeability. Significant increase in the share of mitochondrial isoform of superoxide dismutase (SOD2) occurred in the stationary phase from 51.8% (24 h of cultivation) to 68.6% (48 h of cultivation). Upon blocking the essential ROS-scavenging enzymes, SODs and catalases (CATs) some heterogeneity of cell population was observed: 80-90% of cells displayed evident signs of early apoptosis (such as disorientation of mitochondria cristae, mitochondrial fragmentation and deformation of nuclear chromatine). However, 10-20% of the population were definitely healthy. It allowed to draw the conclusion that a complete system of cell antioxidant protection underlies normal mitochondria functioning while the E. magnusii yeasts grow and age. Moreover, this system provides unimpaired cell physiology under oxidative stress during culture aging in the stationary phase. Failures in mitochondria functions due to inhibition of ROS-scavenging enzymes of CATs and SODs could lead to damage of the cells and some signs of early apoptosis.

  19. ROS and trehalose regulate sclerotial development in Rhizoctonia solani AG-1 IA.

    Science.gov (United States)

    Wang, Chenjiaozi; Pi, Lei; Jiang, Shaofeng; Yang, Mei; Shu, Canwei; Zhou, Erxun

    2018-05-01

    Rhizoctonia solani AG-1 IA is the causal agent of rice sheath blight (RSB) and causes severe economic losses in rice-growing regions around the world. The sclerotia play an important role in the disease cycle of RSB. In this study, we report the effects of reactive oxygen species (ROS) and trehalose on the sclerotial development of R. solani AG-1 IA. Correlation was found between the level of ROS in R. solani AG-1 IA and sclerotial development. Moreover, we have shown the change of ROS-related enzymatic activities and oxidative burst occurs at the sclerotial initial stage. Six genes related to the ROS scavenging system were quantified in different sclerotial development stages by using quantitative RT-PCR technique, thereby confirming differential gene expression. Fluorescence microscopy analysis of ROS content in mycelia revealed that ROS were predominantly produced at the hyphal branches during the sclerotial initial stage. Furthermore, exogenous trehalose had a significant inhibitory effect on the activities of ROS-related enzymes and oxidative burst and led to a reduction in sclerotial dry weight. Taken together, the findings suggest that ROS has a promoting effect on the development of sclerotia, whereas trehalose serves as an inhibiting factor to sclerotial development in R. solani AG-1 IA. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. On-line LC-GC and comprehensive two-dimensional LCxGC-ToF MS for the analysis of complex samples

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Hans-Gerd [Central Analytical Science, Unilever Research and Development, P.O. Box 114, 3130 AC, Vlaardingen (Netherlands); Koning, Sjaak de [Separation Science Group, LECO Instrumente GmbH, Marie-Bernays-Ring 31, 41199, Moenchengladbach (Germany); Brinkman, Udo A.Th. [Department of Analytical Chemistry and Applied Spectroscopy, Free University, De Boelelaan 1083, 1081 HV, Amsterdam (Netherlands)

    2004-04-01

    LC x GC is a logical extension of LC-GC. Unlike LC-GC, which only allows detailed analysis of one group of analytes from a complex sample, LC x GC enables detailed mapping of the entire sample. Due to the high degree of orthogonality and the complementary nature of the two dimensions, the method has a very high resolving power. Comprehensive LC x GC chromatograms often show ordered structures which allow group-wise integration as well as detailed target compound analysis. Hyphenation with mass spectrometry is straightforward, which further widens the application range of the technique. (orig.)

  1. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Ting-Lei Gu

    Full Text Available Cholangiocarcinoma, also known as bile duct cancer, is the second most common primary hepatic carcinoma with a median survival of less than 2 years. The molecular mechanisms underlying the development of this disease are not clear. To survey activated tyrosine kinases signaling in cholangiocarcinoma, we employed immunoaffinity profiling coupled to mass spectrometry and identified DDR1, EPHA2, EGFR, and ROS tyrosine kinases, along with over 1,000 tyrosine phosphorylation sites from about 750 different proteins in primary cholangiocarcinoma patients. Furthermore, we confirmed the presence of ROS kinase fusions in 8.7% (2 out of 23 of cholangiocarcinoma patients. Expression of the ROS fusions in 3T3 cells confers transforming ability both in vitro and in vivo, and is responsive to its kinase inhibitor. Our data demonstrate that ROS kinase is a promising candidate for a therapeutic target and for a diagnostic molecular marker in cholangiocarcinoma. The identification of ROS tyrosine kinase fusions in cholangiocarcinoma, along with the presence of other ROS kinase fusions in lung cancer and glioblastoma, suggests that a more broadly based screen for activated ROS kinase in cancer is warranted.

  2. Protective effects of andrographolide analogue AL-1 on ROS-induced RIN-mβ cell death by inducing ROS generation.

    Directory of Open Access Journals (Sweden)

    Guang-Rong Yan

    Full Text Available Oxidative stress is considered to be a major factor contributing to pathogenesis and progression of many diseases. A novel andrographolide-lipoic acid conjugate (AL-1 could protect pancreatic β-cells from reactive oxygen species (ROS-induced oxidative injury. However, its protective mechanism is still unclear. In this work, we used proteomics to identify AL-1-regulated proteins in β-cells and found that 13 of the 71 proteins regulated by AL-1 were closely associated with antioxidation. These differential proteins were mainly involved in the ERK1/2 and AKT1 signaling pathways. Functional investigation demonstrated that AL-1 exerted its protective effects on H2O2-induced cell death of β-cells by generating NADPH oxidase-dependent ROS to activate ERK1/2 and AKT1 signaling pathways. As a consequence, the expressions of antioxidant proteins including Trx1, Prx1 and Prx5, and anti-apoptotic proteins including PDCD6IP, prohibitin, galectin-1 and HSP were upregulated. AL-1 probably worked as a "vaccinum" to activate the cellular antioxidant system by inducing the generation of low concentration ROS which then reciprocally protected β-cells from oxidative damage caused by high-level ROS from H2O2. To the best of our knowledge, this is the first comprehensive proteomic analysis illustrating a novel molecular mechanism for the protective effects of antioxidants on β-cells from H2O2-induced cell death.

  3. The interplay between autophagy and ROS in tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kongara, Sameera [Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ (United States); The Cancer Institute of New Jersey, New Brunswick, NJ (United States); Karantza, Vassiliki, E-mail: karantva@umdnj.edu [Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ (United States); The Cancer Institute of New Jersey, New Brunswick, NJ (United States); Division of Medical Oncology, Department of Internal Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ (United States)

    2012-11-21

    Reactive oxygen species (ROS) at physiological levels are important cell signaling molecules. However, aberrantly high ROS are intimately associated with disease and commonly observed in cancer. Mitochondria are primary sources of intracellular ROS, and their maintenance is essential to cellular health. Autophagy, an evolutionarily conserved process whereby cytoplasmic components are delivered to lysosomes for degradation, is responsible for mitochondrial turnover and removal of damaged mitochondria. Impaired autophagy is implicated in many pathological conditions, including neurological disorders, inflammatory bowel disease, diabetes, aging, and cancer. The first reports connecting autophagy to cancer showed that allelic loss of the essential autophagy gene BECLIN1 (BECN1) is prevalent in human breast, ovarian, and prostate cancers and that Becn1{sup +/-} mice develop mammary gland hyperplasias, lymphomas, lung and liver tumors. Subsequent studies demonstrated that Atg5{sup -/-} and Atg7{sup -/-} livers give rise to adenomas, Atg4C{sup -/-} mice are susceptible to chemical carcinogenesis, and Bif1{sup -/-} mice are prone to spontaneous tumors, indicating that autophagy defects promote tumorigenesis. Due to defective mitophagy, autophagy-deficient cells accumulate damaged mitochondria and deregulated ROS levels, which likely contribute to their tumor-initiating capacity. However, the role of autophagy in tumorigenesis is complex, as more recent work also revealed tumor dependence on autophagy: autophagy-competent mutant-Ras-expressing cells form tumors more efficiently than their autophagy-deficient counterparts; similarly, FIP200 deficiency suppresses PyMT-driven mammary tumorigenesis. These latter findings are attributed to the fact that tumors driven by powerful oncogenes have high metabolic demands catered to by autophagy. In this review, we discuss the relationship between ROS and autophagy and summarize our current knowledge on their functional interactions

  4. The interplay between autophagy and ROS in tumorigenesis

    International Nuclear Information System (INIS)

    Kongara, Sameera; Karantza, Vassiliki

    2012-01-01

    Reactive oxygen species (ROS) at physiological levels are important cell signaling molecules. However, aberrantly high ROS are intimately associated with disease and commonly observed in cancer. Mitochondria are primary sources of intracellular ROS, and their maintenance is essential to cellular health. Autophagy, an evolutionarily conserved process whereby cytoplasmic components are delivered to lysosomes for degradation, is responsible for mitochondrial turnover and removal of damaged mitochondria. Impaired autophagy is implicated in many pathological conditions, including neurological disorders, inflammatory bowel disease, diabetes, aging, and cancer. The first reports connecting autophagy to cancer showed that allelic loss of the essential autophagy gene BECLIN1 (BECN1) is prevalent in human breast, ovarian, and prostate cancers and that Becn1 +/- mice develop mammary gland hyperplasias, lymphomas, lung and liver tumors. Subsequent studies demonstrated that Atg5 -/- and Atg7 -/- livers give rise to adenomas, Atg4C -/- mice are susceptible to chemical carcinogenesis, and Bif1 -/- mice are prone to spontaneous tumors, indicating that autophagy defects promote tumorigenesis. Due to defective mitophagy, autophagy-deficient cells accumulate damaged mitochondria and deregulated ROS levels, which likely contribute to their tumor-initiating capacity. However, the role of autophagy in tumorigenesis is complex, as more recent work also revealed tumor dependence on autophagy: autophagy-competent mutant-Ras-expressing cells form tumors more efficiently than their autophagy-deficient counterparts; similarly, FIP200 deficiency suppresses PyMT-driven mammary tumorigenesis. These latter findings are attributed to the fact that tumors driven by powerful oncogenes have high metabolic demands catered to by autophagy. In this review, we discuss the relationship between ROS and autophagy and summarize our current knowledge on their functional interactions in tumorigenesis.

  5. PO2 cycling reduces diaphragm fatigue by attenuating ROS formation.

    Science.gov (United States)

    Zuo, Li; Diaz, Philip T; Chien, Michael T; Roberts, William J; Kishek, Juliana; Best, Thomas M; Wagner, Peter D

    2014-01-01

    Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr) followed by a high oxygen level (550 Torr), can reduce intracellular reactive oxygen species (ROS) as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe) was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses.

  6. PO2 cycling reduces diaphragm fatigue by attenuating ROS formation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr followed by a high oxygen level (550 Torr, can reduce intracellular reactive oxygen species (ROS as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses.

  7. Quantification of Polyfunctional Thiols in Wine by HS-SPME-GC-MS Following Extractive Alkylation.

    Science.gov (United States)

    Musumeci, Lauren E; Ryona, Imelda; Pan, Bruce S; Loscos, Natalia; Feng, Hui; Cleary, Michael T; Sacks, Gavin L

    2015-07-06

    Analyses of key odorous polyfunctional volatile thiols in wines (3-mercaptohexanol (3-MH), 3-mercaptohexylacetate (3-MHA), and 4-mercapto-4-methyl-2-pentanone (4-MMP)) are challenging due to their high reactivity and ultra-trace concentrations, especially when using conventional gas-chromatography electron impact mass spectrometry (GC-EI-MS). We describe a method in which thiols are converted to pentafluorobenzyl (PFB) derivatives by extractive alkylation and the organic layer is evaporated prior to headspace solid phase microextraction (HS-SPME) and GC-EI-MS analysis. Optimal parameters were determined by response surface area modeling. The addition of NaCl solution to the dried SPME vials prior to extraction resulted in up to less than fivefold improvement in detection limits. Using 40 mL wine samples, limits of detection for 4-MMP, 3-MH, and 3-MHA were 0.9 ng/L, 1 ng/L, and 17 ng/L, respectively. Good recovery (90%-109%) and precision (5%-11% RSD) were achieved in wine matrices. The new method was used to survey polyfunctional thiol concentrations in 61 commercial California and New York State wines produced from V. vinifera (Riesling, Gewürztraminer, Cabernet Sauvignon, Sauvignon blanc and non-varietal rosé wines), V. labruscana (Niagara), and Vitis spp. (Cayuga White). Mean 4-MMP concentrations in New York Niagara (17 ng/L) were not significantly different from concentrations in Sauvignon blanc, but were significantly higher than 4-MMP in other varietal wines.

  8. Quantification of Polyfunctional Thiols in Wine by HS-SPME-GC-MS Following Extractive Alkylation

    Directory of Open Access Journals (Sweden)

    Lauren E. Musumeci

    2015-07-01

    Full Text Available Analyses of key odorous polyfunctional volatile thiols in wines (3-mercaptohexanol (3-MH, 3-mercaptohexylacetate (3-MHA, and 4-mercapto-4-methyl-2-pentanone (4-MMP are challenging due to their high reactivity and ultra-trace concentrations, especially when using conventional gas-chromatography electron impact mass spectrometry (GC-EI-MS. We describe a method in which thiols are converted to pentafluorobenzyl (PFB derivatives by extractive alkylation and the organic layer is evaporated prior to headspace solid phase microextraction (HS-SPME and GC-EI-MS analysis. Optimal parameters were determined by response surface area modeling. The addition of NaCl solution to the dried SPME vials prior to extraction resulted in up to less than fivefold improvement in detection limits. Using 40 mL wine samples, limits of detection for 4-MMP, 3-MH, and 3-MHA were 0.9 ng/L, 1 ng/L, and 17 ng/L, respectively. Good recovery (90%–109% and precision (5%–11% RSD were achieved in wine matrices. The new method was used to survey polyfunctional thiol concentrations in 61 commercial California and New York State wines produced from V. vinifera (Riesling, Gewürztraminer, Cabernet Sauvignon, Sauvignon blanc and non-varietal rosé wines, V. labruscana (Niagara, and Vitis spp. (Cayuga White. Mean 4-MMP concentrations in New York Niagara (17 ng/L were not significantly different from concentrations in Sauvignon blanc, but were significantly higher than 4-MMP in other varietal wines.

  9. Modern methods of sample preparation for GC analysis

    NARCIS (Netherlands)

    de Koning, S.; Janssen, H.-G.; Brinkman, U.A.Th.

    2009-01-01

    Today, a wide variety of techniques is available for the preparation of (semi-) solid, liquid and gaseous samples, prior to their instrumental analysis by means of capillary gas chromatography (GC) or, increasingly, comprehensive two-dimensional GC (GC × GC). In the past two decades, a large number

  10. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage.

    Science.gov (United States)

    Chen, Chung-Yi; Yen, Ching-Yu; Wang, Hui-Ru; Yang, Hui-Ping; Tang, Jen-Yang; Huang, Hurng-Wern; Hsu, Shih-Hsien; Chang, Hsueh-Wei

    2016-11-05

    The development of drugs that selectively kill oral cancer cells but are less harmful to normal cells still provide several challenges. In this study, the antioral cancer effects of tenuifolide B (TFB), extracted from the stem of the plant Cinnamomum tenuifolium are evaluated in terms of their effects on cancer cell viability, cell cycle analysis, apoptosis, oxidative stress, and DNA damage. Cell viability of oral cancer cells (Ca9-22 and CAL 27) was found to be significantly inhibited by TFB in a dose-responsive manner in terms of ATP assay, yielding IC 50 = 4.67 and 7.05 μM (24 h), but are less lethal to normal oral cells (HGF-1). Dose-responsive increases in subG1 populations as well as the intensities of flow cytometry-based annexin V/propidium iodide (PI) analysis and pancaspase activity suggested that apoptosis was inducible by TFB in these two types of oral cancer cells. Pretreatment with the apoptosis inhibitor (Z-VAD-FMK) reduced the annexin V intensity of these two TFB-treated oral cancer cells, suggesting that TFB induced apoptosis-mediated cell death to oral cancer cells. Cleaved-poly (ADP-ribose) polymerase (PARP) and cleaved-caspases 3, 8, and 9 were upregulated in these two TFB-treated oral cancer cells over time but less harmful for normal oral HGF-1 cells. Dose-responsive and time-dependent increases in reactive oxygen species (ROS) and decreases in mitochondrial membrane potential (MitoMP) in these two TFB-treated oral cancer cells suggest that TFB may generate oxidative stress as measured by flow cytometry. N -acetylcysteine (NAC) pretreatment reduced the TFB-induced ROS generation and further validated that ROS was relevant to TFB-induced cell death. Both flow cytometry and Western blotting demonstrated that the DNA double strand marker γH2AX dose-responsively increased in TFB-treated Ca9-22 cells and time-dependently increased in two TFB-treated oral cancer cells. Taken together, we infer that TFB can selectively inhibit cell proliferation of

  11. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Fen; Shyu, Huey-Wen [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chang, Yi-Chuang [Department of Nursing, Fooyin University, Kaohsiung, Taiwan (China); Tseng, Wei-Chang [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chen, Chang-Yu, E-mail: mt037@mail.fy.edu.tw [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China)

    2012-03-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  12. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-01-01

    Full Text Available Objectives. Elevated plasma homocysteine (Hcy could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27, a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS, and mitochondrial membrane potential (MMP of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO level, increase of endothelin-1 (ET-1, intracellular adhesion molecule-1 (ICAM-1, vascular cellular adhesion molecule-1 (VCAM-1, and monocyte chemoattractant protein-1 (MCP-1 levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.

  13. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    International Nuclear Information System (INIS)

    Wang, Yi-Fen; Shyu, Huey-Wen; Chang, Yi-Chuang; Tseng, Wei-Chang; Huang, Yeou-Lih; Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling; Chen, Chang-Yu

    2012-01-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  14. Contaminant Permeation in the Ionomer-Membrane Water Processor (IWP) System

    Science.gov (United States)

    Kelsey, Laura K.; Finger, Barry W.; Pasadilla, Patrick; Perry, Jay

    2016-01-01

    The Ionomer-membrane Water Processor (IWP) is a patented membrane-distillation based urine brine water recovery system. The unique properties of the IWP membrane pair limit contaminant permeation from the brine to the recovered water and purge gas. A paper study was conducted to predict volatile trace contaminant permeation in the IWP system. Testing of a large-scale IWP Engineering Development Unit (EDU) with urine brine pretreated with the International Space Station (ISS) pretreatment formulation was then conducted to collect air and water samples for quality analysis. Distillate water quality and purge air GC-MS results are presented and compared to predictions, along with implications for the IWP brine processing system.

  15. Evaluation of volatiles from two subtropical strawberry cultivars using GC-olfactometry, GC-MS odor activity values, and sensory analysis

    Science.gov (United States)

    Flavor profiles of two Florida strawberry cultivars were determined using GC-olfactometry,GC-MS, odor activity values (OAVs) and sensory analysis. Thirty-six aroma active compounds were detected using GC-O. Thirty-four were identified. The major odor-active compounds in decreasing intensity were: me...

  16. At least two Fc Neu5Gc residues of monoclonal antibodies are required for binding to anti-Neu5Gc antibody.

    Science.gov (United States)

    Yu, Chuanfei; Gao, Kai; Zhu, Lei; Wang, Wenbo; Wang, Lan; Zhang, Feng; Liu, Chunyu; Li, Meng; Wormald, Mark R; Rudd, Pauline M; Wang, Junzhi

    2016-01-29

    Two non-human glycan epitopes, galactose-α-1,3-galactose (α-gal) and Neu5Gc-α-2-6-galactose (Neu5Gc) have been shown to be antigenic when attached to Fab oligosaccharides of monoclonal antibodies (mAbs) , while α-gal attached to Fc glycans was not. However, the antigenicity of Neu5Gc on the Fc glycans remains unclear in the context that most mAbs carry only Fc glycans. After studying two clinical mAbs carrying significant amounts of Fc Neu5Gc, we show that their binding activity with anti-Neu5Gc antibody resided in a small subset of mAbs carrying two or more Fc Neu5Gc, while mAbs harboring only one Neu5Gc showed no reactivity. Since most Neu5Gc epitopes were distributed singly on the Fc of mAbs, our results suggest that the potential antigenicity of Fc Neu5Gc is low. Our study could be referenced in the process design and optimization of mAb production in murine myeloma cells and in the quality control of mAbs for industries and regulatory authorities.

  17. The amphiphilic peptide adenoregulin enhances agonist binding to A1-adenosine receptors and [35S]GTP gamma S to brain membranes.

    Science.gov (United States)

    Moni, R W; Romero, F S; Daly, J W

    1995-08-01

    1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog, Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes. 2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 microM) for A1-adenosine receptors, 30% (100 microM) for A2a-adenosine receptors, 20% (2 microM) for alpha 2-adrenergic receptors, and 30% (10 microM) for 5HT1A receptors. High affinity agonist binding for A1-, alpha 2-, and 5HT1A-receptors was virtually abolished by GTP gamma S in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin. 3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 microM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTP gamma S were maximally enhanced 45% and 23%, respectively, by 50 microM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 microM adenoregulin. In intact DDT1 MF-2 cells, 20 microM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediated via the adenosine A1 receptor. 4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state

  18. Involvement of reactive oxygen species (ROS) in the induction of genetic instability by radiation

    International Nuclear Information System (INIS)

    Tominaga, Hideyuki; Kodama, Seiji; Suzuki, Keiji; Watanabe, Masami; Matsuda, Naoki

    2004-01-01

    Radiation generates reactive oxygen species (ROS) that interact with cellular molecules, including DNA, lipids, and proteins. To know how ROS contribute to the induction of genetic instability, we examined the effect of the anti-ROS condition, using both ascorbic acid phosphate (APM) treatment or a low oxygen condition, on the induction of delayed reproductive cell death and delayed chromosome aberrations. The primary surviving colonies of mouse m5S-derived cl. 2011-14 cells irradiated with 6 Gy of X-rays were replated and allowed to form secondary colonies. The anti-ROS treatments were applied to either preirradiation culture or postirradiation cultures for primary or secondary colony formation. Both anti-ROS conditions relieved X-ray-induced acute cell killing to a similar extent. These anti-ROS conditions also relieved genetic instability when those conditions were applied during primary colony formation. However, no effect was observed when the conditions were applied during preirradiation culture and secondary colony formation. We also demonstrated that the amounts of ROS in X-ray-irradiated cells rapidly increase and then decrease at 6 hr postirradiation, and the levels of ROS then gradually decrease to a baseline within 2 weeks. The APM treatment kept the ROS production at a lower level than an untreated control. These results suggest that the cause of genetic instability might be fixed by ROS during a 2-week postirradiation period. (author)

  19. Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia.

    Science.gov (United States)

    Wang, N; Kang, H S; Ahmmed, G; Khan, S A; Makarenko, V V; Prabhakar, N R; Nanduri, J

    2016-03-01

    Human ether-a-go-go-related gene (hERG) channels conduct delayed rectifier K(+) current. However, little information is available on physiological situations affecting hERG channel protein and function. In the present study we examined the effects of intermittent hypoxia (IH), which is a hallmark manifestation of sleep apnea, on hERG channel protein and function. Experiments were performed on SH-SY5Y neuroblastoma cells, which express hERG protein. Cells were exposed to IH consisting of alternating cycles of 30 s of hypoxia (1.5% O2) and 5 min of 20% O2. IH decreased hERG protein expression in a stimulus-dependent manner. A similar reduction in hERG protein was also seen in adrenal medullary chromaffin cells from IH-exposed neonatal rats. The decreased hERG protein was associated with attenuated hERG K(+) current. IH-evoked hERG protein degradation was not due to reduced transcription or increased proteosome/lysomal degradation. Rather it was mediated by calcium-activated calpain proteases. Both COOH- and NH2-terminal sequences of the hERG protein were the targets of calpain-dependent degradation. IH increased reactive oxygen species (ROS) levels, intracellular Ca(2+) concentration ([Ca(2+)]i), calpain enzyme activity, and hERG protein degradation, and all these effects were prevented by manganese-(111)-tetrakis-(1-methyl-4-pyridyl)-porphyrin pentachloride, a membrane-permeable ROS scavenger. These results demonstrate that activation of calpains by ROS-dependent elevation of [Ca(2+)]i mediates hERG protein degradation by IH. Copyright © 2016 the American Physiological Society.

  20. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Khan, M A Majeed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-12-01

    Cobalt iron oxide (CoFe 2 O 4 ) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Nanomedicine in the ROS-mediated pathophysiology: Applications and clinical advances.

    Science.gov (United States)

    Nash, Kevin M; Ahmed, Salahuddin

    2015-11-01

    Reactive oxygen species (ROS) are important in regulating normal cell physiological functions, but when produced in excess lead to the augmented pathogenesis of various diseases. Among these, ischemia reperfusion injury, Alzheimer's disease and rheumatoid arthritis are particularly important. Since ROS can be counteracted by a variety of antioxidants, natural and synthetic antioxidants have been developed. However, due to the ubiquitous production of ROS in living systems, poor in vivo efficiency of these agents and lack of target specificity, the current clinical modalities to treat oxidative stress damage are limited. Advances in the developing field of nanomedicine have yielded nanoparticles that can prolong antioxidant activity, and target specificity of these agents. This article reviews recent advances in antioxidant nanoparticles and their applications to manage oxidative stress-mediated diseases. Production of reactive oxygen species (ROS) is a purely physiological process in many disease conditions. However, excessive and uncontrolled production will lead to oxidative stress and further tissue damage. Advances in nanomedicine have provided many novel strategies to try to combat and counteract ROS. In this review article, the authors comprehensively highlighted the current status and future developments in using nanotechnology for providing novel therapeutic options in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Accumulation of GC donor splice signals in mammals

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2008-07-01

    Full Text Available Abstract The GT dinucleotide in the first two intron positions is the most conserved element of the U2 donor splice signals. However, in a small fraction of donor sites, GT is replaced by GC. A substantial enrichment of GC in donor sites of alternatively spliced genes has been observed previously in human, nematode and Arabidopsis, suggesting that GC signals are important for regulation of alternative splicing. We used parsimony analysis to reconstruct evolution of donor splice sites and inferred 298 GT > GC conversion events compared to 40 GC > GT conversion events in primate and rodent genomes. Thus, there was substantive accumulation of GC donor splice sites during the evolution of mammals. Accumulation of GC sites might have been driven by selection for alternative splicing. Reviewers This article was reviewed by Jerzy Jurka and Anton Nekrutenko. For the full reviews, please go to the Reviewers' Reports section.

  3. The Role of Reactive Oxygen Species (ROS in the Biological Activities of Metallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmed Abdal Dayem

    2017-01-01

    Full Text Available Nanoparticles (NPs possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS. The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.

  4. ROS1 Expression in Invasive Ductal Carcinoma of the Breast Related to Proliferation Activity

    OpenAIRE

    Eom, Minseob; Lkhagvadorj, Sayamaa; Oh, Sung Soo; Han, Airi; Park, Kwang Hwa

    2013-01-01

    Purpose ROS1 is an oncogene, expressed primarily in glioblastomas of the brain that has been hypothesized to mediate the effects of early stage tumor progression. In addition, it was reported that ROS1 expression was observed in diverse cancer tissue or cell lines and ROS1 is associated with the development of several tumors. However, ROS1 expression has not been studied in breast cancer to date. Therefore, we investigated ROS1 expression at the protein and gene level to compare expression pa...

  5. California serogroup GC (G1) glycoprotein is the principal determinant of pH-dependent cell fusion and entry

    International Nuclear Information System (INIS)

    Plassmeyer, Matthew L.; Soldan, Samantha S.; Stachelek, Karen M.; Martin-Garcia, Julio; Gonzalez-Scarano, Francisco

    2005-01-01

    Members of the California serogroup of orthobunyaviruses, particularly La Crosse (LAC) and Tahyna (TAH) viruses, are significant human pathogens in areas where their mosquito vectors are endemic. Previous studies using wild-type LAC and TAH181/57, a highly neurovirulent strain with low neuroinvasiveness (Janssen, R., Gonzalez-Scarano, F., Nathanson, N., 1984. Mechanisms of bunyavirus virulence. Comparative pathogenesis of a virulent strain of La Crosse and an avirulent strain of Tahyna virus. Lab. Invest. 50 (4), 447-455), have demonstrated that the neuroinvasive phenotype maps to the M segment, the segment that encodes the two viral glycoproteins GN (G2) and GC (G1), as well as a non-structural protein NSm. To further define the role of GN and GC in fusion and entry, we prepared a panel of recombinant M segment constructs using LAC, TAH181/57, and V22F, a monoclonal-resistant variant of LAC with deficient fusion function. These M segment constructs were then tested in two surrogate assays for virus entry: a cell-to-cell fusion assay based on T7-luciferase expression, and a pseudotype transduction assay based on the incorporation of the bunyavirus glycoproteins on an MLV backbone. Both assays demonstrated that GC is the principal determinant of virus fusion and cell entry, and furthermore that the region delineated by amino acids 860-1442, corresponding to the membrane proximal two-thirds of GC, is key to these processes. These results, coupled with structural modeling suggesting homologies between the carboxy region of GC and Sindbis virus E1, suggest that the LAC GC functions as a type II fusion protein

  6. Identification (GC and GC-MS) of unsaturated acetates in Elasmopalpus lignosellus and their biological activity (GC-EAD and EAG).

    Science.gov (United States)

    Jham, Gulab N; da Silva, Alexsandro A; Lima, Eraldo R; Viana, Paulo

    2005-02-01

    Two insect colonies of Elasmopalpus lignosellus were reared in our laboratory, the first being initiated from pupae obtained from a cornfield in the region of Sete Lagoas, Minas Gerais and the second from a cornfield in the region of Goiânia, Goiás. From the two colonies, two extracts were prepared from the pheromone glands of virgin E. lignosellus females. The extract obtained from the first colony was designated as extract 1 while the extract obtained from the second colony was designated as extract 2. Extract 1 was analyzed by gas chromatography-mass spectrometry (GC-MS) with (Z)-9-hexadecenyl acetate [(Z)-9-HDA] and (Z)-11-hexadecenyl acetate [(Z)-11-HDA] being identified and confirmed by the formation of DMDS derivatives. In addition, a third acetate, which could be either (E)-8-hexadecenyl acetate [(E)-8-HDA] or (E)-9-hexadecenyl acetate [(E)-9-HDA] was detected by GC-MS. Extract 2 was analyzed by gas chromatography (GC) and gas chromatography-electroannetography (GC-EAD) revealing the presence of (Z)-11-HDA and (Z)-9-TDA. In addition, the same compounds elicited a response with the E. lignosellus male antenna obtained from the second insect colony. Electroantennography (EAG) screening with the male E. lignosellus antenna (obtained from the second insect colony) was conducted with the 23 possible tetradecenyl acetates (TDA) and 22 hexadecenyl acetates (HDA) as standards. Out of the 23 TDA isomers evaluated, only (Z)-9-TDA elicited a response and out of the 22 HDA [(Z) and (E) isomers gamma2 to delta13] evaluated only (Z)-11-HDA elicited a response. The acetate compositions of two extracts obtained from insects originating from the two states (Minas Gerais and Goiás) of Brazil were different from one another as well as from that obtained from insects in Tifton, GA, USA. The bioactivity data (GC-EAD) of the extract 2 differed from those reported for the Tifton, GA, USA population. These data suggest polymorphism in relation to the insect populations found in

  7. Role of TLR4/NADPH oxidase/ROS-activated p38 MAPK in VCAM-1 expression induced by lipopolysaccharide in human renal mesangial cells

    Directory of Open Access Journals (Sweden)

    Lee I-Ta

    2012-11-01

    Full Text Available Abstract Background In bacteria-induced glomerulonephritis, Toll-like receptor 4 (TLR4 activation by lipopolysaccharide (LPS, a key component of the outer membranes of Gram-negative bacteria can increase oxidative stress and the expression of vascular cell adhesion molecule-1 (VCAM-1, which recruits leukocytes to the glomerular mesangium. However, the mechanisms underlying VCAM-1 expression induced by LPS are still unclear in human renal mesangial cells (HRMCs. Results We demonstrated that LPS induced VCAM-1 mRNA and protein levels associated with an increase in the promoter activity of VCAM-1, determined by Western blot, RT-PCR, and promoter assay. LPS-induced responses were inhibited by transfection with siRNAs of TLR4, myeloid differentiation factor 88 (MyD88, Nox2, Nox4, p47phox, c-Src, p38 MAPK, activating transcription factor 2 (ATF2, and p300 or pretreatment with the inhibitors of reactive oxygen species (ROS, edaravone, NADPH oxidase [apocynin (APO or diphenyleneiodonium chloride (DPI], c-Src (PP1, p38 MAPK (SB202190, and p300 (GR343. LPS induced NADPH oxidase activation, ROS production, and p47phox translocation from the cytosol to the membrane, which were reduced by PP1 or c-Src siRNA. We observed that LPS induced TLR4, MyD88, c-Src, and p47phox complex formation determined by co-immunoprecipitation and Western blot. We further demonstrated that LPS stimulated ATF2 and p300 phosphorylation and complex formation via a c-Src/NADPH oxidase/ROS/p38 MAPK pathway. Up-regulation of VCAM-1 led to enhancing monocyte adhesion to HRMCs challenged with LPS, which was inhibited by siRNAs of c-Src, p47phox, p38 MAPK, ATF2, and p300 or pretreatment with an anti-VCAM-1 neutralizing antibody. Conclusions In HRMCs, LPS-induced VCAM-1 expression was, at least in part, mediated through a TLR4/MyD88/ c-Src/NADPH oxidase/ROS/p38 MAPK-dependent p300 and ATF2 pathway associated with recruitment of monocyte adhesion to kidney. Blockade of these pathways may

  8. Identification and characterisation of ROS modulator 1 in Lampetra japonica.

    Science.gov (United States)

    Zhao, Chunhui; Feng, Bin; Cao, Ying; Xie, Peng; Xu, Jie; Pang, Yue; Liu, Xin; Li, Qingwei

    2013-08-01

    Reactive oxygen species (ROS) are a heterogeneous group of highly reactive molecules that oxidise targets in biological systems. ROS are also considered important immune regulators. In this study, we identified a homologue of reactive oxygen species modulator 1 (Romo1) in the Japanese lamprey (Lampetra japonica). The L japonica Romo1 (Lj-Romo1) gene shares high sequence homology with the Romo1 genes of jawed vertebrates. Real-time quantitative PCR demonstrated the wide distribution of Lj-Romo1 in lamprey tissues. Furthermore, after the lampreys were stimulated with lipopolysaccharide (LPS), the level of Lj-Romo1 mRNA was markedly up-regulated in the liver, gill, kidney, and intestine tissues. Lj-Romo1 was localised to the mitochondria and has the capacity to increase the ROS level in cells. The results obtained in the present study will help us to understand the roles of Romo1 in ROS production and innate immune responses in jawless vertebrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The GC-heterogeneity of teleost fishes

    Directory of Open Access Journals (Sweden)

    Gautier Christian

    2008-12-01

    Full Text Available Abstract Background One of the most striking features of mammalian and birds chromosomes is the variation in the guanine-cytosine (GC content that occurs over scales of hundreds of kilobases to megabases; this is known as the "isochore" structure. Among other vertebrates the presence of isochores depends upon the taxon; isochore are clearly present in Crocodiles and turtles but fish genome seems very homogeneous on GC content. This has suggested a unique isochore origin after the divergence between Sarcopterygii and Actinopterygii, but before that between Sauropsida and mammals. However during more than 30 years of analysis, isochore characteristics have been studied and many important biological properties have been associated with the isochore structure of human genomes. For instance, the genes are more compact and their density is highest in GC rich isochores. Results This paper shows in teleost fish genomes the existence of "GC segmentation" sharing some of the characteristics of isochores although teleost fish genomes presenting a particular homogeneity in CG content. The entire genomes of T nigroviridis and D rerio are now available, and this has made it possible to check whether a mosaic structure associated with isochore properties can be found in these fishes. In this study, hidden Markov models were trained on fish genes (T nigroviridis and D rerio which were classified by using the isochore class of their human orthologous. A clear segmentation of these genomes was detected. Conclusion The GC content is an excellent indicator of isochores in heterogeneous genomes as mammals. The segmentation we obtained were well correlated with GC content and other properties associated to GC content such as gene density, the number of exons per gene and the length of introns. Therefore, the GC content is the main property that allows the detection of isochore but more biological properties have to be taken into account. This method allows detecting

  10. Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem

    Science.gov (United States)

    Fu, Jingke; Shao, Yiran; Wang, Liyao; Zhu, Yingchun

    2015-04-01

    Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests promising applications in cancer treatments.Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests

  11. Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome

    Directory of Open Access Journals (Sweden)

    Laura R. Hoyt

    2017-08-01

    Full Text Available Alcohol use disorders are common both in the United States and globally, and are associated with a variety of co-morbid, inflammation-linked diseases. The pathogenesis of many of these ailments are driven by the activation of the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18. We hypothesized that protracted exposure of leukocytes to ethanol would amplify inflammasome activation, which would help to implicate mechanisms involved in diseases associated with both alcoholism and aberrant NLRP3 inflammasome activation. Here we show that long-term ethanol exposure of human peripheral blood mononuclear cells and a mouse macrophage cell line (J774 amplifies IL-1β secretion following stimulation with NLRP3 agonists, but not with AIM2 or NLRP1b agonists. The augmented NRLP3 activation was mediated by increases in iNOS expression and NO production, in conjunction with increases in mitochondrial membrane depolarization, oxygen consumption rate, and ROS generation in J774 cells chronically exposed to ethanol (CE cells, effects that could be inhibited by the iNOS inhibitor SEITU, the NO scavenger carboxy-PTIO, and the mitochondrial ROS scavenger MitoQ. Chronic ethanol exposure did not alter K+ efflux or Zn2+ homeostasis in CE cells, although it did result in a lower intracellular concentration of NAD+. Prolonged administration of acetaldehyde, the product of alcohol dehydrogenase (ADH mediated metabolism of ethanol, mimicked chronic ethanol exposure, whereas ADH inhibition prevented ethanol-induced IL-1β hypersecretion. Together, these results indicate that increases in iNOS and mitochondrial ROS production are critical for chronic ethanol-induced IL-1β hypersecretion, and that protracted exposure to the products of ethanol metabolism are probable mediators of NLRP3 inflammasome hyperactivation. Keywords: Inflammasome, IL

  12. Sensitivity of GC-EI/MS, GC-EI/MS/MS, LC-ESI/MS/MS, LC-Ag(+) CIS/MS/MS, and GC-ESI/MS/MS for analysis of anabolic steroids in doping control.

    Science.gov (United States)

    Cha, Eunju; Kim, Sohee; Kim, Ho Jun; Lee, Kang Mi; Kim, Ki Hun; Kwon, Oh-Seung; Lee, Jaeick

    2015-01-01

    This study compared the sensitivity of various separation and ionization methods, including gas chromatography with an electron ionization source (GC-EI), liquid chromatography with an electrospray ionization source (LC-ESI), and liquid chromatography with a silver ion coordination ion spray source (LC-Ag(+) CIS), coupled to a mass spectrometer (MS) for steroid analysis. Chromatographic conditions, mass spectrometric transitions, and ion source parameters were optimized. The majority of steroids in GC-EI/MS/MS and LC-Ag(+) CIS/MS/MS analysis showed higher sensitivities than those obtained with other analytical methods. The limits of detection (LODs) of 65 steroids by GC-EI/MS/MS, 68 steroids by LC-Ag(+) CIS/MS/MS, 56 steroids by GC-EI/MS, 54 steroids by LC-ESI/MS/MS, and 27 steroids by GC-ESI/MS/MS were below cut-off value of 2.0 ng/mL. LODs of steroids that formed protonated ions in LC-ESI/MS/MS analysis were all lower than the cut-off value. Several steroids such as unconjugated C3-hydroxyl with C17-hydroxyl structure showed higher sensitivities in GC-EI/MS/MS analysis relative to those obtained using the LC-based methods. The steroids containing 4, 9, 11-triene structures showed relatively poor sensitivities in GC-EI/MS and GC-ESI/MS/MS analysis. The results of this study provide information that may be useful for selecting suitable analytical methods for confirmatory analysis of steroids. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mei, E-mail: happy_deercn@163.com [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Zhang, Minfang; Tahara, Yoshio; Chechetka, Svetlana; Miyako, Eijiro [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Iijima, Sumio [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan); Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tenpaku, Nagoya 468-8502 (Japan); Yudasaka, Masako, E-mail: m-yudasaka@aist.go.jp [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology 5-2, 1-1-1 Higashi, Tsukuba 305-8565 (Japan)

    2014-10-01

    Understanding the molecular mechanisms responsible for the cytotoxic effects of carbon nanomaterials is important for their future biomedical applications. Carbon nanotubular materials induce the generation of reactive oxygen species (ROS), which causes cell death; however, the exact details of this process are still unclear. Here, we identify a mechanism of ROS generation that is involved in the apoptosis of RAW264.7 macrophages caused by excess uptake of carbon nanohorns (CNHs), a typical type of carbon nanotubule. CNH accumulated in the lysosomes, where they induced lysosomal membrane permeabilization (LMP) and the subsequent release of lysosomal proteases, such as cathepsins, which in turn caused mitochondrial dysfunction and triggered the generation of ROS in the mitochondria. The nicotinamide adenine dinucleotide phosphate oxidase was not directly involved in CNH-related ROS production, and the ROS generation cannot be regulated by mitochondrial electron transport chain. ROS fed back to amplify the mitochondrial dysfunction, leading to the subsequent activation of caspases and cell apoptosis. Carbon nanotubules commonly accumulate in the lysosomes after internalization in cells; however, lysosomal dysfunction has not attracted much attention in toxicity studies of these materials. These results suggest that LMP, a neglected mechanism, may be the primary reason for carbon nanotubule toxicity. - Highlights: • We clarify an apoptotic mechanism of RAW264.7 cells caused by carbon nanohorns. • In the meantime, the mechanism of CNH-induced ROS generation is identified. • LMP is the initial factor of CNH-induced ROS generation and cell death. • Cathepsins work as mediators that connect LMP and mitochondrial dysfunction.

  14. Rosácea fulminante: relato de caso

    Directory of Open Access Journals (Sweden)

    José Otávio Alquezar Gozzano

    2016-10-01

    Full Text Available Introdução: Rosácea fulminante (RF ou pioderma facial é uma doença rara, descrita em 1940 por Kierland e O’Leary. É considerada uma variante extrema de rosácea conglobata, esta, consiste em formação de placas e abscessos hemorrágicos na pele. A RF tem sua etiologia desconhecida, porém há teorias que relacionam seu acometimento com a variação de hormônios femininos e a ingestão de vitamina B12. A RF é frequente em mulheres, principalmente pós- adolescentes. Apresenta-se abruptamente na face, amiúde na região mento- mandibular, através de pápulas inflamatórias, pústulas, cistos e nódulos com comedões escassos ou inexistentes, além de abcessos, sem manifestações sistêmicas e com a recidiva rara. Seu diagnóstico é fundamentalmente clínico, apenas com a história do paciente, sem necessidade de exames complementares. Para o tratamento, são utilizados corticoides orais, isotretinoína oral e antibióticos a fim de minimizar as sequelas físicas e psicológicas. Objetivo: Relatar caso de paciente com diagnóstico de rosácea fulminante. Metodologia: Paciente diagnosticada com rosácea fulminante atendida em serviço ambulatorial e revisão de literatura. Relato de caso: Paciente do sexo feminino, 19 anos, refere lesões súbitas em face há uma semana. Nega quadro acneico anterior, histórias de alergias e outras comorbidades. Relata ausência de uso de anticoncepcionais orais há 5 meses e data de última menstruação há 3 semanas, sem atraso menstrual. Ao exame: pápulas eritematosas e pústulas, além de pequenos nódulos inflamatórios na face. Hipótese diagnóstica: RF. Como conduta, foi prescrito tetraciclina. Conclusões: A RF é uma forma infrequente de rosácea, sendo importante o diagnóstico precoce e tratamento eficaz, a fim de melhorar a qualidade de vida do paciente.

  15. The Involvement of Mitochondrial Membrane Potential in Cross-Resistance Between Radiation and Docetaxel

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Yoshikazu [Department of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai (Japan); Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai (Japan); Roudkenar, Mehryar Habibi; Suzuki, Masatoshi; Urushihara, Yusuke; Fukumoto, Motoi [Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai (Japan); Saito, Yohei [Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai (Japan); Fukumoto, Manabu, E-mail: manabu.fukumoto.a8@tohoku.ac.jp [Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai (Japan); Department of Molecular Pathology, Tokyo Medical University, Tokyo (Japan)

    2016-11-01

    Purpose: To understand the molecular mechanisms underlying cancer cell radioresistance, clinically relevant radioresistant (CRR) cells that continue to proliferate during exposure to 2 Gy/day X-rays for more than 30 days were established. A modified high-density survival assay for anticancer drug screening revealed that CRR cells were resistant to an antimicrotubule agent, docetaxel (DTX). The involvement of reactive oxygen species (ROS) from mitochondria (mtROS) in the cross-resistance to X-rays and DTX was studied. Methods and Materials: Sensitivity to anticancer agents was determined by a modified high-density cell survival or water-soluble tetrazolium salt assay. DTX-induced mtROS generation was determined by MitoSOX red staining. JC-1 staining was used to visualize mitochondrial membrane potential. DTX-induced DNA double-strand breaks were determined by γ-H2AX staining. To obtain mitochondrial DNA-lacking (ρ{sup 0}) cells, the cells were cultured for 3 to 4 weeks in medium containing ethidium bromide. Results: Treatment with DTX increased mtROS in parental cells but not in CRR cells. DTX induced DNA double-strand breaks in parental cells. The mitochondrial membrane potential of CRR cells was lower in CRR cells than in parental cells. Depletion of mtDNA induced DTX resistance in parental cells. Treatment with dimethyl sulfoxide also induced DTX resistance in parental cells. Conclusions: The mitochondrial dysfunction observed in CRR cells contributes to X-ray and DTX cross-resistance. The activation of oxidative phosphorylation in CRR cells may represent an effective approach to overcome radioresistant cancers. In general, the overexpression of β-tubulin or multidrug efflux pumps is thought to be involved in DTX resistance. In the present study, we discovered another DTX resistant mechanism by investigating CRR cells.

  16. Analysis of intra-genomic GC content homogeneity within prokaryotes

    DEFF Research Database (Denmark)

    Bohlin, J; Snipen, L; Hardy, S.P.

    2010-01-01

    the GC content varies within microbial genomes to assess whether this property can be associated with certain biological functions related to the organism's environment and phylogeny. We utilize a new quantity GCVAR, the intra-genomic GC content variability with respect to the average GC content......Bacterial genomes possess varying GC content (total guanines (Gs) and cytosines (Cs) per total of the four bases within the genome) but within a given genome, GC content can vary locally along the chromosome, with some regions significantly more or less GC rich than on average. We have examined how...... both aerobic and facultative microbes. Although an association has previously been found between mean genomic GC content and oxygen requirement, our analysis suggests that no such association exits when phylogenetic bias is accounted for. A significant association between GCVAR and mean GC content...

