WorldWideScience

Sample records for root differentiation callus

  1. Salinity-Induced Callus Browning and Re-Differentiation, Root Formation by Plantlets and Anatomical Structures of Plantlet Leaves in Two Malus Species

    International Nuclear Information System (INIS)

    Gou, W.; Zheng, P.; Zheng, P.; Wang, K.; Zhang, L.; Akram, N. A.

    2016-01-01

    Apple (Malus domestica L.) is widely grown in northern China. However, soil salinization has become one of the most severe factors limiting apple productivity in some regions including the Loess Plateau. In our study, the regeneration system of both rootstock Rehd (Malus robusta Rehd) and scion Fuji (Malus domestica Borkh. cv. Fuji) was established In vitro. The two Malus species were cultured on the MS medium containing 0 or 150 mM NaCl to examine salt-induced effects on callus browning and re-differentiation, root formation of plantlets and anatomical structures of plantlet leaves at 15 days old callus and plantlet stages. Salt stress caused a marked increase in callus browning rate, while a decrease in re-differentiation rate, rooting rate, root number and length in both species. Additionally, anatomical structures of plantlet leave showed salt-induced damage such as reduced palisade tissue and intracellular chloroplast, incomplete development of xylem and severe damage of the phloem tissue. Salt stress also caused a few adaptive structural features in leaves including increased thickness of upper and lower epidermis, elevated proportion of spongy tissue and formation of lignified vessels. The responses of the two Malus species did not differ significantly at the differentiation stage. However, they were more sensitive to salinity at the callus stage than those at the plantlet stage in each species. Therefore, callus stage has been found to be more suitable for evaluating responses of the two apple species to salt stress. The Fuji and Rehd could be treated as a good scion/rootstock combination of apple to adapt to soil salinity based on their similar degree of salt stress-tolerance. (author)

  2. Shoot Differentiation in Callus Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1973-01-01

    promoted shoot differentiation. Gibberellic acid inhibited shoot formation weakly, but inhibited proper leaf blade formation. Root differentiation was rare. The callus cultures of Datura innoxia grew rapidly (100-fold in 4 weeks) on a slightly modified Murashige and Skoog medium (0.5 mg/l thiamin · HCl, p...

  3. Regeneration of roots from callus reveals stability of the developmental program for determinate root growth in Sonoran Desert Cactaceae.

    Science.gov (United States)

    Shishkova, Svetlana; García-Mendoza, Edith; Castillo-Díaz, Vicente; Moreno, Norma E; Arellano, Jesús; Dubrovsky, Joseph G

    2007-05-01

    In some Sonoran Desert Cactaceae the primary root has a determinate root growth: the cells of the root apical meristem undergo only a few cell division cycles and then differentiate. The determinate growth of primary roots in Cactaceae was found in plants cultivated under various growth conditions, and could not be reverted by any treatment tested. The mechanisms involved in root meristem maintenance and determinate root growth in plants remain poorly understood. In this study, we have shown that roots regenerated from the callus of two Cactaceae species, Stenocereus gummosus and Ferocactus peninsulae, have a determinate growth pattern, similar to that of the primary root. To demonstrate this, a protocol for root regeneration from callus was established. The determinate growth pattern of roots regenerated from callus suggests that the program of root development is very stable in these species. These findings will permit future analysis of the role of certain Cactaceae genes in the determinate pattern of root growth via the regeneration of transgenic roots from transformed calli.

  4. Distribution of linker histone variants during plant cell differentiation in the developmental zones of the maize root, dedifferentiation in callus culture after auxin treatment

    Directory of Open Access Journals (Sweden)

    ANASTASIOS ALATZAS

    2008-01-01

    Full Text Available Although several linker histone variants have been studied in both animal and plant organisms, little is known about their distribution during processes that involve alterations in chromatin function, such as differentiation, dedifferentiation and hormone treatment. In this study, we identified linker histone variants by using specific anti-histone Hl antibodies. Each variant's ratio to total Hl in the three developmental zones of maize (Zea mays L. root and in callus cultures derived from them was estimated in order to define possible alterations either during plant cell differentiation or during their dedifferentiation. We also evaluated linker histone variants' ratios in the developmental zones of maize roots treated with auxin in order to examine the effects of exogenous applied auxin to linker histone variant distribution. Finally, immunohistochemical detection was used to identify the root tissues containing each variant and correlate them with the physiological status of the plant cells. According to the results presented in this study, linker histone variants' ratios are altered in the developmental zones of maize root, while they are similar to the meristematic zone in samples from callus cultures and to the differentiation zone in samples from roots treated with auxin. We propose that the alterations in linker histone variants' ratios are correlated with plant cell differentiation and dedifferentiation.

  5. Secondary Metabolite Content in Roots and Callus of Paeonia Anomala L.

    Directory of Open Access Journals (Sweden)

    A.A. ZARIPOVA

    2014-06-01

    Full Text Available Taking into account the fact that in the process of introduction in vitro culture the change of secondary metabolite content may take place we compared the chemical composition of plant material of wild-growing plants of Paeonia anomala introduced and produced using the methods of clonal micropropagation, callus tissue.The content of phenolic compounds, that is catechins and gallatos was compared. Paeoniflorin content was estimated by direct spectrophotometry of methanol extracts (λ = 231,7 nm, ε 1% 1 sm = 265.4. Integral characteristic of the obtained extracts was received by comparison of absorption spectra using spectrophotometer SP - 121 within wave diapason 300 - 460 nm.Light absorption curves of methanol extracts had two distinct peaks at λ = 232 nm and λ = 275 nm typical of paeoniflorin. Paeoniflorin content was 80 % higher in young peony roots than in control plant. This glycoside content in callus culture was 44 % higher than in wild-growing plant roots and 26 % lower than in plantlet roots.The use of ethanol as extragent showed a higher content of extracted substances in callus tissue. The comparison of the obtained spectra in the region corresponding to phenolic compound absorption shows the highest phenolic compound content in callus tissue and young plant roots. Judging by light absorption maximum it may be phenolic acids. The lowest phenolic compound content was determined in adult wild-growing plant roots, where a high phlobaphene content was visually observed.The conducted research confirms the fact that callus culture of Paeonia anomala L. is a perspective producer of monoterpene glycosides and phenolic compounds. Extracts from plantlets and callus culture exceed in biological active substance content rootstock extracts of open air plants.

  6. Effects of plant growth regulators on callus, shoot and root formation ...

    African Journals Online (AJOL)

    Root and stem explants of fluted pumpkin were cultured in medium containing different types and concentrations of plant growth regulators (PGRs). The explants were observed for callus, root and shoot formation parameters after four months. Differences among explants, plant growth regulators and their interaction were ...

  7. (Tongkat Ali) for callus

    African Journals Online (AJOL)

    hope&shola

    2010-12-06

    Dec 6, 2010 ... The induction of callus cultures using leaf, petiole, rachis, stem, tap root, fibrous root, cotyledon and ... other countries of the South-East Asia region and widely distributed ..... Indian ginseng plantlets from stem callus. Plant Cell ...

  8. Establishment of Aquilaria malaccensis Callus, cell suspension and adventitious root systems

    International Nuclear Information System (INIS)

    Norazlina Noordin; Rusli Ibrahim

    2010-01-01

    Aquilaria malaccensis is a tropical forest tree from the family Thymelaeaceae, an endangered forest species and was listed in CITES since 1995. Locally known as Pokok Karas, this tree produces agar wood or gaharu, a highly valuable, resinous and fragrant forest product. Karas has been highly recognized for its vast medicinal values and gaharu has been widely use for perfumery, incense and religious purposes. The phyto chemical studies of agar wood showed that Sesqui terpenoid and Phenyl ethy chromone derivatives are the principal compounds that have anti allergic and anti microbe activities. Cell and organ culture systems provide large scale production of biomass and offers feasibilities for the production of secondary metabolites. This paper describes the work done for establishing reproducible systems for callus initiation and production of cell suspension cultures as well as production of adventitious roots that will later be amenable for the production of secondary metabolites of A. malaccensis. Hence, further manipulation with Methyl Jasmonate, a chemical elicitor could be done to induce secondary metabolites using callus, cell suspension and adventitious roots systems. (author)

  9. Shoot regeneration of callus culture from irradiated sheed of piper nigrum L by gamma rays

    International Nuclear Information System (INIS)

    Ishak; Hutabarat, D.

    1988-01-01

    Shoot regeneration was obtained from callus that induced by irradiated seed with 25 and 50 Gy of gamma-rays and then on M.S. medium containing NAA 1 ppm and 2-ip 0.5 ppm. Irradiated seed with a dose of 25 Gy produced normal root and failed to produce shoot, but rice callus. Irradiated seed with a dose of 50 Gy pruduce callus only. Shoot differentiation occured after the callus were cultured on M.S., medium containing 2-ip 1 ppm and Kinetin 2.5 ppm. (authors). 9 refs, 3 figs

  10. Nitrogen-15 uptake by whole plants and root callus cultures of inbred maize lines and their F1 hybrids

    International Nuclear Information System (INIS)

    Mladenova, Y.; Karadimova, M.

    1981-01-01

    The uptake of nitrogen-15 by 3 maize genotypes was investigated. Comparative analysis of N15 assimilation and distribution in the organs of intact plants of two self-pollinated lines and their F1 hybrid and also in a callus tissue of roots of the same genotypes was made. From the results the conclusion is drawn that the N-use efficiency of the female line is higher than that of the male line both in intact plants and callus tissues from roots. This fact indicates that the N-use efficiency is determined not only by the functions of the cells in the shoots, suggesting the participation of the photosynthetic carboxylases but also by the functions of cells without a photosynthesizing apparatus. The N-use efficiency in the F1 hybrid manifests ''heterosis'', in spite of the intact plants or root callus tissues are being studied. (author)

  11. The Reserpine Production and Callus Growth of Indian Snake Root (Rauvolfia serpentina (L. Benth. Ex Kurz Culture by Addition of Cu2+

    Directory of Open Access Journals (Sweden)

    NUNUNG NURCAHYANI

    2008-07-01

    Full Text Available The objectives of this research were to study the effects of Cu2+ addition on the reserpine production and callus growth from in vitro culture indian snake root (Rauvolfia serpentina (L. Benth. Ex Kurz. This research frame work was based on the potency of snake root which was many exploited as anti-hypertension. The addition of elicitor Cu2+ in the form of CuCl2 would influence the ion transport of cell and changed of cytoplasm pH, and also has effects on synthesis and activity of enzymes which role in reserpine production and callus growth. The research was conducted in two steps, using Completely Randomized Design. The first step was the callus initiation to promote callus growth. Second step was the treatment to induce reserpine production. The callus was divided into five groups: 0; 5; 10; 20; 40; and 80 µM. Morphology, wet weight, dry weight, growth rate, and reserpine content of callus were determined after 15 treatment day. Data were analyzed using ANOVA and continued by DMRT 5%. The result showed that reserpine production increased in addition of 5 µM and 10 µM Cu2+ in callus culture of R. serpentina and reduced in addition of Cu2+ more than 10 µM. The callus growth significantly decreased by increasing concentration of Cu2+.

  12. Effect of 60Co γ-rays irradiation pretreatment on callus inductivity and differentiation of strawberry anther

    International Nuclear Information System (INIS)

    Zhang Huiqin; Xie Ming; Jiang Guihua; Sun Congbo; Huang Pule; Wu Yanjun; Wu Qing

    2007-01-01

    Strawberry buds, in which a majority of pollen had single nuclear keeping to the side, were pretreated by 60 Co γ-rays irradiation at different doses. The irradiation effect on the callus inductivity and plant differentiation rate of strawberry anther were studied. The results indicated that the pretreatment by 60 Co γ-rays could increase the anther callus inductivity and plant differentiation rate significantly, and 20 Gy was the best dose. The callus inductivity of Akihime and Toyonoka increased by 39.09% and 35.68%, respectively, compared with the no-pretreatment materials. On the same media, the plant differentiation rate of Akihime and Toyonoka were also increased by 6.67%-6.72% and 4.73%-6.45%, respectively, compared with the two varieties of no-pretreatment. (authors)

  13. Callus formation impedes adventitious rhizogenesis in air layers of broadleaved tree species

    Directory of Open Access Journals (Sweden)

    Sanjay Singh

    2014-07-01

    Full Text Available Callusing and root induction in air layering was evaluated aiming at evolution of procedure for mass clonal propagation of mature ortets of five tropical broadleaf species differing in their potential for adventitious root formation in shoot cuttings as: Anogiessus latifolia < Boswellia serrata < Dalbergia latifolia < Gmelina arborea < Dalbergia sissoo. Two experiments were conducted in rainy season during consecutive years; without application of growth regulators in the first year and with growth regulators (T1 - water, T2- 100 ppm indole-3-acetic acid, T3-100 ppm thiamine-HCl and T4 -combination of T2 + T3 in the next year. Air layered branches were detached from the trees to record percentage of alive airlayers, callusing and rooting (% as well as root number and root length. Response to air layering was found to be highly variable in five tree species but appeared to be feasible procedure for clonal propagation of mature ortets of B. serrata and D. sissoo with 100% (in auxin + thiamine treatment and 83.3% (in auxin treatment success, respectively. Maximum callusing (% was found in D. latifolia while no callusing was observed in D. sissoo, which is most easy-to-root among all five species. Callus formation impedes adventitious rhizogenesis in air layers as significant negative correlation of callusing (% and adventitious root formation was recorded in air layers of five tropical broadleaved tree species. Application of exogenous auxin alone or in combination with thiamine circumvents callusing to ensure direct development of roots for successful air layering.

  14. Embryogenic competence acquisition in sugarcane callus is associated with differential H+ pump abundance and activity.

    Science.gov (United States)

    Passamani, Lucas Z; Bertolazi, Amanda A; Ramos, Alessandro C; Santa-Catarina, Claudete; Thelen, Jay J; Silveira, Vanildo

    2018-06-22

    Somatic embryogenesis is an important biological process in several plant species, including sugarcane. Proteomics approaches have shown that H + pumps are differentially regulated during somatic embryogenesis; however, the relationship between H + flux and embryogenic competence is still unclear. This work aimed to elucidate the association between extracellular H + flux and somatic embryo maturation in sugarcane. We performed a microsomal proteomics analysis and analyzed changes in extracellular H + flux and H + pump (P-H + -ATPase, V-H + -ATPase and H + -PPase) activity in embryogenic and non-embryogenic callus. A total of 657 proteins were identified, 16 of which were H + pumps. We observed that P-H + -ATPase and H + -PPase were more abundant in embryogenic callus. Compared with non-embryogenic callus, embryogenic callus showed higher H + influx, especially on maturation day 14, as well as higher H+ pump activity (mainly P-H+-ATPase and H+-PPase activity). H+-PPase appears to be the major H + pump in embryogenic callus during somatic embryo formation, functioning in both vacuole acidification and PPi homeostasis. These results provide evidence for an association between higher H + pump protein abundance and, consequently, higher H + flux and embryogenic competence acquisition in the callus of sugarcane, allowing for optimization of the somatic embryo conversion process by modulating the activities of these H + pumps.

  15. The influence of different hormone concentration and combination on callus induction and regeneration of Rauwolfia serpentina L. Benth.

    Science.gov (United States)

    Salma, U; Rahman, M S M; Islam, S; Haque, N; Jubair, T A; Haque, A K M F; Mukti, I J

    2008-06-15

    The influence of media composition on callus induction and subsequent regeneration of Rauwolfia serpentina L. Benth has been studied. High frequency (96.43%) callus induction was obtained when nodal segments from in vitro raised shoots were cultured on MS medium supplemented with 0.5 mg L(-1) BA and 2.0 mg L(-1) NAA. The callus differentiated into adventitious shoots when it was subcultured on MS medium supplemented with 2.0 mg L(-1) BA with 0.2 mg L(-1) NAA. Regenerated shoots were best rooted on half-strength MS medium with 1.0 mg L(-1) each of IBA and IAA.

  16. Regeneration of Stevia Plant Through Callus Culture

    Science.gov (United States)

    Patel, R. M.; Shah, R. R.

    2009-01-01

    Stevia rebaudiana Bertoni that conventionally propagated by seed or by cuttings or clump division which has a limitation of quality and quantity seed material. In present study, callus culture technique was tried to achieve rapid plant multiplication for quality seed material. Callus induction and multiplication medium was standardized from nodal as well as leaf sagments. It is possible to maintain callus on Murashige and Skoog medium supplemented with 6-benzyl amino purine and naphthalene acetic acid. Maximum callus induction was obtained on Murashige and Skoog medium incorporated with 6-benzyl amino purine (2.0-3.0 mg/l) and naphthalene acetic acid (2.0 mg/l) treatments. However, Murashige and Skoog medium containing 2.0 mg/l 6-benzyl amino purine+2.0 mg/l naphthalene acetic acid was found to be the best for callus induction. Higher regeneration frequency was noticed with Murashige and Skoog medium supplemented with 2.0 mg/l 6-benzyl amino purine+0.2 mg/l naphthalene acetic acid. Regenerated plants were rooted better on ¼ Murashige and Skoog strength supplemented with 0.1 mg/l indole-3-butyric acid. The rooted plantlets were hardened successfully in tera care medium with 63 per cent survival rate. The developed protocol can be utilized for mass production of true to type planting material on large scale independent of season, i.e. external environmental conditions. PMID:20177455

  17. Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae).

    Science.gov (United States)

    Chen, J -T.; Chang, W -C.

    2000-12-07

    An efficient method was established for high frequency somatic embryogenesis and plant regeneration from callus cultures of a hybrid of sympodial orchid (Oncidium 'Gower Ramsey'). Compact and yellow-white embryogenic calli formed from root tips and cut ends of stem and leaf segments on 1/2 MS [11] basal medium supplemented with 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea (TDZ, 0.1-3 mg/l), 2,4-dichlorophenoxyacetic acid (2,4-D, 3-10 mg/l) and peptone (1 g/l) for 4-7 weeks. Embryogenic callus was maintained by subculture on the same medium for callus induction and proliferated 2-4 times (fresh weight) in 1 month. Initiation of somatic embryogenesis and development up to the protocorm-like-bodies (PLBs) from callus cultures was achieved on hormone-free basal medium. Regenerants were recovered from somatic embryos (SEs) after transfer to the same medium and showed normal development. The optimized protocol required about 12-14 weeks from the initiation of callus to the plantlet formation. Generally, the frequency of embryo formation of root-derived callus was higher than stem- and leaf-derived calli. Combinations of naphthaleneacetic acid (NAA) and TDZ significantly promoted embryo formation from callus cultures. The high-frequency (93.8%) somatic embryogenesis and an average of 29.1 SEs per callus (3x3 mm(2)) was found in root-derived callus on a basal medium supplemented with 0.1 mg/l NAA and 3 mg/l TDZ. Almost all the SEs converted and the plantlets grew well with an almost 100% survival rate when potted in sphagnum moss and acclimatized in the greenhouse.

  18. Effect of applied pressure on callus formation and its relevance in ...

    African Journals Online (AJOL)

    ... effect of applied pressure on callus formation, cell differentiation and its importance in grafting. Callus was formed earlier in pressure-free explants. The importance of applied pressure in graft formation was indicated by the fusion of callus cells in capped explant experiments. Where callus grew from the edges, a cambium ...

  19. Effect of cutting medium temperatures on rooting process and root primordium differentiation of hardwood cuttings of tetraploid robinia pseudoacacia cutting medium temperatures of tetraploid robinia pseudoacacia

    International Nuclear Information System (INIS)

    Ling, W.X.; Jine, Q.; Zhong, Z.

    2014-01-01

    In this study, to examine the effect of heat treatment on the rooting and root development of hardwood cuttings of the tetraploid Robinia pseudoacacia, cuttings of 1-year-old stems were taken from 3-year-old mother trees and treated with IBA solution (1000 mg/L) for 6 h, with water was as a control. Treated cuttings were rooted in heated or unheated nursery beds. Samples were collected on day ten after planting, and then for every five days. The bases of the cuttings were embedded in paraffin and sectioned before being examined under a microscope to determine whether there had been any morphological changes. We found no root primordia in the tissues of the hardwood cuttings of the tetraploid Robinia pseudoacacia before cutting. In the heated bed, adventitious roots originated from callus tissue and the junction between the pith rays and cortical parenchyma cells, and in the unheated bed, adventitious roots originated only from callus tissue. The rooting process involved callus formation, adventitious root formation and elongation; rooting occurred 5-7 days earlier in the heated cuttings than in the unheated ones, and rooting rates were significantly higher in the former 30 days and 50 days after cutting; the minimum effective accumulated temperatures for these three stages were 109.25 degree C, 211.68 degree C and 301.38 degree C, respectively. Our results revealed that heating the soil can promote adventitious root formation, speed up the rooting rate, and cut the propagation period of the tetraploid Robinia pseudoacacia. (author)

  20. Clonal variation in lateral and basal rooting of Populus irrigated with landfill leachate

    Science.gov (United States)

    R.S. Zalesny Jr.; J.A. Zalesny

    2011-01-01

    Successful establishment and productivity of Populus depends upon adventitious rooting from: 1) lateral roots that develop from either preformed or induced primordia and 2) basal roots that differentiate from callus at the base of the cutting in response to wounding. Information is needed for phytotechnologies about the degree to which ...

  1. Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae: proteomic and metabolic responses at early stage

    Directory of Open Access Journals (Sweden)

    Payet Bertrand

    2010-05-01

    Full Text Available Abstract Background Vanilla planifolia is an important Orchid commercially cultivated for the production of natural vanilla flavour. Vanilla plants are conventionally propagated by stem cuttings and thus causing injury to the mother plants. Regeneration and in vitro mass multiplication are proposed as an alternative to minimize damage to mother plants. Because mass production of V. planifolia through indirect shoot differentiation from callus culture is rare and may be a successful use of in vitro techniques for producing somaclonal variants, we have established a novel protocol for the regeneration of vanilla plants and investigated the initial biochemical and molecular mechanisms that trigger shoot organogenesis from embryogenic/organogenic callus. Results For embryogenic callus induction, seeds obtained from 7-month-old green pods of V. planifolia were inoculated on MS basal medium (BM containing TDZ (0.5 mg l-1. Germination of unorganized mass callus such as protocorm -like structure (PLS arising from each seed has been observed. The primary embryogenic calli have been formed after transferring on BM containing IAA (0.5 mg l-1 and TDZ (0.5 mg l-1. These calli were maintained by subculturing on BM containing IAA (0.5 mg l-1 and TDZ (0.3 mg l-1 during 6 months and formed embryogenic/organogenic calli. Histological analysis showed that shoot organogenesis was induced between 15 and 20 days after embryogenic/organogenic calli were transferred onto MS basal medium with NAA (0.5 mg l-1. By associating proteomics and metabolomics analyses, the biochemical and molecular markers responsible for shoot induction have been studied in 15-day-old calli at the stage where no differentiating part was visible on organogenic calli. Two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization time-of-flight-tandem mass spectrometry (MALDI-TOF-TOF-MS analysis revealed that 15 protein spots are significantly expressed (P Conclusion The

  2. Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies

    Directory of Open Access Journals (Sweden)

    Langlang Ma

    2018-04-01

    Full Text Available The regenerative capacity of the embryonic callus, a complex quantitative trait, is one of the main limiting factors for maize transformation. This trait was decomposed into five traits, namely, green callus rate (GCR, callus differentiating rate (CDR, callus plantlet number (CPN, callus rooting rate (CRR, and callus browning rate (CBR. To dissect the genetic foundation of maize transformation, in this study multi-locus genome-wide association studies (GWAS for the five traits were performed in a population of 144 inbred lines genotyped with 43,427 SNPs. Using the phenotypic values in three environments and best linear unbiased prediction (BLUP values, as a result, a total of 127, 56, 160, and 130 significant quantitative trait nucleotides (QTNs were identified by mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, respectively. Of these QTNs, 63 QTNs were commonly detected, including 15 across multiple environments and 58 across multiple methods. Allele distribution analysis showed that the proportion of superior alleles for 36 QTNs was <50% in 31 elite inbred lines. Meanwhile, these superior alleles had obviously additive effect on the regenerative capacity. This indicates that the regenerative capacity-related traits can be improved by proper integration of the superior alleles using marker-assisted selection. Moreover, a total of 40 candidate genes were found based on these common QTNs. Some annotated genes were previously reported to relate with auxin transport, cell fate, seed germination, or embryo development, especially, GRMZM2G108933 (WOX2 was found to promote maize transgenic embryonic callus regeneration. These identified candidate genes will contribute to a further understanding of the genetic foundation of maize embryonic callus regeneration.

  3. Shoot and root morphogenesis from Eucalyptus grandis x urophylla ...

    African Journals Online (AJOL)

    Eucalyptus grandis x urophylla plantlets were regenerated via indirect organogenesis. Histological assessment of their development focused on identifying the calli, the differentiation of shoots from the calli and the shoot-root junction from the nascent shoots. Vascular tissue formation within the callus preceded that of ...

  4. The Reserpine Production and Callus Growth of Indian Snake Root (Rauvolfia serpentina (L.) Benth. Ex Kurz) Culture by Addition of Cu2+

    OpenAIRE

    NUNUNG NURCAHYANI; SOLICHATUN; ENDANG ANGGARWULAN

    2008-01-01

    The objectives of this research were to study the effects of Cu2+ addition on the reserpine production and callus growth from in vitro culture indian snake root (Rauvolfia serpentina (L.) Benth. Ex Kurz). This research frame work was based on the potency of snake root which was many exploited as anti-hypertension. The addition of elicitor Cu2+ in the form of CuCl2 would influence the ion transport of cell and changed of cytoplasm pH, and also has effects on synthesis and activity of enzymes w...

  5. Optimization of embryogenic-callus induction and embryogenesis of ...

    African Journals Online (AJOL)

    Optimization of embryogenic-callus induction and embryogenesis of Glycyrrhiza glabra. Fu Chunhua, Cheng Lei, Lu Gan, Maoteng Li, Ying Yang, Longjiang Yu. Abstract. Glabridin is a major biologically active flavonoid isolated specifically from the root of Glycyrrhiza glabra, which has many pharmacological activities.

  6. Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage.

    Science.gov (United States)

    Palama, Tony L; Menard, Patrice; Fock, Isabelle; Choi, Young H; Bourdon, Emmanuel; Govinden-Soulange, Joyce; Bahut, Muriel; Payet, Bertrand; Verpoorte, Robert; Kodja, Hippolyte

    2010-05-05

    Vanilla planifolia is an important Orchid commercially cultivated for the production of natural vanilla flavour. Vanilla plants are conventionally propagated by stem cuttings and thus causing injury to the mother plants. Regeneration and in vitro mass multiplication are proposed as an alternative to minimize damage to mother plants. Because mass production of V. planifolia through indirect shoot differentiation from callus culture is rare and may be a successful use of in vitro techniques for producing somaclonal variants, we have established a novel protocol for the regeneration of vanilla plants and investigated the initial biochemical and molecular mechanisms that trigger shoot organogenesis from embryogenic/organogenic callus. For embryogenic callus induction, seeds obtained from 7-month-old green pods of V. planifolia were inoculated on MS basal medium (BM) containing TDZ (0.5 mg l(-1)). Germination of unorganized mass callus such as protocorm -like structure (PLS) arising from each seed has been observed. The primary embryogenic calli have been formed after transferring on BM containing IAA (0.5 mg l(-1)) and TDZ (0.5 mg l(-1)). These calli were maintained by subculturing on BM containing IAA (0.5 mg l(-1)) and TDZ (0.3 mg l(-1)) during 6 months and formed embryogenic/organogenic calli. Histological analysis showed that shoot organogenesis was induced between 15 and 20 days after embryogenic/organogenic calli were transferred onto MS basal medium with NAA (0.5 mg l(-1)). By associating proteomics and metabolomics analyses, the biochemical and molecular markers responsible for shoot induction have been studied in 15-day-old calli at the stage where no differentiating part was visible on organogenic calli. Two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization time-of-flight-tandem mass spectrometry (MALDI-TOF-TOF-MS) analysis revealed that 15 protein spots are significantly expressed (P tissue culture, phenolic compounds such

  7. The development of an efficient cultivar-independent plant regeneration system from callus derived from both apical and non-apical root segments of garlic (Allium sativum L.)

    NARCIS (Netherlands)

    Zheng, S.J.; Henken, G.; Krens, F.A.; Kik, C.

    2003-01-01

    Callus induction and later plant regeneration were studied in four widely grown garlic (Allium sativum L.) cultivars from Europe. Root segments from in vitro plantlets were used as starting material. In addition to cultivar effects, the effects of auxin and cytokinin levels and the position of the

  8. Polyamines and adventitious root formation in Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Laurence Geny

    2002-06-01

    Full Text Available The effects of polyamines were examined for growth and polyamine contents in cultings, callus and primary adventitious roots of Vitis vinifera L. Variations in free, conjugated and wall-bound polyamines in cuttings were observed during rhizogenesis. The main polyamines in cuttings were conjugated polyamines while in callus and primary adventitious roots they were free polyamines. Exogenous polyamine addition did not modify the total number of roots per cutting but increased the mean size and number of long roots. Moreover, exogenous polyamines increased polyamine levels in callus and roots, particurlarly wall-bound and conjugated polyamines. The involvement of these classes of polyamines in morphogenic processes is discussed.

  9. Production of aventitious root of eurycoma longifolia jack using air-lift bioreactor system

    International Nuclear Information System (INIS)

    Wan Nazirah Wan Ali; Siti Sarah Abd Wahab; Zakaria Seman; Muhammad Ruzaini Abdul Wahab; Mohamad Rozi Mohamed Yasin; Sobri Hussein; Abdul Rahim Harun; Azhar Mohamad; Rusli Ibrahim

    2009-01-01

    In Malaysia the Eurycoma longifolia is better known as a Tongkat Ali, where it has great local demand as a health tonic. Observation after 3 months revealed that modified MS medium (1/2 Nitrate) supplemented with IBA at 5.0 mg/L and 6.0 mg/L (5% sucrose) was found to be the best formulation for adventitious root induction. The data obtained showed that 70% (10 + 2 adventitious root per explants) of the explants cultured formed the adventitious root in both treatments. Other treatments tested within the range (1.0- 10.0 mg/L) produced less than four adventitious roots per explant. Meanwhile, in the treatment using IAA, the highest formation of root was recorded in 7.0 mg/L with the number of root produced was 3 + 1 per explant. Apart from that, observation after 2 months revealed that 4 + 1 adventitious root per explant was observed in the treatment using 4 mg/L NAA. The chemical profiling studies was carried out by focusing on the production of 9-methoxycanthine-6-one in callus derived from different explants, namely leaf, petiole, rachis and root. The R f value spots of 9-methoxycanthine-6-one (obtained from the TLC) analysis showed a yellowish green in colour when observed under UV light at 366 nm. Based on the intensity and size of the spots on the chromatogram, it was detected that concentration of 9-methoxycanthine-6-one in root-derived callus was generally higher as compared to other calluses. Therefore, adventitious root culture can be an attractive as it is highly differentiated and can cause stable and extensive production of secondary metabolites. (Author)

  10. Callus remodelling model

    Science.gov (United States)

    Miodowska, Justyna; Bielski, Jan; Kromka-Szydek, Magdalena

    2018-01-01

    The objective of this paper is to investigate the healing process of the callus using bone remodelling approach. A new mathematical model of bone remodelling is proposed including both underload and overload resorption, as well as equilibrium and bone growth states. The created model is used to predict the stress-stimulated change in the callus density. The permanent and intermittent loading programs are considered. The analyses indicate that obtaining a sufficiently high values of the callus density (and hence the elasticity) modulus is only possible using time-varying load parameters. The model predictions also show that intermittent loading program causes delayed callus healing. Understanding how mechanical conditions influence callus remodelling process may be relevant in the bone fracture treatment and initial bone loading during rehabilitation.

  11. An attempt to conserve whatnot somniferum (L.) dual - a highly essential medicinal plant, through in vitro callus culture

    International Nuclear Information System (INIS)

    Rout, J.R.; Sahoo, S.

    2011-01-01

    A simple effective protocol was developed for conservation and plant propagation through callus cultures of Withania somnifera (Ashwagandha). Seed germination percentage reached a maximum value of 64.3% on half MS + GA3 0.25 mg/l at third week of culture. Three different basal media compared for seed germination, MS was most effective. Out of 25 combinations of growth regulators evaluated, MS + 1.0 mg/l BA + 1.0 mg/l 2, 4-D found to be best for callus induction and proliferation regardless to explants. Among the four different explants tested, In vivo leaf explant was found most suitable for callus induction, proliferation and fresh weight gain. The highest callus induction frequency percentage 86.4% was recorded with In vivo leaf explant whereas, 43.4% in In vitro leaf explant at day 30 on MS augmented with 1.0 mg/l BA + 1.0 mg/l 2,4-D. Among different growth regulator combinations tested in augmentation with MS for shoot initiation and elongation, 2.0 mg/l BA + 1.0 mg/l NAA was the best eliciting a maximum of 82.3% shoot induction with highest shoot number 4.8 shoots/callus. The original callus was sub-cultured 2 times on fresh shoot multiplication medium after each harvest of the shoots. Of three different auxins tested for In vitro rooting, IBA was most effective compared to IPA and NAA. Half-strength MS medium containing IBA at an optimum concentration of 2.0 mg/l induced rooting in 83.1% of the In vitro derived shoots. The rooted plantlets were acclimated and eventually established in soil. (author)

  12. Differential radiosensitivity of seeds, seedlings and callus cultures of Petunia inflata

    International Nuclear Information System (INIS)

    Bapat, V.A.; Rao, P.S.

    1976-01-01

    A comparative study of the effects of γ-irradiation on seeds, seedlings and callus cultures of Petunia inflata showed striking differences in radiosensitivity as reflected in differences in mean fresh and dry weights, seedling height and morphology. Seeds subjected to low doses (4-6 kR) of irradiation showed stimulation of seedling height. Direct exposure of seedlings to high doses (10 kR) of irradiation caused inhibition in their development. Callus cultures, however, were more radioresistant compared to seeds and seedlings. Tissues grown on either an irradiated nutrient medium or on a medium in which sucrose alone had been irradiated, showed a marked inhibition in their growth potential

  13. Label-Free Quantitative Proteomics of Embryogenic and Non-Embryogenic Callus during Sugarcane Somatic Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Angelo Schuabb Heringer

    Full Text Available The development of somatic cells in to embryogenic cells occurs in several stages and ends in somatic embryo formation, though most of these biochemical and molecular changes have yet to be elucidated. Somatic embryogenesis coupled with genetic transformation could be a biotechnological tool to improve potential crop yields potential in sugarcane cultivars. The objective of this study was to observe somatic embryo development and to identify differentially expressed proteins in embryogenic (E and non-embryogenic (NE callus during maturation treatment. E and NE callus were cultured on maturation culture medium supplemented with different concentrations (0.0, 0.75, 1.5 and 2.0 g L(-1 of activated charcoal (AC. Somatic embryo formation and differential protein expression were evaluated at days 0 and 21 using shotgun proteomic analyses. Treatment with 1.5 g L(-1 AC resulted in higher somatic embryo maturation rates (158 somatic embryos in 14 days in E callus but has no effect in NE callus. A total of 752 co-expressed proteins were identified through the SUCEST (The Sugarcane EST Project, including many housekeeping proteins. E callus showed 65 exclusive proteins on day 0, including dehydrogenase, desiccation-related protein, callose synthase 1 and nitric oxide synthase. After 21 days on maturation treatment, 14 exclusive proteins were identified in E callus, including catalase and secreted protein. NE callus showed 23 exclusive proteins on day 0 and 10 exclusive proteins after 21 days on maturation treatment, including many proteins related to protein degradation. The induction of maturation leads to somatic embryo development, which likely depends on the expression of specific proteins throughout the process, as seen in E callus under maturation treatment. On the other hand, some exclusive proteins can also specifically prevent of somatic embryos development, as seen in the NE callus.

  14. Hyperplastic callus formation in osteogenesis imperfecta. A case report

    International Nuclear Information System (INIS)

    Burchardt, A.J.; Wagner, A.A.; Basse, P.

    1994-01-01

    We report a case of bilateral hyperplastic callus formation as a complication of fracture in a patient with osteogenesis imperfecta. The clinical and radiographic findings and the differential diagnosis are discussed. (orig.)

  15. Hyperplastic callus formation in osteogenesis imperfecta. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Burchardt, A.J. (Depts. of Radiology and Pediatric Orthopedic Surgery, Rigshospitalet, Copenhagen Univ. (Denmark)); Wagner, A.A. (Depts. of Radiology and Pediatric Orthopedic Surgery, Rigshospitalet, Copenhagen Univ. (Denmark)); Basse, P. (Depts. of Radiology and Pediatric Orthopedic Surgery, Rigshospitalet, Copenhagen Univ. (Denmark))

    1994-09-01

    We report a case of bilateral hyperplastic callus formation as a complication of fracture in a patient with osteogenesis imperfecta. The clinical and radiographic findings and the differential diagnosis are discussed. (orig.).

  16. Proliferation Potential of 18-Month-Old Callus of Ananas comosus L. cv. Moris

    Directory of Open Access Journals (Sweden)

    A.E. De Silva

    2006-01-01

    Full Text Available Differential effect of plant growth regulators and additives in proliferation of 18-month-old calli of Ananas comosus L. cv. Moris were assessed in vitro. The proliferation of callus relied on the growth regulators and additives. Of the different auxins supplemented in the Murashige and Skoog (MS media, 32.22 μM α-naphthaleneacetic acid (NAA gave the highest mean fresh weight of callus (46.817 g. Medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D was inferior to NAA, while b-naphthoxy acetic acid (BNOA and p-chlorophenoxy acetic acid (4-CPA were not effective in proliferating 18-months old callus. Addition of casein hydrolysate and coconut water to NAA supplemented medium showed better proliferation and production of callus. However, in terms of callus production, NAA at 32.22 μM was economically better.

  17. Effect of plant growth regulators on callus induction and plant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... toum state and later spread to other part of the country ..... Effect of different concentrations of IBA and MS salt strength on rooting percentage, ... study for tissue culture of potato can get enough callus and plant regeneration efficiency to perform transgenic operation. Moreover, as the potentiality of shoot ...

  18. Micropropagation and non-steroidal anti-inflammatory and anti-arthritic agent boswellic acid production in callus cultures of Boswellia serrata Roxb.

    Science.gov (United States)

    Nikam, Tukaram D; Ghorpade, Ravi P; Nitnaware, Kirti M; Ahire, Mahendra L; Lokhande, Vinayak H; Chopra, Arvind

    2013-01-01

    Micropropagation through cotyledonary and leaf node and boswellic acid production in stem callus of a woody medicinal endangered tree species Boswellia serrata Roxb. is reported. The response for shoots, roots and callus formation were varied in cotyledonary and leafy nodal explants from in vitro germinated seeds, if inoculated on Murshige and Skoog's (MS) medium fortified with cytokinins and auxins alone or together. A maximum of 8.0 ± 0.1 shoots/cotyledonary node explant and 6.9 ± 0.1 shoots/leafy node explants were produced in 91 and 88 % cultures respectively on medium with 2.5 μM 6-benzyladenine (BA) and 200 mg l(-1) polyvinylpyrrolidone (PVP). Shoots treated with 2.5 μM IBA showed the highest average root number (4.5) and the highest percentage of rooting (89 %). Well rooted plantlets were acclimatized and 76.5 % of the plantlets showed survival upon transfer to field conditions. Randomly amplified polymorphic DNA (RAPD) analysis of the micropropagated plants compared with mother plant revealed true-to-type nature. The four major boswellic acid components in calluses raised from root, stem, cotyledon and leaf explants were analyzed using HPLC. The total content of four boswellic acid components was higher in stem callus obtained on MS with 15.0 μM IAA, 5.0 μM BA and 200 mg l(-1) PVP. The protocol reported can be used for conservation and exploitation of in vitro production of medicinally important non-steroidal anti-inflammatory metabolites of B. serrata.

  19. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    Science.gov (United States)

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.

  20. Regeneration of three sweet potato (Ipomea batatas (L.)) accessions via meristem, Nodal and callus induction

    International Nuclear Information System (INIS)

    Addae-Frimpomaah, F.

    2012-11-01

    In vitro regeneration of three sweet potato accessions UE007, UK-BNARI and SA-BNARI using meristem, nodal cuttings or callus induction was studied. Meristematic explants cultured on Murashige and Skoog (1962) basal medium supplemented with low concentration of benzylaminopurine (BAP) or kinetin resulted in callus with or without shoot development which delayed shoot emergence. The degree of callus development increased as the concentration of the cytokinin in the culture medium increased. Although, callus development was comparatively lower on kinetin amended medium than BAP amended medium, Murashige and Skoog medium supplemented with 0.25mg/1BAP had the highest shoot induction (80%). For further differentiation of callus or shoots into distinct stem and leaves, the culture were transferred into fresh MS medium supplemented with 0.25mg/1 BAP, 0.1 mg/1 NAA and 0.1 mg/1 Gibberellic acid (GA 3 . To overcome the delay in shoot initiation using meristem culture, nodal cuttings of sweet potato were used as explants and cultured on MS medium amended with 0.3 - 0.9mg/1 BAP. All explants cultured on 0.3 or 0.6mg/1 BAP developed shoots. Furthermore, liquid MS medium amended with 0.25mg/1 BAP, 0.1mg/I NAA, and 0.1mg/1 GA 3 also enhanced early shoot development from nodal cutting explants compared to solid culture. Post flask acclimatisation of meristem or nodal cutting-derived plantlets showed that meristem derived plantlets were better acclimatised than nodal cutting plants due to vigorous root development leading to higher percentage survival in pots and subsequent tuber production. Callusogenesis was achieved when leaf lobe explants were cultured on CLC/ Ipomoea medium supplemented with 1.0 - 4.0mg/1 2,4-D with 4.0mg/1 2,4-D being the optimal concentration. However, the calli were non-embryogenic and therefore could not produce embryos when transferred to 0.1mg/1 BAP amended medium but rather produced either single or multiple shoots. The highest percentage shoot (83

  1. Effect of ionizing radiation and indole butyric acid on rooting of olive cuttings

    International Nuclear Information System (INIS)

    Al-Bachir, Mahfouz

    1993-12-01

    This study was performed to investigate the effects of indole butyric acid (IBA) (2000 and 4000 ppm), low doses of gamma irradiation (2,4, and 6 Gy), combined treatment of IBA followed by irradiation, and irradiation followed by IBA on olive cuttings (Variety Khodairi). Rooting percentage, callus formation, vegetative growth root number, and the length of the roots were measured after 100 days of planting. The results indicated that IBA treatments in both concentrations increased the callus formation, rooting, vegetative growth, and the number and length of the roots. Low doses of gamma irradiation had no effects on rooting percentage in comparison with the hormonal treatments. Callus formation, rooting, vegetative growth, and length of the root of cuttings produced in 1990 were better than those produced in 1991, and cuttings produced in January were better than those produced in March and October. (author). 16 refs., 15 tabs

  2. Optimization of induction, subculture conditions, and growth kinetics of Angelica sinensis (Oliv.) Diels callus.

    Science.gov (United States)

    Huang, Bing; Han, Lijuan; Li, Shaomei; Yan, Chunyan

    2015-01-01

    Angelica sinensis (Oliv.) Diels is an important traditional Chinese medicine, and the medicinal position is its root. This perennial herb grows vigorously only in specific areas and the environment. Tissue culture induction of callus and plant regeneration is an important and effective way to obtain large scale cultures of A. sinensis. The objective was to optimize the inductive, subculture conditions, and growth kinetics of A. sinensis. Tissue culture conditions for A. sinensis were optimized using leaves and petioles (types I and II) as explants source. Murashige and Skoog (MS) and H media supplemented with 30 g/L sucrose, 7.5 g/L agar, and varying concentrations of plant growth regulators were used for callus induction. In addition, four different basal media supplemented with 1.0 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D), 0.2 mg/L 6-benzyladenine (BA) and 30 g/L sucrose were optimized for callus subculture. Finally, growth kinetics of A. sinensis cultured on different subculture media was investigated based on callus properties, including fresh weight, dry weight, medium pH, callus relative fresh weight growth, callus relative growth rate (CRGR), and sucrose content. MS medium supplemented with 5 mg/L α-naphthaleneacetic acid, 0.5 mg/L BA, 0.7 mg/L 2,4-D, 30 g/L sucrose and 7.5 g/L agar resulted in optimal callus induction in A. sinensis while petiole I was found as the best plant organ for callus induction. The B5 medium supplemented with 1.0 mg/L 2,4-D, 0.2 mg/L BA and 30 g/L sucrose displayed the best results in A. sinensis callus subculture assays. The optimized conditions could be one of the most potent methods for large-scale tissue culture of A. sinensis.

  3. Generation and multiplication of plantlets from callus derived from Haplopappus gracilus (Nutt.) Gray and their karyotype analysis

    Science.gov (United States)

    Kann, R. P.; O'Connor, S. A.; Levine, H. G.; Krikorian, A. D.

    1991-01-01

    Unopened flower heads of Haplopappus gracilis (2n = 4) provided primary explants for callus production and subsequent induction of organized growth. Callus was initiated from small (3-5 mm in length) floral buds with benzylaminopurine (BAP) (44.4 micromoles; 10 mg/l) and naphthalene acetic acid (NAA) (0.54 micromole; 0.1 mg/l). Lowering the BAP level to 4.44 micromoles (1 mg/l) but maintaining the NAA level, gave rise to organized but highly compressed shoot growing points from an otherwise undifferentiated callus mass. Shoots selected from such cultures were maintainable and could be proliferated by growing 1-1.5-cm stem tip cuttings on Murashige and Skoog basal medium (solidified with agar) containing 0.444 micromole (0.1 mg/l) BAP and 0.054 micromole (0.01 mg/l) NAA. The stem tip multiplication rates obtainable by these means permit reliable strategies for shoot multiplication or production of rooted plantlets. Prolonged subculture and maintenance of shoots on growth regulator-free medium leads to in vitro flowering and greatly reduces rooting capacity. Karyotype analysis of chromosomes from root tip cells at metaphase and chromosome measurements show that karyologically uniform plantlets (based on chromosome number and morphology) can be obtained.

  4. High frequency plant regeneration from leaf explants derived callus of evening primrose (oenothera biennis)

    International Nuclear Information System (INIS)

    Ghauri, E.G.; Shafi, N.; Ghani, S.; Fatima, A.

    2008-01-01

    The seeds of Evening primrose were aseptically grown and leaf explants were used for establishment of callus culture. The Excellent growth in callus biomass was achieved on MS medium supplemented with 2, 4, -D and TDZ. For optimal growth of bud and shoot regeneration, fortification of IAA along with TDZ, or BAP was found to be essential. Rooting (70%) could be inducted on hormone free MS-medium. This percentage improved to 98 when NAA was added to the medium. The plantlets thus obtained were transferred to the field successfully after passing through the process of hardening. (author)

  5. Induction of embryogenic callus and plantlet regeneration from young leaves of high yielding mature oil palm

    Directory of Open Access Journals (Sweden)

    Yeedum, I.

    2004-09-01

    Full Text Available Callus induction and plantlet regeneration from young leaves of high-yielding mature oil palm were carried out using 10-year and 20-year-old trees from Thepa Research Station, Faculty of Natural Resources,Prince of Songkla University, Hat Yai, and Trang Agricultural College, respectively. Culture media used in this experiment were Murashige and Skoog (1962 and Oil Palm supplemented with various concentrations of α-naphthaleneacetic acid (NAA or 2,4- dichlorophenoxy acetic acid (2,4-D or dicamba (Di and antioxidants.Young leaves from 6th to 11st frond were excised, sterilized, cut into 5x5 mm pieces and cultured in the dark at 26±4ºC or 28±0.5ºC for 3 months. The results revealed that MS medium with 200 mg/l ascorbic acid (As and 1 mg/l Di (MS-AsDi gave the highest callus induction percentage (7.93 after culture for 3 months at 28±0.5ºC. Leaf segments from 6th - 8th frond yielded callus forming percentage at 10% (averaged from 1, 2.5 and 5 mg/l Di containing MS medium. Ascorbic acid as an antioxidant at concentration of 200 mg/l supplemented in MS medium in the presence of 2.5 mg/l Di produced the highest callus induction percentage (11.2 and number of nodules (7.06. A high percentage of embryogenic callus formation (66.67 was obtained when the calli were transferred to the same medium component supplemented with 0.5 mg/l Di and 1,000 mg/l casein hydrolysate (CH (MS-AsDiCH. Haustorial-staged embryos were observed to be isolated as an individual embryo and germinated on MS medium without plant growth regulator (MS-free. Development of root could be classified into two distinct types, fibrous and tap root.

  6. Effect of gamma-radiation on callus initiation and oraganogenesis in the tissue culture of Nicotiana tabaccum L

    International Nuclear Information System (INIS)

    Shin, S. H.; Kim, J. G.; Song, H. S.

    2004-01-01

    It is generally agreed that ionizing radiations stimulate cell division, growth and development in various organisms including animals and plants. Differentiating tissues are the most sensitive to radiation. The present experiment was carried out to investigate the effects of ionizing radiation on callus initiation and organogenesis from the stem in the culture of Nicotiana tabaccum L. cv. When the stem segments were cultured on a Murashige and Skoog (MS) medium with 2 mg/L kinetin, with 1 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D), with 2 mg/L kinetin and 1 mg/L 2,4-D, the shoots and callus were differentiated 14 days after cultivation. Callus was especially formed on the MS medium with 2,4-D and/or kinetin and the formation was promoted by 1 Gy and 5 Gy of gamma radiation. The formation of the shoot clusters on the MS medium with 2 mg/L kinetin were prominent in the 5 Gy-irradiated groups. It is concluded that that gamma radiation enhanced the callus initiation and organogenesis in the tissue culture of Nicotiana tabaccum L

  7. MRI and CT features of hyperplastic callus in osteogenesis imperfecta tarda

    International Nuclear Information System (INIS)

    Dobrocky, I.; Seidl, G.; Grill, F.

    1999-01-01

    We describe the MRI and CT findings of hyperplastic callus formation simulating a tumour of pelvis in patient with osteogenesis imperfecta tarda. Possible differential diagnoses and the impact of different imaging techniques on the correct diagnosis are discussed. (orig.)

  8. MRI and CT features of hyperplastic callus in osteogenesis imperfecta tarda

    Energy Technology Data Exchange (ETDEWEB)

    Dobrocky, I. [Diagnostic Center Meidling, Vienna (Austria); Seidl, G. [Diagnostic Center Meidling, Vienna (Austria)]|[Universitaetsklinik fuer Radiodiagnostik, Vienna (Austria); Grill, F. [Orthopaedisches Spital Wien Speising, Vienna (Austria)

    1999-05-01

    We describe the MRI and CT findings of hyperplastic callus formation simulating a tumour of pelvis in patient with osteogenesis imperfecta tarda. Possible differential diagnoses and the impact of different imaging techniques on the correct diagnosis are discussed. (orig.) With 3 figs., 5 refs.

  9. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    Directory of Open Access Journals (Sweden)

    Rocío Olmo

    2017-05-01

    Full Text Available Root-knot nematodes (RKNs; Meloidogyne spp. induce feeding cells (giant cells; GCs inside a pseudo-organ (gall from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN–plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs, auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19, slr, and alf4. Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those

  10. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    Science.gov (United States)

    Rodriguez-Villalon, Antia; Gujas, Bojan; van Wijk, Ringo; Munnik, Teun; Hardtke, Christian S

    2015-04-15

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase cotyledon vascular pattern 2 (CVP2), but not in its homolog CVP2-like 1 (CVL1), partially rescues brx defects. Consistent with this finding, CVP2 hyperactivity in a wild-type background recreates a brx phenotype. Paradoxically, however, while cvp2 or cvl1 single mutants display no apparent root defects, the root phenotype of cvp2 cvl1 double mutants is similar to brx or ops, although, as expected, cvp2 cvl1 seedlings contain more phosphatidylinositol-4,5-biphosphate. Thus, tightly balanced phosphatidylinositol-4,5-biphosphate levels appear essential for proper protophloem differentiation. Genetically, OPS acts downstream of phosphatidylinositol-4,5-biphosphate levels, as cvp2 mutation cannot rescue ops defects, whereas increased OPS dose rescues cvp2 cvl1 defects. Finally, all three mutants display higher density and accelerated emergence of lateral roots, which correlates with increased auxin response in the root differentiation zone. This phenotype is also created by application of peptides that suppress protophloem differentiation, clavata3/embryo surrounding region 26 (CLE26) and CLE45. Thus, local changes in the primary root protophloem systemically shape overall root system architecture. © 2015. Published by The Company of Biologists Ltd.

  11. Proliferation and ajmalicine biosynthesis of Catharanthus roseus (L). G. Don adventitious roots in self-built temporary immersion system

    Science.gov (United States)

    Phuc, Vo Thanh; Trung, Nguyen Minh; Thien, Huynh Tri; Tien, Le Thi Thuy

    2017-09-01

    Periwinkle (Catharanthus roseus (L.) G. Don) is a medicinal plant containing about 130 types of alkaloids that have important pharmacological effects. Ajmalicine in periwinkle root is an antihypertensive drug used in treatment of high blood pressure. Adventitious roots obtained from periwinkle leaves of in vitro shoots grew well in quarter-strength MS medium supplemented with 0.3 mg/l IBA and 20 g/l sucrose. Dark condition was more suitable for root growth than light. However, callus formation also took place in addition to the growth of adventitious roots. Temporary immersion system was applied in the culture of adventitious roots in order to reduce the callus growth rate formed in shake flask cultures. The highest growth index of roots was achieved using the system with 5-min immersion every 45 min (1.676 ± 0.041). The roots cultured in this system grew well without callus formation. Ajmalicine content was highest in the roots cultured with 5-min immersion every 180 min (950 μg/g dry weight).

  12. Nano-copper-bearing stainless steel promotes fracture healing by accelerating the callus evolution process

    Directory of Open Access Journals (Sweden)

    Wang L

    2017-11-01

    Full Text Available Lei Wang,1,* Guoyuan Li,1,* Ling Ren,2,* Xiangdong Kong,1 Yugang Wang,1 Xiuguo Han,1 Wenbo Jiang,3 Kerong Dai,1 Ke Yang,2 Yongqiang Hao11Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 2Special Materials and Device Research Department, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 3Medical 3D Printing Innovation Research Center, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Treatment for fractures requires internal fixation devices, which are mainly produced from stainless steel or titanium alloy without biological functions. Therefore, we developed a novel nano-copper-bearing stainless steel with nano-sized copper-precipitation (317L-Cu SS. Based on previous studies, this work explores the effect of 317L-Cu SS on fracture healing; that is, proliferation, osteogenic differentiation, osteogenesis-related gene expression, and lysyl oxidase activity of human bone mesenchymal stem cells were detected in vitro. Sprague–Dawley rats were used to build an animal fracture model, and fracture healing and callus evolution were investigated by radiology (X-ray and micro-CT, histology (H&E, Masson, and safranin O/fast green staining, and histomorphometry. Further, the Cu2+ content and Runx2 level in the callus were determined, and local mechanical test of the fracture was performed to assess the healing quality. Our results revealed that 317L-Cu SS did not affect the proliferation of human bone mesenchymal stem cells, but promoted osteogenic differentiation and the expression of osteogenesis-related genes. In addition, 317L-Cu SS upregulated the lysyl oxidase activity. The X-ray and micro-CT results showed that the callus evolution efficiency and fracture healing speed were

  13. Global analysis of differentially expressed genes and proteins in the wheat callus infected by Agrobacterium tumefaciens.

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    Full Text Available Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs and differentially expressed proteins (DEPs were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq and two-dimensional electrophoresis (2-DE in conjunction with mass spectrometry (MS. A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops.

  14. Global Analysis of Differentially Expressed Genes and Proteins in the Wheat Callus Infected by Agrobacterium tumefaciens

    Science.gov (United States)

    Zhou, Xiaohong; Wang, Ke; Lv, Dongwen; Wu, Chengjun; Li, Jiarui; Zhao, Pei; Lin, Zhishan; Du, Lipu; Yan, Yueming; Ye, Xingguo

    2013-01-01

    Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq) and two-dimensional electrophoresis (2-DE) in conjunction with mass spectrometry (MS). A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO) analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops. PMID:24278131

  15. Bioactivity of Neem (Azadirachta indica) callus extract

    International Nuclear Information System (INIS)

    Ahmed, I.M.

    2008-04-01

    This study was conducted in order to explore the possibility of utilizing plant tissue culture techniques for production of secondary metabolites from callus culture of Azadirachta indica (Neem) and to investigate the bioactivity of the established callus extract in comparison with the extract from the intact leaves. The presence of secondary metabolites in the extracts was detected by Thin Layer Chromatography (TLC). Both the callus and leaf extracts eluted five fraction of compounds and it were observed that callus extract had a good resolution. various extract concentration (5.10. and 20 mg/ml) were determined for the rate and extent of inhibition kinetics against staphylococcus aureus. Escherichia coli, and candida albicans. Results showed that callus extract of A. indica wiped out all viable cells of C. albicans within 18 hours and the subsequent concentration 5 and 10 mg/ m1 retard the growth after 24 h. A higher concentration of 20 mg/ ml had the same effect on S. aureus after 6 h and the E. coli cells were completely inhibited by the extracts after 24 h. Similar kinetics were showed by leaf extract but in slight rate as compared to the callus extract. In general both extract posses antimicrobial activity with notable efficient rates. For assaying of the inhibitory effect on some phyto pathogens the effect of different concentrations of the callus and leaf extracts on the radial growth of Drechslera rostrata. Fusarium oxysporum and Alterneria alternata were in vitro assessed. Obvious inhibitory effect was observed on the mycelia radial growth of the three treated fungi. The level of inhibition increased with the increase of te extract concentration. The maximum inhibitory effect (84%) was recorded with Drechslera rostrata when inoculated in media contain 20 mg/ ml of callus while the inhibition rate of mycelia growth of the same species reaches 61% when inoculated in a medium contain the same concentration of the neem leaf extract. The subsequent

  16. De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Chu, Zongli; Chen, Junying; Sun, Junyan; Dong, Zhongdong; Yang, Xia; Wang, Ying; Xu, Haixia; Zhang, Xiaoke; Chen, Feng; Cui, Dangqun

    2017-12-19

    During asexual reproduction the embryogenic callus can differentiate into a new plantlet, offering great potential for fostering in vitro culture efficiency in plants. The immature embryos (IMEs) of wheat (Triticum aestivum L.) are more easily able to generate embryogenic callus than mature embryos (MEs). To understand the molecular process of embryogenic callus formation in wheat, de novo transcriptome sequencing was used to generate transcriptome sequences from calli derived from IMEs and MEs after 3d, 6d, or 15d of culture (DC). In total, 155 million high quality paired-end reads were obtained from the 6 cDNA libraries. Our de novo assembly generated 142,221 unigenes, of which 59,976 (42.17%) were annotated with a significant Blastx against nr, Pfam, Swissprot, KOG, KEGG, GO and COG/KOG databases. Comparative transcriptome analysis indicated that a total of 5194 differentially expressed genes (DEGs) were identified in the comparisons of IME vs. ME at the three stages, including 3181, 2085 and 1468 DEGs at 3, 6 and 15 DC, respectively. Of them, 283 overlapped in all the three comparisons. Furthermore, 4731 DEGs were identified in the comparisons between stages in IMEs and MEs. Functional analysis revealed that 271transcription factor (TF) genes (10 overlapped in all 3 comparisons of IME vs. ME) and 346 somatic embryogenesis related genes (SSEGs; 35 overlapped in all 3 comparisons of IME vs. ME) were differentially expressed in at least one comparison of IME vs. ME. In addition, of the 283 overlapped DEGs in the 3 comparisons of IME vs. ME, excluding the SSEGs and TFs, 39 possessed a higher rate of involvement in biological processes relating to response to stimuli, in multi-organism processes, reproductive processes and reproduction. Furthermore, 7 were simultaneously differentially expressed in the 2 comparisons between the stages in IMEs, but not MEs, suggesting that they may be related to embryogenic callus formation. The expression levels of genes, which

  17. Experimental study upon the effect of irradiation on callus formation of fracture. Observation of vascular alteration and callus formation

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, F [Nippon Dental Coll., Tokyo

    1981-02-01

    Irradiation effects on callus formation after bone fracture were studied in rats with fractured right lower extremity. Follow-up study was continued for 112 days since 3000 rad was irradiated to the fractured site 3 days after bone fracture. Callus formation was noted in both of the outer and inner part (bone marrow) of the diaphysis before 14 days after bone fracture, but it was slow and sparse compared with that of non-irradiated group. Callus formation tended to disappear gradually from the outside of the diaphysis after 28 days after bone fracture. Strong disturbance was found in the surrounding vascular system at this time. Inside of the diaphysis, callus formation was restricted the end of the fracture, where lamellar calluses fused together. Changes in vascular system remained until 56 days after bone fracture. Vascular distribution was most dense 28 days after bone fracture. In many of the calluses which have established fusion, findings suggested excessive calcification in the trabeculae. Vascular distribution at this time was sparse, vascular formation was markedly suppressed in the bone marrow, and very little vascular formation was found in the fractured edges of the bone.

  18. Responses of some selected Malaysian rice genotypes to callus ...

    African Journals Online (AJOL)

    user

    2011-01-17

    Jan 17, 2011 ... embryogenic callus culture (Yin et al., 1993). In this study, overall, the callus from the MS medium had a good texture. Furthermore, some genotypes also produced better callus in other concentrations of 2,4-D treatment, however, the quality of callus was not as good as those in. 10 µM 2,4-D. Notably, the ...

  19. Distribution of Trans-Anethole and Estragole in Fennel (Foeniculum vulgare Mill of Callus Induced from Different Seedling Parts and Fruits

    Directory of Open Access Journals (Sweden)

    Abd El-Moneim Mohamed Radwan AFIFY

    2011-03-01

    Full Text Available In the present study, seeds from local cultivar of fennel were germinated on Murashige and Skoog medium (MS without plant growth regulators. Different types of explants from the growing seedling such as cotyledonal leaves, hypocotyls, epicotyls and roots were cultured on MS medium, contained different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D either alone or with kinetin. Differential responses in the essential oil constituents were observed in the induction and development of callus. The major components of essential oils includes estragole, trans-anethole, limonene and fenchone were studied under different conditions to find out the best methods which could be used to reduce the amount of estragole (not favorite for human consumption and increase the amount of trans-anethole.

  20. callus culture

    African Journals Online (AJOL)

    steve

    flavonoids, anthocyanins, and other phenolic com-pounds. (Blando et al. .... TP content of the callus were estimated according to the method of. Slinkard and ..... quantification of phenolic compounds in grapes by HPLC-PDA-ESI-. MS on a ...

  1. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    NARCIS (Netherlands)

    Rodriguez-Villalon, A.; Gujas, B.; van Wijk, R.; Munnik, T.; Hardtke, C.S.

    2015-01-01

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second

  2. A computational technique to measure fracture callus in radiographs.

    Science.gov (United States)

    Lujan, Trevor J; Madey, Steven M; Fitzpatrick, Dan C; Byrd, Gregory D; Sanderson, Jason M; Bottlang, Michael

    2010-03-03

    Callus formation occurs in the presence of secondary bone healing and has relevance to the fracture's mechanical environment. An objective image processing algorithm was developed to standardize the quantitative measurement of periosteal callus area in plain radiographs of long bone fractures. Algorithm accuracy and sensitivity were evaluated using surrogate models. For algorithm validation, callus formation on clinical radiographs was measured manually by orthopaedic surgeons and compared to non-clinicians using the algorithm. The algorithm measured the projected area of surrogate calluses with less than 5% error. However, error will increase when analyzing very small areas of callus and when using radiographs with low image resolution (i.e. 100 pixels per inch). The callus size extracted by the algorithm correlated well to the callus size outlined by the surgeons (R2=0.94, p<0.001). Furthermore, compared to clinician results, the algorithm yielded results with five times less inter-observer variance. This computational technique provides a reliable and efficient method to quantify secondary bone healing response. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Cloning of the queen variety pineapple (Ananas comosus (L.) merr) through the callus

    International Nuclear Information System (INIS)

    Lapade, A.G.; Veluz, A.M.S.; Santos, I.S.

    1988-01-01

    Crown sections of pineapple were inoculated aseptically in Murashige and Skoog (MS) medium with varying levels of benzyl adenine (BA) in combination with napthalene acetic acid (NAA). Callus was induced from crown sections that was grown in MS with 0 ppm BA + 2 ppm NAA, 2 ppm BA + 6 ppm NAA. These calli when grown continuously in the same medium developed profusely into shoots. Callus and shoots developed profusely at medium containing 2 ppm BA + 2 ppm NAA. Calli that were further sub-cultured in MS with 2 ppm BA + 2 ppm NAA produced multiple shoots. Calli and shoots that were further sub-cultured in 0 to 4 ppm BA to 4 to 6 ppm NAA formed roots. Results showed that complete plantlets were produced from crown sections of pineapple variety Queen in MS medium supplemented with the different treatment combinations of BA and NAA. (Author). 9 refs.; 1 fig

  4. The combination effect of auxin and cytokinin on in vitro callus formation of Physalis angulata L. - A medicinal plant

    Science.gov (United States)

    Mastuti, Retno; Munawarti, Aminatun; Firdiana, Elok Rifqi

    2017-11-01

    Physalis angulata L. (Ciplukan) is one member of Solanaceae that has a potential as herbal medicine. This plant grows wild in the crop fields, forest edges, etc. However, ciplukan is increasingly difficult to find recently. In vitro callus is an alternative source to produce secondary metabolite production as well as to regenerate plants through indirect organogenesis. This study aims to identify the response of hypocotyl explants on in vitro callus formation induced by a combination of auxin and cytokinins. Two types of cytokinins, Kinetin and BAP (0.5 ppm) were combined with three types of auxin, i.e. 2.4-D, IBA and IAA, at three concentrations 0.5, 1.0 and 1.5 ppm. In all combinations of cytokinin and auxin, 50-100% of hypocotyl explants derived from in vitro seedling were able to produce callus either in a compact or watery friable texture. In MS medium supplemented with 2.4-D, callus FW (fresh weight) began to decline in the fourth week after culture. Callus FW that increased until 5 weeks of culture was obtained in medium IAA 0.5 + Kin 0.5, IBA 1.0 + Kin 0.5 and IBA 1 + BA 0.5. Almost all calli induced on a medium + Kinetin also produced roots. While medium + BAP was able to induce shoots regeneration.

