WorldWideScience

Sample records for rodent obesity models

  1. Genetic Rodent Models of Obesity-Associated Ovarian Dysfunction and Subfertility: Insights into Polycystic Ovary Syndrome

    Science.gov (United States)

    Huang-Doran, Isabel; Franks, Stephen

    2016-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting women and a leading cause of female infertility worldwide. Defined clinically by the presence of hyperandrogenemia and oligomenorrhoea, PCOS represents a state of hormonal dysregulation, disrupted ovarian follicle dynamics, and subsequent oligo- or anovulation. The syndrome’s prevalence is attributed, at least partly, to a well-established association with obesity and insulin resistance (IR). Indeed, the presence of severe PCOS in human genetic obesity and IR syndromes supports a causal role for IR in the pathogenesis of PCOS. However, the molecular mechanisms underlying this causality, as well as the important role of hyperandrogenemia, remain poorly elucidated. As such, treatment of PCOS is necessarily empirical, focusing on symptom alleviation. The generation of knockout and transgenic rodent models of obesity and IR offers a promising platform in which to address mechanistic questions about reproductive dysfunction in the context of metabolic disease. Similarly, the impact of primary perturbations in rodent gonadotrophin or androgen signaling has been interrogated. However, the insights gained from such models have been limited by the relatively poor fidelity of rodent models to human PCOS. In this mini review, we evaluate the ovarian phenotypes associated with rodent models of obesity and IR, including the extent of endocrine disturbance, ovarian dysmorphology, and subfertility. We compare them to both human PCOS and other animal models of the syndrome (genetic and hormonal), explore reasons for their discordance, and consider the new opportunities that are emerging to better understand and treat this important condition. PMID:27375552

  2. Rodent Models for Metabolic Syndrome Research

    Directory of Open Access Journals (Sweden)

    Sunil K. Panchal

    2011-01-01

    Full Text Available Rodents are widely used to mimic human diseases to improve understanding of the causes and progression of disease symptoms and to test potential therapeutic interventions. Chronic diseases such as obesity, diabetes and hypertension, together known as the metabolic syndrome, are causing increasing morbidity and mortality. To control these diseases, research in rodent models that closely mimic the changes in humans is essential. This review will examine the adequacy of the many rodent models of metabolic syndrome to mimic the causes and progression of the disease in humans. The primary criterion will be whether a rodent model initiates all of the signs, especially obesity, diabetes, hypertension and dysfunction of the heart, blood vessels, liver and kidney, primarily by diet since these are the diet-induced signs in humans with metabolic syndrome. We conclude that the model that comes closest to fulfilling this criterion is the high carbohydrate, high fat-fed male rodent.

  3. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis.

    Science.gov (United States)

    Jiao, Na; Baker, Susan S; Nugent, Colleen A; Tsompana, Maria; Cai, Liting; Wang, Yong; Buck, Michael J; Genco, Robert J; Baker, Robert D; Zhu, Ruixin; Zhu, Lixin

    2018-04-01

    A number of studies have associated obesity with altered gut microbiota, although results are discordant regarding compositional changes in the gut microbiota of obese animals. Herein we used a meta-analysis to obtain an unbiased evaluation of structural and functional changes of the gut microbiota in diet-induced obese rodents. The raw sequencing data of nine studies generated from high-fat diet (HFD)-induced obese rodent models were processed with QIIME to obtain gut microbiota compositions. Biological functions were predicted and annotated with KEGG pathways with PICRUSt. No significant difference was observed for alpha diversity and Bacteroidetes-to-Firmicutes ratio between obese and lean rodents. Bacteroidia, Clostridia, Bacilli, and Erysipelotrichi were dominant classes, but gut microbiota compositions varied among studies. Meta-analysis of the nine microbiome data sets identified 15 differential taxa and 57 differential pathways between obese and lean rodents. In obese rodents, increased abundance was observed for Dorea, Oscillospira, and Ruminococcus, known for fermenting polysaccharide into short chain fatty acids (SCFAs). Decreased Turicibacter and increased Lactococcus are consistent with elevated inflammation in the obese status. Differential functional pathways of the gut microbiome in obese rodents included enriched pyruvate metabolism, butanoate metabolism, propanoate metabolism, pentose phosphate pathway, fatty acid biosynthesis, and glycerolipid metabolism pathways. These pathways converge in the function of carbohydrate metabolism, SCFA metabolism, and biosynthesis of lipid. HFD-induced obesity results in structural and functional dysbiosis of gut microbiota. The altered gut microbiome may contribute to obesity development by promoting insulin resistance and systemic inflammation.

  4. Cardiometabolic and reproductive benefits of early dietary energy restriction and voluntary exercise in an obese PCOS-prone rodent model.