  17. Recent advances in intracellular and in vivo ROS sensing: focus on nanoparticle and nanotube applications.

    Science.gov (United States)

    Uusitalo, Larissa M; Hempel, Nadine

    2012-01-01

    Reactive oxygen species (ROS) are increasingly being implicated in the regulation of cellular signaling cascades. Intracellular ROS fluxes are associated with cellular function ranging from proliferation to cell death. Moreover, the importance of subtle, spatio-temporal shifts in ROS during localized cellular signaling events is being realized. Understanding the biochemical nature of the ROS involved will enhance our knowledge of redox-signaling. An ideal intracellular sensor should therefore resolve real-time, localized ROS changes, be highly sensitive to physiologically relevant shifts in ROS and provide specificity towards a particular molecule. For in vivo applications issues such as bioavailability of the probe, tissue penetrance of the signal and signal-to-noise ratio also need to be considered. In the past researchers have heavily relied on the use of ROS-sensitive fluorescent probes and, more recently, genetically engineered ROS sensors. However, there is a great need to improve on current methods to address the above issues. Recently, the field of molecular sensing and imaging has begun to take advantage of the unique physico-chemical properties of nanoparticles and nanotubes. Here we discuss the recent advances in the use of these nanostructures as alternative platforms for ROS sensing, with particular emphasis on intracellular and in vivo ROS detection and quantification.

  18. Comparison of GC/MSD and GC/AED for the determination of organotin compounds in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Staeb, J.A. (Inst. of Environmental Studies, Free Univ., Amsterdam (Netherlands)); Cofino, W.P. (Inst. of Environmental Studies, Free Univ., Amsterdam (Netherlands)); Hattum, B. van (Inst. of Environmental Studies, Free Univ., Amsterdam (Netherlands)); Brinkman, U.A.T. (Dept. of Analytical Chemistry, Free Univ., Amsterdam (Netherlands))

    Methods are described for the analysis of environmental samples like water, sediment and suspended matter for the determination of all organotin compounds (OTs) that are currently used as biocides: Tributyltin (TBT) triphenyltin (TPT), tricyclohexyltin (TCT) and fenbutatin oxide (FBTO). In water also five degradation products (di and mono substituted analogs) can be determined. Alkylation using a Grignard reagent was used to obtain OT derivatives amenable to gas chromatography (GC). Both methylation and pentylation have been employed for derivatization prior to GC analysis. The present results show that derivatization efficiencies for TPT, TCT and FBTO at trace levels are higher using methylation than pentylation. Detection limits for each type of sample matrix were determined using GC/Mass Selective Detection (GC/MSD) and GC/Atomic Emission Detection (AED). In sediment and suspended matter only tri-substituted OTs (i.e. the parent compounds) could be determined. Detection limits ranged from 0.2 to 10 ng/g dry weight. FBTO, not previously detected in environmental samples, was found at levels of 4 and 11 ng/g in a suspended matter sample and a sediment sample, respectively. In water the OTs and their degradation products were determined at levels of 1-10 ng/l (as tin) using 200 ml water samples. (orig.)

  19. Characterisation of middle-distillates by comprehensive two-dimensional gas chromatography (GC x GC): A powerful alternative for performing various standard analysis of middle-distillates.

    Science.gov (United States)

    Vendeuvre, Colombe; Ruiz-Guerrero, Rosario; Bertoncini, Fabrice; Duval, Laurent; Thiébaut, Didier; Hennion, Marie-Claire

    2005-09-09

    The detailed characterisation of middle distillates is essential for a better understanding of reactions involved in refining process. Owing to higher resolution power and enhanced sensitivity, comprehensive two-dimensional gas chromatography (GC x GC) is a powerful tool for improving characterisation of petroleum samples. The aim of this paper is to compare GC x GC and various ASTM methods -- gas chromatography (GC), liquid chromatography (LC) and mass spectrometry (MS) -- for group type separation and detailed hydrocarbon analysis. Best features of GC x GC are demonstrated and compared to these techniques in terms of cost, time consumption and accuracy. In particular, a new approach of simulated distillation (SimDis-GC x GC) is proposed: compared to the standard method ASTM D2887 it gives unequal information for better understanding of conversion process.

  20. Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-kB, and AP-1 pathways in human endothelial cells

    International Nuclear Information System (INIS)

    Lian, Sen; Xia, Yong; Khoi, Pham Ngoc; Ung, Trong Thuan; Yoon, Hyun Joong; Kim, Nam Ho; Kim, Kyung Keun; Jung, Young Do

    2015-01-01

    Highlights: • Cadmium induces MMP-9 expression through NADPH oxidase-derived ROS. • Cadmium induces MMP-9 through EGFR-mediated Akt, Erk1/2 and JNK1/2 signaling pathways. • Akt, MAPKs (Erk1/2 and JNK1/2) functioned as upstream signals of NF-kB and AP-1 respectively, in cadmium-induced MMP-9 in endothelial cells. • ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression in ECV304 cells. - Abstract: Cadmium (Cd), a widespread cumulative pollutant, is a known human carcinogen, associated with inflammation and tumors. Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in tumor metastasis; however, the mechanisms underlying the MMP-9 expression induced by Cd remain obscure in human endothelial cells. Here, Cd elevated MMP-9 expression in dose- and time-dependent manners in human endothelial cells. Cd increased ROS production and the ROS-producing NADPH oxidase. Cd translocates p47 phox , a key subunit of NADPH oxidase, to the cell membrane. Cd also activated the phosphorylation of EGFR, Akt, Erk1/2, and JNK1/2 in addition to promoting NF-kB and AP-1 binding activities. Specific inhibitor and mutagenesis studies showed that EGFR, Akt, Erk1/2, JNK1/2 and transcription factors NF-κB and AP-1 were related to Cd-induced MMP-9 expression in endothelial cells. Akt, Erk1/2, and JNK1/2 functioned as upstream signals in the activation of NF-κB and AP-1, respectively. In addition, N-acetyl-L-cystein (NAC), diphenyleneiodonium chloride (DPI) and apocynin (APO) inhibited the Cd-induced activation of EGFR, Akt, Erk1/2, JNK1/2, and p38 MAPK, indicating that ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression. At present, it states that Cd displayed marked invasiveness in ECV304 cells, which was partially abrogated by MMP-9 neutralizing antibodies. These results demonstrated that Cd induces MMP-9 expression via ROS-dependent EGFR- > Erk1/2, JNK1/2- > AP-1 and EGFR- > Akt- > NF-κB signaling pathways and, in turn

  1. The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations

    Science.gov (United States)

    Williams, K. D.; Copsey, D.; Blockley, E. W.; Bodas-Salcedo, A.; Calvert, D.; Comer, R.; Davis, P.; Graham, T.; Hewitt, H. T.; Hill, R.; Hyder, P.; Ineson, S.; Johns, T. C.; Keen, A. B.; Lee, R. W.; Megann, A.; Milton, S. F.; Rae, J. G. L.; Roberts, M. J.; Scaife, A. A.; Schiemann, R.; Storkey, D.; Thorpe, L.; Watterson, I. G.; Walters, D. N.; West, A.; Wood, R. A.; Woollings, T.; Xavier, P. K.

    2018-02-01

    The Global Coupled 3 (GC3) configuration of the Met Office Unified Model is presented. Among other applications, GC3 is the basis of the United Kingdom's submission to the Coupled Model Intercomparison Project 6 (CMIP6). This paper documents the model components that make up the configuration (although the scientific descriptions of these components are in companion papers) and details the coupling between them. The performance of GC3 is assessed in terms of mean biases and variability in long climate simulations using present-day forcing. The suitability of the configuration for predictability on shorter time scales (weather and seasonal forecasting) is also briefly discussed. The performance of GC3 is compared against GC2, the previous Met Office coupled model configuration, and against an older configuration (HadGEM2-AO) which was the submission to CMIP5. In many respects, the performance of GC3 is comparable with GC2, however, there is a notable improvement in the Southern Ocean warm sea surface temperature bias which has been reduced by 75%, and there are improvements in cloud amount and some aspects of tropical variability. Relative to HadGEM2-AO, many aspects of the present-day climate are improved in GC3 including tropospheric and stratospheric temperature structure, most aspects of tropical and extratropical variability and top-of-atmosphere and surface fluxes. A number of outstanding errors are identified including a residual asymmetric sea surface temperature bias (cool northern hemisphere, warm Southern Ocean), an overly strong global hydrological cycle and insufficient European blocking.

  2. Crosstalk between Rac1-mediated actin regulation and ROS production.

    Science.gov (United States)

    Acevedo, Alejandro; González-Billault, Christian

    2018-02-20

    The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing.

    Science.gov (United States)

    Janda, Jaroslav; Nfonsam, Valentine; Calienes, Fernanda; Sligh, James E; Jandova, Jana

    2016-05-01

    Mitochondria are the major source of reactive oxygen species (ROS) in fibroblasts which are thought to be crucial regulators of wound healing with a potential to affect the expression of nuclear genes involved in this process. ROS generated by mitochondria are involved in all stages of tissue repair process but the regulation of ROS-generating system in fibroblasts still remains poorly understood. The purpose of this study was to better understand molecular mechanisms of how the regulation of ROS levels generated by mitochondria may influence the process of wound repair. Cybrid model system of mtDNA variations was used to study the functional consequences of altered ROS levels on wound healing responses in a uniform nuclear background of cultured ρ(0) fibroblasts. Mitochondrial ROS in cybrids were modulated by antioxidants that quench ROS to examine their ability to close the wound. Real-time PCR arrays were used to investigate whether ROS generated by specific mtDNA variants have the ability to alter expression of some key nuclear-encoded genes central to the wound healing response and oxidative stress. Our data suggest levels of mitochondrial ROS affect expression of some nuclear encoded genes central to wound healing response and oxidative stress and modulation of mitochondrial ROS by antioxidants positively affects in vitro process of wound closure. Thus, regulation of mitochondrial ROS-generating system in fibroblasts can be used as effective natural redox-based strategy to help treat non-healing wounds.

  4. Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease

    Directory of Open Access Journals (Sweden)

    Filippo Scialò

    2017-06-01

    Full Text Available Reactive Oxygen Species (ROS can cause oxidative damage and have been proposed to be the main cause of aging and age-related diseases including cancer, diabetes and Parkinson's disease. Accordingly, mitochondria from old individuals have higher levels of ROS. However, ROS also participate in cellular signaling, are instrumental for several physiological processes and boosting ROS levels in model organisms extends lifespan. The current consensus is that low levels of ROS are beneficial, facilitating adaptation to stress via signaling, whereas high levels of ROS are deleterious because they trigger oxidative stress. Based on this model the amount of ROS should determine the physiological effect. However, recent data suggests that the site at which ROS are generated is also instrumental in determining effects on cellular homeostasis. The best example of site-specific ROS signaling is reverse electron transport (RET. RET is produced when electrons from ubiquinol are transferred back to respiratory complex I, reducing NAD+ to NADH. This process generates a significant amount of ROS. RET has been shown to be instrumental for the activation of macrophages in response to bacterial infection, re-organization of the electron transport chain in response to changes in energy supply and adaptation of the carotid body to changes in oxygen levels. In Drosophila melanogaster, stimulating RET extends lifespan. Here, we review what is known about RET, as an example of site-specific ROS signaling, and its implications for the field of redox biology.

  5. Antitumor and cytotoxic properties of a humanized antibody specific for the GM3(Neu5Gc) ganglioside.

    Science.gov (United States)

    Dorvignit, Denise; García-Martínez, Liliana; Rossin, Aurélie; Sosa, Katya; Viera, Justo; Hernández, Tays; Mateo, Cristina; Hueber, Anne-Odile; Mesa, Circe; López-Requena, Alejandro

    2015-12-01

    Gangliosides are sialic acid-bearing glycosphingolipids expressed on all mammalian cell membranes, and participate in several cellular processes. During malignant transformation their expression changes, both at the quantitative and qualitative levels. Of particular interest is the overexpression by tumor cells of Neu5Gc-gangliosides, which are absent, or detected in trace amounts, in human normal cells. The GM3(Neu5Gc) ganglioside in particular has been detected in many human tumors, and it is considered one of the few tumor specific antigen. We previously demonstrated that a humanized antibody specific for this molecule, named 14F7hT, retained the binding and cytotoxic properties of the mouse antibody. In this work, we confirm that 14F7hT exerts a non-apoptotic cell death mechanism in vitro and shows its potent in vivo antitumor activity on a solid mouse myeloma model. Also, we demonstrate, in contrast to the murine counterpart, the capacity of this antibody to induce antibody-dependent cell-mediated cytotoxicity using human effector cells, which increases its potential for the treatment of GM3(Neu5Gc)-expressing human tumors. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Rosé wine volatile composition and the preferences of Chinese wine professionals.

    Science.gov (United States)

    Wang, Jiaming; Capone, Dimitra L; Wilkinson, Kerry L; Jeffery, David W

    2016-07-01

    Rosé wine aromas range from fruity and floral, to more developed, savoury characters. Lighter than red wines, rosé wines tend to match well with Asian cuisines, yet little is known about the factors driving desirability of rosé wines in emerging markets such as China. This study involved Chinese wine professionals participating in blind rosé wine tastings comprising 23 rosé wines from Australia, China and France in three major cities in China. According to the sensory results, a link between the preference, quality and expected retail price of the wines was observed, and assessors preferred wines with prominent red fruit, floral, confectionery and honey characters, and without developed attributes or too much sweetness. Basic wine chemical parameters and 47 volatile compounds, including 5 potent thiols, were determined. Correlations between chemical components, sensory attributes and preference/quality/expected price were visualised by network analysis, revealing relationships that are worthy of further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A preliminary cyber-physical security assessment of the Robot Operating System (ROS)

    Science.gov (United States)

    McClean, Jarrod; Stull, Christopher; Farrar, Charles; Mascareñas, David

    2013-05-01

    Over the course of the last few years, the Robot Operating System (ROS) has become a highly popular software framework for robotics research. ROS has a very active developer community and is widely used for robotics research in both academia and government labs. The prevalence and modularity of ROS cause many people to ask the question: "What prevents ROS from being used in commercial or government applications?" One of the main problems that is preventing this increased use of ROS in these applications is the question of characterizing its security (or lack thereof). In the summer of 2012, a crowd sourced cyber-physical security contest was launched at the cyber security conference DEF CON 20 to begin the process of characterizing the security of ROS. A small-scale, car-like robot was configured as a cyber-physical security "honeypot" running ROS. DEFFCON-20 attendees were invited to find exploits and vulnerabilities in the robot while network traffic was collected. The results of this experiment provided some interesting insights and opened up many security questions pertaining to deployed robotic systems. The Federal Aviation Administration is tasked with opening up the civil airspace to commercial drones by September 2015 and driverless cars are already legal for research purposes in a number of states. Given the integration of these robotic devices into our daily lives, the authors pose the following question: "What security exploits can a motivated person with little-to-no experience in cyber security execute, given the wide availability of free cyber security penetration testing tools such as Metasploit?" This research focuses on applying common, low-cost, low-overhead, cyber-attacks on a robot featuring ROS. This work documents the effectiveness of those attacks.

  8. Alterations in NO/ROS ratio and expression of Trx1 and Prdx2 in isoproterenol-induced cardiac hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Hao Su; Marco Pistolozzi; Xingjuan Shi; Xiaoou Sun; Wen Tan

    2017-01-01

    The development of cardiac hypertrophy is a complicated process,which undergoes a transition from compensatory hypertrophy to heart failure,and the identification of new biomarkers and targets for this disease is greatly needed.Here we investigated the development of isoproterenol (ISO)-induced cardiac hypertrophy in an in vitro experimental model.After the induction of hypertrophy with ISO treatment in H9c2 cells,cell surface area,cell viability,cellular reactive oxygen species (ROS),and nitric oxide (NO) levels were tested.Our data showed that the cell viability,mitochondrial membrane potential,and NO/ROS balance varied during the development of cardiac hypertrophy in H9c2 cells.It was also found that the expression of thioredoxin1 (Trx1) and peroxiredoxin2 (Prdx2) was decreased during the cardiac hypertrophy of H9c2 cells.These results suggest a critical role for Trx1 and Prdx2 in the cardiac hypertrophy of H9c2 cells and in the transition from compensated hypertrophy to de-compensated hypertrophy in H9c2 cells,and our findings may have important implications for the management of this disease.

  9. Volume overload cleanup: An approach for on-line SPE-GC, GPC-GC, and GPC-SPE-GC

    NARCIS (Netherlands)

    Kerkdijk, H.; Mol, H.G.J.; Nagel, B. van der

    2007-01-01

    A new concept for cleanup, based on volume overloading of the cleanup column, has been developed for on-line coupling of gel permeation chromatography (GPC), solid-phase extraction (SPE), or both, to gas chromatography (GC). The principle is outlined and the applicability demonstrated by the

  10. Mitochondrion-Permeable Antioxidants to Treat ROS-Burst-Mediated Acute Diseases

    Directory of Open Access Journals (Sweden)

    Zhong-Wei Zhang

    2016-01-01

    Full Text Available Reactive oxygen species (ROS play a crucial role in the inflammatory response and cytokine outbreak, such as during virus infections, diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. Therefore, antioxidant is an important medicine to ROS-related diseases. For example, ascorbic acid (vitamin C, VC was suggested as the candidate antioxidant to treat multiple diseases. However, long-term use of high-dose VC causes many side effects. In this review, we compare and analyze all kinds of mitochondrion-permeable antioxidants, including edaravone, idebenone, α-Lipoic acid, carotenoids, vitamin E, and coenzyme Q10, and mitochondria-targeted antioxidants MitoQ and SkQ and propose astaxanthin (a special carotenoid to be the best antioxidant for ROS-burst-mediated acute diseases, like avian influenza infection and ischemia-reperfusion. Nevertheless, astaxanthins are so unstable that most of them are inactivated after oral administration. Therefore, astaxanthin injection is suggested hypothetically. The drawbacks of the antioxidants are also reviewed, which limit the use of antioxidants as coadjuvants in the treatment of ROS-associated disorders.

  11. N,N-dimethyl phytosphingosine induces caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells

    International Nuclear Information System (INIS)

    Kim, Byeong Mo; Choi, Yun Jung; Han, Youngsoo; Yun, Yeon-Sook; Hong, Sung Hee

    2009-01-01

    N,N-dimethyl phytosphingosine (DMPS) blocks the conversion of sphingosine to sphingosine-1-phosphate (S1P) by the enzyme sphingosine kinase (SK). In this study, we elucidated the apoptotic mechanisms of DMPS action on a human leukemia cell line using functional pharmacologic and genetic approaches. First, we demonstrated that DMPS-induced apoptosis is evidenced by nuclear morphological change, distinct internucleosomal DNA fragmentation, and an increased sub-G1 cell population. DMPS treatment led to the activation of caspase-9 and caspase-3, accompanied by the cleavage of poly(ADP-ribose) polymerase (PARP) and led to cytochrome c release, depolarization of the mitochondrial membrane potential, and downregulation of the anti-apoptotic members of the bcl-2 family. Ectopic expression of bcl-2 and bcl-xL conferred resistance of HL-60 cells to DMPS-induced cell death, suggesting that DMPS-induced apoptosis occurs predominantly through the activation of the intrinsic mitochondrial pathway. We also observed that DMPS activated the caspase-8-Bid-Bax pathway and that the inhibition of caspase-8 by z-IETD-fmk or small interfering RNA suppressed the cleavage of Bid, cytochrome c release, caspase-3 activation, and apoptotic cell death. In addition, cells subjected to DMPS exhibited significantly increased reactive oxygen species (ROS) generation, and ROS scavengers, such as quercetin and Tiron, but not N-acetylcysteine (NAC), inhibited DMPS-induced activations of caspase-8, -3 and subsequent apoptotic cell death, indicating the role of ROS in caspase-8-mediated apoptosis. Taken together, these results indicate that caspase-8 acts upstream of caspase-3, and that the caspase-8-mediated mitochondrial pathway is important in DMPS-induced apoptosis. Our results also suggest that ROS are critical regulators of caspase-8-mediated apoptosis in DMPS-treated leukemia cells.

  12. Menadione 処理した Candida albicans ROS 生産機構の解析

    OpenAIRE

    上野, 将明; 小笠原, 綾子; 渡部, 俊彦; 三上, 健; 松本, 達二; ウエノ, ユキヒロ; オガサワラ, アヤコ; ワタナベ, トシユキ; ミカミ, タケシ; マツモト, タツジ; Yukihiro, UENO; Ayako, OGASAWARA; Toshihiko, WATANABE; Takeshi, MIKAMI; Tatsuji, MATSUMOTO

    2008-01-01

    Menadione shows anti Condida activity by promoting ROS production. However, the ROS production mechanism has not been clarifield. Thus, in this study, we studied thr relation between anti Candida activity of menadione and ROS production. Menadione inhibited the growth of C. albicans BWP17 strain, the growth of C. albicans JM02 strain was not inhibited. ROS production in C. albicans BWP17 strain was enhanced by addition of menadione. The ROS production in C. albicans JM02 strain was also enhan...

  13. Overexpression of guanylate cyclase activating protein 2 in rod photoreceptors in vivo leads to morphological changes at the synaptic ribbon.

    Directory of Open Access Journals (Sweden)

    Natalia López-del Hoyo

    Full Text Available Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout and gain-of-function (transgenic overexpression mouse models of GCAP2. Rod synaptic ribbons in GCAPs-/- mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs-/- background (GCAP2 expression in the absence of endogenous GCAP1 had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of

  14. TiO{sub 2} nanoparticle-induced ROS correlates with modulated immune cell function

    Energy Technology Data Exchange (ETDEWEB)

    Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L., E-mail: chaynes@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2012-12-15

    Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO{sub 2}) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO{sub 2} exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO{sub 2} nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO{sub 2} nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.

  15. High level of chromosomal instability in circulating tumor cells of ROS1-rearranged non-small-cell lung cancer.

    Science.gov (United States)

    Pailler, E; Auger, N; Lindsay, C R; Vielh, P; Islas-Morris-Hernandez, A; Borget, I; Ngo-Camus, M; Planchard, D; Soria, J-C; Besse, B; Farace, F

    2015-07-01

    Genetic aberrations affecting the c-ros oncogene 1 (ROS1) tyrosine kinase gene have been reported in a small subset of patients with non-small-cell lung cancer (NSCLC). We evaluated whether ROS1-chromosomal rearrangements could be detected in circulating tumor cells (CTCs) and examined tumor heterogeneity of CTCs and tumor biopsies in ROS1-rearranged NSCLC patients. Using isolation by size of epithelial tumor cells (ISET) filtration and filter-adapted-fluorescence in situ hybridization (FA-FISH), ROS1 rearrangement was examined in CTCs from four ROS1-rearranged patients treated with the ROS1-inhibitor, crizotinib, and four ROS1-negative patients. ROS1-gene alterations observed in CTCs at baseline from ROS1-rearranged patients were compared with those present in tumor biopsies and in CTCs during crizotinib treatment. Numerical chromosomal instability (CIN) of CTCs was assessed by DNA content quantification and chromosome enumeration. ROS1 rearrangement was detected in the CTCs of all four patients with ROS1 rearrangement previously confirmed by tumor biopsy. In ROS1-rearranged patients, median number of ROS1-rearranged CTCs at baseline was 34.5 per 3 ml blood (range, 24-55). In ROS1-negative patients, median background hybridization of ROS1-rearranged CTCs was 7.5 per 3 ml blood (range, 7-11). Tumor heterogeneity, assessed by ROS1 copy number, was significantly higher in baseline CTCs compared with paired tumor biopsies in the three patients experiencing PR or SD (P < 0.0001). Copy number in ROS1-rearranged CTCs increased significantly in two patients who progressed during crizotinib treatment (P < 0.02). CTCs from ROS1-rearranged patients had a high DNA content and gain of chromosomes, indicating high levels of aneuploidy and numerical CIN. We provide the first proof-of-concept that CTCs can be used for noninvasive and sensitive detection of ROS1 rearrangement in NSCLC patients. CTCs from ROS1-rearranged patients show considerable heterogeneity of ROS1-gene

  16. Transcriptomic profiling of linolenic acid-responsive genes in ROS signalling from RNA-seq data in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Capilla eMata-Pérez

    2015-03-01

    Full Text Available Linolenic acid (Ln released from chloroplast membrane galactolipids is a precursor of the phytohormone jasmonic acid (JA. The involvement of this hormone in different plant biological processes, such as responses to biotic stress conditions, has been extensively studied. However, the role of Ln in the regulation of gene expression during abiotic stress situations mediated by cellular redox changes and/or by oxidative stress processes remains poorly understood. An RNA-seq approach has increased our knowledge of the interplay among Ln, oxidative stress and ROS signalling that mediates abiotic stress conditions. Transcriptome analysis with the aid of RNA-seq in the absence of oxidative stress revealed that the incubation of Arabidopsis thaliana cell suspension cultures (ACSC with Ln resulted in the modulation of 7525 genes, of which 3034 genes had a 2 fold-change, being 533 up- and 2501 down-regulated genes, respectively. Thus, RNA-seq data analysis showed that an important set of these genes were associated with the jasmonic acid biosynthetic pathway including lypoxygenases (LOXs and Allene oxide cyclases (AOCs. In addition, several transcription factor families involved in the response to biotic stress conditions (pathogen attacks or herbivore feeding, such as WRKY, JAZ, MYC and LRR were also modified in response to Ln. However, this study also shows that Ln has the capacity to modulate the expression of genes involved in the response to abiotic stress conditions, particularly those mediated by ROS signalling. In this regard, we were able to identify new targets such as galactinol synthase 1 (GOLS1, methionine sulfoxide reductase (MSR and alkenal reductase in ACSC. It is therefore possible to suggest that, in the absence of any oxidative stress, Ln is capable of modulating new sets of genes involved in the signalling mechanism mediated by additional abiotic stresses (salinity, UV and high light intensity and especially in stresses mediated by ROS.

  17. Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells.

    Science.gov (United States)

    Choudhury, Sreetama; Ghosh, Sayan; Mukherjee, Sudeshna; Gupta, Payal; Bhattacharya, Saurav; Adhikary, Arghya; Chattopadhyay, Sreya

    2016-12-01

    Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols. Copyright

  18. Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells.

    Science.gov (United States)

    Sun, Wen; Wu, Xiaxia; Gao, Hongwei; Yu, Jie; Zhao, Wenwen; Lu, Jin-Jian; Wang, Jinhua; Du, Guanhua; Chen, Xiuping

    2017-07-01

    Necroptosis is a form of programmed necrosis mediated by signaling complexes with receptor-interacting protein 1 (RIP1) and RIP3 kinases as the main mediators. However, the underlying execution pathways of this phenomenon have yet to be elucidated in detail. In this study, a RIP1/RIP3 complex was formed in 2-methoxy-6-acetyl-7-methyljuglone (MAM)-treated HCT116 and HT29 colon cancer cells. With this formation, mitochondrial reactive oxygen species (ROS) levels increased, mitochondrial depolarization occurred, and ATP concentrations decreased. This process was identified as necroptosis. This finding was confirmed by experiments showing that MAM-induced cell death was attenuated by the pharmacological or genetic blockage of necroptosis signaling, including RIP1 inhibitor necrostatin-1s (Nec-1s) and siRNA-mediated gene silencing of RIP1 and RIP3, but was unaffected by caspase inhibitor z-vad-fmk or necrosis inhibitor 2-(1H-Indol-3-yl)-3-pentylamino-maleimide (IM54). Transmission electron microscopy (TEM) analysis further revealed the ultrastructural features of MAM-induced necroptosis. MAM-induced RIP1/RIP3 complex triggered necroptosis through cytosolic calcium (Ca 2+ ) accumulation and sustained c-Jun N-terminal kinase (JNK) activation. Both calcium chelator BAPTA-AM and JNK inhibitor SP600125 could attenuate necroptotic features, including mitochondrial ROS elevation, mitochondrial depolarization, and ATP depletion. 2-thenoyltrifluoroacetone (TTFA), which is a mitochondrial complex II inhibitor, was found to effectively reverse both MAM induced mitochondrial ROS generation and cell death, indicating the complex II was the ROS-producing site. The essential role of mitochondrial ROS was confirmed by the protective effect of overexpression of manganese superoxide dismutase (MnSOD). MAM-induced necroptosis was independent of TNFα, p53, MLKL, and lysosomal membrane permeabilization. In summary, our study demonstrated that RIP1/RIP3 complex-triggered cytosolic calcium

  19. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.

    Science.gov (United States)

    Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo

    2011-08-01

    In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  20. Methylglyoxal Impairs Insulin Secretion of Pancreatic β-Cells through Increased Production of ROS and Mitochondrial Dysfunction Mediated by Upregulation of UCP2 and MAPKs

    Directory of Open Access Journals (Sweden)

    Jinshuang Bo

    2016-01-01

    Full Text Available Methylglyoxal (MG is a highly reactive glucose metabolic intermediate and a major precursor of advanced glycation end products. MG level is elevated in hyperglycemic disorders such as diabetes mellitus. Substantial evidence has shown that MG is involved in the pathogenesis of diabetes and diabetic complications. We investigated the impact of MG on insulin secretion by MIN6 and INS-1 cells and the potential mechanisms of this effect. Our study demonstrates that MG impaired insulin secretion by MIN6 or ISN-1 cells in a dose-dependent manner. It increased reactive oxygen species (ROS production and apoptosis rate in MIN6 or ISN-1 cells and inhibited mitochondrial membrane potential (MMP and ATP production. Furthermore, the expression of UCP2, JNK, and P38 as well as the phosphorylation JNK and P38 was increased by MG. These effects of MG were attenuated by MG scavenger N-acetyl cysteine. Collectively, these data indicate that MG impairs insulin secretion of pancreatic β-cells through increasing ROS production. High levels of ROS can damage β-cells directly via JNK/P38 upregulation and through activation of UCP2 resulting in reduced MMP and ATP production, leading to β-cell dysfunction and impairment of insulin production.

  1. SUSTANCIAS OXÍGENO REACTIVAS (ROS EN SEMEN CONGELADO-DESCONGELADO DE PORCINO

    Directory of Open Access Journals (Sweden)

    Diana Vasco Mora

    2008-06-01

    Full Text Available La generación de ROS fue medida por citometría de flujo en muestras espermáticas descongeladas incubadas sin (niveles basales o con (niveles inducidos un inductor de ROS (1 mM de tert-butyl hidroperóxido por 30 min a 39 °C y 5% de CO2. Además, fueron simultáneamente teñidas con 2’, 7’-diacetato de diclorodihidrofluoresceína, acetil ester (1 mM, CM-H2DCFDA, para estimar la producción de ROS e, ioduro de propidio (1.5 mM para excluir la población espermática muerta. Los eyaculados de nueve verracos fueron congelados con 3% de glicerol y descongelados a ≈1200 ó ≈1800 ºC min-1. La producción de ROS fue medida a los 0, 60, 120, 240 y 360 min en muestras mantenidas a 21-23 °C (no incubadas, o a 39 ºC y 5% de CO2 (incubadas. La velocidad de descongelación no registró influencia (P>0.05 sobre la producción de ROS. La generación de ROS fue constante (P>0.05 en el tiempo en las muestras no incubadas, pero mostró un incremento progresivo en las muestras incubadas, siendo significativa (P<0.05 desde los 120 min en niveles basales ó 60 min de incubación en niveles inducidos. Además, una significativa variabilidad eyaculado/verraco fue evidente, tanto en niveles basales como inducidos en las muestras incubadas. La producción de ROS basal e inducida estuvo significativamente (P<0.01 correlacionada con la calidad espermática. La técnica utilizada es de gran utilidad para evaluar capacidad funcional en espermatozoides congelados-descongelados; sin embargo, se requieren estudios adicionales para estandarizar la misma y establecer umbrales indicativos de pérdida de calidad espermática.

  2. Extração e pré-concentração de compostos orgânicos voláteis por permeação em membrana para análise cromatográfica Extraction and pre-concentration of volatile organic compounds by membrane permeation for chromatography analysis

    Directory of Open Access Journals (Sweden)

    Eduardo Carasek da Rocha

    2000-02-01

    Full Text Available This work discusses sample preparation processes for gas chromatography (GC based on the technique of extraction through membrane permeation (MPE. The MPE technique may be easily coupled to GC via a relatively simple device, which is a module that holds the membrane and is directly connected to the GC column. The possibility of operational errors due to sample handling is substantially reduced in an MPE-GC system because the sample preparation and the chemical analysis are accomplished as a one-step process. The MPE technique is of relatively wide application as it can be used for aqueous samples, solid samples and gaseous samples. Depending on the type of sample the extraction is performed with the membrane in direct contact with the sample or in contact with its headspace. The MPE-GC technique is very useful in trace analysis, due to the time-dependent enrichment of the analyte. A typical application of MPE-GC is the analysis of VOCs present in water that may be accomplished with detection limits at the low ppb (mugL-1 level.

  3. Spatio-temporal Model of Endogenous ROS and Raft-Dependent WNT/Beta-Catenin Signaling Driving Cell Fate Commitment in Human Neural Progenitor Cells

    Science.gov (United States)

    Haack, Fiete; Lemcke, Heiko; Ewald, Roland; Rharass, Tareck; Uhrmacher, Adelinde M.

    2015-01-01

    Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the

  4. Functional characterization of two CITED3 homologs (gcCITED3a and gcCITED3b in the hypoxia-tolerant grass carp, Ctenopharyngodon idellus

    Directory of Open Access Journals (Sweden)

    Yu Richard MK

    2009-11-01

    Full Text Available Abstract Background CITED proteins belong to a family of non-DNA-binding transcriptional co-regulators that are characterized by a conserved ED-rich domain at the C-terminus. This family of genes is involved in the regulation of a variety of transcriptional responses through interactions with the CBP/p300 integrators and various transcription factors. In fish, very little is known about the expression and functions of CITEDs. Results We have characterized two closely related but distinct CITED3 genes, gcCited3a and gcCited3b, from the hypoxia-tolerant grass carp. The deduced gcCITED3a and gcCITED3b proteins share 72% amino acid identity, and are highly similar to the CITED3 proteins of both chicken and Xenopus. Northern blot analysis indicates that the mRNA expression of gcCited3a and gcCited3b is strongly induced by hypoxia in the kidney and liver, respectively. Luciferase reporter assays demonstrated that both gene promoters are activated by gcHIF-1. Further, ChIP assays comparing normal and hypoxic conditions reveal differential in vivo binding of gcHIF-1 to both gene promoters in kidney and liver tissues. HRE-luciferase reporter assays demonstrated that both gcCITED3a and gcCITED3b proteins inhibit gcHIF-1 transcriptional activity, and GST pull-down assays confirmed that both proteins bind specifically to the CH1 domain of the grass carp p300 protein. Conclusion The grass carp gcCITED3a and gcCITED3b genes are differentially expressed and regulated in different fish organs in response to hypoxic stress. This is the first report demonstrating in vivo regulation of two closely-related CITED3 isogenes by HIF-1, as well as CITED3 regulation of HIF-1 transcriptional activity in fish. Overall, our findings suggest that unique molecular mechanisms operate through these two gcCITED3 isoforms that likely play an important regulatory role in the hypoxic response in the grass carp.

  5. At least two Fc Neu5Gc residues of monoclonal antibodies are required for binding to anti-Neu5Gc antibody

    OpenAIRE

    Yu, Chuanfei; Gao, Kai; Zhu, Lei; Wang, Wenbo; Wang, Lan; Zhang, Feng; Liu, Chunyu; Li, Meng; Wormald, Mark R.; Rudd, Pauline M.; Wang, Junzhi

    2016-01-01

    Two non-human glycan epitopes, galactose-Į-1,3-galactose (Į-gal) and Neu5Gc-Į-2-6-galactose (Neu5Gc) have been shown to be antigenic when attached to Fab oligosaccharides of monoclonal antibodies (mAbs) , while Į-gal attached to Fc glycans were not. However, the antigenicity of Neu5Gc on the Fc glycans remains unclear in the context that most mAbs carry only Fc glycans. After studying two clinical mAbs carrying significant amounts of Fc Neu5Gc, we show that their binding activity with anti-Ne...

  6. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis.

    Science.gov (United States)

    Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin

    2018-01-01

    Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.

  7. Biotin increases glucokinase expression via soluble guanylate cyclase/protein kinase G, adenosine triphosphate production and autocrine action of insulin in pancreatic rat islets.

    Science.gov (United States)

    Vilches-Flores, Alonso; Tovar, Armando R; Marin-Hernandez, Alvaro; Rojas-Ochoa, Alberto; Fernandez-Mejia, Cristina

    2010-07-01

    Besides its role as a carboxylase prosthetic group, biotin has important effects on gene expression. However, the molecular mechanisms through which biotin exerts these effects are largely unknown. We previously found that biotin increases pancreatic glucokinase expression. We have now explored the mechanisms underlying this effect. Pancreatic islets from Wistar rats were treated with biotin, in the presence or absence of different types of inhibitors. Glucokinase mRNA and 18s rRNA abundance were determined by real-time PCR. Adenosine triphosphate (ATP) content was analyzed by fluorometry. Biotin treatment increased glucokinase mRNA abundance approximately one fold after 2 h; the effect was sustained up to 24 h. Inhibition of soluble guanylate cyclase or protein kinase G (PKG) signalling suppressed biotin-induced glucokinase expression. The cascade of events downstream of PKG in biotin-mediated gene transcription is not known. We found that inhibition of insulin secretion with diazoxide or nifedipine prevented biotin-stimulated glucokinase mRNA increase. Biotin treatment increased islet ATP content (control: 4.68+/-0.28; biotin treated: 6.62+/-0.26 pmol/islet) at 30 min. Inhibition of PKG activity suppressed the effects of biotin on ATP content. Insulin antibodies or inhibitors of phosphoinositol-3-kinase/Akt insulin signalling pathway prevented biotin-induced glucokinase expression. The nucleotide 8-Br-cGMP mimicked the biotin effects. We propose that the induction of pancreatic glucokinase mRNA by biotin involves guanylate cyclase and PKG activation, which leads to an increase in ATP content. This induces insulin secretion via ATP-sensitive potassium channels. Autocrine insulin, in turn, activates phosphoinositol-3-kinase/Akt signalling. Our results offer new insights into the pathways that participate in biotin-mediated gene expression. (c) 2010 Elsevier Inc. All rights reserved.

  8. The glycosylation and characterization of the candidate Gc macrophage activating factor

    DEFF Research Database (Denmark)

    Ravnsborg, Tina; Olsen, Dorthe T; Thysen, Anna Hammerich

    2010-01-01

    The vitamin D binding protein, Gc globulin, has in recent years received some attention for its role as precursor for the extremely potent macrophage activating factor (GcMAF). An O-linked trisaccharide has been allocated to the threonine residue at position 420 in two of the three most common...... isoforms of Gc globulin (Gc1s and Gc1f). A substitution for a lysine residue at position 420 in Gc2 prevents this isoform from being glycosylated at that position. It has been suggested that Gc globulin subjected sequentially to sialidase and galactosidase treatment generates GcMAF in the form of Gc...... globulin with only a single GalNAc attached to T420. In this study we confirm the location of a linear trisaccharide on T420. Furthermore, we provide the first structural evidence of the generation of the proposed GcMAF by use of glycosidase treatment and mass spectrometry. Additionally the generated GcMAF...

  9. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells.

    Science.gov (United States)

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2017-03-01

    Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels.

  10. Involvement of protein kinase C in the mechanism of action of Escherichia coli heat-stable enterotoxin (STa) in a human colonic carcinoma cell line, COLO-205

    International Nuclear Information System (INIS)

    Gupta, Dyuti Datta; Saha, Subhrajit; Chakrabarti, Manoj K.

    2005-01-01

    The present study was undertaken to determine the involvement of calcium-protein kinase C pathway in the mechanism of action of Escherichia coli heat stable enterotoxin (STa) apart from STa-induced activation of guanylate cyclase in human colonic carcinoma cell line COLO-205, which was used as a model cultured cell line to study the mechanism of action of E. coli STa. In response to E. coli STa, protein kinase C (PKC) activity was increased in a time-dependent manner with its physical translocation from cytosol to membrane. Inhibition of the PKC activity in membrane fraction and inhibition of its physical translocation in response to IP 3 -mediated calcium release inhibitor dantrolene suggested the involvement of intracellular store depletion in the regulation of PKC activity. Among different PKC isoforms, predominant involvement of calcium-dependent protein kinase C (PKCα) was specified using isotype-specific pseudosubstrate, which showed pronounce enzyme activity. Inhibition of enzyme activity by PKCα-specific inhibitor Goe6976 and immunoblott study employing isotype-specific antibody further demonstrated the involvement of calcium-dependent isoform of PKC in the mechanism of action of E. coli STa. Moreover, inhibition of guanylate cyclase activity by PKCα-specific inhibitor Goe6976 suggested the involvement of PKCα in the regulation of guanylate cyclase activity

  11. Elucidating hormonal/ROS networks during seed germination: insights and perspectives

    DEFF Research Database (Denmark)

    Diaz-Vivancos, Pedro; Barba Espin, Gregorio; Hernández, José Antonio

    2013-01-01

    ” technologies together with physiological and biochemical approaches have revealed that seed germination is a very complex process that depends on multiple biochemical and molecular variables. The pivotal role of phytohormones in promoting germination now appears to be interdependent with ROS metabolism......While authors have traditionally emphasized the deleterious effects of reactive oxygen species (ROS) on seed biology, their role as signaling molecules during seed dormancy alleviation and germination is now the focus of many studies around the world. Over the last few years, studies using “-omics......, involving mitogen-activated protein kinase cascade activation, gene expression and post-translational protein modifications. This review is, thus, an attempt to summarize the new discoveries involving ROS and seed germination. The study of these interactions may supply markers of seed quality that might...

  12. Seleno-short-chain chitosan induces apoptosis in human non-small-cell lung cancer A549 cells through ROS-mediated mitochondrial pathway.

    Science.gov (United States)

    Zhao, Yana; Zhang, Shaojing; Wang, Pengfei; Fu, Shengnan; Wu, Di; Liu, Anjun

    2017-12-01

    Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-L-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.

  13. Modification of a Hewlett-Packard 5971/5972 MSD to accept a direct insertion capillary membrane probe

    Science.gov (United States)

    Bauer, Scott; Griffin, Timothy; Bauer, Jan

    1996-10-01

    A method for conversion of a Hewlett-Packard 5971 or 5972 MSD to allow the use of direct insertion probes (DIPs) is presented. All instructions for the electrical and mechanical modifications are explained in detail. Blueprint drawings of all necessary modification parts are included with the text. A comprehensive summary of the performance of the modified HP 5972 MSD using direct insertion capillary membrane probes is also presented. The HP 5972 series mass spectrometers are the most popular GC/MS systems in use world-wide. Occasionally, one of these spectrometers is sitting idle in a laboratory where it might be applied to experiments outside its original GC/MS purpose. Unfortunately, the HP MSD is not easily converted to alternative use because the source heating capability is supplied by the GC transfer line. Without source heat the spectrometer does not function properly. The GC transfer line temperature control is furnished by the gas chromatograph rather than the mass spectrometer data system. Therefore, removal of the gas chromatograph and GC transfer line results in the loss of heating capability for the ion source. This problem has prevented most MSD users from applying this inexpensive, yet highly functional, mass spectrometer to applications outside GC/MS. There seems to be a great deal of interest in the utilization of the HP MSD in applications that are precluded by the original instrument design. This paper is written as an instruction manual for users who wish to enable the use of DIPs in the MSD. A table is included that demonstrates the performance of a modified HP 5972 MSD in applications involving the direct analysis of volatile organic compounds in water using membrane introduction mass spectrometry (MIMS).

  14. A pedagogia do Rosário, conteúdo educativo da festa: estudo do potencial pedagógico contido na festa de Nossa Senhora do Rosário

    OpenAIRE

    Maria das Merces Bonfim Ambrosio

    1989-01-01

    Elaborado como dissertação de Mestrado em educação, "A Pedagogia do Rosário-caráter educativo da Festa", objetivou desvendar os conteúdos educativos presentes na Festa de Nossa Senhora do Rosário, em Sete Lagoas-MG. Através da participação nesses eventos, nos anos de 1981 e 1982 e de entrevistas com membros das guardas de Nossa Senhora do rosário naquela cidade- além de leitura orientada-foi possível traçar as linhas dessa pedagogia, presentes neste trabalho. Trata-se de uma manifestação cult...

  15. The preparation of nucleotides uniformly labelled with carbon-14 by biosynthetic methods. Isolation of adenylic, uridylic, cytidylic,and guanylic acids, from the alkaline hydrolysate of escherichia coli RNA

    International Nuclear Information System (INIS)

    Garcia Pineda, M. D.; Pacheco Lopez, J.

    1978-01-01

    A method is described for the preparation and analysis of adenylic, uri dilic, cytidi- 11c and guanylic acids, labelled with 14 C . Escherichia coli cells have been labelled by growing them in a medi dia containing glucose-14 C as their only source of carbon. RNA is isolated from the cells, and after hydrolysis of the molecule the resulting nucleotides are separated by gel filtration and exchange chromatography. Chemical and radiochemical purity of the Isolated nucleotides is determined, and also its specific radioactivity. (Author) 30 refs

  16. Reactive oxygen species (ROS – a family of fate deciding molecules pivotal in constructive inflammation and wound healing

    Directory of Open Access Journals (Sweden)

    N Bryan

    2012-09-01

    Full Text Available Wound healing requires a fine balance between the positive and deleterious effects of reactive oxygen species (ROS; a group of extremely potent molecules, rate limiting in successful tissue regeneration. A balanced ROS response will debride and disinfect a tissue and stimulate healthy tissue turnover; suppressed ROS will result in infection and an elevation in ROS will destroy otherwise healthy stromal tissue. Understanding and anticipating the ROS niche within a tissue will greatly enhance the potential to exogenously augment and manipulate healing.Tissue engineering solutions to augment successful healing and remodelling of wounded or diseased tissue rely on a controlled balance between the constructive and destructive capacity of the leukocyte secretome, including ROS.This review comprehensively considers leukocyte derived ROS in tissue repair with particular interest in surgical intervention with inclusion of a biomaterial. The article considers ROS fundamental chemistry, formation, stimulation and clearance before applying this to discuss the implications of ROS in healing tissue with and without a biomaterial. We also systematically discuss ROS in leukocyte signalling and compare and contrast experimental means of measuring ROS.

  17. ROS evaluation for a series of CNTs and their derivatives using an ESR method with DMPO

    International Nuclear Information System (INIS)

    Tsuruoka, S; Noguchi, T; Endo, M; Tristan, F; Terrones, M; Takeuchi, K; Koyama, K; Usui, Y; Matsumoto, H; Saito, N; Porter, D W; Castranova, V

    2013-01-01

    Carbon nanotubes (CNTs) are important materials in advanced industries. It is a concern that pulmonary exposure to CNTs may induce carcinogenic responses. It has been recently reported that CNTs scavenge ROS though non-carbon fibers generate ROS. A comprehensive evaluation of ROS scavenging using various kinds of CNTs has not been demonstrated well. The present work specifically investigates ROS scavenging capabilities with a series of CNTs and their derivatives that were physically treated, and with the number of commercially available CNTs. CNT concentrations were controlled at 0.2 through 0.6 wt%. The ROS scavenging rate was measured by ESR with DMPO. Interestingly, the ROS scavenging rate was not only influenced by physical treatments, but was also dependent on individual manufacturing methods. Ratio of CNTs to DMPO/ hydrogen peroxide is a key parameter to obtain appropriate ROS quenching results for comparison of CNTs. The present results suggest that dangling bonds are not a sole factor for scavenging, and electron transfer on the CNT surface is not clearly determined to be the sole mechanism to explain ROS scavenging.

  18. ROS evaluation for a series of CNTs and their derivatives using an ESR method with DMPO.

    Science.gov (United States)

    Tsuruoka, S; Takeuchi, K; Koyama, K; Noguchi, T; Endo, M; Tristan, F; Terrones, M; Matsumoto, H; Saito, N; Usui, Y; Porter, D W; Castranova, V

    Carbon nanotubes (CNTs) are important materials in advanced industries. It is a concern that pulmonary exposure to CNTs may induce carcinogenic responses. It has been recently reported that CNTs scavenge ROS though non-carbon fibers generate ROS. A comprehensive evaluation of ROS scavenging using various kinds of CNTs has not been demonstrated well. The present work specifically investigates ROS scavenging capabilities with a series of CNTs and their derivatives that were physically treated, and with the number of commercially available CNTs. CNT concentrations were controlled at 0.2 through 0.6 wt%. The ROS scavenging rate was measured by ESR with DMPO. Interestingly, the ROS scavenging rate was not only influenced by physical treatments, but was also dependent on individual manufacturing methods. Ratio of CNTs to DMPO/ hydrogen peroxide is a key parameter to obtain appropriate ROS quenching results for comparison of CNTs. The present results suggest that dangling bonds are not a sole factor for scavenging, and electron transfer on the CNT surface is not clearly determined to be the sole mechanism to explain ROS scavenging.