  5. Morpho-anatomical characterization of embryogenic calluses from immature zygotic embryo of peach palm during somatic embryogenesis =

    Directory of Open Access Journals (Sweden)

    Simone de Alencar Maciel

    2010-04-01

    Full Text Available The objective of this study was to morpho-anatomically characterizenodular embryogenic calluses from zygotic embryos of peach palm during the induction of somatic embryogenesis. Immature zygotic embryos were pre-treated in MS medium added to Picloram and 2,4-D (25 μM and BAP (0, 5, 10 μM. After three months, primary calluses were transferred to MS induction medium added to Picloram and 2,4-D (450 μM. After six months, the embryogenic calluses were then histologically analyzed and cultivated in the maturation medium. The competent tissues of the zygotic embryos differentiated embryogenic calluses under action of both Picloram and 2,4-D auxins (450 μM, where the presence of multi-granular structures were observed. Histological observations showed that in the nodular embryogenic calluses, the outlying parenchymal cells exhibit cellular characteristics of high mitotic activity. Differentiation of tracheal elements exists in embryogenic calluses connecting the callus to the explant. The evaluated cytokinin/auxin interaction influences the development of embryogenic calluses and globular structures.O objetivo deste trabalho foi caracterizar morfoanatomicamente calos nodulares embriogênicos originados de embriões zigóticos de pupunheira durante a indução da embriogênese somática. Embriões zigóticos imaturos de pupunha foram inicialmente pré-tratados em meio de cultura MS, solidificado com 2,5 g L-1 de phytagel® e suplementado com Picloram e 2,4-D na concentração de 25 μM e BAP (0, 5, 10 μM. Após três meses, os calos primários foram transferidos para meio de indução, com Picloram e 2,4-D (450 μM. Após seis meses, os calosnodulares embriogênicos formados foram então analisados histologicamente e repicados para o meio de maturação para a progressão das estruturas multigranulares embriogênicas. Verificou-seque os tecidos competentes dos embriões zigóticos imaturos diferenciaram nódulos embriogênicos pela ação de ambas

  6. Morphometric analysis of epidermal differentiation in primary roots of Zea mays

    Science.gov (United States)

    Moore, R.; Smith, H. S.

    1990-01-01

    Epidermal differentiation in primary roots of Zea mays was divided into six cell types based on cellular shape and cytoplasmic appearance. These six cell types are: 1) apical protoderm, located at the tip of the root pole and characterized by periclinally flattened cells; 2) cuboidal protoderm, located approximately 230 microns from the root pole and characterized by cuboidal cells; 3) tabular epidermis, located approximately 450 microns from the root pole and characterized by anticlinally flattened cells; 4) cuboidal epidermis, located approximately 900 microns from the root pole and characterized by cuboidal cells having numerous small vacuoles; 5) vacuolate cuboidal epidermis, located approximately 1,500 microns from the root pole and characterized by cuboidal cells containing several large vacuoles; and 6) columnar epidermis, located approximately 2,200 microns from the root pole (i.e., at the beginning of the zone of elongation) and characterized by elongated cells. We also used stereology to quantify the cellular changes associated with epidermal differentiation. The quiescent center and the apical protoderm have significantly different ultrastructures. The relative volume of dictyosomes increases dramatically during the early stages of epidermal differentiation. This increase correlates inversely with the amount of coverage provided by the root cap and mucilage.

  7. Protocols for Callus and Somatic Embryo Initiation for Hibiscus sabdariffa L. (Malvaceae): Influence of Explant Type, Sugar, and Plant Growth Regulators

    Science.gov (United States)

    A significant work on callus induction and somatic embryogenesis was realized for Hibiscus sabdariffa. Two genotypes (Hibiscus sabdariffa and Hibiscus sabdariffa var. altissima) two sugars (sucrose and glucose) and three concentrations (1 %, 2%, 3%) of each sugar, 3 explant types (root, hypocotyl, c...

  8. Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato

    Science.gov (United States)

    Kumari, Alka; Ray, Kamalika; Sadhna, Sadhna; Pandey, Arun Kumar; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2017-01-01

    Plants can regenerate from a variety of tissues on culturing in appropriate media. However, the metabolic shifts involved in callus formation and shoot regeneration are largely unknown. The metabolic profiles of callus generated from tomato (Solanum lycopersicum) cotyledons and that of shoot regenerated from callus were compared with the pct1-2 mutant that exhibits enhanced polar auxin transport and the shr mutant that exhibits elevated nitric oxide levels. The transformation from cotyledon to callus involved a major shift in metabolite profiles with denser metabolic networks in the callus. In contrast, the transformation from callus to shoot involved minor changes in the networks. The metabolic networks in pct1-2 and shr mutants were distinct from wild type and were rewired with shifts in endogenous hormones and metabolite interactions. The callus formation was accompanied by a reduction in the levels of metabolites involved in cell wall lignification and cellular immunity. On the contrary, the levels of monoamines were upregulated in the callus and regenerated shoot. The callus formation and shoot regeneration were accompanied by an increase in salicylic acid in wild type and mutants. The transformation to the callus and also to the shoot downregulated LST8 and upregulated TOR transcript levels indicating a putative linkage between metabolic shift and TOR signalling pathway. The network analysis indicates that shift in metabolite profiles during callus formation and shoot regeneration is governed by a complex interaction between metabolites and endogenous hormones. PMID:28481937

  9. Callus features of regenerate fracture cases in femoral lengthening in achondroplasia

    International Nuclear Information System (INIS)

    Devmurari, Kamlesh N.; Song, Hae Ryong; Modi, Hitesh N.; Venkatesh, K.P.; Ju, Kim Seung; Song, Sang Heon

    2010-01-01

    We studied the callus features seen in cases of regenerate fracture in femoral lengthening using a monolateral fixator in achondroplasia to determine whether callus types and shapes can predict the probability of callus fracture. The radiographs of 28 cases of femoral lengthening in 14 patients, 14 cases of callus fracture, and 14 cases without callus fracture were retrospectively analyzed by four observers and classified into different shapes and types in concordance with the Ru Li classification. The average lengthening of 9.4 cm (range 7.5-11.8 cm) was achieved, which was 41% (range 30-55%) of the original length and the average timing of callus fracture was 470 days (range 440-545 days) after surgery in the callus fracture group. While the average lengthening of 9.1 cm (range 8-9.7 cm) was achieved, this was 30% (range 28-32%) of the original length in the group of patients without callus fracture. The callus was atypically shaped, there was a 48% average (range 30-72%) reduction of the callus width compared with the natural width of the femur, and a lucent pathway was present in all cases of regenerate fracture. A lucent pathway was seen in all fracture cases with concave, lateral, and atypical shapes, and there was more than 30% lengthening and 30% reduction of the callus width compared with the natural width of the femur, which are the warning signs for regenerate fractures. These signs help the surgeon to predict the outcome and guide him in planning for any additional interventions. The Ru Li classification is an effective method for the evaluation of the chance of callus fracture. (orig.)

  10. Callus features of regenerate fracture cases in femoral lengthening in achondroplasia

    Energy Technology Data Exchange (ETDEWEB)

    Devmurari, Kamlesh N.; Song, Hae Ryong; Modi, Hitesh N.; Venkatesh, K.P.; Ju, Kim Seung; Song, Sang Heon [Korea University Medical College, Institute for Rare Diseases and Department of Orthopedic Surgery, Seoul (Korea)

    2010-09-15

    We studied the callus features seen in cases of regenerate fracture in femoral lengthening using a monolateral fixator in achondroplasia to determine whether callus types and shapes can predict the probability of callus fracture. The radiographs of 28 cases of femoral lengthening in 14 patients, 14 cases of callus fracture, and 14 cases without callus fracture were retrospectively analyzed by four observers and classified into different shapes and types in concordance with the Ru Li classification. The average lengthening of 9.4 cm (range 7.5-11.8 cm) was achieved, which was 41% (range 30-55%) of the original length and the average timing of callus fracture was 470 days (range 440-545 days) after surgery in the callus fracture group. While the average lengthening of 9.1 cm (range 8-9.7 cm) was achieved, this was 30% (range 28-32%) of the original length in the group of patients without callus fracture. The callus was atypically shaped, there was a 48% average (range 30-72%) reduction of the callus width compared with the natural width of the femur, and a lucent pathway was present in all cases of regenerate fracture. A lucent pathway was seen in all fracture cases with concave, lateral, and atypical shapes, and there was more than 30% lengthening and 30% reduction of the callus width compared with the natural width of the femur, which are the warning signs for regenerate fractures. These signs help the surgeon to predict the outcome and guide him in planning for any additional interventions. The Ru Li classification is an effective method for the evaluation of the chance of callus fracture. (orig.)

  11. Production of parthenolide in organ and callus cultures of ...

    African Journals Online (AJOL)

    In addition, callusing capacity and weight of callus of different explants under different treatments were also determined. Parthenolide content was determined in the explants as well as in callus using RP-HPLC on Luna C18 column and SPD-10A UV detector. The mobile phase used was acetonitrile: water (55 : 45) and the ...

  12. Regenerative callus induction and biochemical analysis of Stevia rebaudiana Bertoni

    Directory of Open Access Journals (Sweden)

    Dhurva P. Gauchan

    2014-07-01

    Full Text Available Stevia Leaves are the principal source of stevioside, which is estimated to be 100-300 times sweeter than table sugar. Stevioside has clinical significance as they are reported to maintain glucose levels in human blood. Owing to the difficulties in propagation of stevia through seeds and vegetative methods, callus culture has been an efficient alternative for generation of stevioside. The aim of this study is to develop an efficient and standardized protocol for maximum induction and multiplication of callus from a leaf. Callus culture was established from leaves in MS basal media fortified with various combinations (BAP, NAA, 2,4-D, KN, IBA and concentrations of phytohormones. The best callusing (100% was recorded in MS media supplemented with (2,4-D 1.0mg/l + NAA 1.0mg/l. The callus was harvested after 4 weeks and screened for the presence of various bioactive compounds. The qualitative results showed that the extracts of callus contained bioactive compounds like flavonoids, glycosides, phenol, tannins, sterols and saponins thereby making callus one of the sources for extraction of various secondary metabolites.

  13. The effects of callus age, UV irradiation and incubation time on trans-resveratol production in grapevine callus culture

    International Nuclear Information System (INIS)

    Keskin, N.; Kunter, B.

    2009-01-01

    In this study, the effects of callus age, ultraviolet (UV) irradiation and incubation time were investigated for the induction of trans-resveratrol production in callus cultures of Kalecik karası (Clone 12) Vitis vinifera L. grape cultivar. Part of leaves (~1 cm 2 ) were taken from one year old grapevines grown in greenhouse and then were cultured in Gamborg B-5 media including 2% saccarose, 0.8% agar, 1.0 μM BAP (6-benzylaminopurine) and 0.1 μM 2, 4-D (2, 4-dichlorophenoxy-acetic acid). After the second subculture, 12 and 15 days old callus tissues were exposed to 254 nm UV light at 10 cm distance from the source for 10 and 15 min. Trans-resveratrol was measured at 0, 24, 48 and 72 hours of incubation by using High Pressure Liquid Chromatography (HPLC). Trans-resveratrol concentration of control callus ranged from 0.56 to 0.96 μg g fw -1 . The highest trans-resveratrol production was obtained from 12 and 15 days-old callus irradiated for 10 min. at the 48th hours of incubation (2.42 μg g fw -1 ). Considering the highest value of trans-resveratrol concentration in controls and experiments, it was determined that UV irraditation in Kalecik karası elicitated the trans-resveratrol production by 2.5 times. (author) [tr

  14. Callus induction and plant regeneration of Ulex europaeus

    OpenAIRE

    Ramírez,Ingrid; Dorta,Fernando; Cuadros-Inostroza,Álvaro; Peña-Cortés,Hugo

    2012-01-01

    A callus induction and plant regeneration protocol was developed from leaf and thorn explants for the plant Ulex europaeus. Explants were incubated on 2% sucrose half-strength Murashige and Skoog Medium (MS) with various combinations of plant growth regulators and antioxidants. The best frequency of callus and shoot formation was obtained with 2,4-dichlorophenoxyacetic acid (2,4-D) 1 mg/l x kinetin (Kin) 0.2 mg/l (DK Medium; callus induction) and zeatin (Z) 1 mg/l (DK medium; shoot induction)...

  15. Callogenesis in root explants of four species of the family Solanaceae after inducing by Agrobacterium rhizogenes

    Directory of Open Access Journals (Sweden)

    Zahra Shakeran

    2015-09-01

    Full Text Available Studying explants affected by Agrobacterium rhizogenes shows that in addition to possible formation of hairy roots, it is likely that callogenesis can be induced in these tissues. The T-DNA region of A. rhizogenes codes enzymes that participate in biosynthesis of plants growth hormones. These hormones also affect callogenesis, hence, the formation of various calluses with different morphological properties are possible. It is very likely that the level of biosynthetic growth hormone, the plasmid carried by each bacteria strain, the position of T-DNA, and the level of gene expression contribute to this morphologic variation. In this study, the root explants of four species of the family Solanaceae namely Atropa belladonna, Datura metel, D. stramonium and Hyoscyamus niger were induced by using different strains of A. rhizogenes (A4, A7, AR15834, AR318, AR9402 and AR9543. Some of these explants entered callus phase and formed various calluses with different colors and shapes. Moreover, in some callus samples hairy roots were also appeared. These variations were probably caused by variations in the levels and ratios of auxin and cytokinine hormons after the induction. As shown in previous studies, the amount of secondary metabolites is reduced due to undifferentiated tissue produced in the callogenesis process.

  16. Influence of microgravity on cellular differentiation in root caps of Zea mays

    Science.gov (United States)

    Moore, R.; Fondren, W. M.; McClelen, C. E.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.

  17. Effect of irradiation and colchicine on callus and somatic embryo formation in cassava (Manihot esculenta Crantz)

    International Nuclear Information System (INIS)

    Dzimega, D. A.

    2012-06-01

    , embryo formation and prolific root was observed in cases where there was no embryo. Similarly, somatic embryo formation was significantly (p≤0.05) different among the accessions. No response to callus formation was observed in 0.25 g/l colchicine treatment after 30 days. Among the four accessions evaluated, Ankrah was the most promising accession in terms of callus induction frequency and somatic embryo formation ability. The results presented in this thesis clearly show that, sprouting in all accessions decreased as the dose of irradiation increased. Gamma irradiation had significantly (p≤0.05) affected height of cassava plant but this varied among accessions. Also, among the four accessions studied Ankrah and Tuaka were the most promising accession in terms of callus induction and somatic embryo formation ability. (author)

  18. Assessment of hairy roots induction in Solenostemon scutellarioides ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... family (Garcia and O'Neil, 2000). Cell suspension and transformed callus cultures of this plant are known to produce rosmarinic acid ... Hairy root is a pathological syndrome of dicotyledonous plants following wounding and ...

  19. Factors influencing callus induction and plant regeneration of ...

    African Journals Online (AJOL)

    ajl yemi

    2012-01-12

    ). Effect of basal medium on callus induction and plant regeneration. Three different kinds of basal mediums (MS, N6 and SH) were used to investigate their effects on callus induction and regeneration. Significant differences ...

  20. Comparison of fracture site callus with iliac crest bone marrow as the source of plastic-adherent cells

    Directory of Open Access Journals (Sweden)

    Achmad Zaki

    2013-05-01

    Full Text Available Background: Red marrow has been described as the main source of mesenchymal stem cells although its aspiration and isolation from bone marrow was reported to have significant donor site morbidity. Since secondary bone healing occurs through formation of callus as the result of proliferation and differentiation of mesenchymal stem cells, callus may become alternative source for mesenchymal stem cells. In this study, we compared the number of plastic-adherent cells from fracture site callus and bone marrow of iliac crest after two and four weeks of culture.Methods: Sixteen New Zealand rabbits were fracturized at the femoral shaft. Then, these rabbits were taken care. After two weeks of fracturization, 3 mL iliac crest bone marrow aspiration and callus extraction of eight rabbits were cultured (group I. The other eight rabbits were treated equally after four weeks of fracturization (group II. Simultaneously, the cultures were observed after one and two weeks. Four weeks later, they were harvested. Cells were counted using Neubauer hemocytometer. The average number of cells between the sources and groups were statistically analyzed using the unpaired t-test. Results: In group I, there were 2.6 ± 0.1 x 104 cells in the culture of iliac crest bone marrow aspirate and 2.5 ± 0.1 x 104 cells in culture of callus extract from fracture site (p = 0.34. In group II, there were 2.7 ± 0.1 x 104 cells and 2.1 ± 0.1 x 104 cells, respectively (p < 0.001.Conclusion: Fracture site callus at the second week post-fracturization may be potential as source of plastic-adherent cells compared with iliac crest bone marrow. (Med J Indones. 2013;22:70-5Keywords: Bone marrow, fracture site callus, iliac crest, long bone, mesenchymal stem cell, plastic-adherent cells

  1. Root Differentiation of Agricultural Plant Cultivars and Proveniences Using FTIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nicole Legner

    2018-06-01

    Full Text Available The differentiation of roots of agricultural species is desired for a deeper understanding of the belowground root interaction which helps to understand the complex interaction in intercropping and crop-weed systems. The roots can be reliably differentiated via Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR. In two replicated greenhouse experiments, six pea cultivars, five oat cultivars as well as seven maize cultivars and five barnyard grass proveniences (n = 10 plants/cultivar or provenience were grown under controlled conditions. One root of each plant was harvested and five different root segments of each root were separated, dried and measured with FTIR-ATR spectroscopy. The results showed that, firstly, the root spectra of single pea and single oat cultivars as well as single maize and single barnyard grass cultivars/proveniences separated species-specific in cluster analyses. In the majority of cases the species separation was correct, but in a few cases, the spectra of the root tips had to be omitted to ensure the precise separation between the species. Therefore, species differentiation is possible regardless of the cultivar or provenience. Consequently, all tested cultivars of pea and oat spectra were analyzed together and separated within a cluster analysis according to their affiliated species. The same result was found in a cluster analysis with maize and barnyard grass spectra. Secondly, a cluster analysis with all species (pea, oat, maize and barnyard grass was performed. The species split up species-specific and formed a dicotyledonous pea cluster and a monocotyledonous cluster subdivided in oat, maize and barnyard grass subclusters. Thirdly, cultivar or provenience differentiations within one species were possible in one of the two replicated experiments. But these separations were less resilient.

  2. Stimulation effects of γ-irradiation combined with colchicine on callus formation and green plant regeneration in rice anther culture

    International Nuclear Information System (INIS)

    Jin Wei; Chen Qiufang; Wang Cailian; Lu Yimei

    1999-09-01

    The ability of callus formation and green plant regeneration was very different for various rice types and varieties in rice anther culture. It was quite effective that rice anthers were irradiated with 10-40 Gy of γ-rays after 30 d incubation on induction medium and calli were treated on differentiation medium contained 10-75 mg/L of colchicine for increase of callus formation and green plant regeneration. Among these treatments, 10 Gy of γ-rats was the best for callus formation, and 20 Gy of γ-rays or 30 mg/L of colchicine was the most favourable for green plant regeneration. The simulation effect of 20 Gy of γ-irradiation combined with 30 mg/L of colchicine on green plant regeneration was much better than that of their separate use in rice anther culture

  3. [Introduction of hexaploid of Chinese narcissus and analysis of its chromosome change].

    Science.gov (United States)

    Wang, Rui; Zhang, Ya Nan; Wang, Ya Ying; Tian, Hui Qiao

    2007-06-01

    Anthers of Chinese narcissus (Narcissus tazetta L. var chinesis Roem) were used as explants for callus induction and plant regeneration. About 80% anthers produced callus and 28% of the callus differentiated out bulbs, making a good experiment system of tissue culture of Chinese narcissus for further cellular and gene engineering. The 700 callus were treated by 0.5% colchicin for 5-6 days and then transformed into a MS medium containing 3 mg/L 6-BA to induce differentiation. 90 bulbs were obtained and 55 bulbs among them were checked the chromosome number from their root tips for three times. 29 bulbs (53%, 29/55) still kept triploidy and the most cells of root tips contained 30 chromosomes. 22 bulbs (40%, 22/55) displayed aneuploidy and the most cells of its root tips contained 10-50 chromosomes. 4 bulbs displayed hexaploidy and contained 60 chromosomes. After three months growing, the cells of root tips containing aneuploidy chromosomes disappeared, and the bulbs became triploidy. The chromosomes of 4 hexaploidy bulbs did not changed during three checks. The origin and disappearance of aneuploidy cells of Chinese narcissus after treated by colchicin were discussed.

  4. 21 CFR 358.510 - Corn and callus remover active ingredients.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Corn and callus remover active ingredients. 358.510 Section 358.510 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... USE Corn and Callus Remover Drug Products § 358.510 Corn and callus remover active ingredients. The...

  5. Morphological Characterization and Identification of Coffea liberica Callus of Somatic Embryogenesis Propagation.

    Directory of Open Access Journals (Sweden)

    Fitria Ardiyani

    2015-08-01

    Full Text Available Compared with other types of coffee, Liberica coffee is more difficult to be propagates using clonal methods. Meanwhile, demand for planting materials and consumption of this type of coffee is increasing lately. The objective of this paper is to present results of the work on morpological characterization of Liberica coffee (Coffea liberica callus produced by somatic embryogenesis propagation. This research used C. liberica Arruminensis clone. This clone was one of Liberica coffee clones which had superior taste. Main activitis carried out in this experiment were explant sterilization, explant induction and histological analysis on the callus produced. The result of this research showed that non embryogenic callus was higher (72% than embryogenic callus (28%. The callus description can be used to identify type and characteristic of the callus. Therefore, it can be a parameter to choose type of callus for propagation material. This is important because choosing the right callus is determine of the succesfully process of Liberica somatic embryogenesis. Keywords: somatic embryogenesis, Liberica, embryogenic, non-embryogenic

  6. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    OpenAIRE

    Rodriguez-Villalon Antia; Gujas Bojan; van Wijk Ringo; Munnik Teun; Hardtke Christian S

    2015-01-01

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase cotyledon vascular pattern 2 (CVP2), but not in its homolog CVP2-like 1 (CVL1), partially rescues brx defects. Consi...

  7. Embryogenic callus formation, growth and regeneration in callus and suspension cultures of Miscanthus x ogiformis Honda 'Giganteus' as affected by proline

    DEFF Research Database (Denmark)

    Holme, Inger Bæksted; Krogstrup, Peter; Hansen, Jürgen

    1997-01-01

    .6 M 2,4-dichlorophenoxyacetic acid. Shoot apices and leaves from in vitro-propagated shoots, and immature inflorescences from greenhouse-grown plants were used as explants for callus induction and formation. Suspension cultures initiated from embryogenic callus of immature inflorescences were used...

  8. Callus induction and flavonoid production on the immature seed of Stelechocarpus burahol

    Science.gov (United States)

    Habibah, N. A.; Moeljopawiro, S.; Dewi, K.; Indrianto, A.

    2018-03-01

    Stelechocarpus burahol [(Bl.) Hook. f. & Th.] is one of the medicinal plants. In vitro callus induction studies on S. burahol were carried out to determine phytohormone requirement for optimum callus induction. Immature seed explants were cultured on MS medium by adding different kinds and different concentrations of plant growth regulators (picloram and 2,4-D) under light and dark conditions. The results showed that callus formation was initiated on the 18,50th to the 55th days. The best condition for optimum callus induction was found on MS medium, which was supplemented with 7.5 mg/L picloram and was maintained in the dark condition. The callus induction varied from 60% to 100%. The callus that produced the highest flavonoid was grown on the medium with the addition of 10 mg/L of 2,4-D. In conclusion, the results represented a suitable medium for S.burahol callus induction.

  9. Production of friable embryogenic callus and regeneration of ...

    African Journals Online (AJOL)

    Generation of embryogenic callus is a key step in genetic engineering of many crop species, including cassava. Protocols for generation of friable embryogenic callus (FEC) have been lacking for Ugandan cassava genotypes, thereby delaying their genetic engineering for agronomic and other desirable traits. The objective ...

  10. In vitro neoplastic transformation of plant callus tissue by γ-radiation

    International Nuclear Information System (INIS)

    Pandey, K.N.; Sabharwal, P.S.

    1979-01-01

    Tumours have been induced by γ-radiation in callus tissue derived from a monocotyledonous flowering plant, Haworthia mirabilis Haw. The transformed tissue exhibited compact texture, excessive cell proliferation and loss of capacity for organogenesis. Tumors were characterized by their ability to undergo continuous autonomous growth on minimal media in the subsequent 4 generations of subculture. In contrast, the nonirradiated control tissue grew with friable texture, required inositol or growth hormones and showed prolific differentiation of vegetative buds. (Auth.)

  11. Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation.

    Science.gov (United States)

    Lujan, Trevor J; Henderson, Chris E; Madey, Steven M; Fitzpatrick, Dan C; Marsh, J Lawrence; Bottlang, Michael

    2010-03-01

    Locked plating constructs may be too stiff to reliably promote secondary bone healing. This study used a novel imaging technique to quantify periosteal callus formation of distal femur fractures stabilized with locking plates. It investigated the effects of cortex-to-plate distance, bridging span, and implant material on periosteal callus formation. Retrospective cohort study. One Level I and one Level II trauma center. Sixty-four consecutive patients with distal femur fractures (AO types 32A, 33A-C) stabilized with periarticular locking plates. Osteosynthesis using indirect reduction and bridge plating with periarticular locking plates. Periosteal callus size on lateral and anteroposterior radiographs. Callus size varied from 0 to 650 mm2. Deficient callus (20 mm2 or less) formed in 52%, 47%, and 37% of fractures at 6, 12, and 24 weeks postsurgery, respectively. Callus formation was asymmetric, whereby the medial cortex had on average 64% more callus (P=0.001) than the anterior or posterior cortices. A longer bridge span correlated minimally with an increased callus size at Week 6 (P=0.02), but no correlation was found at Weeks 12 and 24 postsurgery. Compared with stainless steel plates, titanium plates had 76%, 71%, and 56% more callus at Week 6 (P=0.04), Week 12 (P=0.03), and Week 24 (P=0.09), respectively. Stabilization of distal femur fractures with periarticular locking plates can cause inconsistent and asymmetric formation of periosteal callus. A larger bridge span only minimally improves callus formation. The more flexible titanium plates enhanced callus formation compared with stainless steel plates.

  12. Callus regeneration from stem explants of Pseudarthira viscida (L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... regeneration frequency have come from tissue culture work done in ... Table 1. In vitro responses from stem callus of Psudarthria viscida Wight & Arn. Growth .... plantlets regeneration from cotyledonary callus of Tomato.

  13. Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas).

    Science.gov (United States)

    Mohd Din, Abd Rahman Jabir; Iliyas Ahmad, Fauziah; Wagiran, Alina; Abd Samad, Azman; Rahmat, Zaidah; Sarmidi, Mohamad Roji

    2016-01-01

    A new and rapid protocol for optimum callus production and complete plant regeneration has been assessed in Malaysian upland rice (Oryza sativa) cv. Panderas. The effect of plant growth regulator (PGR) on the regeneration frequency of Malaysian upland rice (cv. Panderas) was investigated. Mature seeds were used as a starting material for callus induction experiment using various concentrations of 2,4-D and NAA. Optimal callus induction frequency at 90% was obtained on MS media containing 2,4-D (3 mg L(-1)) and NAA (2 mg L(-1)) after 6 weeks while no significant difference was seen on tryptophan and glutamine parameters. Embryogenic callus was recorded as compact, globular and light yellowish in color. The embryogenic callus morphology was further confirmed with scanning electron microscopy (SEM) analysis. For regeneration, induced calli were treated with various concentrations of Kin (0.5-1.5 mg L(-1)), BAP, NAA and 0.5 mg L(-1) of TDZ. The result showed that the maximum regeneration frequency (100%) was achieved on MS medium containing BAP (0.5 mg L(-1)), Kin (1.5 mg L(-1)), NAA (0.5 mg L(-1)) and TDZ (0.5 mg L(-1)) within four weeks. Developed shoots were successfully rooted on half strength MS free hormone medium and later transferred into a pot containing soil for acclimatization. This cutting-edge finding is unique over the other existing publishable data due to the good regeneration response by producing a large number of shoots.

  14. Potential of Tissue Culture for Breeding Root-Knot Nematode Resistance into Vegetables

    OpenAIRE

    Fassuliotis, G.; Bhatt, D. P.

    1982-01-01

    Plant protoplast technology is being investigated as a means of transferring root-knot nematode resistance factors from Solanum sisymbriifolium into the susceptible S. melongena. Solanum sisymbriifolium plants regenerated from callus lost resistance to Meloidogyne javanica but retained resistance to M. incognita. Tomato plants cloned from leaf discs of the root-knot nematode resistant 'Patriot' were completely susceptible to M. incognita, while sections of stems and leaves rooted in sand in t...

  15. Study on the secondary metabolic regulation of callus of Panax quinquefolium L

    International Nuclear Information System (INIS)

    Zhang Meiping; Wang Yi; Sun Chunyu; Li Xianggao

    2003-01-01

    The effects of precursors with different kind, concentration, growth phase, time and different ATP, nicotinic acid concentration on the callus growth and saponin formation with the buds of Panax quinquefolium L. has been studied. The results showed that 0.1% mevalonic acid inhibited the callus growth but promoted the saponin formation; L-leucine of 100 mg/L had no obvious effects on callus growth, but promoted the saponin formation; Mg(Ac) 2 of 444 mg/L promoted both the callus growth and saponin content. The optimum time for precursor feeding is at the beginning of regeneration. The optimum time for mevalonic acid is 6h; ATP of 160 mg/L promoted both the callus growth and saponin formation. Nicotinic acid of 1.0 mg/L promoted callus growth and saponin formation. With 4000 Gy of 60 Co γ-rays, the saponin content has been increased 1 time compared with nonirradiation

  16. Mechanical stimulation enhanced estrogen receptor expression and callus formation in diaphyseal long bone fracture healing in ovariectomy-induced osteoporotic rats.

    Science.gov (United States)

    Chow, S K H; Leung, K S; Qin, J; Guo, A; Sun, M; Qin, L; Cheung, W H

    2016-10-01

    Estrogen receptor (ER) in ovariectomy-induced osteoporotic fracture was reported to exhibit delayed expression. Mechanical stimulation enhanced ER-α expression in osteoporotic fracture callus at the tissue level. ER was also found to be required for the effectiveness of vibrational mechanical stimulation treatment in osteoporotic fracture healing. Estrogen receptor(ER) is involved in mechanical signal transduction in bone metabolism. Its expression was reported to be delayed in osteoporotic fracture healing. The purpose of this study was to investigate the roles played by ER during osteoporotic fracture healing enhanced with mechanical stimulation. Ovariectomy-induced osteoporotic SD rats that received closed femoral fractures were divided into five groups, (i) SHAM, (ii) SHAM-VT, (iii) OVX, (iv) OVX-VT, and (v) OVX-VT-ICI, where VT stands for whole-body vibration treatment and ICI for ER antagonization by ICI 182,780. Callus formation and gene expression were assessed at 2, 4, and 8 weeks postfracture. In vitro osteoblastic differentiation, mineralization, and ER-α expression were assessed. The delayed ER expression was found to be enhanced by vibration treatment. Callus formation enhancement was shown by callus morphometry and micro-CT analysis. Enhancement effects by vibration were partially abolished when ER was modulated by ICI 182,780, in terms of callus formation capacity at 2-4 weeks and ER gene and protein expression at all time points. In vitro, ER expression in osteoblasts was not enhanced by VT treatment, but osteoblastic differentiation and mineralization were enhanced under estrogen-deprived condition. When osteoblastic cells were modulated by ICI 182,780, enhancement effects of VT were eliminated. Vibration was able to enhance ER expression in ovariectomy-induced osteoporotic fracture healing. ER was essential in mechanical signal transduction and enhancement in callus formation effects during osteoporotic fracture healing enhanced by vibration

  17. GABA shunt in the callus cells derived from soybean cotyledon

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, M; Nakano, Y; Kitaoka, S [Osaka Prefectural Univ., Sakai (Japan). Coll. of Agriculture

    1975-01-01

    In the growing callus cells from soybean cotyledon, the activities of glutamate decarboxylase and GABA transaminase were increased in the early phase of the callus growth on the Miller agar medium. Succinate dehydrogenase activity was also changed in a similar manner. From these and the additional evidences that GABA transaminase was probably localized in the mitochondria, it has been made clear that the GABA shunt (GABA by-pass pathway) is operative and contributes to the respiratory metabolism in growing callus cells. Feeding young callus cells with GABA-U-/sup 14/C for 24 hr actually resulted in finding 53% of the taken up radioactivity in released carbon dioxide. Considerable parts of the taken up radioactivity were found in amino acids and proteins which should have been formed via the GABA shunt also.

  18. Callus induction and plant regeneration from different explant types of Miscanthus x ogiformis Honda 'Giganteus'

    DEFF Research Database (Denmark)

    Holme, Inger Bæksted; Petersen, Karen Koefoed

    1996-01-01

    . The explants were cultured on urashige and Skoog medium supplemented with 4.5, 13.6, 22.6 or 31.7 μM 2,4-dichlorophenoxyacetic acid. Three types of callus were formed but only one was embryogenic and regenerated plants. Callus induction and formation of embryogenic callus depended on the type and developmental......-propagated shoots and older leaves of greenhouse-grown plants. Immature inflorescences smaller than 2.5 cm produced a higher percentage of embryogenic callus than larger more mature inflorescences. Embryogenic callus derived from immature inflorescences had the highest regeneration capacity. Differences in 2......,4-dichlorophenoxyacetic acid concentrations had no significant effect on callus induction, embryogenic callus formation and plant regeneration....

  19. Studies on Callus Induction and Regeneration of Medicinal Plant Chicory (Cichorium intybus L. from Leaf and Petiole Explants

    Directory of Open Access Journals (Sweden)

    H. Hadizadeh

    2016-07-01

    Full Text Available Introduction: Chicory (Cichorium intybus L. belongs to Asteraceae family is commonly known as witloof chicory. The leaves and the roots of this medicinal plant are edible and commonly used as salad. Some varieties are also cultivated as coffee substitute after roasting the roots. All parts of the plant contain these volatile oils, with the majority of the toxic components concentrated in the plant's root. In folk medicine, the plant is used for the treatment of diarrhea, spleen enlargement, fever, and vomiting. Antihepatotoxic activity on damaged rat’s liver sections and anti-bacterial activity of this crop has been recently reported. In vitro regeneration from leaf explants with various hormonal combinations has been reported previously. Moreover, in vitro regeneration of Chicory from cotyledon explants using different combinations of plant growth regulators has been studied. Also, a protocol for the regeneration of plantlets from leaf and petiole explants of witloof chicory has been developed. The aim of the present investigation was optimization of callus induction and shoot regeneration from leaf and petiole tissues of Chicory (Esfahan genotype. Materials and Methods: In this investigation, Esfahan genotype was used for callus induction and direct shoot regeneration. Seeds were first washed with running tap water for 30 min then seeds were surface sterilized by dipping in 70% ethanol for 90 s and rinsed with sterile distilled water, followed by immersing in 5% sodium hypochlorite solution for 25 min and thereafter rinsed for 30 min with sterile distilled water. The basal medium used in this investigation was MS. For shoot regeneration, leaf and petiole explants (5 mm segments were excised from 4-week-old sterile seedlings and cultured on MS medium containing different combinations of NAA / BA and KIN / BA in two separate experiments. Experiments were performed factorial based on completely randomized design. Cultures were incubated at 25

  20. Establishment of the callus and cell suspension culture of ...

    African Journals Online (AJOL)

    The objective of this work was the optimization of the conditions of callus and cell suspension culture of Elaeagnus angustifolia for the production of condensed tannins. The effects of different conditions on the callus growth and the production of condensed tannins were researched. The leaf tissue part of E. angustifolia was ...

  1. Antioxidant and antimicrobial activities of callus culture and leaf ...

    African Journals Online (AJOL)

    The callus culture extract (CCE) gave the lowest MIC value of 0.78 mg/ mL for most of the bacteria and fungi and the lowest MBC values of 0.78 mg/ mL and 1.56 mg/ mL against bacteria and fungi, respectively. ... Keywords: Crotalaria retusa; In vitro propagation; Callus culture; Antimicrobial activity; Antioxidant activity ...

  2. Hot callusing for propagation of American beech by grafting

    Science.gov (United States)

    David W. Carey; Mary E. Mason; Paul Bloese; Jennifer L. Koch

    2013-01-01

    To increase grafting success rate, a hot callus grafting system was designed and implemented as part of a multiagency collaborative project to manage beech bark disease (BBD) through the establishment of regional BBD-resistant grafted seed orchards. Five years of data from over 2000 hot callus graft attempts were analyzed using a logistic regression model to determine...

  3. Plant regeneration via somatic embryogenesis from root explants of ...

    African Journals Online (AJOL)

    A system for induction of callus and plant regeneration via somatic embryogenesis from root explants of Hevea brasiliensis Muell. Arg. clone Reyan 87-6-62 was evaluated. The influence of plant growth regulators (PGRs) including 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (6-BA) and kinetin (KT) on ...

  4. Experimental study upon the effect of irradiation on callus formation of fracture

    International Nuclear Information System (INIS)

    Saigusa, Fujio

    1981-01-01

    Irradiation effects on callus formation after bone fracture were studied in rats with fractured right lower extremity. Follow-up study was continued for 112 days since 3000 rad was irradiated to the fractured site 3 days after bone fracture. Callus formation was noted in both of the outer and inner part (bone marrow) of the diaphysis before 14 days after bone fracture, but it was slow and sparse compared with that of non-irradiated group. Callus formation tended to disappear gradually from the outside of the diaphysis after 28 days after bone fracture. Strong disturbance was found in the surrounding vascular system at this time. Inside of the diaphysis, callus formation was restricted the end of the fracture, where lamellar calluses fused together. Changes in vascular system remained until 56 days after bone fracture. Vascular distribution was most dense 28 days after bone fracture. In many of the calluses which have established fusion, findings suggested excessive calcification in the trabeculae. Vascular distribution at this time was sparse, vascular formation was markedly suppressed in the bone marrow, and very little vascular formation was found in the fractured edges of the bone. (Ueda, J.)

  5. Using callus culture to study the drought tolerance of wheat genotypes

    Directory of Open Access Journals (Sweden)

    Kondić Ankica

    2000-01-01

    Full Text Available In this paper, we studied the drought tolerance under in vitro conditions of two winter wheat (T. aestivum L. cultivars, Košuta and Renesansa. The tolerance was tested on a modified MS (Murashige and Skoog, 1962 nutrient medium to which polyethylene glycol (PEG was added at three different concentrations: 10%, 20% and 30%. Calluses from the control group were grown on a medium without PEG. After four months of growing on these mediums, fresh weight and dry matter content in the callus tissue were determined. We found significant differences in genotype response to different PEG concentrations The highest concentration (30% was lethal to the isolated embryos, so at this concentration no calluses formed in any of the genotypes. At 10 and 20% PEG, there was a significant decrease in the fresh callus weight in both genotypes. Thus, at the lowest concentration ( 10% PEG, the fresh weight decreased by 90% in Košuta and by 93% in Renesansa relative to the control. Due to callus dehydration in the presence of PEG, the dry matter content in the calluses of both genotypes increased with increasing PEG concentrations in the medium. In Košuta, the dry matter content increased from 8.7% (control to 24.9% (20% PEG, while in Renesansa it increased from 8.6% (control to 39.7% (20% PEG.

  6. Factors Associated With Callus in Patients with Diabetes, Focused on Plantar Shear Stress During Gait.

    Science.gov (United States)

    Hamatani, Masako; Mori, Taketoshi; Oe, Makoto; Noguchi, Hiroshi; Takehara, Kimie; Amemiya, Ayumi; Ohashi, Yumiko; Ueki, Kohjiro; Kadowaki, Takashi; Sanada, Hiromi

    2016-11-01

    The aim of this study is to identify whether plantar shear stress in neuropathic patients with diabetes with callus is increased compared with those without callus. The differences in foot deformity, limited joint mobility, repetitive stress of walking, and ill-fitting shoes between patients with callus and those without callus were also determined. Subjects were recruited from the Diabetic Foot Outpatient Clinic. A newly developed in-shoe measurement system, which has flexible and thin insoles, enabled measurement of both plantar pressure and shear stress simultaneously when subjects walked as usual on a 10 m walkway. It was found that plantar shear stress adjusted for weight during the push-off phase was increased by 1.32 times in patients with callus compared with those without callus (mean ± SD: 0.0500 ± 0.0160 vs 0.0380 ± 0.0144, P = .031). Moreover, hallux valgus deformity, reduction in dorsiflexion of the ankle joint and increase in plantar flexion were showed in feet with callus. Increased plantar shear stress may be caused by gait change that patients having callus push off with the metatarsal head instead of the toe as a result of foot deformity and limited joint mobility. It was found that plantar shear stress adjusted for weight during the push-off phase was increased in patients with callus compared with those without callus by using the newly developed measurement system. These results suggest that reduction of plantar shear stress during the push-off phase can prevent callus formation in neuropathic patients with diabetes. © 2016 Diabetes Technology Society.

  7. Bud removal affects shoot, root, and callus development of hardwood Populus cuttings

    Science.gov (United States)

    A.H. Wiese; J.A. Zalesny; D.M. Donner; Ronald S., Jr. Zalesny

    2006-01-01

    The inadvertent removal and/or damage of buds during processing and planting of hardwood poplar (Populus spp.) cuttings are a concern because of their potential impact on shoot and root development during establishment. The objective of the current study was to test for differences in shoot dry mass, root dry mass, number of roots, length of the...

  8. The GABA shunt in the callus cells derived from soybean cotyledon

    International Nuclear Information System (INIS)

    Tokunaga, Masao; Nakano, Yoshihisa; Kitaoka, Shozaburo

    1975-01-01

    In the growing callus cells from soybean cotyledon, the activities of glutamate decarboxylase and GABA transaminase were increased in the early phase of the callus growth on the Miller agar medium. Succinate dehydrogenase activity was also changed in a similar manner. From these and the additional evidences that GABA transaminase was probably localized in the mitochondria, it has been made clear that the GABA shunt (GABA by-pass pathway) is operative and contributes to the respiratory metabolism in growing callus cells. Feeding young callus cells with GABA-U- 14 C for 24 hr actually resulted in finding 53% of the taken up radioactivity in released carbon dioxide. Considerable parts of the taken up radioactivity were found in amino acids and proteins which should have been formed via the GABA shunt also. (auth.)

  9. Factors controlling phenol content on Theobroma cacao callus culture

    International Nuclear Information System (INIS)

    Quiñones-Galvez, Janet; HernándezTorre, Martha de la; Quirós Molina, Yemeys; Capdesuñer Ruiz, Yanelis; Trujillo Sánchez, Reinaldo

    2016-01-01

    Theobroma cacao L. is known in folk medicine as an antiseptic, diuretic and antiparasitic. Foods derived from this plant are rich in natural products of high added value, including phenolic compounds. As in vitro cultivation handle is an alternative source for the production of these metabolites. The present study was conducted to obtain phenolic compounds from callus culture with embryogenic structures. Culture conditions (agitation, light and glucose) were established to increase the concentration of phenols in calluses and elicitors to achieve the increase in callus and excretion into the culture area. The accumulation of phenolic compounds was favored with the additional supplement of glucose, growth in agitation and darkness. The addition of random hydroxylated cyclodextrins allowed the increase in the specific yield of phenols and biomass. (author)

  10. Morphohistobiochemical characteristics of embryogenic and nonembryogenic callus cultures of sweet potato (Ipomoea batatas L.).

    Science.gov (United States)

    Mukherjee, A; Debata, B K; Mukherjee, P S; Malik, S K

    2001-01-01

    Ipomoea batatas callus culture raised in a medium supplemented with 2,4-D (2,4-dichlorophenoxy acetic acid) alone or 2,4-D in combination with benzyl adenine, were found to be embryogenic. Supplementation of exogenous chemicals, such as 5 g/l NaCI or 0.7 g/l proline together with a mild dose of 0.2 mg/l 2,4-D, enhanced somatic embryogenesis significantly in all the genotypes tested. Morphological, growth, physiological, histological, and biochemical characteristics of the embryogenic callus were different from the nonembryogenic callus. The former was compact, slow growing, and nodular compared with the fast growing, fragile, nonembryogenic callus. The embryogenic callus tissue had more dry matter, protein and reducing sugar contents compared with the less embryogenic callus. The somatic embryogenic response remained steady in the cultures for up to 96 weeks.

  11. Role of hormones in controlling vascular differentiation and the mechanism of lateral root initiation.

    Science.gov (United States)

    Aloni, Roni

    2013-11-01

    The vascular system in plants is induced and controlled by streams of inductive hormonal signals. Auxin produced in young leaves is the primary controlling signal in vascular differentiation. Its polar and non-polar transport pathways and major controlling mechanisms are clarified. Ethylene produced in differentiating protoxylem vessels is the signal that triggers lateral root initiation, while tumor-induced ethylene is a limiting and controlling factor of crown gall development and its vascular differentiation. Gibberellin produced in mature leaves moves non-polarly and promotes elongation, regulates cambium activity and induces long fibers. Cytokinin from the root cap moves upward to promote cambial activity and stimulate shoot growth and branching, while strigolactone from the root inhibits branching. Furthermore, the role of the hormonal signals in controlling the type of differentiating vascular elements and gradients of conduit size and density, and how they regulate plant adaptation and have shaped wood evolution are elucidated.

  12. Fully automated segmentation of callus by micro-CT compared to biomechanics.

    Science.gov (United States)

    Bissinger, Oliver; Götz, Carolin; Wolff, Klaus-Dietrich; Hapfelmeier, Alexander; Prodinger, Peter Michael; Tischer, Thomas

    2017-07-11

    A high percentage of closed femur fractures have slight comminution. Using micro-CT (μCT), multiple fragment segmentation is much more difficult than segmentation of unfractured or osteotomied bone. Manual or semi-automated segmentation has been performed to date. However, such segmentation is extremely laborious, time-consuming and error-prone. Our aim was to therefore apply a fully automated segmentation algorithm to determine μCT parameters and examine their association with biomechanics. The femura of 64 rats taken after randomised inhibitory or neutral medication, in terms of the effect on fracture healing, and controls were closed fractured after a Kirschner wire was inserted. After 21 days, μCT and biomechanical parameters were determined by a fully automated method and correlated (Pearson's correlation). The fully automated segmentation algorithm automatically detected bone and simultaneously separated cortical bone from callus without requiring ROI selection for each single bony structure. We found an association of structural callus parameters obtained by μCT to the biomechanical properties. However, results were only explicable by additionally considering the callus location. A large number of slightly comminuted fractures in combination with therapies that influence the callus qualitatively and/or quantitatively considerably affects the association between μCT and biomechanics. In the future, contrast-enhanced μCT imaging of the callus cartilage might provide more information to improve the non-destructive and non-invasive prediction of callus mechanical properties. As studies evaluating such important drugs increase, fully automated segmentation appears to be clinically important.

  13. Shear Stress-Normal Stress (Pressure) Ratio Decides Forming Callus in Patients with Diabetic Neuropathy

    Science.gov (United States)

    Noguchi, Hiroshi; Takehara, Kimie; Ohashi, Yumiko; Suzuki, Ryo; Yamauchi, Toshimasa; Kadowaki, Takashi; Sanada, Hiromi

    2016-01-01

    Aim. Callus is a risk factor, leading to severe diabetic foot ulcer; thus, prevention of callus formation is important. However, normal stress (pressure) and shear stress associated with callus have not been clarified. Additionally, as new valuables, a shear stress-normal stress (pressure) ratio (SPR) was examined. The purpose was to clarify the external force associated with callus formation in patients with diabetic neuropathy. Methods. The external force of the 1st, 2nd, and 5th metatarsal head (MTH) as callus predilection regions was measured. The SPR was calculated by dividing shear stress by normal stress (pressure), concretely, peak values (SPR-p) and time integral values (SPR-i). The optimal cut-off point was determined. Results. Callus formation region of the 1st and 2nd MTH had high SPR-i rather than noncallus formation region. The cut-off value of the 1st MTH was 0.60 and the 2nd MTH was 0.50. For the 5th MTH, variables pertaining to the external forces could not be determined to be indicators of callus formation because of low accuracy. Conclusions. The callus formation cut-off values of the 1st and 2nd MTH were clarified. In the future, it will be necessary to confirm the effect of using appropriate footwear and gait training on lowering SPR-i. PMID:28050567

  14. Shear Stress-Normal Stress (Pressure Ratio Decides Forming Callus in Patients with Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Ayumi Amemiya

    2016-01-01

    Full Text Available Aim. Callus is a risk factor, leading to severe diabetic foot ulcer; thus, prevention of callus formation is important. However, normal stress (pressure and shear stress associated with callus have not been clarified. Additionally, as new valuables, a shear stress-normal stress (pressure ratio (SPR was examined. The purpose was to clarify the external force associated with callus formation in patients with diabetic neuropathy. Methods. The external force of the 1st, 2nd, and 5th metatarsal head (MTH as callus predilection regions was measured. The SPR was calculated by dividing shear stress by normal stress (pressure, concretely, peak values (SPR-p and time integral values (SPR-i. The optimal cut-off point was determined. Results. Callus formation region of the 1st and 2nd MTH had high SPR-i rather than noncallus formation region. The cut-off value of the 1st MTH was 0.60 and the 2nd MTH was 0.50. For the 5th MTH, variables pertaining to the external forces could not be determined to be indicators of callus formation because of low accuracy. Conclusions. The callus formation cut-off values of the 1st and 2nd MTH were clarified. In the future, it will be necessary to confirm the effect of using appropriate footwear and gait training on lowering SPR-i.

  15. CALLUS INDUCTION FROM 15 CARNATION (DIANTHUS CARYOPHYLLUS L. CULTIVARS

    Directory of Open Access Journals (Sweden)

    Jaime A. TEIXEIRA DA SILVA

    2014-12-01

    Full Text Available Plant growth regulators (PGRs were used to induce callus in 15 carnation (Dianthus caryophyllus L.; Caryophyllaceae cultivars: Orange Sherbert, Avalanche, Magenta, La France, Stripe Red, Marie, Concerto PVP, Snap, Lucky Pierot, Cinnamon Tea, White Love, Siberia, Magesta, Spark Bruno, and Honono no Estejo. Seeds were initially sown on autoclaved moistened filter paper and internodes of surface-sterilized seedlings were used as explants. Most callus was induced in the presence of 0.5 mg/L α-naphthaleneacetic acid used together with 1 mg/L 6-benzyladenine or 1 mg/L 2,4-dichlorophenoxyacetic acid on basal Murashige and Skoog medium. Callus is not a desirable method to clonally propagate important germplasm but can serve as one possible way of deriving periclinal mutants as a result of somaclonal variation.

  16. [Induction and in vitro culture of hairy roots of Dianthus caryophyllus and its plant regeneration].

    Science.gov (United States)

    Shi, Heping; Zhu, Yuanfeng; Wang, Bei; Sun, Jiangbing; Huang, Shengqin

    2014-11-01

    To use Agrobacterium rhizogenes-induced hairy roots to create new germplasm of Dianthus caryophyllus, we transformed D. caryophyllus with A. rhizogenes by leaf disc for plant regeneration from hairy roots. The white hairy roots could be induced from the basal surface of leaf explants of D. caryophyllus 12 days after inoculation with A. rhizogenes ATCC15834. The percentage of the rooting leaf explants was about 90% 21 days after inoculation. The hairy roots could grow rapidly and autonomously in liquid or solid phytohormone-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and silica gel thin-layer chromatography of opines from D. caryophyllus hairy roots. Hairy roots could form light green callus after cultured on MS+6-BA 1.0-3.0 mg/L + NAA 0.1-0.2 mg/L for 15 days. The optimum medium for adventitious shoots formation was MS + 6-BA 2.0 mg/L + NAA 0.02 mg/L, where the rate of adventitious shoot induction was 100% after cultured for 6 weeks. The mean number of adventitious shoot per callus was 30-40. The adventitious shoots can form roots when cultured on phytohormone-free 1/2 MS or 1/2 MS +0.5 mg/L NAA for 10 days. When the rooted plantlets transplanted in the substrate mixed with perlite sand and peat (volume ratio of 1:2), the survival rate was above 95%.

  17. In vitro isoflavonoid production and analysis in natural tetraploid Trifolium pratense (red clover calluses

    Directory of Open Access Journals (Sweden)

    Tugba Ercetin

    2012-09-01

    Full Text Available Isoflavones are polyphenolic phytoestrogens, predominantly found in leguminous plants. Trifolium pratense L., Fabaceae (red clover, is rich in isoflavones that possess estrogenic activity due to their similar molecular structure and effectiveness in preventing health conditions such as menopause, osteoporosis, cardiovascular disease, hypertension and hormone-dependent cancers. In this study, presence and amount of various phytoestrogens in the tetraploid plant and in the calluses derived from the plants were investigated. Calluses were generated from explants obtained from natural tetraploid T. pratense seedlings. The best callus formation was obtained from hypocotyl explants cultured in Phillips Collins and Gamborg B5 media containing different plant growth regulators. Flowers of plants and calluses were analysed for formononetin, biochanin A, genistein and daidzein contents using HPLC. In HPLC analysis, high levels of formononetin (0.249 µg/mg were determined in natural tetraploid T. pratense flowers in addition to genistein and biochanin A. In calluses, highest isoflavone content (1.15 µg/mg formononetin was observed in modified Gamborg B5 medium. Biochanin A content of calluses and the plant were found to be nearly the same. But formononetin and genistein contents of the calluses in this medium were found to be respectively 4.62 and 21.39 folds higher than the tetraploid plant.

  18. In vitro isoflavonoid production and analysis in natural tetraploid Trifolium pratense (red clover calluses

    Directory of Open Access Journals (Sweden)

    Tugba Ercetin

    2012-10-01

    Full Text Available Isoflavones are polyphenolic phytoestrogens, predominantly found in leguminous plants. Trifolium pratense L., Fabaceae (red clover, is rich in isoflavones that possess estrogenic activity due to their similar molecular structure and effectiveness in preventing health conditions such as menopause, osteoporosis, cardiovascular disease, hypertension and hormone-dependent cancers. In this study, presence and amount of various phytoestrogens in the tetraploid plant and in the calluses derived from the plants were investigated. Calluses were generated from explants obtained from natural tetraploid T. pratense seedlings. The best callus formation was obtained from hypocotyl explants cultured in Phillips Collins and Gamborg B5 media containing different plant growth regulators. Flowers of plants and calluses were analysed for formononetin, biochanin A, genistein and daidzein contents using HPLC. In HPLC analysis, high levels of formononetin (0.249 µg/mg were determined in natural tetraploid T. pratense flowers in addition to genistein and biochanin A. In calluses, highest isoflavone content (1.15 µg/mg formononetin was observed in modified Gamborg B5 medium. Biochanin A content of calluses and the plant were found to be nearly the same. But formononetin and genistein contents of the calluses in this medium were found to be respectively 4.62 and 21.39 folds higher than the tetraploid plant.

  19. Uptake and fate of IAA in apple callus tissue using IAA-1-14C

    International Nuclear Information System (INIS)

    Epstein, E.; Lavee, S.

    1975-01-01

    Incubation of young growing and older non-growing apple callus tissues in a medium containing IAA-1- 14 C resulted in rapid disappearance of the IAA. In old calluses (3 months), the major portion of IAA was lost by decarboxylation (90% after 4 hr) and very little (1.4%) was maintained by the tissue. In young calluses, after 4 hr in light, decarboxylation reached 20% and absorption 35% of the labelled IAA. Some decomposition of IAA was caused by photolysis and autoclaving (19% and 3%, respectively) but the final distribution of radioactivity was not affected. Factors such as sucrose concentration in the incubation medium, distilled water as incubation medium, and cutting of the callus did not affect tissue behavior. Special precautions were taken to eliminate non-biological decomposition of IAA. Therefore, we believe that the rapid CO 2 evolution is of enzymatic nature. This theory is supported by the drop in decarboxylation after killing of the callus, and the increase of decarboxylation with age. No enzyme was secreted by the callus into the medium after 24 hr of incubation, and IAA decomposition in old tissues is done probably on the surface. Absorption of IAA increased with increasing callus size and decarboxylation decreased. (auth.)

  20. Interaction of callus selection media and stress duration for in vitro ...

    African Journals Online (AJOL)

    Callus culture is a novel approach addressing cultured cells as selection units independent of whole plant. Natural variations for drought tolerance existing among cell lines can be exploited in vitro in the presence of suitable concentration of osmoticum and stress duration. The study was aimed to standardized callus ...

  1. α(1) adrenergic receptor agonist, phenylephrine, actively contracts early rat rib fracture callus ex vivo.

    Science.gov (United States)

    McDonald, Stuart J; Dooley, Philip C; McDonald, Aaron C; Djouma, Elvan; Schuijers, Johannes A; Ward, Alex R; Grills, Brian L

    2011-05-01

    Early, soft fracture callus that links fracture ends together is smooth muscle-like in nature. We aimed to determine if early fracture callus could be induced to contract and relax ex vivo by similar pathways to smooth muscle, that is, contraction via α(1) adrenergic receptor (α(1) AR) activation with phenylephrine (PE) and relaxation via β(2) adrenergic receptor (β(2) AR) stimulation with terbutaline. A sensitive force transducer quantified 7 day rat rib fracture callus responses in modified Krebs-Henseliet (KH) solutions. Unfractured ribs along with 7, 14, and 21 day fracture calluses were analyzed for both α(1) AR and β(2) AR gene expression using qPCR, whilst 7 day fracture callus was examined via immunohistochemistry for both α(1) AR and β(2) AR- immunoreactivity. In 7 day callus, PE (10(-6)  M) significantly induced an increase in force that was greater than passive force generated in calcium-free KH (n = 8, mean 51% increase, 95% CI: 26-76%). PE-induced contractions in calluses were attenuated by the α(1) AR antagonist, prazosin (10(-6)  M; n = 7, mean 5% increase, 95% CI: 2-11%). Terbutaline did not relax callus. Gene expression of α(1) ARs was constant throughout fracture healing; however, β(2) AR expression was down-regulated at 7 days compared to unfractured rib (p contract. We propose that increased concentrations of α(1) AR agonists such as noradrenaline may tonically contract callus in vivo to promote osteogenesis. Copyright © 2010 Orthopaedic Research Society.

  2. CALLUS INDUCTION FROM 15 CARNATION (DIANTHUS CARYOPHYLLUS L.) CULTIVARS

    OpenAIRE

    Jaime A. TEIXEIRA DA SILVA

    2014-01-01

    Plant growth regulators (PGRs) were used to induce callus in 15 carnation (Dianthus caryophyllus L.; Caryophyllaceae) cultivars: Orange Sherbert, Avalanche, Magenta, La France, Stripe Red, Marie, Concerto PVP, Snap, Lucky Pierot, Cinnamon Tea, White Love, Siberia, Magesta, Spark Bruno, and Honono no Estejo. Seeds were initially sown on autoclaved moistened filter paper and internodes of surface-sterilized seedlings were used as explants. Most callus was induced in the presence of 0.5 mg/L α-n...

  3. [Flavonoid glycosides from callus cultures of Dysosma versipellis].

    Science.gov (United States)

    Chen, Ri-Dao; Duan, Rui-Gang; Zou, Jian-Hua; Li, Jun-Wei; Liu, Xiao-Yue; Wang, Hai-Yan; Li, Qiu-Hong; Dai, Jun-Gui

    2016-01-01

    Various chromatographic techniques, including silica gel column chromatography, Sephadex LH-20, preparative thin-layer chromatography, and preparative HPLC, were employed to isolate the chemical constituents from callus cultures of Dysosma versipellis. Structures of the compounds were elucidated based on UV, IR, MS and NMR spectroscopic data analysis. Totally, seven flavonoid glycosides were isolated from the 95% ethanol extract of the callus cultures and identified as kaempferol-3-O-[6″-(3″'-methoxy)-malonyl]-β-D-glucopyranoside(1), kaempferol-3-O-(6″-O-acetyl)-β-D-glucopyranoside(2), kaempferide-3-O-β-D-glucopyranoside(3), kaempferol-3-O-β-D-glucopyranoside(4), isoquercitrin(5), quercetin-4'-O-β-D-glucopyranoside(6) and kaempferol-3-(6″-malonyl)-β-D-glucopyranoside(7), respectively.All these compounds were isolated from callus cultures of D. versipellis for the first time.Compounds 1, 2, 3, 6 and 7 were firstly obtained from plant materials of D. versipellis, and compound 1 was a new compound. Copyright© by the Chinese Pharmaceutical Association.

  4. Effects of Low Dose DD Radiation on Callus Growth of Lithospermum erythrorhizon S

    International Nuclear Information System (INIS)

    Hwang, H.Y.; Kim, J.S.

    2001-01-01

    The effect of low dose DD-radiation on the callus growth of Lithospermum erythrorhizon S. cultured on different medium and lighting condition was investigated. The 8 Gy irradiation stimulated callus growth on LS medium supplemented with BA 2 mg/L and NAA 2mg/L, however, the growth of callus was more effective on LS medium supplemented with BA 1 mg/L and NAA 1 mg/L under 16 hrs day light

  5. In vitro salt stress induced production of gymnemic acid in callus ...

    African Journals Online (AJOL)

    ... is presented in this investigation. The highest efficiency of callus formation was observed in the medium containing different concentrations of 2,4-D. The gymnemic acid content increased with increasing concentration of 2,4-D along with NaCl. Key words: In vitro, Gymnema sylvestre, callus culture, gymnemic acid, salt ...

  6. Effect of 60Co γ-rays irradiation on plant regeneration from callus of sea dallisgrass (paspalum vaginatum Sw.)

    International Nuclear Information System (INIS)

    Ye Xiaoqing; She Jianming; Wang Songfeng; Zhang Xu; Liang Liufang; Dong Mingqiang; Wu Yingying

    2010-01-01

    The pellet embryonic calli of Paspalum vagiantum Sw. cv. Adalay were used for 60 Co γ-rays irradiation. In the callus subculture medium with 2, 4-D 2.0 mg /L and BAP 0.05 mg /L, calli were irradiated at the dose rate 1 Gy /min of 60 Co γ-rays. Results showed that the rate of shoot regeneration was from 94% to 85% when calli irradiated with 20 ∼ 50 Gy; the rate of shoot regeneration was from 76% to 30%, and the rate of plant regeneration was from 44.5% to 8.7% between 60 ∼ 80 Gy. By 60 Gy of 60 Co γ-rays irradiation, the rate of shoot regeneration was about 76% in the differentiation medium with BAP 2.0 mg /L, and the relative rate of plant regeneration was 44.5% in the rooting medium with NAA 0.5 mg /L. The result of sequence-related amplified polymorphism (SRAP) markers analysis showed that the specific SRAP markers were associated with the somatic mutants. The mutation technique of 60 Co γ-rays has been established in the somatic cell of Paspalum vaginatum Sw. (authors)

  7. MRT letter: Contrast-enhanced computed tomographic imaging of soft callus formation in fracture healing.

    Science.gov (United States)

    Hayward, Lauren Nicole Miller; de Bakker, Chantal Marie-Jeanne; Lusic, Hrvoje; Gerstenfeld, Louis Charles; Grinstaff, Mark W; Morgan, Elise Feng-I

    2012-01-01

    Formation of a cartilaginous soft callus at the site of a bone fracture is a pivotal stage in the healing process. Noninvasive, or even nondestructive, imaging of soft callus formation can be an important tool in experimental and pre-clinical studies of fracture repair. However, the low X-ray attenuation of cartilage renders the soft callus nearly invisible in radiographs. This study utilized a recently developed, cationic, iodinated contrast agent in conjunction with micro-computed tomography to identify cartilage in fracture calluses in the femora of C57BL/6J and C3H/HeJ mice. Fracture calluses were scanned before and after incubation in the contrast agent. The set of pre-incubation images was registered against and then subtracted from the set of post-incubation images, resulting in a three-dimensional map of the locations of cartilage in the callus, as labeled by the contrast agent. This map was then compared to histology from a previous study. The results showed that the locations where the contrast agent collected in relatively high concentrations were similar to those of the cartilage. The contrast agent also identified a significant difference between the two strains of mice in the percentage of the callus occupied by cartilage, indicating that this method of contrast-enhanced computed tomography may be an effective technique for nondestructive, early evaluation of fracture healing. Copyright © 2011 Wiley Periodicals, Inc.

  8. Growth and accumulation of flavan-3-ol in Camellia sinensis through callus culture and suspension culture method

    Directory of Open Access Journals (Sweden)

    Sutini Sutini

    2017-02-01

    Full Text Available This study was aimed to assess flavan-3-ol biomass in C. sinensis through callus cultures and suspension cultures derived from leaf explants. Callus initiation of both cultures were using Murashige and Skoog medium were enriched with plant growth regulators Naphtha-lene Acetic Acid 3.0 mg/L and kinetin 2.0 mg/L. The procedures in this study were: (1 callus initiation by cutting the leaves of C. sinen-sis shoots then planted on Murashige and Skoog medium that were enriched with plant growth regulators, (2 sub callus culture on fresh medium that enriched with the same growth regulators, (3 suspension culture initiation of liquid callus, (4 growth examination of callus and suspension cultures in week 12, (5 examination of qualitative-quantitative content of flavan-3-olin suspension cultures at week 4. The results show that suspension cultures contain biomass flavan-3-ol that increase in the same manner of the increase of callus age and weight

  9. Callus induction, regeneration and transformation of sugarcane ...

    African Journals Online (AJOL)

    Yomi

    2012-03-22

    Mar 22, 2012 ... dichlorophenoxyacetic acid (2,4-D), naphthalene acetic acid (NAA), yeast extract and coconut water .... transformed (control) plantlets using CTAB method (Doyle and .... Embryogenic Sugarcane Callus by Image Analysis.

  10. Callus Induction of Gendarussa (Justicia gendarussa by Various Concentration of 2,4-D, IBA, and BAP

    Directory of Open Access Journals (Sweden)

    Dwi Kusuma Wahyuni

    2017-12-01

    Full Text Available Justicia gendarussa Burm.f., a medicinal plant, is Acanthaceae that has many functions. Furthermore, the compounds in gendarussa must be produced in high quantity and quality by applying callus culture method. Accordingly, it is important to study the effects of plant growth regulators (2,4-D, IBA, and BAP on callus induction of gendarussa leaves. This research design utilized a factorial design with two factors (2,4-D and IBA: 0.5, 1, 1.5 mg/L and BAP: 0.5, 1, 1.5, 2 mg/L. The experiment consisted of 24 treatments, each of which was repeated 3 times. Observation was carried out in 6 weeks. Data on the time of callus formation, percentage of explants formed callus, and callus morphology were analyzed descriptively,while data on fresh and dry weight were analyzed by Two-Way ANOVA (α = 0.5. Interestingly, the results showed that various concentration of plant growth regulators (2,4-D, IBA, and BAP affected callus induction from leaf explants of gendarussa. We concluded that the most optimal treatment combination of concentration of plant growth regulators in inducing callus from leaf explants of gendarussa is 1.5 mg/L 2,4-D and 2 mg/L BAP with a relatively long period of callus formation at the earliest, i.e. on day 5, 2.247 g of fresh weight, 0.108 gof dry weight, white callus translucent, and friable. Moreover, the optimum treatment will be used to produce secondary metabolite and seed synthetic by cell suspension culture.