    Science.gov (United States)

    Diane, Abdoulaye; Kupreeva, Maria; Borthwick, Faye; Proctor, Spencer D; Pierce, W David; Vine, Donna F

    2015-09-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine-metabolic disorders in women of reproductive age characterized by ovulatory dysfunction, hyperandrogenism and cardiometabolic risk. The overweight-obese PCOS phenotype appears to have exacerbated reproductive dysfunction and cardiometabolic risk. In overweight-obese adult women with PCOS, exercise and energy restricted diets have shown limited and inconsistent effects on both cardiometabolic indices and reproductive outcomes. We hypothesized that an early lifestyle intervention involving exercise and dietary energy restriction to prevent or reduce the propensity for adiposity would modulate reproductive indices and cardiometabolic risk in an obese PCOS-prone rodent model. Weanling obese PCOS-prone and Lean-Control JCR:LA-cp rodents were given a chow diet ad libitum or an energy-restricted diet combined with or without voluntary exercise (4  h/day) for 8 weeks. Dietary energy restriction and exercise lowered total body weight gain and body fat mass by 30% compared to free-fed sedentary or exercising obese PCOS-prone animals (Pexercise intensity compared to free-feeding plus exercise conditions. Energy restriction and exercise decreased fasting plasma triglycerides and apoB48 concentrations in obese PCOS-prone animals compared to free-fed and exercise or sedentary groups. The energy restriction and exercise combination in obese PCOS-prone animals significantly increased plasma sex-hormone binding globulin, hypothalamic cocaine-and amphetamine-regulated transcript (CART) and Kisspeptin mRNA expression to levels of the Lean-Control group, and this was further associated with improvements in estrous cyclicity. The combination of exercise and dietary energy restriction when initiated in early life exerts beneficial effects on cardiometabolic and reproductive indices in an obese PCOS-prone rodent model, and this may be associated with normalization of the hypothalamic neuropeptides, Kisspeptin and CART

  5. Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity

    NARCIS (Netherlands)