  19. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.

    Directory of Open Access Journals (Sweden)

    Tatini Rakshit

    Full Text Available Rhodopsin forms nanoscale domains (i.e., nanodomains in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organization of rhodopsin from mammalian species. Rod outer segment disc membranes prepared from the cold-blooded frog Xenopus laevis were investigated by atomic force microscopy to visualize the organization of rhodopsin in the absence of lipid phase separation effects. Atomic force microscopy revealed that rhodopsin nanodomains form similarly as that observed previously in mammalian membranes. Formation of nanodomains in ROS disc membranes is independent of lipid phase separation and conserved among vertebrates.

  20. A Prediction Model for ROS1-Rearranged Lung Adenocarcinomas based on Histologic Features

    OpenAIRE

    Zhou, Jianya; Zhao, Jing; Zheng, Jing; Kong, Mei; Sun, Ke; Wang, Bo; Chen, Xi; Ding, Wei; Zhou, Jianying

    2016-01-01

    Aims To identify the clinical and histological characteristics of ROS1-rearranged non-small-cell lung carcinomas (NSCLCs) and build a prediction model to prescreen suitable patients for molecular testing. Methods and Results We identified 27 cases of ROS1-rearranged lung adenocarcinomas in 1165 patients with NSCLCs confirmed by real-time PCR and FISH and performed univariate and multivariate analyses to identify predictive factors associated with ROS1 rearrangement and finally developed predi...

  1. The glycosylation and characterization of the candidate Gc macrophage activating factor.

    Science.gov (United States)

    Ravnsborg, Tina; Olsen, Dorthe T; Thysen, Anna Hammerich; Christiansen, Maja; Houen, Gunnar; Højrup, Peter

    2010-04-01

    The vitamin D binding protein, Gc globulin, has in recent years received some attention for its role as precursor for the extremely potent macrophage activating factor (GcMAF). An O-linked trisaccharide has been allocated to the threonine residue at position 420 in two of the three most common isoforms of Gc globulin (Gc1s and Gc1f). A substitution for a lysine residue at position 420 in Gc2 prevents this isoform from being glycosylated at that position. It has been suggested that Gc globulin subjected sequentially to sialidase and galactosidase treatment generates GcMAF in the form of Gc globulin with only a single GalNAc attached to T420. In this study we confirm the location of a linear trisaccharide on T420. Furthermore, we provide the first structural evidence of the generation of the proposed GcMAF by use of glycosidase treatment and mass spectrometry. Additionally the generated GcMAF candidate was tested for its effect on cytokine release from macrophages in human whole blood. Copyright 2010 Elsevier B.V. All rights reserved.

  2. ROS accumulation by PEITC selectively kills ovarian cancer cells via UPR-mediated apoptosis

    Directory of Open Access Journals (Sweden)

    Yoon-hee eHong

    2015-07-01

    Full Text Available Unfolded protein response (UPR is crucial for both survival and death of mammalian cells, which is regulated by reactive oxygen species (ROS and nutrient depletion. In this study, we demonstrated the effect of ROS-accumulation, induced by β-phenethyl isothiocyanate (PEITC, on UPR mediated apoptosis in ovarian cancer cells. We used ovarian cancer cell lines, PA-1 and SKOV-3, with different p53 status (wild- and null- type, respectively. PEITC caused increased ROS-accumulation and inhibited proliferation selectively in ovarian cancer cells, and glutathione (GSH depletion in SKOV-3. However, PEITC did not cause any effect in normal ovarian epithelial cells and peripheral blood mononuclear cells. After 48 h of PEITC treatment (5 µM, apoptotic cell death was shown to increase significantly in the ovarian cancer cells and not in the normal cells. The key regulator of UPR-mediated apoptosis, CHOP/GADD153 and ER resident chaperone BiP/GRP78 were parallely up-regulated with activation of two major sensors of the UPR (PERK and ATF-6 in PA-1; PERK, and IRE1α in SKOV-3 in response to ROS accumulation induced by PEITC (5 µM. ROS scavenger, N-acetyl-cysteine (NAC, attenuated the effect of PEITC on UPR signatures (P-PERK, IRE1α, CHOP/GADD153, and BiP/GRP78, suggesting the involvement of ROS in UPR-mediated apoptosis. Altogether, PEITC induces UPR-mediated apoptosis in ovarian cancer cells via accumulation of ROS in a cancer-specific manner.

  3. Antibacterial activity of polyphenolic fraction of Kombucha against Vibrio cholerae: targeting cell membrane.

    Science.gov (United States)

    Bhattacharya, D; Ghosh, D; Bhattacharya, S; Sarkar, S; Karmakar, P; Koley, H; Gachhui, R

    2018-02-01

    The present study was undertaken to determine the mechanism of antibacterial activity of a polyphenolic fraction, composed of mainly catechin and isorhamnetin, previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against the enteropathogen Vibrio cholerae N16961. Bacterial growth was found to be seriously impaired by the polyphenolic fraction in a dose-dependent manner. Scanning Electron Microscopy demonstrated morphological alterations in bacterial cells when exposed to the polyphenolic fraction in a concentration-dependent manner. Permeabilization assays confirmed that the fraction disrupted bacterial membrane integrity in both time- and dose-dependent manners, which were proportional to the production of intracellular reactive oxygen species (ROS). Furthermore, each of the polyphenols catechin and isorhamnetin showed the ability to permeate bacterial cell membranes by generating oxidative stress, thereby suggesting their role in the antibacterial potential of Kombucha. Thus, the basic mechanism of antibacterial activity of the Kombucha polyphenolic fraction against V. cholerae involved bacterial membrane permeabilization and morphological changes, which might be due to the generation of intracellular ROS. To the best of our knowledge, this is the first report on the investigation of antibacterial mechanism of Kombucha, which is mostly attributed to its polyphenolic content. The emergence of multidrug-resistant Vibrio cholerae strains has hindered an efficient anti-Vibrio therapy. This study has demonstrated the membrane damage-mediated antibacterial mechanism of Kombucha, a popular fermented beverage of sugared tea, which is mostly attributed to its polyphenolic content. This study also implies the exploitation of Kombucha as a potential new source of bioactive polyphenols against V. cholerae. © 2017 The Society for Applied Microbiology.

  4. A Monolithically-Integrated μGC Chemical Sensor System

    Directory of Open Access Journals (Sweden)

    Davor Copic

    2011-06-01

    Full Text Available Gas chromatography (GC is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA, breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (μGC system is essential for such applications. We describe the design, fabrication and packaging of mGC on monolithically-integrated Si dies, comprised of a preconcentrator (PC, μGC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid μGC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated μGC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%.

  5. Gc globulin as a diagnostic and prognostic marker in horses

    DEFF Research Database (Denmark)

    Pihl, Tina Holberg

    can prevent development of shock and thereby increase survival chances. The in vivo toxicity of Gc-globulin infusion is currently being investigated in horses and other species. Gc-globulin has been demonstrated in horse plasma and its structure closely resembles that of human Gc-globulin. Gc......-globulin concentrations in horses under clinical conditions have never previously been investigated. The Ph.D. project focuses on Gc-globulin as a prognostic marker in horses with acute abdominal pain....

  6. River recreation experience opportunities in two recreation opportunity spectrum (ROS) classes

    Science.gov (United States)

    Duane C. Wollmuth; John H. Schomaker; Lawrence C. Merriam

    1985-01-01

    The Recreation Opportunity Spectrum (ROS) system is used by the USDA Forest Service and USDI Bureau of Land Management for inventorying, classifying, and managing wildlands for recreation. Different ROS classes from the Colorado and Arkansas Rivers in Colorado were compared, using visitor survey data collected in 1979 and 1981, to see if the different classes offered...

  7. Condurango (Gonolobus condurango Extract Activates Fas Receptor and Depolarizes Mitochondrial Membrane Potential to Induce ROS-dependent Apoptosis in Cancer Cells in vitro CE-treatment on HeLa: a ROS-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Kausik Bishayee

    2015-09-01

    Full Text Available Objectives: Condurango (Gonolobus condurango extract is used by complementary and alternative medicine (CAM practitioners as a traditional medicine, including homeopathy, mainly for the treatment of syphilis. Condurango bark extract is also known to reduce tumor volume, but the underlying molecular mechanisms still remain unclear. Methods: Using a cervical cancer cell line (HeLa as our model, the molecular events behind condurango extract’s (CE’s anticancer effect were investigated by using flow cytometry, immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR. Other included cell types were prostate cancer cells (PC3, transformed liver cells (WRL-68, and peripheral blood mononuclear cells (PBMCs. Results: Condurango extract (CE was found to be cytotoxic against target cells, and this was significantly deactivated in the presence of N-acetyl cysteine (NAC, a scavenger of reactive oxygen species (ROS, suggesting that its action could be mediated through ROS generation. CE caused an increase in the HeLa cell population containing deoxyribonucleic acid (DNA damage at the G zero/Growth 1 (G0/G1 stage. Further, CE increased the tumor necrosis factor alpha (TNF-α and the fas receptor (FasR levels both at the ribonucleic acid (RNA and the protein levels, indicating that CE might have a cytotoxic mechanism of action. CE also triggered a sharp decrease in the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB both at the RNA and the protein levels, a possible route to attenuation of B-cell lymphoma 2 (Bcl-2, and caused an opening of the mitochondrial membrane’s permeability transition (MPT pores, thus enhancing caspase activities. Conclusion: Overall, our results suggest possible pathways for CE mediated cytotoxicity in model cancer cells.

  8. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    International Nuclear Information System (INIS)

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun; Chun, ChangJu; Im, Young Jun

    2014-01-01

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering

  9. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor.

    Science.gov (United States)

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J K; Schubert, Dirk W; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.

  10. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Junsen; Yang, Huiseon [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Eom, Soo Hyun [School of Life Sciences, Steitz Center for Structural Biology, and Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Chun, ChangJu, E-mail: cchun1130@jnu.ac.kr [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Im, Young Jun, E-mail: imyoungjun@jnu.ac.kr [College of Pharmacy, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.

  11. Molecular analysis of intact preen waxes of Calidris Canutus (Aves: Scolopacidae) by GC/MS and GC/MS/MS

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Dekker, M.H.A.; Piersma, T.

    2000-01-01

    The intact preen wax esters of the red knot Calidris canutus were studied with gas chromatography/mass spectrometry (GC/MS) and GC/MS/MS. In this latter technique, transitions from the molecular ion to fragment ions representing the fatty acid moiety of the wax esters were measured, providing

  12. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.

    Science.gov (United States)

    Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V

    2016-12-01

    Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Butachlor induced dissipation of mitochondrial membrane potential, oxidative DNA damage and necrosis in human peripheral blood mononuclear cells

    International Nuclear Information System (INIS)

    Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2012-01-01

    Highlights: ► Butachlor exhibited strong binding affinity with DNA and produced 8-oxodG adducts. ► Butachlor induced DNA strand breaks and micronuclei formation in PBMN cells. ► Butachlor induced ROS and dissipation of mitochondrial membrane potential in cells. ► Butachlor resulted in cell cycle arrest and eventually caused cellular necrosis. -- Abstract: Butachlor is a systemic herbicide widely applied on rice, tea, wheat, beans and other crops; however, it concurrently exerts toxic effects on beneficial organisms like earthworms, aquatic invertebrates and other non-target animals including humans. Owing to the associated risk to humans, this chloroacetanilide class of herbicide was investigated with the aim to assess its potential for the (i) interaction with DNA, (ii) mitochondria membrane damage and DNA strand breaks and (iii) cell cycle arrest and necrosis in butachlor treated human peripheral blood mononuclear (PBMN) cells. Fluorescence quenching data revealed the binding constant (Ka = 1.2 × 10 4 M −1 ) and binding capacity (n = 1.02) of butachlor with ctDNA. The oxidative potential of butachlor was ascertained based on its capacity of inducing reactive oxygen species (ROS) and substantial amounts of promutagenic 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) adducts in DNA. Also, the discernible butachlor dose-dependent reduction in fluorescence intensity of a cationic dye rhodamine (Rh-123) and increased fluorescence intensity of 2′,7′-dichlorodihydro fluorescein diacetate (DCFH-DA) in treated cells signifies decreased mitochondrial membrane potential (ΔΨm) due to intracellular ROS generation. The comet data revealed significantly greater Olive tail moment (OTM) values in butachlor treated PBMN cells vs untreated and DMSO controls. Treatment of cultured PBMN cells for 24 h resulted in significantly increased number of binucleated micronucleated (BNMN) cells with a dose dependent reduction in the nuclear division index (NDI). The flow

  14. The Opening of ATP-Sensitive K+ Channels Protects H9c2 Cardiac Cells Against the High Glucose-Induced Injury and Inflammation by Inhibiting the ROS-TLR4-Necroptosis Pathway

    Directory of Open Access Journals (Sweden)

    Weijie Liang

    2017-02-01

    Full Text Available Background/Aims: Hyperglycemia activates multiple signaling molecules, including reactive oxygen species (ROS, toll-like receptor 4 (TLR4, receptor-interacting protein 3 (RIP3, a kinase promoting necroptosis, which mediate hyperglycemia-induced cardiac injury. This study explored whether inhibition of ROS-TLR4-necroptosis pathway contributed to the protection of ATP-sensitive K+ (KATP channel opening against high glucose-induced cardiac injury and inflammation. Methods: H9c2 cardiac cells were treated with 35 mM glucose (HG to establish a model of HG-induced insults. The expression of RIP3 and TLR4 were tested by western blot. Generation of ROS, cell viability, mitochondrial membrane potential (MMP and secretion of inflammatory cytokines were measured as injury indexes. Results: HG increased the expression of TLR4 and RIP3. Necrostatin-1 (Nec-1, an inhibitor of necroptosis or TAK-242 (an inhibitor of TLR4 co-treatment attenuated HG-induced up-regulation of RIP3. Diazoxide (DZ, a mitochondrial KATP channel opener or pinacidil (Pin, a non-selective KATP channel opener or N-acetyl-L-cysteine (NAC, a ROS scavenger pre-treatment blocked the up-regulation of TLR4 and RIP3. Furthermore, pre-treatment with DZ or Pin or NAC, or co-treatment with TAK-242 or Nec-1 attenuated HG-induced a decrease in cell viability, and increases in ROS generation, MMP loss and inflammatory cytokines secretion. However, 5-hydroxy decanoic acid (5-HD, a mitochondrial KATP channel blocker or glibenclamide (Gli, a non-selective KATP channel blocker pre-treatment did not aggravate HG-induced injury and inflammation. Conclusion: KATP channel opening protects H9c2 cells against HG-induced injury and inflammation by inhibiting ROS-TLR4-necroptosis pathway.

  15. Assessment of a Standardized ROS Production Profile in Humans by Electron Paramagnetic Resonance

    Directory of Open Access Journals (Sweden)

    Simona Mrakic-Sposta

    2012-01-01

    Full Text Available Despite the growing interest in the role of reactive oxygen species (ROS in health and disease, reliable quantitative noninvasive methods for the assessment of oxidative stress in humans are still lacking. EPR technique, coupled to a specific spin probe (CMH: 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine is here presented as the method of choice to gain a direct measurement of ROS in biological fluids and tissues. The study aimed at demonstrating that, differently from currently available “a posteriori” assays of ROS-induced damage by means of biomolecules (e.g., proteins and lipids spin-trapping EPR provides direct evidence of the “instantaneous” presence of radical species in the sample and, as signal areas are proportional to the number of excited electron spins, lead to absolute concentration levels. Using a recently developed bench top continuous wave system (e-scan EPR scanner, Bruker dealing with very low ROS concentration levels in small (50 μL samples, we successfully monitored rapid ROS production changes in peripheral blood of athletes after controlled exercise and sedentary subjects after antioxidant supplementation. The correlation between EPR results and data obtained by various enzymatic assays (e.g., protein carbonyls and thiobarbituric acid reactive substances was determined too. Synthetically, our method allows reliable, quick, noninvasive quantitative determination of ROS in human peripheral blood.

  16. Unravelling how plants benefit from ROS and NO reactions, while resisting oxidative stress.

    Science.gov (United States)

    Considine, Michael J; Sandalio, Luisa Maria; Foyer, Christine Helen

    2015-09-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as nitric oxide (NO), play crucial roles in the signal transduction pathways that regulate plant growth, development and defence responses, providing a nexus of reduction/oxidation (redox) control that impacts on nearly every aspect of plant biology. Here we summarize current knowledge and concepts that lay the foundations of a new vision for ROS/RNS functions – particularly through signalling hubs – for the next decade. Plants have mastered the art of redox control using ROS and RNS as secondary messengers to regulate a diverse range of protein functions through redox-based, post-translational modifications that act as regulators of molecular master-switches. Much current focus concerns the impact of this regulation on local and systemic signalling pathways, as well as understanding how such reactive molecules can be effectively used in the control of plant growth and stress responses. The spectre of oxidative stress still overshadows much of our current philosophy and understanding of ROS and RNS functions. While many questions remain to be addressed – for example regarding inter-organellar regulation and communication, the control of hypoxia and how ROS/RNS signalling is used in plant cells, not only to trigger acclimation responses but also to create molecular memories of stress – it is clear that ROS and RNS function as vital signals of living cells.

  17. Calf Spleen Extractive Injection (CSEI, a small peptides enriched extraction, induces human hepatocellular carcinoma cell apoptosis via ROS/MAPKs dependent mitochondrial pathway

    Directory of Open Access Journals (Sweden)

    Dongxu Jia

    2016-10-01

    Full Text Available Calf Spleen Extractive Injection (CSEI, a small peptides enriched extraction, performs immunomodulatory activity on cancer patients suffering from radiotherapy or chemotherapy. The present study aims to investigate the anti-hepatocellular carcinoma effects of CSEI in cells and tumor-xenografted mouse models. In HepG2 and SMMC-7721 cells, CSEI reduced cell viability, enhanced apoptosis rate, caused reactive oxygen species (ROS accumulation, inhibited migration ability, and induced caspases cascade and mitochondrial membrane potential dissipation. CSEI significantly inhibited HepG2-xenografted tumor growth in nude mice. In cell and animal experiments, CSEI increased the activations of pro-apoptotic proteins including caspase 8, caspase 9 and caspase 3; meanwhile, it suppressed the expressions of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2 and anti-oxidation proteins, such as nuclear factor-erythroid 2 related factor 2 (Nrf2 and catalase (CAT. The enhanced phosphorylation of P38 and c-JunN-terminalkinase (JNK, and decreased phosphorylation of extra cellular signal-regulated protein kinase (ERKs were observed in CSEI-treated cells and tumor tissues. CSEI-induced cell viability reduction was significantly attenuated by N-Acetyl-l-cysteine (a ROS inhibitor pretreatment. All data demonstrated that the upregulated oxidative stress status and the altered mitogen-activated protein kinases (MAPKs phosphorylation contributed to CSEI-driven mitochondrial dysfunction. Taken together, CSEI exactly induced apoptosis in human hepatocellular carcinoma cells via ROS/MAPKs dependent mitochondrial pathway.

  18. Novel derivative of aminobenzenesulfonamide (3c) induces apoptosis in colorectal cancer cells through ROS generation and inhibits cell migration.

    Science.gov (United States)

    Al-Khayal, Khayal; Alafeefy, Ahmed; Vaali-Mohammed, Mansoor-Ali; Mahmood, Amer; Zubaidi, Ahmed; Al-Obeed, Omar; Khan, Zahid; Abdulla, Maha; Ahmad, Rehan

    2017-01-03

    Colorectal cancer (CRC) is the 3 rd most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown. 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29. Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and -6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c

  19. Artemisinin induces ROS-mediated caspase3 activation in ASTC-a-1 cells

    Science.gov (United States)

    Xiao, Feng-Lian; Chen, Tong-Sheng; Qu, Jun-Le; Liu, Cheng-Yi

    2010-02-01

    Artemisinin (ART), an antimalarial phytochemical from the sweet wormwood plant or a naturally occurring component of Artemisia annua, has been shown a potential anticancer activity by apoptotic pathways. In our report, cell counting kit (CCK-8) assay showed that treatment of human lung adenocarcinoma (ASTC-a-1) cells with ART effectively increase cell death by inducing apoptosis in a time- and dose-dependent fashion. Hoechst 33258 staining was used to detect apoptosis as well. Reactive oxygen species (ROS) generation was observed in cells exposed to ART at concentrations of 400 μM for 48 h. N-acetyl-L-cysteine (NAC), an oxygen radical scavenger, suppressed the rate of ROS generation and inhibited the ART-induced apoptosis. Moreover, AFC assay (Fluorometric assay for Caspase3 activity) showed that ROS was involved in ART-induced caspase3 acitvation. Taken together, our data indicate that ART induces ROS-mediated caspase3 activation in a time-and dose-dependent way in ASCT-a-1 cells.

  20. ROS Are Required for Mouse Spermatogonial Stem Cell Self-Renewal

    OpenAIRE

    Morimoto, Hiroko; Iwata, Kazumi; Ogonuki, Narumi; Inoue, Kimiko; Ogura, Atsuo; Kanatsu-Shinohara, Mito; Morimoto, Takeshi; Yabe-Nishimura, Chihiro; Shinohara, Takashi

    2013-01-01

    Reactive oxygen species (ROS) generation is implicated in stem cell self-renewal in several tissues but is thought to be detrimental for spermatogenesis as well as spermatogonial stem cells (SSCs). Using cultured SSCs, we show that ROS are generated via the AKT and MEK signaling pathways under conditions where the growth factors glial cell line-derived neurotrophic factor and fibroblast growth factor 2 drive SSC self-renewal and, instead, stimulate self-renewal at physiological levels. SSCs d...

  1. ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies.

    Science.gov (United States)

    Ni, Yan; Su, Mingming; Qiu, Yunping; Jia, Wei; Du, Xiuxia

    2016-09-06

    ADAP-GC is an automated computational pipeline for untargeted, GC/MS-based metabolomics studies. It takes raw mass spectrometry data as input and carries out a sequence of data processing steps including construction of extracted ion chromatograms, detection of chromatographic peak features, deconvolution of coeluting compounds, and alignment of compounds across samples. Despite the increased accuracy from the original version to version 2.0 in terms of extracting metabolite information for identification and quantitation, ADAP-GC 2.0 requires appropriate specification of a number of parameters and has difficulty in extracting information on compounds that are in low concentration. To overcome these two limitations, ADAP-GC 3.0 was developed to improve both the robustness and sensitivity of compound detection. In this paper, we report how these goals were achieved and compare ADAP-GC 3.0 against three other software tools including ChromaTOF, AnalyzerPro, and AMDIS that are widely used in the metabolomics community.

  2. ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies

    Science.gov (United States)

    Ni, Yan; Su, Mingming; Qiu, Yunping; Jia, Wei

    2017-01-01

    ADAP-GC is an automated computational pipeline for untargeted, GC-MS-based metabolomics studies. It takes raw mass spectrometry data as input and carries out a sequence of data processing steps including construction of extracted ion chromatograms, detection of chromatographic peak features, deconvolution of co-eluting compounds, and alignment of compounds across samples. Despite the increased accuracy from the original version to version 2.0 in terms of extracting metabolite information for identification and quantitation, ADAP-GC 2.0 requires appropriate specification of a number of parameters and has difficulty in extracting information of compounds that are in low concentration. To overcome these two limitations, ADAP-GC 3.0 was developed to improve both the robustness and sensitivity of compound detection. In this paper, we report how these goals were achieved and compare ADAP-GC 3.0 against three other software tools including ChromaTOF, AnalyzerPro, and AMDIS that are widely used in the metabolomics community. PMID:27461032

  3. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Diabetes mellitus and fine particulate matter from diesel exhaust (DEP are both important contributors to the development of cardiovascular disease (CVD. Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml, and/or high glucose (HG, 25.5 mM. Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS, time-to-90% shortening (TPS(90, time-to-90% relengthening (TR(90 and maximal velocities of shortening/relengthening (±dL/dt, using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR(90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated

  4. The Marine Fungal Metabolite, Dicitrinone B, Induces A375 Cell Apoptosis through the ROS-Related Caspase Pathway

    Directory of Open Access Journals (Sweden)

    Li Chen

    2014-04-01

    Full Text Available Dicitrinone B, a rare carbon-bridged citrinin dimer, was isolated from the marine-derived fungus, Penicillium citrinum. It was reported to have antitumor effects on tumor cells previously; however, the details of the mechanism remain unclear. In this study, we found that dicitrinone B inhibited the proliferation of multiple tumor types. Among them, the human malignant melanoma cell, A375, was confirmed to be the most sensitive. Morphologic evaluation, cell cycle arrest and apoptosis rate analysis results showed that dicitrinone B significantly induced A375 cell apoptosis. Subsequent observation of reactive oxygen species (ROS accumulation and mitochondrial membrane potential (MMP reduction revealed that the apoptosis induced by dicitrinone B may be triggered by over-producing ROS. Further studies indicated that the apoptosis was associated with both intrinsic and extrinsic apoptosis pathways under the regulation of Bcl-2 family proteins. Caspase-9, caspase-8 and caspase-3 were activated during the process, leading to PARP cleavage. The pan-caspase inhibitor, Z-VAD-FMK, could reverse dicitrinone B-induced apoptosis, suggesting that it is a caspase-dependent pathway. Our data for the first time showed that dicitrinone B inhibits the proliferation of tumor cells by inducing cell apoptosis. Moreover, compared with the first-line chemotherapy drug, 5-fluorouracil (5-Fu, dicitrinone B showed much more potent anticancer efficacy, suggesting that it might serve as a potential antitumor agent.

  5. Comparison of high sensitivity analytical methods (PTR-MS, MIMS, GC-O, SA) and application to food chemistry

    International Nuclear Information System (INIS)

    Boscaini, E.

    2002-10-01

    Application of PTR-MS to flavor analysis and the development of the membrane introduction proton-transfer-reaction-mass-spectrometry are the main topics of this thesis. The results of classical sensory analysis and of PTR-MS analysis are compared in defining flavor profiles of 7 different brands of mozzarella cheese. The PTR-MS mass spectra of the headspace of mozzarella held at 36 o C are compared to the judge panel flavor profile. Multivariate statistical data analysis shows that the two methods perform comparable sample discrimination. This shows that PTR-MS is a very promising method for the instrumental evaluation of the flavour sensory profile of food, opening new opportunities both in the control of quality and technological processes, as well as in the fundamental comprehension of the physiological processes of aroma perception. In the same chapter is also described a method for the identification of the masses of a mass spectra obtained with PTR-MS. Although the identification is always tentative, it might suggest which substances play an important role in the classification of different products. I.e. mass 45 and 47 associated to acetaldehyde and ethanol respectively reveal a higher fermentation activity in product B than G, as expected due to their manufacture processes. Gas Chromatography-Olfactometry (GC-O) and Proton Transfer Reaction-Mass Spectrometry (PTR-MS) techniques were used to define odor active and volatile profile of three grana cheeses: Grana Padano (GP), Parmigiano Reggiano (PR) and Grana Trentino (GT). Samples for GC-O analysis were prepared by dynamic headspace extraction while a direct analysis of the headspace formed over cheese was performed by PTR-MS. Major contribution to the odor profile was given by ethyl butanoate, 2-heptanone and ethyl hexanoate with fruity notes. High concentration of mass 45 tentatively identified with acetaldehyde was found by PTR-MS analysis. Low odor threshold compounds e.g. methional and 1-octen-3-one

  6. ROS-dependent mitochondria molecular mechanisms underlying antitumor activity of Pleurotus abalonus acidic polysaccharides in human breast cancer MCF-7 cells.

    Directory of Open Access Journals (Sweden)

    Xiaolong Shi

    Full Text Available BACKGROUND: A greater reduction in cancer risk associated with mushroom diet rich in fungus polysaccharides is generally accepted. Meanwhile, edible Pleurotus abalonus as a member of Abalone mushroom family is a popular nutritional supplement that purportedly prevents cancer occurrence. However, these anecdotal claims are supported by limited studies describing tumor-inhibitory responses to the promising polysaccharides, and the molecular mechanisms underlying these properties have not yet been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: We here fractionated the crude polysaccharide preparation from the fruiting bodies of P. abalonus into three fractions, namely PAP-1, PAP-2 and PAP-3, and tested these fractions for antiproliferative activity in human breast cancer MCF-7 cells. The largest PAP-3, an acidic polysaccharide fraction with a molecular mass of 3.68×10(5 Da, was the most active in inhibiting MCF-7 cancer cells with an IC50 of 193 µg/mL. The changes in cell normal morphology were observed by DAPI staining and the PAP-3-induced apoptosis was confirmed by annexin V/propidium iodide staining. The apoptosis was involved in mitochondria-mediated pathway including the loss of mitochondrial membrane potential (Δψm, the increase of Bax/Bcl-2 ratio, caspase-9/3 activation, and poly(ADP-ribose polymerase (PARP degradation, as well as intracellular ROS production. PAP-3 also induced up-regulation of p53, and cell cycle arrest at the S phase. The incubation of MCF-7 cells with antioxidant superoxide dismutase (SOD and N-acetylcysteine (NAC significantly attenuated the ROS generation and apoptosis caused by PAP-3, indicating that intracellular ROS plays a pivotal role in cell death. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the polysaccharides, especially acidic PAP-3, are very important nutritional ingredients responsible for, at least in part, the anticancer health benefits of P. abalonus via ROS-mediated mitochondrial apoptotic

  7. Quantification of compositional changes of petroleum hydrocarbons by GC/FID and GC/MS during a long-term bioremediation experiment

    DEFF Research Database (Denmark)

    Jensen, Trine S.; Arvin, Erik; Svensmark, Bo

    2000-01-01

    Samples from a long-term bioremediation experiment contaminated with two crude oils, Arabian Heavy and Gullfax, was used to analyze the compositional change of petroleum hydrocarbons. A time course of five different homologous series of petroleum hydrocarbons were analysed by GC/FID and GC...

  8. Detection of nearest neighbors to specific fluorescently tagged ligands in rod outer segment and lymphocyte plasma membranes by photosensitization of 5-iodonaphthyl 1-azide

    International Nuclear Information System (INIS)

    Raviv, Y.; Bercovici, T.; Gitler, C.; Salomon, Y.

    1989-01-01

    Lima bean agglutinin-fluorescein 5-isothiocyanate conjugate (FluNCS-lima bean lectin) interacts with specific receptor molecules on membranes both from the rod outer segment (ROS) of the frog retina and from S49 mouse lymphoma cells. When [125I]-5-iodonaphthyl 1-azide (125I-INA), which freely and randomly partitions into the lipid bilayer, is added to membranes and the suspension is irradiated at 480 nm, the FluNCS-conjugated lectin photosensitizes the [125I]INA but only at discrete sites. This results in the selective labeling of specific proteins: an 88-kDa protein on ROS membranes and a 56-kDa protein on S49 plasma membranes. Labeling is dependent upon the interaction of the FluNCS-lectin with glycosylated receptor sites, since N-acetylgalactosamine, but not methyl alpha-mannoside, blocked labeling of the 56-kDa protein on S49 membranes. In contrast, a random labeling pattern of membrane proteins was observed upon irradiation at 480 nm using other fluorescein conjugates, such as FluNCS-bovine serum albumin (FluNCS-BSA) or FluNCS-soybean trypsin inhibitor (FluNCS-STI), which interact with cell membranes in a nonselective manner, or with N-(fluorescein-5-thiocarbamoyl)-n-undecyclamine (FluNCS-NHC11), which is freely miscible in the membrane lipid. Random labeling was also obtained by direct photoexcitation of [125I]INA at 314 nm, with no distinct labeling of the 88- and 56-kDa proteins in the respective membranes. These results suggest that protein ligands can be used to guide sensitizers to discrete receptor sites and lead to their selective labeling by photosensitized activation of [125I]INA

  9. The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Yi Chen

    Full Text Available Selenium (Se is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO in the root of Brassica rapa under Se(IV stress. Se(IV-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR- and nitric oxide synthase (NOS-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.

  10. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Gundala, Sushma Reddy; Yang, Chunhua [Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Mukkavilli, Rao [Advinus Therapeutics, Karnataka (India); Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice [Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Reid, Michelle D. [Department of Pathology, Emory University School of Medicine, Atlanta, GA (United States); Aneja, Ritu, E-mail: raneja@gsu.edu [Department of Biology, Georgia State University, Atlanta, GA 30303 (United States)

    2014-10-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ∼ 72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. - Highlights: • HC perturbs cell-cycle progression by induction of reactive oxygen species (ROS). • HC mediated cytotoxicity by ROS-induced DNA damage leading to

  11. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis

    International Nuclear Information System (INIS)

    Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D.; Aneja, Ritu

    2014-01-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ∼ 72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. - Highlights: • HC perturbs cell-cycle progression by induction of reactive oxygen species (ROS). • HC mediated cytotoxicity by ROS-induced DNA damage leading to

  12. Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    Kamalini Ghosh

    Full Text Available Advancement in cancer therapy requires a better understanding of the detailed mechanisms that induce death in cancer cells. Besides apoptosis, themode of other types of cell death has been increasingly recognized in response to therapy. Paraptosis is a non-apoptotic alternative form of programmed cell death, morphologically distinct from apoptosis and autophagy. In the present study, Withaferin-A (WA induced hyperpolarization of mitochondrial membrane potential and formation of many cytoplasmic vesicles. This was due to progressive swelling and fusion of mitochondria and dilation of endoplasmic reticulum (ER, forming large vacuolar structures that eventually filled the cytoplasm in human breast cancer cell-lines MCF-7 and MDA-MB-231. The level of indigenous paraptosis inhibitor, Alix/AIP-1 (Actin Interacting Protein-1 was down-regulated by WA treatment. Additionally, prevention of WA-induced cell death and vacuolation on co-treatment with protein-synthesis inhibitor indicated requirement of de-novo protein synthesis. Co-treatment with apoptosis inhibitor resulted in significant augmentation of WA-induced death in MCF-7 cells, while partial inhibition in MDA-MB-231 cells; implyingthat apoptosis was not solely responsible for the process.WA-mediated cytoplasmic vacuolationcould not be prevented by autophagy inhibitor wortmanninas well, claiming this process to be a non-autophagic one. Early induction of ROS (Reactive Oxygen Speciesby WA in both the cell-lines was observed. ROS inhibitorabrogated the effect of WA on: cell-death, expression of proliferation-associated factor andER-stress related proteins,splicing of XBP-1 (X Box Binding Protein-1 mRNA and formation of paraptotic vacuoles.All these results conclusively indicate thatWA induces deathin bothMCF-7 and MDA-MB-231 cell lines byROS-mediated paraptosis.

  13. GC-MS analysis, evaluation of phytochemicals, anti-oxidant, thrombolytic and anti-inflammatory activities of Exacum bicolor

    Directory of Open Access Journals (Sweden)

    Appaji Mahesh Ashwini

    2015-12-01

    Full Text Available The aim of the present study was to investigate the GC-MS analysis, phytochemical screening, anti-oxidant, thrombolytic and anti-inflammatory activities of methanol extract of leaves of Exacum bicolor. FTIR analysis confirmed the presence of alcohol, phenols, alkanes, aromatic compounds, aldehyde and ethers. GC-MS analysis revealed the presence of eight phyto-constituents. The total phenol, flavonoid and alkaloid contents were 18.0 ± 0.2 mg/GAE/g, 13.1 ± 0.4 mg QE/g and 108.0 ± 1.2 mg AE/g respectively. The DPPH assay exhibited potent anti-oxidant abilities with IC50 8.8 µg/mL. Significant thrombolytic activity was demonstrated by clot lysis method (45.1 ± 0.8%. The methanol extract showed significant membrane stabilization on human red blood cell with IC50 value of 37.4 µg/mL. There was a significant correlation (R2>0.98 with total phenolic content versus anti-oxidant and anti-inflammatory activity. The above results confirmed that E. bicolor could be a promising anti-oxidant, thrombolytic and anti-inflammatory agent.

  14. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Pierpaola Davalli

    2016-01-01

    Full Text Available The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS and/or Reactive Nitrosative Species (RNS. Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.

  15. Ebselen induces reactive oxygen species (ROS-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target

    Directory of Open Access Journals (Sweden)

    Gajendra Kumar Azad

    2014-01-01

    Full Text Available Ebselen is a synthetic, lipid-soluble seleno-organic compound. The high electrophilicity of ebselen enables it to react with multiple cysteine residues of various proteins. Despite extensive research on ebselen, its target molecules and mechanism of action remains less understood. We performed biochemical as well as in vivo experiments employing budding yeast as a model organism to understand the mode of action of ebselen. The growth curve analysis and FACS (florescence activated cell sorting assays revealed that ebselen exerts growth inhibitory effects on yeast cells by causing a delay in cell cycle progression. We observed that ebselen exposure causes an increase in intracellular ROS levels and mitochondrial membrane potential, and that these effects were reversed by addition of antioxidants such as reduced glutathione (GSH or N-acetyl-l-cysteine (NAC. Interestingly, a significant increase in ROS levels was noticed in gdh3-deleted cells compared to wild-type cells. Furthermore, we showed that ebselen inhibits GDH function by interacting with its cysteine residues, leading to the formation of inactive hexameric GDH. Two-dimensional gel electrophoresis revealed protein targets of ebselen including CPR1, the yeast homolog of Cyclophilin A. Additionally, ebselen treatment leads to the inhibition of yeast sporulation. These results indicate a novel direct connection between ebselen and redox homeostasis.

  16. Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target.

    Science.gov (United States)

    Azad, Gajendra Kumar; Singh, Vikash; Mandal, Papita; Singh, Prabhat; Golla, Upendarrao; Baranwal, Shivani; Chauhan, Sakshi; Tomar, Raghuvir S

    2014-01-01

    Ebselen is a synthetic, lipid-soluble seleno-organic compound. The high electrophilicity of ebselen enables it to react with multiple cysteine residues of various proteins. Despite extensive research on ebselen, its target molecules and mechanism of action remains less understood. We performed biochemical as well as in vivo experiments employing budding yeast as a model organism to understand the mode of action of ebselen. The growth curve analysis and FACS (florescence activated cell sorting) assays revealed that ebselen exerts growth inhibitory effects on yeast cells by causing a delay in cell cycle progression. We observed that ebselen exposure causes an increase in intracellular ROS levels and mitochondrial membrane potential, and that these effects were reversed by addition of antioxidants such as reduced glutathione (GSH) or N-acetyl-l-cysteine (NAC). Interestingly, a significant increase in ROS levels was noticed in gdh3-deleted cells compared to wild-type cells. Furthermore, we showed that ebselen inhibits GDH function by interacting with its cysteine residues, leading to the formation of inactive hexameric GDH. Two-dimensional gel electrophoresis revealed protein targets of ebselen including CPR1, the yeast homolog of Cyclophilin A. Additionally, ebselen treatment leads to the inhibition of yeast sporulation. These results indicate a novel direct connection between ebselen and redox homeostasis.

  17. In Vitro Assessment of Guanylyl Cyclase Activity of Plant Receptor Kinases

    KAUST Repository

    Raji, Misjudeen; Gehring, Christoph A

    2017-01-01

    Cyclic nucleotides such as 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are increasingly recognized as key signaling molecules in plants, and a growing number of plant mononucleotide cyclases, both adenylate cyclases (ACs) and guanylate cyclases (GCs), have been reported. Catalytically active cytosolic GC domains have been shown to be part of many plant receptor kinases and hence directly linked to plant signaling and downstream cellular responses. Here we detail, firstly, methods to identify and express essential functional GC domains of receptor kinases, and secondly, we describe mass spectrometric methods to quantify cGMP generated by recombinant GCs from receptor kinases in vitro.

  18. In Vitro Assessment of Guanylyl Cyclase Activity of Plant Receptor Kinases

    KAUST Repository

    Raji, Misjudeen

    2017-05-31

    Cyclic nucleotides such as 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are increasingly recognized as key signaling molecules in plants, and a growing number of plant mononucleotide cyclases, both adenylate cyclases (ACs) and guanylate cyclases (GCs), have been reported. Catalytically active cytosolic GC domains have been shown to be part of many plant receptor kinases and hence directly linked to plant signaling and downstream cellular responses. Here we detail, firstly, methods to identify and express essential functional GC domains of receptor kinases, and secondly, we describe mass spectrometric methods to quantify cGMP generated by recombinant GCs from receptor kinases in vitro.

  19. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes.

    Science.gov (United States)

    Klumpen, Eva; Hoffschröer, Nadine; Zeis, Bettina; Gigengack, Ulrike; Dohmen, Elias; Paul, Rüdiger J

    2017-01-01

    Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H 2 O 2 ) stress. Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H 2 O 2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1

  20. Group separation of organohalogenated contaminants by GCxGC

    Energy Technology Data Exchange (ETDEWEB)

    Korytar, P.; Leonards, P.; Boer, J. de [Netherlands Institute for Fisheries Research, IJmuiden (Netherlands); Parera, J. [Barcelona Univ. (Spain); Brinkman, U. [Vrije Univ., Amsterdam (Netherlands)

    2004-09-15

    The congener specific analysis of organohalogenated compounds is challenging, because of a large number of possibly interfering compounds not only within the compound class but also from congeners of other compound classes. Therefore, analytical procedures usually include complicated and time-consuming multi-step sample pre-treatment and/or selective detection (e.g. HRMS, MS/MS) in the consequent gas chromatographic analysis, what makes the procedures laborious and expensive. One way how to improve the situation would be to considerably increase the separation efficiency of the gas chromatographic analysis by replacing conventional GC by so-called comprehensive two-dimensional gas chromatography (GC x GC). In GC x GC two independent separations are applied to an entire sample which effects a considerably enhanced overall resolution and also, because of the analyte refocusing during modulation, an improved analyte detectability. One further aspect which makes GC x GC especially attractive is the ordered structure of the two-dimensional chromatograms, which is observed when mixtures of related compounds, homologues or congeners are analysed. One good example are the bands of alkanes, naphthenes and aromatics present in 2D chromatogram when petrochemical samples are analysed. The ordered structure was reported also within the compound class of some organohalogenated contaminants, more precisely, of polychlorinated biphenyls and toxaphenes (ordering to number of chlorine atoms on the skeleton). However, to date, no study of separation among the different compound classes has been reported. In the present paper, this topic will be studied for the most common contaminants. While the principle aim is the group type separation, some attention will be devoted also to within the class separation (e.g., for polychlorinated diphenylethers and polychlorinated alkanes).

  1. European contribution to the study of ROS

    DEFF Research Database (Denmark)

    Egea, Javier; Fabregat, Isabel; Frapart, Yves M

    2017-01-01

    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better u...

  2. Postmortem identification and quantitation of 2,5-dimethoxy-4-n-propylthiophenethylamine using GC-MSD and GC-NPD.

    Science.gov (United States)

    Curtis, Byron; Kemp, Philip; Harty, Linda; Choi, Chai; Christensen, Dix

    2003-10-01

    2,5-Dimethoxy-4-n-propylthiophenethylamine (2C-T-7) has structural and pharmacodynamic similarities to methylenedioxymethamphetamine (MDMA). This compound was initially identified from a routine screening procedure in postmortem urine from a 20-year-old male that died in a local emergency room after reportedly insufflating 35 mg. This report describes the development of a quantitative method for 2C-T-7. A number of method parameters were studied including internal standard selection, liquid-liquid extraction scheme, and drug stability in preserved refrigerated blood. The adopted method for blood and urine involves the addition of trimethoxyamphetamine (TMA) as internal standard, alkalinization with ammonium hydroxide, and liquid-liquid extraction with n-chlorobutane. To facilitate recovery from liver, a 1:4 aqueous homogenate was pretreated with dilute perchloric acid, centrifuged, and the supernatant was extracted as previously described. In each case, 0.1% hydrochloric acid in methanol was added during the final concentration step to prevent loss of drug caused by evaporation. Samples were analyzed by gas chromatography with nitrogen-phosphorus detection (GC-NPD) and electron ionization GC-mass spectrometry (MS) utilizing selected ion monitoring. For the GC-MS analysis, the characteristic ions monitored for 2C-T-7 were m/z 226, 255, and 183 and for TMA, m/z 182. The limits of detection and quantitation in blood were 6.0 and 15.6 ng/mL, respectively, by both GC-NPD and GC-MS. The results from the postmortem case were as follows: heart blood, 57 ng/mL; femoral blood, 100 ng/mL; urine, 1120 ng/mL; and liver, 854 ng/g.

  3. A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations.

    Directory of Open Access Journals (Sweden)

    Conor Lawless

    Full Text Available Increases in cellular Reactive Oxygen Species (ROS concentration with age have been observed repeatedly in mammalian tissues. Concomitant increases in the proportion of replicatively senescent cells in ageing mammalian tissues have also been observed. Populations of mitotic human fibroblasts cultured in vitro, undergoing transition from proliferation competence to replicative senescence are useful models of ageing human tissues. Similar exponential increases in ROS with age have been observed in this model system. Tracking individual cells in dividing populations is difficult, and so the vast majority of observations have been cross-sectional, at the population level, rather than longitudinal observations of individual cells.One possible explanation for these observations is an exponential increase in ROS in individual fibroblasts with time (e.g. resulting from a vicious cycle between cellular ROS and damage. However, we demonstrate an alternative, simple hypothesis, equally consistent with these observations which does not depend on any gradual increase in ROS concentration: the Stochastic Step Model of Replicative Senescence (SSMRS. We also demonstrate that, consistent with the SSMRS, neither proliferation-competent human fibroblasts of any age, nor populations of hTERT overexpressing human fibroblasts passaged beyond the Hayflick limit, display high ROS concentrations. We conclude that longitudinal studies of single cells and their lineages are now required for testing hypotheses about roles and mechanisms of ROS increase during replicative senescence.

  4. A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations.

    Science.gov (United States)

    Lawless, Conor; Jurk, Diana; Gillespie, Colin S; Shanley, Daryl; Saretzki, Gabriele; von Zglinicki, Thomas; Passos, João F

    2012-01-01

    Increases in cellular Reactive Oxygen Species (ROS) concentration with age have been observed repeatedly in mammalian tissues. Concomitant increases in the proportion of replicatively senescent cells in ageing mammalian tissues have also been observed. Populations of mitotic human fibroblasts cultured in vitro, undergoing transition from proliferation competence to replicative senescence are useful models of ageing human tissues. Similar exponential increases in ROS with age have been observed in this model system. Tracking individual cells in dividing populations is difficult, and so the vast majority of observations have been cross-sectional, at the population level, rather than longitudinal observations of individual cells.One possible explanation for these observations is an exponential increase in ROS in individual fibroblasts with time (e.g. resulting from a vicious cycle between cellular ROS and damage). However, we demonstrate an alternative, simple hypothesis, equally consistent with these observations which does not depend on any gradual increase in ROS concentration: the Stochastic Step Model of Replicative Senescence (SSMRS). We also demonstrate that, consistent with the SSMRS, neither proliferation-competent human fibroblasts of any age, nor populations of hTERT overexpressing human fibroblasts passaged beyond the Hayflick limit, display high ROS concentrations. We conclude that longitudinal studies of single cells and their lineages are now required for testing hypotheses about roles and mechanisms of ROS increase during replicative senescence.