  11. Appraisal of beta-Phellandrene in Callus Cultures of Momordica charantia L. Cultivars, Jaunpuri and Jhalri

    International Nuclear Information System (INIS)

    Ali, S.; Tariq, A.; Ajaib, M.

    2015-01-01

    Secondary metabolite beta-phellandrene was analyze in callus cultures of two varieties of Momordica charantia L. i.e. Jaunpuri and Jhalri. Conditions for seed germination and callus induction were optimized. Seedlings grown under aseptic conditions served as explant sources. 6-Benzylaminopurine (BAP) and 2,4-dichlorophenoxyacetic acid (2,4-D) supplemented in Murashige and Skoog's (MS) medium were scrutinized as the most suitable combination of plant growth regulators with different concentrations for callus induction in both the varieties. Cotyledon explant of (cultivars) cv. Jaunpuri revealed maximum callus induction with 1.0 mgl/sup -1/ BAP and 1.5 mgl/sup -1/ 2,4-D in eight days as compared to internode, apical bud and leaf. Cotyledon and leaf explants of cv. Jhalri responded to 1.5 mgl/sup -1/ BAP and 1.0 mgl/sup -1/ 2,4-D in nine days for callus and internode and apical bud with 1.0 mgl-l BAP and 1.5 mgl-l 2,4-D. Best grown calli from different explants were analyzed through GC-MS for production of secondary metabolites. Along with other secondary metabolites beta-phellandrene was the most prominent secondary metabolites found in in vitro grown callus cultures of both the varieties. The callus cultures of cv. Jaunpuri produced substantial amount of beta-phellandrene i.e. up to 30 percent of the total secondary metabolites as compared to calli from cv. Jhalri explants. The callus cultures of M. charantia can prove the best alternative, rapid and uninterrupted source for natural beta-phellandrene production. (author)

  12. Investigation of radiosensitivity and growth dynamics for callus tissues Crepis Capillaris, Haplopappus gracilis, Phasolium vulgaris exposed to gamma radiation

    International Nuclear Information System (INIS)

    Gatsek, Eh.; Glinkova, E.; Ismailova, Eh.N.

    1983-01-01

    Radiosensitivity of three kinds of callus tissues (Crepis capillaris, Haplopappus gracilis, Phasolium vulgaris) manifested in the change of fresh weight after γ-irradiation has been investigated. Irradiated callus arowth showed decrease with increasing doses. It is shown that the radiosensitivity of ''young'' callus tissues is determined by the kind of the plant. Callus of Phaseolis has been found to have the highest radioresistance, while that of Crepis has the lowest one. Radiosensitivity of ''old'' callus tissues is the same for all kinds. Potential mechanism of radiosensitivity of callus tissUes are discussed

  13. Hyperplastic callus formation in osteogenesis imperfecta: CT and MRI findings

    International Nuclear Information System (INIS)

    Rieker, O.; Kreitner, K.F.; Karbowski, A.

    1998-01-01

    Hyperplastic callus formation is a noteworthy condition in patients with osteogenesis imperfecta because it often mimicks osteosarcoma on radiography. The findings of CT and MRI in hyperplastic callus formation have not been reported. In the presented case, MRI demonstrated contrast enhancement and edema of the surrounding soft tisssue, consistent with benign as well as malignant disease. Computed tomography showed a calcified rim of the lesion which may be a useful feature to rule out osteosarcoma in this condition. (orig.)

  14. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yifei; Manjubala, Inderchand; Fratzl, Peter [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam (Germany); Roschger, Paul [4th Medical Department, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1140 Vienna (Austria); Schell, Hanna; Duda, Georg N, E-mail: fratzl@mpikg.mpg.d [Julius Wolff Institut and Center for Musculoskeletal Surgery, Charite- University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin (Germany)

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  15. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Liu Yifei; Manjubala, Inderchand; Fratzl, Peter; Roschger, Paul; Schell, Hanna; Duda, Georg N

    2010-01-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  16. Influence of gamma radiation and fast neutrons on the growth of Haplopappus gracilis (Nutt) A. Gray callus

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.; Wajda, L.; Korzonek, M.; Polska Akademia Nauk, Krakow. Inst. Fizjologii Roslin)

    1979-01-01

    The sensitivity of the callus of Haplopappus gracilis to gamma radiation and fast neutrons was studied. High doses of radiation cause inhibition of callus growth. At small doses the effect is less pronounced. Stimulation of callus growth was seen. Apart from morphological changes, ionizing radiations lowered the fresh weight ratio of the callus. The RBE value for 5.5 MeV neutrons depended on the dose rate of radiation and the combination of growth medium. (author)

  17. Concentration on Callus Induction in Sugarcane

    African Journals Online (AJOL)

    protocols for in vitro micro propagation of sugarcane through callus culture from foliage leaves (Bugun et al., ... protocol for specific genotypes. Sucrose is the most important type of sugar produced from sugarcane. ... laboratories via plant tissue culture technique. (Lorenzo and Ganzalez, 1998). This allows for an extended ...

  18. Metabolic changes associated with shoot formation in tobacco callus cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grady, K.L.

    1982-08-01

    Callus tissue derived from Nicotiana tabacum L. stem pith parenchyma cells was grown either on medium which maintains the callus in an undifferentiated state, or on medium which induces the formation of shoots. Two complementary types of studies were performed with the goal of establishing metabolic markers for the initiation of shoot formation: one designed to characterize the flow of radioactive sucrose into various metabolic pools, and one which allowed measurement of intermediary metabolite concentrations. In the former, callus tissue was incubated in (U-/sup 14/C)sucrose for periods up to one hour, and patterns of metabolite labelling in tissue grown on shoot-forming and non-shoot-forming media were compared. In the latter studies, tissue was grown for an entire subculture period on non-shoot-forming medium labelled with (U-/sup 14/C)sucrose, then subcultured to labelled non-shoot-forming or shoot-forming media, and sampled at intervals during the first week of growth. 189 references.

  19. Metabolic changes associated with shoot formation in tobacco callus cultures

    International Nuclear Information System (INIS)

    Grady, K.L.

    1982-08-01

    Callus tissue derived from Nicotiana tabacum L. stem pith parenchyma cells was grown either on medium which maintains the callus in an undifferentiated state, or on medium which induces the formation of shoots. Two complementary types of studies were performed with the goal of establishing metabolic markers for the initiation of shoot formation: one designed to characterize the flow of radioactive sucrose into various metabolic pools, and one which allowed measurement of intermediary metabolite concentrations. In the former, callus tissue was incubated in [U- 14 C]sucrose for periods up to one hour, and patterns of metabolite labelling in tissue grown on shoot-forming and non-shoot-forming media were compared. In the latter studies, tissue was grown for an entire subculture period on non-shoot-forming medium labelled with [U- 14 C]sucrose, then subcultured to labelled non-shoot-forming or shoot-forming media, and sampled at intervals during the first week of growth. 189 references

  20. Effects of auxins and cytokinins on tomato callus from anthers

    Directory of Open Access Journals (Sweden)

    Janina H. Rogozińska

    2015-01-01

    Full Text Available An investigation was carried out on growth substance requirements of tomato callus derived from anthers for culture in vitro. Linsmaier and Skoog (1965 medium was used with various levels of auxins (IAA and NAA and cytokinins (K and BAP. The results show that cytokinin is an absolute requirement for callus growth irrespective of the auxin level. The optimum concentration of auxin in combination with cytokinin was found to be 5 μM of NAA or 25 μM of IAA, with 5 μM of K or BAP. Callus growth on media with NAA and cytokinin was superior to that on IAA, amounting to 6.05 g per piece on medium with 5 μM of NAA and BAP. Tissues grown on this medium have the highest water content. At the onset of culture the tissue is characterized by weak growth and attains its maximal increase in fresh weight after 6 weeks.

  1. Optimization of Callus Induction and Regeneration in Two Fenugreek Landraces as a Medicinal Plant during in vitro Condition

    Directory of Open Access Journals (Sweden)

    Hasan Hasani Jifroudi

    2017-10-01

    Full Text Available Introduction: Fenugreek (Trigonella foenum- graecum is a medicinal plant extensively distributed in most regions of the world. Fenugreek is an annual plant from the family of papilionaceae, leguminosae. Fenugreek leaves and seeds have been used extensively to prepare extracts and powders for medicinal uses. Its root, leaf and seed contain a number of important medicinal compounds such as polysaccharide, galactomannan, different saponins such as diosgenin, yamogenin, mucilage, volatile oil and alkaloids such as choline and trigonelline. Plant tissue culture is fundamental to most aspects of biotechnology of plants. Establishment of an efficient callus induction and direct regeneration protocol is an essential prerequisite in harnessing the advantage of cell and tissue culture for genetic improvement. For the successful application of the tissue culture technique in plant breeding, callus induction and plant regeneration potential of each plant must be determined. The present study was performed in order to determine the optimum concentration of plant growth regulators (IBA + TDZ for producing of in vitro plantlet using cotyledon and hypocotyl as an explant for two different Iranian genotypes (Ardestani and Neyshabouri. Materials and Methods: In this investigation, Ardestani and Neyshabouri genotypes were used for callus induction and direct shoot regeneration. The medium used in this investigation was MS (Murashige and Skoog basal medium. Then seeds were germinated on MS medium. For callus induction and direct shoot regeneration, cotyledon and hypocotyl explants were excised from 8-day-old sterile seedlings and cultured on MS medium containing various concentrations of IBA and TDZ. In this experiment, two combinations (TDZ + IBA were used. In the first composition, IBA had four levels (0, 0.1, 0.3, 0.5 mg l-1 and TDZ had five levels (0, 0.2, 0.4, 0.6, 0.8 mg l-1 and in the second composition, IBA had four levels (0, 0.05, 0.1, 0.15 mg l-1 and TDZ

  2. Hyperplastic callus formation in osteogenesis imperfecta: CT and MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Rieker, O.; Kreitner, K.F. [Klinik fuer Radiologie, Johannes-Gutenberg-Univ. Mainz (Germany); Karbowski, A. [Orthopaedische Abtl., Krankenhaus der Augustinerinnen, Koeln (Germany)

    1998-09-01

    Hyperplastic callus formation is a noteworthy condition in patients with osteogenesis imperfecta because it often mimicks osteosarcoma on radiography. The findings of CT and MRI in hyperplastic callus formation have not been reported. In the presented case, MRI demonstrated contrast enhancement and edema of the surrounding soft tisssue, consistent with benign as well as malignant disease. Computed tomography showed a calcified rim of the lesion which may be a useful feature to rule out osteosarcoma in this condition. (orig.) With 2 figs., 18 refs.

  3. Factors affecting callus and protoplast production and regeneration of plants from garlic tissue cultures

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Nabulsi, I.

    2001-08-01

    Five cultivars of garlic, two explants, six callusing media, six regeneration media, two kinds of light and several doses of gamma irradiation were used to determine the best conditions for callus induction and plant regeneration from garlic tissue cultures. Also, some experiments were conducted to study the possibility to isolate protoplast and regenerate plants. The experiment showed that medium MS9 was good for regenerating plant directly from basal plate without going through callus phase. ANOVA exhibited significant differences among used cultivars in their ability to form callus. No significant difference was observed between 16 hr light and complete darkness in callus growth. However, appearance of callus was generally better on darkness. Cultivar varied in their ability to regenerate and interaction between cultivars and media was observed. Cultivar kisswany was the best in regeneration (38%) and medium MS47 was the best among used media (35%). Light type played a significant role in regeneration of plants where red light was much better than white light in inducing regeneration (68% vs 36%). ANOVA revealed significant effect of low doses of gamma irradiation on stimulation regeneration of plant whereas high doses prevented regeneration. Many experiments were conducted to isolate protoplast and regenerate plants. The best method for culturing was the droplet and the best conditions for incubation were complete darkness at 25 Degreed centigrade. This lead to formation of cell wall but no cell division was observed (author)

  4. Optimization of callus induction and regeneration system for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... 2Plant Biotechnology, NIGAB, National Agriculture Research Center Park Road Islamabad, Pakistan. Accepted 30 June ... transformation. MATERIALS AND METHODS ... Surface sterilization and callus induction. Seeds were ...

  5. In vitro rootting of Dioscoreas sp.

    Directory of Open Access Journals (Sweden)

    Irma Quintero

    2003-07-01

    Full Text Available The Universidad de Córdoba s Vegetal Tissue Culture Laboratory evaluated the effect of naphthalenacetic acid (NAA on in vitro rooting of three yam cultivars (Dioscorea sp. in 2000. The effect of four hormone levels (0, 0.3, 0.6 and 0.9 mg/1 was studied on three yam cultivars (Diamantes-22,003 and 005. A random experimental design was used employing 4x3 factorial arrangement and 20 repetitions; each experimental unit consisted of a glass receptacle containing the culture medium and the explant (one segment nodal. The variables considered were the number of roots and their thickness, culture medium oxidation and callus production. Findings showed that both the hormone and genotype had an effect on all those variables considered in the study and interaction was significant (P

  6. Embryogenesis in gamma-irradiated habituated ovular callus of the 'Shamouti' orange as affected by auxin and by tissue age

    International Nuclear Information System (INIS)

    Kochba, J.; Spiegel-Roy, P.

    1977-01-01

    The response of habituated embryogenic ovular callus of the 'Shamouti' orange, Citrus sinensis, to gamma irradiation was studied. Stimulation of embryogenesis was observed when only callus, but not when the medium was irradiated. Age of callus prior to subculture modified the response to irradiation as regards optimal dose for embryogenesis and radiosensitivity. Radiation intensities also modified callus response to radiation dose. Addition of unirradiated IAA to irradiated callus cultures increased embryo formation and furthered development of embryos into plantlets, with some combinations of radiation dose and IAA concentration. Addition of IAA also decreased radiosensitivity at high doses (32 kR). (author)

  7. Alpha-glucosidase Inhibitory and Antioxidant Potential of Antidiabetic Herb Alternanthera sessilis: Comparative Analyses of Leaf and Callus Solvent Fractions.

    Science.gov (United States)

    Chai, Tsun-Thai; Khoo, Chee-Siong; Tee, Chong-Siang; Wong, Fai-Chu

    2016-01-01

    Alternanthera sessilis is a medicinal herb which is consumed as vegetable and used as traditional remedies of various ailments in Asia and Africa. This study aimed to investigate the antiglucosidase and antioxidant activity of solvent fractions of A. sessilis leaf and callus. Leaf and callus methanol extracts were fractionated to produce hexane, chloroform, ethyl acetate, butanol, and water fractions. Antiglucosidase and 1,1-diphenyl-2-picrylhydrazyl scavenging activities as well as total phenolic (TP), total flavonoid (TF), and total coumarin (TC) contents were evaluated. Lineweaver-Burk plot analysis was performed on leaf and callus fractions with the strongest antiglucosidase activity. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractions. Callus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractions. LEF and CEF were identified as noncompetitive and competitive α-glucosidase inhibitors, respectively. LEF and CEF had greater antiglucosidase activity than acarbose. Leaf fractions had higher phytochemical contents than callus fractions. LEF had the highest TP, TF, and TC contents. Antiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. LEF had potent antiglucosidase activity and concurrent antioxidant activity. CEF had the highest antiglucosidase activity among all fractions. Callus culture is a promising tool for enhancing production of potent α-glucosidase inhibitors. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractionsCallus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12

  8. Effect of indole-3-butyric acid (IBA) on in vitro root induction in ...

    African Journals Online (AJOL)

    ishtiaq

    2012-03-08

    Mar 8, 2012 ... physiological analyses of photo autotrophic callus cultures of the fern Platycerium coronarium (Koenig) under CO2 enrichment. J. Exp. Bot. 46 (10): 1535-1542. Liu C, Zhu J, Liu Z, Li L, Pan R, Jin L (2002). Exogenous auxin effects on growth and phenotype of normal and hairy roots of Pueraria lobata. (Wild.) ...

  9. Enhancement of callus induction and regeneration efficiency from ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... efficiency from embryo cultures of Datura stramonium ... cycle (callus induction and plant regeneration) for Datura stramonium by adjusting carbon sources and ... induction and development in various species, it is not.

  10. FLUOXETINE INHIBITS OSTEOBLAST DIFFERENTIATION & MINERALIZATION IN FRACTURE HEALING

    Science.gov (United States)

    Bradaschia-Correa, Vivian; Josephson, Anne M; Mehta, Devan; Mizrahi, Matthew; Neibart, Shane S; Liu, Chao; Kennedy, Oran; Castillo, Alesha B; Egol, Kenneth A; Leucht, Philipp

    2016-01-01

    Chronic use of selective serotonin reuptake inhibitors (SSRIs) for the treatment of depression has been linked to osteoporosis. In this study, we investigated the effect of chronic SSRI use on fracture healing in two murine models of bone regeneration. First, we performed a comprehensive analysis of endochondral bone healing in a femur fracture model. C57/BL6 mice treated with fluoxetine, the most commonly prescribed SSRI, developed a normal cartilaginous soft-callus at 14 days after fracture and demonstrated a significantly smaller and biomechanically weaker bony hard-callus at 28 days. In order to further dissect the mechanism that resulted in a smaller bony regenerate, we used an intramembranous model of bone healing and revealed that fluoxetine treatment resulted in a significantly smaller bony callus at 7 and 14 days postinjury. In order to test whether the smaller bony regenerate following fluoxetine treatment was caused by an inhibition of osteogenic differentiation and/or mineralization, we employed in vitro experiments, which established that fluoxetine treatment decreases osteogenic differentiation and mineralization and that this effect is serotonin-independent. Finally, in a translational approach, we tested whether cessation of the medication would result in restoration of the regenerative potential. However, histologic and µCT analysis revealed non-union formation in these animals with fibrous tissue interposition within the callus. In conclusion, fluoxetine exerts a direct, inhibitory effect on osteoblast differentiation and mineralization, shown in two disparate murine models of bone repair. Discontinuation of the drug did not result in restoration of the healing potential, but rather led to complete arrest of the repair process. Besides the well-established effect of SSRIs on bone homeostasis, our study provides strong evidence that fluoxetine use negatively impacts fracture healing. PMID:27869327

  11. Identification of genes differentially expressed in ectomycorrhizal roots during the Pinus pinaster-Laccaria bicolor interaction.

    Science.gov (United States)

    Flores-Monterroso, Aranzazu; Canales, Javier; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M

    2013-06-01

    Ectomycorrhizal associations are of major ecological importance in temperate and boreal forests. The development of a functional ectomycorrhiza requires many genetic and biochemical changes. In this study, suppressive subtraction hybridization was used to identify differentially expressed genes in the roots of maritime pine (Pinus pinaster Aiton) inoculated with Laccaria bicolor, a mycorrhizal fungus. A total number of 200 unigenes were identified as being differentially regulated in maritime pine roots during the development of mycorrhiza. These unigenes were classified into 10 categories according to the function of their homologues in the GenBank database. Approximately, 40 % of the differentially expressed transcripts were genes that coded for unknown proteins in the databases or that had no homology to known genes. A group of these differentially expressed genes was selected to validate the results using quantitative real-time PCR. The transcript levels of the representative genes were compared between the non-inoculated and inoculated plants at 1, 5, 15 and 30 days after inoculation. The observed expression patterns indicate (1) changes in the composition of the wall cell, (2) tight regulation of defence genes during the development of mycorrhiza and (3) changes in carbon and nitrogen metabolism. Ammonium excess or deficiency dramatically affected the stability of ectomycorrhiza and altered gene expression in maritime pine roots.

  12. Methyl jasmonate differentially affects tocopherol content and tyrosine amino transferase activity in cultured cells of Amaranthus caudatus and Chenopodium quinoa.

    Science.gov (United States)

    Antognoni, F; Faudale, M; Poli, F; Biondi, S

    2009-03-01

    Tocopherols are lipid-soluble compounds synthesised exclusively by photosynthetic organisms. In this study, in vitro callus cultures were established from two plants that are naturally rich in tocopherols, Amaranthus caudatus and Chenopodium quinoa, in order to examine whether callus cultures were able to produce these compounds at levels comparable to those observed in planta. In both species, cotyledon explants produced the best callus induction and, once established, callus cultures were grown under two different hormonal treatments to check for effects of growth and to induce chloroplast differentiation in the cells. A rapid differentiation of chloroplasts occurred only in C. quinoa cell aggregates grown in the presence of benzyladenine, leading to the production of a homogeneous green callus. In both species, only alpha-tocopherol was produced by callus cultures, although levels were much lower than in planta, and the production was not influenced by the hormonal conditions. Interestingly, cell cultures of the two species responded in different ways to methyl jasmonate (MJ). In A. caudatus cultures, treatment with 100 mum MJ increased the production of alpha-tocopherol up to fivefold, and the inductive effect was influenced by the hormonal composition of the medium. This increase in alpha-tocopherol was associated with a proportional increase in tyrosine aminotransferase (TAT) activity, one of the key enzymes involved in tocopherol biosynthesis. By contrast, in C. quinoa cultures, elicitation with MJ did not have any effect, neither on tocopherol production, nor on TAT activity. These results are discussed in relation to chloroplast differentiation and the interplay between jasmonates and phytohormones.

  13. EFFECT OF PHYSIOLOGICAL AGE AND GROWTH REGULATORS ON CALLUS BROWNING OF COCONUT ENDOSPERM CULTURE IN VITRO

    Directory of Open Access Journals (Sweden)

    LAZARUS AGUS SUKAMTO

    2011-01-01

    Full Text Available The possibility of physiological age and growth regulators affecting callus browning ofcoconut endosperm was investigated. Solid endosperm explants of four coconut fruits fromsame brunches of two coconut cultivars “Samoan Dwarf ” were grown on modified Murashigeand Skoog (MS formula with addition of 10 mg l putresine, 2.50 g l activated charcoal (AC,1.70 g l phytagel, 0, 10 , 10 , 10 , 10 M 2,4-dichlorophenoxyacetic acid (2,4-D or 4-amino-3,5,6-trichloropicolinic acid (Picloram combined with 10 M 6-benzylaminopurine (BA.Callogenesis occurred on 98.83% of explants. Callus browning between different physiologicalages (antipodal and micropylar tissues of coconut endosperm at 9, 26 and 31 weeks of culture(WOC was significantly different, but not at 16 and 21 WOC. Auxins of 2,4-D and Picloramdid not affect significantly callus browning of endosperm cultures. Auxin doses at 10 , 10 , and10 M decreased significantly callus browning at 9 and 16 WOC, respectively, but at 10 Mbrowning was less significant compared to other doses at 21 WOC. Auxin dose at 10 M causedless significant browning compared to other doses at 31 WOC. The addition of BA decreasedsignificantly callus browning at 9 WOC, but did not affect callus browning thereafter.

  14. Isoprene derivatives from the leaves and callus cultures of Vaccinium corymbosum var. bluecrop.

    Science.gov (United States)

    Migas, Piotr; Cisowski, Wojciech; Dembińska-Migas, Wanda

    2005-01-01

    The phytochemical analysis of Vaccinium corymbosum var bluecrop leaves and callus biomass revealed ursolic acid, oleanolic acid, alpha-amyrin and beta-amyrin in both plant materials. Beta-sitosterol was determined only in callus biomass. The structure of isolated compounds was elucidated by TLC co-chromatography with standards and with spectroscopic methods (1H NMR, 13C NMR, EI-MS).

  15. Myostatin (GDF-8) Deficiency Increases Fracture Callus Size, Sox-5 Expression, and Callus Bone Volume

    OpenAIRE

    Kellum, Ethan; Starr, Harlan; Arounleut, Phonepasong; Immel, David; Fulzele, Sadanand; Wenger, Karl; Hamrick, Mark W.

    2008-01-01

    Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is expressed during the earliest phase of fracture repair. In order to determine the role of myostatin in fracture callus morphogenesis, we studied fracture healing in mice lacking myostatin. Adult wild-type ...

  16. Evaluation of different carbon sources for high frequency callus culture with reduced phenolic secretion in cotton (Gossypium hirsutum L. cv. SVPR-2

    Directory of Open Access Journals (Sweden)

    G. Prem Kumar

    2015-09-01

    Full Text Available An efficient protocol was developed to control excessive phenolic compound secretion during callus culture of cotton. As cotton is naturally rich in phenolic compounds factors influencing the phenolic compound secretion, callus induction and proliferation were optimized for getting high frequency callus culture. Different carbon sources such as fructose, glucose, sucrose and maltose were tested at various concentrations to control phenolic secretion in callus culture. Among them, 3% maltose was found to be the best carbon source for effectively controlling phenolic secretion in callus induction medium. High frequency of callus induction was obtained on MSB5 medium supplemented with 3% Maltose, 2,4-D (0.90 μM and Kinetin (4.60 μM from both cotyledon and hypocotyl explants. The best result of callus induction was obtained with hypocotyl explant (94.90% followed by cotyledon explant (85.20%. MSB5 medium supplemented with 2,4-D (0.45 μM along with 2iP (2.95 μM gave tremendous proliferation of callus with high percentage of response. Varying degrees of colors and textures of callus were observed under different hormone treatments. The present study offers a solution for controlling phenolic secretion in cotton callus culture by adjusting carbon sources without adding any additives and evaluates the manipulation of plant growth regulators for efficient callus culture of SVPR-2 cotton cultivar.

  17. Spatial and temporal variations of the callus mechanical properties during bone transport

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Macias, J.; Reina-Romo, E.; Pajares, A.; Miranda, P.; Dominguez, J.

    2016-07-01

    Nanoindentation allows obtaining the elastic modulus and the hardness of materials point by point. This technique has been used to assess the mechanical propeties of the callus during fracture healing. However, as fas as the authors know, the evaluation of mechanical properties by this technique of the distraction and the docking-site calluses generated during bone transport have not been reported yet. Therefore, the aim of this work is using nanoindentation to assess the spatial and temporal variation of the elastic modulus of the woven bone generated during bone transport. Nanoindentation measurements were carried out using 6 samples from sheep sacrificed at different stages of the bone transport experiments. The results obtained show an important heterogeneity of the elastic modulus of the woven bone without spatial trends. In the case of temporal variation, a clear increase of the mean elastic modulus with time after surgery was observed (from 7±2GPa 35 days after surgery to 14±2GPa 525 days after surgery in the distraction callus and a similar increase in the docking site callus). Comparison with the evolution of the elastic modulus in the woven bone generated during fracture healing shows that mechanical properties increase slower in the case of the woven bone generated during bone transport. (Author)

  18. Optimization of Protocols for In Vitro Regeneration of Sugarcane (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    Shakra Jamil

    2017-01-01

    Full Text Available Sugarcane contributes 60–70% of annual sugar production in the world. Somaclonal variation has potential to enhance genetic variation present within a species. Present study was done to optimize an in vitro propagation protocol for sugarcane. The experiments included four varieties, 9 callus induction media, 27 regeneration media, and 9 root induction media under two-factor factorial CRD. Data were recorded on callus induction, embryogenic callus formation, shoot elongation (cm, root induction, and plant regeneration. Statistically significant differences existed between genotypes and treatments for callus induction (%, embryogenic callus formation (%, shoot elongation (cm, root induction, and plant regeneration (%. All parameters showed dependency on genotypes, culture media, and their interaction. Highest callus induction (95% embryogenic callus formation (95% was observed in callus induction media 5. Highest plantlet regeneration (98.9% capacity was observed in regeneration media 11 whereas maximum shoot elongation (12.13 cm and root induction (8.32 were observed in rooting media 4. G1 showed best response for all traits and vice versa for G4. Hence it was concluded that G1, callus induction media 5, regeneration media 11, and rooting media 4 are the best conditions for in vitro propagation of sugarcane.

  19. Strontium Is Incorporated into the Fracture Callus but Does Not Influence the Mechanical Strength of Healing Rat Fractures

    DEFF Research Database (Denmark)

    Brüel, Annemarie; Olsen, Jakob; Birkedal, Henrik

    2011-01-01

    in callus bone mineral content (P\\0.05). However, after 8 weeks of healing, no difference was found in either callus volume or bone mineral content. SrR did not influence maximum load or stiffness of the fractures after either 3 or 8 weeks of healing. EDX showed that Sr was incorporated into the callus...

  20. Radio-sensitivity of callus and cell cultures, and RAPD characterization of variants in banana [Musa spp.

    International Nuclear Information System (INIS)

    Kulkarni, V.M.; Karmarkar, V.M.; Ganapathi, T.R.; Bapat, V.A.

    2000-01-01

    Although bananas and plantains are one of the most important fruit crops, gearing up the breeding programmes for these has always remained the most difficult task due to several inherent problems such as parthenocarpy, barriers in obtaining viable seeds and long life cycle etc. In this regard, incorporation of in vitro techniques such as shoot-tip / cell cultures along with conventional as well as non-conventional methods of genetic improvement is of utmost importance, especially in those vegetatively propagated species with long crop cycle and low in vivo proliferation rate. In order to understand the radio-sensitivity, the callus and cell cultures of banana were exposed to differential doses of gamma-rays. Growth of the callus cultures reduced with increasing dose of gamma-rays. Similar trend was noticed in irradiation of cell suspensions also where a dose of 40 Gy and more was completely lethal. The experience gained from previous and present experiments has yielded optimization of the procedures for gamma-irradiation and subsequent handling of banana in vitro cultures. The RAPD analysis of the selected variants was unable to detect adequate polymorphism, and further experimentation in these regards is being done. (author)

  1. Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation

    Science.gov (United States)

    Hu, Xiangang; Zhou, Qixing

    2014-01-01

    It is well known that graphene (G) induces nanotoxicity towards living organisms. Here, a novel and biocompatible hydrated graphene ribbon (HGR) unexpectedly promoted aged (two years) seed germination. HGR formed at the normal temperature and pressure (120 days hydration), presented 17.1% oxygen, 0.9% nitrogen groups, disorder-layer structure, with 0.38 nm thickness ribbon morphology. Interestingly, there were bulges around the edges of HGR. Compared to G and graphene oxide (GO), HGR increased seed germination by 15% root differentiation between 52 and 59% and enhanced resistance to oxidative stress. The metabonomics analysis discovered that HGR upregulated carbohydrate, amino acid, and fatty acids metabolism that determined secondary metabolism, nitrogen sequestration, cell membrane integrity, permeability, and oxidation resistance. Hexadecanoic acid as a biomarker promoted root differentiation and increased the germination rate. Our discovery is a novel HGR that promotes aged seed germination, illustrates metabolic specificity among graphene-based materials, and inspires innovative concepts in the regulation of seed development.

  2. Callus Distraction Versus Single-Stage Lengthening With Bone Graft for Treatment of Brachymetatarsia: A Systematic Review.

    Science.gov (United States)

    Jones, Marc D; Pinegar, David M; Rincker, Sarah A

    2015-01-01

    Brachymetatarsia deformity is a cosmetically displeasing anomaly that can become physically symptomatic. The surgical techniques most commonly used to repair the anomaly include single-stage lengthening with a bone graft, callus distraction, or a combination of bone grafting and callus distraction. A systematic review of the published data was performed to compare the outcomes of these 3 surgical procedures. A total of 61 studies reporting the use of callus distraction or single-stage lengthening, or both, for the treatment of brachymetatarsia were included in the present review. The incidence of major postoperative complications after callus distraction, single-stage lengthening, and the combination procedure was 49 (12.62%), 13 (3.72%), and 3 (33.33%), respectively. The number of minor complications with callus distraction, single-stage lengthening, and the combination procedure was 152 (39.18%), 55 (15.76%), and 1 (11.11%); the mean percentage of the original length achieved was 37.36%, 25.98% and 36.00%; and the mean length achieved was 17.5, 13.2, and 14.0 mm, respectively. The healing index (mo/cm) and healing time was 2.31 and 16.04 weeks, 1.90 and 9.35 weeks, and 3.93 and 14.62 weeks for callus distraction, single-stage lengthening, and the combination procedure, respectively. Our findings indicate that the callus distraction technique is associated with greater length gained but results in greater complication rates and requires almost twice the time to heal. Single-stage lengthening with a bone graft was associated with fewer complications and faster healing times than callus distraction but with lesser gains in length. From the information reported in the studies we reviewed, the prevalence of bilateral brachymetatarsia was 44.52%, and the female/male ratio was 13.7:1. Both of these findings seem to contradict the usual data given (72% for bilateral brachymetatarsia and a female/male ratio of 25:1). Copyright © 2015 American College of Foot and

  3. Production of friable embryogenic callus and regeneration of ...

    African Journals Online (AJOL)

    sunny t

    2015-06-03

    Jun 3, 2015 ... Generation of embryogenic callus is a key step in genetic engineering of many crop species, including cassava. ... CBSD is caused by two Ipomovirus; Cassava .... through a 1 mm2 pore-sized steel wire mesh using a spatula.

  4. Rooting of stem cuttings of ixora

    Directory of Open Access Journals (Sweden)

    Aline De Souza Silva

    2015-08-01

    Full Text Available The ixora is ornamental plant widely used in landscaping. In order to maximize the propagation of cuts, we evaluated the concentrations of auxin (indolbutiric acid and the presence of leaves on the rooting in cuts of Ixora coccinea L. The experiment was conducted in randomized block design, in factorial design 3x4, with three types of cuts (without leaf, with two or four leaves, four concentrations of indolbutiric acid (0, 1000, 2000 and 4000 mg L-1, with four replications and 10 cuts in each experimental unit. After 53 days of implantation the experiment, evaluated the survival(%, rooting(%, sprouting(%, formation of callus(%, number, length and biomass of roots formed. The interaction of the type of cuts with concentrations of auxin was not significant for any of the variables analyzed. The survival of cuttings was not influenced by the treatments. Cuts with two or four leaves presented rooting and length of roots above the cuttings without leaves. The application of auxin does not substitute the presence of leaf in cuts of ixora in vegetative propagation. The vegetative propagation by cut of ixora can be made without application of auxin, and the leaves must be maintained in the cuttings.

  5. Callus and cell suspension cultures of carnation

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1972-01-01

    Callus cultures of carnation, Dianthus caryophyllus L. ev. G. J. Sim, were grown on a synthetic medium of half strength Murashige and Skoog salts, 3 % sucrose, 100 mg/l of myo-inositol, 0.5 mg/l each of thiamin, HCl, pyridoxin, HCl and nicotinic acid and 10 g/l agar. Optimal concentrations...

  6. Efficient callus formation and plant regeneration of goosegrass [Eleusine indica (L.) Gaertn.].

    Science.gov (United States)

    Yemets, A I; Klimkina, L A; Tarassenko, L V; Blume, Y B

    2003-02-01

    Efficient methods in totipotent callus formation, cell suspension culture establishment and whole-plant regeneration have been developed for the goosegrass [ Eleusine indica (L.) Gaertn.] and its dinitroaniline-resistant biotypes. The optimum medium for inducing morphogenic calli consisted of N6 basal salts and B5 vitamins supplemented with 1-2 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D), 2 mg l(-1) glycine, 100 mg l(-1) asparagine, 100 mg l(-1) casein hydrolysate, 30 g l(-1) sucrose and 0.6% agar, pH 5.7. The presence of organogenic and embryogenic structures in these calli was histologically documented. Cell suspension cultures derived from young calli were established in a liquid medium with the same composition. Morphogenic structures of direct shoots and somatic embryos were grown into rooted plantlets on medium containing MS basal salts, B5 vitamins, 1 mg l(-1) kinetin (Kn) and 0.1 mg l(-1) indole-3-acetic acid (IAA), 3% sucrose, 0.6% agar, pH 5.7. Calli derived from the R-biotype of E. indica possessed a high resistance to trifluralin (dinitroaniline herbicide) and cross-resistance to a structurally non-related herbicide, amiprophosmethyl (phosphorothioamidate herbicide), as did the original resistant plants. Embryogenic cell suspension culture was a better source of E. indica protoplasts than callus or mesophyll tissue. The enzyme solution containing 1.5% cellulase Onozuka R-10, 0.5% driselase, 1% pectolyase Y-23, 0.5% hemicellulase and N(6) mineral salts with an additional 0.2 M KCl and 0.1 M CaCl(2) (pH 5.4-5.5) was used for protoplast isolation. The purified protoplasts were cultivated in KM8p liquid medium supplemented with 2 mg l(-1) 2,4-D and 0.2 mg l(-1) Kn.

  7. Differential display of abundantly expressed genes of Trichoderma harzianum during colonization of tomato-germinating seeds and roots.

    Science.gov (United States)

    Mehrabi-Koushki, Mehdi; Rouhani, Hamid; Mahdikhani-Moghaddam, Esmat

    2012-11-01

    The identification of Trichoderma genes whose expression is altered during early stages of interaction with developing roots of germinated seeds is an important step toward understanding the rhizosphere competency of Trichoderma spp. The potential of 13 Trichoderma strains to colonize tomato root and promote plant growth has been evaluated. All used strains successfully propagated in spermosphere and continued their growth in rhizoplane simultaneously root enlargement while the strains T6 and T7 were the most abundant in the apical segment of roots. Root colonization in most strains associated with promoting the roots and shoots growth while they significantly increased up to 43 and 40 % roots and shoots dry weights, respectively. Differential display reverse transcriptase-PCR (DDRT-PCR) has been developed to detect differentially expressed genes in the previously selected strain, Trichoderma harzianum T7, during colonization stages of tomato-germinating seeds and roots. Amplified DDRT-PCR products were analyzed on gel agarose and 62 differential bands excised, purified, cloned, and sequenced. Obtained ESTs were submit-queried to NCBI database by BLASTx search and gene ontology hierarchy. Most of transcripts (29 EST) corresponds to known and hypothetical proteins such as secretion-related small GTPase, 40S ribosomal protein S3a, 3-hydroxybutyryl-CoA dehydrogenase, DNA repair protein rad50, lipid phosphate phosphatase-related protein type 3, nuclear essential protein, phospholipase A2, fatty acid desaturase, nuclear pore complex subunit Nup133, ubiquitin-activating enzyme, and 60S ribosomal protein L40. Also, 13 of these sequences showed no homology (E > 0.05) with public databases and considered as novel genes. Some of these ESTs corresponded to genes encodes enzymes potentially involved in nutritional support of microorganisms which have obvious importance in the establishment of Trichoderma in spermosphere and rhizosphere, via potentially functioning in

  8. Callus formation in bone fractures combined with brain injury in rat

    Directory of Open Access Journals (Sweden)

    Yu-Ping Chen

    2017-01-01

    Full Text Available Objective: The objective of this study was to determine the speed of bony union and the serum levels of biomarkers in the setting of bone fractures combined with brain injury. Materials and Methods: In this study, Sprague–Dawley rats were randomized into four groups: sham, brain injury, bone fracture, and bone fracture plus brain injury groups. The serum levels of biochemical markers, namely, nerve growth factor (NGF, Wnt-3a, Dickkopf-related protein-1, receptor-activator of NF-κB ligand, and adrenocorticotropic hormone (ACTH, were measured on the days 1, 3, 7, and 14 following injury. Bony union was evaluated using radiographs every week for 6 weeks. Results: Compared with the brain injury group and bone fracture group, the radiographs of the bone fracture plus brain injury group revealed enhanced callus formations in week 2. From week 3, the callus formation did not differ significantly among the groups. The serum levels of the biomarkers varied at different time points. The serum levels of NGF on days 1 and 3, Wnt-3a on days 3 and 14, and ACTH on days 1, 3, and 7 were significantly higher in the bone fracture plus brain injury group than in the bone fracture group. Conclusions: Brain injury increases callus formation in simultaneous bone fracture. Considering the time point, early NGF, Wnt-3a, and ACTH elevation might be associated with early callus formation enhancement. The results indicate that these brain injury-induced biomarkers might play crucial role in accelerating bone healing.

  9. Differential effects of auxin polar transport inhibitors on rooting in some Crassulaceae species

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2014-07-01

    Full Text Available Effects of auxin polar transport inhibitors, 2,3,5-triio-dobenzoic acid (TIBA, 1-N-naphthylphthalamic acid (NPA and methyl 2-chloro-9-hydroxyfluorene-9-carboxylate (morphactin IT 3456, as a lanolin paste, on root formation in cuttings of some species of Crassulaceae, such as Bryophyllum daigremontianum, B. calycinum, Kalanchoe blossfeldiana and K. tubiflora, were studied. Cuttings of these plants were easily rooted in water without any treatment. TIBA and morphactin IT 3456 completely inhibited root formation in the cuttings of these plants but NPA did not when these inhibitors were applied around the stem below the leaves. When TIBA and morphactin were applied around the stem near the top, but leaves were present below the treatment, the root formation was observed in B. calycinum and K. blossfeldiana but in a smaller degree than in control cuttings. These results strongly suggest that endogenous auxin is required for root formation in cuttings of Crassulaceae plants. The differential mode of action of NPA is discussed together with its effect on auxin polar transport.

  10. Establishment of the callus and cell suspension culture of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... Full Length Research Paper. Establishment of the callus ... study provided an efficient way for E. angustifolia cell suspension culture to produce secondary metabolite. .... was also observed that in these treatments the stem.

  11. Effect of applied synthetic auxin on root growth in plantlet propagation by cuttage and tissue culture; Sashiki to soshiki baiyo ni okeru gosei auxin rui no shiyo koka

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, K; Yoshihara, T [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1996-12-01

    The effect of synthetic plant hormone 4-C1-IAA and TFIBA on root growth in plantlet propagation was clarified by the cuttage and the issue culture of strawberry seedling production. A periwinkle, vine, and azalea are the effect of 4-C1-IAA on root growth, and a promotion effect was recognized for rooting and root elongation. The concentration of 4-C1-IAA in which the growth promotion effect of a root most appears varies depending on the species of a plant. The concentration of a periwinkle was 20 ppm, and that of an azalea was 2000 ppm. The growth promotion effect of a root in 4-C1-IAA and TFIBA was compared with IBA for an azalea. The result showed that 4-C1-IAA is the same in the effect as IBA and that TFIBA is higher than for IBA. The growth of a vine`s terminal bud was promoted by the effect of TFIBA on root growth, and the callus occurring when IBA was treated was not formed. The rooting of a strawberry was promoted by the effect of TFIBA on root growth. The combined use of TFIBA and BA promotes the growth of a side bud and forms a multi-bud plant. However, rooting was inhibited. The callus caused by the effect of BA on root growth could be suppressed through the combined use with TFIBA. 6 refs., 7 figs., 2 tabs.

  12. Fatty acids, phenols content, and antioxidant activity in Ibervillea sonorae callus cultures

    OpenAIRE

    Estrada-Zúñiga, M.E.; Arano-Varela, H.; Buendía-González, L.; Orozco-Villafuerte, J.

    2012-01-01

    Ibervillea sonorae callus cultures were established in order to produce fatty acids (lauric, myristic, pentadecanoic, palmitic and stearic acids) and phenolic compounds. Highest callus induction (100%) was obtained in treatments containing 2.32 or 4.65 μM Kinetin (KIN) with 2.26 or 6.80 μM 2,4-Dichlorophenoxyacetic acid (2,4-D). Highest fatty acids (FA) production (48.57 mg g-1), highest total phenol content (TPC; 57.1 mg gallic acid equivalents [GAE] g-1) and highest antioxidant activity (EC...

  13. Gamma-irradiation activates biochemical systems: induction of nitrate reductase activity in plant callus.

    OpenAIRE

    Pandey, K N; Sabharwal, P S

    1982-01-01

    Gamma-irradiation induced high levels of nitrate reductase activity (NADH:nitrate oxidoreductase, EC 1.6.6.1) in callus of Haworthia mirabilis Haworth. Subcultures of gamma-irradiated tissues showed autonomous growth on minimal medium. We were able to mimic the effects of gamma-irradiation by inducing nitrate reductase activity in unirradiated callus with exogenous auxin and kinetin. These results revealed that induction of nitrate reductase activity by gamma-irradiation is mediated through i...

  14. Callus induction via different growth regulators from cotyledon ...

    African Journals Online (AJOL)

    Cicer arietinum L.) cultivars KK-1 and Hassan-2K on MS and B5 media containing different combinations and concentrations of growth regulators. Different MS and B5 callusing media containing varying level of 2, 4-D (2 and 4 mg/l), NAA (0.50 ...

  15. Genotype dependent callus induction and shoot regeneration in ...

    African Journals Online (AJOL)

    This study aims to observe the effect of genotype, hormone and culture conditions on sunflower (Helianthus annuus L.) callus induction and indirect plant regeneration. Calli were obtained from hypocotyl and cotyledon explants of five different sunflower genotypes; Trakya 80, Trakya 129, Trakya 259, Trakya 2098 and ...

  16. Auxins differentially regulate root system architecture and cell cycle protein levels in maize seedlings.

    Science.gov (United States)

    Martínez-de la Cruz, Enrique; García-Ramírez, Elpidio; Vázquez-Ramos, Jorge M; Reyes de la Cruz, Homero; López-Bucio, José

    2015-03-15

    Maize (Zea mays) root system architecture has a complex organization, with adventitious and lateral roots determining its overall absorptive capacity. To generate basic information about the earlier stages of root development, we compared the post-embryonic growth of maize seedlings germinated in water-embedded cotton beds with that of plants obtained from embryonic axes cultivated in liquid medium. In addition, the effect of four different auxins, namely indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root architecture and levels of the heat shock protein HSP101 and the cell cycle proteins CKS1, CYCA1 and CDKA1 were analyzed. Our data show that during the first days after germination, maize seedlings develop several root types with a simultaneous and/or continuous growth. The post-embryonic root development started with the formation of the primary root (PR) and seminal scutellar roots (SSR) and then continued with the formation of adventitious crown roots (CR), brace roots (BR) and lateral roots (LR). Auxins affected root architecture in a dose-response fashion; whereas NAA and IBA mostly stimulated crown root formation, 2,4-D showed a strong repressing effect on growth. The levels of HSP101, CKS1, CYCA1 and CDKA in root and leaf tissues were differentially affected by auxins and interestingly, HSP101 registered an auxin-inducible and root specific expression pattern. Taken together, our results show the timing of early branching patterns of maize and indicate that auxins regulate root development likely through modulation of the HSP101 and cell cycle proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Hyperhydricity Phenomena Problem in Embryonic Callus of Date Palm, Solving by Glutamine and NH4+: No3- Ratio in Basal Nutrient Medium

    International Nuclear Information System (INIS)

    El-Dawayaty, M.M.; Zayed, Z.E.; Abdel-Gelil, L.M.

    2012-01-01

    Hyperhydricity is a serious problem faced in vitro date palm propagation which directly effects on the commercial production. So we try to solve this problem by studying, the effect of glutamine as the organic source of nitrogen and NH 4 + :NO 3- ratio as the inorganic source of nitrogen to decrease hyperhydricity phenomena and to produce normal somatic embryos of date palm cv. Gondila.Vitrified embryonic callus were inoculated on MS basal nutrient medium modified with glutamine levels and NH 4 + : NO 3 - ratio. Five concentration ratios of NH 4 : NO 3 (10:15, 15:10, 0:20, 20:0, 0:0 ml/l) were used with 0.1 mg/l NAA for 8 weeks throughout 2 recultures. There were gradually increasing in the percentage of vitrified embryonic callus differentiation to normal somatic embryos by increasing glutamine levels from 0.0 to 400 mg/l. Glutamine at the lowest level (50 mg/l) increased significantly the number of vitrified somatic embryos. Ammonium as the sole source of N resulted in depression in somatic embryos differentiation and escalated the frequency of hyperhydricity whereas,if nitrate was used as the sole N source, somatic embryos good quality were produced and hyperhydricity was eliminated

  18. Establishment of high effective regeneration and propagation ...

    African Journals Online (AJOL)

    In order to establish efficient regeneration system for ornamental tissue culture, we used Malus spp. 'Indian Magic as the experimental materials and investigated the effects of disinfection and antibrowning agents, culture mediums and hormones proportion on differentiation, multiplication, callus induction and rooting, and ...

  19. In vitro studies on callus induction in gamma-irradiated velvet bean seeds (Mucuna pruriens L.)

    International Nuclear Information System (INIS)

    Gupta, Ankit; Misra, Pragati; Shukla, Pradeep K.

    2014-01-01

    Gamma rays are often used for developing plants varieties that are agriculturally and economically important and have high productivity potential with the minimum input. Ionizing radiations are currently a very important way to create genetic variability that is not exists in nature or that is not available to the breeder. Irradiation treatments performed at in vitro culture has been also employed to increase genetic variability and mutants as a potential source of new commercial cultivars. Large number of research reports suggests also that mutagenesis in combination with tissue culture has high potential in plant breeding programs. Mucuna pruriens L., also known as velvet bean, contains L-DOPA, a precursor to the neurotransmitter dopamine and formulation of the seed power has been studied for management of Parkinson's disease. Seeds were exposed to different doses of gamma radiation (10 kGy, 20 kGy and 30 kGy) using 60 Co as source, at National Botanical Research Institute (NBRI) Lucknow. Gamma treated and untreated seeds (control) were inoculated in MS media supplemented with different phytohormone concentrations and combinations. The best callus induction was observed in control seeds on MS media supplemented with 0.5 mg/l kinetin, 2 mg/l NAA and 10 mg/l adenine sulphate, whereas gamma treated seeds showed poor callus induction in the same phytohormone concentrations. The callus induction was poor in control seeds on MS media supplemented with 1.0 mg/l kinetin, 2.0 mg/l NAA and 10 mg/l adenine sulphate, whereas gamma treated seeds showed even poor callus induction under the same phytohormone concentrations. The callus induction frequency was in declined gradually with the increasing dose of gamma radiation. Gamma treated seeds developed greenish and fragile callus and also showed decreased weight as compare to control which was white greenish, compact and heavier. (author)

  20. Callus induction and formation of Anthurium andraeanum variety ‘Lambada’ starting from foliar sections of in vitro plants

    Directory of Open Access Journals (Sweden)

    Nydia del Rivero

    2006-01-01

    Full Text Available Foliar sections of in vitro plants of Anthurium andraeanum variety ‘Lambada’ were used as explants for the induction and formation of callus. The formation of callus was evaluated in two culture mediums (MS and Nitsch, modified to which the growth regulators 2,4-Dichlorophenoxyacetic acid (2,4-D were added in four concentrations 2.26, 4.52, 6.78 and 9.04 μM and the addition of 6-Benzilaminopurine (6-BAP to a concentration of 2.22 μM keeping it constant for both culture mediums. The treatments were placed in darkness at 28±2ºC during 45 days. Characteristics of the callus, such as colour and form, were also described . The results showed, in the statistical analysis, a significant interaction among the factors in study (concentrations of the growth regulator and type of culture medium. The calluses obtained presented translucent cream yellow colour with nodular structures. Callus were formed in the two culture medium used, however, the biggest explants percentage that allowed the formation of these structures was observed in the culture medium MS modified when a concentration of 6.78 μM 2,4-D was used . It was demonstrated that it is possible to use foliar sections of in vitro plants to form callus in Anthurium andraeanum variety ‘Lambada’ in the culture medium MS with the nitrates reduced in a half and 2,4-D. Key words: callus formation, culture medium, in vitro culture, micropropagation, growth regulators

  1. Optimization of callus induction of Zataria multiflora under the effect of different plant growth regulators and explant source

    Directory of Open Access Journals (Sweden)

    N. Mosavat*

    2017-11-01

    Full Text Available Background and objectives: The Lamiaceae family is rich in favorable secondary metabolites which have different medicinal properties and also use in food, cosmetic and sanitary industry. Zataria multiflora Boiss. is an aromatic and bushy plant containing specific pharmaceutical components which is only distributed in certain regions of Iran. Tissue culture technologies could be suitable for in vitro production of Zataria. Methods: In this study, callus production and callus related traits of Zataria was evaluated at in vitro condition. Callus induction was performed on Murashige and Skoog (MS medium containing different levels of plant growth regulators including different cytokinins (Kinetin, benzyl amino purine and auxins (2,4 dichlorophenoxyacetic acid and naphtalen acetic acid and two different explant (hypocotyl and leaf. Results: The friable calli with yellow-green color only appeared from leaf explants on three different treatments including: 1: 2.5 (mg/L 2,4-D; 2: 2 (mg/L  2,4-D; 3: [2 (mg/L 2,4-D+ 1 (mg/L Kin].  The best callus induction (75% was obtained at 2,4-D (2 mg/L + Kin (1 mg/L after 2 month of incubation under the photoperiod of 16/8 (light/dark. The highest callus growth rate (CGR (0.072 mm/day and callus fresh weight (0.135 g were denoted to the treatment of 2 mg/L (2,4-D.  Conclusion: The benefits of the protocol described here include the possibility of its use throughout the callus culture for commercial production of suitable secondary metabolites of Zataria in rapid time and huge scale.

  2. [Factors affecting bone regeneration in Ilizarov callus distraction].

    Science.gov (United States)

    Fink, B; Krieger, M; Schneider, T; Menkhaus, S; Fischer, J; Rüther, W

    1995-12-01

    We evaluated the X-rays of 36 patients who underwent 50 callus distractions. With the aid of a computerized digitalisation system for analogue films, the relative X-ray density of the distraction area was calculated for each X-ray. These relative X-ray densities were figured graphically for the duration of treatment for each patient. In the consolidation phase, the graph of each patient had a logarithmic relationship. The gradients of the logarithmic density curves were considered an indicator of the quantity of new bone formation. These gradients were correlated to the following clinical parameters: age of the patient, beginning of distraction after corticotomy, average speed of distraction, average weight bearing during the distraction and consolidation phase, location of corticotomy (distal femur versus proximal tibia) and diclofenac medication. Except for the location of the corticotomy and diclofenac, all parameters had an influence on osteoneogenesis by callus distraction. The parameters affecting new bone formation the most were the age of the patient and weight bearing. Patients aged under 18 years (p = 0.005), beginning of distraction later than 8 days (p = 0.109), an average distraction speed below 1 mm/day (p = 0.079), and average weight bearing of more than 30 kg (p = 0.068 for the distraction phase and p = 0.089 for the consolidation phase) showed a quantitatively higher rate of new bone formation by callus distraction than the patients in the other groups. Patients with a shorter leg due to poliomyelitis and one patient with an amniotic leg tie showed a slower increase in X-ray density graphs than the other patients.

  3. The Role of Ultrasound Imaging of Callus Formation in the Treatment of Long Bone Fractures in Children

    International Nuclear Information System (INIS)

    Wawrzyk, Magdalena; Sokal, Jan; Andrzejewska, Ewa; Przewratil, Przemysław

    2015-01-01

    In the process of diagnosis and treatment of fractures, an X-ray study is typically performed. In modern medicine very important is the development of new diagnostic methods without adverse effects on the body. One of such techniques is ultrasound imaging. It has a high value in imaging most areas of the body, including the musculoskeletal system. Reports on the use of ultrasound in the evaluation of the callus are rare and this could be a method equivalent to or even better than standard radiographs. The aim of the study was to analyze the correlation of ultrasound with radiographs in imaging of callus formation after fractures of long bones in children and to analyze the correlation of vascular resistance index (RI) and the degree of vascularization of the callus with a subjective radiological assessment of the bone union quality. The prospective study was planned to qualify 50 children treated for long bones fractures of the arm, forearm, thigh and lower leg. Ultrasound diagnosis was carried out using a Philips iU22 camera equipped with a linear probe with 17-5-MHz resolution and MSK Superficial program. During ultrasound examination measurements of the callus were performed. Using the Power Doppler callus vascularity was visualized and vascular resistance index (RI) was measured. The same measurements were made within the corresponding area of the healthy limb. The results obtained by ultrasound were compared with radiograph measurements and with the subjective assessment of the callus quality. Preliminary results were developed on a group of 24 patients, where 28 fractured bones and 28 corresponding healthy bones were examined. Fifteen boys and 9 girls participated in the study. The average age at injury was, respectively, 11 and 9 years. In both groups fractures without displacement were the most frequent. A similar frequency was observed in fractures requiring reposition and subperiosteal fractures. In contrast, fractures with a slight displacement of the

  4. The Role of Ultrasound Imaging of Callus Formation in the Treatment of Long Bone Fractures in Children.

    Science.gov (United States)

    Wawrzyk, Magdalena; Sokal, Jan; Andrzejewska, Ewa; Przewratil, Przemysław

    2015-01-01

    In the process of diagnosis and treatment of fractures, an X-ray study is typically performed. In modern medicine very important is the development of new diagnostic methods without adverse effects on the body. One of such techniques is ultrasound imaging. It has a high value in imaging most areas of the body, including the musculoskeletal system. Reports on the use of ultrasound in the evaluation of the callus are rare and this could be a method equivalent to or even better than standard radiographs. The aim of the study was to analyze the correlation of ultrasound with radiographs in imaging of callus formation after fractures of long bones in children and to analyze the correlation of vascular resistance index (RI) and the degree of vascularization of the callus with a subjective radiological assessment of the bone union quality. The prospective study was planned to qualify 50 children treated for long bones fractures of the arm, forearm, thigh and lower leg. Ultrasound diagnosis was carried out using a Philips iU22 camera equipped with a linear probe with 17-5-MHz resolution and MSK Superficial program. During ultrasound examination measurements of the callus were performed. Using the Power Doppler callus vascularity was visualized and vascular resistance index (RI) was measured. The same measurements were made within the corresponding area of the healthy limb. The results obtained by ultrasound were compared with radiograph measurements and with the subjective assessment of the callus quality. Preliminary results were developed on a group of 24 patients, where 28 fractured bones and 28 corresponding healthy bones were examined. Fifteen boys and 9 girls participated in the study. The average age at injury was, respectively, 11 and 9 years. In both groups fractures without displacement were the most frequent. A similar frequency was observed in fractures requiring reposition and subperiosteal fractures. In contrast, fractures with a slight displacement of the

  5. Differential transcriptomic analysis by RNA-Seq of GSNO-responsive genes between Arabidopsis roots and leaves.

    Science.gov (United States)

    Begara-Morales, Juan C; Sánchez-Calvo, Beatriz; Luque, Francisco; Leyva-Pérez, María O; Leterrier, Marina; Corpas, Francisco J; Barroso, Juan B

    2014-06-01

    S-Nitrosoglutathione (GSNO) is a nitric oxide-derived molecule that can regulate protein function by a post-translational modification designated S-nitrosylation. GSNO has also been detected in different plant organs under physiological and stress conditions, and it can also modulate gene expression. Thirty-day-old Arabidopsis plants were grown under hydroponic conditions, and exogenous 1 mM GSNO was applied to the root systems for 3 h. Differential gene expression analyses were carried out both in roots and in leaves by RNA sequencing (RNA-seq). A total of 3,263 genes were identified as being modulated by GSNO. Most of the genes identified were associated with the mechanism of protection against stress situations, many of these having previously been identified as target genes of GSNO by array-based methods. However, new genes were identified, such as that for methionine sulfoxide reductase (MSR) in leaves or different miscellaneous RNA (miscRNA) genes in Arabidopsis roots. As a result, 1,945 GSNO-responsive genes expressed differently in leaves and roots were identified, and 114 of these corresponded exclusively to one of these organs. In summary, it is demonstrated that RNA-seq extends our knowledge of GSNO as a signaling molecule which differentially modulates gene expression in roots and leaves under non-stress conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Morphological Evaluation of Shoots Regenerated from Hygromycin-Resistant Rice Callus (cv IACuba-28

    Directory of Open Access Journals (Sweden)

    Maylin Pérez Bernal

    2007-01-01

    Full Text Available An evaluation system based on the morphological characteristics of regenerated hygromycin-resistant rice callus shoots was established for correlating such characteristics with shoot viability on hygromycin. Embryogenic rice calli were transformed by Agrobacterium tumefaciens (EHA105/ pCAMBIA1300, containing the hygromycin-phosphotransferase gene as selection marker. After two weeks on selection medium, hygromycin-resistant calli were transferred to regeneration medium. Regenerated shoots were extracted every 5 days (over a 30-day period and classified into three classes according to their morphological structure: class I: vigorous shoot having typical bipolar structure; class II: shoot having small root compared to apical length, or shoot without roots; class III: shoots having an abnormal appearance, such as malformed leaves or albinism. Individualised shoots were transferred to MS medium containing hygromycin for evaluating their resistance to antibiotics. A relationship was observed between regenerated shoots’ morphological characteristics and the percentage of shoots’ viability on hygromycin. Class I prevailed at early shoot extraction and was the most resistant to hygromycin. Drastic class I reduction was found with later shoot extraction, whilst classes II and III became increased. Likewise, shoot viability became radically reduced on MS medium containing hygromycin. This result might be applied for improving efficiency regarding obtaining transgenic rice plants, taking into account the best time for obtaining high percentages of hygromycin-resistant shoots having the best morphological characteristics.

  7. Optimization of callus induction and plant regeneration from ...

    African Journals Online (AJOL)

    An efficient regeneration system was developed using germinating seeds of two cultivars of sweet sorghum, Sorghum bicolor 'Yuantian No.1' and 'M81E', as explants. We tested different media supplements effects on callus induction. The effects of combinations of 2,4-D, KT, sucrose, agar and proline at different ...

  8. Callus induction via different growth regulators from cotyledon ...

    African Journals Online (AJOL)

    Jane

    2011-06-17

    Jun 17, 2011 ... NAA, naphthylacetic acid α; BAP, benzyl aminopurine; µM, micro mole. Chickpeas are a good source of zinc, folate and are very high in dietary fiber and thus, .... auxin, the callus inductions rates increased and induction time decreased ..... clonal variation and giving birth to traits of agronomic importance.

  9. Plants regeneration of a papaya hybrid (IBP 42-99 from callus obtained from apexes of in vitro plants.

    Directory of Open Access Journals (Sweden)

    Jorge Gallardo Colina

    2004-07-01

    Full Text Available In Cuba there realizes innumerable efforts to increase the food production and especially the fruit trees Inside which the papaya has great importance. In this sense studies are realized to obtain plants resistant to virus that they need of tools that they support and increase the indexes of obtaining transgenic line in the events of transformation specifically in a papaya hybrid. As main objective was to develop a protocol for the regeneration of plants of papaya hybrid from callus obtained of in vitro plant apexes.plan to develop a tool that supports and increases the indexes of obtaining line transgenic in the events of transformation in a hybrid of papaya.In vitro plants of the hybrid IBP 42-99 were used as plant material. The culture medium Nitsh and Nitsh was used and the growth regulators that permitted the obtaining of the best callus with embryogenic structures were studied, and also, the concentrations in which they were more efficient were adjusted. The capacity of callus formation from different parts of the stem of the in vitro plants was studied. Different culture medium for the regeneration of papaya plants from the obtained callus was studied. It was possible to obtain callus by combining 6-BAP with ANA and AIA. The best results are obtained when segments from in vitro plants shoot, 1 cm length from the meristem, were used. Also, by eliminating the meristem in the apexes, an increase in the callus formation capacity of the explant was achieved. Plants were obtained from callus using the culture medium MS supplement with 0.09mg.l-1 of AIA, 0.01mg.l-1 of AG3 and 2mg.l-1 of Zeatin and the best percentage was achieved with the callus coming from the treatments with less concentration of 6-BAP and AIA. Key words: culture medium, micropropagation, organogenesis, segments

  10. Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms.

    Science.gov (United States)

    Hu, Bo; Zhang, Guifang; Liu, Wu; Shi, Jianmin; Wang, Hua; Qi, Meifang; Li, Jiqin; Qin, Peng; Ruan, Ying; Huang, Hai; Zhang, Yijing; Xu, Lin

    2017-06-01

    In tissue culture, the formation of callus from detached explants is a key step in plant regeneration; however, the regenerative abilities in different species are variable. While nearly all parts of organs of the dicot Arabidopsis thaliana are ready for callus formation, mature regions of organs in monocot rice ( Oryza sativa ) and other cereals are extremely unresponsive to tissue culture. Whether there is a common molecular mechanism beyond these different regenerative phenomena is unclear. Here we show that the Arabidopsis and rice use different regeneration-competent cells to initiate callus, whereas the cells all adopt WUSCHEL-RELATED HOMEOBOX 11 ( WOX11 ) and WOX5 during cell fate transition. Different from Arabidopsis which maintains regeneration-competent cells in mature organs, rice exhausts those cells during organ maturation, resulting in regenerative inability in mature organs. Our study not only explains this old perplexity in agricultural biotechnology, but also provides common molecular markers for tissue culture of different angiosperm species.

  11. Effect of gamma irradiation on Callus formation and regeneration of wheat immature embryos

    International Nuclear Information System (INIS)

    Saleh, O.M.

    2007-01-01

    Four Egyptian bread wheat cultivars; G164, G168, SK61 and Sids1, were tested for their response to six gamma irradiation treatments; 1, 2, 3 Gy (as low doses) and 10, 20, 30 Gy (as high doses) in addition to 0 Gy (as a control) in terms of callus formation and regeneration of immature embryos. Low doses of gamma irradiations ( 1, 2 and 3 Gy) showed favourable effects on both traits; number of regenerated calli and number of shoots per callus comparing with the control (0 Gy), while high doses; 10, 20 and 30 Gy, had the worst effect comparing with the control (0 Gy). G164 cultivar was shown to get the best response in terms of callus formation and regeneration when exposed to low doses of gamma irradiation. In conclusion, gamma irradiation can serve in increasing regeneration efficiency of Egyptian bread wheat cells when used in low doses

  12. Regeneration from embryogenic callus and suspension cultures of ...

    African Journals Online (AJOL)

    ehab

    2012-04-25

    Apr 25, 2012 ... Micropropagation, through seed culture has been studied in C. martinii ... Effect of 2,4-D on total and embryogenic callus production ... ethanol for 1 min, followed by immersion in 20% Clorox (NaOCl ... Three flasks from each treatment were cultured. ... shaker at 110 rpm. ...... Plants cultivated in bioreactor of.

  13. Establishment of callus from Opuntia robusta Wendl., a wild and ...

    African Journals Online (AJOL)

    coco santos

    2013-04-22

    Apr 22, 2013 ... plants produce tender cladodes, consumed as vegetable and fruits (prickly pear) .... The highest callus amount was obtained in media supplemented ... CO2 during carboxylation and decarboxylation reactions, improves the ...

  14. Callus Growth Kinetics of Physic Nut (Jatropha curcas L.) and Content of Fatty Acids from Crude Oil Obtained In Vitro.