  5. The Affordance Template ROS Package for Robot Task Programming

    Science.gov (United States)

    Hart, Stephen; Dinh, Paul; Hambuchen, Kimberly

    2015-01-01

    This paper introduces the Affordance Template ROS package for quickly programming, adjusting, and executing robot applications in the ROS RViz environment. This package extends the capabilities of RViz interactive markers by allowing an operator to specify multiple end-effector waypoint locations and grasp poses in object-centric coordinate frames and to adjust these waypoints in order to meet the run-time demands of the task (specifically, object scale and location). The Affordance Template package stores task specifications in a robot-agnostic XML description format such that it is trivial to apply a template to a new robot. As such, the Affordance Template package provides a robot-generic ROS tool appropriate for building semi-autonomous, manipulation-based applications. Affordance Templates were developed by the NASA-JSC DARPA Robotics Challenge (DRC) team and have since successfully been deployed on multiple platforms including the NASA Valkyrie and Robonaut 2 humanoids, the University of Texas Dreamer robot and the Willow Garage PR2. In this paper, the specification and implementation of the affordance template package is introduced and demonstrated through examples for wheel (valve) turning, pick-and-place, and drill grasping, evincing its utility and flexibility for a wide variety of robot applications.

  6. ROS Mediates Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa Rah; Ahn, Ji Yeon; Kim, Mi Hyeung; Lim, Min Jin; Yun, Yeon Sook; Song, Jie Young

    2009-01-01

    One of the most common tumors worldwide is lung cancer and the number of patients with lung cancer received radiotherapy is increasing rapidly. Although radiotherapy may have lots of advantages, it can also induce serious adverse effects such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of smooth muscle actin-alpha (a-SMA) and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-b), tumor necrosis factor (TNF), IL-6, platelet-derived growth factor (PDGF) and reactive oxygen species are related to fibrosis. It is also reported that reactive oxygen species (ROS) can be induced by radiation and can act as a second messenger in various signaling pathways. Therefore we focused on the role of ROS in radiation induced fibrosis. Here, we suggest that irradiation generate ROS mainly through NOX4, result in differentiation of lung fibroblast into myofibroblast

  7. Phosphorylation of the dimeric cytoplasmic domain of the phytosulfokine receptor, PSKR1

    KAUST Repository

    Muleya, V.

    2016-08-04

    Phytosulfokines (PSKs) are plant peptide hormones that co-regulate plant growth, differentiation and defense responses. PSKs signal through a plasma membrane localized leucine-rich repeat receptor-like kinase (phytosulfokine receptor 1, PSKR1) that also contains a functional cytosolic guanylate cyclase with its cyclase catalytic center embedded within the kinase domain. To functionally characterize this novel type of overlapping dual catalytic function, we investigated the phosphorylation of PSKR1 in vitro Tandem mass spectrometry of the cytoplasmic domain of PSKR1 (PSKR1cd) revealed at least 11 phosphorylation sites (8 serines, 2 threonines and 1 tyrosine) within the PSKR1cd. Phosphomimetic mutations of three serine residues (Ser686, Ser696 and Ser698) in tandem at the juxta-membrane position resulted in enhanced kinase activity in the on-mutant that was suppressed in the off-mutant, but both mutations reduced guanylate cyclase activity. Both the on and off phosphomimetic mutations of the phosphotyrosine (Tyr888) residue in the activation loop suppressed kinase activity, while neither mutation affected guanylate cyclase activity. Size exclusion and analytical ultracentrifugation analysis of the PSKR1cd suggest that it is reversibly dimeric in solution, which was further confirmed by biflourescence complementation. Taken together, these data suggest that in this novel type of receptor domain architecture, specific phosphorylation and dimerization are possibly essential mechanisms for ligand-mediated catalysis and signaling.

  8. Phosphorylation of the dimeric cytoplasmic domain of the phytosulfokine receptor, PSKR1

    KAUST Repository

    Muleya, V.; Marondedze, Claudius; Wheeler, J. I.; Thomas, Ludivine; Mok, Y.-F.; Griffin, M. D. W.; Manallack, D. T.; Kwezi, L.; Lilley, K. S.; Gehring, Christoph A; Irving, H. R.

    2016-01-01

    Phytosulfokines (PSKs) are plant peptide hormones that co-regulate plant growth, differentiation and defense responses. PSKs signal through a plasma membrane localized leucine-rich repeat receptor-like kinase (phytosulfokine receptor 1, PSKR1) that also contains a functional cytosolic guanylate cyclase with its cyclase catalytic center embedded within the kinase domain. To functionally characterize this novel type of overlapping dual catalytic function, we investigated the phosphorylation of PSKR1 in vitro Tandem mass spectrometry of the cytoplasmic domain of PSKR1 (PSKR1cd) revealed at least 11 phosphorylation sites (8 serines, 2 threonines and 1 tyrosine) within the PSKR1cd. Phosphomimetic mutations of three serine residues (Ser686, Ser696 and Ser698) in tandem at the juxta-membrane position resulted in enhanced kinase activity in the on-mutant that was suppressed in the off-mutant, but both mutations reduced guanylate cyclase activity. Both the on and off phosphomimetic mutations of the phosphotyrosine (Tyr888) residue in the activation loop suppressed kinase activity, while neither mutation affected guanylate cyclase activity. Size exclusion and analytical ultracentrifugation analysis of the PSKR1cd suggest that it is reversibly dimeric in solution, which was further confirmed by biflourescence complementation. Taken together, these data suggest that in this novel type of receptor domain architecture, specific phosphorylation and dimerization are possibly essential mechanisms for ligand-mediated catalysis and signaling.

  9. Chemical Analysis of Essential oil of "Artemisia haussknechtii Boiss" by GC and GC/ MS

    Directory of Open Access Journals (Sweden)

    A. Nassir- Ahraadi . A. Rustaiyan

    1994-08-01

    Full Text Available The composition of the essential oil from the leaves and flowers of "Artemisia haussknechtii Boiss growing wild in the north-west of Iran, was investigated by GC and GC/MS."nThe main components of the volatile oil were 1,8 - cineol (16.5%, camphor (14.1%. artemisia ketone (10.5%, fragranol (9.0%, Yomogi alcohol (7.5% and B- pinene (5.4%. The total contribution of these compounds to the oil amounted to 63.0%."nMonoterpens and sesquiterpenes represent 90.08% and 1.52% of the oil respectively. Of the twenty oxygen-containing monoterpenes which made up a fairly large fraction of the terpenoid composition, the predominant components were 1,8 - cineole and camphor.

  10. Neutrophils are resistant to Yersinia YopJ/P-induced apoptosis and are protected from ROS-mediated cell death by the type III secretion system.

    Directory of Open Access Journals (Sweden)

    Justin L Spinner

    2010-02-01

    Full Text Available The human innate immune system relies on the coordinated activity of macrophages and polymorphonuclear leukocytes (neutrophils or PMNs for defense against bacterial pathogens. Yersinia spp. subvert the innate immune response to cause disease in humans. In particular, the Yersinia outer protein YopJ (Y. pestis and Y. pseudotuberculosis and YopP (Y. enterocolitica rapidly induce apoptosis in murine macrophages and dendritic cells. However, the effects of Yersinia Yop J/P on neutrophil fate are not clearly defined.In this study, we utilized wild-type and mutant strains of Yersinia to test the contribution of YopJ and YopP on induction of apoptosis in human monocyte-derived macrophages (HMDM and neutrophils. Whereas YopJ and YopP similarly induced apoptosis in HMDMs, interaction of human neutrophils with virulence plasmid-containing Yersinia did not result in PMN caspase activation, release of LDH, or loss of membrane integrity greater than PMN controls. In contrast, interaction of human PMNs with the virulence plasmid-deficient Y. pestis strain KIM6 resulted in increased surface exposure of phosphatidylserine (PS and cell death. PMN reactive oxygen species (ROS production was inhibited in a virulence plasmid-dependent but YopJ/YopP-independent manner. Following phagocytic interaction with Y. pestis strain KIM6, inhibition of PMN ROS production with diphenyleneiodonium chloride resulted in a reduction of PMN cell death similar to that induced by the virulence plasmid-containing strain Y. pestis KIM5.Our findings showed that Yersinia YopJ and/or YopP did not induce pronounced apoptosis in human neutrophils. Furthermore, robust PMN ROS production in response to virulence plasmid-deficient Yersinia was associated with increased PMN cell death, suggesting that Yersinia inhibition of PMN ROS production plays a role in evasion of the human innate immune response in part by limiting PMN apoptosis.

  11. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling

    Directory of Open Access Journals (Sweden)

    Felty Quentin

    2006-04-01

    Full Text Available Abstract Background Since estrogen is known to increase vascular endothelial cell growth, elevated estrogen exposure from hormone replacement therapy or oral contraceptives has the potential to contribute in the development of abnormal proliferative vascular lesions and subsequent thickening of the vasculature. How estrogen may support or promote vascular lesions is not clear. We have examined in this study whether estrogen exposure to vascular endothelial cells increase the formation of reactive oxygen species (ROS, and estrogen-induced ROS is involved in the growth of endothelial cells. Methods The effect of estrogen on the production of intracellular oxidants and the role of estrogen-induced ROS on cell growth was studied in human umbilical vein endothelial cells. ROS were measured by monitoring the oxidation of 2'7'-dichlorofluorescin by spectrofluorometry. Endothelial cell growth was measured by a colorimetric immunoassay based on BrdU incorporation into DNA. Results Physiological concentrations of estrogen (367 fmol and 3.67 pmol triggered a rapid 2-fold increase in intracellular oxidants in endothelial cells. E2-induced ROS formation was inhibited to basal levels by cotreatment with the mitochondrial inhibitor rotenone (2 μM and xanthine oxidase inhibitor allopurinol (50 μM. Inhibitors of NAD(PH oxidase, apocynin and DPI, did not block E2-induced ROS formation. Furthermore, the NOS inhibitor, L-NAME, did not prevent the increase in E2-induced ROS. These findings indicate both mitochondria and xanthine oxidase are the source of ROS in estrogen treated vascular endothelial cells. E2 treated cells showed a 2-fold induction of BrdU incorporation at 18 h which was not observed in cells exposed to vehicle alone. Cotreatment with ebselen (20 μM and NAC (1 mM inhibited E2-induced BrdU incorporation without affecting the basal levels of DNA synthesis. The observed inhibitory effect of NAC and ebselen on E2-induced DNA synthesis was also shown

  12. Characterization of structure and coagulation behaviour of refractory organic substances (ROS) using small-angle neutron scattering (SANS), small-angle x-ray scattering (SAXS) and x-ray microscopy; Charakterisierung von Struktur und Koagulationsverhalten von Refraktaeren Organischen Saeuren (ROS) mit Hilfe von Neutronenkleinwinkelstreuung (SANS), Roentgenkleinwinkelstreuung (SAXS) und Roentgenmikroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Pranzas, P.K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1999-07-01

    In this work structure, coagulation and complexation behaviour of aquatic refractory organic substances (ROS) (humic and fulvic acids) were characterized. For this purpose a structural analytical system with the methods small-angle neutron scattering (SANS), small-angle x-ray scattering (SAXS) and X-ray microscopy with synchrotron radiation was developed and established. Size distributions of ROS of different origin were calculated from the scattering curves. Spherical ROS units were obtained, which coagulated by forming chainlike structures or disordered ROS agglomerates at higher concentrations. Additionally the average molecular weights of several ROS were calculated. Studies of the coagulation behaviour of ROS towards copper ions resulted in larger ROS-agglomerates besides the spherical ROS units. A linear relation between the addition of Cu{sup 2+} and the formation of the ROS-Cu{sup 2+}-agglomerates was found. With X-ray microscopy an extensive ROS-Cu{sup 2}-network structure could be registrated. For mercury and cadmium ions such coagulation interactions were not found. Investigations with X-ray microscopy of the coagulation behaviour of ROS towards the cationic surfactant DTB resulted in micel-like structures of equal size, which were spread throughout the solution. With increasing concentrations of DTB larger agglomerates up to network structures were obtained. (orig.) [German] In dieser Arbeit wurden Struktur, Koagulations- und Komplexierungsverhalten von aquatischen refraktaeren organischen Saeuren (ROS) (Humin- und Fulvinsaeuren) charakterisiert. Zu diesem Zweck wurde ein strukturanalytisches Gesamtsystem mit den Methoden Neutronenkleinwinkelstreuung (SANS), Roentgenkleinwinkelstreuung (SAXS) und Roentgenmikroskopie mit Synchrotronstrahlung entwickelt und etabliert. Fuer ROS unterschiedlicher Herkunft in Loesung wurden Groessenverteilungen aus den Streukurven berechnet. Es wurden kugelfoermige ROS-Einheiten gefunden, die bei hoeheren ROS

  13. Mycotoxin zearalenone induces AIF- and ROS-mediated cell death through p53- and MAPK-dependent signaling pathways in RAW264.7 macrophages.

    Science.gov (United States)

    Yu, Ji-Yeon; Zheng, Zhong-Hua; Son, Young-Ok; Shi, Xianglin; Jang, Young-Oh; Lee, Jeong-Chae

    2011-12-01

    Zearalenone (ZEN) is commonly found in many food commodities and is known to cause reproductive disorders and genotoxic effects. However, the mode of ZEN-induced cell death of macrophages and the mechanisms by which ZEN causes cytotoxicity remain unclear. The present study shows that ZEN treatment reduces viability of RAW264.7 cells in a dose-dependent manner. ZEN causes predominantly necrotic and late apoptotic cell death. ZEN treatment also results in the loss of mitochondrial membrane potential (MMP), mitochondrial changes in Bcl-2 and Bax proteins, and cytoplasmic release of cytochrome c and apoptosis-inducing factor (AIF). Pre-treatment of the cells with either z-VAD-fmk or z-IETD-fmk does not attenuate ZEN-mediated cell death, whereas catalase suppresses the ZEN-induced decrease in viability in RAW264.7 cells. Treating the cells with c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), or p53 inhibitor prevented ZEN-mediated changes, such as MMP loss, cellular reactive oxygen species (ROS) increase, and cell death. JNK or p38 MAPK inhibitor inhibited mitochondrial alterations of Bcl-2 and Bax proteins with attendant decreases in cellular ROS levels. Knockdown of AIF via siRNA transfection also diminished ZEN-induced cell death. Further, adenosine triphosphate was markedly depleted in the ZEN-exposed cells. Collectively, these results suggest that ZEN induces cytotoxicity in RAW264.7 cells via AIF- and ROS-mediated signaling, in which the activations of p53 and JNK/p38 play a key role. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Detection of ROS1 Gene Rearrangement in Lung Adenocarcinoma: Comparison of IHC, FISH and Real-Time RT-PCR

    OpenAIRE

    Shan, Ling; Lian, Fang; Guo, Lei; Qiu, Tian; Ling, Yun; Ying, Jianming; Lin, Dongmei

    2015-01-01

    Aims To compare fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) and quantitative real-time reverse transcription-PCR (qRT-PCR) assays for detection of ROS1 fusion in a large number of ROS1-positive lung adenocatcinoma (ADC) patients. Methods Using IHC analysis, sixty lung ADCs including 16 cases with ROS1 protein expression and 44 cases without ROS1 expression were selected for this study. The ROS1 fusion status was examined by FISH and qRT-PCR assay. Results Among 60 ca...

  15. DspA/E contributes to apoplastic accumulation of ROS in nonhost A. thaliana

    Directory of Open Access Journals (Sweden)

    Alban eLaunay

    2016-04-01

    Full Text Available The bacterium Erwinia amylovora is responsible for the fire blight disease of Maleae, which provokes necrotic symptoms on aerial parts. The pathogenicity of this bacterium in hosts relies on its type three-secretion system (T3SS, a molecular syringe that allows the bacterium to inject effectors into the plant cell. E. amylovora-triggered disease in host plants is associated with the T3SS-dependent production of reactive oxygen species (ROS, although ROS are generally associated with resistance in other pathosystems. We showed previously that E. amylovora can multiply transiently in the nonhost plant Arabidopsis thaliana and that a T3SS-dependent production of intracellular ROS occurs during this interaction. In the present work we characterize the localization and source of hydrogen peroxide accumulation following E. amylovora infection. Transmission electron microscope (TEM analysis of infected tissues showed that hydrogen peroxide accumulation occurs in the cytosol, plastids, peroxisomes, and mitochondria as well as in the apoplast. Furthermore, TEM analysis showed that an E. amylovora dspA/E-deficient strain does not induce hydrogen peroxide accumulation in the apoplast. Consistently, a transgenic line expressing DspA/E accumulated ROS in the apoplast. The NADPH oxidase-deficient rbohD mutant showed a very strong reduction in hydrogen peroxide accumulation in response to E. amylovora inoculation. However, we did not find an increase in bacterial titers of E. amylovora in the rbohD mutant and the rbohD mutation did not suppress the toxicity of DspA/E when introgressed into a DspA/E-expressing transgenic line. Co-inoculation of E. amylovora with cycloheximide (CHX, which we found previously to suppress callose deposition and allow strong multiplication of E. amylovora in A. thaliana leaves, led to a strong reduction of apoplastic ROS accumulation but did not affect intracellular ROS. Our data strongly suggest that apoplastic ROS accumulation is

  16. Quality Control Of Selected Pesticides With GC

    Energy Technology Data Exchange (ETDEWEB)

    Karasali, H. [Benaki Phytopathological Institute Laboratory of Physical and Chemical Analysis of Pesticides, Ekalis (Greece)

    2009-07-15

    The practical quality control of selected pesticides with GC is treated. Detailed descriptions are given on materials and methods used, including sample preparation and GC operating conditions. The systematic validation of multi methods is described, comprising performance characteristics in routine analysis, like selectivity, specificity etc. This is illustrated by chromatograms, calibration curves and tables derived from real laboratory data. (author)

  17. Synergistic apoptosis of CML cells by buthionine sulfoximine and hydroxychavicol correlates with activation of AIF and GSH-ROS-JNK-ERK-iNOS pathway.

    Directory of Open Access Journals (Sweden)

    Avik Acharya Chowdhury

    Full Text Available BACKGROUND: Hydroxychavicol (HCH, a constituent of Piper betle leaf has been reported to exert anti-leukemic activity through induction of reactive oxygen species (ROS. The aim of the study is to optimize the oxidative stress -induced chronic myeloid leukemic (CML cell death by combining glutathione synthesis inhibitor, buthionine sulfoximine (BSO with HCH and studying the underlying mechanism. MATERIALS AND METHODS: Anti-proliferative activity of BSO and HCH alone or in combination against a number of leukemic (K562, KCL22, KU812, U937, Molt4, non-leukemic (A549, MIA-PaCa2, PC-3, HepG2 cancer cell lines and normal cell lines (NIH3T3, Vero was measured by MTT assay. Apoptotic activity in CML cell line K562 was detected by flow cytometry (FCM after staining with annexin V-FITC/propidium iodide (PI, detection of reduced mitochondrial membrane potential after staining with JC-1, cleavage of caspase- 3 and poly (ADP-ribose polymerase proteins by western blot analysis and translocation of apoptosis inducing factor (AIF by confocal microscopy. Intracellular reduced glutathione (GSH was measured by colorimetric assay using GSH assay kit. 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA and 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM were used as probes to measure intracellular increase in ROS and nitric oxide (NO levels respectively. Multiple techniques like siRNA transfection and pharmacological inhibition were used to understand the mechanisms of action. RESULTS: Non-apoptotic concentrations of BSO significantly potentiated HCH-induced apoptosis in K562 cells. BSO potentiated apoptosis-inducing activity of HCH in CML cells by caspase-dependent as well as caspase-independent but apoptosis inducing factor (AIF-dependent manner. Enhanced depletion of intracellular GSH induced by combined treatment correlated with induction of ROS. Activation of ROS- dependent JNK played a crucial role in ERK1/2 activation which subsequently induced the

  18. micROS: a morphable, intelligent and collective robot operating system.

    Science.gov (United States)

    Yang, Xuejun; Dai, Huadong; Yi, Xiaodong; Wang, Yanzhen; Yang, Shaowu; Zhang, Bo; Wang, Zhiyuan; Zhou, Yun; Peng, Xuefeng

    2016-01-01

    Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node. We then present the design of autonomous behavior management based on the observe-orient-decide-act cognitive behavior model and the design of collective intelligence including collective perception, collective cognition, collective game and collective dynamics. We also give the design of morphable resource management, which first categorizes robot resources into physical, information, cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.

  19. ROS-TMS and Big Sensor Box: Platforms for Informationally Structured Environment

    OpenAIRE

    倉爪, 亮; ユンソク, ピョ; 辻, 徳生; 河村, 晃宏

    2017-01-01

    This paper proposes new software and hardware platforms for an informationally structured environment named ROS-TMS and Big Sensor Box. We started the development of a management system for an informationally structured environment named TMS (Town Management System) in Robot Town Project in 2005. Since then we are continuing our efforts for the improvement of the performance and the enhancement of the functions of the TMS. Recently, we launched a new version of TMS named ROS-TMS, which resolv...

  20. Real-time detection of intracellular reactive oxygen species and mitochondrial membrane potential in THP-1 macrophages during ultrasonic irradiation for optimal sonodynamic therapy.

    Science.gov (United States)

    Sun, Xin; Xu, Haobo; Shen, Jing; Guo, Shuyuan; Shi, Sa; Dan, Juhua; Tian, Fang; Tian, Yanfeng; Tian, Ye

    2015-01-01

    Reactive oxygen species (ROS) elevation and mitochondrial membrane potential (MMP) loss have been proven recently to be involved in sonodynamic therapy (SDT)-induced macrophage apoptosis and necrosis. This study aims to develop an experimental system to monitor intracellular ROS and MMP in real-time during ultrasonic irradiation in order to achieve optimal effect in SDT. Cultured THP-1 derived macrophages were incubated with 5-aminolevulinic acid (ALA), and then sonicated at different intensities. Intracellular ROS elevation and MMP loss were detected in real-time by fluorospectrophotometer using fluorescence probe DCFH-DA and jc-1, respectively. Ultrasound at low intensities (less than 0.48W/cm(2)) had no influence on ROS and MMP in macrophages, whereas at an intensity of 0.48W/cm(2), ROS elevation and MMP loss were observed during ultrasonic irradiation. These effects were strongly enhanced in the presence of ALA. Quantitative analysis showed that ROS elevation and MMP loss monotonically increased with the rise of ultrasonic intensity between 0.48 and 1.16W/cm(2). SDT at 0.48 and 0.84W/cm(2) induced mainly apoptosis in THP-1 macrophages while SDT at 1.16W/cm(2) mainly cell necrosis. This study supports the validity and potential utility of real-time ROS and MMP detection as a dosimetric tool for the determination of optimal SDT. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Case Report: GcMAF Treatment in a Patient with Multiple Sclerosis.

    Science.gov (United States)

    Inui, Toshio; Katsuura, Goro; Kubo, Kentaro; Kuchiike, Daisuke; Chenery, Leslye; Uto, Yoshihiro; Nishikata, Takahito; Mette, Martin

    2016-07-01

    Gc protein-derived macrophage-activating factor (GcMAF) has various functions as an immune modulator, such as macrophage activation, anti-angiogenic activity and anti-tumor activity. Clinical trials of second-generation GcMAF demonstrated remarkable clinical effects in several types of cancers. Thus, GcMAF-based immunotherapy has a wide application for use in the treatment of many diseases via macrophage activation that can be used as a supportive therapy. Multiple sclerosis (MS) is considered to be an autoimmune disorder that affects the myelinated axons in the central nervous system (CNS). This study was undertaken to examine the effects of second-generation GcMAF in a patient with MS. This case study demonstrated that treatments of GcMAF in a patient with MS have potent therapeutic actions with early beneficial responses, especially improvement of motor dysfunction. GcMAF shows therapeutic potency in the treatment of MS. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Development of an in vitro photosafety evaluation method utilizing intracellular ROS production in THP-1 cells.

    Science.gov (United States)

    Toyoda, Akemi; Itagaki, Hiroshi

    2018-01-01

    Photoreactive compounds that may experience exposure to ultraviolet (UV) radiation can lead to the intracellular production of reactive oxygen species (ROS), which may cause phototoxic and photoallergenic responses. Here, we developed a novel in vitro photosafety assay and investigated whether it could be used to predict phototoxicity and photosensitivity by measuring changes in intracellular ROS production. THP-1 cells that had previously taken up 5-(and-6)-carboxy-2',7'-difluorodihydrofluorescein diacetate (carboxy-H 2 DFFDA), a ROS-sensitive fluorescent reagent, were exposed to photoreactive substances such as phototoxic and photoallergenic materials and then subjected to with UV-A irradiation (5 J/cm 2 ). The fluorescence intensity was subsequently measured using a flow cytometer, and the intracellular ROS production was calculated. A statistically significant increase in ROS following treatment with photoreactive substances was observed in cells irradiated with UV-A. In contrast, no significant increase was observed for non-photoreactive substances in comparison to the control solution. Next, to confirm the impact of intracellular ROS on the photosensitive response, changes in CD86 and CD54 expression were measured following quencher addition during the photo human cell line activation test (photo h-CLAT). The results confirmed the reduction of CD86 and CD54 expression in response to photoallergenic substances following quencher addition. Together, these findings suggest that intracellular ROS production is involved in photosensitizing reactions. Therefore, we suggest that the developed method utilizing intracellular ROS production as an index may be useful as a novel in vitro evaluation tool for photoreactive substances.

  3. Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yanping eWang

    2015-11-01

    Full Text Available Cytokinins in plants are crucial for numerous biological processes, including seed germination, cell division and differentiation, floral initiation and adaptation to abiotic stresses. The salt stress can promote reactive oxygen species (ROS production in plants which are highly toxic and ultimately results in oxidative stress. However, the correlation between endogenous cytokinin production and ROS homeostasis in responding to salt stress is poorly understood. In this study, we analyzed the correlation of overexpressing the cytokinin biosynthetic gene AtIPT8 (adenosine phosphate-isopentenyl transferase 8 and the response of salt stress in Arabidopsis. Overproduction of cytokinins, which was resulted by the inducible overexpression of AtIPT8, significantly inhibited the primary root growth and true leaf emergence, especially under the conditions of exogenous salt, glucose and mannitol treatments. Upon cytokinin overproduction, the salt stress resistance was declined, and resulted in less survival rates and chlorophyll content. Interestingly, ROS production was obviously increased with the salt treatment, accompanied by endogenously overproduced cytokinins. The activities of CAT and SOD, which are responsible for scavenging ROS, were also affected. Transcription profiling revealed that the differential expressions of ROS-producing and scavenging related genes, the photosynthesis-related genes and stress responsive genes were existed in transgenic plants of overproducing cytokinins. Our results suggested that broken in the homeostasis of cytokinins in plant cells could modulate the salt stress responses through a ROS-mediated regulation in Arabidopsis.

  4. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions.

    Science.gov (United States)

    Martínez-Reyes, Inmaculada; Diebold, Lauren P; Kong, Hyewon; Schieber, Michael; Huang, He; Hensley, Christopher T; Mehta, Manan M; Wang, Tianyuan; Santos, Janine H; Woychik, Richard; Dufour, Eric; Spelbrink, Johannes N; Weinberg, Samuel E; Zhao, Yingming; DeBerardinis, Ralph J; Chandel, Navdeep S

    2016-01-21

    Mitochondrial metabolism is necessary for the maintenance of oxidative TCA cycle function and mitochondrial membrane potential. Previous attempts to decipher whether mitochondria are necessary for biological outcomes have been hampered by genetic and pharmacologic methods that simultaneously disrupt multiple functions linked to mitochondrial metabolism. Here, we report that inducible depletion of mitochondrial DNA (ρ(ο) cells) diminished respiration, oxidative TCA cycle function, and the mitochondrial membrane potential, resulting in diminished cell proliferation, hypoxic activation of HIF-1, and specific histone acetylation marks. Genetic reconstitution only of the oxidative TCA cycle function specifically in these inducible ρ(ο) cells restored metabolites, resulting in re-establishment of histone acetylation. In contrast, genetic reconstitution of the mitochondrial membrane potential restored ROS, which were necessary for hypoxic activation of HIF-1 and cell proliferation. These results indicate that distinct mitochondrial functions associated with respiration are necessary for cell proliferation, epigenetics, and HIF-1 activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of Light-Activated Hypocrellin B on the Growth and Membrane Permeability of Gram-Negative Escherichia coli Cells

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-01-01

    Full Text Available Aim. To investigate the effect of light-activated hypocrellin B on the growth and membrane permeability of Gram-negative bacteria. Methods. Escherichia coli (E. coli as a model bacterium of Gram-negative bacteria was incubated with various concentrations of hypocrellin B for 60 min and was subsequently irradiated by blue light with wavelength of 470 nm at the dose of 12 J/cm2. Colony forming units were counted and the growth inhibition rate of E. coli cells was calculated after light-activated hypocrellin B. Membrane permeability was measured using flow cytometry and confocal laser scanning microscopy (CLSM with propidium iodide (PI staining. Bacterial morphology was observed using transmission electron microscopy (TEM. Reactive oxygen species in bacterial cells were measured using flow cytometry with DCFH-DA staining. Results. Significant growth inhibition rate of E. coli cells was observed after photodynamic action of hypocrellin B. Remarkable damage to the ultrastructure of E. coli was also observed by TEM. Flow cytometry and CLSM observation showed that light-activated hypocrellin B markedly increased membrane permeability of E. coli. Flow cytometry showed the intracellular ROS increase in E. coli treated by photodynamic action of hypocrellin B. Conclusion. Light-activated hypocrellin B caused intracellular ROS increase and structural damages and inhibited the growth of Gram-negative E. coli cells.

  6. Endothelium-dependent relaxation of rat aorta to a histamine H3 agonist is reduced by inhibitors of nitric oxide synthase, guanylate cyclase and Na+,K+-ATPase

    Directory of Open Access Journals (Sweden)

    D. M. Djuric

    1996-01-01

    Full Text Available The possible involvement of different effector systems (nitric oxide synthase, guanylate cyclase, β-adrenergic and muscarinic cholinergic receptors, cyclooxygenase and lipoxygenase, and Na+,K+-ATPase was evaluated in a histamine H3 receptor agonist-induced ((Rα-methylhistamine, (Rα-MeHA endothelium-dependent rat aorta relaxation assay. (Rα-MeHA (0.1 nM – 0.01 mM relaxed endothelium-dependent rat aorta, with a pD2 value of 8.22 ± 0.06, compared with a pD2 value of 7.98 ± 0.02 caused by histamine (50% and 70% relaxation, respectively. The effect of (Rα-MeHA (0.1 nM – 0.01 mM was competitively antagonized by thioperamide (1, 10 and 30 nM (pA2 = 9.21 ± 0.40; slope = 1.03 ± 0.35 but it was unaffected by pyrilamine (100 nM, cimetidine (1 μM, atropine (10 μM, propranolol (1 μM, indomethacin (10 μM or nordthydroguaiaretic acid (0.1 mM. Inhibitors of nitric oxide synthase, L-NG-monomethylarginine (L-NMMA, 10 μM and NG-nitro-L-arginine methylester (L-NOARG, 10 μM inhibited the relaxation effect of (Rα-MeHA, by approximately 52% and 70%, respectively. This inhibitory effect of L-NMMA was partially reversed by L-arginine (10 μM. Methylene blue (10 μM and ouabain (10 μM inhibited relaxation (Rα-MeHA-induced by approximately 50% and 90%, respectively. The products of cyclooxygenase and lipoxygenase are not involved in (Rα-MeHA-induced endothelium-dependent rat aorta relaxation nor are the muscarinic cholinergic and β-adrenergic receptors. The results also suggest the involvement of NO synthase, guanylate cyclase and Na+,K+-ATPase in (Rα-MeHA-induced endothelium-dependent rat aorta relaxation.

  7. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin.

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegar

    Full Text Available Curcumin has many pharmaceutical applications, many of which arise from its potent antioxidant properties. The present research examined the antioxidant activities of curcumin in polar solvents by a comparative study using ESR, reduction of ferric iron in aqueous medium and intracellular ROS/toxicity assays. ESR data indicated that the steric hindrance among adjacent big size groups within a galvinoxyl molecule limited the curcumin to scavenge galvinoxyl radicals effectively, while curcumin showed a powerful capacity for scavenging intracellular smaller oxidative molecules such as H₂O₂, HO•, ROO•. Cell viability and ROS assays demonstrated that curcumin was able to penetrate into the polar medium inside the cells and to protect them against the highly toxic and lethal effects of cumene hydroperoxide. Curcumin also showed good electron-transfer capability, with greater activity than trolox in aqueous solution. Curcumin can readily transfer electron or easily donate H-atom from two phenolic sites to scavenge free radicals. The excellent electron transfer capability of curcumin is because of its unique structure and different functional groups, including a β-diketone and several π electrons that have the capacity to conjugate between two phenyl rings. Therfore, since curcumin is inherently a lipophilic compound, because of its superb intracellular ROS scavenging activity, it can be used as an effective antioxidant for ROS protection within the polar cytoplasm.

  8. Plasma membrane microdomains regulate turnover of transport proteins in yeast

    Czech Academy of Sciences Publication Activity Database

    Grossmann, G.; Malínský, Jan; Stahlschmidt, W.; Loibl, M.; Weig-Meckl, I.; Frommer, W.B.; Opekarová, Miroslava; Tanner, W.

    2008-01-01

    Roč. 183, č. 6 (2008), s. 1075-1088 ISSN 0021-9525 R&D Projects: GA ČR GA204/06/0009; GA ČR GA204/07/0133; GA ČR GC204/08/J024 Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z50200510 Keywords : Lithium acetate * Membrane compartment of Can1 * Monomeric red fluorescent protein Subject RIV: EA - Cell Biology Impact factor: 9.120, year: 2008

  9. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways.

    Directory of Open Access Journals (Sweden)

    Zhongyuan Zhang

    Full Text Available BACKGROUND: Fucoidan extract (FE, an enzymatically digested compound with a low molecular weight, is extracted from brown seaweed. As a natural compound with various actions, FE is attractive, especially in Asian countries, for improving the therapeutic efficacy and safety of cancer treatment. The present study was carried out to investigate the anti-tumor properties of FE in human carcinoma cells and further examine the underlying mechanisms of its activities. METHODOLOGY/PRINCIPAL FINDING: FE inhibits the growth of MCF-7, MDA-MB-231, HeLa, and HT1080 cells. FE-mediated apoptosis in MCF-7 cancer cells is accompanied by DNA fragmentation, nuclear condensation, and phosphatidylserine exposure. FE induces mitochondrial membrane permeabilization (MMP through loss of mitochondrial membrane potential (ΔΨm and regulation of the expression of Bcl-2 family members. Release of apoptosis-inducing factor (AIF and cytochrome c precedes MMP. AIF release causes DNA fragmentation, the final stage of apoptosis, via a caspase-independent mitochondrial pathway. Additionally, FE was found to induce phosphorylation of c-Jun N-terminal kinase (JNK, p38, and extracellular signal-regulated kinase (ERK 1/2, and apoptosis was found to be attenuated by inhibition of JNK. Furthermore, FE-mediated apoptosis was found to involve the generation of reactive oxygen species (ROS, which are responsible for the decrease of ΔΨm and phosphorylation of JNK, p38, and ERK1/2 kinases. CONCLUSIONS/SIGNIFICANCE: These data suggest that FE activates a caspase-independent apoptotic pathway in MCF-7 cancer cells through activation of ROS-mediated MAP kinases and regulation of the Bcl-2 family protein-mediated mitochondrial pathway. They also provide evidence that FE deserves further investigation as a natural anticancer and cancer preventive agent.

  10. The role of 12/15-lipoxygenases in ROS-mediated neuronal cell death

    OpenAIRE

    Tobaben, Svenja

    2011-01-01

    Oxidative stress has been established as a key trigger of neuronal dysfunction and death in age-related neurodegenerative diseases and in delayed neuronal death after acute brain injury by ischemic stroke or brain trauma. Despite increasing knowledge on the toxicity of reactive oxygen species (ROS) and oxidized reaction products that may further accelerate neuronal cell death, the major sources of ROS formation and the mechanisms ...

  11. ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Mráček, Tomáš; Holzerová, Eliška; Drahota, Zdeněk; Kovářová, Nikola; Vrbacký, Marek; Ješina, Pavel; Houštěk, Josef

    2014-01-01

    Roč. 1837, č. 1 (2014), s. 98-111 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GPP303/10/P227; GA MŠk(CZ) LL1204 Grant - others:Univerzita Karlova(CZ) 750213 Institutional support: RVO:67985823 Keywords : mitochondrial glycerol-3-phosphate dehydrogenase * ROS production * supercomplex * in-gel ROS detection Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.353, year: 2014

  12. Effects of quantum dots on the ROS amount of liver cancer stem cells.

    Science.gov (United States)

    Li, Kunmeng; Xia, Chunhui; Wang, Baiqi; Chen, Hetao; Wang, Tong; He, Qian; Cao, Hailong; Wang, Yu

    2017-07-01

    Liver cancer (LC) is a serious disease that threatens human lives. LC has a high recurrence rate and poor prognosis. LC stem cells (LCSCs) play critical roles in these processes. However, the mechanism remains unclear. Reactive oxygen species (ROS) can be used to determine cell apoptosis and proliferation. However, studies of the effects of exogenous nanomaterials on LCSC ROS changes are rarely reported. In this work, quantum dots (QDs) were prepared using a hydrothermal method, and QDs were further modified with polyethylene glycol (PEG) and bovine serum albumin (BSA) using a chemical approach. The effects of QDs, PEG-modified QDs (PEG@QDs) and BSA-modified QDs (BSA@QDs) on the amounts of ROS in liver cancer PLC/PRF/5 (PLC) cells and liver cancer stem cells (LCSCs) were principally investigated. The results showed that when the concentration of QDs, PEG@QDs, and BSA@QDs were 10nM and 90nM, the ROS amount in PLC cells increased by approximately 2- to 5-fold. However, when the concentrations of these nanomaterials were 10nM and 90nM, ROS levels in LCSCs were reduced by approximately 50%. This critical path potentially leads to drug resistance and recurrence of LC. This work provides an important indication for further study of LC drug resistance and recurrence. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seung Min, E-mail: smjeong@catholic.ac.kr [Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Hwang, Sunsook; Seong, Rho Hyun [School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-03-11

    The transferrin receptor (TfR1) is upregulated in malignant cells and its expression is associated with cancer progression. Because of its pre-eminent role in cell proliferation, TfR1 has been an important target for the development of cancer therapy. Although TfR1 is highly expressed in pancreatic cancers, what it carries out in these refractory cancers remains poorly understood. Here we report that TfR1 supports mitochondrial respiration and ROS production in human pancreatic ductal adenocarcinoma (PDAC) cells, which is required for their tumorigenic growth. Elevated TfR1 expression in PDAC cells contributes to oxidative phosphorylation, which allows for the generation of ROS. Importantly, mitochondrial-derived ROS are essential for PDAC growth. However, exogenous iron supplement cannot rescue the defects caused by TfR1 knockdown. Moreover, we found that TfR1 expression determines PDAC cells sensitivity to oxidative stress. Together, our findings reveal that TfR1 can contribute to the mitochondrial respiration and ROS production, which have essential roles in growth and survival of pancreatic cancer. - Highlights: • Pancreatic ductal adenocarcinoma (PDAC) exhibits an elevated transferrin receptor (TfR1) expression in comparison with non-transformed pancreatic cells. • TfR1 is required for PDAC growth by regulating mitochondrial respiration and ROS production. • TfR1 functions as a determinant of cell viability to oxidative stress in PDAC cells.

  14. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation

    International Nuclear Information System (INIS)

    Jeong, Seung Min; Hwang, Sunsook; Seong, Rho Hyun

    2016-01-01

    The transferrin receptor (TfR1) is upregulated in malignant cells and its expression is associated with cancer progression. Because of its pre-eminent role in cell proliferation, TfR1 has been an important target for the development of cancer therapy. Although TfR1 is highly expressed in pancreatic cancers, what it carries out in these refractory cancers remains poorly understood. Here we report that TfR1 supports mitochondrial respiration and ROS production in human pancreatic ductal adenocarcinoma (PDAC) cells, which is required for their tumorigenic growth. Elevated TfR1 expression in PDAC cells contributes to oxidative phosphorylation, which allows for the generation of ROS. Importantly, mitochondrial-derived ROS are essential for PDAC growth. However, exogenous iron supplement cannot rescue the defects caused by TfR1 knockdown. Moreover, we found that TfR1 expression determines PDAC cells sensitivity to oxidative stress. Together, our findings reveal that TfR1 can contribute to the mitochondrial respiration and ROS production, which have essential roles in growth and survival of pancreatic cancer. - Highlights: • Pancreatic ductal adenocarcinoma (PDAC) exhibits an elevated transferrin receptor (TfR1) expression in comparison with non-transformed pancreatic cells. • TfR1 is required for PDAC growth by regulating mitochondrial respiration and ROS production. • TfR1 functions as a determinant of cell viability to oxidative stress in PDAC cells.

  15. G+C content dominates intrinsic nucleosome occupancy

    Directory of Open Access Journals (Sweden)

    Hughes Timothy R

    2009-12-01

    Full Text Available Abstract Background The relative preference of nucleosomes to form on individual DNA sequences plays a major role in genome packaging. A wide variety of DNA sequence features are believed to influence nucleosome formation, including periodic dinucleotide signals, poly-A stretches and other short motifs, and sequence properties that influence DNA structure, including base content. It was recently shown by Kaplan et al. that a probabilistic model using composition of all 5-mers within a nucleosome-sized tiling window accurately predicts intrinsic nucleosome occupancy across an entire genome in vitro. However, the model is complicated, and it is not clear which specific DNA sequence properties are most important for intrinsic nucleosome-forming preferences. Results We find that a simple linear combination of only 14 simple DNA sequence attributes (G+C content, two transformations of dinucleotide composition, and the frequency of eleven 4-bp sequences explains nucleosome occupancy in vitro and in vivo in a manner comparable to the Kaplan model. G+C content and frequency of AAAA are the most important features. G+C content is dominant, alone explaining ~50% of the variation in nucleosome occupancy in vitro. Conclusions Our findings provide a dramatically simplified means to predict and understand intrinsic nucleosome occupancy. G+C content may dominate because it both reduces frequency of poly-A-like stretches and correlates with many other DNA structural characteristics. Since G+C content is enriched or depleted at many types of features in diverse eukaryotic genomes, our results suggest that variation in nucleotide composition may have a widespread and direct influence on chromatin structure.

  16. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants.

    Science.gov (United States)

    Sosan, Arifa; Svistunenko, Dimitri; Straltsova, Darya; Tsiurkina, Katsiaryna; Smolich, Igor; Lawson, Tracy; Subramaniam, Sunitha; Golovko, Vladimir; Anderson, David; Sokolik, Anatoliy; Colbeck, Ian; Demidchik, Vadim

    2016-01-01

    Silver nanoparticles (Ag NPs) are the world's most important nanomaterial and nanotoxicant. The aim of this study was to determine the early stages of interactions between Ag NPs and plant cells, and to investigate their physiological roles. We have shown that the addition of Ag NPs to cultivation medium, at levels above 300 mg L(-1) , inhibited Arabidopsis thaliana root elongation and leaf expansion. This also resulted in decreased photosynthetic efficiency and the extreme accumulation of Ag in tissues. Acute application of Ag NPs induced a transient elevation of [Ca(2+) ]cyt and the accumulation of reactive oxygen species (ROS; partially generated by NADPH oxidase). Whole-cell patch-clamp measurements on root cell protoplasts demonstrated that Ag NPs slightly inhibited plasma membrane K(+) efflux and Ca(2+) influx currents, or caused membrane breakdown; however, in excised outside-out patches, Ag NPs activated Gd(3+) -sensitive Ca(2+) influx channels with unitary conductance of approximately 56 pS. Bulk particles did not modify the plasma membrane currents. Tests with electron paramagnetic resonance spectroscopy showed that Ag NPs were not able to catalyse hydroxyl radical generation, but that they directly oxidized the major plant antioxidant, l-ascorbic acid. Overall, the data presented shed light on mechanisms of the impact of nanosilver on plant cells, and show that these include the induction of classical stress signalling reactions (mediated by [Ca(2+) ]cyt and ROS) and a specific effect on the plasma membrane conductance and the reduced ascorbate. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. Interaction partners of PSD-93 studied by X-ray crystallography and fluorescence polarization spectroscopy

    DEFF Research Database (Denmark)

    Fiorentini, Monica; Bach, Anders; Strømgaard, Kristian

    2013-01-01

    PSD-93 (chapsyn-110, DLG2) is a member of the family of membrane-associated guanylate kinase (MAGUK) proteins. The MAGUK proteins are involved in receptor localization and signalling pathways. The best characterized MAGUK protein, PSD-95, is known to be involved in NMDA receptor signalling via it...

  18. A review on g-C3N4-based photocatalysts

    International Nuclear Information System (INIS)

    Wen, Jiuqing; Xie, Jun; Chen, Xiaobo; Li, Xin

    2017-01-01

    Graphical abstract: The photocatalytic fundamentals, versatile properties, design strategies and potential applications of g-C 3 N 4 -based photocatalysts were systematically summarized and addressed. - Highlights: • The photocatalytic fundamentals of g-C 3 N 4 were systematically summarized. • The versatile properties of g-C 3 N 4 photocatalysts were highlighted. • The different design strategies of g-C 3 N 4 photocatalysts were reviewed. • The important photocatalytic applications of g-C 3 N 4 were also addressed. - Abstract: As one of the most appealing and attractive technologies, heterogeneous photocatalysis has been utilized to directly harvest, convert and store renewable solar energy for producing sustainable and green solar fuels and a broad range of environmental applications. Due to their unique physicochemical, optical and electrical properties, a wide variety of g-C 3 N 4 -based photocatalysts have been designed to drive various reduction and oxidation reactions under light irradiation with suitable wavelengths. In this review, we have systematically summarized the photocatalytic fundamentals of g-C 3 N 4 -based photocatalysts, including fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C 3 N 4 -based photocatalysts. The versatile properties of g-C 3 N 4 -based photocatalysts are highlighted, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties. Various design strategies are also thoroughly reviewed, including band-gap engineering, defect control, dimensionality tuning, pore texture tailoring, surface sensitization, heterojunction construction, co-catalyst and nanocarbon loading. Many important applications are also addressed, such as photocatalytic water splitting (H 2 evolution and overall water splitting), degradation of pollutants, carbon dioxide reduction, selective organic

  19. Šiuolaikinės architektūros orientyrai: ikoniški pastatai hierarchinės klasifikacijos sistemoje

    Directory of Open Access Journals (Sweden)

    Almantas Bružas

    2011-06-01

    Full Text Available Architektūros orientyrai dažnai aptariami bendrai su gamtinės aplinkos elementais ir nenagrinėjami atsietai. Tačiau pastarųjų metų miestų vystymo tendencijos, nuolat didėjantis antropogeninių orientyrų skaičius miestovaizdyje bei auganti jų svarba reikalauja atidesnio požiūrio į šiuos miestų urbanistinės struktūros elementus. Straipsnyje aptariamas ikoniškų pastatų fenomenas bei kiti šiuolaikiniai architektūros orientyrai – aplinkoje savo fizinėmis bei estetinėmis savybėmis išsiskiriantys pastatai, urbanistiniai elementai bei šių kompleksai. Atsižvelgiant į pastarųjų metų miestų raidos kryptis bei urbanizuotos erdvės suvokimo sampratos pokyčius, siūloma šiuolaikinės architektūros orientyrus skirstyti į ikoniškos architektūros, erdvinės struktūros dominančių ir išsiskiriančių ženklų hierarchinius tipus. Aptariamos skirtingų tipų architektūros orientyrų skiriamosios savybės.Straipsnis lietuvių kalba

  20. Development of an in vitro skin sensitization test based on ROS production in THP-1 cells.

    Science.gov (United States)

    Saito, Kazutoshi; Miyazawa, Masaaki; Nukada, Yuko; Sakaguchi, Hitoshi; Nishiyama, Naohiro

    2013-03-01

    Recently, it has been reported that reactive oxygen species (ROS) produced by contact allergens can affect dendritic cell migration and contact hypersensitivity. The aim of the present study was to develop a new in vitro assay that could predict the skin sensitizing potential of chemicals by measuring ROS production in THP-1 (human monocytic leukemia cell line) cells. THP-1 cells were pre-loaded with a ROS sensitive fluorescent dye, 5-(and 6-)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA), for 15min, then incubated with test chemicals for 30min. The fluorescence intensity was measured by flow cytometry. For the skin sensitizers, 25 out of 30 induced over a 2-fold ROS production at more than 90% of cell viability. In contrast, increases were only seen in 4 out of 20 non-sensitizers. The overall accuracy for the local lymph node assay (LLNA) was 82% for 50 chemicals tested. A correlation was found between the estimated concentration showing 2-fold ROS production in the ROS assay and the EC3 values (estimated concentration required to induce positive response) of the LLNA. These results indicated that the THP-1 cell-based ROS assay was a rapid and highly sensitive detection system able to predict skin sensitizing potentials and potency of chemicals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Development of the GC-MS organic aerosol monitor (GC-MS OAM) for in-field detection of particulate organic compounds

    Science.gov (United States)

    Cropper, Paul M.; Overson, Devon K.; Cary, Robert A.; Eatough, Delbert J.; Chow, Judith C.; Hansen, Jaron C.