    Science.gov (United States)

    da Luz Costa, Jefferson; da Silva, André Luís Lopes; Bier, Mário César Jucoski; Brondani, Gilvano Ebling; Gollo, André Luiz; Letti, Luiz Alberto Junior; Erasmo, Eduardo Andrea Lemus; Soccol, Carlos Ricardo

    2015-06-01

    The callus growth kinetics allows identifying the appropriate moment for callus pealing and monitoring the accumulation of primary and secondary metabolites. The physic nut (Jatropha curcas L.) is a plant species used for biofuel production due to its high oil content; however, this plant presents a great amount of bioactive compounds which can be useful for industry. The aim of this research was to establish a calli growth curve and to evaluate the fatty acid profile of crude oil extracted from callus. The callus growth kinetics presented a sigmoid standard curve with six distinct phases: lag, exponential, linear, deceleration, stationary, and decline. Total soluble sugars were higher at the inoculation day. Reducing sugars were higher at the inoculation day and at the 80th day. The highest percentage of ethereal extract (oil content) was obtained at the 120th day of culture, reaching 18 % of crude oil from the callus. The calli produced medium-chain and long-chain fatty acids (from 10 to 18 carbon atoms). The palmitic acid was the fatty acid with the highest proportion in oil (55.4 %). The lipid profile obtained in callus oil was different from the seed oil profile.

  15. Effective salt criteria in callus-cultured tomato genotypes.

    Science.gov (United States)

    Dogan, Mahmut; Tipirdamaz, Rukiye; Demir, Yavuz

    2010-01-01

    Na+, Cl-, K+, Ca2+, and proline contents, the rate of lipid peroxidation level in terms of malondialdehyde (MDA) and chlorophyll content, and the changes in the activity of antioxidant enzymes, such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), ascorbate peroxidase (APX: EC 1.11.1.11), and glutathione reductase (GR: EC 1.6.4.2), in tissues of five tomato cultivars in salt tolerance were investigated in a callus culture. The selection of effective parameters used in these tomato genotypes and to find out the use of in vitro tests in place of in vivo salt tolerance tests were investigated. As a material, five different tomato genotypes during a 10-day time period were used, and 150 mM NaCl was applied at callus plant tissue. The exposure to NaCl induced a significant increase in MDA content in both salt-resistant and salt-sensitive cultivars. But the MDA content was higher in salt-sensitive cultivars. The chlorophyll content was more decreased in salt-sensitive than in salt-resistant ones. The proline amount was more increased in salt-sensitive than in salt-resistant ones. It has been reported that salt-tolerant plants, besides being able to regulate the ion and water movements, also exhibit a strong antioxidative enzyme system for effective removal of ROS. The degree of damage depends on the balance between the formation of ROS and its removal by the antioxidative scavenging system that protects against them. Exclusion or inclusion of Na+, Cl-, K+, and Ca2+, antioxidant enzymes and MDA concentration play a key protective role against stress, and this feature at the callus plant tissue used as an identifier for tolerance to salt proved to be an effective criterion.

  16. Distinct modes of adventitious rooting in Arabidopsis thaliana.

    Science.gov (United States)

    Correa, L da Rocha; Troleis, J; Mastroberti, A A; Mariath, J E A; Fett-Neto, A G

    2012-01-01

    The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species.

  17. Plant regeneration system from cotyledons-derived calluses cultures ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... The objective of this study was to successfully establish plant regeneration system with cotyledons of. Stylosanthes guianensis Sw. cv. 'Reyan 2' as explants. In this study, the following results were obtained; (1) the highest rates of callus induction on medium MS with 3.0 mg L-1 2, 4-D with cotyledons.

  18. Improved embryogenic callus induction and plant regeneration in ...

    African Journals Online (AJOL)

    Pramod Pantha

    2016-09-28

    Sep 28, 2016 ... solidified with 4.0 g l-1. Gelzan (Phyto Technology Laboratory). Pantha et al. 2167. Callus induction was performed under dark at 28°C (Isotemp. Incubator, Fisher Scientific, Hanover Park, IL, USA). Primary shoots from seed were removed 10 days after inoculation and subculture was done 3 weeks after ...

  19. The effect of gamma radiation and N-ethyl-N-nitrosourea on cultured maize callus growth and plant regeneration

    International Nuclear Information System (INIS)

    Moustafa, R.A.K.; Duncan, D.R.; Widholm, J.M.

    1989-01-01

    Regenerable maize calli of two inbred lines were exposed to 0 to 100 Gy of gamma rays or treated with 0 to 30 mM of N-ethyl-N-nitrosourea (ENU) to determine their effect on growth and plant regeneration capability. Both growth and plant regeneration capacity decreased with increasing levels of either gamma radiation or ENU; however, plant regeneration capacity was more sensitive to either agent than growth. The 50% inhibition dose (I 50 ) for callus growth (fresh-weight gain) was approximately 100 Gy of gamma radiation and 30 mM ENU. The I 50 for plant regeneration capacity of treated callus was approximately 25 Gy of gamma radiation and 2.5 mM ENU. The decrease in plant regeneration capacity correlated with a change in tissue composition of the treated callus from a hard, yellow and opaque tissue to a soft, grayish-yellow and translucent tissue. This change was quantified by measuring the reduction of MnO 4 - to MnO 2 (PR assay) by the callus. These results suggest that the effect of gamma radiation or ENU on plant regeneration capacity must be taken into consideration if these potentially mutagenic agents are to be used on maize callus cultures, for the purpose of producing useful mutations at a whole plant level. The data also suggest that the PR assay may be useful for predicting the actual plant regeneration capacity of maize callus. (author)

  20. The Extraction Process of Trimethyl Xanthina in Vitro Culture of Callus Camellia Sinensis with ethyl Acetate Solvent

    Directory of Open Access Journals (Sweden)

    Sutini

    2016-01-01

    Full Text Available Trimethyl xanthina is one of the compounds contained bioactive culture in vitro Cammelia sinensis callus which is widely used in the field of food, beverage, agriculture and health industries. The presence of trimethyl xanthina on food, beverages and health is needed in a certain amount depending on the use which is achieved by the user. To get a certain amount of trimethyl xanthina from callus culture of Cammelia sinensis, the extraction process is performed on the water solvent, as well as non-solvent water / organic solvent such as ethyl acetate. The purpose of this study was to obtain profile of trimethyl xanthina in the extraction of Cammelia sinensis callus. The experimental methods used consisted of dissolution, filtration, extraction with water solvent and ethyl acetate, then followed by identification of trimethyl xanthina using HPLC. The results shows the profile form of trimethyl xanthina of Cammelia sinensis callus have similarities with the standard form of trimethyl xanthina.

  1. callus induction and proliferation from cotyledon explants in ...

    African Journals Online (AJOL)

    ACSS

    2013-07-19

    Jul 19, 2013 ... between the tested cytokinins and the 2,4-D in callus induction and growth index. Similar results have also been obtained in soybean (Glycine max L.) (Sairam et al., 2003). In contrast to this finding, calli were reportedly induced from cotyledon explants on MS basal medium containing 2,4-D in combination ...

  2. Observation of antioxidant activity of leaves, callus and suspension ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... Antioxidant activity and phenolic compound was found in Justicia gendarussa via total phenolic content (TPC) and α,α-diphenyl-β-pycrilhydrazil hydrate (DPPH) radical scavenging assays. The assays were applied on aqueous and methanolic extracts of leaves, callus culture and cell suspension culture.

  3. Sugar alcohols-induced oxidative metabolism in cotton callus culture

    African Journals Online (AJOL)

    Sugar alcohols (mannitol and sorbitol) may cause oxidative damage in plants if used in higher concentration. Our present experiment was undertaken to study physiological and metabolic responses in cotton (Gossypium hirsutum L.) callus against mannitol and sorbitol higher doses. Both markedly declined mean values of ...

  4. In vitro callus culture of Heliotropium indicum Linn. for assessment of total phenolic and flavonoid content and antioxidant activity.

    Science.gov (United States)

    Kumar, Muthusamy Senthil; Chaudhury, Shibani; Balachandran, Srinivasan

    2014-12-01

    The total phenolic and flavonoid content and percentage of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of callus and in vivo plant parts of Heliotropium indicum Linn. were estimated. Murashige and Skoog (MS) basal medium supplemented with α-naphthaleneacetic acid (NAA) 2.0 mg/l with benzyladenine (BA) 0.5 mg/l showed the highest amount of callus biomass (1.87 g/tube). The morphology of callus was significantly different according to the plant growth regulators and their concentrations used in the medium. The highest amount of total phenolic (21.70 mg gallic acid equivalent per gram (GAE/g)) and flavonoid (4.90 mg quercetin equivalent per gram (QE/g)) content and the maximum percentage (77.78 %) of radical scavenging activity were estimated in the extract of inflorescence. The synergistic effect of NAA (2.0 mg/l) and BA (0.5 mg/l) enhances the synthesis of total phenolic (9.20 mg GAE/g) and flavonoid (1.25 mg QE/g) content in the callus tissue. The callus produced by the same concentration shows 45.24 % of free radical scavenging activity. While comparing the various concentrations of NAA with 2,4-dichlorophenoxyacetic acid (2,4-D) for the production of callus biomass, total phenolic and flavonoid content and free radical scavenging activity, all the concentrations of NAA were found to be superior than those of 2,4-D.

  5. Histological analysis of the callogenesis and organogenesis from root segments of Curcuma zedoaria Roscoe

    Directory of Open Access Journals (Sweden)

    Marcia O. Mello

    2001-06-01

    Full Text Available Callus was induced from root segments taken from in vitro grown plants of Curcuma zedoaria Roscoe. The explants were cultured on agar-solidified Murashige and Skoog medium supplemented with 13.4muM of alpha-naphthaleneacetic acid and 2.2muM of 6-benzylaminopurine at 25ºC in the dark. Histological analysis revealed that callus was formed from the hypertrophied cortical parenchyma cells of the explant. Some of these cells underwent division while the surrounding cells accumulated starch. Callus was capable of shoot bud regeneration after 70 days when it was transfered to liquid medium of the same composition. After 30 days in liquid medium, buds developed from nodular structures. The adventitious shoots developed extensive root systems when they were placed on agar-solidified Murashige and Skoog medium without growth regulators at 25º C in the light. The establishment of these plantlets in soil was about 95%.Calo de Curcuma zedoaria Roscoe foram induzidos a partir de segmentos de raízes de plantas cultivadas in vitro. Os explantes foram inoculados em meio de Murashige & Skoog solidificado com ágar e suplementado com 13,4miM de ácido alfa-naftaleno acético e 2,2miM de 6-benzilaminopurina e mantidos no escuro a 25°C. As análises histológicas realizadas revelaram que os callus eram formados a partir de células hipertrofiadas do parênquima cortical do explante. Algumas destas células entravam em divisão, enquanto as células vizinhas a estas acumulavam amido. Após 70 dias, calos transferidos para meio de Murashige & Skoog líquido de mesma composição, eram capazes de regenerar plantas. Após 30 dias em meio líquido, gemas se desenvolveram de estruturas nodulares. Estas gemas adventíceas formaram um abundante sistema radicular quando transferidas para meio de Murashige & Skoog solidificado com ágar, sem regulador de crescimento e mantidas a 25°C na luz. A taxa de sobrevivência das plantas foi de 95%.

  6. Induction and multiplication of callus from endosperm of Cycas ...

    African Journals Online (AJOL)

    The usage of medicinal plants in traditional medication has gained the attraction from global and local markets, mainly to cure diseases or simply for health maintenance. Callus cultures were initiated from the endosperm of the medicinal plant Cycas revoluta, cultured on half-strength Murashige and Skoog (MS) medium ...

  7. Growing, regeneration and radiosensibility of sugarcane callus (Saccharum spp. hybrid var. “SP 70-1284” treated with gamma radiation source 60Co.

    Directory of Open Access Journals (Sweden)

    Apolonio Valdez Balero

    2004-07-01

    Full Text Available Calluses in growth of sugar cane, variety “SP 70-1284”, were radiated with a source of 60Co. The studied doses were between 10 and 80 Gy. The affectation of the Gamma radiation source 60Co in the growth of the callus and the regeneration of plants was evaluated. The results indicated that the dose that diminished the growth of callus in a value under 50% was the one of 30 Gy, and also the dose that diminished the regenerative capacity of the callus below to the 50% of the population was the one of 30 Gy. The results showed that for this variety of sugar cane doses superior to 30Gy of Gamma radiations jeopardizes the growth and the later regeneration of the callus. Its application is recommended to induce genetic variability in the variety of sugar cane “SP 70-1284”, as well as in programs of genetic improvement by mutations, in susceptible varieties of the sugar cane red blight (Puccinia melanocephala Syd using calluses in growth. Key words: callus, hybrid, in vitro, improvement, rust, Saccharum sp, variability

  8. Hyperplastic callus formation in osteogenesis imperfecta type V mimicking osteosarcoma: 4-year follow-up with resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, R.L.V.; Amaral, D.T. [Federal University of Sao Paulo, Department of Radiology, Sao Paulo (Brazil); Jesus-Garcia, Filho R. [Federal University of Sao Paulo, Department of Orthopedic Surgery, Sao Paulo (Brazil); Saraiva, G. [Federal University of Sao Paulo, Department of Endocrinology, Sao Paulo (Brazil); Fernandes, A.R.C. [University of California San Diego, Department of MSK Radiology, San Diego, CA (United States); Resnick, D.

    2006-06-15

    We report a case of hyperplastic callus formation that occurred in both femurs in a patient with type V osteogenesis imperfecta (OI), with 4-year follow-up and resolution. The clinical, histological and imaging aspects of this condition are discussed. Recognition of the hyperplastic callus formation in this particular type of OI is important in order to avoid misdiagnosis. (orig.)

  9. Hyperplastic callus formation in osteogenesis imperfecta type V mimicking osteosarcoma: 4-year follow-up with resolution

    International Nuclear Information System (INIS)

    Vieira, R.L.V.; Amaral, D.T.; Jesus-Garcia, Filho R.; Saraiva, G.; Fernandes, A.R.C.; Resnick, D.

    2006-01-01

    We report a case of hyperplastic callus formation that occurred in both femurs in a patient with type V osteogenesis imperfecta (OI), with 4-year follow-up and resolution. The clinical, histological and imaging aspects of this condition are discussed. Recognition of the hyperplastic callus formation in this particular type of OI is important in order to avoid misdiagnosis. (orig.)

  10. In vitro assay of the inhibitory effect of neem callus and leaf extracts on some phytopathogenes

    International Nuclear Information System (INIS)

    El Gaali, E.; Mukhtar, I.

    2006-01-01

    The effect of different concentrations of neem (Azadirachta indica) callus and leaf extracts on the radial growth of drechslera rostrata, fusarium oxysporum and alterneria alternata was assessed. Obvious inhibitory effect was observed on the mycelia radial growth of the three treated fungi. The level of inhibition increased with the increase of the extract concentration. The maximum inhibitory effect (84%) was recorded with drechslera rostrata when inoculated in media containing 20 mg/ml of neem callus extract, while the inhibition rate of the mycelial growth of the same species reached 61% when inoculated in a medium containing the same concentration of neem leaf extract. The subsequent concentrations of the callus and leaf extracts gave similar trends of inhibition on the fungi cultured on extract amended agar plates. (Author)

  11. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes.

    Science.gov (United States)

    Li, Xiaojuan; Cai, Wenguo; Liu, Yanlin; Li, Hui; Fu, Liwen; Liu, Zengyu; Xu, Lin; Liu, Hongtao; Xu, Tongda; Xiong, Yan

    2017-03-07

    The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root.

  12. Explant age, auxin concentrations and media type affect callus ...

    African Journals Online (AJOL)

    The effects of explant age of oil palm (Elaeis huineensis) embryo axes, 15 and 18 weeks after anthesis (WAA), media type (Eeuwens and Murashige and Skoog) supplemented with various concentrations of 2,4-D on callus production employing standard in vitro techniques were investigated. The results of the study showed ...

  13. Short-term effects of carbon dioxide on carnation callus cell respiration

    International Nuclear Information System (INIS)

    Palet, A.; Ribas-Carbo, M.; Argiles, J.M.; Azcon-Bieto, J.

    1991-01-01

    The addition of potassium bicarbonate to the electrode cuvette immediately stimulated the rate of dark O 2 uptake of photomixotrophic and heterotrophic carnation (Dianthus caryophyllus L.) callus, of Elodea canadensis (Minchx) leaves, and of other plant tissues. This phenomenon occurred at pH values lower than 7.2 to 7.8, and the stimulation depended on the concentration of gaseous CO 2 in the solution. These stimulatory responses lasted several minutes and then decreased, but additional bicarbonate or gaseous CO 2 again stimulated respiration, suggesting a reversible effect. Carbonic anhydrase in the solution increased the stimulatory effect of potassium bicarbonate. The CO 2 /bicarbonate dependent stimulation of respiration did not occur in animal tissues such as rat diaphragm and isolated hepatocytes, and was inhibited by salicylhydroxamic acid in carnation callus cells and E. canadensis leaves. This suggested that the alternative oxidase was engaged during the stimulation in plant tissues. The cytochrome pathway was severely inhibited by CO 2 /bicarbonate either in the absence or in the presence of the uncoupler carbonylcyanide m-chlorophenyl hydrazone. The activity of cytochrome c oxidase of callus tissue homogenates was also inhibited by CO 2 /bicarbonate. The results suggested that high carbon dioxide levels (mainly free CO 2 ) partially inhibited the cytochrome pathway (apparently at the oxidase level), and this block in electron transport elicited a large transient engagement of the alternative oxidase when present uninhibited

  14. Unilateral Palmar Callus and Irritant Hand Eczema – Underreported Signs of Dependency on Crutches

    Directory of Open Access Journals (Sweden)

    Uwe Wollina

    2018-01-01

    Full Text Available Leg amputees who can’t use prostheses and patients with arthritis are often dependent on crutches. Their chronic use can exert significant friction forces. The palmar skin will respond by forming a hyperkeratotic callus. We report for the first time unilateral palmar callus formation caused by friction from using crutches. Another possible adverse effect is the triggering of irritant contact dermatitis by the handholes of crutches. We report two cases with hand dermatitis due to the chronic dependence on crutches and discuss treatment options.

  15. Differential fracture healing resulting from fixation stiffness variability. A mouse model

    International Nuclear Information System (INIS)

    Gardner, M.J.; Putnam, S.M.; Wong, A.; Streubel, P.N.; Kotiya, A.; Silva, M.J.

    2011-01-01

    The mechanisms underlying the interaction between the local mechanical environment and fracture healing are not known. We developed a mouse femoral fracture model with implants of different stiffness, and hypothesized that differential fracture healing would result. Femoral shaft fractures were created in 70 mice, and were treated with an intramedullary nail made of either tungsten (Young's modulus=410 GPa) or aluminium (Young's modulus=70 GPa). Mice were then sacrificed at 2 or 5 weeks. Fracture calluses were analyzed using standard microCT, histological, and biomechanical methods. At 2 weeks, callus volume was significantly greater in the aluminium group than in the tungsten group (61.2 vs. 40.5 mm 3 , p=0.016), yet bone volume within the calluses was no different between the groups (13.2 vs. 12.3 mm 3 ). Calluses from the tungsten group were stiffer on mechanical testing (18.7 vs. 9.7 N/mm, p=0.01). The percent cartilage in the callus was 31.6% in the aluminium group and 22.9% in the tungsten group (p=0.40). At 5 weeks, there were no differences between any of the healed femora. In this study, fracture implants of different stiffness led to different fracture healing in this mouse fracture model. Fractures treated with a stiffer implant had more advanced healing at 2 weeks, but still healed by callus formation. Although this concept has been well documented previously, this particular model could be a valuable research tool to study the healing consequences of altered fixation stiffness, which may provide insight into the pathogenesis and ideal treatment of fractures and non-unions. (author)

  16. Primary characterization and evaluation of anti ulcerogenic activity of an aqueous extract from callus culture of Cereus peruvianus Mill. (Cactaceae).

    Science.gov (United States)

    Jayme, Milena O; Ames, Franciele Q; Bersani-Amado, Ciomar A; Machado, Maria de Fatima P S; Mangolin, Claudete A; Goncalves, Regina A C; de Oliveira, Arildo J B

    2015-01-01

    In the current study we reported cultivation, extraction procedure, analysis and preliminary characterization of the aqueous extract from Cereus peruvianus callus culture and evaluated its anti ulcerogenic activity in vivo models of experimental ulcers in Wistar rats. The obtained aqueous extract from callus (AC) was dialyzed and subjected to freeze-thaw process, providing a possible polysaccharide. The carbohydrate and protein contents of the aqueous extract were estimated at 53.4% and 0.66%, respectively, composed primarily of galactose, arabinose and galacturonic acid, with minor amounts of glucose. This appeared heterogeneous when analyzed by high-performance size-exclusion chromatography and a multiangle laser light scattering detector (HPSEC-MALLS). The AC was found to be significantly effective against ethanol-induced lesions but was ineffective against indomethacin-induced lesions. The callus culture of C. peruvianus is an alternative source for the synthesis of substances originally produced by plants. The calluses grown indefinitely in vitro under controlled conditions are stable tissues, and the aqueous extract from calluses may be used instead of fully developed plants using the protocols described in this study.

  17. Microcolony formation from embryogenic callus-derived protoplasts of oil palm

    Directory of Open Access Journals (Sweden)

    Sompong Te-chato

    2005-07-01

    Full Text Available Embryogenic callus of oil palm induced from young leaves of seedlings DxP was used as initial material for protoplast isolation. Various combinations of cellulase Onozuka RS and macerozyme R-10 were tested. Isolated protoplasts were cultured by various methods in MS medium supplemented with different phytohormones. The results revealed that 2% cellulase RS in combination with 2% macerozyme R-10 (adjusted osmoticum to 0.4 M by manitol yielded the highest number of viable protoplasts (1x107 per gram fresh weight. Dicamba at concentration 2 mg/l with 1 mg/l 6-benzyladenin (BA containing in phytagel semisolidified MS medium promoted the highest division of 2.3-4.0%. First division of the protoplasts was observed at 4 days after culture. Microcolony formation (8-10 cells was seen after three weeks of culture. Unfortunately, neither callus formation nor plantlet regeneration were obtained.

  18. Effects of gamma-rays and neutrons on the seedling and callus growth in rice seeds

    International Nuclear Information System (INIS)

    Baradjanegara, A.A.; Fujii, Taro; Amano, Etsuo

    1976-01-01

    Seeds of rice c.v. Norin-8 and two radiation induced dwarf mutants MGS-46 and -96 were used to investigate the effects of gamma- and 14 MeV neutron-radiations in different culture systems. Seedling growth of irradiated seeds in soil, and in two types of synthetic media, modified White's (M-W) or modified Eriksson's (M-E), as well as the callus growth on 2.4-D supplemented media were measured as an index of radiation damage. Comparing the seedling height about two types of media, the M-E promoted the plant growth than the M-W in irradiated as well as non-irradiated lots of the three strains studied. The callus growth on M-E surpassed by more 10 times that obrained on the M-W in all the lots. The M-E medium seem to be appropriate for both the seedling and callus growth of rice. (auth.)

  19. Effects of gamma rays and neutrons on the seedling and callus growth in rice seeds

    International Nuclear Information System (INIS)

    Baradjanegara, A.A.; Fujii, T.; Amano, E.

    1976-01-01

    Seeds of rice c.v. Norin-8 and two radiation induced dwarf mutants MGS-46 and -96 were used to investigate the effects of gamma and 14 MeV neutron-radiations in different culture systems. Seeding growth of irradiated seeds in soil, and in two types of synthetic media, modified White's (M-W) or modified Erickson's (M-E), as well as the callus growth on 2,4-D supplemented media were measured as an index radiation damage. Comparing the seeding height about two types of media, the M-E promoted the plant growth than the M-W in irradiated as well as non irradiated lots of the three strains studied. The callus growth on M-E surpassed by more 10 times that obtained on the M-W in all the lots. The M-E medium seems to be appropriate for both the seeding and callus growth of rice. (author)

  20. Assessment of silver nitrate on callus induction and in vitro shoot regeneration in tomato (solanum lycopersicum mill.)

    International Nuclear Information System (INIS)

    Shah, S.H.; Ali, S.; Jan, S.A.

    2014-01-01

    In vitro morphogenesis is greatly influenced by a gaseous plant growth regulator (ethylene). The effect of silver nitrate (AgNO/sub 3/) and different plant growth regulators were assessed on callus induction, In vitro shoot regeneration and multiple primordial shoots per explant in tomato. The maximum callus induction frequency was recorded culturing hypocotyls, while In vitro shoot regeneration frequency and the number of primordial shoots per explant were significantly higher when leaf discs were used as explants. The callus induction frequency was improved by the supplementation of 10-15 mg/l AgNO/sub 3/ in MS basal media along with 2.0 mg/l IAA, 2.5 mg/l BAP and yielded the highest callus induction frequency (91.33%) in cv. Rio Grande, followed by Roma (88.33%) and Moneymaker (82.66%). Similarly, the highest In vitro shoot regeneration frequency (96.66, 92.66 and 90%) was recorded in Rio Grande, Roma and Moneymaker on MS media fortified with 0.1 mg/l IAA, 1.0 mg/l ZEA and 2.0 mg/l BAP along with 8-10 mg/l AgNO/sub 3/. AgNO/sub 3/ also had promotive effect on induction of multiple shoots per explant. These findings indicate that ethylene is linked with the suppression of In vitro morphogenesis in tomato and AgNO3 interacts with ethylene and enhances callus induction and In vitro shoot regeneration in tomato. (author)

  1. Biosynthesis of Gold and Silver Nanoparticles Using Extracts of Callus Cultures of Pumpkin (Cucurbita maxima).

    Science.gov (United States)

    Iyer, R Indira; Panda, Tapobrata

    2018-08-01

    The potential of callus cultures and field-grown organs of pumpkin (Cucurbita maxima) for the biosynthesis of nanoparticles of the noble metals gold and silver has been investigated. Biosynthesis of AuNPs (gold nanoparticles) and AgNPs (silver nanoparticles) was obtained with flowers of C. maxima but not with pulp and seeds. With callus cultures established in MS-based medium the biogenesis of both AuNPs and AgNPs could be obtained. At 65 °C the biogenesis of AuNPs and AgNPs by callus extracts was enhanced. The AuNPs and AgNPs have been characterized by UV-visible spectroscopy, TEM, DLS and XRD. Well-dispersed nanoparticles, which exhibited a remarkable diversity in size and shape, could be visualized by TEM. Gold nanoparticles were found to be of various shapes, viz., rods, triangles, star-shaped particles, spheres, hexagons, bipyramids, discoid particles, nanotrapezoids, prisms, cuboids. Silver nanoparticles were also of diverse shapes, viz., discoid, spherical, elliptical, triangle-like, belt-like, rod-shaped forms and cuboids. EDX analysis indicated that the AuNPs and AgNPs had a high degree of purity. The surface charges of the generated AuNPs and AgNPs were highly negative as indicated by zeta potential measurements. The AuNPs and AgNPs exhibited remarkable stability in solution for more than four months. FTIR studies indicated that biomolecules in the callus extracts were associated with the biosynthesis and stabilisation of the nanoparticles. The synthesized AgNPs could catalyse degradation of methylene blue and exhibited anti-bacterial activity against E. coli DH5α. There is no earlier report of the biosynthesis of nanoparticles by this plant species. Callus cultures of Cucurbita maxima are effective alternative resources of biomass for synthesis of nanoparticles.

  2. In Vitro Callus Induction and Growth of Stevia (Stevia rebaudiana Bertoni M. with Difference Concentrations of PEG (Polyethylene Glycol and Light Conditions

    Directory of Open Access Journals (Sweden)

    Mohamad Ana Syabana

    2017-07-01

    Full Text Available Stevia (Stevia rebaudiana Bert. M. is known as a natural non-caloric sweetener. This plants contain glycoside such steviosida type, mainly on the leave contain sweetness level between 200-300 cane sugar but the calorie is very low. This research was aimed to determine difference effects of PEG (Polyethylene Glycol concentrations and the light conditions on Stevia (Stevia rebaudiana Bert. M. callus induction in vitro. This research was conducted from April to June 2016 at Biotechnology Laboratory Faculty of Agriculture, Sultan Ageng Tirtayasa University. This research used a completely randomized design (CRD, which consisted of two factors with three replications. Concentrations of PEG as first factor consisted of four levels (0 mg/L, 5 mg/L, 15 mg/L, and 25 mg/L. Light conditions as second factor consisted of two levels (Dark and Light. The results showed that the concentrations of PEG (Polyethylene Glycol did not significantly effect the time of callus appearance and diameter of callus on 4, 5 and 6 weeks after planting. Dark condition was the best conditions for callus induction of stevia. The texture of callus was compact on all treatments and the callus dominant color produced is golden brown.

  3. Effect of sorbitol in callus induction and plant regeneration in wheat

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-01

    Dec 1, 2009 ... Key words: Callus induction, plant regeneration, wheat, 2,4-D, sorbitol. INTRODUCTION ... regeneration is better on hormone-free medium or that .... AB (interaction). 15 ... element and creates osmotic stress as reported by.

  4. Accumulation of the sesquiterpenes nootkatone and valencene by callus cultures of Citrus paradisi, Citrus limonia and Citrus aurantium.

    Science.gov (United States)

    Del Río, J A; Ortuño, A; Puig, D G; Iborra, J L; Sabater, F

    1991-10-01

    The production of the sesquiterpenes nootkatone and valencene by callus cultures of Citrus species is described. The levels of these compounds were examined by gas chromatography-mass spectrometry and their yields were compared with the amounts found in mature fruits. A simultaneous increase and decrease in the levels of nootkatone and valencene, respectively, were observed with the aging of callus cultures of Citrus paradisi. These results suggest that valencene might be a possible precursor of nootkatone in this species. The high level of nootkatone detected in 9-month-old callus cultures of Citrus paradisi might be associated with the corresponding cell morphological changes observed.

  5. Ultraviolet-B (UV-B) radiation as an elicitor of flavonoid production in callus cultures of jatropha (Jatropha curcas L.)

    International Nuclear Information System (INIS)

    Alvero-Bascos, E.M.; Ungson, L.B.

    2012-01-01

    Callus cultures of jatropha (Jatropha curcas L.) grown in Murashige and Skoog's (MS) medium supplemented with naphthalene-acetic acid (NAA, 20 microM) and 6-furfurylaminopurine (kinetin, 20 microM) were exposed to ultraviolet-B (UV-B) radiation to investigate its potential as an abiotic elicitor of flavonoid production. Prior to irradiation, the levels of the flavonoids, apigenin, vitexin and isovitexin in the leaf and callus extracts were determined through high performance liquid chromatography (HPLC). Results showed that vitexin and isovitexin were the dominant flavonoids in the leaves while only apigenin was detected in the calli, suggesting a correlation between the degree of differentiation and biosynthesis of flavonoids in plant tissues. Irradiation of callus cultures for 7 d using two UV-B doses (12.6 and 25.3 kJ/sq m) induced synthesis of all three flavonoids (up to 780 micro g/g dw increase) to levels similar to or higher than those found in whole leaves. The combined levels of the three flavonoids in the cultures treated with the higher UV-B dose were 20-fold higher than the control and were comparable to concentrations found in leaves while a 10-fold increase in combined flavonoid levels was observed in calli irradiated with the lower UV-B dose. Furthermore, random amplified polymorphic DNA (RAPD) analyses of DNA extracts from the leaves and calli revealed that UV-B irradiation enhanced flavonoid synthesis without altering DNA sequence. These results further support the supposed involvement of UV-B in the transcriptional regulation of the expression of flavonoid biosysnthetic genes. Overall, the findings showed that elicitation through UV-B irradiation is an effective strategy to induce flavonoid production in dedifferentiated J. curcas cultures that have lost their capacity to produce the flavonoids normally synthesized in intact organs. (author)

  6. Growth, proline and ion accumulation in sugarcane callus cultures ...

    African Journals Online (AJOL)

    Calli obtained from two sugarcane cultivars (R570 and CP59-73) were exposed to different osmotic stress intensities followed by a period of stress relief. Relative rate growth, callus water content and changes in organic and inorganic solutes were determined at the end of stress and relief periods. After the stress period, ...

  7. Study of Androgenesis Ability and Callus Induction in Four Varieties of Tomato (Lycopersicon esculentum Mill by Anther Culture

    Directory of Open Access Journals (Sweden)

    R. Najib

    2016-02-01

    Full Text Available Introduction Tomato (Lycopersicon esculentum Mill is one of the most important vegetables which in addition of its importance as a food, is utilized as a model plant for cytological and cytogenetic studies. Tomato breeding programs are often based on the production and selection of hybrid plants. Producing hybrid plants and application of features that is needed to breed pure lines with high specific combining abilities, is highly required.New technologies such as doubled haploid can be an effective strategy to provide pure lines in tomato. Generation of homozygous doubled haploid lines through induction of androgenesis is a promising alternative method to the classical breeding programs. However, this technology is poorly developed in tomato so that some improvements in methodology are required. Genotype and stages of microspore development are critical factors for induction of androgenesis in tomato. Among them, the genotype is more important than other factors. The purpose of this study was to investigate the possibility of callus induction from anthers in some tomato genotypes. Materials and Methods: In order to investigate the androgenic response and callus induction through anther culture in tomato, four varieties including Mobil-Netherlands, Baker, U. S. Agriseed and Khoram were chosen. To determine the appropriate stage of microspore development for anther culture, cytologycal studies were accomplished at different size length of flower buds (2-7.9 mm. Flower buds were incubated at 4oC for 15 minutes and stained in acetocarmin %4 solution. Based on cytological studies in four tested cultivars, flower buds with size length 4-4.9 mm were chosen, as they had the highest frequency of meiotic microspores to microspores mid uninucleate. Pretreatments were colchicine solution (250 mgr/L at 4 °C for 48 h. The anthers were cultured on MS medium containing 2 mgr/L IAA and 1 mgr/L 2ip. All changes in frequency of callus induction and diameter of

  8. Additions of precursors and elicitors improve geranylgeraniol production in Croton stellatopilosus callus cultures

    Directory of Open Access Journals (Sweden)

    Juraithip Wungsintaweekul

    2015-02-01

    Full Text Available Strategies for enhancing GGOH production in Croton stellatopilosus callus culture included additions of precursors (sodium acetate-NA, sodium pyruvate-NP, mevalonic acid lactone-MVA and elicitors (methyl jasmonate-MJ, acetylsalicylic acid-ASA, yeast extract-YE. Treated cells were evaluated for their GGOH contents by GC-FID and compared with the nontreated cells as controls. Additions of NA (25 mg/L, NP (50 mg/L and MVA (100 mg/L resulted in an enhancement of GGOH productivity to 0.61 mg/g DW, 0.52 mg/g DW and 0.70 mg/g DW, respectively, compared to the control culture (0.29 mg/g DW. Callus cultures elicited with MJ at 30 mg/L for 24 h stimulated GGOH production to 0.35 mg/g DW compared to the control culture (0.07 mg/g DW. Cells also responded to ASA (20 mg/L, 2 days and YE (0.25 g/L, 4 days and produced GGOH contents of 0.46 mg/g DW and 1.37 mg/g DW, respectively. This study has shown that isoprenoid precursors and conventional elicitors enhanced GGOH production in the C. stellatopilosus callus culture.

  9. Biological effects of fast neutron irradiation on callus tissues of Tecoma stans Juss. and Ammi visnaga Lam

    International Nuclear Information System (INIS)

    Supniewska, J.H.; Dohnal, B.; Cebulska Wasilewska, A.; Huczkowski, J.

    1982-01-01

    Callus tissues of Tecoma stans Juss. and Ammi visnaga Lam. were subjected to fast neutron irradiation. Nine doses were applied within the range of 100 - 10.000 cGy. Small doses caused growth stimulation. Intermediate and high doses caused morphological changes, reduced growth and biosynthesis of biologically active substances (monoterpene alkaloids in T. stans, furanochromones in A. visnaga). In A. visnaga neutron irradiation considerably decreased the chlorophyll content in callus tissues. The radiosensitivity of A. visnaga at 50% growth reduction level was 1.5 times higher than that of the callus of T. stans. The recovery of the tissues takes place during a subculturing course. Three to 7 months after neutron exposure growth and biosynthesis reach the control level. (author)

  10. Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea.

    Directory of Open Access Journals (Sweden)

    Tom O G Tytgat

    Full Text Available Plants respond to herbivore attack by rapidly inducing defenses that are mainly regulated by jasmonic acid (JA. Due to the systemic nature of induced defenses, attack by root herbivores can also result in a shoot response and vice versa, causing interactions between above- and belowground herbivores. However, little is known about the molecular mechanisms underlying these interactions. We investigated whether plants respond differently when roots or shoots are induced. We mimicked herbivore attack by applying JA to the roots or shoots of Brassica oleracea and analyzed molecular and chemical responses in both organs. In shoots, an immediate and massive change in primary and secondary metabolism was observed. In roots, the JA-induced response was less extensive and qualitatively different from that in the shoots. Strikingly, in both roots and shoots we also observed differential responses in primary metabolism, development as well as defense specific traits depending on whether the JA induction had been below- or aboveground. We conclude that the JA response is not only tissue-specific but also dependent on the organ that was induced. Already very early in the JA signaling pathway the differential response was observed. This indicates that both organs have a different JA signaling cascade, and that the signal eliciting systemic responses contains information about the site of induction, thus providing plants with a mechanism to tailor their responses specifically to the organ that is damaged.

  11. An efficient method for in vitro callus induction in Myrciaria dubia (Kunth Mc Vaugh "Camu Camu"

    Directory of Open Access Journals (Sweden)

    Ana M. Córdova

    2014-03-01

    Full Text Available Due to the high variability in vitamin C production in Myrciaria dubia "camu camu", biotechnological procedures are necessary for mass clonal propagation of promising genotypes of this species. The aim was to establish an efficient method for in vitro callus induction from explants of M. dubia. Leaf and knot sex plants were obtained from branches grown in the laboratory and from fruit pulp collected in the field. These were desinfected and sown on Murashige-Skoog (1962 medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, benzylaminopurine (BAP and kinetin(Kin. The cultures were maintained at 25±2°C in darkness for 2 weeks and subsequently with a photoperiod of 16 hours in light and 8 hours in dark for 6 weeks. Treatment with 2 mg/L 2,4-D and 0.1 mg/L BAP allowed major callus formation in the three types of explants. Calluswere generated from the first week (knots, fourth week (leaves and sixth week (pulp and these were friable (leaves and nodes and non-friable (pulp. In conclusion, the described method is efficient for in vitro callus induction in leaves, knots and pulp of M. dubia, been leaves and knots explants more suitable for callus obtention

  12. Effect of plant growth regulators on callus induction and plant ...

    African Journals Online (AJOL)

    The present study was conducted to investigate the effects of different concentrations and combinations of growth regulators on callus induction and plant regeneration of potato (Solanum tuberosum L.) cultivar Diamant. The tuber segments were used as explants and cultured on Murashige and Skoog (MS) medium ...

  13. Stimulation of reserpine biosynthesis in the callus of Rauvolfia ...

    African Journals Online (AJOL)

    So enhancing this alkaloid in the already available system is a beneficial approach. Tryptophan is the starting material in the biosynthesis of reserpine. Callus was induced from leaf explants of Rauvolfia tetraphylla L. on MS medium supplemented with the combination of 9 μM 2,4-D and 25, 50, 75 and 100 mg/l tryptophan.

  14. In Vivo Evaluation of Fracture Callus Development During Bone Healing in Mice Using an MRI-compatible Osteosynthesis Device for the Mouse Femur.

    Science.gov (United States)

    Haffner-Luntzer, Melanie; Müller-Graf, Fabian; Matthys, Romano; Abaei, Alireza; Jonas, René; Gebhard, Florian; Rasche, Volker; Ignatius, Anita

    2017-11-14

    Endochondral fracture healing is a complex process involving the development of fibrous, cartilaginous, and osseous tissue in the fracture callus. The amount of the different tissues in the callus provides important information on the fracture healing progress. Available in vivo techniques to longitudinally monitor the callus tissue development in preclinical fracture-healing studies using small animals include digital radiography and µCT imaging. However, both techniques are only able to distinguish between mineralized and non-mineralized tissue. Consequently, it is impossible to discriminate cartilage from fibrous tissue. In contrast, magnetic resonance imaging (MRI) visualizes anatomical structures based on their water content and might therefore be able to noninvasively identify soft tissue and cartilage in the fracture callus. Here, we report the use of an MRI-compatible external fixator for the mouse femur to allow MRI scans during bone regeneration in mice. The experiments demonstrated that the fixator and a custom-made mounting device allow repetitive MRI scans, thus enabling longitudinal analysis of fracture-callus tissue development.

  15. Callus culture development of two varieties of Tagetes erecta and carotenoid production

    Directory of Open Access Journals (Sweden)

    Israel Benítez-García

    2014-05-01

    Conclusions: WF callus appeared to be a suitable candidate as a source of different carotenoids, and tested varieties could represent an alternative for further studies about in vitro pigment production.

  16. The durative use of suspension cells and callus for volatile oil by comparative with seeds and fruits in Capparis spinosa L.

    Directory of Open Access Journals (Sweden)

    Yongtai Yin

    Full Text Available Capparis spinosa is one of the most important eremophytes among the medicinal plants, and continued destruction of these plants poses a major threat to species survival. The development of methods to extract compounds, especially those of medicinal value, without harvesting the whole plant is an issue of considerable socioeconomic importance. On the basis of an established system for culture of suspension cells and callus in vitro, Gas Chromatograph-Mass Spectrometer (GC-MS was used for the volatile oil composition analyzing in seed, fruit, suspension cells and callus. Fatty acids were the major component, and the highest content of alkanes was detected in seed, with <1.0% in suspension cells and callus. Esters, olefins and heterocyclic compounds were significantly higher in fruit than in the other materials. The content of acid esters in the suspension cells and callus was significantly higher than in seed and fruit. This indicated that the suspension cells and callus could be helpful for increasing the value of volatile oil and replacing seeds and fruit partially as a source of some compounds of the volatile oil and may also produce some new medical compounds. The above results give valuable information for sustainable use of C. spinosa and provide a foundation for use of the C. spinosa suspension cells and callus as an ongoing medical resource.

  17. MAIL1 is essential for development of the primary root but not of anchor roots.

    Science.gov (United States)

    Ühlken, Christine; Hoth, Stefan; Weingartner, Magdalena

    2014-01-01

    MAIN-LIKE1 (MAIL1) is a ubiquitously expressed nuclear protein, which has a crucial function during root development. We have recently described loss of function mutants for MAIL1, in which the organization and function of the primary root meristem is lost soon after germination. Moreover cell differentiation is impaired resulting in primary root growth arrest soon after emergence. Here we show that mail1 mutants form several anchor roots from the hypocotyl to root junction. These anchor roots show similar defects in the organization of the stem cell niche as the primary root. In contrast, differentiation processes are not impaired and thus anchor roots seem to be able to compensate for the loss of primary root function. Our data show that MAIL1 is essential for specification of cell fate in the primary root but not in anchor roots.

  18. High Triterpenic Acids Production in Callus Cultures from Fruit Pulp of Two Apple Varieties.

    Science.gov (United States)

    Verardo, Giancarlo; Gorassini, Andrea; Ricci, Donata; Fraternale, Daniele

    2017-01-01

    Very rarely fruit pulp has been used in in vitro culture to produce secondary metabolites useful in promoting health. The aims of this work were the study of the best conditions to obtain the callus cultures from the pulp of two varieties of apples, Golden Delicious (GD) and "Mela Rosa Marchigiana" (MRM), and the quali-quantitative analysis of secondary metabolites produced by the two in vitro callus cultures. Callus was induced on both Murashige and Skoog and Gamborg B5 media containing various combinations of supplements. To achieve the maximum recovery of secondary metabolites produced, preliminary extraction tests were carried out on GD apple culture using two different organic solvents (MeOH and EtOAc). The quali-quantitative analysis of the methanolic extract of both cultures was carried out by ESI-MS n and GC-MS techniques. The GC-MS analysis revealed the presence of triterpenic acids, in particular, oleanolic, ursolic, maslinic, pomolic, tormentic, corosolic and annurcoic acid along with a phytosterol, β-sitosterol. In addition, GD callus culture produced phloridzin, absent in the MRM culture. In this last culture, however, the total amount of secondary metabolites was markedly higher. The in vivo production of these bioactive compounds were also quantified in the GD and MRM apple pulps. Apple pulps produced higher amounts of triterpenic acids in vitro than in vivo. The present work can be considered a method to amplify the production of important secondary metabolites which exert beneficial effects on human health. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. The influence of auxins on the biosynthesis of isoprene derivatives in callus cultures of Vaccinium corymbosum var. bluecrop.

    Science.gov (United States)

    Migas, Piotr; Luczkiewicz, Maria; Cisowski, Wojciech

    2006-01-01

    Callus cultures of Vaccinium corymbosum var. bluecrop were optimized for their isoprene derivatives production by supplementing Schenk-Hildebrandt (SH) medium with constant concentration of kinetin (2.32 microM) and two different amounts of selected auxins. Every auxin, except for IBA, used in 10-time higher concentration (2,4D, NAA, IAA, NOA) stimulated biosynthesis of beta-sitosterol and inhibited triterpene synthesis. Quantitative analysis of isoprene derivatives in callus biomass collected on the 25th day of the experiment proved that the analyzed callus of Vaccinium corymbosum var. bluecrop synthesized the highest amount of isoprene derivatives after subculturing on SH medium modified with 22.6 microM of 2,4D and 2.32 microM of kinetin.

  20. In Vitro Callus Induction and Growth of Stevia (Stevia rebaudiana Bertoni M. with Difference Concentrations of PEG (Polyethylene Glycol and Light Conditions

    Directory of Open Access Journals (Sweden)

    Mohamad Ana Syabana

    2017-06-01

    Full Text Available Stevia (Stevia rebaudiana Bert. M. is known as a natural non-caloric sweetener. This plants contain glycoside such steviosida type, mainly on the leave contain sweetness level between 200-300 cane sugar but the calorie is very low. This research was aimed to determine difference effects of PEG (Polyethylene Glycol concentrations and the light conditions on  Stevia (Stevia rebaudiana Bert. M. callus induction  in vitro. This research was conducted from April to June 2016 at Biotechnology Laboratory Faculty of Agriculture, Sultan Ageng Tirtayasa University. This research used a completely randomized design (CRD, which consisted of two factors with three replications. Concentrations of PEG as first factor consisted of four levels (0 mg/L, 5 mg/L, 15 mg/L, and 25 mg/L. Light conditions as second factor consisted of two levels (Dark and Light. The results showed that the concentrations of PEG (Polyethylene Glycol did not significantly effect the time of callus appearance and diameter of callus on 4, 5 and 6 weeks after planting. Dark condition was the best conditions for callus induction of stevia. The texture of callus was compact on all treatments and the callus dominant color produced is golden brown

  1. Anti-aging activities of Pyrus pyrifolia var culta plant callus extract

    African Journals Online (AJOL)

    saline (PBS, pH 7.4) at 95 °C for 2 h and filtering through .... callus extract also exhibited dose-dependent .... toxic effects on the skin. ... copper-containing enzyme that catalyzes two .... herbal extract: implication for the mechanism underlying.

  2. Are bone turnover markers capable of predicting callus consolidation during bone healing?

    Science.gov (United States)

    Klein, P; Bail, H J; Schell, H; Michel, R; Amthauer, H; Bragulla, H; Duda, G N

    2004-07-01

    The aim of this study was to determine the ability of the following bone turnover markers to monitor the course of callus consolidation during bone healing: Carboxy-terminal propeptide of procollagen type I (PICP), skeletal alkaline phosphatase (sALP), and amino-terminal propeptide of type III procollagen (PIlINP). Since interfragmentary movements have been proven to possess the ability to document the progression of bone healing in experimental studies, correlations between bone turnover markers and interfragmentary movements in vivo were investigated. Therefore, two different types of osteosyntheses representing different mechanical situations at the fracture site were compared in an ovine osteotomy model. Blood samples were taken preoperatively and postoperatively in weekly intervals over a nine-week healing period. At the same intervals, interfragmentary movements were measured in all sheep. After nine weeks, animals were sacrificed and the tibiae were evaluated both mechanically and histologically. Wide interindividual ranges were observed for all bone turnover markers. The systemic PICP level did not increase with callus consolidation. The bone-healing model seemed to influence the systemic level of PIIINP and sALP but no general correlation between bone turnover markers and interfragmentary movements could be detected. No differences between the different types of osteosyntheses and thus the different mechanical situations were observed. All analyzed markers failed as general predictors for the course of callus consolidation during bone healing.

  3. Prerequisites for biocrops Up-Scaling II: An assessment of the vegetative method of propagation for oilferous plant species with potential for biodiesel production

    International Nuclear Information System (INIS)

    Nyomola, A.M.S.

    2013-01-01

    The rooting ability of hardwood cuttings from six selected non- edible oilferous plant species with potential for biodiesel production namely Telfairia pedata, Jatropha curcas, Excoecaria bussei, Croton macrostachyus, Croton megalocarpus and Ricinus communis was assessed on 4 different potting media i.e. forest top soil, sandy, clay and loamy soil. The proportion of cuttings that rooted were evaluated for the root numbers, root length, root dry weight, sprouting and callus formation. Complete randomized design (CRD) was adopted for the experiments and each of the species was replicated 4 times using 5 hardwood cuttings per plot (5 L capacity pots). An ANOVA was computed to test for the significance of variations between all treatments while Tukey-Kramer Multiple Comparisons test was used to test for the differences between treatment means. Jatropha curcas rooted well both in a non-mist propagator and open nursery pots, Telfairia pedata rooted only in the nursery pots, Excoecaria bussei sprouted in both non-mist propagator and open nursery pots but did not root throughout the entire experimental period of 3 months. Croton macrostachyus, Croton megalocarpus and Ricinus communis neither sprouted nor rooted calling for propagation methods other than using hardwood cuttings. Possibly all Excoecaria bussei cuttings which callused would have eventually differentiated into roots had the experiment been allowed to run for more than 3 months. (author)

  4. Differential effects of fine root morphology on water dynamics in the root-soil interface

    Science.gov (United States)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  5. Development of frost tolerance in winter wheat as modulated by differential root and shoot temperature

    NARCIS (Netherlands)

    Windt, C.W.; van Hasselt, P.R

    Winter wheat plants (Triticum aestivum L. cv. Urban), grown in nutrient solution, were exposed to differential shoot/root temperatures (i.e., 4/4, 4/20, 20/4 and 20/20 degrees C) for six weeks. Leaves grown at 4 degrees C showed an increase in frost tolerance from - 4 degrees C down to -11 degrees

  6. EFFECT OF AUXIN AND CYTOKININ ON VINCRISTINE PRODUCTION BY CALLUS CULTURES OF CATHARANTHUS ROSEUS L. (APOCYNACEAE

    Directory of Open Access Journals (Sweden)

    Chinnamadasamy Kalidass

    2009-11-01

    Full Text Available Callus cultures of Catharanthus roseus L. were established to verify whether they produce vincristine as the intact plant. Different growth regulator combinations were applied to Murashige and Skoog (MS medium to influence the level of production of vincristine. The effects of various combinations (0.5 µM to 3.0 µM of auxin and cytokinin on the growth and accumulation of vincristine were investigated. MS medium supplemented with 2,4-Dichlorophenoxy acetic acid (2,4-D 1.0 µM and 6-furfurylaminopurine (Kinetin 1.0 µM was used to support the growth of callus cultures and the maximum amount of dry biomass (598.04 mg was produced after seven weeks of culture. High performance liquid chromatographic (HPLC analysis of methanol extracts from callus cultures of C. roseus revealed that the cultures produced vincristine. The concentrations of the growth regulators alpha-naphthalene acetic acid (NAA and kinetin played a critical role in the production of vincristine.

  7. Effects of plant growth regulators on callus induction from Cananga ...

    African Journals Online (AJOL)

    The Cananga odorata callus was initiated from petals of the C. odorata flowers on MS medium and B5 vitamins containing 30 g/L sugar and 3 g/L agar. The medium was also supplemented with different concentrations of 1-naphtalene acetic acid (NAA), and combinations of NAA with 6-benzylaminpurine (BAP) as the plant ...

  8. Phytophthora cinnamon causing stem canker and root rot of nursery-grown Platanus × acerifolia: first report in the Northern emisphere

    Directory of Open Access Journals (Sweden)

    Massimo PILOTTI

    2014-05-01

    Full Text Available Lethal stem and root cankers were observed in nursery-grown Platanus × acerifolia trees in Rome. Externally, canker lesions appeared as bluish or blackish areas starting from the stem base and extending upward. Inner bark was necrotised. In some cases an irregularly-shaped callus reaction attempted to heal the bark lesions. Black-stained necrosis affected the primary roots and the small branch roots to different degrees. The presence of Ceratocystis platani was excluded in the diseased trees. Phytophthora-like organisms were isolated from the altered tissue. Morphological and ITS-region-based analyses identified the isolates as Phytophthora cinnamomi. A pathogenicity test confirmed P. cinnamomi as the causal agent of the disease here defined as: stem canker and root rot of plane tree. This is the first report of P. cinnamomi in Platanus spp. in the Northern emisphere.

  9. High capacity of plant regeneration from callus of interspecific hybrids with cultivated barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Jensen, C. J.; Andersen, B.

    1986-01-01

    Callus was induced from hybrids between cultivated barley (Hordeum vulgare L. ssp. vulgare) and ten species of wild barley (Hordeum L.) as well as from one backcross line ((H. lechleri .times. H. vulgare) .times. H. vulgare). Successful callus induction and regeneration of plants were achieved from...... explants of young spikes on the barley medium J 25-8. The capacity for plant regeneration was dependent on the wild parental species. In particular, combinations with four related wild species, viz. H. jubatum, H. roshevitzii, H. lechleri, and H. procerum, regenerated high numbers of plants from calli....

  10. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids

    Science.gov (United States)

    Schaub, Patrick; Rodriguez-Franco, Marta; Cazzonelli, Christopher Ian; Álvarez, Daniel; Wüst, Florian

    2018-01-01

    The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of β-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while β-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in β-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state β-carotene amounts to up to 500 μg g-1 dry mass. Furthermore, we identified oxidative β-carotene degradation products which correlated with pathway activities, yielding β-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of β-carotene sequestration by co-localization experiments which revealed that β-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high

  11. Effects of plant growth regulators on seed germination and callus induction of hylocereus costaricensis

    International Nuclear Information System (INIS)

    Sheng, W.K.

    2016-01-01

    Dragon fruit (Hylocereus costaricensis) belongs to the family Cactaceae and are climbing vines which have received worldwide attention in recent years. However, there are still lack of information on the protocols for the establishment of In vitro culture system. In the present study, seed germination percentage were determined by culturing seeds on semi-solid Murashige and Skoog medium (MS) supplemented with 1 ppm 6-Benzylaminopurine (BAP) together with either 0, 0.5 or 0.8 ppm of Indole-3-butyric acid (IBA). Germination percentage was the highest by using plant growth regulators (PGRs) combination of 1 ppm BAP and 0 ppm IBA (93.33%). Subsequently, the cotyledons from seedlings of the germinated seeds were used for subsequent callus induction. Small pieces of cotyledons were excised and cultured on MS medium fortified with 0.45, 0.9, 1.8, 2.7, 3.6, and 4.5 ppm of 2,4-Dichlorophenoxyacetic acid (2,4-D) together with either 0, 0.9 or 1.8 ppm of BAP. Callus induction percentage was highest using the plant growth regulators (PGRs) combination of 3.6 ppm 2,4-D and 1.8 ppm BAP (75%). Hence, 3.6 ppm of 2,4-D and 1.8 ppm BAP was the best combination for callus induction of Hylocereus costaricensis. (author)

  12. Repression of BLADE-ON-PETIOLE genes by KNOX homeodomain protein BREVIPEDICELLUS is essential for differentiation of secondary xylem in Arabidopsis root.

    Science.gov (United States)

    Woerlen, Natalie; Allam, Gamalat; Popescu, Adina; Corrigan, Laura; Pautot, Véronique; Hepworth, Shelley R

    2017-06-01

    Repression of boundary genes by KNOTTED1-like homeodomain transcription factor BREVIPEDICELLUS promotes the differentiation of phase II secondary xylem in Arabidopsis roots. Plant growth and development relies on the activity of meristems. Boundaries are domains of restricted growth that separate forming organs and the meristem. Class I KNOX homeodomain transcription factors are important regulators of meristem maintenance. Members of this class including BREVIDICELLUS also called KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (BP/KNAT1) fulfill this function in part by spatially regulating boundary genes. The vascular cambium is a lateral meristem that allows for radial expansion of organs during secondary growth. We show here that BP/KNAT1 repression of boundary genes plays a crucial role in root secondary growth. In particular, exclusion of BLADE-ON-PETIOLE1/2 (BOP1/2) and other members of this module from xylem is required for the differentiation of lignified fibers and vessels during the xylem expansion phase of root thickening. These data reveal a previously undiscovered role for boundary genes in the root and shed light on mechanisms controlling wood development in trees.

  13. Novel MtCEP1 peptides produced in vivo differentially regulate root development in Medicago truncatula.

    Science.gov (United States)

    Mohd-Radzman, Nadiatul A; Binos, Steve; Truong, Thy T; Imin, Nijat; Mariani, Michael; Djordjevic, Michael A

    2015-08-01

    Small, post-translationally modified and secreted peptides regulate diverse plant developmental processes. Due to low natural abundance, it is difficult to isolate and identify these peptides. Using an improved peptide isolation protocol and Orbitrap mass spectrometry, nine 15-amino-acid CEP peptides were identified that corresponded to the two domains encoded by Medicago truncatula CEP1 (MtCEP1). Novel arabinosylated and hydroxylated peptides were identified in root cultures overexpressing MtCEP1. The five most abundant CEP peptides were hydroxylated and these species were detected also in low amounts in vector control samples. Synthetic peptides with different hydroxylation patterns differentially affected root development. Notably, the domain 1 peptide hydroxylated at Pro4 and Pro11 (D1:HyP4,11) imparted the strongest inhibition of lateral root emergence when grown with 5mM KNO3 and stimulated the highest increase in nodule number when grown with 0mM KNO3. Inhibition of lateral root emergence by D1:HyP4,11 was not alleviated by removing peptide exposure. In contrast, the domain 2 peptide hydroxylated at Pro11 (D2:HyP11) increased stage III-IV lateral root primordium numbers by 6-fold (P emerge. Auxin addition at levels which stimulated lateral root formation in wild-type plants had little or no ameliorating effect on CEP peptide-mediated inhibition of lateral root formation or emergence. Both peptides increased and altered the root staining pattern of the auxin-responsive reporter GH3:GUS suggesting CEPs alter auxin sensitivity or distribution. The results showed that CEP primary sequence and post-translational modifications influence peptide activities and the improved isolation procedure effectively and reproducibly identifies and characterises CEPs. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Efficient production of a bioactive Bevacizumab monoclonal antibody using the 2A self-cleavage peptide in transgenic rice callus

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2016-08-01

    Full Text Available Bevacizumab, a humanized monoclonal antibody (mAb targeting to the vascular endothelial growth factor (VEGF, has been widely used in clinical practice for the treatment of multiple cancers. Bevacizumab was mostly produced by the mammalian cell expression system. We here reported the first plant-derived Bevacizumab by using transgenic rice callus as an alternative gene expression system. Codon-optimized Bevacizumab light chain (BLC and heavy chain (BHC genes were designed, synthesized as a polyprotein with a 2A self-cleavage linker peptide from the Foot-and-mouth disease virus (FMDV, cloned into a plant binary vector under a constitutive maize ubiquitin promoter, and transformed into rice nuclear genome through Agrobacterium-mediated transformation. Southern blot and western blot analyses confirmed the integration and expression of BLC and BHC genes in transgenic rice callus. Enzyme linked immunosorbent assay (ELISA analysis indicated that the rice-derived Bevacizumab mAb was biologically active and the recombinant mAb was expressed at high levels (160.7-242.8 mg kg-1FW in transgenic rice callus. The mAb was purified by using protein A affinity chromatography and the purified antibody was tested for its binding affinity with its target hVEGF antigen by ELISA. Rice callus produced Bevacizumab and a commercial Bevacizumab (Avastin were shown to have similar binding affinity to hVEGF. These results indicated that rice callus produced Bevacizumab could have similar biological activity and might potentially be used as a cost-effective biosimilar molecule in future cancer treatment.

  15. Production of isoflavones, daidzein and genistein in callus cultures of Pueraria candollei Wall. ex Benth. var. mirifica

    Directory of Open Access Journals (Sweden)

    Sanha Panichajakul

    2006-03-01

    Full Text Available Callus cultures of Pueraria candollei var. mirifica were first established from various parts of explants with the objective of isoflavones, daidzein and genistein production. The cultures were studied on their growth and isoflavone production by various combinations of growth regulators, auxins and cytokinins at 25±2ºC. Daidzein and genistein accumulated in the cells were determined. The results revealed that callus of P. candollei var. mirifica was capable of producing high level of both isoflavones consistently. The culture temperature played an important role in the growth and isoflavone production. Over twofold of growth and threefold of isoflavone production were demonstrated at 32±2ºC. The callus established from the stems in MS medium supplemented with 4.5 µM 2,4-D and 0.46 µM kinetin produced the highest yield of daidzein (5.12 mg/g, DW and genistein (2.77 mg/g, DW, which was remarkably higher than the intact plants.

  16. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    Science.gov (United States)

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  17. Determination of abscisic acid and its glucosyl ester in embryogenic callus cultures of Vitis vinifera in relation to the maturation of somatic embryos using a new liquid chromatography-ELISA analysis method.

    Science.gov (United States)

    Prado, María Jesús; Largo, Asier; Domínguez, Cristina; González, María Victoria; Rey, Manuel; Centeno, María Luz

    2014-06-15

    The levels of abscisic acid (ABA), its conjugate ABA-GE, and IAA were determined in embryogenic calli of Vitis vinifera L. (cv. Mencía) cultured in DM1 differentiation medium, to relate them to the maturation process of somatic embryos. To achieve this goal, we developed an analytical method that included two steps of solid-phase extraction, chromatographic separation by HPLC, ABA-GE hydrolysis, and sensitive ELISA quantification. Because the ABA immunoassay was based on new polyclonal antibodies raised against a C4'-ABA conjugate, the assay was characterized (detection limit, midrange, measure range, and cross-reaction) and validated by a comparison of the ABA data obtained with this ELISA procedure and with a physicochemical method (LC-ESI-MS/MS). Radioactive-labeled internal standards were initially added to callus extracts to correct the losses of plant hormones, and thus assure the accuracy of the measurements. The endogenous concentration of ABA in the embryogenic callus cultured in DM1 medium was doubled at the fifth week of culture, concurring with the maturation process of somatic embryos, as indicated by the accumulation of carbohydrates observed through histological analysis. The ABA-GE content was higher than ABA, decreasing at 21 days of culture in DM1 medium but increasing thereafter. The data suggest the involvement of the synthesis and conjugation of ABA in the final stages of development in grapevine somatic embryos from embryogenic callus. IAA levels were low, suggesting that auxin plays no significant role during the maturation of somatic embryos. In addition, the lower ABA levels in calli cultured in DM differentiation medium with PGRs, a medium presenting high precocious germination and deficiencies in somatic embryo development indicate that an increase in ABA content during the development of somatic embryos in grapevine is necessary for their correct maturation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. The effect of plant growth regulators on callus initiation in wormwood ...

    African Journals Online (AJOL)

    Studies were carried out in the Biotechnology laboratory of Plant Science Department of Ahmadu Bello University Zaria, Nigeria to study the effect of some plant growth regulators on the in vitro initiation of callus using the leaves of Chiyong variety of Artemisia annua. The explants were sterilized and incubated on Murashige ...

  19. Propagation of jarrah (Eucalyptus marginata) by organ and tissue culture

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, M.J.; McComb, J.A.

    1982-01-01

    Micropropagation methods are described for the production of clonal lines from Eucalyptus marginata (jarrah) seedlings. Nodal explants from mature trees can also yield shoot cultures, but a high frequency of contamination occurs among such explants. Uncontaminated callus cultures can be produced from mature trees by culturing stamen filaments and shoots can subsequently be regenerated from this callus. The rooting percentage of shoot cultures from either nodes or stamen callus of mature trees is low compared with that from seedling explants. Considerable variation was observed between trees in the ability of stamen callus to regenerate shoots and in the frequency of rooting. (Refs. 27)

  20. Response to lead pollution: mycorrhizal Pinus sylvestris forms the biomineral pyromorphite in roots and needles.

    Science.gov (United States)

    Bizo, Maria L; Nietzsche, Sandor; Mansfeld, Ulrich; Langenhorst, Falko; Majzlan, Juraj; Göttlicher, Jörg; Ozunu, Alexandru; Formann, Steffi; Krause, Katrin; Kothe, Erika

    2017-06-01

    The development of mycorrhized pine seedlings grown in the presence of lead was assessed in order to investigate how higher plants can tolerate lead pollution in the environment. Examination with scanning electron microscopy (SEM) revealed that Pb uptake was prominent in the roots, while a smaller amount was found in pine needles, which requires symplastic uptake and root-to-shoot transfer. Lead was concentrated in nanocrystalline aggregates attached to the cell wall and, according to elemental microanalyses, is associated with phosphorus and chlorine. The identification of the nanocrystalline phase in roots and needles was performed by transmission electron microscopy (TEM) and synchrotron X-ray micro-diffraction (μ-XRD), revealing the presence of pyromorphite, Pb 5 [PO 4 ] 3 (Cl, OH), in both roots and needles. The extracellular embedding of pyromorphite within plant cell walls, featuring an indented appearance of the cell wall due to a callus-like outcrop of minerals, suggests a biogenic origin. This biomineralization is interpreted as a defense mechanism of the plant against lead pollution.

  1. Development of highly regenerable callus lines and biolistic transformation of turf-type common bermudagrass [Cynodon dactylon (L.) Pers.].

    Science.gov (United States)

    Li, L; Qu, R

    2004-01-01

    Common bermudagrass, Cynodon dactylon, is a widely used warm-season turf and forage species in the temperate and tropical regions of the world. Improvement of bermudagrass via biotechnology depends on improved tissue culture responses, especially in plant regeneration, and a successful scheme to introduce useful transgenes. When the concentration of 6-benzylaminopurine was adjusted in the culture medium, yellowish, compact calluses were observed from young inflorescence tissue culture of var. J1224. Nine long-term, highly regenerable callus lines (including a suspension-cultured line) were subsequently established, of which six were used for biolistic transformation. Five independent transgenic events, with four producing green plants, were obtained following hygromycin B selection from one callus line. Three transgenic events displayed resistance to the herbicide glufosinate, and one of these showed beta-glucuronidase activity since the co-transformation vector used in the experiments contained both the gusA and bar genes.