    2017-11-01

    Particulate matter (PM) is among the most harmful air pollutants to human health, but due to its complex chemical composition is poorly characterized. A large fraction of PM is composed of organic compounds, but these compounds are not regularly monitored due to limitations in current sampling and analysis techniques. The Organic Aerosol Monitor (GC-MS OAM) combines a collection device with thermal desorption, gas chromatography and mass spectrometry to quantitatively measure the carbonaceous components of PM on an hourly averaged basis. The GC-MS OAM is fully automated and has been successfully deployed in the field. It uses a chemically deactivated filter for collection followed by thermal desorption and GC-MS analysis. Laboratory tests show that detection limits range from 0.2 to 3 ng for 16 atmospherically relevant compounds, with the possibility for hundreds more. The GC-MS OAM was deployed in the field for semi-continuous measurement of the organic markers, levoglucosan, dehydroabietic acid, and polycyclic aromatic hydrocarbons (PAHs) from January to March 2015. Results illustrate the significance of this monitoring technique to characterize the organic components of PM and identify sources of pollution.

  2. Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress.

    Science.gov (United States)

    Kim, Jinhwan; Choi, Tae Gyu; Ding, Yan; Kim, Yeonghwan; Ha, Kwon Soo; Lee, Kyung Ho; Kang, Insug; Ha, Joohun; Kaufman, Randal J; Lee, Jinhwa; Choe, Wonchae; Kim, Sung Soo

    2008-11-01

    Prolonged accumulation of misfolded proteins in the endoplasmic reticulum (ER) results in ER stress-mediated apoptosis. Cyclophilins are protein chaperones that accelerate the rate of protein folding through their peptidyl-prolyl cis-trans isomerase (PPIase) activity. In this study, we demonstrated that ER stress activates the expression of the ER-localized cyclophilin B (CypB) gene through a novel ER stress response element. Overexpression of wild-type CypB attenuated ER stress-induced cell death, whereas overexpression of an isomerase activity-defective mutant, CypB/R62A, not only increased Ca(2+) leakage from the ER and ROS generation, but also decreased mitochondrial membrane potential, resulting in cell death following exposure to ER stress-inducing agents. siRNA-mediated inhibition of CypB expression rendered cells more vulnerable to ER stress. Finally, CypB interacted with the ER stress-related chaperones, Bip and Grp94. Taken together, we concluded that CypB performs a crucial function in protecting cells against ER stress via its PPIase activity.

  3. Jolkinolide B induces apoptosis of colorectal carcinoma through ROS-ER stress-Ca2+-mitochondria dependent pathway.

    Science.gov (United States)

    Zhang, Jing; Wang, Yang; Zhou, Ye; He, Qing-Yu

    2017-10-31

    Colorectal carcinoma (CRC) remains one of the leading causes of death in cancer-related diseases. In this study, we aimed to investigate the anticancer effect of Jolkinolide B (JB), a bioactive diterpenoid component isolated from the dried roots of Euphorbia fischeriana Steud, on CRC cells and its underlying mechanisms. We found that JB suppressed the cell viability and colony formation of CRC cells, HT29 and SW620. Annexin V/PI assay revealed that JB induced apoptosis in CRC cells, which was further confirmed by the increased expression of cleaved-caspase3 and cleaved-PARP. iTRAQ-based quantitative proteomics was performed to identify JB-regulated proteins in CRC cells. Gene Ontology (GO) analysis revealed that these JB-regulated proteins were mainly involved in ER stress response, which was evidenced by the expression of ER stress marker proteins, HSP90, Bip and PDI. Moreover, we found that JB provoked the generation of reactive oxygen species (ROS), and that inhibition of the ROS generation with N-acetyl L-cysteine could reverse the JB-induced apoptosis. Confocal microscopy and flow cytometry showed that JB treatment enhanced intracellular and mitochondrial Ca 2+ level and JC-1 assay revealed a loss of mitochondrial membrane potential in CRC after JB treatment. The mitochondrial Ca 2+ uptake and depolarization can be blocked by Ruthenium Red (RuRed), an inhibitor of mitochondrial Ca 2+ uniporter. Taken together, we demonstrated that JB exerts its anticancer effect by ER stress-Ca 2+ -mitochondria signaling, suggesting the promising chemotherapeutic potential of JB for the treatment of CRC.

  4. Serotonin-promoted elevation of ROS levels may lead to cardiac pathologies in diabetic rat

    Directory of Open Access Journals (Sweden)

    Ali Tahir

    2015-01-01

    Full Text Available Patients with diabetes mellitus (DM develop tendencies toward heart disease. Hyperglycemia induces the release of serotonin from enterochromaffin cells (EC. Serotonin was observed to elevate reactive oxygen species (ROS and downregulate antioxidant enzymes. As a result, elevated levels of serotonin could contribute to diabetic complications, including cardiac hypertrophy. In the present study, diabetes mellitus was induced in rats by alloxan administration; this was followed by the administration of serotonin to experimental animals. ROS, catalase (CAT, superoxide dismutase (SOD, B-type natriuretic peptide (BNP expression, and histopathological assessments were performed. Elevated ROS concentrations and decreased antioxidant enzyme activities were detected. Further, we observed an increase in cell surface area and elevated BNP expression which suggests that events associated with cardiac hypertrophy were increased in serotonin-administered diabetic rats. We conclude that serotonin secretion in diabetes could contribute to diabetic complications, including cardiac hypertrophy, through enhanced ROS production.

  5. BMP2 induces PANC-1 cell invasion by MMP-2 overexpression through ROS and ERK.

    Science.gov (United States)

    Liu, Jun; Ben, Qi-Wen; Yao, Wei-Yan; Zhang, Jian-Jun; Chen, Da-Fan; He, Xiang-Yi; Li, Lei; Yuan, Yao-Zong

    2012-06-01

    The emerging roles of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers have drawn great attention in cancer research. We hypothesized that BMP2 promotes cancer metastasis by modulating MMP-2 secretion and activity through intracellular ROS regulation and ERK activation in human pancreatic cancer. Our data show that stimulation of PANC-1 cells with BMP2 induced MMP-2 secretion and activation, associated with decreased E-cadherin expression, resulting in epithelial-to-mesenchymal transformation (EMT) and cell invasion. Blockade of ROS by the ROS scavenger, 2-MPG, abolished cell invasion, inhibited the EMT process and decreased MMP-2 expression, suggesting ROS accumulation caused an increase in MMP-2 expression in BMP2-stimulated PANC-1 cell invasion. Furthermore, treatment of PANC-1 cells with 2-MPG or ERK inhibitor PD98059 reduced the phosphorylation of ERK, resulting in attenuation of BMP2-induced cell invasion and MMP-2 activation. Taken together, these results suggest that BMP2 induces the cell invasion of PANC-1 cells by enhancing MMP-2 secretion and acting through ROS accumulation and ERK activation.

  6. Chelerythrine induced cell death through ROS-dependent ER stress in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Wu S

    2018-05-01

    Full Text Available Songjiang Wu, Yanying Yang, Feiping Li, Lifu Huang, Zihua Han, Guanfu Wang, Hongyuan Yu, Haiping Li Department of Urology, Enze Hospital of Taizhou Enze Medical Center (Group, Taizhou, China Introduction: Prostate cancer is the most common noncutaneous cancer and the second leading cause of cancer-related mortality worldwide and the third in USA in 2017. Chelerythrine (CHE, a naturalbenzo[c]phenanthridine alkaloid, formerly identified as a protein kinase C inhibitor, has also shown anticancer effect through a number of mechanisms. Herein, effect and mechanism of the CHE-induced apoptosis via reactive oxygen species (ROS-mediated endoplasmic reticulum (ER stress in prostate cancer cells were studied for the first time. Methods: In our present study, we investigated whether CHE induced cell viability decrease, colony formation inhibition, and apoptosis in a dose-dependent manner in PC-3 cells. In addition, we showed that CHE increases intracellular ROS and leads to ROS-dependent ER stress and cell apoptosis. Results: Pre-treatment with N-acetyl cysteine, an ROS scavenger, totally reversed the CHE-induced cancer cell apoptosis as well as ER stress activation, suggesting that the ROS generation was responsible for the anticancer effects of CHE. Conclusion: Taken together, our findings support one of the anticancer mechanisms by which CHE increased ROS accumulation in prostate cancer cells, thereby leading to ER stress and caused intrinsic apoptotic signaling. The study reveals that CHE could be a potential candidate for application in the treatment of prostate cancer. Keywords: chelerythrine, reactive oxygen species, endoplasmic reticulum stress, apoptosis, prostate cancer

  7. Functional Assembly of Soluble and Membrane Recombinant Proteins of Mammalian NADPH Oxidase Complex.

    Science.gov (United States)

    Souabni, Hajer; Ezzine, Aymen; Bizouarn, Tania; Baciou, Laura

    2017-01-01

    Activation of phagocyte cells from an innate immune system is associated with a massive consumption of molecular oxygen to generate highly reactive oxygen species (ROS) as microbial weapons. This is achieved by a multiprotein complex, the so-called NADPH oxidase. The activity of phagocyte NADPH oxidase relies on an assembly of more than five proteins, among them the membrane heterodimer named flavocytochrome b 558 (Cytb 558 ), constituted by the tight association of the gp91 phox (also named Nox2) and p22 phox proteins. The Cytb 558 is the membrane catalytic core of the NADPH oxidase complex, through which the reducing equivalent provided by NADPH is transferred via the associated prosthetic groups (one flavin and two hemes) to reduce dioxygen into superoxide anion. The other major proteins (p47 phox , p67 phox , p40 phox , Rac) requisite for the complex activity are cytosolic proteins. Thus, the NADPH oxidase functioning relies on a synergic multi-partner assembly that in vivo can be hardly studied at the molecular level due to the cell complexity. Thus, a cell-free assay method has been developed to study the NADPH oxidase activity that allows measuring and eventually quantifying the ROS generation based on optical techniques following reduction of cytochrome c. This setup is a valuable tool for the identification of protein interactions, of crucial components and additives for a functional enzyme. Recently, this method was improved by the engineering and the production of a complete recombinant NADPH oxidase complex using the combination of purified proteins expressed in bacterial and yeast host cells. The reconstitution into artificial membrane leads to a fully controllable system that permits fine functional studies.

  8. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis

    Science.gov (United States)

    Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D.; Aneja, Ritu

    2015-01-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ~72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. PMID:25064160

  9. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis.

    Science.gov (United States)

    Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D; Aneja, Ritu

    2014-10-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ~72% upon daily oral administration of 150mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma.

    Science.gov (United States)

    Li, Ming; Mukasa, Akitake; Inda, Maria del-Mar; Zhang, Jianhua; Chin, Lynda; Cavenee, Webster; Furnari, Frank

    2011-12-19

    Although GBP1 (guanylate binding protein 1) was among the first interferon-inducible proteins identified, its function is still largely unknown. Epidermal growth factor receptor (EGFR) activation by amplification or mutation is one of the most frequent genetic lesions in a variety of human tumors. These include glioblastoma multiforme (GBM), which is characterized by independent but interrelated features of extensive invasion into normal brain parenchyma, rapid growth, necrosis, and angiogenesis. In this study, we show that EGFR activation promoted GBP1 expression in GBM cell lines through a signaling pathway involving Src and p38 mitogen-activated protein kinase. Moreover, we identified YY1 (Yin Yang 1) as the downstream transcriptional regulator regulating EGFR-driven GBP1 expression. GBP1 was required for EGFR-mediated MMP1 (matrix metalloproteinase 1) expression and glioma cell invasion in vitro. Although deregulation of GBP1 expression did not affect glioma cell proliferation, overexpression of GBP1 enhanced glioma cell invasion through MMP1 induction, which required its C-terminal helical domain and was independent of its GTPase activity. Reducing GBP1 levels by RNA interference in invasive GBM cells also markedly inhibited their ability to infiltrate the brain parenchyma of mice. GBP1 expression was high and positively correlated with EGFR expression in human GBM tumors and cell lines, particularly those of the neural subtype. Together, these findings establish GBP1 as a previously unknown link between EGFR activity and MMP1 expression and nominate it as a novel potential therapeutic target for inhibiting GBM invasion.

  11. ROS and RNS Signaling in Heart Disorders: Could Antioxidant Treatment Be Successful?

    Directory of Open Access Journals (Sweden)

    Igor Afanas'ev

    2011-01-01

    Full Text Available There is not too much success in the antioxidant treatment of heart deceases in humans. However a new approach is now developed that suggests that depending on their structures and concentrations antioxidants can exhibit much more complicated functions in many pathological disorders. It is now well established that physiological free radicals superoxide and nitric oxide together with their derivatives hydrogen peroxide and peroxynitrite (all are named reactive oxygen species (ROS and reactive nitrogen species (RNS play a more important role in heart diseases through their signaling functions. Correspondingly this work is dedicated to the consideration of damaging signaling by ROS and RNS in various heart and vascular disorders: heart failure (congestive heart failure or CHF, left ventricular hypertrophy (LVH, coronary heart disease, cardiac arrhythmias, and so forth. It will be demonstrated that ROS overproduction (oxidative stress is a main origin of the transformation of normal physiological signaling processes into the damaging ones. Furthermore the favorable effects of low/moderate oxidative stress through preconditioning mechanisms in ischemia/reperfusion will be considered. And in the last part we will discuss the possibility of efficient application of antioxidants and enzyme/gene inhibitors for the regulation of damaging ROS signaling in heart disorders.

  12. The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells

    Science.gov (United States)

    Szili, Endre J.; Harding, Frances J.; Hong, Sung-Ha; Herrmann, Franziska; Voelcker, Nicolas H.; Short, Robert D.

    2015-12-01

    We have examined the link between ionized-gas plasma delivery of reactive oxygen species (ROS) to immortalized keratinocyte (HaCaT) cells and cell fate, defined in terms of cell viability versus death. Phospholipid vesicles were used as cell mimics to measure the possible intracellular ROS concentration, [ROSi], delivered by various plasma treatments. Cells were exposed to a helium cold atmospheric plasma (CAP) jet for different plasma exposure times (5-60 s) and gas flow rates (50-1000 ml min-1). Based upon the [ROSi] data we argue that plasma-generated ROS in the cell culture medium can readily diffuse into real cells. Plasma exposure that equated to an [ROSi] in the range of 3.81  ×  10-10-9.47  ×  10-8 M, measured at 1 h after the plasma exposure, resulted in increased cell viability at 72 h; whereas a higher [ROSi] at 1 h decreased cell viability after 72 h of culture. This may be because of the manner in which the ROS are delivered by the plasma: HaCaT cells better tolerate a low ROS flux over an extended plasma exposure period of 1 min, compared to a high flux delivered in a few seconds, although the final [ROSi] may be the same. Our results suggest that plasma stimulation of HaCaT cells follows the principle of hormesis.

  13. Bioaccumulation study of acrylate monomers in algae (Chlorella Kessleri) by PY-GC and PY-GC/MS

    International Nuclear Information System (INIS)

    Halas, L.; Orinak, A.; Adamova, M.; Ladomersky, J.

    2004-01-01

    Acrylate monomers methylmethacrylate (MMA) and cyclohexylmethacrylate (CHMA) bioaccumulation has been determined in aquatic organism, algae (Chlorella kessleri). Algae were collected in amount of 0.4 mg and directly injected to the paralytic cell. In algae bodies accumulated monomers were analysed by pyrolysis gas chromatography (Py-GC) and pyrolysis gas chromatography coupled with mass spectrometry (Py-GC/MS). Traces of the accumulated monomers in algae body can be determined after 1-, 2 -, 3-weeks of incubation. Maximum content of MMA was determined after 3-week of experiment, contrariwise in the case of CHMA after 2-week exposition. Relationship with pyrolysis temperature has also been studied. (authors)

  14. Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS.

    Science.gov (United States)

    Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko

    2009-03-31

    Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development.

  15. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    Science.gov (United States)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  16. Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum.

    Science.gov (United States)

    Arfaoui, Arbia; El Hadrami, Abdelbasset; Daayf, Fouad

    2018-01-01

    Considering the high incidence of white mold caused by Sclerotinia sclerotiorum in a variety of field crops and vegetables, different control strategies are needed to keep the disease under economical threshold. This study assessed the effect of foliar application of a calcium formulation on disease symptoms, oxalic acid production, and on the oxidative stress metabolism in soybean plants inoculated with each of two isolates of the pathogen that have contrasting aggressiveness (HA, highly-aggressive versus WA, weakly-aggressive). Changes in reactive oxygen species (ROS) levels in soybean plants inoculated with S. sclerotiorum isolates were assessed at 6, 24, 48 and 72 h post inoculation (hpi). Generation of ROS including hydrogen peroxide (H 2 O 2 ), anion superoxide (O 2 - ) and hydroxyl radical (OH) was evaluated. Inoculation with the WA isolate resulted in more ROS accumulation compared to the HA isolate. Pre-treatment with the calcium formulation restored ROS production in plants inoculated with the HA isolate. We also noted a marked decrease in oxalic acid content in the leaves inoculated with the HA isolate in presence of calcium, which coincided with an increase in plant ROS production. The expression patterns of genes involved in ROS detoxification in response to the calcium treatments and/or inoculation with S. Sclerotiorum isolates were monitored by RT-qPCR. All of the tested genes showed a higher expression in response to inoculation with the WA isolate. The expression of most genes tested peaked at 6 hpi, which preceded ROS accumulation in the soybean leaves. Overall, these data suggest that foliar application of calcium contributes to a decrease in oxalic acid production and disease, arguably via modulation of the ROS metabolism. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cheng

    2016-01-01

    Full Text Available The opening of mitochondrial permeability transition pore (mPTP is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxygen species (ROS and glycogen synthase kinase 3β (GSK-3β, in the regulation of mPTP opening. We found that formononetin suppressed the formation of ROS and superoxide in a concentration-dependent manner. Formononetin also rescued OGD/reoxygenation-induced loss of mitochondrial membrane integrity. Further studies suggested that formononetin induced Akt activation and GSK-3β (Ser9 phosphorylation, thereby reducing GSK-3β activity towards mPTP opening. PI3K and PKC inhibitors abolished the effects of formononetin on mPTP opening and GSK-3β phosphorylation. Immunoprecipitation experiments further revealed that formononetin increased the binding of phosphor-GSK-3β to adenine nucleotide translocase (ANT while it disrupted the complex of ANT with cyclophilin D. Moreover, immunofluorescence revealed that phospho-GSK-3β (Ser9 was mainly deposited in the space between mitochondria and cell nucleus. Collectively, these results indicated that formononetin protected cardiomyocytes from OGD/reoxygenation injury via inhibiting ROS formation and promoting GSK-3β phosphorylation.

  18. Middle distillates hydrogen content via GC×GC-FID.

    Science.gov (United States)

    Vozka, Petr; Mo, Huaping; Šimáček, Pavel; Kilaz, Gozdem

    2018-08-15

    Liquid transportation fuels in the middle distillate range contain thousands of hydrocarbons making the predictions and calculations of properties from composition a challenging process. We present a new approach of hydrogen content determination by comprehensive two-dimensional gas chromatography with flame ionization detector (GC×GC-FID) using a weighted average method. GC×GC-FID hydrogen determination precision was excellent (0.005 wt% repeatability). The method accuracy was evaluated by high-resolution nuclear magnetic resonance (NMR) technique, which is non-biased, measures the H signal directly and was independently validated by controls in the current study. The hydrogen content (in the range of 12.72-15.54 wt%) in 28 fuel samples were determined using GC×GC-FID. Results were within ± 2% of those obtained via NMR. Owing to the fact that NMR is accepted as an accurate technique for hydrogen content determination, the GC×GC method proposed in this study can be considered precise and accurate. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Thymosin β10 expression driven by the human TERT promoter induces ovarian cancer-specific apoptosis through ROS production.

    Directory of Open Access Journals (Sweden)

    Young-Chae Kim

    Full Text Available Thymosin β(10 (Tβ(10 regulates actin dynamics as a cytoplasm G-actin sequestering protein. Previously, we have shown that Tβ(10 diminishes tumor growth, angiogenesis, and proliferation by disrupting actin and by inhibiting Ras. However, little is known about its mechanism of action and biological function. In the present study, we establish a new gene therapy model using a genetically modified adenovirus, referred to as Ad.TERT.Tβ(10, that can overexpress the Tβ(10 gene in cancer cells. This was accomplished by replacing the native Tβ(10 gene promoter with the human TERT promoter in Ad.TERT.Tβ(10. We investigated the cancer suppression activity of Tβ(10 and found that Ad.TERT.Tβ(10 strikingly induced cancer-specific expression of Tβ(10 as well as apoptosis in a co-culture model of human primary ovarian cancer cells and normal fibroblasts. Additionally, Ad.TERT.Tβ(10 decreased mitochondrial membrane potential and increased reactive oxygen species (ROS production. These effects were amplified by co-treatment with anticancer drugs, such as paclitaxel and cisplatin. These findings indicate that the rise in ROS production due to actin disruption by Tβ(10 overexpression increases apoptosis of human ovarian cancer cells. Indeed, the cancer-specific overexpression of Tβ(10 by Ad.TERT.Tβ(10 could be a valuable anti-cancer therapeutic for the treatment of ovarian cancer without toxicity to normal cells.

  20. The measurement of muscle protein synthesis in broilers with a flooding dose technique: use of 15N-labelled phenylalanine, GC-MS and GC-C-IRMS.

    Science.gov (United States)

    Dänicke, S; Böttcher, W; Simon, O; Jeroch, H

    2001-01-01

    An experiment was carried out to measure fractional muscle protein synthesis rates (k(s)) in broilers with injection of a flooding dose of phenylalanine (1 ml/100 g body weight of 150 mM phenylalanine; 38 atom percent excess (APE) [15N]phenylalanine). K(s) was calculated from the [15N] enrichment in phenylalanine of tissue-free and protein-bound phenylalanine using both gas chromatography mass spectrometry (GC-MS) and gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) for measurements after a 10 min isotope incorporation period. The tertiary-butyldimethylsilyl (t-BDMS) derivatives of phenylalanine were used for gas chromatographic separation in both systems. GC-MS and GC-C-IRMS were calibrated for a range of 7 to 37 [15N]APE and 0 to 0.62 [15N]APE, respectively, and for sample sizes of 0.45 to 4.5 nmol phenylalanine and 7 to 40 nmol phenylalanine, respectively. Reproducibility of standards as a measure of precision varied from 0.06 to 0.29 [15N]APE and from 0.0004 to 0.0018 [15N]APE in GC-MS and GC-C-IRMS, respectively. K(s) was measured in the m. pectoralis major of broilers fed rye based diets (56%) which were provided either unsupplemented (-) or supplemented (+) with an enzyme preparation containing xylanase. K(s) in breast muscles was significantly increased from 21.8%/d to 23.9%/d due to enzyme supplementation. It can be concluded from the study that the measurement of protein synthesis in broilers with the flooding dose technique can be carried out by using [15N]phenylalanine, GC-MS and GC-C-IRMS.

  1. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper.

    Science.gov (United States)

    Chowra, Umakanta; Yanase, Emiko; Koyama, Hiroyuki; Panda, Sanjib Kumar

    2017-01-01

    Aluminium-induced oxidative damage caused by excessive ROS production was evaluated in black gram pulse crop. Black gram plants were treated with different aluminium (Al 3+ ) concentrations (10, 50 and 100 μM with pH 4.7) and further the effects of Al 3+ were characterised by means of root growth inhibition, histochemical assay, ROS content analysis, protein carbonylation quantification and 1 H-NMR analysis. The results showed that aluminium induces excessive ROS production which leads to cellular damage, root injury, stunt root growth and other metabolic shifts. In black gram, Al 3+ induces cellular damage at the earliest stage of stress which was characterised from histochemical analysis. From this study, it was observed that prolonged stress can activate certain aluminium detoxification defence mechanism. Probably excessive ROS triggers such defence mechanism in black gram. Al 3+ can induce excessive ROS initially in the root region then transported to other parts of the plant. As much as the Al 3+ concentration increases, the rate of cellular injury and ROS production also increases. But after 72 h of stress, plants showed a lowered ROS level and cellular damage which indicates the upregulation of defensive mechanisms. Metabolic shift analysis also showed that the black gram plant under stress has less metabolic content after 24 h of treatment, but gradually, it was increased after 72 h of treatment. It was assumed that ROS played the most important role as a signalling molecule for aluminium stress in black gram.

  2. Integrated cancer therapy combined radiotherapy and immunotherapy. The challenge of using Gc protein-derived macrophage activating factor (GcMAF) as a key molecule

    International Nuclear Information System (INIS)

    Uto, Yoshihiro; Hori, Hitoshi

    2013-01-01

    Radiation oncologists know the conflict between radiotherapy and immunotherapy, but now challenged trails of the integrative cancer therapies combined radiation therapy and various immunoreaction/immune therapies begin. We therefore review the recent results of basic research and clinical trial of the integrated cancer therapies which combined radiotherapy and various immune therapies/immunoreaction, and the challenged studies of combined use of radiotherapy and our developed cancer immunotherapy using serum GcMAF which is human serum containing Gc protein-derived macrophage activating factor (GcMAF). (author)

  3. Comprehensive analysis of yeast metabolite GC x GC-TOFMS data: combining discovery-mode and deconvolution chemometric software.

    Science.gov (United States)

    Mohler, Rachel E; Dombek, Kenneth M; Hoggard, Jamin C; Pierce, Karisa M; Young, Elton T; Synovec, Robert E

    2007-08-01

    The first extensive study of yeast metabolite GC x GC-TOFMS data from cells grown under fermenting, R, and respiring, DR, conditions is reported. In this study, recently developed chemometric software for use with three-dimensional instrumentation data was implemented, using a statistically-based Fisher ratio method. The Fisher ratio method is fully automated and will rapidly reduce the data to pinpoint two-dimensional chromatographic peaks differentiating sample types while utilizing all the mass channels. The effect of lowering the Fisher ratio threshold on peak identification was studied. At the lowest threshold (just above the noise level), 73 metabolite peaks were identified, nearly three-fold greater than the number of previously reported metabolite peaks identified (26). In addition to the 73 identified metabolites, 81 unknown metabolites were also located. A Parallel Factor Analysis graphical user interface (PARAFAC GUI) was applied to selected mass channels to obtain a concentration ratio, for each metabolite under the two growth conditions. Of the 73 known metabolites identified by the Fisher ratio method, 54 were statistically changing to the 95% confidence limit between the DR and R conditions according to the rigorous Student's t-test. PARAFAC determined the concentration ratio and provided a fully-deconvoluted (i.e. mathematically resolved) mass spectrum for each of the metabolites. The combination of the Fisher ratio method with the PARAFAC GUI provides high-throughput software for discovery-based metabolomics research, and is novel for GC x GC-TOFMS data due to the use of the entire data set in the analysis (640 MB x 70 runs, double precision floating point).

  4. Environment exploration and SLAM experiment research based on ROS

    Science.gov (United States)

    Li, Zhize; Zheng, Wei

    2017-11-01

    Robots need to get the information of surrounding environment by means of map learning. SLAM or navigation based on mobile robots is developing rapidly. ROS (Robot Operating System) is widely used in the field of robots because of the convenient code reuse and open source. Numerous excellent algorithms of SLAM or navigation are ported to ROS package. hector_slam is one of them that can set up occupancy grid maps on-line fast with low computation resources requiring. Its characters above make the embedded handheld mapping system possible. Similarly, hector_navigation also does well in the navigation field. It can finish path planning and environment exploration by itself using only an environmental sensor. Combining hector_navigation with hector_slam can realize low cost environment exploration, path planning and slam at the same time

  5. Kuula : Sigur Ros rokiklubis. Kammemuusikat Tallinnas. Loomade reekviem

    Index Scriptorium Estoniae

    2008-01-01

    23. aug. esineb Tallinna rokiklubis Rock Café islandi bänd Sigur Ros. Pille Lille muusikute toetusfondi korraldatavast Tallinna Kammermuusika festivalist 17.-23. aug. Tallinna Rootsi Mihkli kirikus, Raekojas ja Jaani kirkus (vt. www.plmf.ee). Kontserdist Nargen Festivali raames 30. ja 31. aug. Tallinna loomaaias

  6. Biomarkers for ALK and ROS1 in Lung Cancer: Immunohistochemistry and Fluorescent In Situ Hybridization.

    Science.gov (United States)

    Luk, Peter P; Selinger, Christina I; Mahar, Annabelle; Cooper, Wendy A

    2018-06-14

    - A small proportion of non-small cell lung cancers harbor rearrangements of ALK or ROS1 genes, and these tumors are sensitive to targeted tyrosine kinase inhibitors. It is crucial for pathologists to accurately identify tumors with these genetic alterations to enable patients to access optimal treatments and avoid unnecessary side effects of less effective agents. Although a number of different techniques can be used to identify ALK- and ROS1-rearranged lung cancers, immunohistochemistry and fluorescence in situ hybridization are the mainstays. - To review the role of immunohistochemistry in assessment of ALK and ROS1 rearrangements in lung cancer, focusing on practical issues in comparison with other modalities such as fluorescence in situ hybridization. - This manuscript reviews the current literature on ALK and ROS1 detection using immunohistochemistry and fluorescence in situ hybridization as well as current recommendations. - Although fluorescence in situ hybridization remains the gold standard for detecting ALK and ROS1 rearrangement in non-small cell lung cancer, immunohistochemistry plays an important role and can be an effective screening method for detection of these genetic alterations, or a diagnostic test in the setting of ALK.

  7. Membrane gas sensors for fermentation monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mandenius, C F

    1987-12-01

    Results of a study on membrane gas sensors are presented to show their general applicability to fermentation monitoring of volatiles, such as alcohols, organic acids and aldehydes under various process and reactor conditions. Permeable silicone (Noax AB) and teflon (fluorcarbon AB) are tested as material for a gas sensor. The silicone tubing method is mainly used and ethanolic fermentation is performed in the study. Investigation is made to determine the dependence of the sensitivity of the sensors on the temperature, pH, concentration and other properties of fermentation liquid. The effect of temperature on the ethanol response is investigated in the temperature range of 7-50/sup 0/C to reveal that the response time decreases while the sensor's sensitivity increases with an increasing temperature. Comparison among methanol, ethyl acetate, acetaldehyde and ethanol is made with respect to the effect of their concentration on the sensitivity of a sensor. Results of a three-month measurement with the sensor immersed in fermentation liquid are compared with those of GC analysis to investigate the correlation between the sensor's sensitivity and GC analysis data. (11 figs, 17 refs)

  8. Mitochondrial outer membrane permeabilization increases reactive oxygen species production and decreases mean sperm velocity but is not associated with DNA fragmentation in human sperm.

    Science.gov (United States)

    Treulen, F; Uribe, P; Boguen, R; Villegas, J V

    2016-02-01

    Does induction of mitochondrial outer membrane permeabilization (MOMP) in vitro affect specific functional parameters of human spermatozoa? Our findings show that MOMP induction increases intracellular reactive oxygen species (ROS) and decreases mean sperm velocity but does not alter DNA integrity. MOMP in somatic cells is related to a variety of apoptotic traits, such as alteration of mitochondrial membrane potential (ΔΨm), and increase in ROS production and DNA fragmentation. Although the presence of these apoptotic features has been reported in spermatozoa, to date the effects of MOMP on sperm function and DNA integrity have not been analysed. The study included spermatozoa from fertile donors. Motile sperm were obtained using the swim-up method. The highly motile sperm were collected and diluted with human tubal fluid to a final cell concentration of 5 × 10(6) ml(-1). To induce MOMP, selected sperm were treated at 37°C for 4 h with a mimetic of a Bcl-2 pro-apoptotic protein, ABT-737. MOMP was evaluated by relocating of cytochrome c. In addition, the effect of ABT-737 on mitochondrial inner membrane permeabilization was assessed using the calcein-AM/cobalt chloride method. In turn, ΔΨm was evaluated with JC-1 staining, intracellular ROS production with dihydroethidium, sperm motility was analysed by computer-assisted sperm analysis and DNA fragmentation by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay. Measurements were performed by flow cytometry. MOMP was associated with ΔΨm dissipation (P < 0.05), increased ROS production (P < 0.05) and decreased mean sperm velocity (P < 0.05), but it was not associated with DNA fragmentation. MOMP did not induce a large increase in ROS, which could explain the negligible effect of MOMP on sperm DNA fragmentation under our experimental conditions. The study was carried out in vitro using highly motile sperm, selected by swim-up, from healthy donors. The results obtained in this

  9. Contribution of liver mitochondrial membrane-bound glutathione transferase to mitochondrial permeability transition pores

    International Nuclear Information System (INIS)

    Hossain, Quazi Sohel; Ulziikhishig, Enkhbaatar; Lee, Kang Kwang; Yamamoto, Hideyuki; Aniya, Yoko

    2009-01-01

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated with GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca 2+ -mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1

  10. ROS dependent copper toxicity in Hydra-biochemical and molecular study.

    Science.gov (United States)

    Zeeshan, Mohammed; Murugadas, Anbazhagan; Ghaskadbi, Surendra; Rajendran, Ramasamy Babu; Akbarsha, Mohammad Abdulkader

    2016-01-01

    Copper, an essential microelement, is known to be toxic to aquatic life at concentrations higher than that could be tolerated. Copper-induced oxidative stress has been documented in vitro, yet the in vivo effects of metal-induced oxidative stress have not been extensively studied in the lower invertebrates. The objective of the present study has been to find the effect of ROS-mediated toxicity of environmentally relevant concentrations of copper at organismal and cellular levels in Hydra magnipapillata. Exposure to copper at sublethal concentrations (0.06 and 0.1mg/L) for 24 or 48h resulted in generation of significant levels of intracellular reactive oxygen species (ROS). We infer that the free radicals here originate predominantly at the lysosomes but partly at the mitochondria also as visualized by H2-DHCFDA staining. Quantitative real-time PCR of RNA extracted from copper-exposed polyps revealed dose-dependent up-regulation of all antioxidant response genes (CAT, SOD, GPx, GST, GR, G6PD). Concurrent increase of Hsp70 and FoxO genes suggests the ability of polyps to respond to stress, which at 48h was not the same as at 24h. Interestingly, the transcript levels of all genes were down-regulated at 48h as compared to 24h incubation period. Comet assay indicated copper as a powerful genotoxicant, and the DNA damage was dose- as well as duration-dependent. Western blotting of proteins (Bax, Bcl-2 and caspase-3) confirmed ROS-mediated mitochondrial cell death in copper-exposed animals. These changes correlated well with changes in morphology, regeneration and aspects of reproduction. Taken together, the results indicate increased production of intracellular ROS in Hydra on copper exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. GC-Content Normalization for RNA-Seq Data

    Science.gov (United States)

    2011-01-01

    Background Transcriptome sequencing (RNA-Seq) has become the assay of choice for high-throughput studies of gene expression. However, as is the case with microarrays, major technology-related artifacts and biases affect the resulting expression measures. Normalization is therefore essential to ensure accurate inference of expression levels and subsequent analyses thereof. Results We focus on biases related to GC-content and demonstrate the existence of strong sample-specific GC-content effects on RNA-Seq read counts, which can substantially bias differential expression analysis. We propose three simple within-lane gene-level GC-content normalization approaches and assess their performance on two different RNA-Seq datasets, involving different species and experimental designs. Our methods are compared to state-of-the-art normalization procedures in terms of bias and mean squared error for expression fold-change estimation and in terms of Type I error and p-value distributions for tests of differential expression. The exploratory data analysis and normalization methods proposed in this article are implemented in the open-source Bioconductor R package EDASeq. Conclusions Our within-lane normalization procedures, followed by between-lane normalization, reduce GC-content bias and lead to more accurate estimates of expression fold-changes and tests of differential expression. Such results are crucial for the biological interpretation of RNA-Seq experiments, where downstream analyses can be sensitive to the supplied lists of genes. PMID:22177264

  12. Philip Glass, Scott Walker ja Sigur Ros! / Immo Mihkelson

    Index Scriptorium Estoniae

    Mihkelson, Immo, 1959-

    2007-01-01

    Pimedate Ööde 11. filmifestivali muusikafilme - Austraalia "Glass: Philipi portree 12 osas" (rež. Scott Hicks), Islandi "Sigur Ros kodus" (rež. Dean DeBois), Suurbritannia "Scott Walker: 30 Century Man" (rež. Stephen Kijak)

  13. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): Review

    International Nuclear Information System (INIS)

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J.

    2015-01-01

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a “soft” ion source for preserving highly diagnostic molecular ion is desirable, as compared to the “hard” ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. - Highlights: • Atmospheric pressure ion sources (APCI, ESI, APPI, APLC etc) enable the coupling of LC-based high-end MS to GC. • APIs show advantages in selectivity and sensitivity compared with EI in GC-MS. • Accurate mass database in GC-APCI/MS is emerging as an alternative to GC-EI/MS database.

  14. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): Review

    Energy Technology Data Exchange (ETDEWEB)

    Li, Du-Xin; Gan, Lin; Bronja, Amela [University of Duisburg-Essen, Applied Analytical Chemistry, Universitaetsstr. 5-7, 45141 Essen (Germany); Schmitz, Oliver J., E-mail: oliver.schmitz@uni-due.de [University of Duisburg-Essen, Applied Analytical Chemistry, Universitaetsstr. 5-7, 45141 Essen (Germany)

    2015-09-03

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a “soft” ion source for preserving highly diagnostic molecular ion is desirable, as compared to the “hard” ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. - Highlights: • Atmospheric pressure ion sources (APCI, ESI, APPI, APLC etc) enable the coupling of LC-based high-end MS to GC. • APIs show advantages in selectivity and sensitivity compared with EI in GC-MS. • Accurate mass database in GC-APCI/MS is emerging as an alternative to GC-EI/MS database.

  15. Association between ROS production, swelling and the respirasome integrity in cardiac mitochondria.

    Science.gov (United States)

    Jang, Sehwan; Javadov, Sabzali

    2017-09-15

    Although mitochondrial Ca 2+ overload and ROS production play a critical role in mitochondria-mediated cell death, a cause-effect relationship between them remains elusive. This study elucidated the crosstalk between mitochondrial swelling, ROS production, and electron transfer chain (ETC) supercomplexes in rat heart mitochondria in response to Ca 2+ and tert-butyl hydroperoxide (TBH), a lipid-soluble organic peroxide. Results showed that ROS production induced by TBH was significantly increased in the presence of Ca 2+ in a dose-dependent manner. TBH markedly inhibited the state 3 respiration rate with no effect on the mitochondrial swelling. Ca 2+ exerted a slight effect on mitochondrial respiration that was greatly aggravated by TBH. Analysis of supercomplexes revealed a minor difference in the presence of TBH and/or Ca 2+ . However, incubation of mitochondria in the presence of high Ca 2+ (1 mM) or inhibitors of ETC complexes (rotenone and antimycin A) induced disintegration of the main supercomplex, respirasome. Thus, PTP-dependent swelling of mitochondria solely depends on Ca 2+ but not ROS. TBH has no effect on the respirasome while Ca 2+ induces disintegration of the supercomplex only at a high concentration. Intactness of individual ETC complexes I and III is important for maintenance of the structural integrity of the respirasome. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Desarrollo de un robot móvil compacto integrado en el middleware ROS

    Directory of Open Access Journals (Sweden)

    André Araújo

    2014-07-01

    Full Text Available Resumen: En este trabajo se presenta el robot TraxBot y su integración completa en el Robot Operating System (ROS. El TraxBot es una plataforma de robótica móvil, desarrollada y ensamblada en el Instituto de Sistemas y Robótica (ISR Coimbra. El objetivo de este trabajo es reducir drásticamente el tiempo de desarrollo, proporcionando abstracción de hardware y modos de operación intuitiva, permitiendo a los investigadores centrarse en sus motivaciones principales de investigación, por ejemplo, la búsqueda y rescate con múltiples robots o robótica de enjambres. Se describen las potencialidades del TraxBot, que combinado con un controlador de ROS específicamente desarrollado, facilita el uso de varias herramientas para el análisis de datos y la interacción entre múltiples robots, sensores y dispositivos de teleoperación. Para validar el sistema, se llevaron a cabo diversas pruebas experimentales utilizando robots reales y virtuales. Abstract: This paper presents the TraxBot robot and its full integration in the Robotic Operating System (ROS. The TraxBot is a compact mobile robotic platform developed and assembled at the Institute of Systems and Robots (ISR Coimbra. The goal in this work is to drastically decrease the development time, providing hardware abstraction and intuitive operation modes, allowing researchers to focus in their main research motivations, e.g., search and rescue, multi-robot surveillance or swarm robotics. The potentialities of the TraxBot are described which, combined with the ROS driver developed, provide several tools for data analysis and easiness of interaction between multiple robots, sensors and tele-operation devices. To validate the approach, diverse experimental tests using real and virtual simulated robots were conducted. Palabras clave: ROS, robot móvil, sistemas embebidos, diseño, middleware, montaje y test., Keywords: ROS, mobile robot, Arduino, embedded system, design, assembling and testing.

  17. Pectins, ROS homeostasis and UV-B responses in plant roots.

    Science.gov (United States)

    Yokawa, Ken; Baluška, František

    2015-04-01

    Light from the sun contains far-red, visible and ultra violet (UV) wavelength regions. Almost all plant species have been evolved under the light environment. Interestingly, several photoreceptors, expressing both in shoots and roots, process the light information during the plant life cycle. Surprisingly, Arabidopsis root apices express besides the UVR8 UV-B receptor, also root-specific UV-B sensing proteins RUS1 and RUS2 linked to the polar cell-cell transport of auxin. In this mini-review, we focus on reactive oxygen species (ROS) signaling and possible roles of pectins internalized via endocytic vesicle recycling system in the root-specific UV-B perception and ROS homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Establishing the subcellular localization of photodynamically-induced ROS using 3,3′-diaminobenzidine: A methodological proposal, with a proof-of-concept demonstration

    DEFF Research Database (Denmark)

    Stockert, Juan Carlos; Blazquez-Castro, Alfonso

    2016-01-01

    The critical involvement of reactive oxygen species (ROS) in both physiological and pathological processes in cell biology makes their detection and assessment a fundamental topic in biomedical research. Established methodologies to study ROS in cell biology take advantage of oxidation reactions...... is proved in a photodynamic model of ROS generation, the principle is applicable to many different scenarios of intracellular ROS production. As a consequence this proposed methodology should greatly complement other techniques aiming at establishing a precise subcellular localization of ROS generation....... between the ROS and a reduced probe. After reacting the probe reveals the presence of ROS either by the appearance of colour (chromogenic reaction) or fluorescence (fluorogenic reaction). However current methodologies rarely allow for a site-specific detection of ROS production. Here we propose...

  19. Qualitative and Quantitative Analysis of ROS-Mediated Oridonin-Induced Oesophageal Cancer KYSE-150 Cell Apoptosis by Atomic Force Microscopy.

    Directory of Open Access Journals (Sweden)

    Jiang Pi

    Full Text Available High levels of intracellular reactive oxygen species (ROS in cells is recognized as one of the major causes of cancer cell apoptosis and has been developed into a promising therapeutic strategy for cancer therapy. However, whether apoptosis associated biophysical properties of cancer cells are related to intracellular ROS functions is still unclear. Here, for the first time, we determined the changes of biophysical properties associated with the ROS-mediated oesophageal cancer KYSE-150 cell apoptosis using high resolution atomic force microscopy (AFM. Oridonin was proved to induce ROS-mediated KYSE-150 cell apoptosis in a dose dependent manner, which could be reversed by N-acetylcysteine (NAC pretreatment. Based on AFM imaging, the morphological damage and ultrastructural changes of KYSE-150 cells were found to be closely associated with ROS-mediated oridonin-induced KYSE-150 cell apoptosis. The changes of cell stiffness determined by AFM force measurement also demonstrated ROS-dependent changes in oridonin induced KYSE-150 cell apoptosis. Our findings not only provided new insights into the anticancer effects of oridonin, but also highlighted the use of AFM as a qualitative and quantitative nanotool to detect ROS-mediated cancer cell apoptosis based on cell biophysical properties, providing novel information of the roles of ROS in cancer cell apoptosis at nanoscale.

  20. High GC content causes orphan proteins to be intrinsically disordered.

    Directory of Open Access Journals (Sweden)

    Walter Basile

    2017-03-01

    Full Text Available De novo creation of protein coding genes involves the formation of short ORFs from noncoding regions; some of these ORFs might then become fixed in the population. These orphan proteins need to, at the bare minimum, not cause serious harm to the organism, meaning that they should for instance not aggregate. Therefore, although the creation of short ORFs could be truly random, the fixation should be subjected to some selective pressure. The selective forces acting on orphan proteins have been elusive, and contradictory results have been reported. In Drosophila young proteins are more disordered than ancient ones, while the opposite trend is present in yeast. To the best of our knowledge no valid explanation for this difference has been proposed. To solve this riddle we studied structural properties and age of proteins in 187 eukaryotic organisms. We find that, with the exception of length, there are only small differences in the properties between proteins of different ages. However, when we take the GC content into account we noted that it could explain the opposite trends observed for orphans in yeast (low GC and Drosophila (high GC. GC content is correlated with codons coding for disorder promoting amino acids. This leads us to propose that intrinsic disorder is not a strong determining factor for fixation of orphan proteins. Instead these proteins largely resemble random proteins given a particular GC level. During evolution the properties of a protein change faster than the GC level causing the relationship between disorder and GC to gradually weaken.

  1. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore.

    Science.gov (United States)

    Rottenberg, Hagai; Hoek, Jan B

    2017-10-01

    Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. ROS-activated calcium signaling mechanisms regulating endothelial barrier function.

    Science.gov (United States)

    Di, Anke; Mehta, Dolly; Malik, Asrar B

    2016-09-01

    Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Differential GC Content between Exons and Introns Establishes Distinct Strategies of Splice-Site Recognition

    Directory of Open Access Journals (Sweden)

    Maayan Amit

    2012-05-01

    Full Text Available During evolution segments of homeothermic genomes underwent a GC content increase. Our analyses reveal that two exon-intron architectures have evolved from an ancestral state of low GC content exons flanked by short introns with a lower GC content. One group underwent a GC content elevation that abolished the differential exon-intron GC content, with introns remaining short. The other group retained the overall low GC content as well as the differential exon-intron GC content, and is associated with longer introns. We show that differential exon-intron GC content regulates exon inclusion level in this group, in which disease-associated mutations often lead to exon skipping. This group's exons also display higher nucleosome occupancy compared to flanking introns and exons of the other group, thus “marking” them for spliceosomal recognition. Collectively, our results reveal that differential exon-intron GC content is a previously unidentified determinant of exon selection and argue that the two GC content architectures reflect the two mechanisms by which splicing signals are recognized: exon definition and intron definition.

  4. The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available Death signaling provided by tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC, a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1, and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.

  5. Nox2-dependent ROS signaling protects against skeletal ageing

    Science.gov (United States)

    Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Progressive accumulation of reactive oxygen species (ROS), including superoxide, hydrogen peroxide, and hydroxyl radicals, has been suspected to be the leading cause of many inflammatory and degen...

  6. Mitochondrial reactive oxygen species: which ROS signals cardioprotection?

    Czech Academy of Sciences Publication Activity Database

    Garlid, A. O.; Jabůrek, Martin; Jacobs, J. P.; Garlid, K. D.

    2013-01-01

    Roč. 305, č. 7 (2013), H960-H968 ISSN 0363-6135 R&D Projects: GA MŠk(CZ) ME09018; GA ČR(CZ) GAP301/11/0662 Institutional support: RVO:67985823 Keywords : KATP channels * ROS signaling * cardiac ischemia * cardioportection * mitochondria Subject RIV: ED - Physiology Impact factor: 4.012, year: 2013

  7. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia, E-mail: tania.gomes@niva.no [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Xie, Li [Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo (Norway); Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Brede, Dag; Lind, Ole-Christian [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); Solhaug, Knut Asbjørn [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, N-1432, Ås (Norway); Salbu, Brit [Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås (Norway); Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås (Norway); and others

    2017-02-15

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H{sub 2}DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first

  8. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation

    International Nuclear Information System (INIS)

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit

    2017-01-01

    Highlights: • Chlorophyll fluorescence parameters affected at higher dose rates. • Changes in PSII associated with electron transport and energy dissipation pathways. • Dose-dependent ROS production in algae exposed to gamma radiation. • Decrease in photosynthetic efficiency connected to ROS formation. - Abstract: The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49–1677 mGy/h) for 6 h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H 2 DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6 h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report

  9. Analysis of poly-beta-hydroxybutyrate in environmental samples by GC-MS/MS.

    Science.gov (United States)

    Elhottová, D; Tríska, J; Petersen, S O; Santrůcková, H

    2000-05-01

    Application of gas chromatography-mass spectrometry (GC-MS) can significantly improve trace analyses of compounds in complex matrices from natural environments compared to gas chromatography only. A GC-MS/MS technique for determination of poly-beta-hydroxybutyrate (PHB), a bacterial storage compound, has been developed and used for analysis of two soils stored for up to 319 d, fresh samples of sewage sludge, as well as a pure culture of Bacillus megaterium. Specific derivatization of beta-hydroxybutyrate (3-OH C4:0) PHB monomer units by N-tert-butyl-dimethylsilyl-N-methyltrifluoracetamide (MTBSTFA) improved chromatographic and mass spectrometric properties of the analyte. The diagnostic fragmentation scheme of the derivates tert-butyldimethylsilyl ester and ether of beta-hydroxybutyric acid (MTBSTFA-HB) essential for the PHB identification was shown. The ion trap MS was used, therefore the scan gave the best sensitivity and with MS/MS the noise decreased, so the S/N was better and also with second fragmentation the amount of ions increased compared to SIM. The detection limit for MTBSTFA-HB by GC-MS/MS was about 10(-13) g microL(-1) of injected volume, while by GC (FID) and GC-MS (scan) it was around 10(-10) g microL(-1) of injected volume. Sensitivity of GC-MS/MS measurements of PHB in arable soil and activated sludge samples was down to 10 pg of PHB g(-1) dry matter. Comparison of MTBSTFA-HB detection in natural soil sample by GC (FID), GC-MS (scan) and by GC-MS/MS demonstrated potentials and limitations of the individual measurement techniques.

  10. Screening for γ-Nonalactone in the Headspace of Freshly Cooked Non-Scented Rice Using SPME/GC-O and SPME/GC-MS

    Directory of Open Access Journals (Sweden)

    Jie Yu Chen

    2009-08-01

    Full Text Available The determination of γ-nonalactone as one of the important odor-active compounds in freshly cooked non-scented rice is reported. It was evaluated by gas chromatography-olfactometry (GC-O analysis and identified by gas chromatography-mass spectrometry (GC-MS analysis in the headspace above the freshly cooked non-scented rice samples extracted by using a modified headspace solid-phase microextraction (SPME method. This component had a mass spectrum with a characteristic ion peak at m/z 85 (100% and a linear retention index (RI of 2,023 on a DB Wax column, consistent with those of an authentic sample of γ-nonalactone. The odor characterization of a strong, sweet, coconut-like aroma of this compound was also validated by GC-O comparison with the authentic compound.

  11. GENOTYPE DIFFERENCE OF –572 G>C AND -174 G>C IL-6 GENE POLYMORPHISM BETWEEN BALINESE POSTMENOPAUSAL WOMEN WITH OSTEOPOROSIS AND WITHOUT OSTEOPOROSIS

    Directory of Open Access Journals (Sweden)

    E Yulianto

    2013-09-01

    Full Text Available Background: Osteoporosis is a silent metabolic disease characterized by diminished bone mass and change in bone microstructure which cause increment of fracture risk. Until now, osteoporosis still becomes one of major health problems around the world. In Indonesia, the incidence of osteoporosisis 25%. Previous study have shown the relation between osteoporosis and IL-6 gene polymorphism at-572G>C and -174 G>C. There are some controversies about the correlation between thesepolymorphism and osteoporosis because of different result between each study. Genotype G polymorphism at -572 G>C of IL-6 gene has been correlated with lower Bone mineral density (BMD and Genotype G polymorphism at -174G>C of IL-6 gene has been correlated with higher BMD value.In Indonesia, there are still no study about the association between IL-6 gene polymorphism and osteoporosis. In the future this IL-6 gene polymorphism could be used as a genetic marker for osteoporosis in postmenopausal woman. The objective of this study is to determine the difference ofgenotype of -572G>C and -174G>C polymorphism of IL-6 gene and osteoporosis in Balinese postmenopausal women.Method: This research design is a case control study. Sample was obtained at orthopedic outpatient clinic of Sanglah General Hospital, Bali-Indonesia from June 2012 untilNovember 2012. The diagnosis of osteoporosis is described as BMD value with T score ≤ -2.5 SDusing DEXA. All sample’s peripheral blood are taken to be isolated for DNA and analyzed for IL-6 gene polymorphism at -572G>C and -174G>C using Real Time PCR. Data obtained was analyzed with chi square test using SPSS.Results: This research found 11 osteoporosis sample from total 52 with no difference sample characteristic between case and control (p > 0.05. Using Chi square test,There was a significant differences between genotype -572 G>C; IL-6 gene polymorphism in Balinese postmenopausal woman with osteoporosis and in Balinese

  12. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture

    KAUST Repository

    Liu, Yunyang

    2010-05-01

    Continuous and c-oriented ZIF-69 membranes were successfully synthesized on porous alpha-alumina substrates by an in situ solvothermal method. The membranes were characterized by XRD, SEM and single-gas permeation tests. The BET measurements on crystals taken from the same mother liquor that was used for membrane synthesis yield a Langmuir surface area of 1138 m(2)/g. The stability of the membrane towards heat and different solvents were studied. Single-gas permeation experiments through ZIF-69 membranes were carried out by a vacuum method at room temperature using H-2, CH4, CO, CO2 and SF6, respectively. The permeances were in the order of H-2 > CO2 > CH4 > CO > SF6. The separation of CO2/CO gas mixture was investigated by gas chromatograph (GC) and the permselectivity of CO2/CO was 3.5 +/- 0.1 with CO2 permeance of 3.6 +/- 0.3 x 10(-8) mol m(-2) s(-1) Pa-1 at room temperature. (C) 2010 Elsevier B.V. All rights reserved.

  13. Advanced Query and Data Mining Capabilities for MaROS

    Science.gov (United States)

    Wang, Paul; Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Hy, Franklin H.

    2013-01-01

    The Mars Relay Operational Service (MaROS) comprises a number of tools to coordinate, plan, and visualize various aspects of the Mars Relay network. These levels include a Web-based user interface, a back-end "ReSTlet" built in Java, and databases that store the data as it is received from the network. As part of MaROS, the innovators have developed and implemented a feature set that operates on several levels of the software architecture. This new feature is an advanced querying capability through either the Web-based user interface, or through a back-end REST interface to access all of the data gathered from the network. This software is not meant to replace the REST interface, but to augment and expand the range of available data. The current REST interface provides specific data that is used by the MaROS Web application to display and visualize the information; however, the returned information from the REST interface has typically been pre-processed to return only a subset of the entire information within the repository, particularly only the information that is of interest to the GUI (graphical user interface). The new, advanced query and data mining capabilities allow users to retrieve the raw data and/or to perform their own data processing. The query language used to access the repository is a restricted subset of the structured query language (SQL) that can be built safely from the Web user interface, or entered as freeform SQL by a user. The results are returned in a CSV (Comma Separated Values) format for easy exporting to third party tools and applications that can be used for data mining or user-defined visualization and interpretation. This is the first time that a service is capable of providing access to all cross-project relay data from a single Web resource. Because MaROS contains the data for a variety of missions from the Mars network, which span both NASA and ESA, the software also establishes an access control list (ACL) on each data record

  14. Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy.

    Science.gov (United States)

    Jia, Hao-Ran; Wang, Hong-Yin; Yu, Zhi-Wu; Chen, Zhan; Wu, Fu-Gen

    2016-03-16

    Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.

  15. The alternative Medicago truncatula defense proteome of ROS – defective transgenic roots during early microbial infection

    Directory of Open Access Journals (Sweden)

    Leonard Muriithi Kiirika

    2014-07-01

    Full Text Available ROP-type GTPases of plants function as molecular switches within elementary signal transduction pathways such as the regulation of ROS synthesis via activation of NADPH oxidases (RBOH-respiratory burst oxidase homologue in plants. Previously, we reported that silencing of the Medicago truncatula GTPase MtROP9 led to reduced ROS production and suppressed induction of ROS-related enzymes in transgenic roots (MtROP9i infected with pathogenic (Aphanomyces euteiches and symbiotic microorganisms (Glomus intraradices, Sinorhizobium meliloti. While fungal infections were enhanced, S. meliloti infection was drastically impaired. In this study, we investigate the temporal proteome response of M. truncatula MtROP9i transgenic roots during the same microbial interactions under conditions of deprived potential to synthesize ROS. In comparison with control roots (Mtvector, we present a comprehensive proteomic analysis using sensitive MS protein identification. For four early infection time-points (1, 3, 5, 24 hpi, 733 spots were found to be different in abundance: 213 spots comprising 984 proteins (607 unique were identified after S. meliloti infection, 230 spots comprising 796 proteins (580 unique after G. intraradices infection, and 290 spots comprising 1240 proteins (828 unique after A. euteiches infection. Data evaluation by GelMap in combination with a heatmap tool allowed recognition of key proteome changes during microbial interactions under conditions of hampered ROS synthesis. Overall, the number of induced proteins in MtROP9i was low as compared with controls, indicating a dual function of ROS in defense signaling as well as alternative response patterns activated during microbial infection. Qualitative analysis of induced proteins showed that enzymes linked to ROS production and scavenging were highly induced in control roots, while in MtROP9i the majority of proteins were involved in alternative defense pathways such as cell wall and protein

  16. Determination of fatty acids and volatile compounds in fruits of rosehip(Rosa L.) species by HS-SPME/GC-MS and Im-SPME/GC-MS techniques

    OpenAIRE

    MURATHAN, ZEHRA TUĞBA; ZARIFIKHOSROSHAHI, MOZGAN; KAFKAS, NESİBE EBRU

    2016-01-01

    In this study, we aimed to compare fatty acid and volatile compound compositions of four rosehip species, namely Rosa pimpinellifolia, R. Villosa, R. Canina, and R. Dumalis, by gas chromatography with flame ionization detector (GC/FID) and headspace and immersion solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS and Im-SPME/GC-MS) techniques. The total lipid contents in fruits of the rosehip species varied from 5.83% (R. Villosa) to 7.84% (R. Dumalis). A total of...

  17. Improvement of Ylang-Ylang Essential Oil Characterization by GC×GC-TOFMS

    Directory of Open Access Journals (Sweden)

    Michał Brokl

    2013-01-01

    Full Text Available A single fraction of essential oil can often contain hundreds of compounds. Despite of the technical improvements and the enhanced selectivity currently offered by the state-of-the-art gas chromatography (GC and mass spectrometry (MS instruments, the complexity of essential oils is frequently underestimated. Comprehensive two-dimensional GC coupled to time-of-flight MS (GC×GC-TOFMS was used to improve the chemical characterization of ylang-ylang essential oil fractions recently reported in a previous one-dimensional (1D GC study. Based on both, the enhanced chromatographic separation and the mass spectral deconvolution, 161 individual compounds were identified and labeled as potentially characteristic analytes found in both low and high boiling fractions issued from distillation of mature ylang-ylang flowers. Compared to the most recent full GC-MS characterization, this represents 75 new compounds, essentially consisting of terpenes, terpenoid esters, and alcohols.

  18. MaROS Strategic Relay Planning and Coordination Interfaces

    Science.gov (United States)

    Allard, Daniel A.

    2010-01-01

    The Mars Relay Operations Service (MaROS) is designed to provide planning and analysis tools in support of ongoing Mars Network relay operations. Strategic relay planning requires coordination between lander and orbiter mission ground data system (GDS) teams to schedule and execute relay communications passes. MaROS centralizes this process, correlating all data relevant to relay coordination to provide a cohesive picture of the relay state. Service users interact with the system through thin-layer command line and web user interface client applications. Users provide and utilize data such as lander view periods of orbiters, Deep Space Network (DSN) antenna tracks, and reports of relay pass performance. Users upload and download relevant relay data via formally defined and documented file structures including some described in Extensible Markup Language (XML). Clients interface with the system via an http-based Representational State Transfer (ReST) pattern using Javascript Object Notation (JSON) formats. This paper will provide a general overview of the service architecture and detail the software interfaces and considerations for interface design.

  19. Integración del brazo robot IRB120 en entorno ROS-MATLAB

    OpenAIRE

    Gómez Cuadrado, José Manuel

    2017-01-01

    Este proyecto usa el entorno ROS (Robot Operating System) para desarrollar el control del brazo robot IRB 120 y su implementación en el entorno de trabajo MATLAB. Se explicará la creación del modelo del robot, la planificación de trayectorias y la comunicación con dicho robot. This project uses the ROS (Robot Operating System) environment for developing the control of the IRB 120 robotic arm and its implementation in the MATLAB working environment. It will explain the creation of the...

  20. REGINALDO, Lucilene. Os Rosários dos Angolas: Irmandades de africanos e crioulos na Bahia setecentista.

    Directory of Open Access Journals (Sweden)

    Ênio José da Costa Brito

    2013-06-01

    Full Text Available Os Rosários dos Angolas realiza um estudo da Irmandade de Nossa Senhora do Rosário dos Pretos das Portas do Carmo( Bahia A novidade do estudo está nos subsidios coletados na Africa, Portugal e Brasil , no resgate da presença banto na Bahia e na abertura para um dialogo das cosmovisões banto e cristã.REGINALDO, Lucilene. Os Rosários dos Angolas: Irmandades de africanos e crioulos na Bahia setecentista. São Paulo: Alameda, 2011. 416p. ISBN 978-85-7939-082-1 

  1. Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes.

    Science.gov (United States)

    Livanos, Pantelis; Galatis, Basil; Apostolakos, Panagiotis

    2016-07-01

    Subsidiary cell generation in Poaceae is an outstanding example of local intercellular stimulation. An inductive stimulus emanates from the guard cell mother cells (GMCs) towards their laterally adjacent subsidiary cell mother cells (SMCs) and triggers the asymmetrical division of the latter. Indole-3-acetic acid (IAA) immunolocalization in Zea mays protoderm confirmed that the GMCs function as local sources of auxin and revealed that auxin is polarly accumulated between GMCs and SMCs in a timely-dependent manner. Besides, staining techniques showed that reactive oxygen species (ROS) exhibit a closely similar, also time-dependent, pattern of appearance suggesting ROS implication in subsidiary cell formation. This phenomenon was further investigated by using the specific NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, menadione which leads to ROS overproduction, and H2O2. Treatments with diphenylene iodonium, N-acetyl-cysteine, and menadione specifically blocked SMC polarization and asymmetrical division. In contrast, H2O2 promoted the establishment of SMC polarity and subsequently subsidiary cell formation in "younger" protodermal areas. Surprisingly, H2O2 favored the asymmetrical division of the intervening cells of the stomatal rows leading to the creation of extra apical subsidiary cells. Moreover, H2O2 altered IAA localization, whereas synthetic auxin analogue 1-napthaleneacetic acid enhanced ROS accumulation. Combined treatments with ROS modulators along with 1-napthaleneacetic acid or 2,3,5-triiodobenzoic acid, an auxin efflux inhibitor, confirmed the crosstalk between ROS and auxin functioning during subsidiary cell generation. Collectively, our results demonstrate that ROS are critical partners of auxin during development of Z. mays stomatal complexes. The interplay between auxin and ROS seems to be spatially and temporarily regulated.

  2. A novel synthetic analog of militarin, MA-1 induces mitochondrial dependent apoptosis by ROS generation in human lung cancer cells

    International Nuclear Information System (INIS)

    Yoon, Deok Hyo; Lim, Mi-Hee; Lee, Yu Ran; Sung, Gi-Ho; Lee, Tae-Ho; Jeon, Byeong Hwa; Cho, Jae Youl; Song, Won O.; Park, Haeil; Choi, Sunga; Kim, Tae Woong

    2013-01-01

    A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC 50 of 5 μM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation, sub-G 0 /G 1 -DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving the rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. The pharmacological inhibition of ROS generation and JNK/p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer. - Highlights: • We report a novel synthesized derivative, militarin analog-1 (MA-1). • MA-1-induced cancer cell death was triggered by the ROS

  3. A novel synthetic analog of militarin, MA-1 induces mitochondrial dependent apoptosis by ROS generation in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Deok Hyo; Lim, Mi-Hee [Department of Biochemistry, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Lee, Yu Ran [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Sung, Gi-Ho [Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 404-707 (Korea, Republic of); Lee, Tae-Ho [R and D Center, Dong-A Pharmaceutical Co, Ltd, Yongin 446-905 (Korea, Republic of); Jeon, Byeong Hwa [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Cho, Jae Youl [Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Song, Won O. [Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States); Park, Haeil [College of Pharmacy, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Choi, Sunga, E-mail: sachoi@cnu.ac.kr [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Kim, Tae Woong, E-mail: tawkim@kangwon.ac.kr [Department of Biochemistry, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2013-12-15

    A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC{sub 50} of 5 μM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation, sub-G{sub 0}/G{sub 1}-DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving the rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. The pharmacological inhibition of ROS generation and JNK/p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer. - Highlights: • We report a novel synthesized derivative, militarin analog-1 (MA-1). • MA-1-induced cancer cell death was triggered by

  4. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model

    Science.gov (United States)

    Moglianetti, Mauro; de Luca, Elisa; Pedone, Deborah; Marotta, Roberto; Catelani, Tiziano; Sartori, Barbara; Amenitsch, Heinz; Retta, Saverio Francesco; Pompa, Pier Paolo

    2016-02-01

    In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide

  5. Rod and cone photoreceptor cells produce ROS in response to stress in a live retinal explant system.

    LENUS (Irish Health Repository)

    Bhatt, Lavinia

    2010-01-01

    PURPOSE: The production of reactive oxygen species (ROS) can lead to oxidative stress, which is a strong contributory factor to many ocular diseases. In this study, the removal of trophic factors is used as a model system to investigate the effects of stress in the retina. The aims were to determine if both rod and cone photoreceptor cells produce ROS when they are deprived of trophic factor support and to demonstrate if the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzymes are responsible for this ROS production. METHODS: Retinas were explanted from mice aged between postnatal days 8-10 and cultured overnight. The following morning, confocal microscopy combined with various fluorescent probes was used to detect the production of ROS. Each time peanut agglutinin (PNA), a cone photoreceptor marker, was used to facilitate orientation of the retina. Dihydroethidium and dihydrorhodamine 123 (DHR123) were used to determine which cells produce ROS. Subsequently, western blots of retinal serial sections were used to detect the presence of Noxs in the different retinal layers. The Nox inhibitor apocynin was then tested to determine if it altered the production of ROS within these cells. RESULTS: Live retinal explants, viewed at high magnifications using confocal microscopy, displayed an increase in the fluorescent products of dihydroethidium and DHR123 upon serum removal when compared to controls. DHR123 fluorescence, once oxidized, localized to mitochondria and was found in the same focal plane as the PNA staining. This showed that cones and rods produced ROS when stressed. Retinal serial sectioning established that the photoreceptor layer expressed Nox4, dual oxidase (Duox) 1, and Duox2 at varying levels. Finally, the Nox inhibitor apocynin decreased the burst stimulated by the stress of serum removal. CONCLUSIONS: Confocal microscopy and PNA staining allowed differentiation of cell types within the outermost layers of the retina, demonstrating

  6. Po2 cycling protects diaphragm function during reoxygenation via ROS, Akt, ERK, and mitochondrial channels.

    Science.gov (United States)

    Zuo, Li; Pannell, Benjamin K; Re, Anthony T; Best, Thomas M; Wagner, Peter D

    2015-12-01

    Po2 cycling, often referred to as intermittent hypoxia, involves exposing tissues to brief cycles of low oxygen environments immediately followed by hyperoxic conditions. After experiencing long-term hypoxia, muscle can be damaged during the subsequent reintroduction of oxygen, which leads to muscle dysfunction via reperfusion injury. The protective effect and mechanism behind Po2 cycling in skeletal muscle during reoxygenation have yet to be fully elucidated. We hypothesize that Po2 cycling effectively increases muscle fatigue resistance through reactive oxygen species (ROS), protein kinase B (Akt), extracellular signal-regulated kinase (ERK), and certain mitochondrial channels during reoxygenation. Using a dihydrofluorescein fluorescent probe, we detected the production of ROS in mouse diaphragmatic skeletal muscle in real time under confocal microscopy. Muscles treated with Po2 cycling displayed significantly attenuated ROS levels (n = 5; P ROS, Akt, ERK, as well as chemical stimulators to close mitochondrial ATP-sensitive potassium channel (KATP) or open mitochondrial permeability transition pore (mPTP). All these blockers or stimulators abolished improved muscle function with Po2 cycling treatment. This current investigation has discovered a correlation between KATP and mPTP and the Po2 cycling pathway in diaphragmatic skeletal muscle. Thus we have identified a unique signaling pathway that may involve ROS, Akt, ERK, and mitochondrial channels responsible for Po2 cycling protection during reoxygenation conditions in the diaphragm. Copyright © 2015 the American Physiological Society.

  7. Preferential cytotoxicity of ZnO nanoparticle towards cervical cancer cells induced by ROS-mediated apoptosis and cell cycle arrest for cancer therapy

    International Nuclear Information System (INIS)

    Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor Haida Mohd

    2016-01-01

    benefit from the synergistic influence of size and nanostructure when designing anticancer agents.Graphical AbstractMechanism of cell death by ZnO-NPs, displaying ROS formation and Zn"2"+ release that induced apoptosis and arrested cell cycle progression. Apoptosis involved DNA fragmentation, chromatin condensation, membrane shrinkage, and formation of apoptotic bodies. The synergistic effect of ZnO-NPs size (20, 40, 80 nm) and nanostructure (nanorods, nanogranules) impacted the inhibition of HeLa cells growth and eventually death.

  8. Glucocorticoid regulation of astrocytic fate and function.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.

  9. Metabolic remodeling precedes mitochondrial outer membrane permeabilization in human glioma xenograft cells.

    Science.gov (United States)

    Ponnala, Shivani; Chetty, Chandramu; Veeravalli, Krishna Kumar; Dinh, Dzung H; Klopfenstein, Jeffrey D; Rao, Jasti S

    2012-02-01

    Glioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch the glycolytic metabolism of glioma cells to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression. The decreased interaction of hexokinase 2 with mitochondria in the treated cells indicated the inhibition of glycolysis activation. Overexpression of Akt reversed the pMU- and pMC-mediated OXPHOS to glycolysis switch. The OXPHOS un-coupler oligomycin A altered the expression levels of the Bcl-2 family of proteins; treatment with pMU or pMC reversed this effect and induced mitochondrial outer membrane permeabilization. In addition, our results show changes in mitochondrial pore transition to release cytochrome c due to changes in the VDAC-Bcl-XL and BAX-BAK interaction with pMU and pMC treatments. Taken together, our results suggest that pMU and pMC treatments switch glioma cells from the glycolytic to the OXPHOS pathway through an inhibitory effect on Akt, ROS induction and an increase of cytosolic cytochrome c accumulation. These results demonstrate the potential of pMU and pMC as therapeutic candidates for the treatment of glioma.

  10. Implementation of a mobile base with evasion of obstacles using ROS navigation

    International Nuclear Information System (INIS)

    Arauz Villegas, Carolina

    2013-01-01

    A mobile base is implemented with evasion of obstacles using ROS Navigation. The simulation of that mobile base is performed with the 2D Stage simulator, firstly; and once understanded the operation of Navigation has proceeded to build the mobile base. The mobile base has had two DC motors, an Asus Xtion sensor, a netbook and a stm32f4-discovery microcontroller. ROS in the netbook was installed and then serial communication over USB was achieved between the netbook and the microcontroller. The microcontroller has received the velocity data sent by move_base of navigation through that communication and sends the odometry data back. A PWM control is implemented for the driving and for the speed of the motors having a control PI for the cycle of work of the same. The encoder interface of the microcontroller was used for the data acquisition of odometry. The communication between ROS and the mobile base was integrated to the navigation, which has allowed to generate mapping, location and move safely from a starting point to a point of arrival sending speed messages. (author) [es

  11. Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production

    DEFF Research Database (Denmark)

    Cao, Yi; Roursgaard, Martin; Danielsen, Pernille Høgh

    2014-01-01

    , the concentrations of CB to induce lipid accumulation were lower than the concentrations to promote intracellular ROS production in THP-1a cells. In conclusion, exposure to nano-sized CB induced endothelial dysfunction and foam cell formation, which was not dependent on intracellular ROS production....... and WST-1 assays, especially in THP-1 and THP-1a cells. The CB exposure decreased the glutathione (GSH) content in THP-1 and THP-1a cells, whereas GSH was increased in HUVECs. The reactive oxygen species (ROS) production was increased in all cell types after CB exposure. A reduction of the intracellular...... GSH concentration by buthionine sulfoximine (BSO) pre-treatment further increased the CB-induced ROS production in THP-1 cells and HUVECs. The expression of adhesion molecules ICAM-1 and VCAM-1, but not adhesion of THP-1 to HUVECs or culture dishes, was elevated by CB exposure, whereas these effects...

  12. Stanniocalcin-1 Protects a Mouse Model from Renal Ischemia-Reperfusion Injury by Affecting ROS-Mediated Multiple Signaling Pathways.

    Science.gov (United States)

    Liu, Dajun; Shang, Huiping; Liu, Ying

    2016-07-12

    Stanniocalcin-1 (STC-1) protects against renal ischemia-reperfusion injury (RIRI). However, the molecular mechanisms remain widely unknown. STC-1 inhibits reactive oxygen species (ROS), whereas most ROS-mediated pathways are associated with ischemic injury. Therefore, to explore the mechanism, the effects of STC-1 on ROS-medicated pathways were studied. Non-traumatic vascular clamps were used to establish RIRI mouse models. The serum levels of STC-1, interleukin-6 (IL-6), interferon (IFN) γ, P53, and capase-3 were measured by ELISA kits. Superoxide dismutase (SOD) and malondialdehyde (MDA) were measured by fluorescence spectrofluorometer. All these molecules changed significantly in a RIRI model mouse when compared with those in a sham control. Kidney cells were isolated from sham and model mice. STC-1 was overexpressed or knockout in these kidney cells. The molecules in ROS-medicated pathways were measured by real-time quantitative PCR and Western blot. The results showed that STC-1 is an effective ROS scavenger. The serum levels of STC-1, MDA and SOD activity were increased while the serum levels of IL-6, iIFN-γ, P53, and capase-3 were decreased in a model group when compared with a sham control (p ROS-mediated molecules. Therefore, STC-1 maybe improve anti-inflammation, anti-oxidant and anti-apoptosis activities by affecting ROS-mediated pathways, especially the phospho-modifications of the respective proteins, resulting in the increase of SOD and reduce of capase-3, p53, IL-6 and IFN-γ.

  13. Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart.

    Science.gov (United States)

    Madungwe, Ngonidzashe B; Zilberstein, Netanel F; Feng, Yansheng; Bopassa, Jean C

    2016-01-01

    Reactive oxygen species (ROS) generation has been implicated in many pathologies including ischemia/reperfusion (I/R) injury. This led to multiple studies on antioxidant therapies to treat cardiovascular diseases but paradoxically, results have so far been mixed as ROS production can be beneficial as a signaling mechanism and in cardiac protection via preconditioning interventions. We investigated whether the differential impact of increased ROS in injury as well as in protection could be explained by their site of production on the mitochondrial electron transport chain. Using amplex red to measure ROS production, we found that mitochondria isolated from hearts after I/R produced more ROS than non-ischemic when complex I substrate (glutamate/malate) was used. Interestingly, the substrates of complex II (succinate) and ubiquinone (sn-glycerol 3-phosphate, G3P) produced less ROS in mitochondria from I/R hearts compared to normal healthy hearts. The inhibitors of complex I (rotenone) and complex III (antimycin A) increased ROS production when glutamate/malate and G3P were used; in contrast, they reduced ROS production when the complex II substrate was used. Mitochondrial calcium retention capacity required to induce mitochondrial permeability transition pore (mPTP) opening was measured using calcium green fluorescence and was found to be higher when mitochondria were treated with G3P and succinate compared to glutamate/malate. Furthermore, Langendorff hearts treated with glutamate/malate exhibited reduced cardiac functional recovery and increased myocardial infarct size compared to hearts treated with G3P. Thus, ROS production by the stimulated respiratory chain complexes I and III has opposite roles: cardio-deleterious when produced in complex I and cardio-protective when produced in complex III. The mechanism of these ROS involves the inhibition of the mPTP opening, a key event in cell death following ischemia/reperfusion injury.

  14. Progesterone Receptor Membrane Component 1 (PGRMC1 in cell division: its role in bovine granulosa cells mitosis

    Directory of Open Access Journals (Sweden)

    Laura Terzaghi

    2015-07-01

    Full Text Available The present studies were aimed to assess Progesterone Receptor Membrane Component-1 (PGRMC1 role in regulating bovine granulosa cells (bGC mitosis. First, we performed immunofluorescence studies on in vitro cultured bGC collected from antral follicles, which showed that PGRMC1 localizes to the spindle apparatus in mitotic cells. Then, to evaluate PGRMC1 effect on cell proliferation we silenced its expression with RNA interference technique (RNAi. Quantitative RT-PCR and immunoblotting confirmed down-regulation of PGRMC1 expression, when compared to CTRL-RNAi treated bGC (p<0.05. After 72h of culture, PGRMC1 silencing determined a lower growth rate (p<0.05 and a higher percentage of cells arrested at G2/M phase as assessed by flowcytometry (p<0.05. Accordingly, live imaging studies revealed more aberrant mitosis and a delayed M-phase in PGRMC1-RNAi treated cells compared to CTRL-RNAi group (p<0.05. These data confirmed that PGRMC1 is directly involved in bGC mitosis and ongoing preliminary studies are aimed to elucidate its putative mechanisms of action. Since PGRMC1 is a membrane protein, we hypothesize its possible involvement in vesicular trafficking and endocytosis, which is in turn an important process to assure proper cell division. To assess this hypothesis, we have preliminarily conducted immunofluorescence and in situ proximity ligation assay experiments that showed PGRMC1 co-localization and direct interaction with clathrin. This is important since clathrin is an essential protein for both endosomes formation, and cell division acting directly on the spindle apparatus. Thus our studies set the stage for analysis aimed to further characterize PGRMC1’s mechanism of action in mitotic cell.

  15. THE ANTI-FIBROTIC ACTIONS OF RELAXIN ARE MEDIATED THROUGH A NO-sGC-cGMP-DEPENDENT PATHWAY IN RENAL MYOFIBROBLASTS IN VITRO AND ENHANCED BY THE NO DONOR, DIETHYLAMINE NONOATE

    Directory of Open Access Journals (Sweden)

    Chao eWang

    2016-03-01

    Full Text Available INTRODUCTION: The anti-fibrotic hormone, relaxin, has been inferred to disrupt TGF-beta1/Smad2 phosphorylation (pSmad2 signal transduction and promote collagen-degrading gelatinase activity via a nitric oxide (NO-dependent pathway. Here, we determined the extent to which NO, soluble guanylate cyclase (sGC and cyclic guanosine monophosphate (cGMP were directly involved in the anti-fibrotic actions of relaxin using a selective NO scavenger and sGC inhibitor, and comparing and combining relaxin’s effects with that of an NO donor. METHODS AND RESULTS: Primary renal cortical myofibroblasts isolated from injured rat kidneys were treated with human recombinant relaxin (RLX; 16.8nM, the NO donor, diethylamine NONOate (DEA/NO; 0.5-5uM or the combined effects of RLX (16.8nM and DEA/NO (5uM over 72 hours. The effects of RLX (16.8nM and DEA/NO (5uM were also evaluated in the presence of the NO scavenger, hydroxocobalamin (HXC; 100uM or sGC inhibitor, ODQ (5uM over 72 hours. Furthermore, the effects of RLX (30nM, DEA/NO (5uM and RLX (30nM+DEA/NO (5uM on cGMP levels were directly measured, in the presence or absence of ODQ (5uM. Changes in matrix metalloproteinase (MMP-2, MMP-9 (cell media, pSmad2 and α-smooth muscle actin (α-SMA; a measure myofibroblast differentiation (cell layer were assessed by gelatin zymography and Western blotting, respectively. At the highest concentration tested, both RLX and DEA/NO promoted MMP-2 and MMP-9 levels by 25-33%, while inhibiting pSmad2 and α-SMA expression by up to 50% (all p<0.05 vs untreated and vehicle-treated cells. However, 5uM of DEA/NO was required to produce the effects seen with 16.8nM of RLX over 72 hours. The anti-fibrotic effects of RLX or DEA/NO alone were completely abrogated by HXC and ODQ (both p<0.01 vs RLX alone or DEA/NO alone, but were significantly enhanced when added in combination (all p<0.05 vs RLX alone. Additionally, the direct cGMP-promoting effects of RLX, DEA/NO and RLX+DEA/NO (which all

  16. A comparative study of N-glycolylneuraminic acid (Neu5Gc and cytotoxic T cell (CT carbohydrate expression in normal and dystrophin-deficient dog and human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Paul T Martin

    Full Text Available The expression of N-glycolylneuraminic acid (Neu5Gc and the cytotoxic T cell (CT carbohydrate can impact the severity of muscular dystrophy arising from the loss of dystrophin in mdx mice. Here, we describe the expression of these two glycans in skeletal muscles of dogs and humans with or without dystrophin-deficiency. Neu5Gc expression was highly reduced (>95% in muscle from normal golden retriever crosses (GR, n = 3 and from golden retriever with muscular dystrophy (GRMD, n = 5 dogs at multiple ages (3, 6 and 13 months when compared to mouse muscle, however, overall sialic acid expression in GR and GRMD muscles remained high at all ages. Neu5Gc was expressed on only a minority of GRMD satellite cells, CD8⁺ T lymphocytes and macrophages. Human muscle from normal (no evident disease, n = 3, Becker (BMD, n = 3 and Duchenne (DMD, n = 3 muscular dystrophy individuals had absent to very low Neu5Gc staining, but some punctate intracellular muscle staining was present in BMD and DMD muscles. The CT carbohydrate was localized to the neuromuscular junction in GR muscle, while GRMD muscles had increased expression on a subset of myofibers and macrophages. In humans, the CT carbohydrate was ectopically expressed on the sarcolemmal membrane of some BMD muscles, but not normal human or DMD muscles. These data are consistent with the notion that altered Neu5Gc and CT carbohydrate expression may modify disease severity resulting from dystrophin deficiency in dogs and humans.

  17. ROS are critical for endometrial breakdown via NF-κB-COX-2 signaling in a female mouse menstrual-like model.

    Science.gov (United States)

    Wu, Bin; Chen, Xihua; He, Bin; Liu, Shuyan; Li, Yunfeng; Wang, Qianxing; Gao, Haijun; Wang, Shufang; Liu, Jianbing; Zhang, Shucheng; Xu, Xiangbo; Wang, Jiedong

    2014-09-01

    Progesterone withdrawal triggers endometrial breakdown and shedding during menstruation. Menstruation results from inflammatory responses; however, the role of reactive oxygen species (ROS) in menstruation remains unclear. In this study, we explored the role of ROS in endometrial breakdown and shedding. We found that ROS levels were significantly increased before endometrial breakdown in a mouse menstrual-like model. Vaginal smear inspection, morphology of uterine horns, and endometrial histology examination showed that a broad range of ROS scavengers significantly inhibited endometrial breakdown in this model. Furthermore, Western blot and immunohistochemical analysis showed that the intracellular translocation of p50 and p65 from the cytoplasm into the nucleus was blocked by ROS scavengers and real-time PCR showed that cyclooxygenase-2 (COX-2) mRNA expression was decreased by ROS scavengers. Similar changes also occurred in human stromal cells in vitro. Furthermore, Western blotting and real-time PCR showed that one ROS, hydrogen peroxide (H2O2), promoted translocation of p50 and p65 from the cytoplasm to the nucleus and increased COX-2 mRNA expression along with progesterone maintenance. The nuclear factor κB inhibitor MG132 reduced the occurrence of these changes in human stromal cells in vitro. Viewed as a whole, our results provide evidence that certain ROS are important for endometrial breakdown and shedding in a mouse menstrual-like model and function at least partially via nuclear factor-κB/COX-2 signaling. Similar changes observed in human stromal cells could also implicate ROS as important mediators of human menstruation.

  18. GC ‘Multi-Analyte’ Detection Method

    Energy Technology Data Exchange (ETDEWEB)

    Dudar, E. [Plant Protection & Soil Conservation Service of Budapest, Budapest (Hungary)

    2009-07-15

    Elaborated methodologies for GC multi-analyte detection are presented, comprising the steps of method development, chromatographic conditions and procedures including the determination of relative retention times and summary results tables. (author)

  19. NADPH Oxidase-Mediated ROS Production Determines Insulin's Action on the Retinal Microvasculature.

    Science.gov (United States)

    Kida, Teruyo; Oku, Hidehiro; Horie, Taeko; Matsuo, Junko; Kobayashi, Takatoshi; Fukumoto, Masanori; Ikeda, Tsunehiko

    2015-10-01

    To determine whether insulin induces nitric oxide (NO) formation in retinal microvessels and to examine the effects of high glucose on the formation of NO. Freshly isolated rat retinal microvessels were incubated in normal (5.5 mM) or high (20 mM) glucose with or without insulin (100 nM). The levels of insulin-induced NO and reactive oxygen species (ROS) in the retinal microvessels were determined semiquantitatively using fluorescent probes, 4,5-diaminofluorescein diacetate, and hydroethidine, respectively, and a laser scanning confocal microscope. The insulin-induced changes of NO in rat retinal endothelial cells and pericytes cultured at different glucose concentrations (5.5 and 25 mM) were determined using flow cytometry. Nitric oxide synthase (NOS) protein levels were determined by Western blot analysis; intracellular levels of ROS were determined using fluorescence-activated cell sorting (FACS) analysis of ethidium fluorescence; and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase RNA expression was quantified using real-time PCR. Exposure of microvessels to insulin under normal glucose conditions led to a significant increase in NO levels; however, this increase was significantly suppressed when the microvessels were incubated under high glucose conditions. Intracellular levels of ROS were significantly increased in both retinal microvessels and cultured microvascular cells under high glucose conditions. The expression of NOS and NADPH oxidase were significantly increased in endothelial cells and pericytes under high glucose conditions. The increased formation of NO by insulin and its suppression by high glucose conditions suggests that ROS production mediated by NADPH oxidase is important by insulin's effect on the retinal microvasculature.

  20. Exogenous ROS-induced cell sheet transfer based on hematoporphyrin-polyketone film via a one-step process.

    Science.gov (United States)

    Koo, Min-Ah; Lee, Mi Hee; Kwon, Byeong-Ju; Seon, Gyeung Mi; Kim, Min Sung; Kim, Dohyun; Nam, Ki Chang; Park, Jong-Chul

    2018-04-01

    To date, most of invasive cell sheet harvesting methods have used culture surface property variations, such as wettability, pH, electricity, and magnetism, to induce cell detachment. These methods that rely on surface property changes are effective when cell detachment prior to application is necessary, but of limited use when used for cell sheet transfer to target regions. The study reports a new reactive oxygen species (ROS)-induced strategy based on hematoporphyrin-incorporated polyketone film (Hp-PK film) to transfer cell sheets directly to target areas without an intermediate harvesting process. After green LED (510 nm) irradiation, production of exogenous ROS from the Hp-PK films induces cell sheet detachment and transfer. The study suggests that ROS-induced cell detachment property of the Hp-PK film is closely related to conformational changes of extracellular matrix (ECM) proteins. Also, this strategy with the Hp-PK film can be applied by regulating production rate of exogenous ROS in various types of cells, including fibroblasts, mesenchymal stem cells and keratinocytes. In conclusion, ROS-induced method using the Hp-PK film can be used for one-step cell sheet transplantation and has potential in biomedical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effects of exposure to high glucose on primary cultured hippocampal neurons: involvement of intracellular ROS accumulation.

    Science.gov (United States)

    Liu, Di; Zhang, Hong; Gu, Wenjuan; Zhang, Mengren

    2014-06-01

    Recent studies showed that hyperglycemia is the main trigger of diabetic cognitive impairment and can cause hippocampus abnormalities. The goal of this study is to explore the effects of different concentrations of high glucose for different exposure time on cell viability as well as intracellular reactive oxygen species (ROS) generation of primary cultured hippocampal neurons. Hippocampal neurons were exposed to different concentrations of high glucose (50, 75, 100, 125, and 150 mM) for 24, 48, 72 and 96 h. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. Intracellular ROS were monitored using the fluorescent probe DCFH-DA. The results showed that, compared with control group, the cell viability of all high glucose-treated groups decreased significantly after 72 h and there also was a significant increase of apoptotic nuclei in high glucose-treated groups from 72 to 96 h. Furthermore, 50 mM glucose induced a peak rise in ROS generation at 24 h and the intracellular ROS levels of 50 mM glucose group were significantly higher than the corresponding control group from 6 to 72 h. These results suggest that hippocampal neurons could be injured by high glucose exposure and the neuronal injury induced by high glucose is potentially mediated through intracellular ROS accumulation.

  2. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    Science.gov (United States)

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-03

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. Copyright © 2015. Published by Elsevier B.V.

  3. Response to crizotinib in a lung adenocarcinoma patient harboring a novel SLC34A2-ROS1 fusion variant

    Science.gov (United States)

    Zhao, Zheng; Song, Zhangjun; Wang, Xuwei; Sun, Haifeng; Yang, Xiaomin; Yuan, Yong; Yu, Pan

    2017-01-01

    ROS1 fusion is a common genetic alteration in non-small-cell lung cancer. Crizotinib, an anaplastic lymphoma kinase inhibitor, shows efficacy in the treatment of lung cancer cases with ROS1 translocation. We report the response to crizotinib of a lung adenocarcinoma patient harboring a novel SLC34A2-ROS1 fusion variant, which was different from the two common SLC34A2-ROS1 fusion types reported in the literature. After crizotinib administration, overall recovery was good in this patient; the primary lesion was successfully treated, the lymph node metastases had disappeared, and the metabolism was normal. PMID:28860822

  4. Ny forskning: Derfor virker ros ikke mod stress

    DEFF Research Database (Denmark)

    Pedersen, Pernille

    2015-01-01

    Ny forskning peger på, at stressede medarbejdere overhører din ros og anerkendelse, hvis de føler skam. Skam over ikke at kunne slå til på arbejdet. Vil du hjælpe en stresset medarbejder, skal du forebygge, at de føler sig skamfulde. Læs her anbefalinger til, hvordan du bedst hjælper din stressed...

  5. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome.

    Science.gov (United States)

    Zheng, Qing-Qing; Zhao, You-Shan; Guo, Juan; Zhao, Si-da; Song, Lu-Xi; Fei, Cheng-Ming; Zhang, Zheng; Li, Xiao; Chang, Chun-Kang

    2017-07-01

    Erythroid apoptosis increases significantly in myelodysplastic syndrome (MDS) patients with iron overload, but the underlying mechanism is not fully clear. In this study, we aim to explore the effect of HIF-1a/ROS on erythroid apoptosis in MDS patients with iron overload. We found that iron overload injured cellular functions through up-regulating ROS levels in MDS/AML cells, including inhibited cell viability, increased cell apoptosis and blocked cell cycle at G0/G1 phase. Interestingly, overexpression of hypoxia inducible factor-1a (HIF-1a), which was under-expressed in iron overload models, reduced ROS levels and attenuated cell damage caused by iron overload in MDS/AML cells. And gene knockdown of HIF-1a got the similar results as iron overload in MDS/AML cells. Furthermore, iron overload caused high erythroid apoptosis was closely related with ROS in MDS patients. Importantly, the HIF-1a protein levels of erythrocytes elevated obviously after incubation with desferrioxamine (DFO) from MDS patients with iron overload, accompanied by ROS levels inhibited and erythroid apoptosis reduced. Taken together, our findings determine that the HIF-1a/ROS signaling pathway plays a key role in promoting erythroid apoptosis in MDS patients with iron overload. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lutein accumulates in subcellular membranes of brain regions in adult rhesus macaques: Relationship to DHA oxidation products.

    Directory of Open Access Journals (Sweden)

    Emily S Mohn

    Full Text Available Lutein, a carotenoid with anti-oxidant functions, preferentially accumulates in primate brain and is positively related to cognition in humans. Docosahexaenoic acid (DHA, an omega-3 polyunsaturated fatty acid (PUFA, is also beneficial for cognition, but is susceptible to oxidation. The present study characterized the membrane distribution of lutein in brain regions important for different domains of cognitive function and determined whether membrane lutein was associated with brain PUFA oxidation.Adult rhesus monkeys were fed a stock diet (~2 mg/day lutein or ~0.5 μmol/kg body weight/day (n = 9 or the stock diet plus a daily supplement of lutein (~4.5 mg/day or~1 μmol/kg body weight/day and zeaxanthin (~0.5 mg/day or 0.1 μmol/kg body weight/day for 6-12 months (n = 4. Nuclear, myelin, mitochondrial, and neuronal plasma membranes were isolated using a Ficoll density gradient from prefrontal cortex (PFC, cerebellum (CER, striatum (ST, and hippocampus (HC. Carotenoids, PUFAs, and PUFA oxidation products were measured using HPLC, GC, and LC-GC/MS, respectively.All-trans-lutein (ng/mg protein was detected in all regions and membranes and was highly variable among monkeys. Lutein/zeaxanthin supplementation significantly increased total concentrations of lutein in serum, PFC and CER, as well as lutein in mitochondrial membranes and total DHA concentrations in PFC only (P<0.05. In PFC and ST, mitochondrial lutein was inversely related to DHA oxidation products, but not those from arachidonic acid (P <0.05.This study provides novel data on subcellular lutein accumulation and its relationship to DHA oxidation in primate brain. These findings support the hypothesis that lutein may be associated with antioxidant functions in the brain.