  2. CsSCL1 is differentially regulated upon maturation in chestnut microshoots and is specifically expressed in rooting-competent cells.

    Science.gov (United States)

    Vielba, Jesús M; Díaz-Sala, Carmen; Ferro, Enrique; Rico, Saleta; Lamprecht, María; Abarca, Dolores; Ballester, Antonio; Sánchez, Conchi

    2011-10-01

    The Castanea sativa SCL1 gene (CsSCL1) has previously been shown to be induced by auxin during adventitious root (AR) formation in rooting-competent microshoots. However, its expression has not previously been analyzed in rooting-incompetent shoots. This study focuses on the regulation of CsSCL1 during maturation and the role of the gene in the formation of AR. The expression of CsSCL1 in rooting-incompetent microshoots and other tissues was investigated by quantitative reverse transcriptase--polymerase chain reaction. The analysis was complemented by in situ hybridization of the basal segments of rooting-competent and --incompetent microshoots during AR induction, as well as in AR and lateral roots. It was found that CsSCL1 is upregulated by auxin in a cell-type- and phase-dependent manner during the induction of AR. In root-forming shoots, CsSCL1 mRNA was specifically located in the cambial zone and derivative cells, which are rooting-competent cells, whereas in rooting-incompetent shoots the hybridization signal was more diffuse and evenly distributed through the phloem and parenchyma. CsSCL1 expression was also detected in lateral roots and axillary buds. The different CsSCL1 expression patterns in rooting-competent and -incompetent microshoots, together with the specific location of transcripts in cell types involved in root meristem initiation and in the root primordia of AR and lateral roots, indicate an important role for the gene in determining whether certain cells will enter the root differentiation pathway and its involvement in meristem maintenance.

  3. Rooting, growth, and color mutation of poinsettias affected by gamma radiation

    International Nuclear Information System (INIS)

    Lee, Eun Kyung; Kim, Won Hee; Kim, Seung Tae; Kang, Si Yong

    2010-01-01

    This experiment was carried out to investigate the effects of gamma-radiation on the rooting, growth, and color mutation in poinsettia. Using 10 poinsettia varieties ('Lollipop', 'Little Peace', 'Happy Day', 'Early Bird', 'Pixy Red', 'Happy Time', 'Heidi', 'Red Bell', 'Clara', and 'Scarlet') bred by National Institute of Horticultural and Herbal Science, 100 Gy of gamma ray was irradiated at the stage of callused cuttings. Four weeks after sticking cuttings in the rooting media, 8 cultivars showed 100% of root formation, but 'Early Bird' rooted 24.4% and even died off during the cutting propagation. After planting rooted cuttings, survival rate until flowering time varied among irradiated cultivars. While 'Pixy Red' and 'Heidi' survived about 98%, 'Clara', 'Happy Day', and 'Early Bird' survived lesser than 30%. All irradiated plants showed remarkably shorter plant height, lesser branch numbers than non-irradiated control plants. Thirty color mutants were obtained among 281 plants survived until flowering time. Nine were complete color mutated branches, whereas 21 mutants were partially color mutated bracts and transitional leaves. Color patterns mutated by 100 Gy of gamma ray were divided into pink, hot pink, light red and spotted (pink spots with red main color). Pink mutants were commonly obtained. Complete color mutants were discovered from 4 plants of 'Pixy Red', 2 plants of 'Red Bell' and 3 plants of Lollipop

  4. Differential metabolic responses of Beauveria bassiana cultured in pupae extracts, root exudates and its interactions with insect and plant.

    Science.gov (United States)

    Luo, Feifei; Wang, Qian; Yin, Chunlin; Ge, Yinglu; Hu, Fenglin; Huang, Bo; Zhou, Hong; Bao, Guanhu; Wang, Bin; Lu, Ruili; Li, Zengzhi

    2015-09-01

    Beauveria bassiana is a kind of world-wide entomopathogenic fungus and can also colonize plant rhizosphere. Previous researches showed differential expression of genes when entomopathogenic fungi are cultured in insect or plant materials. However, so far there is no report on metabolic alterations of B. bassiana in the environments of insect or plant. The purpose of this paper is to address this problem. Herein, we first provide the metabolomic analysis of B. bassiana cultured in insect pupae extracts (derived from Euproctis pseudoconspersa and Bombyx mori, EPP and BMP), plant root exudates (derived from asparagus and carrot, ARE and CRE), distilled water and minimal media (MM), respectively. Principal components analysis (PCA) shows that mycelia cultured in pupae extracts and root exudates are evidently separated and individually separated from MM, which indicates that fungus accommodates to insect and plant environments by different metabolic regulation mechanisms. Subsequently, orthogonal projection on latent structure-discriminant analysis (OPLS-DA) identifies differential metabolites in fungus under three environments relative to MM. Hierarchical clustering analysis (HCA) is performed to cluster compounds based on biochemical relationships, showing that sphingolipids are increased in BMP but are decreased in EPP. This observation further implies that sphingolipid metabolism may be involved in the adaptation of fungus to different hosts. In the meantime, sphingolipids are significantly decreased in root exudates but they are not decreased in distilled water, suggesting that some components of the root exudates can suppress sphingolipid to down-regulate sphingolipid metabolism. Pathway analysis finds that fatty acid metabolism is maintained at high level but non-ribosomal peptides (NRP) synthesis is unaffected in mycelia cultured in pupae extracts. In contrast, fatty acid metabolism is not changed but NRP synthesis is high in mycelia cultured in root exudates

  5. Enraizamiento in vitro de Dioscoreas sp. In vitro rootting of Dioscoreas sp.

    Directory of Open Access Journals (Sweden)

    Jarma Alfredo

    2003-12-01

    Full Text Available El presente estudio se realizó en el Laboratorio de Cultivo de Tejidos Vegetales de la Universidad de Córdoba en el año 2000 con el objetivo de evaluar el efecto del ácido naftalenacético (ANA en el medio de cultivo sobre el enraizamiento in vitro de tres cultivares de ñame (Dioscorea sp.. Se estudió el efecto de cuatro concentraciones del regulador de crecimiento (0, 0.3, 0.6 y 0.9 mg/1 sobre tres cultivares de ñame (Diamantes-22, 003 y 005. Se empleó un experimento trifactorial con diseño aleatorio y 20 repeticiones; cada unidad experimental estuvo conformada por un recipiente de vidrio que contenía el medio de cultivo y el explante (segmento nodal. Las variables consideradas fueron número y grosor de raíces, oxidación del medio de cultivo y producción de callo. Los resultados indicaron que tanto la hormona como el genotipo tuvieron efecto sobre todas las variables consi­deradas en el estudio y que la interacción fue importante (PThe Universidad de Córdoba s Vegetal Tissue Culture Laboratory evaluated the effect of naphthalenacetic acid (NAA on in vitro rooting of three yam cultivars (Dioscorea sp. in 2000. The effect of four hormone levels (0, 0.3, 0.6 and 0.9 mg/1 was studied on three yam cultivars (Diamantes-22,003 and 005. A random experimental design was used employing 4x3 factorial arrangement and 20 repetitions; each experimental unit consisted of a glass receptacle containing the culture medium and the explant (one segment nodal. The variables considered were the number of roots and their thickness, culture medium oxidation and callus production. Findings showed that both the hormone and genotype had an effect on all those variables considered in the study and interaction was significant (P <0.05 for callus production and culture medium oxidation. The 005 cultivar showed the greatest root number and thickness values. It was also determined that when a 0.6 and 0.9 mg/1 dose of auxin was applied, root production and

  6. Influence of hydroxyurea on nucleic acids content and 3H-uridine incorporation in callus and tumorous tobacco tissues cultured in vitro

    Directory of Open Access Journals (Sweden)

    A. Bielecka

    2015-01-01

    Full Text Available In callus and tumor tissues of Nicotiana tabacum cultured for 39 days in media supplemented with various concentrations of hydroxyurea (1.3 x 10-4 M - 1.3 x 10-3 M a decrease of DNA content (ca. 24 per cent in callus tissue and ca. 23 per cent in tumour tissue and a decrease of RNA content (over 10 per cent and ca. 9 per cent in callus and tumour tissue, respectively was observed. The autoradiographic method showed that a long-lasting action of this com-pound inhibits RNA synthesis. A stronger inhibitory influence of hydroxyurea upon incorporation of 3H-uridine from the incubation medium was revealed.

  7. Stress differentially impacts reserve pools and root exudation: implications for ecosystem functioning and carbon balance

    Science.gov (United States)

    Landhäusser, Simon; Karst, Justine; Wiley, Erin; Gaster, Jacob

    2016-04-01

    Environmental stress can influence carbon assimilation and the accumulation and distribution of carbon between growth, reserves, and exudation; however, it is unclear how these processes vary by different stress types. Partitioning of carbon to growth and reserves in plants might also vary between different organs. Roots reserves are of particular interest as they link the plant with the soil carbon cycle through exudation. Simple models of diffusion across concentration gradients predict the more C reserves in roots, the more C should be exuded from roots. However, the mechanisms underlying the accumulation and loss of C from roots may differ depending on the stress experienced by the plants. In a controlled study we tested whether different types of stresses (shade, cold soil, and drought) have differential effects on the distribution, abundance, and form (sugar vs. starch) of carbohydrates in seedlings, and whether these changes alone could explain differences in root exudation between stress types. Non-structural carbohydrate (NSC) concentration and pool sizes varied by stress type and between organs. Mass-specific C exudation increased with fine root sugar concentration; however, stress type affected exudation independently of reserve concentration. Seedlings exposed to cold soils exuded the most C on a per root mass basis followed by shade and drought. Through 13C labeling, we also found that depending on the stress type, aspen seedlings may be less able to control the loss of C to the soil compared with unstressed seedlings, resulting in more C leaked to the rhizosphere. The loss of C beyond that predicted by simple concentration gradients might have important implications for ecosystem functioning and carbon balance. If stressed plants lose proportionally more carbon to the soil, existing interactions between plants and soils may decouple under stress, and may include unexpected C fluxes between trees, soils and the atmosphere with a changing climate.

  8. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.

    Directory of Open Access Journals (Sweden)

    Tim Wehner

    Full Text Available Numerous experimental fracture healing studies are performed on rats, in which different experimental, mechanical parameters are applied, thereby prohibiting direct comparison between each other. Numerical fracture healing simulation models are able to predict courses of fracture healing and offer support for pre-planning animal experiments and for post-hoc comparison between outcomes of different in vivo studies. The aims of this study are to adapt a pre-existing fracture healing simulation algorithm for sheep and humans to the rat, to corroborate it using the data of numerous different rat experiments, and to provide healing predictions for future rat experiments. First, material properties of different tissue types involved were adjusted by comparing experimentally measured callus stiffness to respective simulated values obtained in three finite element (FE models. This yielded values for Young's moduli of cortical bone, woven bone, cartilage, and connective tissue of 15,750 MPa, 1,000 MPa, 5 MPa, and 1 MPa, respectively. Next, thresholds in the underlying mechanoregulatory tissue differentiation rules were calibrated by modifying model parameters so that predicted fracture callus stiffness matched experimental data from a study that used rigid and flexible fixators. This resulted in strain thresholds at higher magnitudes than in models for sheep and humans. The resulting numerical model was then used to simulate numerous fracture healing scenarios from literature, showing a considerable mismatch in only 6 of 21 cases. Based on this corroborated model, a fit curve function was derived which predicts the increase of callus stiffness dependent on bodyweight, fixation stiffness, and fracture gap size. By mathematically predicting the time course of the healing process prior to the animal studies, the data presented in this work provides support for planning new fracture healing experiments in rats. Furthermore, it allows one to transfer and

  9. Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cells.

    Science.gov (United States)

    Iwai, H; Ishii, T; Satoh, S

    2001-10-01

    When leaf disks from haploid plants of Nicotiana plumbaginifolia Viv. were transformed with T-DNA and cultured on shoot-inducing medium, nonorganogenic callus. designated nolac (for non-organogenic callus with loosely attached cells), appeared on approximately 7% of leaf disks. In contrast, normal callus was generated on T-DNA-transformed leaf disks from diploid plants and on non-transformed leaf disks from haploid and diploid plants. Transmission electron microscopy revealed that the middle lamellae and the cell walls of one line of mutant callus (nolac-H14) were barely stained by ruthenium red. even after demethylesterification with NaOH, whereas the entire cell wall and the middle lamella were strongly stained in normal callus. In cultures of nolac-H14 callus, the level of sugar components of pectic polysaccharides in the hemicellulose fraction was reduced and that in the culture medium was elevated, as compared with cultures of normal callus. These results indicate that pectic polysaccharides are not retained in the cell walls and middle lamellae of nolac-H14 callus. In nolac-H14, the ratio of arabinose to galactose was low in the pectic polysaccharides purified from all cell wall fractions and from the medium, in particular, in the hemicellulose fractions. The low levels of arabinofuranosyl (T-Araf, 5-Araf, 2,5-Araf, and 3,5-Araf) residues in the pectic polysaccharides of the hemicellulosic fraction of nolac-H,14 indicated that no neutral-sugar side chains, composed mainly of linear arabinan. were present in nolac-H14. Arabinose-rich pectins. which are strongly associated with cellulose-hemicellulose complexes, might play an important role in intercellular attachment in the architecture of the cell wall.

  10. The effect of plant growth regulators on callus induction somatic embryogenesis of hybird tomato

    International Nuclear Information System (INIS)

    Jan, S. A.; Shah, S. H.; Ali, S.; Ali, G. H.

    2015-01-01

    Efficient tissue culture system is important for transformation of important genes in hybrid tomato cultivars. The present study was undertaken to develop an efficient tissue culture system for hybrid tomato cultivar Peto-86. The young primary leaves and stems were inoculated into five different MS media having different concentrations of plant growth regulators in different combinations for callus induction, somatic embryogenesis and for both direct and indirect regeneration. Maximum callus induction frequency 90 percentage was achieved with MS media containing 2,4-D 4 mg L-1 and BAP 0.5 mg L-1. The direct somatic embryogenesis was found highest on MS media supplemented with 2,4-D 4 mg L-1 and BAP 0.5 mg L-1. Maximum indirect regeneration frequency 87 percentage was achieved from primary leaves explants with MS media containing IAA 0.5 mg L-1 and BAP 3 mg L-1 and highest direct regeneration frequency 77% was obtained from primary leaves explants with MS media containing NAA 1 mg L-1 and BAP 3 mg L-1. The high concentration of 2,4-D increased callus induction and somatic embryogenesis frequencies while the high concentration of BAP increased regeneration frequency. An improved tissue culture system of hybrid tomato cultivar Peto-86 was established and it may be recommended for further transformation experiments. (author)

  11. Endochondral fracture healing with external fixation in the Sost knockout mouse results in earlier fibrocartilage callus removal and increased bone volume fraction and strength.

    Science.gov (United States)

    Morse, A; Yu, N Y C; Peacock, L; Mikulec, K; Kramer, I; Kneissel, M; McDonald, M M; Little, D G

    2015-02-01

    Sclerostin deficiency, via genetic knockout or anti-Sclerostin antibody treatment, has been shown to cause increased bone volume, density and strength of calluses following endochondral bone healing. However, there is limited data on the effect of Sclerostin deficiency on the formative early stage of fibrocartilage (non-bony tissue) formation and removal. In this study we extensively investigate the early fibrocartilage callus. Closed tibial fractures were performed on Sost(-/-) mice and age-matched wild type (C57Bl/6J) controls and assessed at multiple early time points (7, 10 and 14days), as well as at 28days post-fracture after bony union. External fixation was utilized, avoiding internal pinning and minimizing differences in stability stiffness, a variable that has confounded previous research in this area. Normal endochondral ossification progressed in wild type and Sost(-/-) mice with equivalent volumes of fibrocartilage formed at early day 7 and day 10 time points, and bony union in both genotypes by day 28. There were no significant differences in rate of bony union; however there were significant increases in fibrocartilage removal from the Sost(-/-) fracture calluses at day 14 suggesting earlier progression of endochondral healing. Earlier bone formation was seen in Sost(-/-) calluses over wild type with greater bone volume at day 10 (221%, p<0.01). The resultant Sost(-/-) united bony calluses at day 28 had increased bone volume fraction compared to wild type calluses (24%, p<0.05), and the strength of the fractured Sost(-/-) tibiae was greater than that that of wild type fractured tibiae. In summary, bony union was not altered by Sclerostin deficiency in externally-fixed closed tibial fractures, but fibrocartilage removal was enhanced and the resultant united bony calluses had increased bone fraction and increased strength. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  12. Effects of gamma irradiation on nucellar callus production of the Valencia sweet orange (Citrus Sinensis Osb.) in vitro

    International Nuclear Information System (INIS)

    Pasqual, M.; Ando, A.

    1990-01-01

    Nucelli extracted from developing fruits with twelve weeks after pollination were cultured in vitro, on MS medium supplemented (in mg/l) by: thiamine H Cl 0.2; piroxidine H Cl 1.0; nicotinic acid 1.0; meso inositol 100; malt extract; sucrose 50.000; and agar 8.000 with ph = 5.7. The irradiation at 0.0; 0.5; 1.0; 2.0; 4.0; 8.0; and 12.0 kR doses was applied on, only medium, only nucellus, and medium and nucellus together. Irradiation of only nucellus and both nucellus and medium, at the same time, showed similar effects. Low doses of irradiation (until 2 kR) decrease the number of differential embryoids. The irradiation of culture medium, mainly at high doses, increases callus proliferation. (author)

  13. Chemical characterization and anti-inflammatory effect of rauvolfian, a pectic polysaccharide of Rauvolfia callus.

    Science.gov (United States)

    Popov, S V; Vinter, V G; Patova, O A; Markov, P A; Nikitina, I R; Ovodova, R G; Popova, G Yu; Shashkov, A S; Ovodov, Yu S

    2007-07-01

    The pectic polysaccharide named rauvolfian RS was obtained from the dried callus of Rauvolfia serpentina L. by extraction with 0.7% aqueous ammonium oxalate. Crude rauvolfian RS was purified using membrane ultrafiltration to yield the purified rauvolfian RSP in addition to glucan as admixture from the callus, with molecular weights 300 and 100-300 kD, respectively. A peroral pretreatment of mice with the crude and purified samples of rauvolfian (RS and RSP) was found to decrease colonic macroscopic scores, the total area of damage, and tissue myeloperoxidase activity in colons as compared with a colitis group. RS and RSP were shown to stimulate production of mucus by colons of the colitis mice. RSP appeared to be an active constituent of the parent RS. The glucan failed to possess anti-inflammatory activity.

  14. Synthesis of deuterium-labelled substrates for the study of oleuropein biosynthesis in Olea europaea callus cultures.

    Science.gov (United States)

    Serrilli, Anna Maria; Maggi, Agnese; Casagrande, Valentina; Bianco, Armandodoriano

    2016-01-01

    We propose the cell culture approach to investigate oleuropein (1) biogenesis in Olea europaea L. We suggest employing olive callus cultures to identify the iridoidic precursor of oleuropein. In fact, we confirmed that callus cells from olive shoot explants are able to produce key secoiridoid as 1. To enable this approach, we synthesised and characterised deuterium-labelled iridoidic precursors belonging both to the loganin and the 8-epiloganin series. These iridoids are [7,8-(2)H2]-7-deoxy-8-epi-loganin (2(D)), [8,10-(2)H2]-8-epi-loganin (4(D)) and [7,8-(2)H2]-7-deoxy-loganin (3(D)).

  15. Identification of differentially expressed genes in sunflower (Helianthus annuus) leaves and roots under drought stress by RNA sequencing.

    Science.gov (United States)

    Liang, Chunbo; Wang, Wenjun; Wang, Jing; Ma, Jun; Li, Cen; Zhou, Fei; Zhang, Shuquan; Yu, Ying; Zhang, Liguo; Li, Weizhong; Huang, Xutang

    2017-10-25

    Sunflower is recognized as one of the most important oil plants with strong tolerance to drought in the world. In order to study the response mechanisms of sunflower plants to drought stress, gene expression profiling using high throughput sequencing was performed for seedling leaves and roots (sunflower inbred line R5) after 24 h of drought stress (15% PEG 6000). The transcriptome assembled using sequences of 12 samples was used as a reference. 805 and 198 genes were identified that were differentially expressed in leaves and roots, respectively. Another 71 genes were differentially expressed in both organs, in which more genes were up-regulated than down-regulated. In agreement with results obtained for other crops or from previous sunflower studies, we also observed that nine genes may be associated with the response of sunflower to drought. The results of this study may provide new information regarding the sunflower drought response, as well as add to the number of known genes associated with drought tolerance.

  16. The role of 2,4-D and auxin-binding proteins during the induction of embryogenic and non-embryogenic callus in Zea mays (L.)

    NARCIS (Netherlands)

    Bronsema, F.

    1998-01-01

    This thesis deals with the influence of the growth regulator 2,4-dichlorophenoxyacetic acid (2,4-D) on the induction of callus in cultured immature embryos of Zea mays (L). In maize, two types of embryogenic callus can be induced in immature zygotic embryos.
    Type I

  17. In Vitro Production of Echioidinin, 7-O-Methywogonin from Callus Cultures of Andrographis lineata and Their Cytotoxicity on Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Arifullah Mohammed

    Full Text Available Andrographis lineata is an herbal medicinal plant used in traditional medicine as a substitute for Andrographis paniculata. Here, using mature leaf explants of A. lineata we demonstrate for the first time the callus induction established on MS medium containing 1.0 mg l-1 IAA. Dried callus was subjected to solvent extraction with acetone. Further the acetone residue was separated by silica gel column chromatography, crystallized and characterized on the basis of nuclear magnetic resonance (proton and c13 and liquid chromatographic mass spectroscopy. This analysis revealed the occurrence of two known flavones namely, 7-O-methylwogonin (MW and Echioidinin (ED. Furthermore, these compounds were tested for their cytotoxicity against leukemic cell line, CEM. We identify that ED and MW induced cytotoxicity in a time- and concentration-dependent manner. Further increase in the LDH release upon treatment with ED and MW further confirmed our cytotoxicity results against leukemic cell line. Strikingly, MW was more potent than ED when compared by trypan blue and MTT assays. Our results recapitulate the utility of callus cultures for the production of plant specific bioactive secondary metabolites instead of using wild plants. Together, our in vitro studies provide new insights of A. lineata callus cultures serving as a source for cancer chemotherapeutic agents.

  18. In Vitro Production of Echioidinin, 7-O-Methywogonin from Callus Cultures of Andrographis lineata and Their Cytotoxicity on Cancer Cells

    Science.gov (United States)

    Mohammed, Arifullah; Chiruvella, Kishore K.; Rao, Yerra Koteswara; Geethangili, Madamanchi; Raghavan, Sathees C.; Ghanta, Rama Gopal

    2015-01-01

    Andrographis lineata is an herbal medicinal plant used in traditional medicine as a substitute for Andrographis paniculata. Here, using mature leaf explants of A. lineata we demonstrate for the first time the callus induction established on MS medium containing 1.0 mg l–1 IAA. Dried callus was subjected to solvent extraction with acetone. Further the acetone residue was separated by silica gel column chromatography, crystallized and characterized on the basis of nuclear magnetic resonance (proton and c13) and liquid chromatographic mass spectroscopy. This analysis revealed the occurrence of two known flavones namely, 7-O-methylwogonin (MW) and Echioidinin (ED). Furthermore, these compounds were tested for their cytotoxicity against leukemic cell line, CEM. We identify that ED and MW induced cytotoxicity in a time- and concentration-dependent manner. Further increase in the LDH release upon treatment with ED and MW further confirmed our cytotoxicity results against leukemic cell line. Strikingly, MW was more potent than ED when compared by trypan blue and MTT assays. Our results recapitulate the utility of callus cultures for the production of plant specific bioactive secondary metabolites instead of using wild plants. Together, our in vitro studies provide new insights of A. lineata callus cultures serving as a source for cancer chemotherapeutic agents. PMID:26488879

  19. MAIL1 is essential for development of the primary root but not of anchor roots

    OpenAIRE

    Ühlken, Christine; Hoth, Stefan; Weingartner, Magdalena

    2014-01-01

    MAIN-LIKE1 (MAIL1) is a ubiquitously expressed nuclear protein, which has a crucial function during root development. We have recently described loss of function mutants for MAIL1, in which the organization and function of the primary root meristem is lost soon after germination. Moreover cell differentiation is impaired resulting in primary root growth arrest soon after emergence. Here we show that mail1 mutants form several anchor roots from the hypocotyl to root junction. These anchor root...

  20. The nucleus of differentiated root plant cells: modifications induced by arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    G Lingua

    2009-12-01

    Full Text Available The nuclei of plant cells show marked differences in chromatin organisation, related to their DNA content, which ranges from the type with large strands of condensed chromatin (reticulate or chromonematic nuclei to one with mostly decondensed chromatin (chromocentric or diffuse nuclei. A loosening of the chromatin structure generally occurs in actively metabolising cells, such as differentiating and secretory cells, in relation to their high transcriptional activity. Endoreduplication may occur, especially in plants with a small genome, which increases the availability of nuclear templates, the synthesis of DNA, and probably regulates gene expression. Here we describe structural and quantitative changes of the chromatin and their relationship with transcription that occur in differentiated cells following an increase of their metabolism. The nuclei of root cortical cells of three plants with different 2C DNA content (Allium porrum, Pisum sativum and Lycopersicon esculentm and their modifications induced by arbuscular mycorrhization, which strongly increase the metabolic activity of colonised cells, are taken as examples.

  1. Development of Betalain Producing Callus Lines from Colored Quinoa Varieties (Chenopodium quinoa Willd).

    Science.gov (United States)

    Henarejos-Escudero, Paula; Guadarrama-Flores, Berenice; Guerrero-Rubio, M Alejandra; Gómez-Pando, Luz Rayda; García-Carmona, Francisco; Gandía-Herrero, Fernando

    2018-01-17

    Betalains are water-soluble plant pigments of hydrophilic nature with promising bioactive potential. Among the scarce edible sources of betalains is the grain crop quinoa (Chenopodium quinoa Willd), with violet, red, and yellow grains being colored by these pigments. In this work, callus cultures have been developed from differently colored plant varieties. Stable callus lines exhibited color and pigment production when maintained on Murashige and Skoog medium supplemented with the plant growth regulators 6-benzylaminopurine (8.88 μM) and 2,4-dichlorophenoxyacetic acid (6.79 μM) with a reduction of the nitrogen source to 5.91 mM. Pigment analysis by HPLC-DAD and ESI-MS/MS fully describes the content of individual pigments in the cell lines and allows the first report on the pigments present in quinoa seedlings. Phyllocactin and vulgaxanthin I are described as novel pigments in the species and show the potential of C. quinoa culture lines in the production of compounds of nutritional value.

  2. Differentiation of hopelessness, helplessness, and powerlessness using Erik Erikson's "Roots of virtue".

    Science.gov (United States)

    Drew, B L

    1990-10-01

    Hopelessness, helplessness, and powerlessness have been identified as phenomena of concern to psychiatric nursing practice by an American Nurses' Association (ANA) task force. These concepts, however, have not been clearly distinguished from each other. The resulting lack of clarity decreases the usefulness of nursing diagnoses in directing strategies for intervention. The purpose of this article is to differentiate the phenomena of hopelessness, helplessness, and powerlessness using Erik Erikson's "Roots of virtue" as a conceptual framework. The relationship between the frustration of early childhood tasks and later adult response patterns is discussed. Clinical examples illustrate that knowledge of childhood issues guides the formulation of therapeutic goals and interventions to address the experience of hopelessness, helplessness, and powerlessness.

  3. Production of solid mutants in citrus, utilizing new approaches and techniques

    International Nuclear Information System (INIS)

    Spiegel-Roy, P.; Kochba, J.

    1975-01-01

    Conditions for embryoid differentiation in Shamouti orange ovular callus were studied. Lines differing in embryogenic capacity were established. Ageing of callus prior to subculture enhanced embryoid development. A pronounced habituation effect has been found in most cultures. Protoplasts have been obtained from callus after treatment with cellolytic enzymes. Irradiation of any embryogenic line of callus with 12-20 kR seemed to promote embryoid formation, after a time lag in their appearance. Transferrence of embryoids into agar+sucrose and GA 3 and a further transfer into agar+sucrose, GA 3 and adenine sulphate gave best results as to rooting of embryoids and plant survival. The technique of using decapitated nucellar seedlings for mutagenic treatment was developed further with Shamouti orange and Marsh grapefruit. Irradiation 48-72 hours after decapitation with 2 kR resulted in shoot neoformation and survival not much below that of control, while 6 kR impeded de novo shoot formation in Marsh grapefruit. A tendency towards mutants with earlier fruit maturity was found in mV 2 plants from material originating from irradiation with the 8-kR dose. (author)

  4. A survey of the effect of explants type, plant growth regulators and activated charcoal on callus induction in Papaver bracteatum

    Directory of Open Access Journals (Sweden)

    Bahman Hosseini

    2015-09-01

    Full Text Available Callus culture is necessary for production of suspension cell culture in plant breeding programs. Regarding to the application of Papaver bracteatum as an important medicinal plant in production of benzophenantridine alkaloids, this study was performed to find the most suitable hormone combination and explant type for achieving to high percentage of callus induction fresh weight and somatic embryogenesis in this plant. For this purpose, hypocotyl explants were cultured in ½MS media containing active charcoal (2 and 4 mgL-1 in combination of different concentrations of NAA, 2,4-D (0, 1, 2, 3 and 5 mgL-1 and BA (0, 0.1 and 0.5 mgL-1. The seed explants were cultured in same treatments without active charcoal. Also, somatic embryogesis induction using seed explants in ½MS media containing different concentrations of NAA and 2,4-D (0, 0.5, 1 and 2 mgL-1 with BA 0.5 mgL-1 were investigated. The results showed that the highest percentage of callus induction (43.6%, 54% in hypocotyls explants were obtained in the ½MS media containing 2 mgL-1 active charcoal and 2 mgL-1 2,4-D and 5 mgL-1 NAA in companion with BA 0.5 mgL-1 respectively. The maximum callus induction (84% was obtained in ½MS medium with 1 mgL-1 2,4-D without active charcoal. The highest callus fresh weight (0.35% was obtained in MS media with 0.5 mgL-1 2,4-D andthe maximum rate of somatic embryogenesis induction (77% was observed in ½MS media containing 1 mgL-1 2,4-D with 0.5 mgL-1 BA.

  5. Heritability of regeneration in tissue cultures of sweet potato (Ipomoea batatas L.).

    Science.gov (United States)

    Templeton-Somers, K M; Collins, W W

    1986-03-01

    A population of open-pollinated progeny from 12 parents, and the 12 parents, was surveyed for in vitro growth and regeneration characteristics. Four different tissue culture procedures involving different media and the use of different explants to initiate the cultures were used. Petiole explants from young leaves were used as explants for initiation of callus cultures. These were evaluated for callus growth rate, friability, and callus color and texture, before transferring to each of three different regeneration media for evaluation of morphogenetic potential. Small shoot tips also were used to initiate callus cultures, which were evaluated for the same growth characteristics and transferred to growth-regulator free regeneration media. Regeneration occurred through root or shoot regeneration or through embryogenesis. Tissue culture treatment effects, as well as genotypic effects, were highly significant in determining: the types of callus produced, callus growth rates, color and texture on the two types of media used for the second and third subcultures. The family x treatment interaction was generally not statistically significant, affecting only callus color. Estimates of narrow sense heritability for callus growth rate in both the second and third subcultures were high enough (0.35 and 0.63, respectively) for the evaluation of parental lines for selection procedures. These characteristics were also the only early culture callus traits that were consistently correlated with later morphogenesis of the cultures. They were negatively correlated with root or shoot regeneration. The occurence of somatic embryogenesis was not correlated with early callus growth characteristics. Genetic and treatment effects were highly significant in the evaluation of morphogenetic potential, through root or shoot regeneration, or through embryogenesis. Regeneration of all types was of low frequency for all procedures, expressed in ≦ 11% of the cultures of the total population.

  6. Influence of thiamine on the post-irradiation effect caused by fast neutrons or gamma radiation in callus cultures of Haplopappus gracilis (Nutt) A. Gray

    International Nuclear Information System (INIS)

    Wajda, L.; Korzonek, M.

    1979-01-01

    Influence of thiamine within the investigated range of concentrations 1.5 to 12.0 mg/l on the postirradiation effect caused by fast neutrons or gamma irradiation was found in cultures of Haplopappus gracilis callus. The lowest sensitivity to fast neutrons was noticed in callus grown on nutrient combination 1.5 to 3.0 and 12.0 to 3.0 mg/l of thiamine. On the contrary the highest sensitivity to gamma radiation was shown by cultures grown on nutrient media: 1.5 to 3.0 mg/l; all the other investigated thiamine concentrations caused a marked decrease in the sensitivity of the callus. (author)

  7. Cell-wall polysaccharide composition and glycanase activity of Silene vulgaris callus transformed with rolB and rolC genes.

    Science.gov (United States)

    Günter, Elena A; Shkryl, Yury N; Popeyko, Oxana V; Veremeichik, Galina N; Bulgakov, Victor P

    2015-03-15

    The aim of this research is to investigate the effects of the Agrobacterium rhizogenes rol genes on the composition of cell-wall polysaccharides and glycanase activity in the campion callus. The expression of the rolC gene reduces the yield of campion pectin, while the expression of the rolB or rolC gene inhibits the volumetric production of both pectin and intracellular arabinogalactan. The rol genes are involved in regulating the activity of glycanases and esterases, thereby contributing to the modification of polysaccharide structures, their molecular weight (Mw) and the degree of pectin methyl esterification (DE). The increase in pectin arabinose residue appears to be connected to a decrease in intracellular and extracellular α-l-arabinofuranosidase activity in transgenic campion calluses. In transgenic calluses expressing the rolB and rolC genes, the increase in pectin galactose residue is likely due to a decrease in β-galactosidase activity. The decrease in the Mw of pectin and its d-galacturonic acid content appears to be connected to an increase in extracellular polygalacturonase activity. Finally, the increase in pectinesterase activity causes a decrease in the DE of pectin. Thus, the expression of rolB and rolC genes in campion callus has a considerable effect on pectin's sugar composition, DE and Mw, while it appears to have an insignificant influence on intracellular and extracellular arabinogalactans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Relationship between root growth, temperature and anion uptake

    Energy Technology Data Exchange (ETDEWEB)

    Holobrada, M; Mistrik, I; Kolek, J [Institute of Experimental Biology and Ecology of the Slovak Academy of Sciences, Bratislava (Czechoslovakia)

    1980-01-01

    The uptake and release were studied of /sup 35/S-sulfate ions by whole intact roots of maize seedlings. From the total incorporated sulfur only 20% were released back to the unlabelled culture solution. In correspondence to the physiological and biochemical-structural vertical gradient of the growing differentiating roots, the release of /sup 35/S from the apical root part was much lower than from the differentiated tissues.

  9. Mutagenic treatments towards increasing the frequency of day-neutral mutations and standardization of procedures for tissue culture, in potato

    International Nuclear Information System (INIS)

    Upadhya, M.D.; Chandra, R.; Abraham, M.J.

    1976-01-01

    Various chemical mutagens and gamma radiation have been used on single dormant eyes and true seeds with a view to finding effective mutagenic treatment for the induction of day-length neutral mutants in potato using an effective screening technique for the isolation of day-length neutral mutants. Sodium meta bisulphite (SMS) was found to be an efficient mutagen in inducing mutations for this trait in true seeds although the same concentrations, when used for treating the single tuber eyes proved lethal. Pre-soaking the seeds for 24 hrs prior to treatment with 0.0025M SMS gave highest frequency of the mutants followed by 48 hrs presoaking, indicating a sensitive stage during the cell cycle in true seeds. Other mutagen treatments gave different frequencies of mutations. The highest frequency of day-length neutral mutants was observed when seeds irradiated with 40 Kr of gamma radiation were treated with 0.05M hydrazinium dichloride solution. Screening procedures have also been standardised with the development of synethetic media for the isolation of biochemical mutants at the true seed level. Initial efforts have yielded mutants resistant to LD 100 doses of ethionine. Another aspect of the study was to develop a proper potato callus culture technique. A medium has been developed to produce and maintain callus from potato leaf strips. Efforts on the regeneration of shoot and roots from callus, have so far lead to differentiation of callus to form roots. The ultimate aim of these studies is to develop plantlets from single cell which would form the units of mutation induction and isolation. (author)

  10. Host and Non-Host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi.

    Directory of Open Access Journals (Sweden)

    Valentina eFiorilli

    2015-08-01

    Full Text Available Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM symbiosis, has both host and non-host roots. Large lateral (LLR and fine lateral (FLR roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR.We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant.

  11. Callus induction of leaf explant Piper betle L. Var Nigra with combination of plant growth regulators indole-3-acetic acid (IAA), benzyl amino purin (BAP) and kinetin

    Science.gov (United States)

    Junairiah, Zuraidassanaaz, Nabilah Istighfari; Izdihar, Fairuz Nabil; Manuhara, Yosephine Sri Wulan

    2017-09-01

    The purpose of this research was to determine the combination of plant growth regulators IAA, BAP and kinetin towards callus induction and growth of leaf explants Piper betle L. VarNigra. Explants from leaf of Piper betle L. VarNigra was cultured on MS medium with 24 treatment combinations of plant growth regulators IAA and BAP and 24 treatment combinations of plant growth regulators IAA and kinetin with 0.0;0.5;1.0;1.5;2.0 mg/L concentration respectively, the observed variable were the length of time the formation of callus, callus morphology, fresh and dry weight of callus. The results of this research showed that the combination of growth regulators IAA with BAP and kinetin had effects on leaf growth of Piper betle L. VarNigra. During 8 weeks observation, it indicated that the combination of concentration IAA 0.5 mg/L and BAP 2.0 mg/L showed fastest callus formation at 8.5 days. Combination of concentration IAA 1.0 mg/L and BAP 1.5 mg/L showed the highest of fresh weight at 0.6596 grams, and the highest dry weight was obtained from the combination of concentration IAA 0.5 mg/L and BAP 0.5 mg/L at 0.0727 grams. Combination of concentration IAA 1.0 mg/L and kinetin 1.5 mg/L had the highest of fresh weight at 0.2972 grams and the highest dry weight at 0.1660 grams. Callus of Piper betle L. VarNigra had two textures, that were compact and friable, and also showed various kind of colors, like white, greenish white, yellowish white, tanned white, brown and black. Based on this research, that concentration IAA 1.0 mg/L and 1.5 mg/L kinetin was the best combination for induction of callus from leaf of Piper betle L. Var Nigra.

  12. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues.

    Directory of Open Access Journals (Sweden)

    Chongsheng He

    2012-08-01

    Full Text Available In plants, multiple detached tissues are capable of forming a pluripotent cell mass, termed callus, when cultured on media containing appropriate plant hormones. Recent studies demonstrated that callus resembles the root-tip meristem, even if it is derived from aerial organs. This finding improves our understanding of the regeneration process of plant cells; however, the molecular mechanism that guides cells of different tissue types to form a callus still remains elusive. Here, we show that genome-wide reprogramming of histone H3 lysine 27 trimethylation (H3K27me3 is a critical step in the leaf-to-callus transition. The Polycomb Repressive Complex 2 (PRC2 is known to function in establishing H3K27me3. By analyzing callus formation of mutants corresponding to different histone modification pathways, we found that leaf blades and/or cotyledons of the PRC2 mutants curly leaf swinger (clf swn and embryonic flower2 (emf2 were defective in callus formation. We identified the H3K27me3-covered loci in leaves and calli by a ChIP-chip assay, and we found that in the callus H3K27me3 levels decreased first at certain auxin-pathway genes. The levels were then increased at specific leaf genes but decreased at a number of root-regulatory genes. Changes in H3K27me3 levels were negatively correlated with expression levels of the corresponding genes. One possible role of PRC2-mediated H3K27me3 in the leaf-to-callus transition might relate to elimination of leaf features by silencing leaf-regulatory genes, as most leaf-preferentially expressed regulatory genes could not be silenced in the leaf explants of clf swn. In contrast to the leaf explants, the root explants of both clf swn and emf2 formed calli normally, possibly because the root-to-callus transition bypasses the leaf gene silencing process. Furthermore, our data show that PRC2-mediated H3K27me3 and H3K27 demethylation act in parallel in the reprogramming of H3K27me3 during the leaf-to-callus transition

  13. Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice.

    Science.gov (United States)

    Jähn, Katharina; Saito, Hiroaki; Taipaleenmäki, Hanna; Gasser, Andreas; Hort, Norbert; Feyerabend, Frank; Schlüter, Hartmut; Rueger, Johannes M; Lehmann, Wolfgang; Willumeit-Römer, Regine; Hesse, Eric

    2016-05-01

    Intramedullary stabilization is frequently used to treat long bone fractures. Implants usually remain unless complications arise. Since implant removal can become technically very challenging with the potential to cause further tissue damage, biodegradable materials are emerging as alternative options. Magnesium (Mg)-based biodegradable implants have a controllable degradation rate and good tissue compatibility, which makes them attractive for musculoskeletal research. Here we report for the first time the implantation of intramedullary nails made of an Mg alloy containing 2% silver (Mg2Ag) into intact and fractured femora of mice. Prior in vitro analyses revealed an inhibitory effect of Mg2Ag degradation products on osteoclast differentiation and function with no impair of osteoblast function. In vivo, Mg2Ag implants degraded under non-fracture and fracture conditions within 210days and 133days, respectively. During fracture repair, osteoblast function and subsequent bone formation were enhanced, while osteoclast activity and bone resorption were decreased, leading to an augmented callus formation. We observed a widening of the femoral shaft under steady state and regenerating conditions, which was at least in part due to an uncoupled bone remodeling. However, Mg2Ag implants did not cause any systemic adverse effects. These data suggest that Mg2Ag implants might be promising for intramedullary fixation of long bone fractures, a novel concept that has to be further investigated in future studies. Biodegradable implants are promising alternatives to standard steel or titanium implants to avoid implant removal after fracture healing. We therefore developed an intramedullary nail using a novel biodegradable magnesium-silver-alloy (Mg2Ag) and investigated the in vitro and in vivo effects of the implants on bone remodeling under steady state and fracture healing conditions in mice. Our results demonstrate that intramedullary Mg2Ag nails degrade in vivo over time without

  14. Callus formation of american Persea Mill. cultivar Catalina starting from segments of leaves of in vitro plants

    Directory of Open Access Journals (Sweden)

    Marisol Freire Seijo

    2004-04-01

    Full Text Available The importance of establishing protocols for the regeneration of fruit-trees through out the organogenesis and the somatic embryogenesis is based on the possibility to use them in the propagation of the species or in programs of genetic improvement. Specifically the Catalina cultivar is very coveted in Cuba, however it has not been introduced in vitro. The present work had the objective of forming callus starting from leaves of in vitro plants from avocado tree of the Catalina cultivar. The phase of multiplication of the in vitro plants was carried out in temporary immersion systems in order to favour the expansion of the leaves. Erlenmeyers 1.0l were used In the TIS and immersions every four and eight hours with a minute of duration were carried out. The effect of the Picloram, the 6 BAP and the 2,4-D on leaves of in vitro plants for the formation of callus was studied. The plants with more quality were obtained when immersions every 8 hours were carried out. It was also possible to form callus using sections of leaves of in vitro plants as explants in a culture medium with 0.1 Picloram mgl-1. Key words: in vitro plant leaves, temporary immersion system

  15. C4 photosynthesis in Euphorbia degeneri and E. remyi: a comparison of photosynthetic carbon metabolism in leaves, callus cultures and regenerated plants

    International Nuclear Information System (INIS)

    Ruzin, S.E.

    1984-04-01

    Based on analysis of 14 CO 2 fixation kinetics and assays of enzymes related to C 4 metabolism (NAD-ME, NADP-ME, NAD-MDH, NADP-MDH, AST, ALT), leaves and regenerated plants of Euphorbia degeneri exhibit a modified NADP-ME-type photosynthesis. Apparently, both aspartate and malate are used for transport of CO 2 to bundle sheath cells. Callus grown on either non-shoot-forming or shoot-forming media fixes CO 2 into RPP-cycle intermediates and sucrose, as well as malate and aspartate. 14 CO 2 pulse/chase kinetics show no significant loss of label from C 4 acids throughout a one minute chase. Analysis of PEPCase revealed the presence of 2 isoenzymes in both leaf and regenerated plant tissues (K/sub m/ [PEP] = 0.080 and 0.550) but only one isoenzyme in callus (K/sub m/ = 0.100). It appears that C 4 photosynthesis does not occur in callus derived from this C 4 dicot but is regenerated concomitant with shoot regeneration, and β-carboxylation of PEP in callus, mediated by the low K/sub m/ isoenzyme of PEPCase, produces C 4 acids that are not involved in the CO 2 shuttle mechanism characteristic of C 4 photosynthesis. 161 references, 19 figures, 12 tables

  16. Physiological and biochemical effects of morphactin IT 3233 on callus and tumour tissues of Nicotiana tabacum L. cultured in vitro III. Transamination processes catalysed by aminotransferase L-alanine: 2-oxoglutarate

    Directory of Open Access Journals (Sweden)

    Z. Chirek

    2015-01-01

    Full Text Available An active alanine transaminase was found both in callus and tumour tissues of tobacco. The enzyme is more active in the latter tissue, and the reaction balance is strongly shifted towards alanine production, while in callus tissue towards glutamic acid formation. Morphactin applied to the tissue cultures stimulates markedly the enzyme activity only in callus. A negative correlation was observed between the intensity of transamination processes and enhanced synthesis of proteins in the tissues studied. Morphactin disturbs nitrogen metabolism in the callus tissue. Tumour tissue is more resistant to the action of this substance. The different hormonal activities in these tissues may be the cause of the different effects of morphactin.

  17. The relationship between root growth, temperature and anion uptake

    International Nuclear Information System (INIS)

    Holobrada, M.; Mistrik, I.; Kolek, J.

    1980-01-01

    The uptake and release were studied of 35 S-sulfate ions by whole intact roots of maize seedlings. From the total incorporated sulfur only 20% were released back to the unlabelled culture solution. In correspondence to the physiological and biochemical-structural vertical gradient of the growing differentiating roots, the release of 35 S from the apical root part was much lower than from the differentiated tissues. (author)

  18. Rooting, growth, and color mutation of poinsettias affected by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Kyung; Kim, Won Hee; Kim, Seung Tae [National Institute of Horticultural and Herbal Science, RDA, Suwon (Korea, Republic of); Kang, Si Yong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-09-15

    This experiment was carried out to investigate the effects of gamma-radiation on the rooting, growth, and color mutation in poinsettia. Using 10 poinsettia varieties ('Lollipop', 'Little Peace', 'Happy Day', 'Early Bird', 'Pixy Red', 'Happy Time', 'Heidi', 'Red Bell', 'Clara', and 'Scarlet') bred by National Institute of Horticultural and Herbal Science, 100 Gy of gamma ray was irradiated at the stage of callused cuttings. Four weeks after sticking cuttings in the rooting media, 8 cultivars showed 100% of root formation, but 'Early Bird' rooted 24.4% and even died off during the cutting propagation. After planting rooted cuttings, survival rate until flowering time varied among irradiated cultivars. While 'Pixy Red' and 'Heidi' survived about 98%, 'Clara', 'Happy Day', and 'Early Bird' survived lesser than 30%. All irradiated plants showed remarkably shorter plant height, lesser branch numbers than non-irradiated control plants. Thirty color mutants were obtained among 281 plants survived until flowering time. Nine were complete color mutated branches, whereas 21 mutants were partially color mutated bracts and transitional leaves. Color patterns mutated by 100 Gy of gamma ray were divided into pink, hot pink, light red and spotted (pink spots with red main color). Pink mutants were commonly obtained. Complete color mutants were discovered from 4 plants of 'Pixy Red', 2 plants of 'Red Bell' and 3 plants of Lollipop.

  19. Somatic embryogenesis and plant regeneration in tissue cultures of sweet potato (Ipomea batatas Poir.).

    Science.gov (United States)

    Liu, J R; Cantliffe, D J

    1984-06-01

    Leaf, shoot-tip, stem, and root explants of sweet potato (Ipomea batatas Poir.) gave rise to two kinds of callus on nutrient agar medium containing 0.5 to 2.0 mg/l 2,4-D. One callus, bright- to pale-yellow, was compact and organized, while the other was dull-yellow and friable. The former callus gave rise to numerous globular and heart-shaped embryoids. When transferred onto hormone-free medium, the embryoids readily developed into a torpedo-shape before germination. The plantlets were transplanted to soil where they flowered and formed storage roots at maturity.

  20. Effect of estrone on somatic and female gametophyte cell division and differentiation in Arabidospis thaliana cultured in vitro

    Directory of Open Access Journals (Sweden)

    Piotr Żabicki

    2014-04-01

    Full Text Available The aim of the study was to determine the effect of the mammalian female sex hormone estrone on differentiation of somatic tissues and on induction of autonomous endosperm in culture of female gametophyte cells of Arabidopsis thaliana ecotype Columbia (Col-0. In culture, estrone-stimulated development of autonomous endosperm (AE occurred in 14.7% of unpollinated pistils. The AE represented development stages similar to those of young endosperm after fertilization and AE of fis mutants in vivo. In the majority of ovules the AE was in a few-nucleate young stage. Some ovules showed more advanced stages of AE development, with nuclei and cytoplasm forming characteristic nuclear cytoplasmic domains (NCDs. Sporadically, AE was divided into regions characteristic for Arabidopsis endosperm formed after fertilization. Direct organogenesis (caulogenesis, rhizogenesis, callus proliferation and formation of trichome-like structures were observed during in vitro culture of hypocotyls and cotyledons of 3-day-old seedlings cultured on medium supplemented with estrone for 28 days. Histological analysis showed adventitious root formation and changes in explant anatomy caused by estrone.

  1. Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots.

    Science.gov (United States)

    Chen, Ziyan; Zhu, Dong; Wu, Jisu; Cheng, Zhiwei; Yan, Xing; Deng, Xiong; Yan, Yueming

    2018-05-17

    In this study, we aimed to identify differentially accumulated proteins (DAPs) involved in PEG mock osmotic stress, cadmium (Cd 2+ ) stress, and their combined stress responses in Brachypodium distachyon seedling roots. The results showed that combined PEG and Cd 2+ stresses had more significant effects on Brachypodium seedling root growth, physiological traits, and ultrastructures when compared with each individual stress. Totally, 106 DAPs were identified that are responsive to individual and combined stresses in roots. These DAPs were mainly involved in energy metabolism, detoxification and stress defense and protein metabolism. Principal component analysis revealed that DAPs from Cd 2+ and combined stress treatments were grouped closer than those from osmotic stress treatment, indicating that Cd 2+ and combined stresses had more severe influences on the root proteome than osmotic stress alone. Protein-protein interaction analyses highlighted a 14-3-3 centered sub-network that synergistically responded to osmotic and Cd 2+ stresses and their combined stresses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14 key DAP genes revealed that most genes showed consistency between transcriptional and translational expression patterns. A putative pathway of proteome metabolic changes in Brachypodium seedling roots under different stresses was proposed, which revealed a complicated synergetic responsive network of plant roots to adverse environments.

  2. Premilinary studies for optimiziing a protocol for obtaining embryogenic calluses in two rubber (Hevea brasiliensis Mull. Arg clones from different geographical origins

    Directory of Open Access Journals (Sweden)

    Santiago Cadavid Ruiz

    2006-01-01

    Full Text Available The influence of growth regulators on obtaining friable rubber (Hevea brasiliensis Müll. Arg. calluses with no plant regeneration as investigated. Two clones having different geographical origin were used in all trails carried out in this study: FX 3864 (South-American and PB 254 (Asian. Young leaves and eight- to ten-week-old seed integument from both clones were used as explants in several experiments; they were initially cultured in MH medium (Carron, et ál., 1989, modified MH medium (Montoro, et ál., 1993, 2000 and modified MS medium (Carron, et at,. 1992, no positive response being obtained by days 25 or 50. However, other trials were carried out with the integument in modified MS medium (1962, 0.67 mg/L BAP and 0.66 mg/L 2-4 D being added as medium for initiating embryogenesis, the formation of white, friable calluses being observed by day 25 in the two selected clones. These calluses were sub-cultured in MS supplemented with 0.35 mg/L BAP and 0.2 mg/L 2-4 D as callogenesis expression medium, embryogenic expression being observed in both clones by day 50. Equally friable white calluses were obtained from young leaves in the two clones in MS medium supplemented with 1.0 mg/L BAP, 1.0 mg/L ANA but without IBA and kinetin by day 25. Calluses sub-cultured in the same medium supplemented with 0.5 mg/L BAP and 0.5 mg/L ANA began to show increased friability after 50 days. culture. This work is a partial report of a macro-project for optimising a protocol for rubber (Hevea brasiliensis  multiplication by somatic embryogenesis.

  3. Medicinal mushroom Ganoderma lucidum as a potent elicitor in production of t-resveratrol and t-piceatannol in peanut calluses.

    Science.gov (United States)

    Yang, Ming-Hua; Lin, Yi-Ju; Kuo, Chang-Hsin; Ku, Kuo-Lung

    2010-09-08

    Phytoalexins t-resveratrol and t-piceatannol, the well-known health-promoting active components in plants, are secondary metabolites generated upon biotic or abiotic stresses. We have reported UV-irradiated peanut callus is a potent means to produce these compounds (J. Agric. Food Chem. 2005, 53, 3877). In this work, the effects of fungi and chemical elicitors on induction of t-resveratrol and t-piceatannol were examined. Results showed the investigated fungi Botryodiplodia theobromae and Reishi Ganoderma lucidum were generally more effective than chemical stress methyl jasmonate, salicylic acid, and sucrose. As high as 15.46+/-9.85 microg of t-resveratrol and 6.93+/-2.03 microg of t-piceatannol could be elicited in each gram of callus by sterilized G. lucidum mycelium (80 mg). Although much more sterilized G. ludicum mycelia was required to induce similar level of t-resveratrol and t-piceatannol in comparison to the sterilized B. theobromae mycelia (1 mg), uptake of the G. ludicum mycelium may provide a variety of health-promoting effects. Our findings suggest G. ludicum mycelium-treated peanut callus is a good source of bioactive components.

  4. Effect of gamma rays in embryogenic callus of agave tequilana weber var. blue and in vitro selection for resistance to pathogens

    International Nuclear Information System (INIS)

    Rubluo, A.; Brunner, I.; Rodriguez-Garay, B.; Rodriguez-Dominguez, J.M.; Santacruz-Ruvalcava, F.; De la Cruz, E.; Gonzalez, J.

    1999-01-01

    Agave tequilana from which tequila is done, suffers genetic erosion leaving the plant susceptible to pathogens. Recently, a pest invades the tequilana fields. To face this problem we designed experiments to induce mutations for disease resistance. Our aims were: to analyse the in vitro responses of embryogenic callus exposed to gamma rays, to determine the LD50 and challenge surviving embryos to crude bacterial extracts (CBE). Axillary buds were cultured in vitro. Leaves from the former plant lets were used as explants to induce embryogenic callus. Samples of 1g embryogenic callus were irradiated from 5 to 40 Gy of CO 60 gamma rays. Effects were recorded at 15, 30 and 45 days after irradiation. The CBE was obtained from isolated bacteria collected from sick field plants. Embryogenic calli were irradiated at 0, 15, 25 and 40 Gy and challenged with the CBE at 0, 10 and 20 % v/v. Embryo expression (globular, white and green cucumber shaped) were affected as a function of the dose. However at low doses (5-15 Gy) globular forms increased its production. On the contrary , green cucumber shaped embryos were severely affected. However, even at high doses (30, 35 and 40 Gy) healthy green forms were recorded. When the embryogenic callus was challenged to the CBE, high mortality was recorded, although, some green forms survived at high radiation doses and high CBE concentrations. Because of the unicellular origin of the somatic embryos, solid mutants can be expected

  5. Biosynthesis of Silver Nanoparticles Using Taxus yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Qian Hua Xia

    2016-09-01

    Full Text Available Plant constituents could act as chelating/reducing or capping agents for synthesis of silver nanoparticles (AgNPs. The green synthesis of AgNPs has been considered as an environmental friendly and cost-effective alternative to other fabrication methods. The present work described the biosynthesis of AgNPs using callus extracts from Taxus yunnanensis and evaluated their antibacterial activities in vitro and potential cytotoxicity in cancer cells. Callus extracts were able to reduce silver nitrate at 1 mM in 10 min. Transmission electron microscope (TEM indicated the synthesized AgNPs were spherical with the size range from 6.4 to 27.2 nm. X-ray diffraction (XRD confirmed the AgNPs were in the form of nanocrystals. Fourier transform infrared spectroscopy (FTIR suggested phytochemicals in callus extracts were possible reducing and capping agents. The AgNPs exhibited effective inhibitory activity against all tested human pathogen bacteria and the inhibition against Gram-positive bacteria was stronger than that of Gram-negative bacteria. Furthermore, they exhibited stronger cytotoxic activity against human hepatoma SMMC-7721 cells and induced noticeable apoptosis in SMMC-7721 cells, but showed lower cytotoxic against normal human liver cells (HL-7702. Our results suggested that biosynthesized AgNPs could be an alternative measure in the field of antibacterial and anticancer therapeutics.

  6. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings 1

    Science.gov (United States)

    Creelman, Robert A.; Mason, Hugh S.; Bensen, Robert J.; Boyer, John S.; Mullet, John E.

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite. Images Figure 6 Figure 7 PMID:16667248

  7. Variable Levels of Glutathione S-Transferases Are Responsible for the Differential Tolerance to Metolachlor between Maize (Zea mays) Shoots and Roots.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Wang, Kai; Wang, Chengju

    2017-01-11

    Glutathione S-transferases (GSTs) play important roles in herbicide tolerance. However, studies on GST function in herbicide tolerance among plant tissues are still lacking. To explore the mechanism of metolachlor tolerance difference between maize shoots and roots, the effects of metolachlor on growth, GST activity, and the expression of the entire GST gene family were investigated. It was found that this differential tolerance to metolachlor was correlated with contrasting GST activity between the two tissues and can be eliminated by a GST inhibitor. An in vitro metolachlor-glutathione conjugation assay confirmed that the transformation of metolachlor is 2-fold faster in roots than in shoots. The expression analysis of the GST gene family revealed that most GST genes are expressed much higher in roots than shoots, both in control and in metolachlor-treated plants. Taken together, higher level expression of most GST genes, leading to higher GST activity and faster herbicide transformation, appears to be responsible for the higher tolerance to metolachlor of maize roots than shoots.

  8. Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.

    Science.gov (United States)

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shirish C

    2016-06-02

    We present experimental evidence to show that acetylcholine (ACh) causes decrease in shoot formation in leaf explants of tomato (Lycopersicon esculentum Miller var Pusa Ruby) when cultured on shoot regeneration medium. The optimum response was obtained at 10(-4) M ACh-enriched medium. ACh also causes decrease in percentage of cultures forming callus and reduces the callus mass. Inhibitors of enzymatic hydrolysis of ACh, neostigmine and physostigmine, also suppresses callogenesis and caulogenesis. On the other hand, the breakdown products of Ach, choline and acetate, do not alter the morphogenic response induced on the shoot regeneration medium. Neostigmine showed optimal reduction in shoot formation at 10(-5) M. The explants cultured on neostigmine augmented medium showed decline in the activity of ACh hydrolyzing enzyme acetylcholinesterase. ACh and neostigmine added together showed marked reduction in callus mass. These results strongly support the role of ACh as a natural regulator of morphogenesis in tomato plants.

  9. Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby

    Science.gov (United States)

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shirish C.

    2016-01-01

    ABSTRACT We present experimental evidence to show that acetylcholine (ACh) causes decrease in shoot formation in leaf explants of tomato (Lycopersicon esculentum Miller var Pusa Ruby) when cultured on shoot regeneration medium. The optimum response was obtained at 10−4 M ACh-enriched medium. ACh also causes decrease in percentage of cultures forming callus and reduces the callus mass. Inhibitors of enzymatic hydrolysis of ACh, neostigmine and physostigmine, also suppresses callogenesis and caulogenesis. On the other hand, the breakdown products of Ach, choline and acetate, do not alter the morphogenic response induced on the shoot regeneration medium. Neostigmine showed optimal reduction in shoot formation at 10−5 M. The explants cultured on neostigmine augmented medium showed decline in the activity of ACh hydrolyzing enzyme acetylcholinesterase. ACh and neostigmine added together showed marked reduction in callus mass. These results strongly support the role of ACh as a natural regulator of morphogenesis in tomato plants. PMID:27348536

  10. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.)

    OpenAIRE

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Xu, Kai; Wei, Haibin; Feng, Fangjun; Li, Tiemei; Pang, Xiaomeng; Shi, Caiping; Luo, Lijun; Zhong, Yang

    2017-01-01

    Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) w...

  11. Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L.

    Science.gov (United States)

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar

    2014-11-01

    Adventitious root cultures of Prunella vulgaris L. were established in shaking flask system for the production of biomass and secondary metabolites. Adventitious root cultures were induced from callus cultures obtained from leaf explants on solid Murashige and Skoog (MS) medium containing combination of 6-benzyladenine (BA; 1.0 mg l(-1)) and naphthalene acetic acid (NAA; 1.5 mg l(-1)). Thereafter, 0.49 g inoculum was transferred to liquid MS medium supplemented with different concentrations of NAA (0.5-2.0 mg l(-1)). Growth kinetics of adventitious roots was recorded with an interval of 7 days for 49 days period. Highest biomass accumulation (2.13 g/l) was observed in liquid medium containing 1.0 mg l(-1) NAA after 21 days of inoculation. However, other concentrations of NAA also showed similar accumulation pattern but the biomass gradually decreases after 49 days of inoculation. Adventitious roots were collected and dried for investigation of total phenolics (TP), total flavonoids (TF), and antioxidant activities. Higher TPC (0.995 GAE mg/g-DRB) and TFC (6.615 RE mg/g-DRB) were observed in 0.5 mg l(-1) NAA treated cultures. In contrast, higher antioxidant activity (83.53 %) was observed 1.5 mg l(-1) NAA treated cultures. These results are helpful in up scaling of root cultures into bioreactor for secondary metabolites production.

  12. Anther development stage and gamma radiation effects on tomato anther-derived callus formation

    International Nuclear Information System (INIS)

    Brasileiro, Ana Christina R.; Willadino, Lilia; Guerra, Marcelo; Colaco, Waldeciro; Meunier, Isabelle; Camara, Terezinha R.

    1999-01-01

    Two experiments were carried (I) to determine tomato anther development stage influence on callus production; and (II) to investigate gamma radiation effects on anther culture. In the first experiment, anthers of a tomato hybrid (IPA 5 x Rotam 4-F 1 ) were grown on three media. Although calli were induced at all stages of anther development, varying from prophase I to mono nucleate microspore, callus frequency decreased as anther development progressed and calli induction were not significantly affected by all media tested. Anthers containing prophase I meiocytes produced the highest calli frequency. Anther and flower bud length both were significantly correlated with anther development stage. In the second experiment, seed and floral buds of tomato hybrids IPA 5 x Rotam 4 (F 2 ), IPA 6 x Rotam 4 (F 2 ) and IPA 8 x 217.1 (F 2 ) were submitted to gamma-ray and anthers were plated on two media described by Gresshoff and Doy (1972) supplemented with 2.0 mg L -1 NAA + 5.0 mg L -1 KIN and 2.0 mg L -1 NAA + 1.0 mg L -1 KIN. No significant differences for genotype and dosage testes were found for calli formation. (author)

  13. Unique and Conserved Features of the Barley Root Meristem

    Directory of Open Access Journals (Sweden)

    Gwendolyn K. Kirschner

    2017-07-01

    Full Text Available Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare. Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants.

  14. Differential spatial expression of A- and B-type CDKs, and distribution of auxins and cytokinins in the open transverse root apical meristem of Cucurbita maxima.

    Science.gov (United States)

    Chiappetta, Adriana; Bruno, Leonardo; Salimonti, Amelia; Muto, Antonella; Jones, Jessica; Rogers, Hilary J; Francis, Dennis; Bitonti, Maria Beatrice

    2011-05-01

    Aside from those on Arabidopsis, very few studies have focused on spatial expression of cyclin-dependent kinases (CDKs) in root apical meristems (RAMs), and, indeed, none has been undertaken for open meristems. The extent of interfacing between cell cycle genes and plant growth regulators is also an increasingly important issue in plant cell cycle studies. Here spatial expression/localization of an A-type and B-type CDK, auxin and cytokinins are reported in relation to the hitherto unexplored anatomy of RAMs of Cucurbita maxima. Median longitudinal sections were cut from 1-cm-long primary root tips of C. maxima. Full-length A-type CDKs and a B-type CDK were cloned from C. maxima using degenerate primers, probes of which were localized on sections of RAMs using in situ hybridization. Isopentenyladenine (iPA), trans-zeatin (t-Z) and indole-3yl-acetic acid (IAA) were identified on sections by immunolocalization. The C. cucurbita RAM conformed to an open transverse (OT) meristem typified by an absence of a clear boundary between the eumeristem and root cap columella, but with a distinctive longitudinally thickened epidermis. Cucma;CDKA;1 expression was detected strongly in the longitudinally thickened epidermis, a tissue with mitotic competence that contributes cells radially to the root cap of OT meristems. Cucma;CDKB2 was expressed mainly in proliferative regions of the RAM and in lateral root primordia. iPA and t-Z were mainly distributed in differentiated cells whilst IAA was distributed more uniformly in all tissues of the RAM. Cucma;CDKA;1 was expressed most strongly in cells that have proliferative competence whereas Cucma;CDKB2 was confined mainly to mitotic cells. iPA and t-Z marked differentiated cells in the RAM, consistent with the known effect of cytokinins in promoting differentiation in root systems. iPA/t-Z were distributed in a converse pattern to Cucma;CDKB2 expression whereas IAA was detected in most cells in the RAM regardless of their proliferative

  15. C/sub 4/ photosynthesis in Euphorbia degeneri and E. remyi: a comparison of photosynthetic carbon metabolism in leaves, callus cultures and regenerated plants

    Energy Technology Data Exchange (ETDEWEB)

    Ruzin, S.E.