  7. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization

    International Nuclear Information System (INIS)

    Chang, M.-C.; Chan, C.-P.; Wang, Y.-J.; Lee, P.-H.; Chen, L.-I; Tsai, Y.-L.; Lin, B.-R.; Wang, Y.-L.; Jeng, J.-H.

    2007-01-01

    Sanguinarine is a benzopheanthridine alkaloid present in the root of Sanguinaria canadensis L. and Chellidonium majus L. In this study, sanguinarine (2 and 3 μM) exhibited cytotoxicity to KB cancer cells by decreasing MTT reduction to 83% and 52% of control after 24-h of exposure. Sanguinarine also inhibited the colony forming capacity (> 52-58%) and growth of KB cancer cells at concentrations higher than 0.5-1 μM. Short-term exposure to sanguinarine (> 0.5 μM) effectively suppressed the adhesion of KB cells to collagen and fibronectin (FN). Sanguinarine (2 and 3 μM) induced evident apoptosis as indicated by an increase in sub-G0/G1 populations, which was detected after 6-h of exposure. Only a slight increase in cells arresting in S-phase and G2/M was noted. Induction of KB cell apoptosis and necrosis by sanguinarine (2 and 3 μM) was further confirmed by Annexin V-PI dual staining flow cytometry and the presence of DNA fragmentation. The cytotoxicity by sanguinarine was accompanied by an increase in production of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential as indicated by single cell flow cytometric analysis of DCF and rhodamine fluorescence. NAC (1 and 3 mM) and catalase (2000 U/ml) prevented the sanguinarine-induced ROS production and cytotoxicity, whereas dimethylthiourea (DMT) showed no marked preventive effect. These results suggest that sanguinarine has anticarcinogenic properties with induction of ROS production and mitochondrial membrane depolarization, which mediate cancer cell death

  8. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    Science.gov (United States)

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Benzoquinone activates the ERK/MAPK signaling pathway via ROS production in HL-60 cells

    International Nuclear Information System (INIS)

    Ruiz-Ramos, Ruben; Cebrian, Mariano E.; Garrido, Efrain

    2005-01-01

    Benzene (BZ) is a class I carcinogen and its oxidation to reactive intermediates is a prerequisite of hematoxicity and myelotoxicity. The generated metabolites include hydroquinone, which is further oxidized to the highly reactive 1,4-benzoquinone (BQ) in bone marrow. Therefore, we explored the mechanisms underlying BQ-induced HL-60 cell proliferation by studying the role of BQ-induced reactive oxygen species (ROS) in the activation of the ERK-MAPK signaling pathway. BQ treatment (0.01-30 μM) showed that doses below 10 μM did not significantly reduce viability. ROS production after 3 μM BQ treatment increased threefold; however, catalase addition reduced ROS generation to basal levels. FACS analysis showed that BQ induced a fivefold increase in the proportion of cells in S-phase. We also observed a high proportion of Bromodeoxyuridine (BrdU) stained cells, indicating a higher DNA synthesis rate. BQ also produced rapid and prolonged phosphorylation of ERK1/2 proteins. Simultaneous treatment with catalase or PD98059, a potent MEK protein inhibitor, reduced cell recruitment into the S-phase and also abolished the ERK1/2 protein phosphorylation induced by BQ, suggesting that MEK/ERK is an important pathway involved in BQ-induced ROS mediated proliferation. The prolonged activation of ERK1/2 contributes to explain the increased S-phase cell recruitment and to understand the leukemogenic processes associated with exposure to benzene metabolites. Thus, the possible mechanism by which BQ induce HL-60 cells to enter the cell cycle and proliferate is linked to ROS production and its growth promoting effects by specific activation of regulating genes known to be activated by redox mechanisms

  10. Determination of Porosity in Shale by Double Headspace Extraction GC Analysis.

    Science.gov (United States)

    Zhang, Chun-Yun; Li, Teng-Fei; Chai, Xin-Sheng; Xiao, Xian-Ming; Barnes, Donald

    2015-11-03

    This paper reports on a novel method for the rapid determination of the shale porosity by double headspace extraction gas chromatography (DHE-GC). Ground core samples of shale were placed into headspace vials and DHE-GC measurements of released methane gas were performed at a given time interval. A linear correlation between shale porosity and the ratio of consecutive GC signals was established both theoretically and experimentally by comparing with the results from the standard helium pycnometry method. The results showed that (a) the porosity of ground core samples of shale can be measured within 30 min; (b) the new method is not significantly affected by particle size of the sample; (c) the uncertainties of measured porosities of nine shale samples by the present method range from 0.31 to 0.46 p.u.; and (d) the results obtained by the DHE-GC method are in a good agreement with those from the standard helium pycnometry method. In short, the new DHE-GC method is simple, rapid, and accurate, making it a valuable tool for shale gas-related research and applications.

  11. Integrating Smart Resources in ROS-based systems to distribute services

    Directory of Open Access Journals (Sweden)

    Eduardo MUNERA

    2017-03-01

    Full Text Available Mobile robots need to manage a lot of sensors and actuators using micro-controllers.To do complexes tasks, a highly computation central unit is also needed. In many cases, a robot is a intelligent distributed system formed with a central unit, which manages and distributes several specific tasks to some micro-controller embedded systems onboard.Now these embedded systems are also evolving to more complex systems that are developed not only for executing simple tasks but offering some advanced algorithmsjust as complex data processing, adaptive execution, or fault-tolerance and alarm rising mechanisms. To manage these types of embedded systems a paradigm, calledSmart Resource has been developed. Smart Resources topology has been raised to manage resources which execution relies on a physical embedded hardware. TheseSmart Resources are defined as a list of distributed services that can configure its execution in order to accomplish a context and quality requirements. In order to provide a more general implementation Smart Resources are integrated into the RobotOperating System (ROS. Paper presents a solution based on the Turtlebot platformrunning ROS. The solution shows how robots can make use of all the functions andmechanisms provided by the ROS and the distribution, reliability and adaptability ofthe Smart Resources. In addition it is also addressed the flexibility and scalability ofimplementation by combining real and simulated devices into the same platform

  12. Effects of skin maceration time on the phenolic and sensory characteristics of Bombino Nero rosé wines

    Directory of Open Access Journals (Sweden)

    Serafino Suriano

    2015-03-01

    Full Text Available Rosé wines consumption has reached the highest level in present years and it is still an ongoing trend in several countries. Therefore, the production of rosé wines with improved sensory qualities and colour stability would be greatly appreciated. Today, although rosé wines are no longer considered to be less valuable than red and white ones, anyway, because of the past rosé’s reputation the scientific state of art lacks of specific studies concerning the effects of pre-fermentation maceration times on rosé wines. In this study, different pre fermentation maceration times (3, 6 and 8 h during production of original location certified and guaranteed rosé wine from Bombino Nero variety (Vitis vinifera L. were investigated. In all wines standard and specific wine chemical parameters, such as polyphenols, anthocyanins, flavonoids, hydroxycinnamoyl tartaric acids, volatile compounds and colour parameters were determined. A sensory descriptive analysis together with chemical analyses performed revealed that the maceration time significantly affected the aroma, the flavour and the colour of wines. The results showed that, although a longer maceration time is positively correlated to the colour stability of wine over time, however, a lengthener of the maceration is not favourable to enrich the wine with pleasant fruity and flowery aroma compounds, as both the gas chromatography and the sensory analyses showed. It was decided to perform the experimental winemaking processes in an actual winery instead of a laboratory in order to develop a practical winemaking management procedure directly usable for wine producers. The results obtained contribute to improve the knowledge about the importance of selecting the winemaking technique in order to elaborate high quality rosé wines.

  13. Combination of capillary GC, GC/MS and 13C-NMR for the characterization of the rhizome oil of Piper betle L. (Piperaceae) from Vietnam

    NARCIS (Netherlands)

    Thanh, L.; Dung, N.X.; Bighelli, A.; Casanova, J.; Leclercq, P.A.

    1997-01-01

    The essential oil from the rhizomes of Piper betle L. (betel), collected around Hue, was obtained in 0.20% yield. The oil was examined by a combination of capillary GC and GC/MS. 13C-NMR studies confirmed the structure assignments proposed by retention data and mass spectra of the components with a

  14. ROS generation and MAPKs activation contribute to the Ni-induced testosterone synthesis disturbance in rat Leydig cells.

    Science.gov (United States)

    Han, Aijie; Zou, Lingyue; Gan, Xiaoqin; Li, Yu; Liu, Fangfang; Chang, Xuhong; Zhang, Xiaotian; Tian, Minmin; Li, Sheng; Su, Li; Sun, Yingbiao

    2018-06-15

    Nickel (Ni) can disorder testosterone synthesis in rat Leydig cells, whereas the mechanisms remain unclear. The aim of this study was to investigate the role of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) in Ni-induced disturbance of testosterone synthesis in rat Leydig cells. The testosterone production and ROS levels were detected in Leydig cells. The mRNA and protein levels of testosterone synthetase, including StAR, CYP11A1, 3β-HSD, CYP17A1 and 17β-HSD, were determined. Effects of Ni on the ERK1/2, p38 and JNK MAPKs were also investigated. The results showed that Ni triggered ROS generation, consequently resulted in the decrease of testosterone synthetase expression and testosterone production in Leydig cells, which were then attenuated by ROS scavengers of N-acetylcysteine (NAC) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), indicating that ROS are involved in the Ni-induced testosterone biosynthesis disturbance. Meanwhile Ni activated the ERK1/2, p38 and JNK MAPKs. Furthermore, Ni-inhibited testosterone synthetase expression levels and testosterone secretion were all alleviated by co-treatment with MAPK specific inhibitors (U0126 and SB203580, respectively), implying that Ni inhibited testosterone synthesis through activating ERK1/2 and p38 MAPK signal pathways in Leydig cells. In conclusion, these findings suggest that Ni causes testosterone synthesis disorder, partly, via ROS and MAPK signal pathways. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Towards comprehensive hydrocarbons analysis of middle distillates by LC-GCxGC.

    Science.gov (United States)

    Adam, Frédérick; Bertoncini, Fabrice; Thiébaut, Didier; Esnault, Sébastien; Espinat, Didier; Hennion, M C

    2007-01-01

    The detailed characterization of middle distillates is essential for a better understanding of reactions involved in refining processes. Owing to a higher resolution power and an enhanced sensitivity, but especially to a group-type ordering in the chromatographic plane, comprehensive two-dimensional gas chromatography (GCxGC) offers unsurpassed characterization possibilities for petroleum samples. However, GCxGC fails to totally discriminate naphthenes from unsaturates occurring in hydrotreated diesel samples. This article aims at promoting the implementation of LC-GCxGC for the quantitative determination of hydrocarbon distribution in middle distillates, including naphthenes. In this configuration, liquid chromatography (LC) enables the separation of hydrocarbons into two fractions (viz., saturated and unsaturated) before the subsequent analysis of each fraction by GCxGC. In this paper, the choice of GCxGC conditions in order to achieve the separation and identification of hydrocarbons by chemical class is discussed; under these conditions, naphthenes are separated according to the number of saturated rings. For the first time, the presence of di-, tri-, and tetra-naphthenes resulting from the hydroconversion of aromatics can clearly be evidenced. A quantitative procedure for the determination of the distribution of hydrocarbons, including the distribution of naphthenes according to the number of saturated rings, is also proposed and discussed in detail. LC-GCxGC is found to provide an unequalled degree of information that will widely contribute to a better understanding of hydroconversion processes.

  16. A simple model for the influence of meiotic conversion tracts on GC content.

    Directory of Open Access Journals (Sweden)

    Marie-Claude Marsolier-Kergoat

    Full Text Available A strong correlation between GC content and recombination rate is observed in many eukaryotes, which is thought to be due to conversion events linked to the repair of meiotic double-strand breaks. In several organisms, the length of conversion tracts has been shown to decrease exponentially with increasing distance from the sites of meiotic double-strand breaks. I show here that this behavior leads to a simple analytical model for the evolution and the equilibrium state of the GC content of sequences devoid of meiotic double-strand break sites. In the yeast Saccharomyces cerevisiae, meiotic double-strand breaks are practically excluded from protein-coding sequences. A good fit was observed between the predictions of the model and the variations of the average GC content of the third codon position (GC3 of S. cerevisiae genes. Moreover, recombination parameters that can be extracted by fitting the data to the model coincide with experimentally determined values. These results thus indicate that meiotic recombination plays an important part in determining the fluctuations of GC content in yeast coding sequences. The model also accounted for the different patterns of GC variations observed in the genes of Candida species that exhibit a variety of sexual lifestyles, and hence a wide range of meiotic recombination rates. Finally, the variations of the average GC3 content of human and chicken coding sequences could also be fitted by the model. These results suggest the existence of a widespread pattern of GC variation in eukaryotic genes due to meiotic recombination, which would imply the generality of two features of meiotic recombination: its association with GC-biased gene conversion and the quasi-exclusion of meiotic double-strand breaks from coding sequences. Moreover, the model points out to specific constraints on protein fragments encoded by exon terminal sequences, which are the most affected by the GC bias.

  17. Butyrate-Loaded Chitosan/Hyaluronan Nanoparticles: A Suitable Tool for Sustained Inhibition of ROS Release by Activated Neutrophils

    DEFF Research Database (Denmark)

    Sacco, Pasquale; Decleva, Eva; Tentor, Fabio

    2017-01-01

    that butyrate inhibits neutrophil ROS release in a dose and time-dependent fashion. Given the short half-life of butyrate, chitosan/hyaluronan nanoparticles are next designed and developed as controlled release carriers able to provide cells with a long-lasting supply of this SCFA. Notably, while the inhibition...... of neutrophil ROS production by free butyrate declines over time, that of butyrate-loaded chitosan/hyaluronan nanoparticles (B-NPs) is sustained. Additional valuable features of these nanoparticles are inherent ROS scavenger activity, resistance to cell internalization, and mucoadhesiveness. B-NPs appear...

  18. Both selective and neutral processes drive GC content evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Cagliani Rachele

    2008-03-01

    Full Text Available Abstract Background Mammalian genomes consist of regions differing in GC content, referred to as isochores or GC-content domains. The scientific debate is still open as to whether such compositional heterogeneity is a selected or neutral trait. Results Here we analyze SNP allele frequencies, retrotransposon insertion polymorphisms (RIPs, as well as fixed substitutions accumulated in the human lineage since its divergence from chimpanzee to indicate that biased gene conversion (BGC has been playing a role in within-genome GC content variation. Yet, a distinct contribution to GC content evolution is accounted for by a selective process. Accordingly, we searched for independent evidences that GC content distribution does not conform to neutral expectations. Indeed, after correcting for possible biases, we show that intron GC content and size display isochore-specific correlations. Conclusion We consider that the more parsimonious explanation for our results is that GC content is subjected to the action of both weak selection and BGC in the human genome with features such as nucleosome positioning or chromatin conformation possibly representing the final target of selective processes. This view might reconcile previous contrasting findings and add some theoretical background to recent evidences suggesting that GC content domains display different behaviors with respect to highly regulated biological processes such as developmentally-stage related gene expression and programmed replication timing during neural stem cell differentiation.

  19. Insight into temperature dependence of GTPase activity in human guanylate binding protein-1.

    Directory of Open Access Journals (Sweden)

    Anjana Rani

    Full Text Available Interferon-γ induced human guanylate binding protein-1(hGBP1 belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1.

  20. Particle-bound reactive oxygen species (PB-ROS) emissions and formation pathways in residential wood smoke under different combustion and aging conditions

    Science.gov (United States)

    Zhou, Jun; Zotter, Peter; Bruns, Emily A.; Stefenelli, Giulia; Bhattu, Deepika; Brown, Samuel; Bertrand, Amelie; Marchand, Nicolas; Lamkaddam, Houssni; Slowik, Jay G.; Prévôt, André S. H.; Baltensperger, Urs; Nussbaumer, Thomas; El-Haddad, Imad; Dommen, Josef

    2018-05-01

    Wood combustion emissions can induce oxidative stress in the human respiratory tract by reactive oxygen species (ROS) in the aerosol particles, which are emitted either directly or formed through oxidation in the atmosphere. To improve our understanding of the particle-bound ROS (PB-ROS) generation potential of wood combustion emissions, a suite of smog chamber (SC) and potential aerosol mass (PAM) chamber experiments were conducted under well-determined conditions for different combustion devices and technologies, different fuel types, operation methods, combustion regimes, combustion phases, and aging conditions. The PB-ROS content and the chemical properties of the aerosols were quantified by a novel ROS analyzer using the DCFH (2',7'-dichlorofluorescin) assay and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). For all eight combustion devices tested, primary PB-ROS concentrations substantially increased upon aging. The level of primary and aged PB-ROS emission factors (EFROS) were dominated by the combustion device (within different combustion technologies) and to a greater extent by the combustion regimes: the variability within one device was much higher than the variability of EFROS from different devices. Aged EFROS under bad combustion conditions were ˜ 2-80 times higher than under optimum combustion conditions. EFROS from automatically operated combustion devices were on average 1 order of magnitude lower than those from manually operated devices, which indicates that automatic combustion devices operated at optimum conditions to achieve near-complete combustion should be employed to minimize PB-ROS emissions. The use of an electrostatic precipitator decreased the primary and aged ROS emissions by a factor of ˜ 1.5 which is however still within the burn-to-burn variability. The parameters controlling the PB-ROS formation in secondary organic aerosol were investigated by employing a regression model, including the fractions of

  1. An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method

    Science.gov (United States)

    Zhang, Guanghui; Zhang, Tianyong; Li, Bin; Jiang, Shuang; Zhang, Xia; Hai, Li; Chen, Xingwei; Wu, Wubin

    2018-03-01

    An ingenious method was employed to design and fabricate the TiO2/g-C3N4 heterojunction photocatalysts in this study. The thermal oxidation etching of g-C3N4 nanosheets and the in situ growth of TiO2 nanocrystal on the surface of g-C3N4 nanosheets were completed simultaneously by the calcination process. The g-C3N4 nanosheets played a crucial role in regulating and assembling the structures and morphologies of TiO2. Furthermore, the thickness and content of g-C3N4, and the crystallinity of TiO2 in TiO2/g-C3N4 composites could be regulated and controlled by the calcination temperature. Among the resultant TiO2/g-C3N4 samples, the TiO2/g-C3N4 sample with 41.6 wt% g-C3N4 exhibited the highest photocatalytic activity. It could degrade almost all MO molecules under visible light irradiation within 3 h. Moreover, it displayed higher visible light photocatalytic performance for degrading MO solution than pure g-C3N4 and D-TiO2. The synergistic effect between TiO2 and g-C3N4 makes significant contributions to the enhancement of the visible light photocatalytic activity. In addition, the favorable photocatalytic performance of TiO2/g-C3N4 nanocomposites is also attributed to the porous structures and uniform morphologies, and large surface area. Furthermore, the resultant TiO2/g-C3N4 exhibits excellent photocatalytic stability. Radical trapping experiments indicated that rad O2- and h+ were the main reactive species during the photodegradation process under visible light irradiation. Hopefully, the results can offer new design and strategy for preparing other g-C3N4-based nanocomposites for environmental and energy applications.

  2. Role of ROS in Aβ42 Mediated Activation of Cerebral Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Andrey Tsoy

    2014-12-01

    Full Text Available Introduction. There is substantial evidence that the deposition of aggregated amyloid-beta peptide (Aβ in brain parenchyma and brain vessels is the main cause of neuronal dysfunction and death in Alzheimer’s disease (AD. Aβ exhibits multiple cytotoxic effects on neurons and glial cells and causes dysfunction of the blood brain barrier (BBB. In AD brains, an increased deposition of Aβ in the cerebral vasculature has been found to be correlated with increased transmigration of blood-borne inflammatory cells and neurovascular inflammation. However, regulatory mediators of these processes remain to be elucidated. In this study, we examined the role of ROS in actin polymerization and expression of adhesion molecules (P-selectin on the surface of the cerebral endothelial cells (CECs that are activated by Aβ42.Materials and methods. Mouse BEnd3 line (ATCC was used in this research. BEnd3 cells respond to Aβ treatment similarly to human primary CECs and are a common model to investigate CECs’ function. We used immortalized bEnd3 cells as the following: controls; cells incubated with Aβ42 for 10, 30, and 60 minutes; cells incubated with 30 mM of antioxidant N-acetylcysteine (NAC for 1 hr; and, cells pre-treated with NAC followed by Aβ42 exposure. We measured DHE fluorescence to investigate intracellular ROS production. Immunofluorescent microscopy of anti-P-selectin and oregon green phalloidin was used to quantify the surface P-selectin expression and actin polymerization, and Western blot analysis was used to analyze total P-selectin expression.Results. The results of this study have demonstrated a significant time-dependent ROS accumulation after 10 minutes, 30 minutes, and 60 minutes of Aβ42 treatment, while Aβ42 stimulated ROS production in CECs was attenuated by pre-treatment with the NAC antioxidant. We also found that Aβ42 increased P-selectin fluorescence at the surface of bEnd3 cells in a time dependent manner in parallel to ROS

  3. Antitumor effect of degalactosylated gc-globulin on orthotopic grafted lung cancer in mice.

    Science.gov (United States)

    Hirota, Keiji; Nakagawa, Yoshinori; Takeuchi, Ryota; Uto, Yoshihiro; Hori, Hitoshi; Onizuka, Shinya; Terada, Hiroshi

    2013-07-01

    Group-specific component (Gc)-globulin-derived macrophage-activating factor (GcMAF) generated by a cascade of catalytic reactions with deglycosidase enzymes exerts antitumor activity. We hypothesized that degalactosyl Gc-globulin (DG3), a precursor of GcMAF, also plays a role in recovery from cancer as well as GcMAF due to progression of deglycosylation by generally resident sialidases and mannosidases. We prepared the subtypes of DG3, such as 1f1f and 1s1s and its 22 homodimers, by using vitamin D3-binding Sepharose CL-6B and examined their antitumor activity in mice bearing Lewis lung carcinoma cells, by counting the number of nodules formed in their lungs. Antitumor activity of DG3 was observed regardless of its subtype, being equivalent to that of GcMAF. The injection route of DG3 affected its antitumor activity, with subcutaneous and intramuscular administration being more favorable than the intraperitoneal or intravenous route. In order to obtain significant antitumor activity, more than 160 ng/kg of DG3 were required. DG3 proved to be promising as an antitumor agent, similarly to GcMAF.

  4. Amino acid differences in glycoproteins B (gB, C (gC, H (gH and L(gL are associated with enhanced herpes simplex virus type-1 (McKrae entry via the paired immunoglobulin-like type-2 receptor α

    Directory of Open Access Journals (Sweden)

    Chowdhury Sona

    2012-06-01

    Full Text Available Abstract Background Herpes simplex virus type-1 (HSV-1 enters into cells via membrane fusion of the viral envelope with plasma or endosomal membranes mediated by viral glycoproteins. HSV-1 virions attach to cell surfaces by binding of viral glycoproteins gC, gD and gB to specific cellular receptors. Here we show that the human ocular and highly neurovirulent HSV-1 strain McKrae enters substantially more efficiently into cells via the gB-specific human paired immunoglobulin-like type-2 receptor-α (hPILR-α. Comparison of the predicted amino acid sequences between HSV-1(F and McKrae strains indicates that amino acid changes within gB, gC, gH and gL may cause increased entry via the hPILR- α receptor. Results HSV-1 (McKrae entered substantially more efficiently than viral strain F in Chinese hamster ovary (CHO cells expressing hPIRL-α but not within CHO-human nectin-1, -(CHO-hNectin-1, CHO-human HVEM (CHO-hHVEM or Vero cells. The McKrae genes encoding viral glycoproteins gB, gC, gD, gH, gL, gK and the membrane protein UL20 were sequenced and their predicted amino acid (aa sequences were compared with virulent strains F, H129, and the attenuated laboratory strain KOS. Most aa differences between McKrae and F were located at their gB amino termini known to bind with the PILRα receptor. These aa changes included a C10R change, also seen in the neurovirulent strain ANG, as well as redistribution and increase of proline residues. Comparison of gC aa sequences revealed multiple aa changes including an L132P change within the 129-247 aa region known to bind to heparan sulfate (HS receptors. Two aa changes were located within the H1 domain of gH that binds gL. Multiple aa changes were located within the McKrae gL sequence, which were preserved in the H129 isolate, but differed for the F strain. Viral glycoproteins gD and gK and the membrane protein UL20 were conserved between McKrae and F strains. Conclusions The results indicate that the observed

  5. Effects of vitamin D(3)-binding protein-derived macrophage activating factor (GcMAF) on angiogenesis.

    Science.gov (United States)

    Kanda, Shigeru; Mochizuki, Yasushi; Miyata, Yasuyoshi; Kanetake, Hiroshi; Yamamoto, Nobuto

    2002-09-04

    The vitamin D(3)-binding protein (Gc protein)-derived macrophage activating factor (GcMAF) activates tumoricidal macrophages against a variety of cancers indiscriminately. We investigated whether GcMAF also acts as an antiangiogenic factor on endothelial cells. The effects of GcMAF on angiogenic growth factor-induced cell proliferation, chemotaxis, and tube formation were examined in vitro by using cultured endothelial cells (murine IBE cells, porcine PAE cells, and human umbilical vein endothelial cells [HUVECs]) and in vivo by using a mouse cornea micropocket assay. Blocking monoclonal antibodies to CD36, a receptor for the antiangiogenic factor thrombospondin-1, which is also a possible receptor for GcMAF, were used to investigate the mechanism of GcMAF action. GcMAF inhibited the endothelial cell proliferation, chemotaxis, and tube formation that were all stimulated by fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor-A, or angiopoietin 2. FGF-2-induced neovascularization in murine cornea was also inhibited by GcMAF. Monoclonal antibodies against murine and human CD36 receptor blocked the antiangiogenic action of GcMAF on the angiogenic factor stimulation of endothelial cell chemotaxis. In addition to its ability to activate tumoricidal macrophages, GcMAF has direct antiangiogenic effects on endothelial cells independent of tissue origin. The antiangiogenic effects of GcMAF may be mediated through the CD36 receptor.

  6. Environmental trace analysis by means of supersensitive GC-IMS

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1997-01-01

    The effective control of pollutants in ambient air requires their fast in situ identification and concentration determination of chemical compounds in the range of micrograms per m 3 . There are attempts to use conventional analytical techniques as portable GC and GC-MS. These systems are relatively expensive. A new supersensitive ion Mobility Sensor (IMS) was developed and checked by IUT Ltd, which meets the new demands. The use of tritium sources is an advantage in comparison with other IMS being equipped by nickel-63, the application of which is rather critical in respect of the radiation protection. On the other hand an integrated separation column allows to reduce interferences by matrix effects. The technical parameters of the IUT GC- IMS and some of its most important applications are briefly presented

  7. [Study on rapid analysis method of pesticide contamination in processed foods by GC-MS and GC-FPD].

    Science.gov (United States)

    Kobayashi, Maki; Otsuka, Kenji; Tamura, Yasuhiro; Tomizawa, Sanae; Kamijo, Kyoko; Iwakoshi, Keiko; Sato, Chizuko; Nagayama, Toshihiro; Takano, Ichiro

    2011-01-01

    A simple and rapid method using GC-MS and GC-FPD for the determination of pesticide contamination in processed food has been developed. Pesticides were extracted from a sample with ethyl acetate in the presence of anhydrous sodium sulfate, then cleaned up with a combination of mini-columns, such as macroporous diatomaceous earth, C18, GCB (graphite carbon black) and PSA. Recovery tests of 57 pesticides (known to be toxic or harmful) from ten kinds of processed foods (butter, cheese, corned beef, dried shrimp, frozen Chinese dumplings, grilled eels, instant noodles, kimchi, retort-packed curry and wine) were performed, and the recovery rates were mostly between 70% and 120%. This method can be used to judge whether or not processed foods are contaminated with pesticides at potentially harmful levels.

  8. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    International Nuclear Information System (INIS)

    Pi Jingbo; Zhang Qiang; Fu Jingqi; Woods, Courtney G.; Hou Yongyong; Corkey, Barbara E.; Collins, Sheila; Andersen, Melvin E.

    2010-01-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H 2 O 2 , act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.

  9. Human Leukemic Cells performing Oxidative Phosphorylation (OXPHOS Generate an Antioxidant Response Independently of Reactive Oxygen species (ROS Production

    Directory of Open Access Journals (Sweden)

    Abrar Ul Haq Khan

    2016-01-01

    Full Text Available Tumor cell metabolism is altered during leukemogenesis. Cells performing oxidative phosphorylation (OXPHOS generate reactive oxygen species (ROS through mitochondrial activity. To limit the deleterious effects of excess ROS, certain gene promoters contain antioxidant response elements (ARE, e.g. the genes NQO-1 and HO-1. ROS induces conformational changes in KEAP1 and releases NRF2, which activates AREs. We show in vitro and in vivo that OXPHOS induces, both in primary leukemic cells and cell lines, de novo expression of NQO-1 and HO-1 and also the MAPK ERK5 and decreases KEAP1 mRNA. ERK5 activates the transcription factor MEF2, which binds to the promoter of the miR-23a–27a–24-2 cluster. Newly generated miR-23a destabilizes KEAP1 mRNA by binding to its 3′UTR. Lower KEAP1 levels increase the basal expression of the NRF2-dependent genes NQO-1 and HO-1. Hence, leukemic cells performing OXPHOS, independently of de novo ROS production, generate an antioxidant response to protect themselves from ROS.

  10. Piroxicam, a traditional non-steroidal anti-inflammatory drug (NSAID) causes apoptosis by ROS mediated Akt activation.

    Science.gov (United States)

    Rai, Neha; Sarkar, Munna; Raha, Sanghamitra

    2015-12-01

    Piroxicam (Px) belongs to the oxicam group of the non-steroidal anti-inflammatory drugs (NSAIDs) and have been shown to exert chemopreventive and chemotherapeutic effects in animal models and cultured animal cells. However, little is known about the mode of action of Px and its cellular targets. We explored the role of Px, in triggering apoptosis and examined the involvement of upstream cellular mechanisms in apoptosis induction by Px. Our studies with human breast cancer cells MCF-7 show that Px induces reactive oxygen species (ROS) generation along with apoptotic cell death. ROS release lead to Akt activation. On evaluation it became evident that ROS mediated apoptosis induction was due to Akt activation (hyper phosphorylation). Silencing the expression of Akt using siRNA and a specific Akt inhibitor, triciribine further confirmed the findings. However Px failed to cause ROS generation, cell death or Akt phosphorylation in another human breast cancer cells MDA-MB-231 which is estrogen receptor negative and more aggressive compared to MCF-7 cells. This suggests that Px has cell type specific effects. Thus we revealed for the first time that Px can induce apoptosis by ROS mediated Akt hyperphosphorylation/activation. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Perspective on plasma membrane cholesterol efflux and spermatozoal function

    Directory of Open Access Journals (Sweden)

    Dhastagir Sultan Sheriff

    2010-01-01

    Full Text Available The process of sperm maturation, capacitation, and fertilization occur in different molecular milieu provided by epididymis and female reproductive tract including oviduct. The different tissue environment with different oxygen tension and temperature may still influence the process of sperm maturation and capacitation. Reactive oxygen species (ROS is reported to be an initial switch that may activate the molecular process of capacitation. Therefore, the generation of reactive oxygen species and its possible physiological role depends upon a balance between its formation and degradation in an open environment provided by female reproductive tract. The sensitivity of the spermatozoa to the action of ROS may be due to its exposure for the first time to an oxygen rich external milieu compared to its internal milieu in the male reproductive tract. Reduced temperature in testicular environment coupled with reduced oxygen tension may be the right molecular environment for the process of spermatogenesis and spermiogenesis. The morphologically mature spermatozoa then may attain its motility in an environment provided by the caput epididymis wherein, the dyenin motor can become active. This ability to move forward will make the spermatozoa physiologically fit to undertake its sojourn in the competitive race of fertilization in a new oxygen rich female reproductive tract. The first encounter may be oxygen trigger or preconditioning of the spermatozoa with reactive oxygen species that may alter the spermatozoal function. Infertility is still one of the major global health problems that need medical attention. Apart from the development of artificial methods of reproduction and development of newer techniques in the field of andrology focuses attention on spermatozoal structure and metabolism. Therefore, understanding the molecular mechanisms involved in fertilization in general and that of sperm capacitation in particular may help lead to new and better

  12. Incorporació de funcions a la plataforma robòtica RosPiBot

    OpenAIRE

    Fernández Vuelta, Adrián

    2015-01-01

    RosPiBot és una plataforma robòtica de quatre rodes que va sorgir de la restauració del robot Wifibot en un projecte recent. Es caracteritza per la seva capacitat d’adaptació a múltiples terrenys. En l’actual projecte, en primer lloc es presenta el moviment del robot i el comportament dels sensors que seran necessaris en tasques de localització. En segon lloc, es mostra la incorporació de ROS, un marc de treball àmpliament emprat en robòtica, juntament amb el desenvolupament...

  13. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Marie Tollot

    2016-06-01

    Full Text Available The biotrophic basidiomycete fungus Ustilago maydis causes smut disease in maize. Hallmarks of the disease are large tumors that develop on all aerial parts of the host in which dark pigmented teliospores are formed. We have identified a member of the WOPR family of transcription factors, Ros1, as major regulator of spore formation in U. maydis. ros1 expression is induced only late during infection and hence Ros1 is neither involved in plant colonization of dikaryotic fungal hyphae nor in plant tumor formation. However, during late stages of infection Ros1 is essential for fungal karyogamy, massive proliferation of diploid fungal cells and spore formation. Premature expression of ros1 revealed that Ros1 counteracts the b-dependent filamentation program and induces morphological alterations resembling the early steps of sporogenesis. Transcriptional profiling and ChIP-seq analyses uncovered that Ros1 remodels expression of about 30% of all U. maydis genes with 40% of these being direct targets. In total the expression of 80 transcription factor genes is controlled by Ros1. Four of the upregulated transcription factor genes were deleted and two of the mutants were affected in spore development. A large number of b-dependent genes were differentially regulated by Ros1, suggesting substantial changes in this regulatory cascade that controls filamentation and pathogenic development. Interestingly, 128 genes encoding secreted effectors involved in the establishment of biotrophic development were downregulated by Ros1 while a set of 70 "late effectors" was upregulated. These results indicate that Ros1 is a master regulator of late development in U. maydis and show that the biotrophic interaction during sporogenesis involves a drastic shift in expression of the fungal effectome including the downregulation of effectors that are essential during early stages of infection.

  14. Kinetic study of seawater reverse osmosis membrane fouling

    KAUST Repository

    Khan, Muhammad

    2013-10-01

    Reverse osmosis (RO) membrane fouling is not a static state but a dynamic phenomenon. The investigation of fouling kinetics and dynamics of change in the composition of the foulant mass is essential to elucidate the mechanism of fouling and foulant-foulant interactions. The aim of this work was to study at a lab scale the fouling process with an emphasis on the changes in the relative composition of foulant material as a function of operating time. Fouled membrane samples were collected at 8 h, and 1, 2, and 4 weeks on a lab-scale RO unit operated in recirculation mode. Foulant characterization was performed by CLSM, AFM, ATR-FTIR, pyrolysis GC-MS, and ICP-MS techniques. Moreover, measurement of active biomass and analysis of microbial diversity were performed by ATP analysis and DNA extraction, followed by pyro-sequencing, respectively. A progressive increase in the abundance of almost all the foulant species was observed, but their relative proportion changed over the age of the fouling layer. Microbial population in all the membrane samples was dominated by specific groups/species belonging to Proteobacteria and Actinobacteria phyla; however, similar to abiotic foulant, their relative abundance also changed with the biofilm age. © 2013 American Chemical Society.

  15. Performance of the future MOMA GC-ITMS instrument

    Science.gov (United States)

    Grand, Noel; Buch, Arnaud; Veronica, Pinnick; Szopa, Cyril; Danell, Ryan; Van Amerom, Friso H. W.; Glavin, Daniel P.; Freissinet, Caroline; Arevalo, Ricardo; Stalport, Fabien; Getty, Stephanie; Coll, Patrice; Steinninger, Harald; Brinckerhoff, William; Mahaffy, Paul; Goesmann, Fred; Raulin, F.; Goetz, Walter; MOMA Team

    2016-10-01

    The Mars Organic Molecule Analyzer (MOMA) experiment aboard the future ExoMars mission will be the continuation of the SAM expirement aboard the Curiosity rover, with the search for the organic composition of the Mars surface. With ExoMars the sample will be extracted as deep as 2 meters below the martian surface to minimize effects of radiation and oxidation on organic materials. To analyze the wide range of organic composition (volatile and non-volatiles compounds) of the Martian soil MOMA is composed with an UV laser desorption / ionization (LDI) and a pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS). In order to analyze refractory organic compounds and chirality samples which undergo GC-ITMS analysis may be submitted to a derivatization process, consisting of the reaction of the sample components with specific reactants (MTBSTFA [1], DMF-DMA [2] or TMAH [3]).To optimize and test the performance of the GC-ITMS instrument we have performed several coupling tests campaigns between the GC, providing by the French team (LISA, LATMOS, CentraleSupelec), and the MS, providing by the US team (NASA, GSFC). Last campaign has been done with the ETU models which is similar to the flight model and which include the oven and the taping station providing by the German team (MPS).The results obtained demonstrate the current status of the end-to-end performance of the gas chromatography-mass spectrometry mode of operation.

  16. Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry--a comparison with reference gas chromatography.

    Science.gov (United States)

    Kretzschmar, Moritz; Schilling, Thomas; Vogt, Andreas; Rothen, Hans Ulrich; Borges, João Batista; Hachenberg, Thomas; Larsson, Anders; Baumgardner, James E; Hedenstierna, Göran

    2013-10-15

    The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.

  17. Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis

    Directory of Open Access Journals (Sweden)

    Yachun Han

    2018-06-01

    Full Text Available NLRP3/IL-1β activation via thioredoxin (TRX/thioredoxin-interacting protein (TXNIP following mitochondria ROS (mtROS overproduction plays a key role in inflammation. However, the involvement of this process in tubular damage in the kidneys of patients with diabetic nephropathy (DN is unclear. Here, we demonstrated that mtROS overproduction is accompanied by decreases in TRX expression and TXNIP up-regulation. In addition, we discovered that mtROS overproduction is also associated with increases in NLRP3/IL-1β and TGF-β expression in the kidneys of patients with DN and db/db mice. We reversed these changes in db/db mice by administering a peritoneal injection of MitoQ, an antioxidant targeting mtROS. Similar results were observed in human tubular HK-2 cells subjected to high-glucose (HG conditions and treated with MitoQ. Treating HK-2 cells with MitoQ suppressed the dissociation of TRX from TXNIP and subsequently blocked the interaction between TXNIP and NLRP3, leading to the inhibition of NLRP3 inflammasome activation and IL-1β maturation. The effects of MitoQ were enhanced by pretreatment with TXNIP siRNA and abolished by pretreatment with monosodium urate (MSU and TRX siRNA in vitro. These results suggest that mitochondrial ROS-TXNIP/NLRP3/IL-1β axis activation is responsible for tubular oxidative injury, which can be ameliorated by MitoQ via the inhibition of mtROS overproduction. Keywords: Diabetic nephropathy, Mitochondria, Reactive oxygen species (ROS, TRX/TXNIP, NLRP3 inflammasome, MitoQ

  18. 1000 human genomes carry widespread signatures of GC biased gene conversion.

    Science.gov (United States)

    Dutta, Rajib; Saha-Mandal, Arnab; Cheng, Xi; Qiu, Shuhao; Serpen, Jasmine; Fedorova, Larisa; Fedorov, Alexei

    2018-04-16

    GC-Biased Gene Conversion (gBGC) is one of the important theories put forward to explain profound long-range non-randomness in nucleotide compositions along mammalian chromosomes. Nucleotide changes due to gBGC are hard to distinguish from regular mutations. Here, we present an algorithm for analysis of millions of known SNPs that detects a subset of so-called "SNP flip-over" events representing recent gBGC nucleotide changes, which occurred in previous generations via non-crossover meiotic recombination. This algorithm has been applied in a large-scale analysis of 1092 sequenced human genomes. Altogether, 56,328 regions on all autosomes have been examined, which revealed 223,955 putative gBGC cases leading to SNP flip-overs. We detected a strong bias (11.7% ± 0.2% excess) in AT- > GC over GC- > AT base pair changes within the entire set of putative gBGC cases. On average, a human gamete acquires 7 SNP flip-over events, in which one allele is replaced by its complementary allele during the process of meiotic non-crossover recombination. In each meiosis event, on average, gBGC results in replacement of 7 AT base pairs by GC base pairs, while only 6 GC pairs are replaced by AT pairs. Therefore, every human gamete is enriched by one GC pair. Happening over millions of years of evolution, this bias may be a noticeable force in changing the nucleotide composition landscape along chromosomes.

  19. Integrated multidimensional and comprehensive 2D GC analysis of fatty acid methyl esters.

    Science.gov (United States)

    Zeng, Annie Xu; Chin, Sung-Tong; Marriott, Philip J

    2013-03-01

    Fatty acid methyl ester (FAME) profiling in complex fish oil and milk fat samples was studied using integrated comprehensive 2D GC (GC × GC) and multidimensional GC (MDGC). Using GC × GC, FAME compounds--cis- and trans-isomers, and essential fatty acid isomers--ranging from C18 to C22 in fish oil and C18 in milk fat were clearly displayed in contour plot format according to structural properties and patterns, further identified based on authentic standards. Incompletely resolved regions were subjected to MDGC, with Cn (n = 18, 20) zones transferred to a (2)D column. Elution behavior of C18 FAME on various (2)D column phases (ionic liquids IL111, IL100, IL76, and modified PEG) was evaluated. Individual isolated Cn zones demonstrated about four-fold increased peak capacities. The IL100 provided superior separation, good peak shape, and utilization of elution space. For milk fat-derived FAME, the (2)D chromatogram revealed at least three peaks corresponding to C18:1, more than six peaks for cis/trans-C18:2 isomers, and two peaks for C18:3. More than 17 peaks were obtained for the C20 region of fish oil-derived FAMEs using MDGC, compared with ten peaks using GC × GC. The MDGC strategy is useful for improved FAME isomer separation and confirmation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals.

    Science.gov (United States)

    Lü, Rui

    2017-09-01

    Dynamic detection of transient redox changes in living cells and animals has broad implications for human health and disease diagnosis, because intracellular redox homeostasis regulated by reactive oxygen species (ROS) plays important role in cell functions, normal physiological functions and some serious human diseases (e.g., cancer, Alzheimer's disease, diabetes, etc.) usually have close relationship with the intracellular redox status. Small-molecule ROS-responsive fluorescent probes can act as powerful tools for dynamic detection of ROS and redox changes in living cells and animals through fluorescence imaging techniques; and great advances have been achieved recently in the design and synthesis of small-molecule ROS-responsive fluorescent probes. This article highlights up-to-date achievements in designing and using the reaction-based small-molecule fluorescent probes (with high sensitivity and selectivity to ROS and redox cycles) in the dynamic detection of ROS and transient redox changes in living cells and animals through fluorescence imaging. Copyright © 2017. Published by Elsevier Ltd.

  1. Ros-gazebo. una valiosa Herramienta de Vanguardia para el Desarrollo de la Robótica

    Directory of Open Access Journals (Sweden)

    Cristian Camilo Cuevas Castañeda

    2016-03-01

    Full Text Available El Sistema Operativo Robótico – ROS (de aquí en adelante ROS representa un significativo avance en la tecnología robótica, ya que constituye un verdadero modelo colaborativo de desarrollo, abierto al público en general y con una gama de posibilidades aún por descubrir. ROS permite contar con estructuras ya diseña- das y programadas que luego se pueden modificar, evitando, de esta manera, comenzar de cero con cada diseño y superando la pérdida de tiempo inherente a la construcción de algoritmos de piezas comunes, como brazos y ruedas, entre otras. Tal plataforma se complementa con las herramientas de Rviz y Gazebo, que brindan simulaciones 3D del modelo robótico diseñado.

  2. Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation

    International Nuclear Information System (INIS)

    Liao, Gaozu; Zhu, Dongyun; Li, Laisheng; Lan, Bingyan

    2014-01-01

    Highlights: • g-C 3 N 4 is employed as active catalyst in the photocatalytic ozonation system. • The more negative conduction band of g-C 3 N 4 benefits the transfer of electrons. • The synergistic effect between photocatalysis and ozonation is promoted by g-C 3 N 4 . • Enhanced degradation of oxalic acid and biphenol A is achieved via g-C 3 N 4 /Vis/O 3 . - Abstract: Graphitic carbon nitride (g-C 3 N 4 ) was employed as the active photocatalyst in the photocatalytic ozonation coupling system in the present study. g-C 3 N 4 was prepared by directly heating thiourea in air at 550 °C. XRD, FT-IR, UV–vis was used to characterize the structure and optical property. Oxalic acid and bisphenol A were selected as model substances for photocatalytic ozonation reactions to evaluate the catalytic ability of g-C 3 N 4 (g-C 3 N 4 /Vis/O 3 ). The results showed that the degradation ratio of oxalic acid with g-C 3 N 4 /Vis/O 3 was 65.2% higher than the sum of ratio when it was individually decomposed by g-C 3 N 4 /Vis and O 3 . The TOC removal of biphenol A with g-C 3 N 4 /Vis/O 3 was 2.17 times as great as the sum of the ratio when using g-C 3 N 4 /Vis and O 3 . This improvement was attributed to the enhanced synergistic effect between photocatalysis and ozonation by g-C 3 N 4 . Under visible light irradiation, the photo-generated electrons produced on g-C 3 N 4 facilitated the electrons transfer owing to the more negative conduction band potential (−1.3 V versus NHE). It meant that the photo-generated electrons could be trapped by ozone and reaction with it more easily. Subsequently, the yield of hydroxyl radicals was improved so as to enhance the organics degradation efficiency. This work indicated that metal-free g-C 3 N 4 could be an excellent catalyst for mineralization of organic compounds in waste control

  3. Environmental trace analysis by means of supersensitive GC-IMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, J.W. [IUTLimited, Berlin, (Germany)

    1997-10-01

    The effective control of pollutants in ambient air requires their fast in situ identification and concentration determination of chemical compounds in the range of micrograms per m{sup 3}. There are attempts to use conventional analytical techniques as portable GC and GC-MS. These systems are relatively expensive. A new supersensitive ion Mobility Sensor (IMS) was developed and checked by IUT Ltd, which meets the new demands. The use of tritium sources is an advantage in comparison with other IMS being equipped by nickel-63, the application of which is rather critical in respect of the radiation protection. On the other hand an integrated separation column allows to reduce interferences by matrix effects. The technical parameters of the IUT GC- IMS and some of its most important applications are briefly presented 6 refs., 1 tab., 5 figs.