    1984-04-01

    Based on analysis of /sup 14/CO/sub 2/ fixation kinetics and assays of enzymes related to C/sub 4/ metabolism (NAD-ME, NADP-ME, NAD-MDH, NADP-MDH, AST, ALT), leaves and regenerated plants of Euphorbia degeneri exhibit a modified NADP-ME-type photosynthesis. Apparently, both aspartate and malate are used for transport of CO/sub 2/ to bundle sheath cells. Callus grown on either non-shoot-forming or shoot-forming media fixes CO/sub 2/ into RPP-cycle intermediates and sucrose, as well as malate and aspartate. /sup 14/CO/sub 2/ pulse/chase kinetics show no significant loss of label from C/sub 4/ acids throughout a one minute chase. Analysis of PEPCase revealed the presence of 2 isoenzymes in both leaf and regenerated plant tissues (K/sub m/ (PEP) = 0.080 and 0.550) but only one isoenzyme in callus (K/sub m/ = 0.100). It appears that C/sub 4/ photosynthesis does not occur in callus derived from this C/sub 4/ dicot but is regenerated concomitant with shoot regeneration, and ..beta..-carboxylation of PEP in callus, mediated by the low K/sub m/ isoenzyme of PEPCase, produces C/sub 4/ acids that are not involved in the CO/sub 2/ shuttle mechanism characteristic of C/sub 4/ photosynthesis. 161 references, 19 figures, 12 tables.

  16. Biomass Yield and Steviol Glycoside Production in Callus and Suspension Culture of Stevia rebaudiana Treated with Proline and Polyethylene Glycol.

    Science.gov (United States)

    Gupta, Pratibha; Sharma, Satyawati; Saxena, Sanjay

    2015-06-01

    Enhanced production of steviol glycosides (SGs) was observed in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol (PEG). To study their effect, yellow-green and compact calli obtained from in vitro raised Stevia leaves were sub-cultured on MS medium supplemented with 2.0 mg l(-1) NAA and different concentrations of proline (2.5-10 mM) and PEG (2.5-10 %) for 2 weeks, and incubated at 24 ± 1 °C and 22.4 μmol m(-2) s(-1) light intensity provided by white fluorescent tubes for 16 h. Callus and suspension culture biomass (i.e. both fresh and dry weight content) was increased with 5 mM proline and 5 % PEG, while at further higher concentrations, they got reduced. Further, quantification of SGs content in callus (collected at 15th day) and suspension culture (collected at 10th and 15th day) treated with and without elicitors was analysed by HPLC. It was observed that chemical stress enhanced the production of SGs significantly. In callus, the content of SGs increased from 0.27 (control) to 1.09 and 1.83 % with 7.5 mM proline and 5 % PEG, respectively, which was about 4.0 and 7.0 times higher than control. However, in the case of suspension culture, the same concentrations of proline and polyethylene glycol enhanced the SG content from 1.36 (control) to 5.03 and 6.38 %, respectively, on 10th day which were 3.7 times and 4.7 times higher than control.

  17. Callus formation in vitro and internodal stem apices in savory = Calogênese in vitro de segmentos apicais caulinares e internodais em segurelha (Satureja hortensis L.

    Directory of Open Access Journals (Sweden)

    Marcio Carlos Navroski

    2012-12-01

    Full Text Available We sought to evaluate with this work different growth regulators on callus formation in shoot apical and internodal stem segments of Satureja hortensis. The explants were isolated from in vitro seedlings and cultured on MS nutrient medium supplemented with NAA (0 and 1 μM and BAP (0, 5, 10, 15 and 20 μM. The presence of auxin NAA gave higher marks to the calluses at 30 days of evaluation, these notes also increased with the addition of BAP. There were significant interactions between factors in evaluating NAA and BAP for 60 days, both in apical stem segments as in internodal stem segments. To stemapices percentage of friable callus tends to decrease with increasing concentration of BAP. As for compact calluses increased BAP leads to an increase in the percentage of this type of callus. The presence of NAA increased callus formation in both friable and compact calluses on. This trend was also observed in internodal stem segments. The callus formation was highly rhizogenic observed in the presence of NAA, hardly occurs in the absence of auxin. The use of BAP is recommended in case of regeneration of plants through micropropagation, if the goal is the production of metabolites, the use of BAP can be harmful by reducing the production of friable callus.= Buscou-se com este trabalho avaliar diferentes reguladores de crescimento sobre a calogênese em segmentos caulinares apicais e internodais de Satureja hortensis L.. Os explantes foram isolados de plântulas germinadas in vitro e cultivados em meio nutritivo MS acrescido de ANA (0 e 1 μM e de BAP (0; 5; 10; 15 e 20 μM. A presença da auxina ANA proporcionou notas mais altas para os calos aos 30 dias de avaliação, estas notas também aumentaram com o acréscimo da citocinina BAP. Houve interações significativas entre os fatores ANA e BAP na avaliação aos 60 dias, nos dois tipos de segmentos caulinares(apicais e internodais. Nos segmentos apicais caulinares a porcentagem de calos fri

  18. Callus induction and biomass accumulation in vitro in explants from chokeberry (Aronia melanocarpa (Michx. Elliot fruit

    Directory of Open Access Journals (Sweden)

    Tatiana I. Calalb

    2014-09-01

    Full Text Available In this study, the following features were determined: biological (the optimal histogen as explant and the optimal age of donor fruit, biotechnological (type, dosage and combination of growth regulators supplements in culture medium Murashige and Skoog as well as sucrose dosage, and physical (light regime, to induce callusing and biomass accumulation in vitro from the succulent chokeberry (Aronia melanocarpa (Michx. Elliot fruit. It turned out that it was much easier to induce callus from explants composed of the epicarp and hypoderm cut from fruits at 50–60 days after flowering. The role of light regime and varied supplementation of the basic MS medium with different doses of growth regulators was established; they resulted in four pigmented carpomass: violet, cream-pink, cream-white and green. The best combinations for the proliferation of fruit callus were culture media with 0.2–2.5 mg × dm-3 2,4-D+0.5 mg × dm-3 KIN +60 g × dm-3sucrose, while for fruit biomass accumulation enriched with phenolic substances – 2.5–3.5 mg × dm-3 NAA+0.5 mg × dm-3 KIN+60 g × dm-3sucrose. The chemical study of phenolic compounds by HPLC coupled with the mass spectrometry method identified chlorogenic acid, hiperozide, quercetrin, isoquercitrin and rutozide quantitatively and qualitatively in all pigmented carpomass and fruits; an exception is p-coumaric present only qualitatively in green carpomass and absent in fruit and quercetol absent in green carpomass.

  19. In vitro protective effects of Withania somnifera (L.) dunal root extract against hydrogen peroxide and β-amyloid(1-42)-induced cytotoxicity in differentiated PC12 cells.

    Science.gov (United States)

    Kumar, S; Seal, C J; Howes, M J R; Kite, G C; Okello, E J

    2010-10-01

    Withania somnifera L. Dunal (Solanaceae), also known as 'ashwagandha' in Sanskrit and as 'Indian ginseng', is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer, with antiaging, antistress, immunomodulatory and antioxidant properties. There is a paucity of data on the potential neuroprotective effects of W. somnifera root, as traditionally used, against H(2)O(2)- and Aβ((1-42))-induced cytotoxicity which are current targets for novel approaches to treat dementia, especially dementia of the Alzheimer's type (AD). In this study, an aqueous extract prepared from the dried roots of W. somnifera was assessed for potential protective effects against H(2)O(2)- and Aβ((1-42))-aggregated fibril cytotoxicity by an MTT assay using a differentiated rat pheochromocytoma PC12 cell line. The results suggest that pretreatments of differentiated PC12 cells with aqueous extracts of W. somnifera root significantly protect differentiated PC12 cells against both H(2)O(2)- and Aβ((1-42))-induced cytotoxicity, in a concentration dependent manner. To investigate the compounds that could explain the observed effects, the W. somnifera extract was analysed by liquid chromatography-serial mass spectrometry and numerous withanolide derivatives, including withaferin A, were detected. These results demonstrate the neuroprotective properties of an aqueous extract of W. somnifera root and may provide some explanation for the putative ethnopharmacological uses of W. somnifera for cognitive and other neurodegenerative disorders that are associated with oxidative stress. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Study on Effect of Type of Explant and Hormone on Callus Induction and Regeneration in Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    Mohsen Sajjadi

    2015-10-01

    Full Text Available Saffron (Crocus sativus L. is one of the medicinal plants that contain active components and medicinal materials. Tissue culture of saffron can improve the quality and quantity of the saffron product, increase its export and the farmers’ income. In this study, 36 different types of hormone combinations in the dark and 9 different treatments of hormone combinations in cold (4°C, using different saffron explants (bulb, leaf, scales around leaf and distal parts of the leaf were studied in tissue culture. To investigate the growth of corms, the callus formation and the regeneration rate, three replications for each treatment were used and the length of shoot (cm, the callus formation percentage and the regeneration percentage were measured and statistical analysis was performed. Among the types of explants, only explants from bulbs produced the callus on MS medium containing 2 mg.l-1 BAP and 1 mg.l-1 IBA in both the dark and cold conditions. The highest percentage of regeneration was obtained in MS medium with hormonal composition of 0.3 mg.l-1 TDZ, 1 mg.l-1 BAP, 2 mg.l-1 IBA and 0.01 mg.l-1 GA3 in the cold conditions.

  1. Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus.

    Science.gov (United States)

    Xu, Haifeng; Yang, Guanxian; Zhang, Jing; Wang, Yicheng; Zhang, Tianliang; Wang, Nan; Jiang, Shenghui; Zhang, Zongying; Chen, Xuesen

    2018-04-14

    The cold-induced metabolic pathway and anthocyanin biosynthesis play important roles in plant growth. In this study, we identified a bHLH binding motif in the MdMYB15L protein using protein sequence analyses. Yeast two-hybrid and pull-down assays showed that MdMYB15L could interact with MdbHLH33. Overexpressing MdMYB15L in red-fleshed callus inhibited the expression of MdCBF2 and resulted in reduced cold tolerance but did not affect anthocyanin levels. Chip-PCR and EMSA analysis showed that MdMYB15L could bind the type II cis-acting element found in the MdCBF2 promoter. Overexpressing MdMYB15L in red-fleshed callus overexpressing MdbHLH33 also reduced cold tolerance and reduced MdbHLH33-induced anthocyanin biosynthesis. Knocking out the bHLH binding sequence of MdMYB15L (LBSMdMYB15L) prevented LBSMdMYB15L from interacting with MdbHLH33. Overexpressing LBSMdMYB15L in red-fleshed callus overexpressing MdbHLH33 also reduced cold tolerance and reduced MdbHLH33-induced anthocyanin biosynthesis. Together, these results suggested that an apple repressor MdMYB15L might play a key role in the cold signaling and anthocyanin metabolic pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Plant germination and production of callus from the yellow hornpoppy (Glaucium flavum): the first stage of micropropagation.

    Science.gov (United States)

    Mohamed, M E; Arafa, A M; Soliman, S S; Eldahmy, S I

    2014-09-01

    The yellow hornpoppy, Glaucium flavum Cr. (Fam. Papaveraceae) is a perennial herb, distributed in the Mediterranean region, including Egypt. The plant contains many benzyl isoquinoline alkaloids from the aporphine type such as glaucine, isoboldine, 1-chelidonine, 1-norchelidonine and 3-O-methylarterenol, making it to display various medicinal activities including antitussive, anticancer, antioxidant, antimicrobial, antiviral, hypoglycemic, analgesic, antipyretic, bronchodilator and anti-inflammatory effects. The plant is now rare and endangered in the Egyptian flora due to urban sprawl. The present study looks into Glaucium flavum seeds' in vitro germination as well as the ability of the explants taken from the growing seedlings to form stable callus lines in order to enable micropropagation as a way to save the rare plant. The study also scans the production of different medicinally valuable alkaloids, particularly glaucine, in produced callus.

  3. Preliminary Screening of Antioxidant and Antibacterial Activities and Establishment of an Efficient Callus Induction in Curculigo latifolia Dryand (Lemba

    Directory of Open Access Journals (Sweden)

    Reza Farzinebrahimi

    2016-01-01

    Full Text Available Leaf, seed, and tuber explants of C. latifolia were inoculated on MS medium supplemented with various concentrations of BAP and IBA, alone or in combinations, to achieve in vitro plant regeneration. Subsequently, antioxidant and antibacterial activities were determined from in vitro and in vivo plant developed. No response was observed from seed culture on MS media with various concentrations of PGRs. The highest percentage of callus was observed on tuber explants (94% and leaf explants (89% when cultured on MS media supplemented with IBA in combination with BAP. A maximum of 88% shoots per tuber explant, with a mean number of shoots (8.8±1.0, were obtained on MS medium supplemented with combinations of BAP and IBA (2.5 mg L−1. The best root induction (92% and mean number (7.6±0.5 from tuber explants were recorded on 2.5 mg L−1 IBA alone supplemented to MS medium. The higher antioxidant content (80% was observed from in vivo tuber. However, tuber part from the intact plant showed higher inhibition zone in antibacterial activity compared to other in vitro and in vivo tested parts.

  4. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions

    Directory of Open Access Journals (Sweden)

    Sandip A. Ghuge

    2015-07-01

    Full Text Available Polyamines (PAs are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs, including copper amine oxidases (CuAOs and flavin adenine dinucleotide (FAD-dependent polyamine oxidases (PAOs. The biologically-active hydrogen peroxide (H2O2 is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

  5. Root morphology of Ni-treated plants

    International Nuclear Information System (INIS)

    Leskova, A.; Fargasova, A.; Giehl, R. F. H.; Wiren, N. von

    2015-01-01

    Plant roots are very important organs in terms of nutrient and water acquisition but they also serve as anchorages for the aboveground parts of the plants. The roots display extraordinary plasticity towards stress conditions as a result of integration of environmental cues into the developmental processes of the roots. Our aim was to investigate the root morphology of Arabidopsis thaliana plants exposed to a particular stress condition, excess Ni supply. We aimed to find out which cellular processes - cell division, elongation and differentiation are affected by Ni, thereby explaining the seen root phenotype. Our results reveal that a distinct sensitivity exists between roots of different order and interference with various cellular processes is responsible for the effects of Ni on roots. We also show that Ni-treated roots have several auxin-related phenotypes. (authors)

  6. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations.

    Science.gov (United States)

    Yıldırım, Kubilay; Yağcı, Adem; Sucu, Seda; Tunç, Sümeyye

    2018-06-01

    Roots are the major interface between the plant and various stress factors in the soil environment. Alteration of root system architecture (RSA) (root length, spread, number and length of lateral roots) in response to environmental changes is known to be an important strategy for plant adaptation and productivity. In light of ongoing climate changes and global warming predictions, the breeding of drought-tolerant grapevine cultivars is becoming a crucial factor for developing a sustainable viticulture. Root-trait modeling of grapevine rootstock for drought stress scenarios, together with high-throughput phenotyping and genotyping techniques, may provide a valuable background for breeding studies in viticulture. Here, tree grafted grapevine rootstocks (110R, 5BB and 41B) having differential RSA regulations and drought tolerance were investigated to define their drought dependent root characteristics. Root area, root length, ramification and number of root tips reduced less in 110R grafted grapevines compared to 5BB and 41B grafted ones during drought treatment. Root relative water content as well as total carbohydrate and nitrogen content were found to be much higher in the roots of 110R than it was in the roots of other rootstocks under drought. Microarray-based root transcriptome profiling was also conducted on the roots of these rootstocks to identify their gene regulation network behind drought-dependent RSA alterations. Transcriptome analysis revealed totally 2795, 1196 and 1612 differentially expressed transcripts at the severe drought for the roots of 110R, 5BB and 41B, respectively. According to this transcriptomic data, effective root elongation and enlargement performance of 110R were suggested to depend on three transcriptomic regulations. First one is the drought-dependent induction in sugar and protein transporters genes (SWEET and NRT1/PTR) in the roots of 110R to facilitate carbohydrate and nitrogen accumulation. In the roots of the same rootstock

  7. Low-temperature X-ray microanalysis of the differentiating vascular tissue in root tips of Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Echlin, P [Univ. of Cambridge, England; Lai, C E; Hayes, T L

    1982-06-01

    The fracture faces of bulk-frozen tissue offer a number of advantages for the analysis of diffusible elements. They are easy to prepare, remain uncontaminated, and, unlike most frozen-hydrated sections, can be shown to exist in a fully hydrated state throughout examination and analysis. Root tips of Lemna minor briefly treated with a polymeric cryoprotectant are quench frozen in melting nitrogen. Fractures are prepared using the AMRAY Biochamber, lightly etched if necessary to reveal surface detail and carbon coated while maintaining the specimen at 110 K. The frozen-hydrated fracture faces are analyzed at 110 K using the P/B ratio method which is less sensitive to changes in surface geometry and variations in beam current. The method has been used to investigate the distribution of seven elements (Na/sup +/, Mg/sup + +/, P, S, Cl/sup -/, K/sup +/ and Ca/sup + +/) in the developing vascular tissue of the root tip. The microprobe can measure relative elemental ratios at the cellular level and the results from this present study reveal important variations in different parts of the root. The younger, more actively dividing cells, appear to have a slightly higher concentration of diffusible ions in comparison to the somewhat older tissues which have begun to differentiate into what are presumed to be functional vascular elements.

  8. Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for Steviol glycoside production.

    Science.gov (United States)

    Gupta, Pratibha; Sharma, Satyawati; Saxena, Sanjay

    2014-03-01

    Steviol glycosides are natural non-caloric sweeteners which are extracted from the leaves of Stevia rebaudiana plant. Present study deals the effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia plant for steviol glycoside (SGs) production. Yellow-green and compact calli obtained from in vitro raised Stevia leaves sub-cultured on MS medium supplemented with 2.0 mg l(-1) NAA and different concentrations of NaCl (0.05-0.20%) and Na2CO3 (0.0125-0.10%) for 2 weeks, and incubated at 24 ± 1 °C and 22.4 μmol m(-2) s(-1) light intensity provided by white fluorescent tubes for 16 h. Callus and suspension biomass cultured on salts showed less growth as well as browning of medium when compared with control. Quantification of SGs content in callus culture (collected on 15th day) and suspension cultures (collected at 10th and 15th days) treated with and without salts were analyzed by HPLC. It was found that abiotic stress induced by the salts increased the concentration of SGs significantly. In callus, the quantity of SGs got increased from 0.27 (control) to 1.43 and 1.57% with 0.10% NaCl, and 0.025% Na2CO3, respectively. However, in case of suspension culture, the same concentrations of NaCl and Na2CO3 enhanced the SGs content from 1.36 (control) to 2.61 and 5.14%, respectively, on the 10th day.

  9. In vitro anti-microbial activity of extracts from the callus cultures of some Nigella species

    Czech Academy of Sciences Publication Activity Database

    Landa, P.; Maršík, Petr; Vaněk, Tomáš; Rada, V.; Kokoška, L.

    2006-01-01

    Roč. 61, č. 3 (2006), s. 285-288 ISSN 0006-3088 R&D Projects: GA ČR(CZ) GA525/02/0257; GA MŠk(CZ) 1P04OC926.001 Institutional research plan: CEZ:AV0Z40550506 Keywords : Nigella * callus culture * antimicrobial activity Subject RIV: CC - Organic Chemistry Impact factor: 0.213, year: 2006

  10. Biosynthesis of phenolic compounds in hypocotyl callus cultures of fenugreek (Trigonella foenum graecum L. )

    Energy Technology Data Exchange (ETDEWEB)

    Dhandapani, M; Antony, A; Subba Rao, P V [Indian Inst. of Science, Bangalore. Dept. of Biochemistry

    1977-03-01

    Hypocotyl callus cultures of fenugreek were studied to determine their potential for synthesizing phenolics, particularly those which are intermediates in lignin and flavonoid biosynthesis. The cultures were found to be capable of synthesizing an array of phenolic compounds characteristic of higher plants. Both phenylalanine-U-/sup 14/C and cinnamic acid-U-/sup 14/C were found to be efficient precursors of these phenolics.

  11. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition

    OpenAIRE

    Silva, Javier; Moreno Risueño, Miguel Ángel; Manzano, Concepción; Téllez Robledo, Bárbara; Navarro Neila, Sara; Carrasco Loba, Víctor; Pollmann, Stephan; Gallego, Javier; Pozo Benito, Juan Carlos del

    2016-01-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell ...

  12. Delayed fracture healing and increased callus adiposity in a C57BL/6J murine model of obesity-associated type 2 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Matthew L Brown

    Full Text Available INTRODUCTION: Impaired healing and non-union of skeletal fractures is a major public health problem, with morbidity exacerbated in patients with diabetes mellitus (DM. DM is prevalent worldwide and affects approximately 25.8 million US adults, with >90% having obesity-related type 2 DM (T2DM. While fracture healing in type 1 DM (T1DM has been studied using animal models, an investigation into delayed healing in an animal model of T2DM has not yet been performed. METHODS: Male C57BL/6J mice at 5 weeks of age were placed on either a control lean diet or an experimental high-fat diet (HFD for 12 weeks. A mid-diaphyseal open tibia fracture was induced at 17 weeks of age and a spinal needle was used for intra-medullary fixation. Mice were sacrificed at days 7, 10, 14, 21, 28, and 35 for micro-computed tomography (μCT, histology-based histomorphometry and molecular analyses, and biomechanical testing. RESULTS: HFD-fed mice displayed increased body weight and impaired glucose tolerance, both characteristic of T2DM. Compared to control mice, HFD-fed mice with tibia fractures showed significantly (p<0.001 decreased woven bone at day 28 by histomorphometry and significantly (p<0.01 decreased callus bone volume at day 21 by μCT. Interestingly, fracture calluses contained markedly increased adiposity in HFD-fed mice at days 21, 28, and 35. HFD-fed mice also showed increased PPARγ immunohistochemical staining at day 14. Finally, calluses from HFD-fed mice at day 35 showed significantly (p<0.01 reduced torsional rigidity compared to controls. DISCUSSION: Our murine model of T2DM demonstrated delayed fracture healing and weakened biomechanical properties, and was distinctly characterized by increased callus adiposity. This suggests altered mesenchymal stem cell fate determination with a shift to the adipocyte lineage at the expense of the osteoblast lineage. The up-regulation of PPARγ in fracture calluses of HFD-fed mice is likely involved in the proposed

  13. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert).

    Science.gov (United States)

    Ahmad, Naveed; Rab, Abdur; Ahmad, Nisar

    2016-01-01

    Stevia rebaudiana (S. rebaudiana) is a very important species with worldwide medicinal and commercial uses. Light is one of the major elicitors that fluctuate morphogenic potential and biochemical responses. In the present study, we investigated the effect of various spectral lights on biomass accumulation and secondary metabolite production in callus cultures of S. rebaudiana. Leaf explants were placed on Murashige and Skoog (MS) medium and exposed to various spectral lights. 6-Benzyle adenine (BA) and 2, 4-dichlorophenoxy acetic acid (2, 4-D; 2.0 mgl(-1)) were used for callus induction. The control light (16/8h) produced optimum callogenic response (92.73%) than other colored lights. Compared to other colored lights, control grown cultures displayed maximum biomass accumulation (5.78 gl(-1)) during a prolonged log phase at the 18th day of growth kinetics. Cultures grown under blue light enhanced total phenolic content (TPC; 102.32 μg/g DW), total flavonoid content (TFC; 22.07 μg/g DW) and total antioxidant capacity (TAC; 11.63 μg/g DW). On the contrary, green and red lights improved reducing power assay (RPA; 0.71Fe(II)g(-1) DW) and DPPH-radical scavenging activity (DRSA; 80%). Herein, we concluded that the utilization of colored lights is a promising strategy for enhanced production of antioxidant secondary metabolites in callus cultures of S. rebaudiana. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cytokinin signaling during root development.

    Science.gov (United States)

    Bishopp, Anthony; Help, Hanna; Helariutta, Ykä

    2009-01-01

    The cytokinin class of phytohormones regulates division and differentiation of plant cells. They are perceived and signaled by a phosphorelay mechanism similar to those observed in prokaryotes. Research into the components of phosphorelay had previously been marred by genetic redundancy. However, recent studies have addressed this with the creation of high-order mutants. In addition, several new elements regulating cytokinin signaling have been identified. This has uncovered many roles in diverse developmental and physiological processes. In this review, we look at these processes specifically in the context of root development. We focus on the formation and maintenance of the root apical meristem, primary and secondary vascular development, lateral root emergence and development, and root nodulation. We believe that the root is an ideal organ with which to investigate cytokinin signaling in a wider context.

  15. MR imaging of spondylolytic spondylolisthesis: changes of intervertebral foramen and nerve root compression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyung [Ajou Univ. College of Medicine, Seoul (Korea, Republic of); Chung, Tae Sub; Kim, Young Soo [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    1999-08-01

    To evaluate the factors affecting intervertebral foramen stenosis and nerve root compression in spondylolytic spondylolisthesis. We investigated 120 intervertebral foramina of 60 patients with spondylolytic spondylolisthesis who had undergone lumbar MRI. A retrospective review of their MR images revealed the degree of intervertebral foramen stenosis and causes of nerve root compression. The relationship between disk height diminution following spondylolysis and degree of intervertebral foramen stenosis was also evaluated. Forty eight of 60 patients showed a similar degree of intervertebral foramen stenosis, and in 12 patients the degree of stenosis was different. In 110 intervertebral foramina, stenosis of both the superior and inferior compartments of intervertebral foramina was demonstrated. In 37 of 120 cases (30.8%), stenosis was mild ; in 44 of 120 (36.7%) it was modcrate, and in 29 of 120 (24.2%) it was severe. Stenosis of the inferior compartment was demonstrated in ten of 120 intervertebral foramina (8.3%). Nerve root compression was caused by posterior bulging of the intervertebral disk (65/120), descent of the pedicle (51/120), an isthmic bony segment above the site of spondylolytic (44/120), a bony spur formed at a spondylolytic site (11/120), and fibrocartilaginous callus at a spondylolytic site (5/48). In all cases there was degenerative change of the intervertebral disk at the affected level. There was no relationship between degree of disk height diminution and degree of intervertebral foramen stenosis (p > 0.05). The degree of intervertebral foramen stenosis and causes of nerve root compression in spondylolytic spondylolisthesis are variable, and MRI demonstrates them precisely. There was no positive relationship between degree of nerve root compression at an intervertebral foramen and degree of spondylolysis and degeneration of an intervertebral foramen. The degree of nerve root compression is believed to be another criterion for describing

  16. MR imaging of spondylolytic spondylolisthesis: changes of intervertebral foramen and nerve root compression

    International Nuclear Information System (INIS)

    Kim, Ji Hyung; Chung, Tae Sub; Kim, Young Soo

    1999-01-01

    To evaluate the factors affecting intervertebral foramen stenosis and nerve root compression in spondylolytic spondylolisthesis. We investigated 120 intervertebral foramina of 60 patients with spondylolytic spondylolisthesis who had undergone lumbar MRI. A retrospective review of their MR images revealed the degree of intervertebral foramen stenosis and causes of nerve root compression. The relationship between disk height diminution following spondylolysis and degree of intervertebral foramen stenosis was also evaluated. Forty eight of 60 patients showed a similar degree of intervertebral foramen stenosis, and in 12 patients the degree of stenosis was different. In 110 intervertebral foramina, stenosis of both the superior and inferior compartments of intervertebral foramina was demonstrated. In 37 of 120 cases (30.8%), stenosis was mild ; in 44 of 120 (36.7%) it was modcrate, and in 29 of 120 (24.2%) it was severe. Stenosis of the inferior compartment was demonstrated in ten of 120 intervertebral foramina (8.3%). Nerve root compression was caused by posterior bulging of the intervertebral disk (65/120), descent of the pedicle (51/120), an isthmic bony segment above the site of spondylolytic (44/120), a bony spur formed at a spondylolytic site (11/120), and fibrocartilaginous callus at a spondylolytic site (5/48). In all cases there was degenerative change of the intervertebral disk at the affected level. There was no relationship between degree of disk height diminution and degree of intervertebral foramen stenosis (p > 0.05). The degree of intervertebral foramen stenosis and causes of nerve root compression in spondylolytic spondylolisthesis are variable, and MRI demonstrates them precisely. There was no positive relationship between degree of nerve root compression at an intervertebral foramen and degree of spondylolysis and degeneration of an intervertebral foramen. The degree of nerve root compression is believed to be another criterion for describing

  17. An environment with strong gravitational and magnetic field alterations synergizes to promote variations in Arabidopsis thaliana callus global transcriptional state

    Data.gov (United States)

    National Aeronautics and Space Administration — Using diamagnetic levitation we have exposed A. thaliana in vitro callus cultures to five environments with different levels of effective gravity (from levitation...

  18. CT diagnosis of lumbosacral conjoined nerve roots

    International Nuclear Information System (INIS)

    Torricelli, P.; Martinelli, C.; Spina, V.

    1987-01-01

    The authors report the observations derived from CT evaluation of 19 cases of lumbosacral conjoined nerve roots; 11 of these have been confirmed by lumbar myelography and/or at surgery. They conclude that CT without intrathecal metrizamide allows the recognition in most cases the presence of conjoined nerve roots and to differentiate them from a herniated disk fragment; this is especially usefull avoid surgical damage of anomalous roots. (orig.)

  19. Optimization of Agrobacterium tumefaciens-Mediated Transformation Systems in Tea Plant (Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Qianru LV

    2017-05-01

    Full Text Available In this study, an efficient plant regeneration protocol in vitro and transformation by Agrobacterium-mediated method of Camellia sinensis was achieved, which would lay the foundation for genetic improvement of tea plant by genetic engineering technology. The cotyledon callus of C. sinensis were used as the receptors for transformation by Agrobacterium tumefaciens EHA105 containing PS1aG-3. Some factors which affected the result of Agrobacterium-mediated transformation of C. sinensis were studied on the basis of GUS transient expression system. The optimum system of Agrobacterium-mediated transformation was that the cotyledon callus were pre-cultured for 3 d, and then infected by EHA105 for 15 min followed by 3 d co-culture in the dark on the YEB medium containing 150 µmol⋅L−1 acetosyringone (AS. The transient expression rate of GUS gene was 62.6%. After being delayed selective culture for 3 d, infected callus were transferred into the differentiation medium and the root induction medium both of which were supplemented with 100 mg⋅L−1 spectinomycin, and then resistant seedlings of C. sinensis were obtained. The conversion rate was 3.6%.

  20. UV-radiation and the flavonoid content in callus culture of Ononis arvensis L

    International Nuclear Information System (INIS)

    Tumowa, L.; Psotowa, R.

    1998-01-01

    The paper discussed a possible influence on the production of secondary metabolites - the flavonoids, by the method of elicitation in the callus cultures of Ononis arvensis L., the elicitor employed being the UV 254 and 366 nm and the sun-lamp. In some cases there was an increase in the production of flavonoids particularly 60, 120, 240 and 300 s after sun-lamp irradiation and in case of 15 and 30 min irradiation with UV-254 nm

  1. Responses of meristematic callus cells of two Cynodon dactylon genotypes to aluminium.

    Science.gov (United States)

    Ramgareeb, Sumita; Cooke, John A; Watt, M Paula

    2004-11-01

    Responses to Al3+ of embryogenic callus cells of an Al-sensitive (Al-S) and Al-resistant (Al-R) Cynodon dactylon genotype were evaluated with regard to Al3+ toxicity and resistance. A chemical equilibrium speciation model (MINTEQA2) was used to ensure the availability of the Al3+ ion in culture media, which was supplied as 0.08-2.3 mM Al3+ for 2-8 weeks. Increasing Al3+ concentration and exposure time had a greater negative impact on the Al-S than on the Al-R genotype, in terms of callus growth rate and frequency of non-embryogenic cells. Exposure to 0.8 mM Al3+ for 2 weeks resulted in an 88% reduction in the Al-S meristematic cell number, whereas that of the Al-R genotype remained unaffected. In addition, the Al-S cells accumulated three times more Al in the nucleus than did the Al-R cells, suggesting that Al interfered with mitosis. The Al-R cells appeared to exclude Al3+ from its cells through an increase in extracellular pH (4.34 in Al-R and 4.08 in Al-S) and by the immobilisation of Al in the cell wall (33% more in Al-R). The results showed that by studying the cellular responses to Al3+ it is possible to discriminate between the Al-S and Al-R C. dactylon genotypes.

  2. Synthesis and absolute configurations of the cytotoxic polyacetylenes isolated from the callus of Panax ginseng.

    Science.gov (United States)

    Fujimoto, Y; Satoh, M; Takeuchi, N; Kirisawa, M

    1990-06-01

    Panaxacol (1) and dihydropanaxacol (2), cytotoxic polyacetylenes isolated from the callus of Panax ginseng, were synthesized starting from D-(-)-diethyl tartrate. The absolute configuration of 1 was determined to be 9R, 10R and the absolute configuration at C-3 of 2 was tentatively assigned as 3S by the application of the R(+)-alpha-methoxy-alpha-(trifluoro methyl)phenylacetyl (MTPA) method.

  3. Proteomics of Maize Root Development.

    Science.gov (United States)

    Hochholdinger, Frank; Marcon, Caroline; Baldauf, Jutta A; Yu, Peng; Frey, Felix P

    2018-01-01

    Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  4. Proteomics of Maize Root Development

    Directory of Open Access Journals (Sweden)

    Frank Hochholdinger

    2018-03-01

    Full Text Available Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  5. Flavonoid Production, Growth and Differentiation of Stelechocarpus burahol (Bl.) Hook. F. and Th. Cell Suspension Culture.

    Science.gov (United States)

    Aini Habibah, Noor; Moeljopawiro, Sukarti; Dewi, Kumala; Indrianto, Ari

    2017-01-01

    Stelechocarpus burahol is a plant containing flavonoid compounds that have the potential for use as an antihyperuricemic for gout medication. This study was performed to assess flavonoid production, growth and cell differentiation of S. burahol in cell suspension culture. Mesocarp was planted in Murashige and Skoog (MS) medium supplemented with 7.5 mg L-1 picloram for the induction of callus. Non-embryonic callus obtained was used in the formation of cell suspension cultures. Growth of cells was determined by fresh and dry weights. During the culturing, the fresh weight, dry weight and flavonoid content were determined as a result of culture status. The growth of the S. burahol cell suspension was slow, the stationary phase occurred at 30 days. The production of flavonoids was not in line with the growth of cells and the maximum production occurred on the 15th day of the log phase. The globular-shaped cells dominated the cell suspension culture at all ages. Fluorescein diacetate (FDA) staining of cells derived from cell cultures aged for 36 days showed that some cells were still viable. The results show that flavonoid production, growth and cell differentiation of a S. burahol cell suspension culture differed according to the culture age.

  6. Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants.

    Science.gov (United States)

    Rodríguez López, Carlos M; Wetten, Andrew C; Wilkinson, Michael J

    2010-06-01

    *Relatively little is known about the timing of genetic and epigenetic forms of somaclonal variation arising from callus growth. We surveyed for both types of change in cocoa (Theobroma cacao) plants regenerated from calli of various ages, and also between tissues from the source trees. *For genetic change, we used 15 single sequence repeat (SSR) markers from four source trees and from 233 regenerated plants. For epigenetic change, we used 386 methylation-sensitive amplified polymorphism (MSAP) markers on leaf and explant (staminode) DNA from two source trees and on leaf DNA from 114 regenerants. *Genetic variation within source trees was limited to one slippage mutation in one leaf. Regenerants were far more variable, with 35% exhibiting at least one mutation. Genetic variation initially accumulated with culture age but subsequently declined. MSAP (epigenetic) profiles diverged between leaf and staminode samples from source trees. Multivariate analysis revealed that leaves from regenerants occupied intermediate eigenspace between leaves and staminodes of source plants but became progressively more similar to source tree leaves with culture age. *Statistical analysis confirmed this rather counterintuitive finding that leaves of 'late regenerants' exhibited significantly less genetic and epigenetic divergence from source leaves than those exposed to short periods of callus growth.

  7. Enlargement of induced variations by combined method of chronic irradiations with callus culture in sugarcane

    International Nuclear Information System (INIS)

    Nagatomi, Shigeki

    1993-01-01

    The present study was conducted to elucidate the effects of gamma ray irradiation and callus culture upon induced variation of the regeneratives. The populations regenerated from young leaf tissue of chronic irradiated plnats grown under a gamma field receiving a total dose of 300 and 100 Gy, showed rather wider variation on quantitative characters than plants from populations of the non-irradiated. This variation extended in both negative and positive directions. Analysis of variance also revealed that variation and heritability in broad sense of most agronomic characters increased significantly among the subclones as the irradiation done rose. Principal component analysis also indicated that the subclones from the irradiated population were more variable than the non-irradiated. Such variation with higher heritability could be transmitted to the following generations by clonal propagation and utilized as genetic sources in mutation breeding. The combined method with chronic irradiation followed by tissue culture is evaluated as an effective method of widening mutation spectrum and increasing mutation frequency in regenerated plants. In addition, this method is valid to improve any crop species which can regenerate plants through callus culture. (author)

  8. New potential markers of in vitro tomato morphogenesis identified by mRNA differential display.

    Science.gov (United States)

    Torelli, A; Soragni, E; Bolchi, A; Petrucco, S; Ottonello, S; Branca, C

    1996-12-01

    The identification of plant genes involved in early phases of in vitro morphogenesis can not only contribute to our understanding of the processes underlying growth regulator-controlled determination, but also provide novel markers for evaluating the outcome of in vitro regeneration experiments. To search for such genes and to monitor changes in gene expression accompanying in vitro regeneration, we have adapted the mRNA differential display technique to the comparative analysis of a model system of tomato cotyledons that can be driven selectively toward either shoot or callus formation by means of previously determined growth regulator supplementations. Hormone-independent transcriptional modulation (mainly down-regulation) has been found to be the most common event, indicating that a non-specific reprogramming of gene expression quantitatively predominates during the early phases of in vitro culture. However, cDNA fragments representative of genes that are either down-regulated or induced in a programme-specific manner could also be identified, and two of them (G35, G36) were further characterized. One of these cDNA fragments, G35, corresponds to an mRNA that is down-regulated much earlier in callus- (day 2) than in shoot-determined explants (day 6). The other, G36, identifies an mRNA that is transiently expressed in shoot-determined explants only, well before any macroscopic signs of differentiation become apparent, and thus exhibits typical features of a morphogenetic marker.

  9. Hypocotyl adventitious root organogenesis differs from lateral root development.

    Science.gov (United States)

    Verstraeten, Inge; Schotte, Sébastien; Geelen, Danny

    2014-01-01

    Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR

  10. Hypocotyl adventitious root organogenesis differs from lateral root development

    Directory of Open Access Journals (Sweden)

    Inge eVerstraeten

    2014-09-01

    Full Text Available Wound-induced adventitious root (AR formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR and the initiated AR share histological and developmental characteristics with lateral roots (LR. In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in Arabidopsis thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are

  11. Eigenfunctions of the invariant differential operators on symmetric spaces having A2 as a restricted root system

    International Nuclear Information System (INIS)

    Prati, M.C.

    1986-01-01

    The eigenfunctions psub(nm)sup(μ) (z, z-bar), n,m are elements of N, μ is an element of (-1/3, + infinity), z is an element of C, of two differential operators, which for some particular values of μ are the generators of the algebra of invariant differential operators on symmetric spaces, having A 2 as a restricted root system, are studied. The group-theoretic interpretation and the explicit form of these functions as polynomials of z , z-bar are given in the following cases: when μ = 0, 1 for every n, m belonging to N; when m = 0, for every n belonging to N and when μ is an element of (-1/3, +infinity). Furthermore, all solutions psub(nm)sup(μ) (z, z-bar) for every μ belonging to (-1/3, +infinity) and n + m <= 5 are explicitly written. This research has applications in quantum mechanics and in quantum field theory

  12. Flavonoids modify root growth and modulate expression of SHORT-ROOT and HD-ZIP III.

    Science.gov (United States)

    Franco, Danilo Miralha; Silva, Eder Marques; Saldanha, Luiz Leonardo; Adachi, Sérgio Akira; Schley, Thayssa Rabelo; Rodrigues, Tatiane Maria; Dokkedal, Anne Ligia; Nogueira, Fabio Tebaldi Silveira; Rolim de Almeida, Luiz Fernando

    2015-09-01

    Flavonoids are a class of distinct compounds produced by plant secondary metabolism that inhibit or promote plant development and have a relationship with auxin transport. We showed that, in terms of root development, Copaifera langsdorffii leaf extracts has an inhibitory effect on most flavonoid components compared with the application of exogenous flavonoids (glycosides and aglycones). These compounds alter the pattern of expression of the SHORT-ROOT and HD-ZIP III transcription factor gene family and cause morpho-physiological alterations in sorghum roots. In addition, to examine the flavonoid auxin interaction in stress, we correlated the responses with the effects of exogenous application of auxin and an auxin transport inhibitor. The results show that exogenous flavonoids inhibit primary root growth and increase the development of lateral roots. Exogenous flavonoids also change the pattern of expression of specific genes associated with root tissue differentiation. These findings indicate that flavonoid glycosides can influence the polar transport of auxin, leading to stress responses that depend on auxin. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Plantlet regeneration potential from seedling explants of vitegnus (Vitex agnus castus).

    Science.gov (United States)

    Chamandoosti, F

    2007-11-15

    In this research a simple and repeatable method for regeneration of a important medicinal plant (Vitex agnus castus) described. Different seedling explants such as hypocotyl, cotyledon, root and apical meristem were cultured in MS basal media with different kinds and concentrations of PGRs. Root and apical meristem explants were the only explants that have regeneration whole plantlets potential. It was interesting that regeneration whole plantlets from root and apical meristem explants have different developmental pathways. Whole plantlets from apical meristem explants regenerated by passing phase callusing whereas regeneration whole plantlets from root was direct and without phase callusing. This subject implies that we can have many manipulation possibilities in order to different objects of tissue culture by selecting different explants in vitegnus.

  14. Enraizamento de estacas de oliveira submetidas a aplicação de fertilizantes orgânicos e AIB Rooting of olive tree cuttings using organic fertilizations and IBA

    Directory of Open Access Journals (Sweden)

    Marcelo Caetano de Oliveira

    2010-04-01

    Full Text Available Estacas semilenhosas de oliveiras 'Ascolano 315', foram preparadas com aproximadamente 12 cm de comprimento e quatro folhas, sendo, em seguida, tratadas, ou não, com 3000 mg L-1 de AIB por cinco segundos O experimento foi conduzido em casa de vegetação, com sistema de nebulização intermitente, sendo as estacas colocadas em bancadas de propagação, contendo a perlita como substrato. Antes do plantio das estacas, foram aplicados os fertilizantes orgânicos Biofertilizante e Nippoterra, nas dosagens 0, 20, 40 e 60 mL L-1. Os produtos foram aplicados nas parcelas experimentais com regador manual, em dosagem única. Passados 58 dias, foi mensurada a porcentagem de estacas com calo, enraizadas, enraizadas e/ou com calo, número médio de raízes e comprimento médio das raízes. Concluiu-se que a dosagem de 40 mL L-1 de Biofertilizante propiciou melhores resultados, com a utilização de AIB.Semi hardwood cutting was colletecd in the medium portion of the 'Ascolano 315' olive trees, prepared with 12 cm in length and four leaves, treated or not with 3000 mg L-1 of IBA by five seconds. The experiment was conducted in a greenhouse, with a system of intermittent nebulization. The cutting was placed in propagation supports, containing perlite as a substrate. Before the plantation of the cutting, organic fertilizers Biofertilizante and Nippoterra were applied in the proportion: 0, 20, 40 and 60 mL L-1. The products were applied in the experimental portions in a single dose. After 58 days, the percentage of cutting with callus, taken root, taken root and/or with callus, average number of roots and average length of the roots were evaluated. The 40 mL L-1 of Biofertilizante gave the best results, with IBA.

  15. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars.

    Science.gov (United States)

    Javed, M Tariq; Akram, M Sohail; Tanwir, Kashif; Javed Chaudhary, Hassan; Ali, Qasim; Stoltz, Eva; Lindberg, Sylvia

    2017-07-01

    Our earlier work described that the roots of two maize cultivars, grown hydroponically, differentially responded to cadmium (Cd) stress by initiating changes in medium pH depending on their Cd tolerance. The current study investigated the root exudation, elemental contents and antioxidant behavior of the same maize cultivars [cv. 3062 (Cd-tolerant) and cv. 31P41 (Cd-sensitive)] under Cd stress. Plants were maintained in a rhizobox-like system carrying soil spiked with Cd concentrations of 0, 10, 20, 30, 40 and 50 μmol/kg soil. The root and shoot Cd contents increased, while Mg, Ca and Fe contents mainly decreased at higher Cd levels, and preferentially in the sensitive cultivar. Interestingly, the K contents increased in roots of cv. 3062 at low Cd treatments. The Cd stress caused acidosis of the maize root exudates predominantly in cv. 3062. The concentration of various organic acids was significantly increased in the root exudates of cv. 3062 with applied Cd levels. This effect was diminished in cv. 31P41 at higher Cd levels. Cd exposure increased the relative membrane permeability, anthocyanin (only in cv. 3062), proline contents and the activities of peroxidases (POD) and superoxide dismutase (SOD). The only exception was the catalase activity, which was diminished in both cultivars. Root Cd contents were positively correlated with the secretion of acetic acid, oxalic acid, glutamic acid, citric acid, and succinic acid. The antioxidants like POD and SOD exhibited a positive correlation with the organic acids under Cd stress. It is likly that a high exudation of dicarboxylic organic acids improves nutrient uptake and activities of antioxidants, which enables the tolerant cultivar to acclimatize in Cd polluted environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of gamma-radiations on haploid cultured cells of Datura innoxia

    International Nuclear Information System (INIS)

    Jain, R.K.; Maherchandani, N.; Sharma, D.R.; Chowdhury, V.K.

    1981-01-01

    The effects of gamma-radiations were studied in haploid cultured cells of Datura innoxia. Growth of callus cultures and shoot differentiation were stimulated at low doses (0.2 and 1.0 kR), while the higher dose (5.0 kR) was inhibitory. Root differentiation was observed only in cultures exposed to 1.0 kR dose. Enzyme activities of alpha-amylase, peroxidase, malate dehydrogenase and phosphatases, and the amounts of buffer extractable proteins were stimulated at 0.2 and 1.0 kR and inhibited at 5.0 kR. Mitotic index too decreased at 5.0 kR. Mean nuclear volume increased with increase in radiation dose, probably due to increased ploidy. (author)

  17. Produção de frutanos em calos e plântulas clonadas in vitro de Viguiera discolor Baker (Asteraceae Fructan production in callus and in vitro cloned seedlings of Viguiera discolor Baker (Asteraceae

    Directory of Open Access Journals (Sweden)

    Nair Massumi Itaya

    2005-09-01

    the previous culture medium, supplemented with 0.5 mg L-1 NAA, which allowed the production of uniform plants, and formation of non thickened roots, tuberous roots and callus-like structures (callus type 1. Analysis of these materials showed the presence of inulin-type fructans. Incubation of stem nodes in the presence of 2,4-D induced growth of friable callus (callus type 2, in which fructans and their synthesis enzymes sucrose: sucrose 1-fructosyltransferase (SST and fructan: fructan 1fructosyltransferase (FFT were detected. Although in lower concentrations, the ratio SST/FFT activities and their fructans were similar to values found in plants cultivated under natural conditions. Stem nodes incubation on hormone-free medium resulted in regeneration of 50% plantlets. In vitro propagation, of V. discolor, may allow large-scale multiplication and conservation of this species, as well as fructan production under this condition.

  18. Studies on Hormonal Effects on Rooting of Marcotting and Stem-Cuttings of Akee Apple (Blighia sapida K. D. Koenig

    Directory of Open Access Journals (Sweden)

    Ehoniyotan Olayemi IBUKUN

    2016-12-01

    Full Text Available The effect of hormone on the rooting of stem-cuttings and marcotting of akee apple was studied using a combination between Indole -3- Butyric Acid (IBA and 1- Naphthalene Acetic Acid (NAA. Stem-cuttings from mature akee trees from Challenge, Jalala and Ganmo in Ilorin, were treated with different dilutions of the liquid hormone in the combination of 1.0% Indole-3- butyric acid + 0.5% 1-Naphthaleneacetic acid before propagating them in a non-mist propagator. Marcotting was also carried-out on trees, using the hormonal combination of different dilutions. Observations and the results obtained revealed that the hormonal combination had significant effect on the rooting of stem-cuttings and marcotting. Both marcotting and stem cuttings did not produce at the end of the experiment roots in the absence of the hormonal treatment; a particular aspect was marcotting that initials produced roots. On the other hand, both marcotting and stem cuttings produced roots with the hormonal treatments; more roots were produced using the combination of 2,000 ppm of IBA and 1,000 ppm of NAA, compared with lower concentrations of the hormone mixtures. After callus formation, 2,000 ppm of IBA and 1,000 ppm of NAA combination gave the best results within stem-cuttings. Based on the results obtained, it was concluded that the combination of IBA and NAA in appropriate concentration promoted rooting in Akee apple and therefore are highly valuable for the vegetative propagation of this species through stem cutting and marcotting.

  19. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-08-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na(+) extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na(+)/H(+) exchangers; (ii) better root K(+) retention ability resulting from stress-inducible activation of H(+)-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K(+)-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Oxygen regulation of uricase and sucrose synthase synthesis in soybean callus tissue is exerted at the mRNA level

    DEFF Research Database (Denmark)

    Xue, Z T; Larsen, K; Jochimsen, B U

    1991-01-01

    The effect of lowering oxygen concentration on the expression of nodulin genes in soybean callus tissue devoid of the microsymbiont has been examined. Poly(A)+ RNA was isolated from tissue cultivated in 4% oxygen and in normal atmosphere. Quantitative mRNA hybridization experiments using nodule...

  1. Determination of suitable microspore stage and callus induction from anthers of kenaf (Hibiscus cannabinus L.).

    Science.gov (United States)

    Ibrahim, Ahmed Mahmood; Kayat, Fatimah Binti; Hussin, Zeti Ermiena Surya Mat; Susanto, Dwi; Ariffulah, Mohammed

    2014-01-01

    Kenaf (Hibiscus cannabinus L.) is one of the important species of Hibiscus cultivated for fiber. Availability of homozygous parent lines is prerequisite to the use of the heterosis effect reproducible in hybrid breeding. The production of haploid plants by anther culture followed by chromosome doubling can be achieved in short period compared with inbred lines by conventional method that requires self pollination of parent material. In this research, the effects of the microspore developmental stage, time of flower collection, various pretreatments, different combinations of hormones, and culture condition on anther culture of KB6 variety of Kenaf were studied. Young flower buds with immature anthers at the appropriate stage of microspore development were sterilized and the anthers were carefully dissected from the flower buds and subjected to various pretreatments and different combinations of hormones like NAA, 2,4-D, Kinetin, BAP, and TDZ to induce callus. The best microspore development stage of the flower buds was about 6-8 mm long collected 1-2 weeks after flower initiation. At that stage, the microspores were at the uninucleate stage which was suitable for culture. The best callus induction frequency was 90% in the optimized semisolid MS medium fortified with 3.0 mg/L BAP + 3.0 mg/L NAA.

  2. Influence of auxins combinations on accumulation of reserpine in the callus of Rauvolfia tetraphylla L.

    Science.gov (United States)

    Anitha, S; Kumari, B D Ranjitha

    2007-11-01

    Reserpine is a monoterpene indole alkaloid used to treat hypertension because of its hypotensive property and psychiatric disorders because of its tranquilizing effect. Protocol has been standardized to enhance the synthesis of reserpine in leaf derived calli of Rauvolfia tetraphylla L. by adjusting the auxins combinations in the medium consisting of MS nutrient salts and B5 vitamins. Auxins such as naphthalene acetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) were used in 1-5 microM concentration along with 9 microM concentration of 2,4 dichlorophenoxy acetic acid (2,4-D), which was found suitable for callus induction. The combination of (2,4-D) with NAA had been proved to accumulate maximum amount of reserpine followed by 2,4-D with IBA. The IAA with 2,4-D combination yielded very less amount of reserpine than the other combinations and 9 microM 2,4-D alone. The results suggest that there may be synergetic effect of NAA with 2,4-D and IBA with 2,4-D for increase in the biomass and reserpine accumulation and antagonistic effect of IAA with 2,4-D for the above said factors in the callus.

  3. Determination of Suitable Microspore Stage and Callus Induction from Anthers of Kenaf (Hibiscus cannabinus L.

    Directory of Open Access Journals (Sweden)

    Ahmed Mahmood Ibrahim

    2014-01-01

    Full Text Available Kenaf (Hibiscus cannabinus L. is one of the important species of Hibiscus cultivated for fiber. Availability of homozygous parent lines is prerequisite to the use of the heterosis effect reproducible in hybrid breeding. The production of haploid plants by anther culture followed by chromosome doubling can be achieved in short period compared with inbred lines by conventional method that requires self pollination of parent material. In this research, the effects of the microspore developmental stage, time of flower collection, various pretreatments, different combinations of hormones, and culture condition on anther culture of KB6 variety of Kenaf were studied. Young flower buds with immature anthers at the appropriate stage of microspore development were sterilized and the anthers were carefully dissected from the flower buds and subjected to various pretreatments and different combinations of hormones like NAA, 2,4-D, Kinetin, BAP, and TDZ to induce callus. The best microspore development stage of the flower buds was about 6–8 mm long collected 1-2 weeks after flower initiation. At that stage, the microspores were at the uninucleate stage which was suitable for culture. The best callus induction frequency was 90% in the optimized semisolid MS medium fortified with 3.0 mg/L BAP + 3.0 mg/L NAA.

  4. Determination of Suitable Microspore Stage and Callus Induction from Anthers of Kenaf (Hibiscus cannabinus L.)

    Science.gov (United States)

    Binti Kayat, Fatimah; Ermiena Surya Mat Hussin, Zeti; Susanto, Dwi; Ariffulah, Mohammed

    2014-01-01

    Kenaf (Hibiscus cannabinus L.) is one of the important species of Hibiscus cultivated for fiber. Availability of homozygous parent lines is prerequisite to the use of the heterosis effect reproducible in hybrid breeding. The production of haploid plants by anther culture followed by chromosome doubling can be achieved in short period compared with inbred lines by conventional method that requires self pollination of parent material. In this research, the effects of the microspore developmental stage, time of flower collection, various pretreatments, different combinations of hormones, and culture condition on anther culture of KB6 variety of Kenaf were studied. Young flower buds with immature anthers at the appropriate stage of microspore development were sterilized and the anthers were carefully dissected from the flower buds and subjected to various pretreatments and different combinations of hormones like NAA, 2,4-D, Kinetin, BAP, and TDZ to induce callus. The best microspore development stage of the flower buds was about 6–8 mm long collected 1-2 weeks after flower initiation. At that stage, the microspores were at the uninucleate stage which was suitable for culture. The best callus induction frequency was 90% in the optimized semisolid MS medium fortified with 3.0 mg/L BAP + 3.0 mg/L NAA. PMID:24757416

  5. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    International Nuclear Information System (INIS)

    Bachand, P.A.M.; Bachand, S.; Fleck, J.; Anderson, F.; Windham-Myers, L.

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flow rates and tracer concentrations at wetland inflows and outflows. We used two ideal reactor model solutions, a continuous flow stirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these non-ideal agricultural wetlands in which check ponds are in series. Using a flux model, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemical mechanisms affecting dissolved constituent cycling in the root zone. In addition, our understanding of

  6. THE LYCHEE TREE PROPAGATION BY LAYERING

    Directory of Open Access Journals (Sweden)

    LEILA CRISTINA ROSA LINS

    2015-06-01

    Full Text Available The aim of the study was to assess the influence of season and different substrates on rooting of air layers of lychee (Litchi chinensisSonn. for the production of seedlings to ensure the formation of uniform and productive orchards. Air layers were done in plants of the Bengal cultivar using leafy and healthy woody branches, with about 0.010 to 0.015 m in diameter, in which were performed complete girdling with 0.020 m wide at a distance of 0.30 to 0.40 m below the apex. Then the branches were wrapped in moistened substrate. The layering was made at six times of theyear (January, March, May, July, September and November and two substrates were used (coconut fiber and sphagnum in a 6 x 2 factorial design in a randomized block with ten replicates. After 90 days, layers were separated from the matrix plant and evaluated for rooting and callus formation, root number, considering only the primary roots, length, area and volume of the roots, beyond the dry weight of roots and calluses. The months of January, March, September and November showed the best results for all analyzed variables related to rooting. With respect to the substrates, the only difference was in January and March to the root number and dry weight of roots, where the sphagnum showed the best results. The month of July was more conducive to the formation of calluses. The period between September and March was more suitable to the propagation of lychee, when there were rooting percentages above 90%, in addition to the formation of large amount of roots.

  7. the role of plant growth regulators in morphogenesis

    Directory of Open Access Journals (Sweden)

    A. Mujib

    2018-01-01

    Full Text Available Althaea officinalis L. (marshmallow belonging to the Malvaceae family, is an important plant that contains a variety of important phytocompounds including asparagine, pectin, flavonoids, polyphenolic acid, and scopoletin. The yield of these compounds can be improved using biotechnological methods that allow for a steady and continuous regeneration of plant material. To the best of our knowledge, thus far, the In vitro clonal multiplication of marshmallow has not been attempted on a large scale. Therefore, in this study, we developed callus induction and multiple shoot regeneration protocols from explants. All the explants, i.e., roots, nodes, and leaves, evoked compact white or yellow calli in a medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, which grew vigorously. The callus induction frequency was the highest (62.1% from stem nodes, followed by leaves (39.1% and roots (27.5%. The differential behavior of explants in response to various plant growth regulators (PGRs was studied. The calli from leaves and roots were noted to be non-organogenic/embryogenic in media containing different PGR concentrations and have been described in this communication. The stem nodes used were cultured on MS media amended with different concentrations of benzyl-amino-purine (BAP: 0.5, 1.0, and 2.0 mg/l. Multiple shoots were formed at variable numbers, the maximum being in a medium supplemented with 1.0 mg/l of BAP. The induced shoots were rooted in IBA-, NAA-, and IAA-amended media, where IBA at 0.5 mg/l induced a maximum number of roots (8.8 roots/shoot. The regenerated plants were transferred to plastic pots, filled with soilrite and soil (1 : 1, and finally, transferred to outdoor conditions.

  8. Charles François Sturm and Differential Equations

    DEFF Research Database (Denmark)

    Lützen, Jesper; Mingarelli, Angelo

    2008-01-01

    An analysis of Sturm's works on differential equations, in particular Sturm-Liouville theory. The historical connection to Sturm's theorem about real roots of polynomials is established......An analysis of Sturm's works on differential equations, in particular Sturm-Liouville theory. The historical connection to Sturm's theorem about real roots of polynomials is established...

  9. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max).

    Science.gov (United States)

    Valliyodan, Babu; Van Toai, Tara T; Alves, Jose Donizeti; de Fátima P Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J Grover; Nguyen, Henry T

    2014-09-29

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be

  10. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Babu Valliyodan

    2014-09-01

    Full Text Available Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of

  11. Development of technology for plantlet propagation by tissue culture. (3). Strawberry callus growth and changes in pH in liquid medium; Soshiki baiyo ni yoru shubyo tairyo zoshoku gijutsu no kaihatsu. (3). Ekitai baiyo ni okeru ichigo callus no zoshoku to baichi no pH henka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, T; Hanyo, H [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1991-02-01

    Development of strawberry cultivation plants is described as a part of night-time power utilization activities for power load levelling. Strawberry calluses (undifferent tissue mass) cultured in a liquid medium reach the fastest growth period in one week and the steady state in four weeks. The callus growth shows the maximum value at this time, which was 20 times as much of the seedling. The medium pH changed in a range from 4 to 7. If the initial pH is 4.0 or higher, no difference is created in the callus propagation in the steady state period, but at 3.0, no propagation whatsoever. The pH after the fastest growth period converged to a range from 6.0 to 7.0, with the exception of initial pH at 3.0. The medium pH decreased as a result of pre-culture heating sterilization, formation of iron phosphate due to light irradiation, and organic acid release during the initial growth phase. The pH increased because of difference in the speed of absorbing ammonium and nitric acid during the later growth phase. The growth efficiency of 20 times is about the same as other plants. Since the pH change is maintained within the range from 4 to 7, which causes no difference in in growth, there is no need of adjusting the pH within this range. 18 refs., 15 figs., 3 tabs.

  12. Effect of sucrose, erythrose-4-phosphate and phenylalanine on biomassa and flavonoid content of callus culture from leaves of Gynura procumbens Merr.

    Science.gov (United States)

    Nurisa, Aryana; Kristanti, Alfinda Novi; Manuhara, Yosephine Sri Wulan

    2017-08-01

    The aims of this study were to know the effect of concentration of sucrose, erythrose-4-phosphate and phenylalanine on biomass and flavonoid content of callus cultures from leaves of sambung nyawa (Gynura procumbens Merr.). This study was experimental research with complete randomized design. Callus induction was treated in MS medium supplemented with NAA 2 mg/L, BAP 1 mg/L and sucrose concentration (10 g/L, 30 g/L and 50 g/L) respectively were combined with erythrose-4-phosphate (0 µM, 2,5 µM and 5 µM) and phenylalanine (0 mg/L, 2 mg/L and 3 mg/L), each treatment were repeated four times. After six weeks of culture, fresh and dry weight of calli were measured and extracted with ethanol absolut. Crude extract ethanolic of callus was analyzed used by a modified colorimetric with spectrophotometer method. The best yield of calli biomass (0,672 ± 0,112 gram of fresh weight and 0,033 ± 0,009 gram of dry weight) was obtained in treatment of 30 g/L sucrose of and 5 µM erythrose-4-phosphate. The highest total flavonoid content was obtained of calli treated with 30 g/L of sucrose and 3 mg/L of phenylalanine (3633,4 ppm quercetin/gram dry weight and 15777,8 ppm kaempferol/gram dry weight).

  13. Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene.

    Science.gov (United States)

    Li, D D; Shi, W; Deng, X X

    2003-12-01

    Valencia sweet orange (Citrus sinensis (L.) Osbeck) calluses were used as explants to develop a new transformation system for citrus mediated by Agrobacterium tumefaciens. Factors affecting Agrobacterium-mediated transformation efficiency included mode of pre-cultivation, temperature of cocultivation and presence of acetosyringone (AS). The highest transformation efficiency was obtained with a 4-day pre-cultivation period in liquid medium. Transformation efficiency was higher when cocultivation was performed for 3 days at 19 degrees C than at 23 or 28 degrees C. Almost no resistant callus was obtained if the cocultivation medium lacked AS. The transformation procedure yielded transgenic Valencia plants containing the pTA29-barnase gene, as verified by PCR amplification and confirmed by Southern blotting. Because male sterility is a common factor leading to seedlessness in citrus cultivars with parthenocarpic characteristics, production of seedless citrus genotypes by Agrobacterium-mediated genetic transformation is a promising alternative to conventional breeding methods.

  14. In vitro elicitation, isolation, and characterization of conessine biomolecule from Holarrhena antidysenterica (L.) Wall. callus and its larvicidal activity against malaria vector, Anopheles stephensi Liston.

    Science.gov (United States)

    Kumar, Dinesh; Kumar, Gaurav; Das, Ram; Kumar, Ravindra; Agrawal, Veena

    2018-03-01

    In vitro elicitation of an important compound conessine has been done in the bark-derived callus culture of Holarrhena antidysenterica (L.) Wall. employing different elicitors. For induction of callus, green bark explants excised from field-grown plants were cultured on MS medium augmented with different concentrations (0, 1, 2.5, 5, and 10 μM) of various growth regulators such as BA, IBA, NAA, and 2,4-D either alone or in combinations. The maximum amount of conessine (458.18 ± 0.89 d μg/g dry wt.) was achieved in callus developed on MS medium supplemented with 5 μM BA and 5 μM 2,4-D through HPLC analysis. Elicitation in conessine content in the above callus was achieved employing a variety of organic (phenylalanine, tyrosine, chitosan, tryptophan, casein hydrolysate, proline, sucrose, and yeast extract) as well as inorganic elicitors (Pb(NO 3 ) 2 , As 2 O 3 , CuSO 4 , NaCl, and CdCl 2 ) in different concentrations. The optimum enhancement in conessine content (3518.58 ± 0.28 g  μg/g dry wt.) was seen at the highest concentration (200 mg/L) of phenylalanine. The enhancement was elicitor specific and dose dependent. The overall increment of the conessine content was seen in the order of phenylalanine > tryptophan > Pb(NO 3 ) 2 > sucrose > NaCl > As 2 O 3 > casein hydrolysate > CdCl 2 > chitosan > proline > yeast extract > CuSO 4 > tyrosine. The isolation and purification of conessine was done using methanol as a solvent system through column chromatography (CC) and TLC. The isolated compound was characterized by FT-IR, 1 H-NMR, and HRMS which confirmed with the structure of conessine. The bioassays conducted with the isolated compound revealed a strong larvicidal activity against Anopheles stephensi Liston with LC 50 and LC 90 values being 1.93 and 5.67 ppm, respectively, without harming the nontarget organism, Mesocyclops thermocyclopoides Harada, after 48 h of treatment. This is our first report for the isolation and elicitation of conessine

  15. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    Science.gov (United States)

    Bachand, P.A.M.; S. Bachand,; Fleck, Jacob A.; Anderson, Frank E.; Windham-Myers, Lisamarie

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flowrates and tracer concentrations atwetland inflows and outflows. We used two ideal reactormodel solutions, a continuous flowstirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these nonideal agricultural wetlands in which check ponds are in series. Using a fluxmodel, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemicalmechanisms affecting dissolved constituent cycling in the root zone. In addition,our understanding of internal

  16. Use of stem sliced from in vitro plants of papaya (hybrid IBP 42-99 by obtained callus with embryogenic structure

    Directory of Open Access Journals (Sweden)

    Jorge Gallardo Colina

    2004-10-01

    Full Text Available Inside in vitro propagation via, the somatic embriogenesis offers possibilities of obtaining top volumes of production in a minor period of time and a lower cost, which are a method potentially more efficient than the regeneration via organogenesis. In papaya the somatic embryogenesis could have developed from zigotic embryos and axis hipocotilos, nevertheless in case of the hybrids these methods cannot be used and it becomes necessary to develop it from a somatic fabric, without link with the sexual reproduction. This work chased as main objective Evaluated the use of in vitro plants stem sections of the Carica papaya IBP 42-99 hybrid for the formation of callus with embryogenic structures. As plant material were use in vitro plants of the papaya hybrid IBP 42-99. For it there took sections of different parts of the stem from the meristem up to the base of the in vitro plants, was use the culture medium Nitsh and Nitsh supplemented with 1.5 mg.l-1 of 6-BAP and 1.5 mg.l-1 of AIA. It was achieved to obtain callus from the stem sections with the culture medium used, nevertheless, in the treatments where used cylinders inside 1.0 cm from the apex down, the best results were achieved. The use of in vitro plants stem sections as explant for the formation of callus in this vegetable species it opens new possibilities for his in vitro propagation, specially in case of resultant hybrids of genetic improvement programs. Key words: apexes, Carica papaya, callogenesis, somatic embryogenesis

  17. Cold Response of Dedifferentiated Barley Cells at the Gene Expression, Hormone Composition, and Freezing Tolerance Levels: Studies on Callus Cultures

    Czech Academy of Sciences Publication Activity Database

    Vashegyi, I.; Marozsan-Toth, Z.; Galiba, G.; Dobrev, Petre; Vaňková, Radomíra; Toth, B.