  4. European contribution to the study of ROS : A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)

    NARCIS (Netherlands)

    Egea, Javier; Fabregat, Isabel; Frapart, Yves M; Ghezzi, Pietro; Görlach, Agnes; Kietzmann, Thomas; Kubaichuk, Kateryna; Knaus, Ulla G; Lopez, Manuela G; Olaso-Gonzalez, Gloria; Petry, Andreas; Schulz, Rainer; Vina, Jose; Winyard, Paul J; Abbas, Kahina; Ademowo, Opeyemi S; Afonso, Catarina B; Andreadou, Ioanna; Antelmann, Haike; Antunes, Fernando; Aslan, Mutay; Bachschmid, Markus M; Barbosa, Rui M; Belousov, Vsevolod; Berndt, Carsten; Bernlohr, David; Bertrán, Esther; Bindoli, Alberto; Bottari, Serge P; Brito, Paula M; Carrara, Guia; Casas, Ana I; Chatzi, Afroditi; Chondrogianni, Niki; Conrad, Marcus; Cooke, Marcus S; Costa, João G; Cuadrado, Antonio; My-Chan Dang, Pham; De Smet, Barbara; Debelec-Butuner, Bilge; Dias, Irundika H K; Dunn, Joe Dan; Edson, Amanda J; El Assar, Mariam; El-Benna, Jamel; Ferdinandy, Péter; Fernandes, Ana S; Fladmark, Kari E; Förstermann, Ulrich; Giniatullin, Rashid; Giricz, Zoltán; Görbe, Anikó; Griffiths, Helen L; Hampl, Vaclav; Hanf, Alina; Herget, Jan; Hernansanz-Agustín, Pablo; Hillion, Melanie; Huang, Jingjing; Ilikay, Serap; Jansen-Dürr, Pidder; Jaquet, Vincent; Joles, Jaap A; Kalyanaraman, Balaraman; Kaminskyy, Danylo; Karbaschi, Mahsa; Kleanthous, Marina; Klotz, Lars-Oliver; Korac, Bato; Korkmaz, Kemal Sami; Koziel, Rafal; Kračun, Damir; Krause, Karl-Heinz; Křen, Vladimír; Krieg, Thomas; Laranjinha, João; Lazou, Antigone; Li, Huige; Martínez-Ruiz, Antonio; Matsui, Reiko; McBean, Gethin J; Meredith, Stuart P; Messens, Joris; Miguel, Verónica; Mikhed, Yuliya; Milisav, Irina; Milković, Lidija; Miranda-Vizuete, Antonio; Mojović, Miloš; Monsalve, María; Mouthuy, Pierre-Alexis; Mulvey, John; Münzel, Thomas; Muzykantov, Vladimir; Nguyen, Isabel T N; Oelze, Matthias; Oliveira, Nuno G; Palmeira, Carlos M; Papaevgeniou, Nikoletta; Pavićević, Aleksandra; Pedre, Brandán; Peyrot, Fabienne; Phylactides, Marios; Pircalabioru, Gratiela G; Pitt, Andrew R; Poulsen, Henrik E; Prieto, Ignacio; Rigobello, Maria Pia; Robledinos-Antón, Natalia; Rodríguez-Mañas, Leocadio; Rolo, Anabela P; Rousset, Francis; Ruskovska, Tatjana; Saraiva, Nuno; Sasson, Shlomo; Schröder, Katrin; Semen, Khrystyna; Seredenina, Tamara; Shakirzyanova, Anastasia; Smith, Geoffrey L; Soldati, Thierry; Sousa, Bebiana C; Spickett, Corinne M; Stancic, Ana; Stasia, Marie José; Steinbrenner, Holger; Stepanić, Višnja; Steven, Sebastian; Tokatlidis, Kostas; Tuncay, Erkan; Turan, Belma; Ursini, Fulvio; Vacek, Jan; Vajnerova, Olga; Valentová, Kateřina; Van Breusegem, Frank; Varisli, Lokman; Veal, Elizabeth A; Yalçın, A Suha; Yelisyeyeva, Olha; Žarković, Neven; Zatloukalová, Martina; Zielonka, Jacek; Touyz, Rhian M; Papapetropoulos, Andreas; Grune, Tilman; Lamas, Santiago; Schmidt, Harald H H W; Di Lisa, Fabio; Daiber, Andreas

    2017-01-01

    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better

  5. Antioxidant, Biomolecule Oxidation Protective Activities of Nardostachys jatamansi DC and Its Phytochemical Analysis by RP-HPLC and GC-MS

    Directory of Open Access Journals (Sweden)

    Sakina Razack

    2015-03-01

    Full Text Available The study aimed at analyzing the metabolite profile of Nardostachys jatamansi using RP-HPLC, GC-MS and also its antioxidant, biomolecule protective and cytoprotective properties. The 70% ethanolic extract of Nardostachys jatamansi (NJE showed the presence of polyphenols and flavonoids (gallic acid, catechin, chlorogenic acid, homovanillin, epicatechin, rutin hydrate and quercetin-3-rhamnoside analyzed by RP-HPLC, whereas hexane extract revealed an array of metabolites (fatty acids, sesquiterpenes, alkane hydrocarbons and esters by GC-MS analysis. The antioxidant assays showed the enhanced potency of NJE with a half maximal inhibitory concentration (IC50 value of 222.22 ± 7.4 μg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH, 13.90 ± 0.5 μg/mL for 2,2′-azino-bis(3-ethyl benzothiazoline-6-sulfonic acid diammonium salt (ABTS, 113.81 ± 4.2 μg/mL for superoxide, 948 ± 21.1 μg/mL for metal chelating and 12.3 ± 0.43 mg FeSO4 equivalent/g of extract for ferric reducing antioxidant power assays and was more potent than hexane extract. NJE effectively inhibited 2,2′-azobis(2-methylpropionamidine dihydrochloride (AAPH-induced oxidation of biomolecules analyzed by pBR322 plasmid DNA damage, protein oxidation of bovine serum albumin and lipid peroxidation assays. The observed effects might be due to the high content of polyphenols, 53.06 ± 2.2 mg gallic acid equivalents/g, and flavonoids, 25.303 ± 0.9 mg catechin equivalents/g, of NJE compared to the hexane fraction. Additionally, the extract abrogated the protein, carbonyl, and ROS formation, and NJE showed cytotoxicity in SH-SY5Y neuronal cells above 75 μg/mL. Thus, the study suggests that the herb unequivocally is a potential source of antioxidants and could aid in alleviating oxidative stress-mediated disorders.

  6. Skin Aging-Dependent Activation of the PI3K Signaling Pathway via Downregulation of PTEN Increases Intracellular ROS in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Eun-Mi Noh

    2016-01-01

    Full Text Available Reactive oxygen species (ROS play a major role in both chronological aging and photoaging. ROS induce skin aging through their damaging effect on cellular constituents. However, the origins of ROS have not been fully elucidated. We investigated that ROS generation of replicative senescent fibroblasts is generated by the modulation of phosphatidylinositol 3,4,5-triphosphate (PIP3 metabolism. Reduction of the PTEN protein, which dephosphorylates PIP3, was responsible for maintaining a high level of PIP3 in replicative cells and consequently mediated the activation of the phosphatidylinositol-3-OH kinase (PI3K/Akt pathway. Increased ROS production was blocked by inhibition of PI3K or protein kinase C (PKC or by NADPH oxidase activating in replicative senescent cells. These data indicate that the signal pathway to ROS generation in replicative aged skin cells can be stimulated by reduced PTEN level. Our results provide new insights into skin aging-associated modification of the PI3K/NADPH oxidase signaling pathway and its relationship with a skin aging-dependent increase of ROS in human dermal fibroblasts.

  7. Preferential cytotoxicity of ZnO nanoparticle towards cervical cancer cells induced by ROS-mediated apoptosis and cell cycle arrest for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sirelkhatim, Amna, E-mail: amnasirelkhatim@yahoo.co.uk; Mahmud, Shahrom [Universiti Sains Malaysia (USM), Institute of Nano-Optoelectronics Research and Technology (INOR), School of Physics (Malaysia); Seeni, Azman [Universiti Sains Malaysia (USM), Advanced Medical and Dental Institute, Cluster of Integrative Medicine (Malaysia); Kaus, Noor Haida Mohd [Universiti Sains Malaysia (USM), School of Chemical Sciences (Malaysia)

    2016-08-15

    benefit from the synergistic influence of size and nanostructure when designing anticancer agents.Graphical AbstractMechanism of cell death by ZnO-NPs, displaying ROS formation and Zn{sup 2+} release that induced apoptosis and arrested cell cycle progression. Apoptosis involved DNA fragmentation, chromatin condensation, membrane shrinkage, and formation of apoptotic bodies. The synergistic effect of ZnO-NPs size (20, 40, 80 nm) and nanostructure (nanorods, nanogranules) impacted the inhibition of HeLa cells growth and eventually death.

  8. The role of mechanical force and ROS in integrin-dependent signals.

    Directory of Open Access Journals (Sweden)

    Kathrin S Zeller

    Full Text Available Cells are exposed to several types of integrin stimuli, which generate responses generally referred to as "integrin signals", but the specific responses to different integrin stimuli are poorly defined. In this study, signals induced by integrin ligation during cell attachment, mechanical force from intracellular contraction, or cell stretching by external force were compared. The elevated phosphorylation levels of several proteins during the early phase of cell attachment and spreading of fibroblast cell lines were not affected by inhibition of ROCK and myosin II activity, i.e. the reactions occurred independently of intracellular contractile force acting on the adhesion sites. The contraction-independent phosphorylation sites included ERK1/2 T202/Y204, AKT S473, p130CAS Y410, and cofilin S3. In contrast to cell attachment, cyclic stretching of the adherent cells induced a robust phosphorylation only of ERK1/2 and the phosphorylation levels of the other investigated proteins were not or only moderately affected by stretching. No major differences between signaling via α5β1 or αvβ3 integrins were detected. The importance of mitochondrial ROS for the integrin-induced signaling pathways was investigated using rotenone, a specific inhibitor of complex I in the respiratory chain. While rotenone only moderately reduced ATP levels and hardly affected the signals induced by cyclic cell stretching, it abolished the activation of AKT and reduced the actin polymerization rate in response to attachment in both cell lines. In contrast, scavenging of extracellular ROS with catalase or the vitamin C analog Asc-2P did not significantly influence the attachment-derived signaling, but caused a selective and pronounced enhancement of ERK1/2 phosphorylation in response to stretching. In conclusion, the results showed that "integrin signals" are composed of separate sets of reactions triggered by different types of integrin stimulation. Mitochondrial ROS and

  9. Synthesis and characterization of novel ion-imprinted guanyl-modified cellulose for selective extraction of copper ions from geological and municipality sample.

    Science.gov (United States)

    Kenawy, I M; Ismail, M A; Hafez, M A H; Hashem, M A

    2018-04-21

    The new ion-imprinted guanyl-modified cellulose (II.Gu-MC) was prepared for the separation and determination of Cu (II) ions in different real samples. Several techniques such as Fourier Transform Infrared (FT-IR), scanning electron microscope (SEM), thermal analysis, potentiograph and elemental analysis have been utilized for the characterization of II.Gu-MC. The adsorption behavior of the ion imprinted polymer (II.Gu-MC) was evaluated and compared to the non ion-imprinted polymer (NII.Gu-MC) at the optimum conditions. The selectivity and the adsorption capacity were greatly enhanced by using the ion-imprinted polymer, indicating its validation for the separation and determination of Cu 2+ ions in different matrices. The adsorption capacity by chelating fibers II.Gu-MC & NII.Gu-MC agreed with the second-order model, and the sorption-isotherm experiments revealed best agreement with Langmuir model. The adsorption capacity of II.Gu-MC and NII.Gu-MC were 115 and 55 mg·g -1 , respectively. The II.Gu-MC was successfully employed for the selective separation and determination of Cu(II) ions with high accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome.

    Science.gov (United States)

    Xu, Aibin; Liu, Jingyi; Liu, Peilin; Jia, Min; Wang, Han; Tao, Ling

    2014-04-18

    Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H2O2 led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H2O2 and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the process. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. GC content around splice sites affects splicing through pre-mRNA secondary structures

    Directory of Open Access Journals (Sweden)

    Chen Liang

    2011-01-01

    Full Text Available Abstract Background Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens, mice (Mus musculus, fruit flies (Drosophila melanogaster, and nematodes (Caenorhabditis elegans to further investigate this phenomenon. Results We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. Conclusion All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.

  12. Inhibiting ROS-TFEB-Dependent Autophagy Enhances Salidroside-Induced Apoptosis in Human Chondrosarcoma Cells.

    Science.gov (United States)

    Zeng, Wei; Xiao, Tao; Cai, Anlie; Cai, Weiliang; Liu, Huanhuan; Liu, Jingling; Li, Jie; Tan, Miduo; Xie, Li; Liu, Ying; Yang, Xiangcheng; Long, Yi

    2017-01-01

    Autophagy modulation has been considered a potential therapeutic strategy for human chondrosarcoma, and a previous study indicated that salidroside exhibits significant anti-carcinogenic activity. However, the ability of salidroside to induce autophagy and its role in human chondrosarcoma cell death remains unclear. We exposed SW1353 cells to different concentrations of salidroside (0.5, 1 and 2 mM) for 24 h. RT-PCR, Western-blotting, Immunocytofluorescence, and Luciferase Reporter Assays were used to evaluate whether salidroside activated the TFEB-dependent autophagy. We show that salidroside induced significant apoptosis in the human chondrosarcoma cell line SW1353. In addition, we demonstrate that salidroside-induced an autophagic response in SW1353 cells, as evidenced by the upregulation of LC3-II and downregulation of P62. Moreover, pharmacological or genetic blocking of autophagy enhanced salidroside -induced apoptosis, indicating the cytoprotective role of autophagy in salidroside-treated SW1353 cells. Salidroside also induced TFEB (Ser142) dephosphorylation, subsequently to activated TFEB nuclear translocation and increase of TFEB reporter activity, which contributed to lysosomal biogenesis and the expression of autophagy-related genes. Importantly, we found that salidroside triggered the generation of ROS in SW1353 cells. Furthermore, NAC, a ROS scavenger, abrogated the effects of salidroside on TFEB-dependent autophagy. These data demonstrate that salidroside increased TFEB-dependent autophagy by activating ROS signaling pathways in human chondrosarcoma cells. These data also suggest that blocking ROS-TFEB-dependent autophagy to enhance the activity of salidroside warrants further attention in treatment of human chondrosarcoma cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  13. Generation of ROS mediated by mechanical waves (ultrasound) and its possible applications.

    Science.gov (United States)

    Duco, Walter; Grosso, Viviana; Zaccari, Daniel; Soltermann, Arnaldo T

    2016-10-15

    The thermal decomposition of 9,10 diphenylanthracene peroxide (DPAO 2 ) generates DPA and a mix of triplet and singlet molecular oxygen. For DPAO 2 the efficiency to produce singlet molecular oxygen is 0.35. On the other hand, it has shown that many thermal reactions can be carried out through the interaction of molecules with ultrasound. Ultrasound irradiation can create hydrodynamic stress (sonomechanical process), inertial cavitation (pyrolitic process) and long range effects mediated by radicals or ROS. Sonochemical reactions can be originated by pyrolytic like process, shock mechanical waves, thermal reactions and radical and ROS mediated reactions. Sonolysis of pure water can yield hydrogen or hydroxyl radicals and hydrogen peroxide (ROS). When DPAO 2 in 1,4 dioxane solution is treated with 20 or 24kHz and different power intensity the production of molecular singlet oxygen is observed. Specific scavengers like tetracyclone (TC) are used to demonstrate it. The efficiency now is 0.85 showing that the sonochemical process is much more efficient that the thermal one. Another endoperoxide, artemisinin was also studied. Unlike the concept of photosensitizer of photodynamic therapy, in spite of large amount of reported results in literature, the term sonosensitizer and the sonosensitization process are not well defined. We define sonosensitized reaction as one in which a chemical species decompose as consequence of cavitation phenomena producing ROS or other radicals and some other target species does undergo a chemical reaction. The concept could be reach rapidly other peroxides which are now under experimental studies. For artemisinin, an important antimalarian and anticancer drug, was established that ultrasound irradiation increases the effectiveness of the treatment but without any explanation. We show that artemisinin is an endoperoxide and behaves as a sonosensitizer in the sense of our definition. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Uudised : Fääri ooper Tallinnas. Sigur Ros Tallinnas

    Index Scriptorium Estoniae

    2008-01-01

    10.-12. septembrini mängitakse Tallinnas Kultuurikatlas fääri helilooja Sunleif Rasmusseni ooperit "Hullu mehe aias", lavastajaks Robert Annus. 23. augustil annab Rock Cafés kontserdi Islandi eksperimentaalrocki ansambel Sigur Ros, kes esitleb oma viiendat albumit "Med sud i eyrum vid spilum endalaust" (mida võiks tõlkida "Mängime lõppematult, sumin kõrvus"

  15. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS

    Directory of Open Access Journals (Sweden)

    Javier Egea

    2017-10-01

    Full Text Available The European Cooperation in Science and Technology (COST provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.

  16. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.

    Science.gov (United States)

    Bi, Chao; Ma, Yu; Wu, Zhen; Yu, Yong-Tao; Liang, Shan; Lu, Kai; Wang, Xiao-Fang

    2017-05-01

    It has been known that ABA INSENSITIVE 5 (ABI5) plays a vital role in regulating seed germination. In the present study, we showed that inhibition of the catalase activity with 3-amino-1,2,4-triazole (3-AT) inhibits seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines. Compared with Col-0, the seeds of abi5 mutants showed more sensitive to 3-AT during seed germination, while the seeds of ABI5-overexpression transgenic lines showed more insensitive. H 2 O 2 showed the same effect on seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines as 3-AT. These results suggest that ROS is involved in the seed germination mediated by ABI5. Further, we observed that T-DNA insertion mutants of the three catalase members in Arabidopsis displayed 3-AT-insensitive or -hypersensitive phenotypes during seed germination, suggesting that these catalase members regulate ROS homeostasis in a highly complex way. ABI5 affects reactive oxygen species (ROS) homeostasis by affecting CATALASE expression and catalase activity. Furthermore, we showed that ABI5 directly binds to the CAT1 promoter and activates CAT1 expression. Genetic evidence supports the idea that CAT1 functions downstream of ABI5 in ROS signaling during seed germination. RNA-sequencing analysis indicates that the transcription of the genes involved in ROS metabolic process or genes responsive to ROS stress is impaired in abi5-1 seeds. Additionally, expression changes in some genes correlative to seed germination were showed due to the change in ABI5 expression under 3-AT treatment. Together, all the findings suggest that ABI5 regulates seed germination at least partly by affecting ROS homeostasis.

  17. Screening for ROS1 gene rearrangements in non-small cell lung cancers using immunohistochemistry with FISH confirmation is an effective method to identify this rare target

    Science.gov (United States)

    Selinger, Christina I; Li, Bob T; Pavlakis, Nick; Links, Matthew; Gill, Anthony J; Lee, Adrian; Clarke, Stephen; Tran, Thang N; Lum, Trina; Yip, Po Yee; Horvath, Lisa; Yu, Bing; Kohonen-Corish, Maija RJ; O’Toole, Sandra A; Cooper, Wendy A

    2016-01-01

    Aims To assess the prevalence of ROS1 rearrangements in a retrospective and prospective diagnostic Australian cohort and evaluate the effectiveness of immunohistochemical screening. Methods A retrospective cohort of 278 early stage lung adenocarcinomas and an additional 104 prospective NSCLC cases referred for routine molecular testing were evaluated. ROS1 immunohistochemistry (IHC) was performed (D4D6 clone, Cell Signaling Technology) on all cases as well as fluorescence in situ hybridisation (FISH) using the ZytoVision and Abbott Molecular ROS1 FISH probes, with ≥15% of cells with split signals considered positive for rearrangement. Results Eighty eight cases (32%) from the retrospective cohort showed staining by ROS1 IHC, and one case (0.4%) showed ROS1 rearrangement by FISH. Nineteen of the prospective diagnostic cases showed ROS1 IHC staining of which 12 (12%) cases were confirmed as ROS1 rearranged by FISH. There were no ROS1 rearranged cases that showed no expression of ROS1 with IHC. The ROS1 rearranged cases in the prospective cohort were all EGFR wildtype and ALK rearrangement negative. The sensitivity of ROS1 IHC in the retrospective cohort was 100% and specificity was 76%. Conclusions ROS1 rearrangements are rare events in lung adenocarcinomas. Selection of cases for ROS1 FISH testing, by excluding EGFR/ALK positive cases and use of IHC to screen for potentially positive cases can be used to enrich for the likelihood of a identifying a ROS1 rearranged lung cancer and prevent the need to undertake expensive and time consuming FISH testing in all cases. PMID:27599111

  18. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    Science.gov (United States)

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  19. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation.

    Directory of Open Access Journals (Sweden)

    Elaine Hatanaka

    Full Text Available The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47 (phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47 (phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts.

  20. Oxygen mediates vascular smooth muscle relaxation in hypoxia.

    Directory of Open Access Journals (Sweden)

    Jessica Dada

    Full Text Available The activation of soluble guanylate cyclase (sGC by nitric oxide (NO and other ligands has been extensively investigated for many years. In the present study we considered the effect of molecular oxygen (O2 on sGC both as a direct ligand and its affect on other ligands by measuring cyclic guanosine monophosphate (cGMP production, as an index of activity, as well as investigating smooth muscle relaxation under hypoxic conditions. Our isolated enzyme studies confirm the function of sGC is impaired under hypoxic conditions and produces cGMP in the presence of O2, importantly in the absence of NO. We also show that while O2 could partially affect the magnitude of sGC stimulation by NO when the latter was present in excess, activation by the NO independent, haem-dependent sGC stimulator 3-(5'-hydroxymethyl-2'-furyl-1-benzylindazole (YC-1 was unaffected. Our in vitro investigation of smooth muscle relaxation confirmed that O2 alone in the form of a buffer bolus (equilibrated at 95% O2/5% CO2 had the ability to dilate vessels under hypoxic conditions and that this was dependent upon sGC and independent of eNOS. Our studies confirm that O2 can be a direct and important mediator of vasodilation through an increase in cGMP production. In the wider context, these observations are key to understanding the relative roles of O2 versus NO-induced sGC activation.

  1. Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Aiping Lan

    Full Text Available Hydrogen sulfide (H(2S has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl(2 is a well-known hypoxia mimetic agent. We have demonstrated that H(2S protects against CoCl(2-induced injuries in PC12 cells. However, whether the members of mitogen-activated protein kinases (MAPK, in particular, extracellular signal-regulated kinase1/2(ERK1/2 and p38MAPK are involved in the neuroprotection of H(2S against chemical hypoxia-induced injuries of PC12 cells is not understood. We observed that CoCl(2 induced expression of transcriptional factor hypoxia-inducible factor-1 alpha (HIF-1α, decreased cystathionine-β synthase (CBS, a synthase of H(2S expression, and increased generation of reactive oxygen species (ROS, leading to injuries of the cells, evidenced by decrease in cell viability, dissipation of mitochondrial membrane potential (MMP , caspase-3 activation and apoptosis, which were attenuated by pretreatment with NaHS (a donor of H(2S or N-acetyl-L cystein (NAC, a ROS scavenger. CoCl(2 rapidly activated ERK1/2, p38MAPK and C-Jun N-terminal kinase (JNK. Inhibition of ERK1/2 or p38MAPK or JNK with kinase inhibitors (U0126 or SB203580 or SP600125, respectively or genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-p38MAPK significantly prevented CoCl(2-induced injuries. Pretreatment with NaHS or NAC inhibited not only CoCl(2-induced ROS production, but also phosphorylation of ERK1/2 and p38MAPK. Thus, we demonstrated that a concurrent activation of ERK1/2, p38MAPK and JNK participates in CoCl(2-induced injuries and that H(2S protects PC12 cells against chemical hypoxia-induced injuries by inhibition of ROS-activated ERK1/2 and p38MAPK pathways. Our results suggest that inhibitors of ERK1/2, p38MAPK and JNK or antioxidants may be useful for preventing and treating hypoxia-induced neuronal injury.

  2. Results of the First Mars Organic Molecule Analyzer (MOMA) GC-MS Coupling

    Science.gov (United States)

    Buch, Arnaud; Pinnick, Veronica; Szopa, Cyril; Danell, Ryan; Grand, Noel; Van Amerom, Friso; Glavin, Daniel; Freissinet, Caroline; Humeau, Olivier; Coll, Patrice; Arevalo, Ricardo; Stalport, Fabien; Brinckerhoff, William; Steininger, Harald; Goesmann, Fred; Mahaffy, Paul; Raulin, Francois

    2014-11-01

    The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars rover will be a key analytical tool in providing chemical (molecular) information from the solid samples collected by the rover, with a particular focus on the char-acterization of the organic content. The core of the MOMA instrument is a gas chromatograph coupled with a mass spectrometer (GC-MS) which provides the unique capability to characterize a broad range of compounds, including both of volatile and non-volatile species. Samples will be crushed and deposited into sample cups seated in a rotating carousel. Soil samples will be analyzed either by UV laser desorption / ionization (LDI) or pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS).The French GC brassboard was coupled to the US ion trap mass spectrometer brassboard in a flight-like con-figuration for several coupling campains. The MOMA GC setup is based on the SAM heritage design with a He reservoir and 4 separate analytical modules including traps, columns and Thermal Conductivity Detectors. Solid samples are sealed and heated in this setup using a manual tapping station, designed and built at MPS in Germany, for GC-MS analysis. The gaseous species eluting from the GC are then ionized by an electron impact ionization source in the MS chamber and analyzed by the linear ion trap mass spectrometer. Volatile and non-volatile compounds were injected in the MOMA instrumental suite. Both of these compounds classes were detected by the TCD and by the MS. MS signal (total ion current) and single mass spectra by comparison with the NIST library, gave us an unambiguous confirmation of these identifications. The mass spectra arise from an average of 10 mass spectra averaged around a given time point in the total ion chromatogram.Based on commercial instrument, the MOMA requirement for sensitivity in the GC-MS mode for organic molecules is 1 pmol. In this test, sensitivity was determined for the GC TCD and MS response to a dilution

  3. Degalactosylated/desialylated human serum containing GcMAF induces macrophage phagocytic activity and in vivo antitumor activity.

    Science.gov (United States)

    Kuchiike, Daisuke; Uto, Yoshihiro; Mukai, Hirotaka; Ishiyama, Noriko; Abe, Chiaki; Tanaka, Daichi; Kawai, Tomohito; Kubo, Kentaro; Mette, Martin; Inui, Toshio; Endo, Yoshio; Hori, Hitoshi

    2013-07-01

    The group-specific component protein-derived macrophage-activating factor (GcMAF) has various biological activities, such as macrophage activation and antitumor activity. Clinical trials of GcMAF have been carried out for metastatic breast cancer, prostate cancer, and metastatic colorectal cancer. In this study, despite the complicated purification process of GcMAF, we used enzymatically-treated human serum containing GcMAF with a considerable macrophage-stimulating activity and antitumor activity. We detected GcMAF in degalactosylated/desialylated human serum by western blotting using an anti-human Gc globulin antibody, and Helix pomatia agglutinin lectin. We also found that GcMAF-containing human serum significantly enhanced the phagocytic activity of mouse peritoneal macrophages and extended the survival time of mice bearing Ehrlich ascites tumors. We demonstrated that GcMAF-containing human serum can be used as a potential macrophage activator for cancer immunotherapy.

  4. C5a binding to human polymorphonuclear leukocyte plasma membrane (PMNLM) receptors

    International Nuclear Information System (INIS)

    Conway, R.G.; Mollison, K.W.; Carter, G.W.; Lane, B.

    1986-01-01

    Previous investigations of the C5a receptor have been performed using intact human PMNL. To circumvent some of the potential problems with such whole cell assays (e.g. internalization or metabolism of radioligand) the authors have developed a PMNLM binding assay. Human PMNLM were prepared by nitrogen cavitation and Percoll gradient centrifugation. Specific binding of [ 125 I]C5a to PMNLM was: high affinity, K/sub D/ = 0.6 nM; saturable, B/sub max/ = 8.7 pmol/mg protein; and reversible. Kinetic measurements agree with the K/sub D/ value obtained by Scatchard analysis. Furthermore, the binding activity of C5a correlates with biological activity as measured by myeloperoxidase release from human PMNL. Human serum C5a and recombinant C5a bind with similar affinities when measured by competition or direct binding and label the same number of sites in human PMNLM. The nonhydrolyzable GTP analog, GppNHp, induces a low affinity state of the C5a receptor (4-6 fold shift in K/sub D/) with little effect on B/sub max/. In summary, the criteria have been satisfied for identification of a biologically relevant C5a binding site in human PMNLM. Regulation of the C5a receptor and its membrane transduction mechanism(s) appears to involve guanyl nucleotides, as has been found for other chemoattractant receptors

  5. Quantification of acetaminophen (paracetamol) in human plasma and urine by stable isotope-dilution GC-MS and GC-MS/MS as pentafluorobenzyl ether derivative.

    Science.gov (United States)

    Trettin, Arne; Zoerner, Alexander A; Böhmer, Anke; Gutzki, Frank-Mathias; Stichtenoth, Dirk O; Jordan, Jens; Tsikas, Dimitrios

    2011-08-01

    We report on the quantitative determination of acetaminophen (paracetamol; NAPAP-d(0)) in human plasma and urine by GC-MS and GC-MS/MS in the electron-capture negative-ion chemical ionization (ECNICI) mode after derivatization with pentafluorobenzyl (PFB) bromide (PFB-Br). Commercially available tetradeuterated acetaminophen (NAPAP-d(4)) was used as the internal standard. NAPAP-d(0) and NAPAP-d(4) were extracted from 100-μL aliquots of plasma and urine with 300 μL ethyl acetate (EA) by vortexing (60s). After centrifugation the EA phase was collected, the solvent was removed under a stream of nitrogen gas, and the residue was reconstituted in acetonitrile (MeCN, 100 μL). PFB-Br (10 μL, 30 vol% in MeCN) and N,N-diisopropylethylamine (10 μL) were added and the mixture was incubated for 60 min at 30 °C. Then, solvents and reagents were removed under nitrogen and the residue was taken up with 1000 μL of toluene, from which 1-μL aliquots were injected in the splitless mode. GC-MS quantification was performed by selected-ion monitoring ions due to [M-PFB](-) and [M-PFB-H](-), m/z 150 and m/z 149 for NAPAP-d(0) and m/z 154 and m/z 153 for NAPAP-d(4), respectively. GC-MS/MS quantification was performed by selected-reaction monitoring the transition m/z 150 → m/z 107 and m/z 149 → m/z 134 for NAPAP-d(0) and m/z 154 → m/z 111 and m/z 153 → m/z 138 for NAPAP-d(4). The method was validated for human plasma (range, 0-130 μM NAPAP-d(0)) and urine (range, 0-1300 μM NAPAP-d(0)). Accuracy (recovery, %) ranged between 89 and 119%, and imprecision (RSD, %) was below 19% in these matrices and ranges. A close correlation (r>0.999) was found between the concentrations measured by GC-MS and GC-MS/MS. By this method, acetaminophen can be reliably quantified in small plasma and urine sample volumes (e.g., 10 μL). The analytical performance of the method makes it especially useful in pediatrics. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide

    Science.gov (United States)

    Troppová, Ivana; Šihor, Marcel; Reli, Martin; Ritz, Michal; Praus, Petr; Kočí, Kamila

    2018-02-01

    The TiO2/g-C3N4 nanocomposites with the various TiO2:g-C3N4 weight ratios from 1:1 to 1:3 were prepared unconventionally by pressurized hot water processing in a flow regime. The parent TiO2 and g-C3N4 was prepared by thermal hydrolysis and thermal annealing, respectively. The nanocomposites as well as parent TiO2 and g-C3N4 were characterized using several complementary characterization methods and investigated in the photocatalytic decomposition of N2O under UVA (λ = 365 nm) irradiation. All the prepared TiO2/g-C3N4 nanocomposites showed higher photocatalytic activity in comparison with the pure g-C3N4 and chiefly pure TiO2. The photocatalytic activity of TiO2/g-C3N4 nanocomposites was decreasing in the following sequence: TiO2/g-C3N4 (1:3) > TiO2/g-C3N4 (1:2) > TiO2/g-C3N4 (1:1). In comparison with the parent TiO2 or g-C3N4, the TiO2/g-C3N4 nanocomposites' photocatalytic capability was significantly enhanced by coupling TiO2 with g-C3N4. The generation of TiO2/g-C3N4 Z-scheme photocatalyst mainly benefited from the effective separation of photoinduced electron-hole pairs and the extended optical absorption range. The TiO2/g-C3N4 (1:3) nanocomposite showed the best photocatalytic behavior in a consequence of the optimal weight ratio of TiO2:g-C3N4 and the lowest band gap energy from all nanocomposites. The N2O conversion in its presence was 70.6% after 20 h of UVA irradiation.

  7. Analysis of residual solvents in PET radiopharmaceuticals by GC

    International Nuclear Information System (INIS)

    Li Yungang; Zhang Xiaojun; Liu Jian; Tian Jiahe; Zhang Jinming

    2013-01-01

    The residual solvents in PET radiopharmaceuticals were analyzed by GC, which were acetonitrile, ethanol, N, N-dimethylethanolamine (DMEA), dimethylsulfoxide (DMSO). The standard curves were established with the AT-624 capillary column at GC, and the sensitivity of acetonitrile and ethanol were 0.004-0.320 g/L and 0.010-0.120 g/L respectively. The residual solvents of acetonitrile, ethanol, DMEA and DMSO in PET radio- pharmaceuticals were analyzed by GC. The linearity were 0.9994, 0.9999, 0.9997, 0.999 6 respectively. The residual of acetonitrile were (0.0313±0.0433), (0.0829±0.0668), (0.0156±0.0059), (0.0254±0.0266) g/L in 18 F-FDG, 18 F-FLT, 11 C-CFT, 11 C-PIB respectively. The residual of ethanol was (0.0505±0.00528) g/L in 18 F-FDG. The residual of DMSO were (0.0331±0.0180) g/L, (0.0238±0.0100) g/L in 18 F-W372 and 11 C-DTBZ respectively. The residual of DMEA was (0.0348±0.0022) g/L in 11 C-Choline. The survived of organic solvent in PET radiopharmaceuticals can be analyzed with GC directly. The results showed that the QC should be done in PET radiopharmaceuticals purity with semi-HPLC to avoid the high residual. (authors)

  8. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Jose Henrique M Oliveira

    2011-03-01

    Full Text Available The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.

  9. Unimpeded permeation of water through biocidal graphene oxide sheets anchored on to 3D porous polyolefinic membranes

    Science.gov (United States)

    Mural, Prasanna Kumar S.; Jain, Shubham; Kumar, Sachin; Madras, Giridhar; Bose, Suryasarathi

    2016-04-01

    3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and hot-pressed samples revealed a clear picture as to how the morphology develops and coarsens over a function of time during post-processing operations like compression molding. The coarsening of PE/PEO blends was traced using X-ray micro-computed tomography and scanning electron microscopy (SEM) of annealed blends at different times. It is now understood from X-ray micro-computed tomography that by the addition of a compatibilizer (here lightly maleated PE), a stable morphology can be visualized in 3D. In order to anchor biocidal graphene oxide sheets onto these 3D porous membranes, the PE membranes were chemically modified with acid/ethylene diamine treatment to anchor the GO sheets which were further confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and surface Raman mapping. The transport properties through the membrane clearly reveal unimpeded permeation of water which suggests that anchoring GO on to the membranes does not clog the pores. Antibacterial studies through the direct contact of bacteria with GO anchored PE membranes resulted in 99% of bacterial inactivation. The possible bacterial inactivation through physical disruption of the bacterial cell wall and/or reactive oxygen species (ROS) is discussed herein. Thus this study opens new avenues in designing polyolefin based antibacterial 3D porous membranes for water purification.3D porous membranes were developed by etching one of the phases (here PEO, polyethylene oxide) from melt-mixed PE/PEO binary blends. Herein, we have systematically discussed the development of these membranes using X-ray micro-computed tomography. The 3D tomograms of the extruded strands and

  10. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against Salmonella typhimurium.

    Science.gov (United States)

    Lee, Wonjong; Lee, Dong Gun

    2017-07-22

    Resveratrol is a flavonoid found in various plants including grapes, which has been reported to be active against various pathogenic bacteria. However, antibacterial effects and mechanisms via pro-oxidant property of resveratrol remain unknown and speculative. This research investigated antibacterial mechanism of resveratrol against a food-borne human pathogen Salmonella typhimurium, and confirmed the cell death associated oxidative damage. Resveratrol increased outer membrane permeability and membrane depolarization. It also was observed DNA injury responses such as DNA fragmentation, increasing DNA contents and cell division inhibition. Intracellular ROS accumulation, GSH depletion and significant increased malondialdehyde levels were confirmed, which indicated pro-oxidant activity of resveratrol and oxidative stress. Furthermore, the observed lethal damages were reduced by antioxidant N-acetylcysteine treatment supported the view that resveratrol-induced oxidative stress stimulated S. typhimurium cell death. In conclusion, this study expands understanding on role of pro-oxidant property and insight into previously unrecognized oxygen-dependent anti-Salmonella mechanism on resveratrol. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Hyperglycemia regulates TXNIP/TRX/ROS axis via p38 MAPK and ERK pathways in pancreatic cancer.

    Science.gov (United States)

    Li, Wei; Wu, Zheng; Ma, Qingyong; Liu, Jiangbo; Xu, Qinhong; Han, Liang; Duan, Wanxing; Lv, Yunfu; Wang, Fengfei; Reindl, Katie M; Wu, Erxi

    2014-01-01

    Approximately 85% of pancreatic cancer patients suffer from glucose intolerance or even diabetes because high glucose levels can contribute to oxidative stress which promotes tumor development. As one of the reactive oxygen species (ROS)-regulating factors, thioredoxin-interacting protein (TXNIP), is involved in the maintenance of thioredoxin (TRX)-mediated redox regulation. In this study, we demonstrated that high glucose levels increased the expression of TXNIP in time- and concentration-dependent manners and modulated the activity of TRX and ROS production in pancreatic cancer cells, BxPC-3 and Panc-1. We also found that glucose activated both p38 MAPK and ERK pathways and inhibitors of these pathways impaired the TXNIP/TRX/ROS axis. Knockdown of TXNIP restored TRX activity and decreased ROS production under high glucose conditions. Moreover, we observed that the integrated optical density (IOD) of TXNIP staining as well as the protein and mRNA expression levels of TXNIP were higher in the tumor tissues of pancreatic cancer patients with diabetes. Taken together, these results indicate that hyperglycemia-induced TXNIP expression is involved in diabetes-mediated oxidative stress in pancreatic cancer via p38 MAPK and ERK pathways.

  12. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.

    Science.gov (United States)

    Dunn, Henry A; Ferguson, Stephen S G

    2015-10-01

    G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and

  13. Detection of gamma-irradiated peanuts by ESR spectroscopy and GC analysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Wei Mingli; An Li [Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing (China); Yi Mingha, E-mail: wangyilwm@163.co [Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing (China); Feng Wang [Institute of Agro-food Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing (China); Yan Lizhang [Division of Metrology in Ionizing Radiation and Medicine, National Institute of Metrology, 100013 Beijing (China)

    2011-03-15

    Peanuts were analyzed by electron spin resonance (ESR) spectroscopy and gas chromatography (GC) before and after gamma irradiation. Using European protocols, the validity and effectiveness of these two techniques were compared with regard to sample preparation, sample and solvent consumption and dose-response curves after irradiation. The results showed the possibility of using ESR and GC for distinguishing between irradiated and unirradiated peanuts. A radiation dose of 0.1 kGy could be detected by ESR but not by GC. The results also indicated that GC is an effective method for qualitative analysis of irradiated peanut, while ESR is suitable for the rapid detection of irradiated peanuts.

  14. GC-ASM: Synergistic Integration of Graph-Cut and Active Shape Model Strategies for Medical Image Segmentation.

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A

    2013-05-01

    Image segmentation methods may be classified into two categories: purely image based and model based. Each of these two classes has its own advantages and disadvantages. In this paper, we propose a novel synergistic combination of the image based graph-cut (GC) method with the model based ASM method to arrive at the GC-ASM method for medical image segmentation. A multi-object GC cost function is proposed which effectively integrates the ASM shape information into the GC framework. The proposed method consists of two phases: model building and segmentation. In the model building phase, the ASM model is built and the parameters of the GC are estimated. The segmentation phase consists of two main steps: initialization (recognition) and delineation. For initialization, an automatic method is proposed which estimates the pose (translation, orientation, and scale) of the model, and obtains a rough segmentation result which also provides the shape information for the GC method. For delineation, an iterative GC-ASM algorithm is proposed which performs finer delineation based on the initialization results. The proposed methods are implemented to operate on 2D images and evaluated on clinical chest CT, abdominal CT, and foot MRI data sets. The results show the following: (a) An overall delineation accuracy of TPVF > 96%, FPVF ASM for different objects, modalities, and body regions. (b) GC-ASM improves over ASM in its accuracy and precision to search region. (c) GC-ASM requires far fewer landmarks (about 1/3 of ASM) than ASM. (d) GC-ASM achieves full automation in the segmentation step compared to GC which requires seed specification and improves on the accuracy of GC. (e) One disadvantage of GC-ASM is its increased computational expense owing to the iterative nature of the algorithm.

  15. Oridonin stabilizes retinoic acid receptor alpha through ROS-activated NF-κB signaling.

    Science.gov (United States)

    Cao, Yang; Wei, Wei; Zhang, Nan; Yu, Qing; Xu, Wen-Bin; Yu, Wen-Jun; Chen, Guo-Qiang; Wu, Ying-Li; Yan, Hua

    2015-04-10

    Retinoic acid receptor alpha (RARα) plays an essential role in the regulation of many biological processes, such as hematopoietic cell differentiation, while abnormal RARα function contributes to the pathogenesis of certain diseases including cancers, especially acute promyelocytic leukemia (APL). Recently, oridonin, a natural diterpenoid isolated from Rabdosia rubescens, was demonstrated to regulate RARα by increasing its protein level. However, the underlying molecular mechanism for this action has not been fully elucidated. In the APL cell line, NB4, the effect of oridonin on RARα protein was analyzed by western blot and real-time quantitative RT-PCR analyses. Flow cytometry was performed to detect intracellular levels of reactive oxygen species (ROS). The association between nuclear factor-kappa B (NF-κB) signaling and the effect of oridonin was assessed using specific inhibitors, shRNA gene knockdown, and immunofluorescence assays. In addition, primary leukemia cells were treated with oridonin and analyzed by western blot in this study. RARα possesses transcriptional activity in the presence of its ligand, all-trans retinoic acid (ATRA). Oridonin remarkably stabilized the RARα protein, which retained transcriptional activity. Oridonin also moderately increased intracellular ROS levels, while pretreatment with the ROS scavenger, N-acetyl-l-cysteine (NAC), dramatically abrogated RARα stabilization by oridonin. More intriguingly, direct exposure to low concentrations of H2O2 also increased RARα protein but not mRNA levels, suggesting a role for ROS in oridonin stabilization of RARα protein. Further investigations showed that NAC antagonized oridonin-induced activation of NF-κB signaling, while the NF-κB signaling inhibitor, Bay 11-7082, effectively blocked the oridonin increase in RARα protein levels. In line with this, over-expression of IκΒα (A32/36), a super-repressor form of IκΒα, or NF-κB-p65 knockdown inhibited oridonin or H2O2-induced

  16. Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans.

    Science.gov (United States)

    Yu, Qilin; Zhang, Bing; Li, Jianrong; Zhang, Biao; Wang, Honggang; Li, Mingchun

    2016-10-01

    The cell wall is an important cell structure in both fungi and bacteria, and hence becomes a common antimicrobial target. The cell wall-perturbing agents disrupt synthesis and function of cell wall components, leading to cell wall stress and consequent cell death. However, little is known about the detailed mechanisms by which cell wall stress renders fungal cell death. In this study, we found that ROS scavengers drastically attenuated the antifungal effect of cell wall-perturbing agents to the model fungal pathogen Candida albicans, and these agents caused remarkable ROS accumulation and activation of oxidative stress response (OSR) in this fungus. Interestingly, cell wall stress did not cause mitochondrial dysfunction and elevation of mitochondrial superoxide levels. Furthermore, the iron chelator 2,2'-bipyridyl (BIP) and the hydroxyl radical scavengers could not attenuate cell wall stress-caused growth inhibition and ROS accumulation. However, cell wall stress up-regulated expression of unfold protein response (UPR) genes, enhanced protein secretion and promoted protein folding-related oxidation of Ero1, an important source of ROS production. These results indicated that oxidation of Ero1 in the endoplasmic reticulum (ER), rather than mitochondrial electron transport and Fenton reaction, contributed to cell wall stress-related ROS accumulation and consequent growth inhibition. Our findings uncover a novel link between cell wall integrity (CWI), ER function and ROS production in fungal cells, and shed novel light on development of strategies promoting the antifungal efficacy of cell wall-perturbing agents against fungal infections. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Protocolo de actuación ante la rosácea en la farmacia comunitaria

    Directory of Open Access Journals (Sweden)

    Espinosa Suances A

    2016-06-01

    Full Text Available La rosácea es una dermatosis facial inflamatoria, recidivante y crónica, que con frecuencia demanda consulta en la farmacia comunitaria. Orientado hacia la práctica clínica del farmacéutico comunitario, este artículo revisa y sintetiza los conceptos clásicos y los avances más recientes en la comprensión y el tratamiento de esta enfermedad cutánea. Finalmente, propone un protocolo para la asistencia de pacientes con rosácea en la farmacia comunitaria.

  18. Gc-protein-derived macrophage activating factor counteracts the neuronal damage induced by oxaliplatin.

    Science.gov (United States)

    Morucci, Gabriele; Branca, Jacopo J V; Gulisano, Massimo; Ruggiero, Marco; Paternostro, Ferdinando; Pacini, Alessandra; Di Cesare Mannelli, Lorenzo; Pacini, Stefania

    2015-02-01

    Oxaliplatin-based regimens are effective in metastasized advanced cancers. However, a major limitation to their widespread use is represented by neurotoxicity that leads to peripheral neuropathy. In this study we evaluated the roles of a proven immunotherapeutic agent [Gc-protein-derived macrophage activating factor (GcMAF)] in preventing or decreasing oxaliplatin-induced neuronal damage and in modulating microglia activation following oxaliplatin-induced damage. The effects of oxaliplatin and of a commercially available formula of GcMAF [oleic acid-GcMAF (OA-GcMAF)] were studied in human neurons (SH-SY5Y cells) and in human microglial cells (C13NJ). Cell density, morphology and viability, as well as production of cAMP and expression of vascular endothelial growth factor (VEGF), markers of neuron regeneration [neuromodulin or growth associated protein-43 (Gap-43)] and markers of microglia activation [ionized calcium binding adaptor molecule 1 (Iba1) and B7-2], were determined. OA-GcMAF reverted the damage inflicted by oxaliplatin on human neurons and preserved their viability. The neuroprotective effect was accompanied by increased intracellular cAMP production, as well as by increased expression of VEGF and neuromodulin. OA-GcMAF did not revert the effects of oxaliplatin on microglial cell viability. However, it increased microglial activation following oxaliplatin-induced damage, resulting in an increased expression of the markers Iba1 and B7-2 without any concomitant increase in cell number. When neurons and microglial cells were co-cultured, the presence of OA-GcMAF significantly counteracted the toxic effects of oxaliplatin. Our results demonstrate that OA-GcMAF, already used in the immunotherapy of advanced cancers, may significantly contribute to neutralizing the neurotoxicity induced by oxaliplatin, at the same time possibly concurring to an integrated anticancer effect. The association between these two powerful anticancer molecules would probably produce

  19. Small, synthetic, GC-rich mRNA stem-loop modules 5' proximal to the AUG start-codon predictably tune gene expression in yeast.

    Science.gov (United States)

    Lamping, Erwin; Niimi, Masakazu; Cannon, Richard D

    2013-07-29

    A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5' UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5' UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = -15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = -4.4 kcal/mol) inhibited

  20. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation.

    Science.gov (United States)

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit; Tollefsen, Knut Erik

    2017-02-01

    The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49-1677mGy/h) for 6h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H 2 DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report on changes in several chlorophyll fluorescence parameters associated with photosynthetic performance and ROS formation in microalgae after exposure to gamma radiation. Copyright © 2016 Elsevier B.V. All rights reserved.