    2013-01-01

    Roč. 54, č. 2 (2013), s. 337-349 ISSN 1073-6085 R&D Projects: GA ČR GA522/09/2058 Institutional research plan: CEZ:AV0Z50380511 Keywords : ABA * Barley * Callus Subject RIV: ED - Physiology Impact factor: 2.275, year: 2013

  18. Studies in tissue culture of some indigenous rice (Oryza glaberrima Steud.) accessions in Ghana

    International Nuclear Information System (INIS)

    Diawuoh, R.G.

    2011-01-01

    A study was conducted with the aim of developing separate protocols for callus induction and plant regeneration from different parts of three O. glaberrima accessions indigenous to Ghana. The three O. glaberrima accessions, Guame, N/4 and SARI 1 were assessed for their callus induction and plant regeneration ability from leaf segments, mature dehusked seeds and anthers on different concentrations of plant growth regulators, incorporated into Murashige and Skoog, (1962) (MS) basal medium. For leaf segments, callus was induced on MS supplemented with (0-10) mg/l 2,4-D. Callus induction frequency was significantly (p≤0.05) different among accessions, as well as among the 2,4-dichlorophenoxyacetic acid (2,4-D) levels tested. Highest callus induction frequency was exhibited at a concentration of 6 mg/l 2,4-D for all accessions tested. Callus obtained was sub-cultured on regeneration medium consisting of MS supplemented with (1:0-5) mg.l NAA:BAP. Plant regeneration was nil. Instead, prolific root formation was observed. For mature dehusked seeds, callus induction medium consisted of MS supplemented with (0-6) mg/l 2,4-D. All tested accessions exhibited highest callus frequency at 4 mg/l 2,4-D. Similarly callus induction frequency was significantly (p≤0.05) different among accessions, as well as among concentrations of 2,4-D tested. Calli obtained were sub-cultured on MS medium supplemented with (0-2.5) mg/l 6-benzylaminopurine (BAP) and exhibited the highest regeneration frequency on medium containing 2.0 mg/l BAP. However, callus induced on a concentration of 3 mg/l 2,4-D and sub-cultured on a concentration of 2 mg/l BAP gave the best response n terms of shoot proliferation, growth and root development and therefore were considered to be the optimum concentrations for callus induction and plant regeneration respectively. Plantlet regeneration was achieved only in accession N/4 while Guame and SARI 1 exhibited poor regeneration response. Among the three rice

  19. Biotransformation of isofraxetin-6-O-β-d-glucopyranoside by Angelica sinensis (Oliv.) Diels callus.

    Science.gov (United States)

    Zhou, Di; Zhang, Yuhua; Jiang, Zhe; Hou, Yue; Jiao, Kun; Yan, Chunyan; Li, Ning

    2017-01-15

    Isofraxetin-6-O-β-d-glucopyranoside, identified from traditional medicinal herbal Xanthoceras sorbifolia Bunge, has been demonstrated to be a natural neuroinflammatory inhibitor. In order to obtain more derivatives with potential anti-neuroinflammatory effects, biotransformation was carried out. According to the characteristics of coumarin skeleton, suspension cultures of Angelica sinensis (Oliv.) Diels callus (A. sinensis callus) were employed because of the presence of diverse phenylpropanoids biosynthetic enzymes. As a result, 15 products were yielded from the suspension cultures, including a new coumarin: 8'-dehydroxymethyl cleomiscosin A (1), together with 14 known compounds. Their structures were elucidated by extensive spectroscopic analysis. Furthermore, the biotransformed pathways were discussed. Among them, compound 13 was transformed from isofraxetin-6-O-β-d-glucopyranoside, while compounds 1-6, 10-12, 14-15 were derived from the culture medium stimulated by the substrate. The biotransformation processes include hydroxylation, oxidation and esterification. Furthermore, their inhibitory effects on lipopolysaccharide (LPS)-activated nitric oxide (NO) production were evaluated in BV2 microglial cells. It is worth noting that, 1, 1'-methanediylbis(4-methoxybenzene) (3), obtucarbamates A (5), 2-nonyl-4-hydroxyquinoline N-oxide (10) and 1H-indole-3-carbaldehyde (11) exhibited significant inhibitory effect against neuroinflammation with IC 50 values at 1.22, 10.57, 1.02 and 0.76μM respectively, much stronger than that of the positive control minocycline (IC 50 35.82μM). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments.

    Science.gov (United States)

    Morohashi, Keita; Okamoto, Miki; Yamazaki, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Kobayashi, Akie; Takahashi, Hideyuki

    2017-09-01

    Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood. Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism. Clinorotated or microgravity (μG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under μG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and μG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots. Our results suggest that roots become hydrotropically sensitive in μG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. EFFECTS OF GROWTH MEDIA AND HORMONES ON THE ...

    African Journals Online (AJOL)

    Tersor

    Six hundred and forty eight (648) single node stem cuttings were collected from Forestry Research ... sprouting, callusing, number of leaves, rooting, number of root, length of root and shoot length were analysed .... and 1.5g each using electric weighing balance at ..... application of auxins, cell enlargement, enhanced.

  2. Floating retained root lesion mimicking apical periodontitis.

    Science.gov (United States)

    Chung, Ming-Pang; Chen, Chih-Ping; Shieh, Yi-Shing

    2009-10-01

    A case of a retained root tip simulating apical periodontitis on radiographic examination is described. The retained root tip, originating from the left lower first molar, floated under the left lower second premolar apical region mimicking apical periodontitis. It appeared as an ill-defined periapical radiolucency containing a smaller radiodense mass on radiograph. The differential diagnosis included focal sclerosing osteomyelitis (condensing osteitis) and ossifying fibroma. Upon exicisional biopsy, a retained root associated with granulation tissue was found. After 1-year follow-up, the patient was asymptomatic and the periradicular lesion was healing. Meanwhile, the associated tooth showed a normal response to stimulation testing.

  3. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Chul Min Kim

    2016-08-01

    Full Text Available Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6 Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms-monocots and eudicots-despite the dramatically different patterns of root hair cell development.

  4. Identification of a progenitor cell population destined to form fracture fibrocartilage callus in Dickkopf-related protein 3-green fluorescent protein reporter mice.

    Science.gov (United States)

    Mori, Yu; Adams, Douglas; Hagiwara, Yusuke; Yoshida, Ryu; Kamimura, Masayuki; Itoi, Eiji; Rowe, David W

    2016-11-01

    Fracture healing is a complex biological process involving the proliferation of mesenchymal progenitor cells, and chondrogenic, osteogenic, and angiogenic differentiation. The mechanisms underlying the proliferation and differentiation of mesenchymal progenitor cells remain unclear. Here, we demonstrate Dickkopf-related protein 3 (Dkk3) expression in periosteal cells using Dkk3-green fluorescent protein reporter mice. We found that proliferation of mesenchymal progenitor cells began in the periosteum, involving Dkk3-positive cell proliferation near the fracture site. In addition, Dkk3 was expressed in fibrocartilage cells together with smooth muscle α-actin and Col3.6 in the early phase of fracture healing as a cell marker of fibrocartilage cells. Dkk3 was not expressed in mature chondrogenic cells or osteogenic cells. Transient expression of Dkk3 disappeared in the late phase of fracture healing, except in the superficial periosteal area of fracture callus. The Dkk3 expression pattern differed in newly formed type IV collagen positive blood vessels and the related avascular tissue. This is the first report that shows Dkk3 expression in the periosteum at a resting state and in fibrocartilage cells during the fracture healing process, which was associated with smooth muscle α-actin and Col3.6 expression in mesenchymal progenitor cells. These fluorescent mesenchymal lineage cells may be useful for future studies to better understand fracture healing.

  5. Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures

    Science.gov (United States)

    2011-01-01

    Background Following genome sequencing of crop plants, one of the main challenges today is determining the function of all the predicted genes. When gene validation approaches are used for woody species, the main obstacle is the low recovery rate of transgenic plants from elite or commercial cultivars. Embryogenic calli have frequently been the target tissue for transformation, but the difficulty in producing or maintaining embryogenic tissues is one of the main problems encountered in genetic transformation of many woody plants, including Coffea arabica. Results We identified the conditions required for successful long-term proliferation of embryogenic cultures in C. arabica and designed a highly efficient and reliable Agrobacterium tumefaciens-mediated transformation method based on these conditions. The transformation protocol with LBA1119 harboring pBin 35S GFP was established by evaluating the effect of different parameters on transformation efficiency by GFP detection. Using embryogenic callus cultures, co-cultivation with LBA1119 OD600 = 0.6 for five days at 20 °C enabled reproducible transformation. The maintenance conditions for the embryogenic callus cultures, particularly a high auxin to cytokinin ratio, the age of the culture (optimum for 7-10 months of proliferation) and the use of a yellow callus phenotype, were the most important factors for achieving highly efficient transformation (> 90%). At the histological level, successful transformation was related to the number of proembryogenic masses present. All the selected plants were proved to be transformed by PCR and Southern blot hybridization. Conclusion Most progress in increasing transformation efficiency in coffee has been achieved by optimizing the production conditions of embryogenic cultures used as target tissues for transformation. This is the first time that a strong positive effect of the age of the culture on transformation efficiency was demonstrated. Our results make Agrobacterium

  6. Agrobacterium-mediated genetic transformation of Coffea arabica (L. is greatly enhanced by using established embryogenic callus cultures

    Directory of Open Access Journals (Sweden)

    Lashermes Philippe

    2011-05-01

    Full Text Available Abstract Background Following genome sequencing of crop plants, one of the main challenges today is determining the function of all the predicted genes. When gene validation approaches are used for woody species, the main obstacle is the low recovery rate of transgenic plants from elite or commercial cultivars. Embryogenic calli have frequently been the target tissue for transformation, but the difficulty in producing or maintaining embryogenic tissues is one of the main problems encountered in genetic transformation of many woody plants, including Coffea arabica. Results We identified the conditions required for successful long-term proliferation of embryogenic cultures in C. arabica and designed a highly efficient and reliable Agrobacterium tumefaciens-mediated transformation method based on these conditions. The transformation protocol with LBA1119 harboring pBin 35S GFP was established by evaluating the effect of different parameters on transformation efficiency by GFP detection. Using embryogenic callus cultures, co-cultivation with LBA1119 OD600 = 0.6 for five days at 20 °C enabled reproducible transformation. The maintenance conditions for the embryogenic callus cultures, particularly a high auxin to cytokinin ratio, the age of the culture (optimum for 7-10 months of proliferation and the use of a yellow callus phenotype, were the most important factors for achieving highly efficient transformation (> 90%. At the histological level, successful transformation was related to the number of proembryogenic masses present. All the selected plants were proved to be transformed by PCR and Southern blot hybridization. Conclusion Most progress in increasing transformation efficiency in coffee has been achieved by optimizing the production conditions of embryogenic cultures used as target tissues for transformation. This is the first time that a strong positive effect of the age of the culture on transformation efficiency was demonstrated. Our

  7. ROOTING OF Psychotria nuda (Cham. & Schltdl. Wawra (RUBIACEAE IN THE FOUR SEASONS OF THE YEAR

    Directory of Open Access Journals (Sweden)

    Francine da Silva Guerellus Nery

    2014-03-01

    Full Text Available http://dx.doi.org/10.5902/1980509813341Psychotria nuda (Cham. & Schltdl. Wawra (Rubiaceae is a tree species native from the Atlantic Forest. It has wide geographical distribution in Brazil, since the states of Minas Gerais and Rio de Janeiro to Santa Catarina, where it is known as ‘grandiúva-d’anta’. Bibliographic reports on the vegetative propagation of Psychotria nuda are not found in the literature, there are only works about the pharmacological use of some species of this genus. Thus, softwood cuttings of Psychotria nuda were prepared with about 8 to 10 cm long, with two leaves kept in the upper third and without leaves collected in autumn (April/2007, winter (July/2007, spring (October/2007 , summer (January 2008.The cuttings were treated with water, 0, 500, 1000, 1500, 3000 mgL-1 IBA. The planting was done in tubes with vermiculite as substrate, the stakes kept in green-house pool, located in the Department of Biological Sciences, Federal University of Parana (UFPR, remaining there for 60 days. It was evaluated the percentage of rooted cuttings, with callus, survival and mortality. In conclusion it was found that spring and summer are the most favorable seasons for rooting with an average of 88.89% and 61.25%, respectively. The cuttings with leaves were higher than those without leaves. The vegetative propagation of the species is feasible, being the use of plant growth regulator not necessary for the rooting process.

  8. Investigations on some metabolites of Tecoma stans Juss. callus tissue. Part III. Chromatographical search for iridoids, phenolic acids, terpenoids and sugars

    Directory of Open Access Journals (Sweden)

    Barbara Dohnal

    2015-01-01

    Full Text Available Tissus cultures of Tecoma stans Juss. cultivated on modified Murashige-Skoog medium (RT-k were phytochemically analysed by means of chromatographical methods (PC, TLC. The following products were found as metabolites: phenolic acids - chlorogenics, caffeic, ferulic, vanillic, o-coumaric and sinapic; steroids - β-sitosterol; triterpenes - ursolic and oleanolic acids, α-amyrine; sugars - glucose, fructose, sucrose, xylose. Meso-inositol was isolated in 0.8% yield. In intact plant leaves, some differences concerning the content and/or number of individual compounds were observed, namely: lack of sinapic acid and occurrence of p-coumaric acid, lower content of β-sitosterol, lack of oleanolic acid, occurrence of β-amyrine and of one unidentified triterpenoid, lack of xylose, occurrence of maltose, raffinose, and stachiose. The level of mesoinositol inn leaves was distincly lower than in the callus tissues. Neither in callus tissues nor in leaves iridoid glycosides were found.

  9. Transcriptomics insights into the genetic regulation of root apical meristem exhaustion and determinate primary root growth in Pachycereus pringlei (Cactaceae).

    Science.gov (United States)

    Rodriguez-Alonso, Gustavo; Matvienko, Marta; López-Valle, Mayra L; Lázaro-Mixteco, Pedro E; Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G; Shishkova, Svetlana

    2018-06-04

    Many Cactaceae species exhibit determinate growth of the primary root as a consequence of root apical meristem (RAM) exhaustion. The genetic regulation of this growth pattern is unknown. Here, we de novo assembled and annotated the root apex transcriptome of the Pachycereus pringlei primary root at three developmental stages, with active or exhausted RAM. The assembled transcriptome is robust and comprehensive, and was used to infer a transcriptional regulatory network of the primary root apex. Putative orthologues of Arabidopsis regulators of RAM maintenance, as well as putative lineage-specific transcripts were identified. The transcriptome revealed putative orthologues of most proteins involved in housekeeping processes, hormone signalling, and metabolic pathways. Our results suggest that specific transcriptional programs operate in the root apex at specific developmental time points. Moreover, the transcriptional state of the P. pringlei root apex as the RAM becomes exhausted is comparable to the transcriptional state of cells from the meristematic, elongation, and differentiation zones of Arabidopsis roots along the root axis. We suggest that the transcriptional program underlying the drought stress response is induced during Cactaceae root development, and that lineage-specific transcripts could contribute to RAM exhaustion in Cactaceae.

  10. Morphogenesis and tissue culture of sweet orange (Citrus sinensis (L.) Osb.): effect of temperature and photosynthetic radiation

    International Nuclear Information System (INIS)

    Duran-Vila, N.; Gogorcena, Y.; Ortega, V.; Ortiz, J.; Navarro, L.

    1992-01-01

    Both incubation temperature and photosynthetic radiation affected morphogenesis, callus culture and plantlet culture of sweet orange (Citrus sinensis) cultured in vitro. Bud culture from nodal stem segments, regeneration of shoots and buds from internode stem segments and induction of primary callus were near optimal at incubation temperatures between 21–30°C. The optimal temperature for root formation was 27°C with temperatures above and below being clearly deleterious. Incubation in the dark or under low photosynthetic photon flux density (PPFD) was beneficial for callus induction and growth and also favored the production of rooted plantlets from bud cultures. Incubation in the dark improved considerably the regeneration of shoots and buds from internode segments and the recovery of whole plants. No off-types, as determined by protein and isoenzyme analysis, were observed among plantlets recovered from bud cultures or from regeneration of shoots from internode stem segments

  11. Low-magnitude high-frequency vibration enhances gene expression related to callus formation, mineralization and remodeling during osteoporotic fracture healing in rats.

    Science.gov (United States)

    Chung, Shu-Lu; Leung, Kwok-Sui; Cheung, Wing-Hoi

    2014-12-01

    Low magnitude high frequency vibration (LMHFV) has been shown to improve anabolic and osteogenic responses in osteoporotic intact bones and during osteoporotic fracture healing; however, the molecular response of LMHFV during osteoporotic fracture healing has not been investigated. It was hypothesized that LMHFV could enhance osteoporotic fracture healing by regulating the expression of genes related to chondrogenesis (Col-2), osteogenesis (Col-1) and remodeling (receptor activator for nuclear factor- κ B ligand (RANKL) and osteoproteger (OPG)). In this study, the effects of LMHFV on both osteoporotic and normal bone fracture healing were assessed by endpoint gene expressions, weekly radiographs, and histomorphometry at weeks 2, 4 and 8 post-treatment. LMHFV enhanced osteoporotic fracture healing by up-regulating the expression of chondrogenesis-, osteogenesis- and remodeling-related genes (Col-2 at week 4 (p=0.008), Col-1 at week 2 and 8 (p<0.001 and p=0.008) and RANKL/OPG at week 8 (p=0.045)). Osteoporotic bone had a higher response to LMHFV than normal bone and showed significantly better results as reflected by increased expression of Col-2 and Col-1 at week 2 (p<0.001 for all), larger callus width at week 2 (p=0.001), callus area at week 1 and 5(p<0.05 for all) and greater relative area of osseous tissue (p=0.002) at week 8. This study helps to understand how LMHFV regulates gene expression of callus formation, mineralization and remodeling during osteoporotic fracture healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Mercury-induced biochemical and proteomic changes in rice roots.

    Science.gov (United States)

    Chen, Yun-An; Chi, Wen-Chang; Huang, Tsai-Lien; Lin, Chung-Yi; Quynh Nguyeh, Thi Thuy; Hsiung, Yu-Chywan; Chia, Li-Chiao; Huang, Hao-Jen

    2012-06-01

    Mercury (Hg) is a serious environmental pollution threats to the planet. Accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. We investigated cellular, biochemical and proteomic changes in rice roots under Hg stress. Root growth rate was decreased and Hg, reactive oxygen species (ROS), and malondialdehyde (MDA) content and lipoxygenase activity were increased significantly with increasing Hg concentration in roots. We revealed a time-dependent alteration in total glutathione content and enzymatic activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) during Hg stress. 2-D electrophoresis revealed differential expression of 25 spots with Hg treatment of roots: 14 spots were upregulated and 11 spots downregulated. These differentially expressed proteins were identified by ESI-MS/MS to be involved in cellular functions including redox and hormone homeostasis, chaperone activity, metabolism, and transcription regulation. These results may provide new insights into the molecular basis of the Hg stress response in plants. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Qiaojun Lou

    2017-07-01

    Full Text Available Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs between deep rooting and shallow rooting varieties (H vs. L were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA, we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.

  14. Root Transcriptomic Analysis Revealing the Importance of Energy Metabolism to the Development of Deep Roots in Rice (Oryza sativa L.).

    Science.gov (United States)

    Lou, Qiaojun; Chen, Liang; Mei, Hanwei; Xu, Kai; Wei, Haibin; Feng, Fangjun; Li, Tiemei; Pang, Xiaomeng; Shi, Caiping; Luo, Lijun; Zhong, Yang

    2017-01-01

    Drought is the most serious abiotic stress limiting rice production, and deep root is the key contributor to drought avoidance. However, the genetic mechanism regulating the development of deep roots is largely unknown. In this study, the transcriptomes of 74 root samples from 37 rice varieties, representing the extreme genotypes of shallow or deep rooting, were surveyed by RNA-seq. The 13,242 differentially expressed genes (DEGs) between deep rooting and shallow rooting varieties (H vs. L) were enriched in the pathway of genetic information processing and metabolism, while the 1,052 DEGs between the deep roots and shallow roots from each of the plants (D vs. S) were significantly enriched in metabolic pathways especially energy metabolism. Ten quantitative trait transcripts (QTTs) were identified and some were involved in energy metabolism. Forty-nine candidate DEGs were confirmed by qRT-PCR and microarray. Through weighted gene co-expression network analysis (WGCNA), we found 18 hub genes. Surprisingly, all these hub genes expressed higher in deep roots than in shallow roots, furthermore half of them functioned in energy metabolism. We also estimated that the ATP production in the deep roots was faster than shallow roots. Our results provided a lot of reliable candidate genes to improve deep rooting, and firstly highlight the importance of energy metabolism to the development of deep roots.

  15. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones.

    Science.gov (United States)

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.

  16. Optimized Whole-Mount In Situ Immunolocalization for Arabidopsis thaliana Root Meristems and Lateral Root Primordia.

    Science.gov (United States)

    Karampelias, Michael; Tejos, Ricardo; Friml, Jiří; Vanneste, Steffen

    2018-01-01

    Immunolocalization is a valuable tool for cell biology research that allows to rapidly determine the localization and expression levels of endogenous proteins. In plants, whole-mount in situ immunolocalization remains a challenging method, especially in tissues protected by waxy layers and complex cell wall carbohydrates. Here, we present a robust method for whole-mount in situ immunolocalization in primary root meristems and lateral root primordia in Arabidopsis thaliana. For good epitope preservation, fixation is done in an alkaline paraformaldehyde/glutaraldehyde mixture. This fixative is suitable for detecting a wide range of proteins, including integral transmembrane proteins and proteins peripherally attached to the plasma membrane. From initiation until emergence from the primary root, lateral root primordia are surrounded by several layers of differentiated tissues with a complex cell wall composition that interferes with the efficient penetration of all buffers. Therefore, immunolocalization in early lateral root primordia requires a modified method, including a strong solvent treatment for removal of hydrophobic barriers and a specific cocktail of cell wall-degrading enzymes. The presented method allows for easy, reliable, and high-quality in situ detection of the subcellular localization of endogenous proteins in primary and lateral root meristems without the need of time-consuming crosses or making translational fusions to fluorescent proteins.

  17. Primary structures of two ribonucleases from ginseng calluses - New members of the PR-10 family of intracellular pathogenesis-related plant proteins

    NARCIS (Netherlands)

    Moiseyev, GP; Fedoreyeva, LI; Zhuravlev, YN; Yasnetskaya, E; Jekel, PA; Beintema, JJ

    1997-01-01

    The amino acid sequences of two ribonucleases from a callus cell culture of Panax ginseng were determined, The two sequences differ at 26% of the amino acid positions, Homology was found with a large family of intracellular pathogenesis-related proteins, food allergens and tree pollen allergens from

  18. The induction of differentially expressed proteins of Xylella fastidiosa with citrus extract Indução de proteínas de Xylella fastidiosa expressas diferencialmente com extrato de citros

    Directory of Open Access Journals (Sweden)

    Cláudia de M. Bellato

    2004-09-01

    Full Text Available An in vitro system was developed to induce and identify Xylella fastidiosa proteins that were differentially expressed in the presence of callus-derived extracts from its host, the citrus cultivar Pêra. To optimize the induction, we first developed a single culture medium for the growth of both, host and bacteria. This medium, CPXPm7, which mimics the citrus xylem sap, showed that X. fastidiosa at 72 h post-incubation had 10(8 colony forming units mL-1, while Pêra cells had the highest fresh weight content (0.79 g. After testing various methods of co-cultivation of the bacteria and host callus grown in this single medium, the best induction procedure was to grow X. fastidiosa in a solid medium amended with an extract of Pêra callus grown in CPXPm7. Analysis, by two-dimensional electrophoresis, of the X. fastidiosa proteins (120 µg of total proteins grown in the presence of Pêra callus extract revealed 414 differentially expressed protein spots when compared to the protein profile obtained in the absence of the extract. The system developed in this study improves the induction and analysis of differentially expressed proteins of X. fastidiosa, which may be involved in pathogenicity.Estudos in vitro foram desenvolvidos para obter proteínas de Xylella fastidiosa expressas diferencialmente na presença de calos do hospedeiro, citros cultivar Pêra. Para otimizar a indução, desenvolveu-se um meio de cultura comum, o qual foi baseado na seiva do xilema de citros, para cultivar a bacteria e os calos de Pêra. Dados mostraram, após 72 h de cultivo neste meio, 10(8 unidades formadoras de colônias de X. fastidiosa por mL, e 0,79 g de peso seco de células de Pêra. Após testar diferentes métodos de co-cultivo da bactéria com calos de Pêra neste meio, observou-se que a melhor taxa de indução ocorreu quando X. fastidiosa foi cultivada em meio sólido enriquecido com um extrato derivado dos calos de Pêra. Análise em gel bidimensional (2DE

  19. Statistically optimized biotransformation protocol for continuous production of L-DOPA using Mucuna monosperma callus culture.

    Science.gov (United States)

    Inamdar, Shrirang Appasaheb; Surwase, Shripad Nagnath; Jadhav, Shekhar Bhagwan; Bapat, Vishwas Anant; Jadhav, Jyoti Prafull

    2013-01-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine), a modified amino acid, is an expansively used drug for the Parkinson's disease treatment. In the present study, optimization of nutritional parameters influencing L-DOPA production was attempted using the response surface methodology (RSM) from Mucuna monosperma callus. Optimization of the four factors was carried out using the Box-Behnken design. The optimized levels of factors predicted by the model include tyrosine 0.894 g l(-1), pH 4.99, ascorbic acid 31.62 mg l(-1)and copper sulphate 23.92 mg l(-1), which resulted in highest L-DOPA yield of 0.309 g l(-1). The optimization of medium using RSM resulted in a 3.45-fold increase in the yield of L-DOPA. The ANOVA analysis showed a significant R (2) value (0.9912), model F-value (112.465) and probability (0.0001), with insignificant lack of fit. Optimized medium was used in the laboratory scale column reactor for continuous production of L-DOPA. Uninterrupted flow column exhibited maximum L-DOPA production rate of 200 mg L(-1) h(-1) which is one of the highest values ever reported using plant as a biotransformation source. L-DOPA production was confirmed by HPTLC and HPLC analysis. This study demonstrates the synthesis of L- DOPA using Mucuna monosperma callus using a laboratory scale column reactor.

  20. Cellular Suspensions Establishment and Multiplication of Cymbopogon citratus (D.C Staff

    Directory of Open Access Journals (Sweden)

    Elisa Quiala

    2002-07-01

    Full Text Available Cellular suspensions settled down starting from callus of Cymbopogon citratus (D.C Stapf cultivated in semisolid medium, according to the methodology described for Freire (1998, for the cultivation of the cane of sugar and later on modified by Licea and Gómez (2000 for the cultivated callus of Cane Santa, with the objective of analyzing the effect of the cellular density on the cellular growth, being studied the behavior of the fresh mass, dry mass and the pH in three inocule densities (20, 40 and 60 gMF.l-1. The development of roots was evaluated in the cellular aggregated and it was also analyzed directly the influence of the explants on the callus formation cultivated directly in liquid medium, starting from cultivated plants in vitro. The biggest increment of fresh mass was obtained when 20 gMF.l-1 was used, the values of mass dry off they behaved in a similar way, being obtained the biggest rate of growth in this same treatment. The pH in the three densities of studied inocule, diminished during the first eight days and stayed stable starting from this moment. The alone presence of roots was appreciated only in the cellular aggregated cultivated without coconut water. The formation of callus directly in liquid medium took place in the region near to the meristematic area. Key words: coconut water, biomass production, lemon grass, root formation

  1. In-vitro propagation and antimycotic potential of extracts and essential oil of roots of Aristolochia bracteolata Linn. (Aristolochiaceae).

    Science.gov (United States)

    Gbadamosi, I T; Egunyomi, A

    2012-01-01

    In spite of the therapeutic importance of Aristolochia bracteolata Linn. in Nigerian ethnomedicine, it is largely collected from the wild. Owing to the acclaimed potency of the plant and the difficulty in treating candidiasis, the anticandidal activity and in vitro propagation of the plant were investigated. Phytochemical screening and preparation of extracts of the roots were done using standard procedures. Clinical isolates of Candida albicans were screened against extracts and essential oil of Aristolochia bracteolata root using agar-well diffusion method. Minimum Inhibitory Concentration (MIC) of the ethanol extract was determined using broth dilution method. The nodal cuttings of A. bracteolata were cultured on Murashige and Skoog (MS) basal media. A. bracteolata contained alkaloids, saponins and cardenolides. The water extract was inactive on all isolates. The ethanol extract (500 mg/ml) and essential oil (undiluted) exhibited anticandidal activity on 9 out of 10 isolates at 10(1) - 10(6) cfu/ml inoculums concentration. Green growth and callus formation were observed in explants cultured on MS basal media after 30 days. A. bracteolata could be a source of anticandidal phytomedicine and the in vitro propagation confirmed its sustainability as anticandidal agent.

  2. Triterpene and Flavonoid Biosynthesis and Metabolic Profiling of Hairy Roots, Adventitious Roots, and Seedling Roots of Astragalus membranaceus.

    Science.gov (United States)

    Park, Yun Ji; Thwe, Aye Aye; Li, Xiaohua; Kim, Yeon Jeong; Kim, Jae Kwang; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2015-10-14

    Astragalus membranaceus is an important traditional Chinese herb with various medical applications. Astragalosides (ASTs), calycosin, and calycosin-7-O-β-d-glucoside (CG) are the primary metabolic components in A. membranaceus roots. The dried roots of A. membranaceus have various medicinal properties. The present study aimed to investigate the expression levels of genes related to the biosynthetic pathways of ASTs, calycosin, and CG to investigate the differences between seedling roots (SRs), adventitious roots (ARs), and hairy roots (HRs) using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR study revealed that the transcription level of genes involved in the AST biosynthetic pathway was lowest in ARs and showed similar patterns in HRs and SRs. Moreover, most genes involved in the synthesis of calycosin and CG exhibited the highest expression levels in SRs. High-performance liquid chromatography (HPLC) analysis indicated that the expression level of the genes correlated with the content of ASTs, calycosin, and CG in the three different types of roots. ASTs were the most abundant in SRs. CG accumulation was greater than calycosin accumulation in ARs and HRs, whereas the opposite was true in SRs. Additionally, 40 metabolites were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). Principal component analysis (PCA) documented the differences among SRs, ARs, and HRs. PCA comparatively differentiated among the three samples. The results of PCA showed that HRs were distinct from ARs and SRs on the basis of the dominant amounts of sugars and clusters derived from closely similar biochemical pathways. Also, ARs had a higher concentration of phenylalanine, a precursor for the phenylpropanoid biosynthetic pathway, as well as CG. TCA cycle intermediates levels including succinic acid and citric acid indicated a higher amount in SRs than in the others.

  3. [Influence of genotype, explant type and component of culture medium on in vitro callus induction and shoot organogenesis of tomato (Solanum lycopersicum L.)].

    Science.gov (United States)

    Khaliluev, M R; Bogoutdinova, L R; Baranova, G B; Baranova, E N; Kharchenko, P N; Dolgov, S V

    2014-01-01

    The influence of explant type as well as of the type of growth regulators and concentration on callus induction processes and somatic organogenesis of shoots was studied in vitro on four tomato genotypes of Russian breeding. Cytological study of callus tissue was conducted. It was established that tomato varieties possess a substantially greater ability to indirect shoot organogenesis compared with the F1 hybrid. The highest frequency of somatic organogenesis of shoots, as well as their number per explant, was observed for most of the genotypes studied during the cultivation of cotyledons on Murashige-Skoog culture medium containing 2 mg/l of zeatin in combination with 0.1 mg/l of 3-indoleacetic acid. An effective protocol of indirect somatic organogenesis of shoots from different explants of tomato varieties with a frequency of more than 80% was developed.

  4. Transcriptome analysis of Carica papaya embryogenic callus upon De-etiolated 1 (DET1 gene suppression

    Directory of Open Access Journals (Sweden)

    Diyana Jamaluddin

    2017-06-01

    Full Text Available Papaya is considered to be one of the most nutritional fruits. It is rich in vitamins, carotenoids, flavonoids and other phytonutrient which function as antioxidant in our body [1]. Previous studies revealed that the suppression of a negative regulator gene in photomorphogenesis, De-etiolated 1 (DET1 can improve the phytonutrient in tomato and canola without affecting the fruit quality [2,3]. This report contains the experimental data on high-throughput 3′ mRNA sequencing of transformed papaya callus upon DET1 gene suppression.

  5. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings : Analysis of Growth, Sugar Accumulation, and Gene Expression.

    Science.gov (United States)

    Creelman, R A; Mason, H S; Bensen, R J; Boyer, J S; Mullet, J E

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite.

  6. A valued Indian medicinal plant – Begonia malabarica Lam. : Successful plant regeneration through various explants and field performance

    Directory of Open Access Journals (Sweden)

    Sevanan Rajeshkumar

    2009-05-01

    Full Text Available A cost-effective and efficient protocol has been described in the present work for large-scale and rapid in vitro propagation of a valuable medicinal herb Begonia malabarica Lam. (Begoniaceae by shoot auxillary-bud proliferation and organogenesis on MS medium supplemented with 6-benzylaminopurine (BA; 0.0-8.8 mg/l and indole-3-acetic acid (IAA; 0.0-2.88 mg/l at different concentrations, either alone or in combinations. Initiation of callus formation from the base of the leaf lamina was observed on MS supplemented with BA, IAA and adenine sulphate. Root induction on shoots was achieved on full strength MS with IAA/ indole-3-butyric acid (IBA at different concentrations. MS medium with 4.4 mg/l BA and 1.4 mg/l IAA elicited the maximum number of shoots (10 multiple shoots from nodal explants. Leaf-based callus differentiated into more than 28 shoots on MS with 150 mg/l adenine sulphate. The regenerated shoots were rooted on MS with 1.2 mg/l IBA within ten days. Almost 95% of the rooted shoots survived hardening when transferred to the field. The regenerated plants did not show any morphological change and variation in levels of secondary metabolites when compared with the mother stock. Thus, a reproduction of B. malabarica was established through nodal and leaf explants. This protocol can be exploited for conservation and commercial propagation of this medical plant in the Indian subcontinent and might be useful for genetic improvement programs.

  7. Root Growth Optimizer with Self-Similar Propagation

    Directory of Open Access Journals (Sweden)

    Xiaoxian He

    2015-01-01

    Full Text Available Most nature-inspired algorithms simulate intelligent behaviors of animals and insects that can move spontaneously and independently. The survival wisdom of plants, as another species of biology, has been neglected to some extent even though they have evolved for a longer period of time. This paper presents a new plant-inspired algorithm which is called root growth optimizer (RGO. RGO simulates the iterative growth behaviors of plant roots to optimize continuous space search. In growing process, main roots and lateral roots, classified by fitness values, implement different strategies. Main roots carry out exploitation tasks by self-similar propagation in relatively nutrient-rich areas, while lateral roots explore other places to seek for better chance. Inhibition mechanism of plant hormones is applied to main roots in case of explosive propagation in some local optimal areas. Once resources in a location are exhausted, roots would shrink away from infertile conditions to preserve their activity. In order to validate optimization effect of the algorithm, twelve benchmark functions, including eight classic functions and four CEC2005 test functions, are tested in the experiments. We compared RGO with other existing evolutionary algorithms including artificial bee colony, particle swarm optimizer, and differential evolution algorithm. The experimental results show that RGO outperforms other algorithms on most benchmark functions.

  8. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance

    Science.gov (United States)

    Kuzyakov, Yakov; Xu, Xingliang

    2014-05-01

    Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 15N-labelling studies that investigated 15N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on Km (Michaelis constant) and Vmax (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower Km values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (Vmax) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms.

  9. In v t vitro pr hrough ropaga h adve ation o entitiou of garlic us sho c ...

    African Journals Online (AJOL)

    SAM

    that this article ense. 2,4-D, 2,4-Dich etic acid. 7 September,. 605 ht of this article als.org/AJB ch Paper ropaga h adve etwally1, M tment, Faculty and Vegetabl s, University o. Rece stigates in v as a garlic w to eight call oduced a 100 higher freque allus inductio an root apice t callus fres regeneration e failed to re m C7 callus.

  10. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots.

    Science.gov (United States)

    Zhang, Yanxiang; Paschold, Anja; Marcon, Caroline; Liu, Sanzhen; Tai, Huanhuan; Nestler, Josefine; Yeh, Cheng-Ting; Opitz, Nina; Lanz, Christa; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEMS 1) controls seminal and lateral root initiation. To identify RUM1-dependent gene expression patterns, RNA-Seq of the differentiation zone of primary roots of rum1 mutants and the wild type was performed in four biological replicates. In total, 2 801 high-confidence maize genes displayed differential gene expression with Fc ≥2 and FDR ≤1%. The auxin signalling-related genes rum1, like-auxin1 (lax1), lax2, (nam ataf cuc 1 nac1), the plethora genes plt1 (plethora 1), bbm1 (baby boom 1), and hscf1 (heat shock complementing factor 1) and the auxin response factors arf8 and arf37 were down-regulated in the mutant rum1. All of these genes except nac1 were auxin-inducible. The maize arf8 and arf37 genes are orthologues of Arabidopsis MP/ARF5 (MONOPTEROS/ARF5), which controls the differentiation of vascular cells. Histological analyses of mutant rum1 roots revealed defects in xylem organization and the differentiation of pith cells around the xylem. Moreover, histochemical staining of enlarged pith cells surrounding late metaxylem elements demonstrated that their thickened cell walls displayed excessive lignin deposition. In line with this phenotype, rum1-dependent mis-expression of several lignin biosynthesis genes was observed. In summary, RNA-Seq of RUM1-dependent gene expression in maize primary roots, in combination with histological and histochemical analyses, revealed the specific regulation of auxin signal transduction components by RUM1 and novel functions of RUM1 in vascular development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Two Ellagic Acids Isolated from Roots of Sanguisorba officinalis L. Promote Hematopoietic Progenitor Cell Proliferation and Megakaryocyte Differentiation

    Directory of Open Access Journals (Sweden)

    Xiaoping Gao

    2014-04-01

    Full Text Available Using a bioassay-directed chromatographic separation, two ellagic acids were obtained from the ethyl acetate extract of the roots of Sanguisorba officinalis L. On the basis of chemical and spectroscopic methods, the two ellagic acids were identified as 3,3',4-tri-O-methylellagic acid-4'-O-β-d-xyloside and 3,3',4-tri-O-methylellagic acid. Stimulation of cell proliferation was assayed in hematopoietic progenitor cells using the Cell Counting kit-8 method. The megakaryocyte differentiation was determined in human erythroleukemia (HEL cells using Giemsa staining and flow cytometry analysis. The ellagic acids significantly stimulated the proliferation of Baf3/Mpl cells. Morphology analysis and megakaryocyte specific-marker CD41 staining confirmed that the ellagic acids induced megakaryocyte differentiation in HEL cells. This is the first time that 3,3',4-tri-O-methylellagic acid or 3,3',4-tri-O-methylellagic acid-4'-O-β-d-xyloside are reported to induce megakaryopoiesis, suggesting a class of small molecules which differ from others non-peptidyl, and appears to have potential for clinical development as a therapeutic agent for patients with blood platelet disorders.

  12. Differentiation of shoot elements from the rachis of Secale cereale L.

    Directory of Open Access Journals (Sweden)

    Jan J. Rybczyński

    2014-01-01

    Full Text Available In vitro culture of young Secale cereale spikes is described with special attention given to changes in development of the rachis. 7 mm explants were cultivated on a modified M u r a s h i g e and S k o o g (1962 medium (MS supplemented with 2,4-D (dichlorophenoxyacetic acid, NAA (α-naph-thaleneacetic acid, IAA (β-indoleacetic acid, 2,4,5-T (trichlorophenoxyacetic acid, and ZEA (zeatin, KIN (kinetin, BAP (6-benzylaminopurine, IPA (izopentenyladenine or 2 iP in numerous combinations and concentrations. Rachises differentiated branches with node construction in the presence of synthetic auxin. Rhizogenesis of explants was stimulated by 2,4-D and 2,4,5-T. 2,4,5-T + IPA appeared to be the best combination for callus regeneration. Many meristematic centres were found previously and combinations of NAA + KIN stimulated direct, whereas 2,4-D + ZEA indirect, differentiation of shoot elements. Development was observed from plantlets to flowering plants.

  13. Regeneration of Centella asiatica plants from non-embryogenic cell lines and evaluation of antibacterial and antifungal properties of regenerated calli and plants

    Directory of Open Access Journals (Sweden)

    Habib Darima

    2011-10-01

    Full Text Available Abstract Background The threatened plant Centella asiatica L. is traditionallyused for a number of remedies. In vitro plant propagation and enhanced metabolite production of active metabolites through biotechnological approaches has gained attention in recent years. Results Present study reveals that 6-benzyladenine (BA either alone or in combination with 1-naphthalene acetic acid (NAA supplemented in Murashige and Skoog (MS medium at different concentrations produced good quality callus from leaf explants of C. asiatica. The calli produced on different plant growth regulators at different concentrations were mostly embryogenic and green. Highest shoot regeneration efficiency; 10 shoots per callus explant, from non-embryogenic callus was observed on 4.42 μM BA with 5.37 μM NAA. Best rooting response was observed at 5.37 and 10.74 μM NAA with 20 average number of roots per explant. Calli and regenerated plants extracts inhibited bacterial growth with mean zone of inhibition 9-13 mm diameter when tested against six bacterial strains using agar well diffusion method. Agar tube dilution method for antifungal assay showed 3.2-76% growth inhibition of Mucor species, Aspergillus fumigatus and Fusarium moliniformes. Conclusions The present investigation reveals that non-embryogenic callus can be turned into embryos and plantlets if cultured on appropriate medium. Furthermore, callus from leaf explant of C. asiatica can be a good source for production of antimicrobial compounds through bioreactor.

  14. Organogenesis from in vitro-derived leaf and internode explants of Hoya wightii ssp. palniensis -a vulnerable species of Western Ghats

    Directory of Open Access Journals (Sweden)

    Subbaiah Revathi Lakshmi

    2013-06-01

    Full Text Available An efficient system was developed for indirect plant regeneration from in vitro-derived leaf and internode explants of Hoya wightii ssp. palniensis. Maximum percentage of the organogenic callus was obtained on MS medium supplemented with NAA (1.0 mg/l and 2,4-D (2.0 mg/l. The best shoot bud induction was observed on MS medium with BA (1.0 mg/l +IBA (0.5 mg/l. The coconut water (15% was better, resulting in a differentiation of the shoot initials in to well-developed shoots. The elongated shoots (› 3cm long were rooted on a full strength MS basal medium, supplemented with 0.2 mg/l of IBA. Finally, the rooted plants were transferred to the soil with 80% success rate. This protocol was utilized for the in vitro propagation of this endangered plant species.

  15. The Influence of Coconut Water and Activated Charcoal in MS Medium on In Vitro Callus Regeneration of Dendrobium sp. Cultivar Bertha Chong Orchids

    Directory of Open Access Journals (Sweden)

    Dessi Novita Sari

    2015-09-01

    Full Text Available Dendrobium is one of the most commercial orchids. In Vitro technique is one of solution to fulfill the market demand of Dendrobium. Organic matters, such as coconut water, and activated charcoal are often given to in vitro medium to regenerate orchids callus. The addition of activated charcoal is not only adsorbing toxic substances but also organic matters. The aimof this researchistofindthe best combination for callus regeneration medium. The research was conducted at the Biological Cell and Molecular Laboratory, Mathematics and Natural Science Faculty of Syiah Kuala University, Darussalam, Banda Aceh since March to November 2013. The method used is experimental with Completely Randomized Factorial Design with two factor; treatments of coconut water and activated charcoal. The result showed that the combinationof 150mL/Lcoconut waterand2,0g/Lactivated charcoal is the best resultbecauseit is the onlytreatment that have capability in producingplantletswithin60days.

  16. Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots.

    Science.gov (United States)

    Tian, Bao-Yu; Cao, Yi; Zhang, Ke-Qin

    2015-11-25

    Endophytes are known to play important roles in plant's health and productivity. In this study, we investigated the root microbiome of tomato in association with infection by root knot nematodes. Our objectives were to observe the effects and response of the bacterial endophytes before nematode attacks and to reveal the functional attributes of microbes in plant health and nematode pathogenesis. Community analysis of root-associated microbiomes in healthy and nematode-infected tomatoes indicated that nematode infections were associated with variation and differentiation of the endophyte and rhizosphere bacterial populations in plant roots. The community of the resident endophytes in tomato root was significantly affected by nemato-pathogenesis. Remarkably, some bacterial groups in the nematode feeding structure, the root gall, were specifically enriched, suggesting an association with nematode pathogenesis. Function-based metagenomic analysis indicated that the enriched bacterial populations in root gall harbored abundant genes related to degradation of plant polysaccharides, carbohydrate and protein metabolism, and biological nitrogen fixation. Our data indicated that some of the previously assumed beneficial endophytes or bacterial associates with nematode might be involved in nematode infections of the tomato roots.

  17. Actinomyces spp. gene expression in root caries lesions

    Directory of Open Access Journals (Sweden)

    Naile Dame-Teixeira

    2016-09-01

    Full Text Available Background: The studies of the distribution of Actinomyces spp. on carious and non-carious root surfaces have not been able to confirm the association of these bacteria with root caries, although they were extensively implicated as a prime suspect in root caries. Objective: The aim of this study was to observe the gene expression of Actinomyces spp. in the microbiota of root surfaces with and without caries. Design: The oral biofilms from exposed sound root surface (SRS; n=10 and active root caries (RC; n=30 samples were collected. The total bacterial RNA was extracted, and the mRNA was isolated. Samples with low RNA concentration were pooled, yielding a final sample size of SRS=10 and RC=9. Complementary DNA (cDNA libraries were prepared and sequenced on an Illumina® HiSeq 2500 system. Sequence reads were mapped to eight Actinomyces genomes. Count data were normalized using DESeq2 to analyse differential gene expression applying the Benjamini-Hochberg correction (false discovery rate [FDR]0.05, except for Actinomyces OT178 (p=0.001 and Actinomyces gerencseriae (p=0.004, which had higher read counts in the SRS. Genes that code for stress proteins (clp, dnaK, and groEL, enzymes of glycolysis pathways (including enolase and phosphoenolpyruvate carboxykinase, adhesion (Type-2 fimbrial and collagen-binding protein, and cell growth (EF-Tu were highly – but not differentially (p>0.001 – expressed in both groups. Genes with the most significant upregulation in RC were those coding for hypothetical proteins and uracil DNA glycosylase (p=2.61E-17. The gene with the most significant upregulation in SRS was a peptide ABC transporter substrate-binding protein (log2FC=−6.00, FDR=2.37E-05. Conclusion: There were similar levels of Actinomyces gene expression in both sound and carious root biofilms. These bacteria can be commensal in root surface sites but may be cariogenic due to survival mechanisms that allow them to exist in acid environments and

  18. A statistical approach to root system classification.

    Directory of Open Access Journals (Sweden)

    Gernot eBodner

    2013-08-01

    Full Text Available Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for plant functional type identification in ecology can be applied to the classification of root systems. We demonstrate that combining principal component and cluster analysis yields a meaningful classification of rooting types based on morphological traits. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. Biplot inspection is used to determine key traits and to ensure stability in cluster based grouping. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Three rooting types emerged from measured data, distinguished by diameter/weight, density and spatial distribution respectively. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement

  19. High efficiency protoplast isolation from in vitro cultures and hairy ...

    African Journals Online (AJOL)

    In vitro cultures of the medicinal plant Maesa lanceolata were established to enable the cultivation of plant material for the production of protoplasts. Callus cultures were initiated using leaves collected from shoot cultures and the root tips from hairy root cultures obtained upon Agrobacterium rhizogenes transformation.

  20. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis.

    Science.gov (United States)

    Rana, Mohammad M; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu

    2016-07-15

    Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L(-1) sucrose, 0.1 g·L(-1) l-glutamine and 5 g·L(-1) polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L(-1) sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties.

  1. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis

    Directory of Open Access Journals (Sweden)

    Mohammad M. Rana

    2016-07-01

    Full Text Available Tea (Camellia sinensis L. is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS basal salts medium supplemented with 30 g·L−1 sucrose, 0.1 g·L−1 l-glutamine and 5 g·L−1 polyvinylpolypyrrolidone (PVPP as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L−1 sucrose. Additionally, the reporter genes β-glucuronidase (gusA and cyan fluorescent protein (cfp were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties.

  2. Enhancement of in vitro Guayule propagation

    Science.gov (United States)

    Dastoor, M. N.; Schubert, W. W.; Petersen, G. R. (Inventor)

    1982-01-01

    A method for stimulating in vitro propagation of Guayule from a nutrient medium containing Guayule tissue by adding a substituted trialkyl amine bioinducing agent to the nutrient medium is described. Selective or differentiated propagation of shoots or callus is obtained by varying the amounts of substituted trialky amine present in the nutrient medium. The luxuriant growth provided may be processed for its poly isoprene content or may be transferred to a rooting medium for production of whole plants as identical clones of the original tissue. The method also provides for the production of large numbers of Guayule plants having identical desirable properties such as high polyisoprene levels.

  3. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies.

    Science.gov (United States)

    Wang, Peng; Shu, Meng; Mou, Pu; Weiner, Jacob

    2018-03-01

    There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter- and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow-release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua . Temporal variation in patch nutrient level had little effect on the species' competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda , growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis . L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda . This flexibility gave L. styraciflua an advantage in interspecific competition.

  4. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance.

    Science.gov (United States)

    Kuzyakov, Yakov; Xu, Xingliang

    2013-05-01

    Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 (15)N-labelling studies that investigated (15)N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on K(m) (Michaelis constant) and V(max) (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower K(m) values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (V(max)) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  5. A Cytotoxic and Anti-inflammatory Campesterol Derivative from Genetically Transformed Hairy Roots of Lopezia racemosa Cav. (Onagraceae

    Directory of Open Access Journals (Sweden)

    Norma Elizabeth Moreno-Anzúrez

    2017-01-01

    Full Text Available The genetically transformed hairy root line LRT 7.31 obtained by infecting leaf explants of Lopezia racemosa Cav with the Agrobacterium rhizogenes strain ATCC15834/pTDT, was evaluated to identify the anti-inflammatory and cytotoxic compounds reported previously for the wild plant. After several subcultures of the LRT 7.31 line, the bio-guided fractionation of the dichloromethane–methanol (1:1 extract obtained from dry biomass afforded a fraction that showed important in vivo anti-inflammatory, and in vitro cytotoxic activities. Chemical separation of the active fraction allowed us to identify the triterpenes ursolic (1 and oleanolic (2 acids, and (23R-2α,3β,23,28-tetrahydroxy-14,15-dehydrocampesterol (3 as the anti-inflammatory principles of the active fraction. A new molecule 3 was characterized by spectroscopic analysis of its tetraacetate derivative 3a. This compound was not described in previous reports of callus cultures, in vitro germinated seedlings and wild plant extracts of whole L. racemosa plants. The anti-inflammatory and cytotoxic activities displayed by the fraction are associated to the presence of compounds 1–3. The present study reports the obtaining of the transformed hairy roots, the bioguided isolation of the new molecule 3, and its structure characterization.

  6. Differential transcriptional profiling of damaged and intact adjacent dorsal root ganglia neurons in neuropathic pain.

    Directory of Open Access Journals (Sweden)

    A K Reinhold

    Full Text Available Neuropathic pain, caused by a lesion in the somatosensory system, is a severely impairing mostly chronic disease. While its underlying molecular mechanisms are not thoroughly understood, neuroimmune interactions as well as changes in the pain pathway such as sensitization of nociceptors have been implicated. It has been shown that not only are different cell types involved in generation and maintenance of neuropathic pain, like neurons, immune and glial cells, but, also, intact adjacent neurons are relevant to the process. Here, we describe an experimental approach to discriminate damaged from intact adjacent neurons in the same dorsal root ganglion (DRG using differential fluorescent neuronal labelling and fluorescence-activated cell sorting (FACS. Two fluorescent tracers, Fluoroemerald (FE and 1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate (DiI, were used, whose properties allow us to distinguish between damaged and intact neurons. Subsequent sorting permitted transcriptional analysis of both groups. Results and qPCR validation show a strong regulation in damaged neurons versus contralateral controls as well as a moderate regulation in adjacent neurons. Data for damaged neurons reveal an mRNA expression pattern consistent with established upregulated genes like galanin, which supports our approach. Moreover, novel genes were found strongly regulated such as corticotropin-releasing hormone (CRH, providing novel targets for further research. Differential fluorescent neuronal labelling and sorting allows for a clear distinction between primarily damaged neuropathic neurons and "bystanders," thereby facilitating a more detailed understanding of their respective roles in neuropathic processes in the DRG.

  7. LSODKR, Stiff Ordinary Differential Equations (ODE) System Solver with Krylov Iteration and Root-finding

    International Nuclear Information System (INIS)

    Hindmarsh, A.D.; Brown, P.N.

    1996-01-01

    1 - Description of program or function: LSODKR is a new initial value ODE solver for stiff and non-stiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, b) within the corrector iteration, LSODKR does automatic switching between functional (fix point) iteration and modified Newton iteration, c) LSODKR includes the ability to find roots of given functions of the solution during the integration. 2 - Method of solution: Integration is by Adams or BDF (Backward Differentiation Formula) methods, at user option. Corrector iteration is by Newton or fix point iteration, determined dynamically. Linear system solution is by a preconditioned Krylov iteration, selected by user from Incomplete Orthogonalization Method, Generalized Minimum Residual Method, and two variants of Preconditioned Conjugate Gradient Method. Preconditioning is to be supplied by the user. 3 - Restrictions on the complexity of the problem: None

  8. Cell differentiation and matrix organization in engineered teeth.

    Science.gov (United States)

    Nait Lechguer, A; Couble, M L; Labert, N; Kuchler-Bopp, S; Keller, L; Magloire, H; Bleicher, F; Lesot, H

    2011-05-01

    Embryonic dental cells were used to check a series of criteria to be achieved for tooth engineering. Implantation of cultured cell-cell re-associations led to crown morphogenesis, epithelial histogenesis, organ vascularization, and root and periodontium development. The present work aimed to investigate the organization of predentin/dentin, enamel, and cementum which formed and mineralized after implantation. These implants were processed for histology, transmission electron microscopy, x-ray microanalysis, and electron diffraction. After two weeks of implantation, the re-associations showed gradients of differentiating odontoblasts. There were ciliated, polarized, and extended cell processes in predentin/dentin. Ameloblasts became functional. Enamel crystals showed a typical oriented arrangement in the inner and outer enamel. In the developing root, odontoblasts differentiated, cementogenesis occurred, and periodontal ligament fibroblasts interacted with the root surface and newly formed bone. The implantation of cultured dental cell re-associations allows for reproduction of complete functional differentiation at the cell, matrix, and mineral levels.

  9. Exploitation de la variabilité somaclonale pour la recherche d'oeillet (Dianthus caryophyllus L. tolérant à la salinité

    Directory of Open Access Journals (Sweden)

    Haouala, F.

    2003-01-01

    Full Text Available Exploitation of Somaclonal Variability for Research of Carnation (Dianthus caryophyllus L. Tolerant to Salinity. Callogenesis in carnation (Dianthus caryophyllus L. 'Légion d'Honneur' is possible from internodes in a medium containing 0.1 mg.l-1 NAA and 0.1 mg.l-1 TDZ. Regeneration from callus needs 2 mg.l-1 BA. Shoots rooting is obtained on a medium containing 0.5 mg.l-1 IBA. Callus growth is reduced and regeneration rate is very affected in presence of NaCl 100 mM. Shoot rooting is better without NaCl. Regenerated plants present somaclonal variation and those obtained under salt stress have a better relative tolerance to salinity than plants regenerated without salt.

  10. Plant regeneration from organ culture in white Guinea Yam

    Energy Technology Data Exchange (ETDEWEB)

    Nwachukwu, E C; Mbanaso, E N.A. [National Root Crops Research Inst., Umudike, Umuahia, Abia State (Nigeria); Sonnino, A [Centro Recerche Energia, ENEA, Rome (Italy)

    1997-07-01

    Explants from leaves, leaf segments, petioles and internodal stem of in vitro grown seedlings of white guinea yam, Dioscorea rotundata Poir, cv. `Obiaoturugo` were cultured on defined media. NAA at concentrations of 0.5-1.0 mg/1 induced shoot regeneration from petiolar and inter-nodal stem pieces, and rooting occurred with little or no callusing from whole leaves or leaf segments. With concentration of 3.0-10.0 m/1 NAA, explants from petioles, inter-nodal stem, whole leaves and leaf segments formed callus which produced roots. These explants developed plantlets when subcultured on MS medium supplemented with 2.0 mg/1 BAP and 0.1 mg/1 NAA. (author). 11 refs, 1 tab.

  11. Plant regeneration from organ culture in white Guinea Yam

    International Nuclear Information System (INIS)

    Nwachukwu, E.C.; Mbanaso, E.N.A.; Sonnino, A.

    1997-01-01

    Explants from leaves, leaf segments, petioles and internodal stem of in vitro grown seedlings of white guinea yam, Dioscorea rotundata Poir, cv. 'Obiaoturugo' were cultured on defined media. NAA at concentrations of 0.5-1.0 mg/1 induced shoot regeneration from petiolar and inter-nodal stem pieces, and rooting occurred with little or no callusing from whole leaves or leaf segments. With concentration of 3.0-10.0 m/1 NAA, explants from petioles, inter-nodal stem, whole leaves and leaf segments formed callus which produced roots. These explants developed plantlets when subcultured on MS medium supplemented with 2.0 mg/1 BAP and 0.1 mg/1 NAA. (author). 11 refs, 1 tab

  12. Irradiation effect on in vitro organogenesis, callus growth and plantlet development of Gerbera jamesonii Efeito da irradiação na organogênese in vitro, crescimento de calos e desenvolvimento de plântulas de gerbera

    Directory of Open Access Journals (Sweden)

    Nor A Hasbullah

    2012-06-01

    Full Text Available The present work was carried out to study the effects of gamma irradiation on in vitro growth of explants, callus and the formation of shoots and plantlets. Irradiation is known to exhibit or inhibit the differentiation of cells and growth of plants in vitro, which helps in producing new plant varieties. Gamma irradiation is one of the physical mutagens that are widely used for mutation breeding. A gradual decline was observed in the number of shoots regenerated from irradiated petiole explants compared to control. Numbers of shoots regenerated from irradiated petiole explant cultured on Murashige & Skoog medium supplemented with 2.0 mg L-1 BAP and 0.5 mg L-1 NAA was reduced to 6.6±0.9 from 7.5±0.4 (control when explants were exposed to 20 Gray of irradiation dose. Similar observation was reported on effects of gamma irradiation on in vitro propagated plantlets. Gradual decline was observed based on plant height as the dose of gamma irradiation increased. A significant decline was observed in the fresh weight of irradiated callus compared to control. In this case, growth responses of callus were strongly influenced by the radiation dose. The fresh weight of callus was reduced to 76.4±2.2% compared to 89.7±0.5% of control when callus tissues were exposed to 20 Gy.O presente trabalho foi realizado para estudar os efeitos da radiação gama no crescimento in vitro de explantes de calos, e a formação de brotos e mudas. A irradiação é conhecida por induzir ou inibir a diferenciação de células e o crescimento das plantas in vitro, o que ajuda na produção de novas variedades vegetais. Radiação gama é um dos agentes mutagenicos que são amplamente utilizados para o melhoramento através da mutação. Um declínio gradual foi observado no número de brotos regenerados a partir de explantes de pecíolos irradiados comparado com o controle. O número de brotações regeneradas de explantes de pecíolos irradiados, cultivados em meio

  13. Quantitative comparison and metabolite profiling of saponins in different parts of the root of Panax notoginseng.

    Science.gov (United States)

    Wang, Jing-Rong; Yau, Lee-Fong; Gao, Wei-Na; Liu, Yong; Yick, Pui-Wing; Liu, Liang; Jiang, Zhi-Hong

    2014-09-10

    Although both rhizome and root of Panax notoginseng are officially utilized as notoginseng in "Chinese Pharmacopoeia", individual parts of the root were differently used in practice. To provide chemical evidence for the differentiated usage, quantitative comparison and metabolite profiling of different portions derived from the whole root, as well as commercial samples, were carried out, showing an overall higher content of saponins in rhizome, followed by main root, branch root, and fibrous root. Ginsenoside Rb2 was proposed as a potential marker with a content of 0.5 mg/g as a threshold value for differentiating rhizome from other parts. Multivariate analysis of the metabolite profile further suggested 32 saponins as potential markers for the discrimination of different parts of notoginseng. Collectively, the study provided comprehensive chemical evidence for the distinct usage of different parts of notoginseng and, hence, is of great importance for the rational application and exploitation of individual parts of notoginseng.

  14. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion.

    Directory of Open Access Journals (Sweden)

    Swarnalee Dutta

    Full Text Available The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs. We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430. There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE, compared to those exposed to groundnut-root exudates (GRE. In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2, in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.

  15. Use of X-ray microanalysis for study of cation distribution in potassium deficient pumpkin roots

    Directory of Open Access Journals (Sweden)

    Natalia Burmistrova

    2014-01-01

    Full Text Available Ice slices of root tissues were investigated by X-ray microanalysis. It is shown that the cytoplasm of the meristematic and differentiated cells of potassium dificiest roots maintains a high potassium level. The vacuoles of various root cells loose more K and accumulate more Na and Mg than does the cytoplasm.

  16. Quantitative Comparison and Metabolite Profiling of Saponins in Different Parts of the Root of Panax notoginseng

    OpenAIRE

    Wang, Jing-Rong; Yau, Lee-Fong; Gao, Wei-Na; Liu, Yong; Yick, Pui-Wing; Liu, Liang; Jiang, Zhi-Hong

    2014-01-01

    Although both rhizome and root of Panax notoginseng are officially utilized as notoginseng in ?Chinese Pharmacopoeia?, individual parts of the root were differently used in practice. To provide chemical evidence for the differentiated usage, quantitative comparison and metabolite profiling of different portions derived from the whole root, as well as commercial samples, were carried out, showing an overall higher content of saponins in rhizome, followed by main root, branch root, and fibrous ...

  17. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    that the protein-import function of the complex, not the presence of a large acidic domain of TOC132 within the cytoplasm, is needed for gravity signal transduction. Furthermore, mutations in several genes encoding distinct members of the TOC complex also enhanced the gravitropic defect of arg1. Together, these data suggest that the TOC complex works indirectly in gravity signal transduction through its ability to target specific cytoplasmically synthesized proteins, possibly gravity signal transducers, into the plastid. We have used a proteomic strategy to identify root-tip proteins that are differentially expressed between wild type and mar2 mutant plants. The corresponding list of differentially expressed proteins, which includes a surprisingly small number of plastid-targeted molecules, mainly contains proteins that are predicted to be associated with distinct cellular compartments. Several of the corresponding genes were found to also be differentially expressed between wild type and mar2 mutant root tips at the transcriptional level, suggesting cross-talk between amyloplasts and nucleus in these cells. Some of the differentially represented proteins are encoded by genes that are differentially expressed in the root tip in response to gravistimulation, further suggesting their contribution to gravity signal transduction. Work in underway to elucidate their function and potential contribution to this pathway. This work was funded by grants from the National Science Foundation.

  18. Tree-root control of shallow landslides

    Science.gov (United States)

    Cohen, Denis; Schwarz, Massimiliano

    2017-08-01

    Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel) tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope-parallel directions. Roots

  19. Efeito da concentração de sais e fitorreguladores na indução de calos em carqueja Callus induction in "carqueja" as affected by salt concentrations and growth regulators

    Directory of Open Access Journals (Sweden)

    Fabiano Guimarães Silva

    2003-06-01

    Full Text Available Realizou-se este trabalho com o objetivo de estudar condições nutricionais e hormonais para maximizar a produção de calos friáveis de carqueja [Baccharis trimera (Less. DC]. Foi verificado que a iniciação de calo é dependente de fitorreguladores e da concentração do meio. A melhor indução de calo ocorreu em meio MS contendo 50% da concentração de sais, inositol e vitaminas, suplementado com 15,0 mM ANA. Proliferação de brotos foi obtida pelo uso de TDZ.The influence of various growth regulators and medium concentrations, in different quantities, on the in vitro callus induction of carqueja [Baccharis trimera (Less. DC.] was evaluated. It was found that the callus initiation was dependent on both, the growth regulator and medium concentration. The highest callus induction and development were obtained by using 15.0 mM 1-napthaleneacetic acid (NAA as growth regulators and half strength of salts, vitamins, and myo-inositol of Murashige and Skoog medium. In vitro shoot proliferation was obtained by using thidiazuron.

  20. Allelopathy of small everlasting (Antennaria microphylla) : Phytotoxicity to leafy spurge (Euphorbia esula) in tissue culture.

    Science.gov (United States)

    Hogan, M E; Manners, G D

    1990-03-01

    Media and media extracts from callus cultures of small everlasting (Antennaria microphylla) inhibited leafy spurge (Euphorbia esula L.) callus tissue and suspension culture growth (50 and 70% of control, respectively) and were phytotoxic in lettuce and leafy spurge root elongation bioassays (64 and 77% of control, respectively). Hydroquinone, a phytotoxic compound previously isolated from small everlasting, was also biosynthesized by callus and suspension cultures of this species. Exogenously supplied hydroquinone (0.5 mM) was toxic to leafy spurge suspension culture cells and was only partially biotransformed to its nontoxic water-soluble monoglucoside, arbutin, by these cells. This report confirms the chronic involvement of hydroquinone in the allelopathic interaction between small everlasting and leafy spurge.

  1. Effects of Low Dose Gamma Radiation on the Formation of Shikonon Derivatives in Callus Cultures of Lithospermum erythrorhizon

    International Nuclear Information System (INIS)

    Hwang, H.Y.; Lee, Y.B.; Kim, J.S.

    2003-01-01

    The effects of low dosage r-radiation on the cell growth and the formation of shikonin derivatives were investigated in callus cultures of Lithospermum erythrorhizon under different medium and light conditions. Gamma radiation significantly affected the cell growth and formation of shikonin derivatives, depending on the culture conditions. In the cell cultures grown on M09 medium, 2 Gy and 16 /Gy of r-radiation increased the calli growth and the formation of shikonin derivatives, respectively under 16 hr day light condition

  2. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  3. RNA-SEQ reveals transcriptional level changes of poplar roots in different forms of nitrogen treatments

    Directory of Open Access Journals (Sweden)

    Chunpu eQu

    2016-02-01

    Full Text Available Poplar has emerged as a model plant for understanding molecular mechanisms of tree growth, development and response to environment. Long-term application of different forms of nitrogen (such as NO3--N and NH4+-N may cause morphological changes of poplar roots; however, the molecular level changes are still not well known. In this study, we analyzed the expression profiling of poplar roots treated by three forms of nitrogen: S1 (NH4+, S2 (NH4NO3 and S3 (NO3- by using RNA-SEQ technique. We found 463 genes significantly differentially expressed in roots by different N treatments, of which a total of 116 genes were found to differentially express between S1 and S2, 173 genes between S2 and S3, and 327 genes between S1 and S3. A cluster analysis shows significant difference in many transcription factor families and functional genes family under different N forms. Through an analysis of Mapman metabolic pathway, we found that the significantly differentially expressed genes are associated with fermentation, glycolysis and tricarboxylic acid cycle (TCA, secondary metabolism, hormone metabolism, and transport processing. Interestingly, we did not find significantly differentially expressed genes in N metabolism pathway, mitochondrial electron transport / ATP synthesis and mineral nutrition. We also found abundant candidate genes (20 transcription factors and 30 functional genes regulating morphology changes of poplar roots under the three N forms. The results obtained are beneficial to a better understanding of the potential molecular and cellular mechanisms regulating root morphology changes under different N treatments.

  4. Differential gene expression in Rhododendron fortunei roots colonized by an ericoid mycorrhizal fungus and increased nitrogen absorption and plant growth

    Directory of Open Access Journals (Sweden)

    Xiangying Wei

    2016-10-01

    Full Text Available Ericoid mycorrhizal (ERM fungi are specifically symbiotic with plants in the family Ericaceae. Little is known thus far about their symbiotic establishment and subsequent nitrogen (N uptake at the molecular level. The present study devised a system for establishing a symbiotic relationship between Rhododendron fortunei Lindl. and an ERM fungus (Oidiodendron maius var. maius strain Om19, quantified seedling growth and N uptake, and compared transcriptome profiling between colonized and uncolonized roots using RNA-Seq. The Om19 colonization induced 16,892 genes that were differentially expressed in plant roots, of which 14,364 were upregulated and 2,528 were downregulated. These genes included those homologous to ATP-binding cassette transporters, calcium/calmodulin-dependent kinases, and symbiosis receptor-like kinases. N metabolism was particularly active in Om19-colonized roots, and 51 genes were upregulated, such as nitrate transporters, nitrate reductase, nitrite reductase, ammonium transporters, glutamine synthetase, and glutamate synthase. Transcriptome analysis also identified a series of genes involving endocytosis, Fc-gamma R-mediated phagocytosis, glycerophospholipid metabolism, and GnRH signal pathway that have not been reported previously. Their roles in the symbiosis require further investigation. The Om19 colonization significantly increased N uptake and seedling growth. Total N content and dry weight of colonized seedlings were 36.6% and 46.6% greater than control seedlings. This is the first transcriptome analysis of a species from the family Ericaceae colonized by an ERM fungus. The findings from this study will shed light on the mechanisms underlying symbiotic relationships of ericaceous species with ERM fungi and the symbiosis-resultant N uptake and plant growth.

  5. Postembryonic organogenesis and plant regeneration from tissues:two sides of the same coin?

    Directory of Open Access Journals (Sweden)

    Juan ePerianez-Rodriguez

    2014-05-01

    Full Text Available Plants have extraordinary developmental plasticity as they continuously form organs duringpostembryonic development. In addition they may regenerate organs upon in vitro hormonalinduction. Advances in the field of plant regeneration show that the first steps of de novoorganogenesis through in vitro culture in hormone containing media (via formation of aproliferating mass of cells or callus require root postembryonic developmental programs as wellas regulators of auxin and cytokinin signaling pathways. We review how hormonal regulation isdelivered during lateral root initiation and callus formation. Implications in reprograming, cellfate and pluripotency acquisition are discussed. Finally, we analyze the function of cell-cycleregulators and connections with epigenetic regulation. Future work dissecting plantorganogenesis driven by both endogenous and exogenous cues (upon hormonal induction mayreveal new paradigms of common regulation.

  6. Localization of ENHANCER OF TRY AND CPC1 protein in Arabidopsis root epidermis.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Kurata, Tetsuya; Wada, Takuji

    2017-07-01

    CAPRICE (CPC) is a R3-type MYB transcription factor, which induces root-hair cell differentiation in Arabidopsis thaliana. The CPC homologous gene ENHANCER TRY AND CPC1 (ETC1) has a similar function to CPC, and acts in concert with CPC. The CPC protein moves between root epidermal cells, from hairless cells to the neighboring cells, and promotes root-hair differentiation. Therefore, ETC1 is predicted to have movement ability similar to that of CPC. In this study, we generated ETC1:ETC1:GFP and CPC:ETC1:GFP transgenic plants to clarify whether ETC1 exhibits cell-to-cell movement. Transgenic plants showed many-root-haired and trichome-less phenotypes, similar to those observed in CPC:CPC:GFP plants, suggesting a similar function of ETC1 and CPC. However, the ETC1:GFP fusion protein located exclusively to the hairless cells in both ETC1:ETC1:GFP and CPC:ETC1:GFP transgenic plants. These results indicate that, unexpectedly, the ETC1 protein cannot move in the root epidermis from hairless cells to the neighboring cells. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Sustainable production of azadirachtin from differentiated in vitro cell lines of neem (Azadirachta indica)

    Science.gov (United States)

    Singh, Mithilesh; Chaturvedi, Rakhi

    2013-01-01

    Azadirachtin has high industrial demand due to its immediate application as an ecofriendly, biodegradable biopesticide and also due to its various other significant bioactivities. To date, the only commercially feasible way to produce azadirachtin is extraction from seeds, but their availability is very limited as the tree flowers only once a year and only one-third of the fruits are collected due to operational problems. Further, due to the strict out-breeding nature of the plant, the seeds are highly heterozygous, resulting in inconsistent metabolite production. Therefore, in the present study, to achieve sustainable production of azadirachtin, dedifferentiated and redifferentiated calli derived from various explants of neem—zygotic embryo, leaf and ovary—were investigated for their potential to biosynthesize azadirachtin. High-performance liquid chromatography analysis of the in vitro cell lines showed the presence of azadirachtin in all the samples tested, the content of which in cultured cells varied with explant source and cell differentiation response. The presence of azadirachtin in samples was further confirmed by positive electrospray ionization mass spectroscopy. The zygotic embryo cultures of neem accumulated much higher amounts of azadirachtin than leaf and ovary cultures. Furthermore, organized in vitro callus cultures (redifferentiated) supported higher azadirachtin biosynthesis, while unorganized callus cultures (dedifferentiated) supported the least. The maximum azadirachtin content of 2.33 mg g−1 dry weight was obtained from redifferentiated immature zygotic embryo cultures.

  8. The use of tissue culture techniques to detect irradiated vegetables

    International Nuclear Information System (INIS)

    Al-Safadi, B.; Sharabi, N.E.; Nabulsi, I

    2001-01-01

    the ability of two tissue culture methods, callus and vegetable growth induction, to detect irradiated vegetables was evaluated. Potato tubers, carrot roots, garlic cloves and onion bulbs were subjected to various gamma radiation doses (0, 25, 100, 150, 250, 500, 750, and 1000 Gy). Irradiated vegetables were cultured in vitro and in vivo (pots). Gamma irradiation significantly reduced callus-forming ability especially in carrot and potato where no callus was observed in doses higher than 50 Gy. Length of shoots and roots growing from irradiated garlic and onion explants was considerably reduced starting from the 25 Gy dose. No roots were formed on garlic explants at any irradiation dose. Garlic leaves growing from irradiated explants were spotted with purple to brown spots. The intensity of these spots increased as gamma ray dosage increased. In the pot experiment, potato plant appeared in the control only. On the contrary, a complete sprouting of garlic and onion was seen in all irradiation treatments. It was not possible to distinguish between the various irradiation treatments and the control 3 days after planting in pots. The two in vitro techniques, tested in our study, may effectively be used to detect irradiated vegetables and estimate the range of doses used. The callus formation method is more useful for potato and carrot, since regeneration of shoots in vitro from these two plants takes along time, making this method unpractical. The other technique is very useful in the case of onion and garlic since it is rapid. The two techniques can be used with most of the vegetables that can be cultured in vitro. (Author)

  9. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves

    Science.gov (United States)

    Lu, Yi-Bin; Qi, Yi-Ping; Yang, Lin-Tong; Lee, Jinwook; Guo, Peng; Ye, Xin; Jia, Meng-Yang; Li, Mei-Li; Chen, Li-Song

    2015-01-01

    Seedlings of Citrus sinensis (L.) Osbeck were supplied with boron (B)-deficient (without H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. We identified 54 (38) and 38 (45) up (down)-regulated cDNA-AFLP bands (transcript-derived fragments, TDFs) from B-deficient leaves and roots, respectively. These TDFs were mainly involved in protein and amino acid metabolism, carbohydrate and energy metabolism, nucleic acid metabolism, cell transport, signal transduction, and stress response and defense. The majority of the differentially expressed TDFs were isolated only from B-deficient roots or leaves, only seven TDFs with the same GenBank ID were isolated from the both. In addition, ATP biosynthesis-related TDFs were induced in B-deficient roots, but unaffected in B-deficient leaves. Most of the differentially expressed TDFs associated with signal transduction and stress defense were down-regulated in roots, but up-regulated in leaves. TDFs related to protein ubiquitination and proteolysis were induced in B-deficient leaves except for one TDF, while only two down-regulated TDFs associated with ubiquitination were detected in B-deficient roots. Thus, many differences existed in long-term B-deficiency-responsive genes between roots and leaves. In conclusion, our findings provided a global picture of the differential responses occurring in B-deficient roots and leaves and revealed new insight into the different adaptive mechanisms of C. sinensis roots and leaves to B-deficiency at the transcriptional level. PMID:26284101

  10. Impact of "Roots" on Black and White Teenagers

    Science.gov (United States)

    Hur, K. Kyoon

    1978-01-01

    Racial attitudes, race, and other demographic factors differentiated viewers' perceptions and reactions to the "Roots" series. The effects on teenagers were apparent in the viewers' immediate perceptions of the series, entertainment and information values of the series, and realistic presentation of black history. (JEG)

  11. Clinicoradiologic Differential Diagnosis of Odontogenic Keratocyst and Ameloblastoma

    International Nuclear Information System (INIS)

    Jeong, Ho Gul; Lee, Jang Yeol; Kim, Kee Deog; Park, Chang Seo

    2000-01-01

    To clarify the clinical and radiologic parameters that can be used to differentiate odontogenic keratocyst and ameloblastoma. The records of 46 patients of ameloblstoma and 48 patients of odontogenic keratocyst at the Yonsei University Dental Hospital during the period of 1979 to 1995 were retrospectively reviewed. As a possible means for differentiating between the odontogenic keratocyst and ameloblastoma, the clinical parameters and the radiologic parameters were evaluated. In the clinical parameters, there was no significant deference in age, sex, and sign and symptoms (p>0.05).In the radiologic parameters, there was significant difference in site, shape of the lesion, and external root resorption of adjacent teeth (p<0.05). The site, shape of the lesion, and external root resorption of adjacent teeth can be the parameters to differentiate odontogenic keratocyst and ameloblastoma, but a definite differentiation of these two lesions needs a more specialized imaging modality.

  12. Clinicoradiologic Differential Diagnosis of Odontogenic Keratocyst and Ameloblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Lee, Jang Yeol; Kim, Kee Deog; Park, Chang Seo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of)

    2000-12-15

    To clarify the clinical and radiologic parameters that can be used to differentiate odontogenic keratocyst and ameloblastoma. The records of 46 patients of ameloblstoma and 48 patients of odontogenic keratocyst at the Yonsei University Dental Hospital during the period of 1979 to 1995 were retrospectively reviewed. As a possible means for differentiating between the odontogenic keratocyst and ameloblastoma, the clinical parameters and the radiologic parameters were evaluated. In the clinical parameters, there was no significant deference in age, sex, and sign and symptoms (p>0.05).In the radiologic parameters, there was significant difference in site, shape of the lesion, and external root resorption of adjacent teeth (p<0.05). The site, shape of the lesion, and external root resorption of adjacent teeth can be the parameters to differentiate odontogenic keratocyst and ameloblastoma, but a definite differentiation of these two lesions needs a more specialized imaging modality.

  13. Correlation of different spectral lights with biomass accumulation and production of antioxidant secondary metabolites in callus cultures of medicinally important Prunella vulgaris L.

    Science.gov (United States)

    Fazal, Hina; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Syed Shujait; Akbar, Fazal; Kanwal, Farina

    2016-06-01

    Light is one of the key elicitors that directly fluctuates plant developmental processes and biosynthesis of secondary metabolites. In this study, the effects of various spectral lights on biomass accumulation and production of antioxidant secondary metabolites in callus cultures of Prunella vulgaris were investigated. Among different spectral lights, green light induced the maximum callogenic response (95%). Enhanced fresh biomass accumulation was observed in log phases on day-35, when callus cultures were exposed to yellow and violet lights. Yellow light induced maximum biomass accumulation (3.67g/100ml) from leaf explants as compared to control (1.27g/100ml). In contrast, violet lights enhanced biomass accumulation (3.49g/100ml) from petiole explant. Maximum total phenolics content (TPC; 23.9mg/g-DW) and total flavonoids content (TFC; 1.65mg/g-DW) were observed when cultures were grown under blue lights. In contrast, green and yellow lights enhanced total phenolics production (TPP; 112.52g/100ml) and total flavonoids production (TFP; 9.64g/100ml) as compared to control. The calli grown under green, red and blue lights enhanced DPPH-free radical scavenging activity (DFRSA; 91.3%, 93.1% and 93%) than control (56.44%) respectively. The DFRSA was correlated either with TPC and TFC or TPP and TFP. Furthermore, yellow lights enhanced superoxide dismutase (SOD), peroxidase (POD) and protease activities, however, the content of total protein (CTP) was higher in control cultures (186μg BSAE/mg FW) as compared to spectral lights. These results suggest that the exposure of callus cultures to various spectral lights have shown a key role in biomass accumulation and production of antioxidant secondary metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Tree-root control of shallow landslides

    Directory of Open Access Journals (Sweden)

    D. Cohen

    2017-08-01

    Full Text Available Tree roots have long been recognized to increase slope stability by reinforcing the strength of soils. Slope stability models usually include the effects of roots by adding an apparent cohesion to the soil to simulate root strength. No model includes the combined effects of root distribution heterogeneity, stress-strain behavior of root reinforcement, or root strength in compression. Recent field observations, however, indicate that shallow landslide triggering mechanisms are characterized by differential deformation that indicates localized activation of zones in tension, compression, and shear in the soil. Here we describe a new model for slope stability that specifically considers these effects. The model is a strain-step discrete element model that reproduces the self-organized redistribution of forces on a slope during rainfall-triggered shallow landslides. We use a conceptual sigmoidal-shaped hillslope with a clearing in its center to explore the effects of tree size, spacing, weak zones, maximum root-size diameter, and different root strength configurations. Simulation results indicate that tree roots can stabilize slopes that would otherwise fail without them and, in general, higher root density with higher root reinforcement results in a more stable slope. The variation in root stiffness with diameter can, in some cases, invert this relationship. Root tension provides more resistance to failure than root compression but roots with both tension and compression offer the best resistance to failure. Lateral (slope-parallel tension can be important in cases when the magnitude of this force is comparable to the slope-perpendicular tensile force. In this case, lateral forces can bring to failure tree-covered areas with high root reinforcement. Slope failure occurs when downslope soil compression reaches the soil maximum strength. When this occurs depends on the amount of root tension upslope in both the slope-perpendicular and slope

  15. [Identifying transcription factors involved in Arabidopsis adventious shoot regeneration by RNA-Seq technology].

    Science.gov (United States)

    Wang, Xingchun; Chen, Zhao; Fan, Juan; He, Miaomiao; Han, Yuanhuai; Yang, Zhirong

    2015-04-01

    Transcriptional regulation is one of the major regulations in plant adventious shoot regeneration, but the exact mechanism remains unclear. In our study, the RNA-seq technology based on the IlluminaHiSeq 2000 sequencing platform was used to identify differentially expressed transcription factor (TF) encoding genes during callus formation stage and adventious shoot regeneration stage between wild type and adventious shoot formation defective mutant be1-3 and during the transition from dedifferentiation to redifferentiation stage in wildtype WS. Results show that 155 TFs were differentially expressed between be1-3 mutant and wild type during callus formation, of which 97 genes were up-regulated, and 58 genes were down-regulated; and that 68 genes were differentially expressed during redifferentiation stage, with 40 genes up-regulated and 28 genes down-regulated; whereas at the transition stage from dedifferentiation to redifferention in WS wild type explants, a total of 231 differentially expressed TF genes were identified, including 160 up-regualted genes and 71 down-regulated genes. Among these TF genes, the adventious shoot related transcription factor 1 (ART1) gene encoding a MYB-related (v-myb avian myeloblastosis viral oncogene homolog) TF, was up-regulated 3 217 folds, and was the highest up-regulated gene during be1-3 callus formation. Over expression of the ART1 gene caused defects in callus formation and shoot regeneration and inhibited seedling growth, indicating that the ART1 gene is a negative regulator of callus formation and shoot regeneration. This work not only enriches our knowledge about the transcriptional regulation mechanism of adventious shoot regeneration, but also provides valuable information on candidate TF genes associated with adventious shoot regeneration for future research.

  16. Glycosylphosphatidylinositol-anchored proteins are required for cell wall synthesis and morphogenesis in Arabidopsis.

    Science.gov (United States)

    Gillmor, C Stewart; Lukowitz, Wolfgang; Brininstool, Ginger; Sedbrook, John C; Hamann, Thorsten; Poindexter, Patricia; Somerville, Chris

    2005-04-01

    Mutations at five loci named PEANUT1-5 (PNT) were identified in a genetic screen for radially swollen embryo mutants. pnt1 cell walls showed decreased crystalline cellulose, increased pectins, and irregular and ectopic deposition of pectins, xyloglucans, and callose. Furthermore, pnt1 pollen is less viable than the wild type, and pnt1 embryos were delayed in morphogenesis and showed defects in shoot and root meristems. The PNT1 gene encodes the Arabidopsis thaliana homolog of mammalian PIG-M, an endoplasmic reticulum-localized mannosyltransferase that is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor. All five pnt mutants showed strongly reduced accumulation of GPI-anchored proteins, suggesting that they all have defects in GPI anchor synthesis. Although the mutants are seedling lethal, pnt1 cells are able to proliferate for a limited time as undifferentiated callus and do not show the massive deposition of ectopic cell wall material seen in pnt1 embryos. The different phenotype of pnt1 cells in embryos and callus suggest a differential requirement for GPI-anchored proteins in cell wall synthesis in these two tissues and points to the importance of GPI anchoring in coordinated multicellular growth.

  17. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill. under salt stress

    Directory of Open Access Journals (Sweden)

    Alharby Hesham F.

    2016-01-01

    Full Text Available The properties of nanomaterials and their potential applications have been given considerable attention by researchers in various fields, especially agricultural biotechnology. However, not much has been done to evaluate the role or effect of zinc oxide nanoparticles (ZnO-NP in regulating physiological and biochemical processes in response to salt-induced stress. For this purpose, some callus growth traits, plant regeneration rate, mineral element (sodium, potassium, phosphorous and nitrogen contents and changes in the activity of superoxide dismutase (SOD and glutathione peroxidase (GPX in tissues of five tomato cultivars were investigated in a callus culture exposed to elevated concentrations of salt (3.0 and 6.0 g L-1NaCl, and in the presence of zinc oxide nanoparticles (15 and 30 mg L-1. The relative callus growth rate was inhibited by 3.0 g L-1 NaCl; this was increased dramatically at 6.0 g L-1. Increasing exposure to NaCl was associated with a significantly higher sodium content and SOD and GPX activities. Zinc oxide nanoparticles mitigated the effects of NaCl, and in this application of lower concentrations (15 mg L-1 was more effective than a higher concentration (30 mg L-1. This finding indicates that zinc oxide nanoparticles should be investigated further as a potential anti-stress agent in crop production. Different tomato cultivars showed different degrees of tolerance to salinity in the presence of ZnO-NP. The cultivars Edkawy, followed by Sandpoint, were less affected by salt stress than the cultivar Anna Aasa.

  18. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots

    International Nuclear Information System (INIS)

    Xun, Hongwei; Ma, Xintong; Chen, Jing; Yang, Zhongzhou; Liu, Bao; Gao, Xiang; Li, Guo; Yu, Jiamiao; Wang, Li; Pang, Jinsong

    2017-01-01

    The potential impacts of environmentally accumulated zinc oxide nanoparticles (nZnOs) on plant growth have not been well studied. A transcriptome profile analysis of maize exposed to nZnOs showed that the genes in the shoots and roots responded differently. Although the number of differentially expressed genes (DEGs) in the roots was greater than that in the shoots, the number of up- or down-regulated genes in both the shoots and roots was similar. The enrichment of gene ontology (GO) terms was also significantly different in the shoots and roots. The “nitrogen compound metabolism” and “cellular component” terms were specifically and highly up-regulated in the nZnO-exposed roots, whereas the categories “cellular metabolic process”, “primary metabolic process” and “secondary metabolic process” were down-regulated in the exposed roots only. Our results revealed the DEG response patterns in maize shoots and roots after nZnO exposure. - Highlights: • The gene expression patterns of maize exposed to ZnO nanoparticles (nZnO) varied in the shoots and roots. • A majority of the differentially expressed genes induced by nZnO exposure were exclusive to either the shoots or roots. • A similar number of up- and down-regulated genes was observed in the exposed shoots. • More up-regulated than down-regulated genes were found in the exposed roots. • A greater number of GO processes were observed in the nZnO exposed maize roots than in the exposed shoots. • GO terms in the “nitrogen compound metabolic process” category were exclusively and highly expressed in the exposed roots. • GO terms in the “nutrient reservoir” category were exclusively and highly expressed in the exposed roots. • Term “small molecule metabolic process” was also exclusively up-regulated in the exposed roots. • Processes in “cellular metabolic”, “primary metabolic” and “secondary metabolic” were down-regulated in the exposed roots.

  19. Transcription reprogramming during root nodule development in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Sandra Moreau

    Full Text Available Many genes which are associated with root nodule development and activity in the model legume Medicago truncatula have been described. However information on precise stages of activation of these genes and their corresponding transcriptional regulators is often lacking. Whether these regulators are shared with other plant developmental programs also remains an open question. Here detailed microarray analyses have been used to study the transcriptome of root nodules induced by either wild type or mutant strains of Sinorhizobium meliloti. In this way we have defined eight major activation patterns in nodules and identified associated potential regulatory genes. We have shown that transcription reprogramming during consecutive stages of nodule differentiation occurs in four major phases, respectively associated with (i early signalling events and/or bacterial infection; plant cell differentiation that is either (ii independent or (iii dependent on bacteroid differentiation; (iv nitrogen fixation. Differential expression of several genes involved in cytokinin biosynthesis was observed in early symbiotic nodule zones, suggesting that cytokinin levels are actively controlled in this region. Taking advantage of databases recently developed for M. truncatula, we identified a small subset of gene expression regulators that were exclusively or predominantly expressed in nodules, whereas most other regulators were also activated under other conditions, and notably in response to abiotic or biotic stresses. We found evidence suggesting the activation of the jasmonate pathway in both wild type and mutant nodules, thus raising questions about the role of jasmonate during nodule development. Finally, quantitative RT-PCR was used to analyse the expression of a series of nodule regulator and marker genes at early symbiotic stages in roots and allowed us to distinguish several early stages of gene expression activation or repression.

  20. Modelling root reinforcement in shallow forest soils

    Science.gov (United States)

    Skaugset, Arne E.

    1997-01-01

    A hypothesis used to explain the relationship between timber harvesting and landslides is that tree roots add mechanical support to soil, thus increasing soil strength. Upon harvest, the tree roots decay which reduces soil strength and increases the risk of management -induced landslides. The technical literature does not adequately support this hypothesis. Soil strength values attributed to root reinforcement that are in the technical literature are such that forested sites can't fail and all high risk, harvested sites must fail. Both unstable forested sites and stable harvested sites exist, in abundance, in the real world thus, the literature does not adequately describe the real world. An analytical model was developed to calculate soil strength increase due to root reinforcement. Conceptually, the model is composed of a reinforcing element with high tensile strength, i.e. a conifer root, embedded in a material with little tensile strength, i.e. a soil. As the soil fails and deforms, the reinforcing element also deforms and stretches. The lateral deformation of the reinforcing element is treated analytically as a laterally loaded pile in a flexible foundation and the axial deformation is treated as an axially loaded pile. The governing differential equations are solved using finite-difference approximation techniques. The root reinforcement model was tested by comparing the final shape of steel and aluminum rods, parachute cord, wooden dowels, and pine roots in direct shear with predicted shapes from the output of the root reinforcement model. The comparisons were generally satisfactory, were best for parachute cord and wooden dowels, and were poorest for steel and aluminum rods. A parameter study was performed on the root reinforcement model which showed reinforced soil strength increased with increasing root diameter and soil depth. Output from the root reinforcement model showed a strain incompatibility between large and small diameter roots. The peak

  1. [Dynamics of genome changes in Rauwolfia serpentina callus tissue upon the switch to conditions of submerged cultivation].

    Science.gov (United States)

    Spiridonova, E V; Adnof, D M; Andreev, I O; Kunakh, V A

    2008-01-01

    Genome of Rauwolfia serpentina callus cells was found to fail undergo the noticeable changes for several early passages upon the switch from surface to submerged cultivation in the liquid medium of special composition. After subsequent 4-6 passages in submerged culture RAPD spectra polymorphism was revealed which may reflect the changes in DNA sequence as well as in the structure of cell population that forms the strain. Introduction of the intermediary passage on the agar-solidified medium of more simple composition prior to transfer into liquid medium appeared not to affect essentially the level and the pattern of genome changes.

  2. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities.

    Science.gov (United States)

    Zgadzaj, Rafal; Garrido-Oter, Ruben; Jensen, Dorthe Bodker; Koprivova, Anna; Schulze-Lefert, Paul; Radutoiu, Simona

    2016-12-06

    Lotus japonicus has been used for decades as a model legume to study the establishment of binary symbiotic relationships with nitrogen-fixing rhizobia that trigger root nodule organogenesis for bacterial accommodation. Using community profiling of 16S rRNA gene amplicons, we reveal that in Lotus, distinctive nodule- and root-inhabiting communities are established by parallel, rather than consecutive, selection of bacteria from the rhizosphere and root compartments. Comparative analyses of wild-type (WT) and symbiotic mutants in Nod factor receptor5 (nfr5), Nodule inception (nin) and Lotus histidine kinase1 (lhk1) genes identified a previously unsuspected role of the nodulation pathway in the establishment of different bacterial assemblages in the root and rhizosphere. We found that the loss of nitrogen-fixing symbiosis dramatically alters community structure in the latter two compartments, affecting at least 14 bacterial orders. The differential plant growth phenotypes seen between WT and the symbiotic mutants in nonsupplemented soil were retained under nitrogen-supplemented conditions that blocked the formation of functional nodules in WT, whereas the symbiosis-impaired mutants maintain an altered community structure in the nitrogen-supplemented soil. This finding provides strong evidence that the root-associated community shift in the symbiotic mutants is a direct consequence of the disabled symbiosis pathway rather than an indirect effect resulting from abolished symbiotic nitrogen fixation. Our findings imply a role of the legume host in selecting a broad taxonomic range of root-associated bacteria that, in addition to rhizobia, likely contribute to plant growth and ecological performance.

  3. Phytosynthesis and Characterization of Silver Nanoparticles Using Callus of JATROPHA CURCAS: a Biotechnological Approach

    Science.gov (United States)

    Demissie, A. G.; Lele, S. S.

    2013-06-01

    The present study reports a rapid plant-based biosynthesis of silver nanoparticles using callus extract of Jatropha curcas L. The particle size and morphological analyses were carried out using Zetasizer, SEM, TEM. The physicochemical properties were monitored using UV-Vis spectroscopic, IR and DSC. The formation of silver nanoparticle was confirmed by using UV-Vis spectrophotometer and absorbance peaks at 421 nm. The silver nanoparticle was found to be a negatively charged with size ranging from 2 nm to 50 nm. The morphology of the nanoparticle is uniformly spherical and has a dispersion ratio of 0.14. The physicochemical study using DSC indicated significant thermal stability and crystalline nature of the nanoparticle. This intracellular biosynthesis of silver nanoparticles is simple, cheap and eco-friendly than other mechanical and chemical approaches.

  4. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.

    Science.gov (United States)

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Involvement of alternative oxidase (AOX) in adventitious rooting of Olea europaea L. microshoots is linked to adaptive phenylpropanoid and lignin metabolism.

    Science.gov (United States)

    Santos Macedo, E; Sircar, D; Cardoso, H G; Peixe, A; Arnholdt-Schmitt, B

    2012-09-01

    Alternative oxidase (AOX) has been proposed as a functional marker candidate in a number of events involving cell differentiation, including rooting efficiency in semi-hardwood shoot cuttings of olive (Olea europaea L.). To ascertain the general importance of AOX in olive rooting, the auxin-induced rooting process was studied in an in vitro system for microshoot propagation. Inhibition of AOX by salicylhydroxamic acid (SHAM) significantly reduced rooting efficiency. However, the inhibitor failed to exhibit any effect on the preceding calli stage. This makes the system appropriate for distinguishing dedifferentiation and de novo differentiation during root induction. Metabolite analyses of microshoots showed that total phenolics, total flavonoids and lignin contents were significantly reduced upon SHAM treatment. It was concluded that the influence of alternative respiration on root formation was associated to adaptive phenylpropanoid and lignin metabolism. Transcript profiles of two olive AOX genes (OeAOX1a and OeAOX2) were examined during the process of auxin-induced root induction. Both genes displayed stable transcript accumulation in semi-quantitative RT-PCR analysis during all experimental stages. In contrary, when the reverse primer for OeAOX2 was designed from the 3'-UTR instead of the ORF, differential transcript accumulation was observed suggesting posttranscriptional regulation of OeAOX2 during metabolic acclimation. This result confirms former observations in olive semi-hardwood shoot cuttings on differential OeAOX2 expression during root induction. It further points to the importance of future studies on the functional role of sequence and length polymorphisms in the 3'-UTR of this gene. The manuscript reports the general importance of AOX in olive adventitious rooting and the association of alternative respiration to adaptive phenylpropanoid and lignin metabolism.

  6. Indução de calos friáveis em explantes foliares de Salix (Salyx humboldtiana Willd Induction of friable callus in leaf explants of Salix (Salyx humboldtiana Willd

    Directory of Open Access Journals (Sweden)

    Breno Régis Santos

    2005-06-01

    of 1-naphthaleneacetic acid and 6-benzylaminopurine both with the concentrations of 0; 1.0; 2.0; 4.0; 6.0 e 8.0mg L-1. The results showed that explants inoculated in the absence of growth regulators had no formation of friable callus. Significant production of friable callus (90% was obtained with 6.0mg L-1 of 2-4-diclorofenoxiacetic acid. Individual concentrations of 1-naphthaleneacetic acid or 6-benzylaminopurine induced callogenesis and rooting.

  7. Somatic Embryogenesis, Rhizogenesis, and Morphinan Alkaloids Production in Two Species of Opium Poppy

    Directory of Open Access Journals (Sweden)

    My Abdelmajid Kassem

    2001-01-01

    Morphine was only detected in aerial parts of Papaver somniferum album. Codeine and thebaine were detected in the rhizogenous but no embryonic callus. These results suggest that root organogenesis is causally related to alkaloid biosynthesis.

  8. SPECTRAL QUALITY AFFECTS MORPHOGENESIS ON ANTHURIUM PLANTLET DURING IN VITRO CULTURE

    Directory of Open Access Journals (Sweden)

    Kurniawan Budiarto

    2010-10-01

    Full Text Available This paper elucidates the effects of LEDs spectral on callus induction, proliferation and shoot development of anthurium plantlet derived from leaf explants. The research was conducted at the Ornamental Research Station, Fukuyama, Japan from January to August 2008. Three experimental series were designed to determine the effects of LED-based spectral compositions i.e. 100% red, 75% red + 25% blue, 50% red + 50% blue, 25% red + 75% blue and 100% blue LEDs on morphogenetic process of callus formation derived from leaf explants up to plantlet formation on two anthurium cultivars, Violeta and Pink Lady. The results showed no differences among cultivars tested but interaction of factors studied were found in all parameters observed. LEDs spectral gave significant influence on the morphogenetic processes from callus induction to complete plantlet formation. Progressive initial callus was promoted with the decrease of blue LEDs portion. Conversely, to proliferate globose to torpedo callus formation, more blue light was required than red LEDs. During shoot induction and formation, hastened shoot initiation and number of shoots were achieved in higher blue LEDs portions, but not in root formations.

  9. Comparison of auxin activty in tumourous and normal callus cultures from sunflower and tobacco plants

    Directory of Open Access Journals (Sweden)

    Z. Chirek

    2015-01-01

    Full Text Available In normal and tumourous calluses of sunflower and tobacco the level of extractable auxins was determined by Avena coleoptile straight growth test. Auxin activity was detected practically in two zones: I - at position with Rf 0.2-0.4 and II - at position with Rf 0.6-0.9. The tumour tissues of sunflower and tobacco plants, representing different types of neoplastic growth exhibit a 3 times higher auxin activity as compared with that of the corresponding normal tissues. Tobacco tissues, on the other hand, had a higher auxin level than the corresponding sunflower tissues and they exhibited different proportions in the activity of zones I and II, which points to a dominance of genetic regulation of hormone metabolism in these plants.

  10. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition.

    Science.gov (United States)

    Yang, Zhong-Bao; He, Chunmei; Ma, Yanqi; Herde, Marco; Ding, Zhaojun

    2017-02-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. © 2017 American Society of Plant Biologists. All Rights Reserved.

  11. Micropropagation and genetic transformation of Tylophora indica (Burm. f.) Merr.: a review.

    Science.gov (United States)

    Teixeira da Silva, Jaime A; Jha, Sumita

    2016-11-01

    This review provides an in-depth and comprehensive overview of the in vitro culture of Tylophora species, which have medicinal properties. Tylophora indica (Burm. f.) Merr. is a climbing perennial vine with medicinal properties. The tissue culture and genetic transformation of T. indica, which has been extensively studied, is reviewed. Micropropagation using nodal explants has been reported in 25 % of all publications. Leaf explants from field-grown plants has been the explant of choice of independent research groups, which reported direct and callus-mediated organogenesis as well as callus-mediated somatic embryogenesis. Protoplast-mediated regeneration and callus-mediated shoot organogenesis has also been reported from stem explants, and to a lesser degree from root explants of micropropagated plants in vitro. Recent studies that used HPLC confirmed the potential of micropropagated plants to synthesize the major T. indica alkaloid tylophorine prior to and after transfer to field conditions. The genetic integrity of callus-regenerated plants was confirmed by RAPD in a few reports. Tissue culture is an essential base for genetic transformation studies. Hairy roots and transgenic T. indica plants have been shown to accumulate tylophorine suggesting that in vitro biology and transgenic methods are viable ways of clonally producing valuable germplasm and mass producing compounds of commercial value. Further studies that investigate the factors affecting the biosynthesis of Tylophora alkaloids and other secondary metabolites need to be conducted using non-transformed as well as transformed cell and organ cultures.

  12. In Vivo Fast Induction of Homogeneous Autopolyploids via Callus in Sour Jujube (Ziziphus acidojujuba Cheng et Liu

    Directory of Open Access Journals (Sweden)

    Qinghua Shi

    2016-05-01

    Full Text Available Polyploidization has been demonstrated as a very effective approach in fruit tree improvement. Sour jujube (Ziziphus acidojujuba Cheng et Liu is a promising diploid wild, traditional fruit species (2n = 2x = 24 that is rich in vitamin C, which is the main rootstock of Chinese jujube (Z. jujuba Mill.. The novel method we developed for rapid in vivo induction of homogeneous autopolyploids (IVIHA via callus in Chinese jujube was first applied and further optimized in sour jujube. Under optimized conditions, an average of one pure autotetraploid shoot could be regenerated from one treated branch, thereby indicating a relatively high efficiency rate. A total of 9 pure autotetraploid genotypes were created, and one of these was released as a new cultivar named ‘Zhuguang’ in 2015. Moreover, unexpected octoploids and hexaploids were also simultaneously created and detected. The leaves of tetraploids were thicker, broader, and darker in color than those of the original diploids, whereas the leaf sizes of octoploids were much smaller compared to that of diploids. However, stoma size increased with the occurrence of ploidy, mainly from diploid to octoploid. The well grown ploidies of jujube included diploids, triploids, and tetraploids. Anatomical observation indicated that adventitious buds/shoots emerged from the callus that formed on the cut, which was then followed by the development of connective vascular tissues between the adventitious bud and the stock plant tissue. This study demonstrates the universality of the IVIHA method that was initially developed in Chinese jujube, as well as provides a foundation for high-efficiency pure polyploid induction in sour jujube.

  13. Analysis of integrated multiple 'omics' datasets reveals the mechanisms of initiation and determination in the formation of tuberous roots in Rehmannia glutinosa.

    Science.gov (United States)

    Li, Mingjie; Yang, Yanhui; Li, Xinyu; Gu, Li; Wang, Fengji; Feng, Fajie; Tian, Yunhe; Wang, Fengqing; Wang, Xiaoran; Lin, Wenxiong; Chen, Xinjian; Zhang, Zhongyi

    2015-09-01

    All tuberous roots in Rehmannia glutinosa originate from the expansion of fibrous roots (FRs), but not all FRs can successfully transform into tuberous roots. This study identified differentially expressed genes and proteins associated with the expansion of FRs, by comparing the tuberous root at expansion stages (initiated tuberous root, ITRs) and FRs at the seedling stage (initiated FRs, IFRs). The role of miRNAs in the expansion of FRs was also explored using the sRNA transcriptome and degradome to identify miRNAs and their target genes that were differentially expressed between ITRs and FRs at the mature stage (unexpanded FRs, UFRs, which are unable to expand into ITRs). A total of 6032 genes and 450 proteins were differentially expressed between ITRs and IFRs. Integrated analyses of these data revealed several genes and proteins involved in light signalling, hormone response, and signal transduction that might participate in the induction of tuberous root formation. Several genes related to cell division and cell wall metabolism were involved in initiating the expansion of IFRs. Of 135 miRNAs differentially expressed between ITRs and UFRs, there were 27 miRNAs whose targets were specifically identified in the degradome. Analysis of target genes showed that several miRNAs specifically expressed in UFRs were involved in the degradation of key genes required for the formation of tuberous roots. As far as could be ascertained, this is the first time that the miRNAs that control the transition of FRs to tuberous roots in R. glutinosa have been identified. This comprehensive analysis of 'omics' data sheds new light on the mechanisms involved in the regulation of tuberous roots formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Tissue culture of Cecropia glaziovii Sneth (urticaceae: vegetative micropropagation and plant regeneration from callus Cultura de tecidos de Cecropia glaziovii Sneth (Urticaceae: micropropagação vegetativa e regeneração de plantas via calos

    Directory of Open Access Journals (Sweden)

    Marcos Nopper Alves

    2010-10-01

    Full Text Available Cecropia glaziovii is a tree with used in Brazilian popular medicine. Methods allowing the clonal propagation of this species are of great interest for superior genotype multiplication and perpetuation. For this reason, we examined the effect of different culture media and different types of explants on adventitious shoot regeneration from callus and buds of C. glaziovii. Leaves, petioles and stipules obtained from aseptically grown seedlings or from pre-sterilized plants were used to initiate cultures. Adventitious shoot regeneration was achieved when apical and axillary buds were inoculated on gelled Murashige & Skoog (MS medium supplemented with 6-benzylaminopurine alone (BAP (1.0, 5.0 or 10.0 mg L-1 or combined with -naphthalene acetic acid (NAA (1.0 or 2.0 mg L-1, after 40 days of culture. Best callus production was obtained after 30 days of petioles' culture on gelled MS medium with 2,4 dichlorophenoxyacetic acid (2,4-D (5.0 mg L-1 combined with BAP (1.0 mg L-1. Successful shoot regeneration from callus was achieved when MS medium supplemented with zeatin (ZEA (0.1 mg L-1 alone or combined with 2,4-D (1.0 or 5.0 mg L-1 was inoculated with friable callus obtained from petioles. All shoots were rooted by inoculation on MS medium supplemented with indole-3-acetic acid (IAA (1.0 mg L-1. Rooted plants transferred to potting soil were successfully established. All in vitro regenerated plantlets showed to be normal, without morphological variations, being also identical to the source plant. Our study has shown that C. glaziovii can be propagated by tissue culture methods, allowing large scale multiplication of superior plants for pharmacological purposes.Cecropia glaziovii é uma planta lenhosa, popularmente usada no Brasil como medicinal. Métodos que visem a sua propagação clonal podem ser de grande utilidade na preservação de seus genótipos de elite. Foram examinados efeitos de diferentes reguladores de crescimento e explantes na forma

  15. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    Science.gov (United States)

    Fusconi, Anna

    2014-01-01

    Background Arbuscular mycorrhizae (AMs) form a widespread root–fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. Scope This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Conclusions Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions. PMID:24227446

  16. Hyperplastic callus formation in osteogenesis imperfecta type V: follow-up of three generations over ten years

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Moira S.; Azouz, E.M.; Glorieux, Francis H. [Shriners Hospital for Children and McGill University, Genetics Unit, Montreal, Quebec (Canada); Rauch, Frank [Shriners Hospital for Children and McGill University, Genetics Unit, Montreal, Quebec (Canada); Shriners Hospital for Children, Genetics Unit, Montreal, Quebec (Canada)

    2008-05-15

    Hyperplastic callus (HPC) formation is a prominent feature of osteogenesis imperfecta (OI) type V; however, little is known about its long-term outcome. In this case report we describe the occurrence, appearance and course of a femoral HPC in a patient with OI type V during 10 years of follow-up. Radiographs of HPC in this child were compared and contrasted with HPC formation in the femur of his father and paternal grandfather, who also were affected with OI type V. This case report makes it clear that HPC can lead to significant morbidity, not only in the acute phase but also long term as a result of residual alteration in bone architecture. (orig.)

  17. Hyperplastic callus formation in osteogenesis imperfecta type V: follow-up of three generations over ten years

    International Nuclear Information System (INIS)

    Cheung, Moira S.; Azouz, E.M.; Glorieux, Francis H.; Rauch, Frank

    2008-01-01

    Hyperplastic callus (HPC) formation is a prominent feature of osteogenesis imperfecta (OI) type V; however, little is known about its long-term outcome. In this case report we describe the occurrence, appearance and course of a femoral HPC in a patient with OI type V during 10 years of follow-up. Radiographs of HPC in this child were compared and contrasted with HPC formation in the femur of his father and paternal grandfather, who also were affected with OI type V. This case report makes it clear that HPC can lead to significant morbidity, not only in the acute phase but also long term as a result of residual alteration in bone architecture. (orig.)

  18. Effects of hot water treatments on dormant grapevine propagation materials used for grafted vine production

    Directory of Open Access Journals (Sweden)

    Soltekin Oguzhan

    2017-01-01

    Full Text Available Agrobacterium vitis is responsible for the crown gall disease of grapevine which breaks the grapevine trunk vascular system. Nutrient flow is prevented by crown gall and it leads to weak growth and death of the plants. It can be destructive disease often encountered in vineyards and it can be spread in cuttings for propagation. Thermotherapy treatment is an alternative method for eradicating A. vitis from grapevine cuttings but effects of thermotherapy treatments on dormant vine tissue, bud vitality, rooting and shooting of the propagation materials are not yet fully understood. In this research, it is aimed to determine the effects of thermotherapy treatment (Hot water treatment on callus formation (at the basal part and grafting point, grafted vine quality (shoot length, shoot width, root number, shooting and rooting development, fresh and dry weight of shoots and roots and final take in the grafted vine production. Experiment was conducted in the nursery of Manisa Viticultural Research Institute. Rootstocks (Kober 5BB, Couderc 1613 and 41B and scions (Sultan 7 and Manisa sultanı were hot-water treated at 50°C for 30 minutes which is the most common technique against Agrobacterium vitis. After thermotherapy treatment, all rootstocks were grafted with Sultan 7 and Manisa sultanıvarieties. They were kept for 22 days in callusing room for callus development and then they were planted in polyethlyene bags for rooting. At the end of the study, significant treatment x rootstock interaction were observed for the final take of Sultan 7 variety. Thermotherapy treated of 1613C/Sultan 7 combinations had more final take than the control (untreated group. For instance, hot water treated cuttings of 1613C/Sultan 7 combinations had 75% final take while the control group had the 70%. Also there were not observed any adverse effects of HWT on bud and tissue vitality.

  19. Rooting depth varies differentially in trees and grasses as a function of mean annual rainfall in an African savanna.

    Science.gov (United States)

    Holdo, Ricardo M; Nippert, Jesse B; Mack, Michelle C

    2018-01-01

    A significant fraction of the terrestrial biosphere comprises biomes containing tree-grass mixtures. Forecasting vegetation dynamics in these environments requires a thorough understanding of how trees and grasses use and compete for key belowground resources. There is disagreement about the extent to which tree-grass vertical root separation occurs in these ecosystems, how this overlap varies across large-scale environmental gradients, and what these rooting differences imply for water resource availability and tree-grass competition and coexistence. To assess the extent of tree-grass rooting overlap and how tree and grass rooting patterns vary across resource gradients, we examined landscape-level patterns of tree and grass functional rooting depth along a mean annual precipitation (MAP) gradient extending from ~ 450 to ~ 750 mm year -1 in Kruger National Park, South Africa. We used stable isotopes from soil and stem water to make inferences about relative differences in rooting depth between these two functional groups. We found clear differences in rooting depth between grasses and trees across the MAP gradient, with grasses generally exhibiting shallower rooting profiles than trees. We also found that trees tended to become more shallow-rooted as a function of MAP, to the point that trees and grasses largely overlapped in terms of rooting depth at the wettest sites. Our results reconcile previously conflicting evidence for rooting overlap in this system, and have important implications for understanding tree-grass dynamics under altered precipitation scenarios.

  20. Calogênese em Cissus sicyoides L. a partir de segmentos foliares visando à produção de metabólitos in vitro Calluses from Cissus sicyoides L. leaves

    Directory of Open Access Journals (Sweden)

    F.R. Rodrigues

    2010-09-01

    faz-se necessário a adição de 6,0 mg L-1 de BAP ao meio de cultivo. Identificou-se a presença de heterosídeos cardiotônicos em calos de Cissus sicyoides L.Secondary metabolites are essentially produced and extracted from plants grown in the field under influence of seasonal variations. The use of biotechnological techniques is an alternative resource for drug production. Among these techniques, tissue culture through callus genesis is highlighted, since callus growth is desirable to induce somaclonal variation and physiological studies, especially when the presence of secondary metabolites can be related to cell growth. The aim of this work was to establish a protocol for Cissus sicyoides L. callus genesis from leaf segments in order to produce metabolites in vitro. Thus, leaf segments removed from adult plants grown in the field were used as explants. After disinfestation, the material was inoculated into MT medium + 1.0 mg L-1 NAA and kept in a BOD chamber, with controlled temperature and luminosity. After 30 days, the percentage of surviving explants and the percentage of contamination were evaluated. For culture, MT medium + 1.0 mg L-1 NAA was used, varying BAP concentrations: 2.0, 4.0, 6.0 and 12.0 mg L-1. In the cultivation, the number of compact and friable calluses was counted. For the first and second subculture, the material was introduced into MT medium + 1.0 mg L-1 NAA, varying the same BAP concentrations; the number of friable calluses formed and the size of callus mass were described. The number of replicates formed during subcultures, and fresh and dry matter (g were also obtained. Then, phytochemical tests were done in order to identify some compounds. The adopted time and concentration of sodium hypochlorite proved to be inefficient for disinfestation. For Cissus sicyoides L. callus genesis from leaf segments, the addition of 6.0 mg L-1 BAP to the culture medium is needed. Cardiotonic heterosides were detected in Cissus sicyoides L. calluses.

  1. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction

    Directory of Open Access Journals (Sweden)

    Schulz Burkhard

    2010-12-01

    Full Text Available Abstract Background Plant growth depends on both cell division and cell expansion. Plant hormones, including brassinosteroids (BRs, are central to the control of these two cellular processes. Despite clear evidence that BRs regulate cell elongation, their roles in cell division have remained elusive. Results Here, we report results emphasizing the importance of BRs in cell division. An Arabidopsis BR biosynthetic mutant, dwarf7-1, displayed various characteristics attributable to slower cell division rates. We found that the DWARF4 gene which encodes for an enzyme catalyzing a rate-determining step in the BR biosynthetic pathways, is highly expressed in the actively dividing callus, suggesting that BR biosynthesis is necessary for dividing cells. Furthermore, dwf7-1 showed noticeably slower rates of callus growth and shoot induction relative to wild-type control. Flow cytometric analyses of the nuclei derived from either calli or intact roots revealed that the cell division index, which was represented as the ratio of cells at the G2/M vs. G1 phases, was smaller in dwf7-1 plants. Finally, we found that the expression levels of the genes involved in cell division and shoot induction, such as PROLIFERATING CELL NUCLEAR ANTIGEN2 (PCNA2 and ENHANCER OF SHOOT REGENERATION2 (ESR2, were also lower in dwf7-1 as compared with wild type. Conclusions Taken together, results of callus induction, shoot regeneration, flow cytometry, and semi-quantitative RT-PCR analysis suggest that BRs play important roles in both cell division and cell differentiation in Arabidopsis.

  2. Search for alkaloids on callus culture of Passiflora alata

    Directory of Open Access Journals (Sweden)

    Michelli Wesz Machado

    2010-08-01

    Full Text Available Preliminary work on Passiflora alata leaves failed to detect harmane alkaloids using LC. The aim of this work was to investigate the production of harmane alkaloids through the cell culture of P. alata, inducing its precursor (L-tryptophan. The leaf explants presented satisfactory results after disinfection, and the callus formation was initiated in MS media with adequate quantities of phytohormones. Sixty days after inoculation, calli were inoculated in the optimized semi-solid MS media, with and without the addition of L-tryptophan (50, 100, 200 mg/L and kept in standard conditions for 90 days. Calli were collected on days 6, 16, 26, 36, and 90, followed by acid-base extraction, and analysed by LC. The results showed an absence of harmane, harmin, harmol, harmalol, and harmaline. With L-tryptophan feeding, two peaks were detected, collected and analysed through positive mode electrospray [ESI(+-MS] and sequential analysis in tandem ESI(+-MS/MS. The spectra obtained were very similar, with a repetition of the more intense ions, and consecutive loss of 68 Da units, attributed to the heterocycle pyrazole. It appeared that this transformation was not related to any enzymatic pathway previously described for the plant from L-tryptophan, and the biosynthesis of β-carboline alkaloids in callus culture of P. alata were not observed in this work.As folhas de varias espécies de Passiflora são utilizadas como ansioliticas e sedativas. Passiflora alata Curtis, Passifloraceae consta em três edições da farmacopéia brasileira, porem não há muitos estudos sobre sua composição química. No passado, enfatizava-se a ação conjunta de alcalóides e flavonóides. Em trabalho anterior, não foi detectada a presença de alcalóides harmanicos através de CLAE. Assim, decidiu-se investigar a produção dos mesmos através de cultivo celular, introduzindo seu precursor metabólico L-triptofano. Os explantes foliares apresentaram resultados satisfatorios

  3. Analysis of Gene expression in soybean (Glycine max roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Directory of Open Access Journals (Sweden)

    Gamal El-Din Abd El Kader Y

    2011-05-01

    Full Text Available Abstract Background Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site. Results We examined the expression of soybean (Glycine max genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered. Conclusions A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.

  4. A simple method suitable to study de novo root organogenesis

    Directory of Open Access Journals (Sweden)

    Xiaodong eChen

    2014-05-01

    Full Text Available De novo root organogenesis is the process in which adventitious roots regenerate from detached or wounded plant tissues or organs. In tissue culture, appropriate types and concentrations of plant hormones in the medium are critical for inducing adventitious roots. However, in natural conditions, regeneration from detached organs is likely to rely on endogenous hormones. To investigate the actions of endogenous hormones and the molecular mechanisms guiding de novo root organogenesis, we developed a simple method to imitate natural conditions for adventitious root formation by culturing Arabidopsis thaliana leaf explants on B5 medium without additive hormones. Here we show that the ability of the leaf explants to regenerate roots depends on the age of the leaf and on certain nutrients in the medium. Based on these observations, we provide examples of how this method can be used in different situations, and how it can be optimized. This simple method could be used to investigate the effects of various physiological and molecular changes on the regeneration of adventitious roots. It is also useful for tracing cell lineage during the regeneration process by differential interference contrast observation of -glucuronidase staining, and by live imaging of proteins labeled with fluorescent tags.

  5. Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages

    Directory of Open Access Journals (Sweden)

    Feng Leng

    2016-10-01

    Full Text Available Root restriction improved berry quality by being involved in diverse aspects of grapevine life. However, the molecular mechanism driving this process is not understood very well. In this study, the ‘Summer Black’ grape berry (Vitis vinifera × V. labrusca under root restriction was investigated, which showed an increase of total soluble solids (TSS, color index of red grapes (CIRG value, anthocyanins accumulation, total phenolics and total procyanidins contents during berry development compared with those in control berries. The transcriptomic changes induced by root restriction in ‘Summer Black’ grape over the course of berry development were analyzed by RNA-Seq method. A total of 29,971 genes were generated in ‘Summer Black’ grape berry during development, among which, 1606 genes were significantly responded to root restriction. Furthermore, 1264, 313, 141, 246 and 19 sequences were significantly changed at S1, S2, S3, S4 and S5 sample points, respectively. The gene (VIT_04s0023g02290 predicted as a salicylate O-methyltransferase was differentially expressed in all developmental stages. Gene Ontology (GO enrichment showed that response to organic nitrogen, response to endogenous stimulus, flavonoid metabolic process, phenylpropanoid biosynthetic process and cell wall macromolecule metabolic process were the main significant differential categories. Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment revealed plant–pathogen interaction, plant hormone signal transduction, flavone and flavonol biosynthesis, flavonoid biosynthesis and glucosinolate biosynthesis were the main significant differential pathways. The results of the present study provided a genetic base for the understanding of grape berry fruit quality improvement under root restriction.

  6. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera)

    OpenAIRE

    Kumar Ramesh R.; Reddy Anjaneya Prasanna L.; Subbaiah Chinna J.; Kumar Niranjana A.; Prasad Nagendra H.N.; Bhukya Balakishan

    2011-01-01

    Ashwagandha (Withania somnifera) is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes) and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant) and crude fiber content exhibited strong association among them and ...

  7. Pharmacognostic Study of Argyreia pilosa Wight & Arn. Root

    Directory of Open Access Journals (Sweden)

    prasanth DSNBK

    2017-12-01

    Full Text Available Background: Ethnomedicinally, the plant Argyreia pilosa Wight & Arn. (Convolvulaceae has long been utilized in various disorders in the conventional system; most significantly it is utilized against sexually transmitted diseases, skin troubles, diabetes, rheumatism, cough, and quinsy. The key challenge experienced in the standardization of herbal drugs is the lack of proper identification of plant source. Therefore there is certainly have to establish quality control parameters by utilizing pharmacognostic and phytochemical evaluation, that ensure the purity, safety, and efficacy of medicinal plant A. pilosa. Aim: To assess pharmacognostic characteristics which include macroscopic, microscopic and physicochemical parameters of the root of A. pilosa. Methods: Micro and Macroscopic characters of fresh and dried root samples were investigated. Physicochemical parameters had been done by using WHO recommended parameters, preliminary phytochemical and fluorescent analysis of root sample were carried out for proper identification and standardization of root of A. pilosa. Results: The color, shape, size, odor, and surface characteristics were noted from the root and powdered root material of A. pilosa. Light electron microscope i.e., Olympus CX-21i trinocular Microscope images of cross section of root and powdered root revealed that the presence of cork cells, Xylem fibers with tapered ends, lignified xylem vessels, phloem fibers, medullary rays, sclerides and parenchymatous cells. Phytochemical screening showed the presence of flavonoids, alkaloids, tannins, phenols, steroids, acid compounds, glycosides, amino acids, and proteins. Physicochemical parameters such as moisture content, ash value, extractive value and fluorescent behavior of root powder were determined. These parameters are helpful to differentiate the powdered drug material. Conclusion: The current research is useful in order to supplement the information with regard to its

  8. A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays

    Science.gov (United States)

    Moore, R.; Fondren, W. M.

    1988-01-01

    Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.

  9. The involvement of glucose-6-phosphatase in mucilage secretion by root cap cells of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1985-01-01

    In order to determine the involvement of glucose-6-phosphatase in mucilage secretion by root cap cells, we have cytochemically localized the enzyme in columella and peripheral cells of root caps of Zea mays. Glucose-6-phosphatase is associated with the plasmalemma and cell wall of columella cells. As columella cells differentiate into peripheral cells and begin to produce and secrete mucilage, glucose-6-phosphatase staining intensifies and becomes associated with the mucilage and, to a lesser extent, the cell wall. Cells being sloughed from the cap are characterized by glucose-6-phosphatase staining being associated with the vacuole and plasmalemma. These changes in enzyme localization during cellular differentiation in root caps suggest that glucose-6-phosphatase is involved in the production and/or secretion of mucilage by peripheral cells of Z. mays.

  10. Expressed proteins of Herbaspirillum seropedicae in maize (DKB240) roots-bacteria interaction revealed using proteomics.

    Science.gov (United States)

    Ferrari, Cibele Santos; Amaral, Fernanda Plucani; Bueno, Jessica Cavalheiro Ferreira; Scariot, Mirella Christine; Valentim-Neto, Pedro Alexandre; Arisi, Ana Carolina Maisonnave

    2014-11-01

    Several molecular tools have been used to clarify the basis of plant-bacteria interaction; however, the mechanism behind the association is still unclear. In this study, we used a proteomic approach to investigate the root proteome of Zea mays (cv. DKB240) inoculated with Herbaspirillum seropedicae strain SmR1 grown in vitro and harvested 7 days after inoculation. Eighteen differentially accumulated proteins were observed in root samples, ten of which were identified by MALDI-TOF mass spectrometry peptide mass fingerprint. Among the identified proteins, we observed three proteins present exclusively in inoculated root samples and six upregulated proteins and one downregulated protein relative to control. Differentially expressed maize proteins were identified as hypothetical protein ZEAMMB73_483204, hypothetical protein ZEAMMB73_269466, and tubulin beta-7 chain. The following were identified as H. seropedicae proteins: peroxiredoxin protein, EF-Tu elongation factor protein, cation transport ATPase, NADPH:quinone oxidoreductase, dinitrogenase reductase, and type III secretion ATP synthase. Our results presented the first evidence of type III secretion ATP synthase expression during H. seropedicae-maize root interaction.

  11. Relationship between endogenous hormonal content and somatic organogenesis in callus of peach (Prunus persica L. Batsch) cultivars and Prunus persica×Prunus dulcis rootstocks.

    Science.gov (United States)

    Pérez-Jiménez, Margarita; Cantero-Navarro, Elena; Pérez-Alfocea, Francisco; Le-Disquet, Isabel; Guivarc'h, Anne; Cos-Terrer, José

    2014-05-01

    The relationship between endogenous hormones content and the induction of somatic peach plant was studied. To induce multiple shoots from callus derived from the base of stem explants of the scion cultivars 'UFO-3', 'Flariba' and 'Alice Bigi', and the peach×almond rootstocks 'Garnem' and 'GF677', propagated plants were cultured on Murashige and Skoog salts augmented with 0.1mgL(-1) of indolebutyric acid, 1mgL(-1) of 6-benzylaminopurine and 3% sucrose. The highest regeneration rate was obtained with the peach×almond rootstocks. Endogenous levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin (Z), zeatin riboside (ZR), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), and jasmonic acid (JA) were analyzed in the organogenic callus. Lower levels of several hormones, namely Z, ZR, ABA, and ACC were found in the peach×almond rootstock compared to peach cultivars, while IAA and SA presented inconclusive returns. These results suggest that the difference in somatic organogenesis capacity observed in peach and peach×almond hybrids is markedly affected by the endogenous hormonal content of the studied genotypes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Root rots

    Science.gov (United States)

    Kathryn Robbins; Philip M. Wargo

    1989-01-01

    Root rots of central hardwoods are diseases caused by fungi that infect and decay woody roots and sometimes also invade the butt portion of the tree. By killing and decaying roots, root rotting fungi reduce growth, decrease tree vigor, and cause windthrow and death. The most common root diseases of central hardwoods are Armillaria root rot, lnonotus root rot, and...

  13. Development during indirect organogenesis in Eucalyptus grandis x ...

    African Journals Online (AJOL)

    BQWUPC1

    isolation or from a region of the stem immediately above the callus. Roots developed ... In this study, the same clone (Eucalyptus grandis urophylla hybrid) was used and .... strands and they linked these with shoot formation, whilst. Arvore et al.

  14. Aspectos anatómicos y fisiológicos de cultivos in vltro de Tropaeolum tuberosum (Ruiz & Pavón

    Directory of Open Access Journals (Sweden)

    Orlando Torres Fernández

    1989-01-01

    Full Text Available Petiole explants of T. tuberosum were cultivated in Murashíge & Skoog medium suplemented with auxins and cítokíníns. Callus formation and abnormal morphogenesís obtained from subcuItures are described. Shoots obtained by micropropagation were incubated at 18°e and 22°e in medium MS for rooting. Notorius differences in root morphology were observed.

  15. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    Science.gov (United States)

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-01-01

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. PMID:26295391

  16. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.

    Science.gov (United States)

    Song, Li; Prince, Silvas; Valliyodan, Babu; Joshi, Trupti; Maldonado dos Santos, Joao V; Wang, Jiaojiao; Lin, Li; Wan, Jinrong; Wang, Yongqin; Xu, Dong; Nguyen, Henry T

    2016-01-15

    Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with

  17. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots.

    Science.gov (United States)

    Xun, Hongwei; Ma, Xintong; Chen, Jing; Yang, Zhongzhou; Liu, Bao; Gao, Xiang; Li, Guo; Yu, Jiamiao; Wang, Li; Pang, Jinsong

    2017-10-01

    The potential impacts of environmentally accumulated zinc oxide nanoparticles (nZnOs) on plant growth have not been well studied. A transcriptome profile analysis of maize exposed to nZnOs showed that the genes in the shoots and roots responded differently. Although the number of differentially expressed genes (DEGs) in the roots was greater than that in the shoots, the number of up- or down-regulated genes in both the shoots and roots was similar. The enrichment of gene ontology (GO) terms was also significantly different in the shoots and roots. The "nitrogen compound metabolism" and "cellular component" terms were specifically and highly up-regulated in the nZnO-exposed roots, whereas the categories "cellular metabolic process", "primary metabolic process" and "secondary metabolic process" were down-regulated in the exposed roots only. Our results revealed the DEG response patterns in maize shoots and roots after nZnO exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings.

    Science.gov (United States)

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca(2+)]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca(2+)] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development.

  19. Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa

    Directory of Open Access Journals (Sweden)

    Peng eSun

    2015-06-01

    Full Text Available Rehmannia glutinosa, a herb of the Scrophulariaceae family, is widely cultivated in the Northern part of China. The tuberous root has well known medicinal properties; however, yield and quality are threatened by abiotic and biotic stresses. Understanding the molecular process of tuberous root development may help identify novel targets for its control. In the present study, we used Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome that is relevant to tuberous root development. We then conducted RNA-seq quantification analysis to determine gene expression profiles of the adventitious root (AR, thickening adventitious root (TAR, and the developing tuberous root (DTR. Expression profiling identified a total of 6,974 differentially expressed unigenes during root developmental. Bioinformatics analysis and gene expression profiling revealed changes in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone biosynthesis during root development. Moreover, we identified and allocated putative functions to the genes involved in tuberous root development, including genes related to major carbohydrate metabolism, hormone metabolism, and transcription regulation. The present study provides the initial description of gene expression profiles of AR, TAR, and DTR, which facilitates identification of genes of interest. Moreover, our work provides insights into the molecular mechanisms underlying tuberous root development and may assist in the design and development of improved breeding schemes for different R. glutinosa varieties through genetic manipulation.

  20. Isozyme modifications and plant regeneration through somatic embryogenesis in sweet potato (Ipomoea batatas (L.) Lam.).

    Science.gov (United States)

    Cavalcante Alves, J M; Sihachakr, D; Allot, M; Tizroutine, S; Mussio, I; Servaes, A; Ducreux, G

    1994-05-01

    The potential of somatic embryogenesis was evaluated for 10 cultivars of sweet potato through extensive embryogenic response and isozyme analysis. Embryogenic callus was induced by incubating lateral buds on Murashige and Skoog medium containing 10 μM 2,4-dichlorophenoxyacetic acid for 6-8 weeks. The frequency of embryogenic response was low, and varied with genotypes, ranging from 0 to 17%. Embryo to plantlet formation could be enhanced by the use of the combination of 2,4-dichlorophenoxyacetic acid with kinetin, both used at 0.01 μM. Embryogenic callus with its potential of plantlet formation has constantly been maintained for over two years. However, after several subcultures, 0.5 to 12% of embryogenic callus reverted irreversibly into friable fast-growing non-embryogenic callus whose ability to regenerate shoots was then definitively lost. The isozymes of esterase, peroxidase, glutamate oxaloacetate transaminase and acid phosphatase investigated in this study were found appropriate to distinguish compact embryogenic from friable non-embryogenic callus in sweet potato. In fact, the callus reversion was associated with a loss of bands or a decline in isozyme activity. On the contrary, very small changes in isozyme activity or no specific changes at all were observed during the differentiation of embryogenic callus into globular embryos.