    Hendricks, Audrey E.; Bochukova, Elena G.; Marenne, Gaëlle; Keogh, Julia M.; Atanassova, Neli; Bounds, Rebecca; Wheeler, Eleanor; Mistry, Vanisha; Henning, Elana; Körner, Antje; Muddyman, Dawn; McCarthy, Shane; Hinney, Anke; Hebebrand, Johannes; Scott, Robert A.; Langenberg, Claudia; Wareham, Nick J.; Surendran, Praveen; Howson, Joanna M M; Butterworth, Adam S.; Danesh, John; Nordestgaard, Børge G.; Nielsen, Sune F.; Afzal, Shoaib; Papadia, Sofia; Ashford, Sofie; Garg, Sumedha; Millhauser, Glenn L.; Palomino, Rafael I.; Kwasniewska, Alexandra; Tachmazidou, Ioanna; O'Rahilly, Stephen; Zeggini, Eleftheria; Barroso, Inês; Farooqi, I. Sadaf; Benzeval, Michaela; Burton, Jonathan; Buck, Nicholas; Jäckle, Annette; Kumari, Meena; Laurie, Heather; Lynn, Peter; Pudney, Stephen; Rabe, Birgitta; Wolke, Dieter; Overvad, Kim; Tjønneland, Anne; Clavel-Chapelon, Francoise; Kaaks, Rudolf; Boeing, Heiner; Trichopoulou, Antonia; Ferrari, Pietro; Palli, Domenico; Krogha, Vittorio; Panico, Salvatore; Tuminoa, Rosario; Matullo, Giuseppe; Boer, Jolanda Ma; Van Der Schouw, Yvonne; Weiderpass, Elisabete; Quiros, J. Ramon; Sánchez, María José; Navarro, Carmen; Moreno-Iribas, Conchi; Arriola, Larraitz; Melander, Olle; Wennberg, Patrik; Key, Timothy J.; Riboli, Elio; Al-Turki, Saeed; Anderson, Carl A; Anney, Richard; Antony, Dinu; Soler Artigas, María; Ayub, Muhammad; Bala, Senduran; Barrett, Jeffrey C; Beales, Phil; Bentham, Jamie; Bhattacharyaa, Shoumo; Birney, Ewan; Blackwooda, Douglas; Bobrow, Martin; Bolton, Patrick F.; Boustred, Chris; Breen, Gerome; Calissanoa, Mattia; Carss, Keren; Charlton, Ruth; Chatterjee, Krishna; Chen, Lu; Ciampia, Antonio; Cirak, Sebahattin; Clapham, Peter; Clement, Gail; Coates, Guy; Coccaa, Massimiliano; Collier, David A; Cosgrove, Catherine; Coxa, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Curtis, David; Daly, Allan; Danecek, Petr; Day, Ian N M; Day-Williams, Aaron G; Dominiczak, Anna; Down, Thomas; Du, Yuanping; Dunham, Ian; Durbin, Richard; Edkins, Sarah; Ekong, Rosemary; Ellis, Peter; Evansa, David M.; FitzPatrick, David R.; Flicek, Paul; Floyd, James S.; Foley, A. Reghan; Franklin, Christopher S.; Futema, Marta; Gallagher, Louise; Gaunt, Tom R.; Geihs, Matthias; Geschwind, Daniel H.; Greenwood, Celia M.T.; Griffin, Heather; Grozeva, Detelina; Guo, Xiaosen; Guo, Xueqin; Gurling, Hugh; Hart, Deborah J.; Holmans, Peter A; Howie, Bryan; Huang, Jie; Huang, Liren; Hubbard, Tim; Humphries, Steve E.; Hurles, Matthew E.; Hysi, Pirro G.; Iotchkova, Valentina; Jackson, David K.; Jamshidi, Yalda; Joyce, Chris; Karczewski, Konrad J.; Kaye, Jane; Keane, Thomas; Kemp, John P.; Kennedy, Karen; Kent, Alastair; Khawaja, Farrah; Van Kogelenberg, Margriet; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lawson, Daniel; Lee, Irene; Lek, Monkol; Li, Rui; Li, Yingrui; Liang, Jieqin; Lin, Hong; Liu, Ryan; Lönnqvist, Jouko; Lopes, Luis R.; Lopes, Margarida; MacArthur, Daniel G.; Mangino, Massimo; Marchini, Jonathan; Maslen, John; Mathieson, Iain; McGuffin, Peter; McIntosh, Andrew M.; McKechanie, Andrew G.; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Migone, Nicola; Min, Josine L.; Mitchison, Hannah M; Moayyeri, Alireza; Morris, Andrew D.; Morris, James; Muntoni, Francesco; Northstone, Kate; O'Donovan, Michael C.; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael J; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy R.; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Payne, Stewart J.; Perry, John R. B.; Pietilainen, Olli; Plagnol, Vincent; Pollitt, Rebecca C.; Porteous, David J.; Povey, Sue; Quail, Michael A.; Quaye, Lydia; Raymond, F. Lucy; Rehnström, Karola; Richards, J Brent; Ridout, Cheryl K.; Ring, Susan M.; Ritchie, Graham R.S.; Roberts, Nicola; Robinson, Rachel L.; Savage, David B.; Scambler, Peter; Schiffels, Stephan; Schmidts, Miriam; Schoenmakers, Nadia; Scott, Richard H.; Semple, Robert K.; Serra, Eva; Sharp, Sally I.; Shaw, Adam; Shihab, Hashem A.; Shin, So Youn; Skuse, David; Small, Kerrin S; Smee, Carol; Smith, Blair H.; Davey Smith, George; Soranzo, Nicole; Southam, Lorraine; Spasic-Boskovic, Olivera; Spector, Timothy D; St Clair, David; St Pourcain, Beate; Stalker, Jim; Stevens, Elizabeth; Sun, Jianping; Surdulescu, Gabriela L; Suvisaari, Jaana; Syrris, Petros; Taylor, Rohan; Tian, Jing; Timpson, Nicholas J.; Tobin, Martin D; Valdes, Ana M.; Vandersteen, Anthony M.; Vijayarangakannan, Parthiban; Visscher, Peter M.; Wain, Louise V.; Walter, Klaudia; Walters, James T.R.; Wang, Guangbiao; Wang, Jun; Wang, Nai-Yu; Ward, Kirsten; Whyte, Tamieka; Williams, Hywel J.; Williamson, Kathleen A.; Wilson, Crispian; Wilson, Scott G.; Wong, Kim; Xu, Changjiang; Yang, Jian; Zhang, Feng; Zhang, Pingbo; Zheng, Hou Feng

    2017-01-01

    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS,

  6. Rare variant analysis of human and rodent obesity genes in individuals with severe childhood obesity

    DEFF Research Database (Denmark)

    Hendricks, Audrey E.; Bochukova, Elena G.; Marenne, Gaëlle

    2017-01-01

    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GN...

  7. STRESS INDUCED OBESITY: LESSONS FROM RODENT MODELS OF STRESS

    Directory of Open Access Journals (Sweden)

    Zachary Robert Patterson

    2013-07-01

    Full Text Available Stress is defined as the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA axis. When an organism encounters a stressor (social, physical, etc., these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and loose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the elements that influence the metabolic outcome in order to further our understanding of stress

  8. Obesidade induzida por consumo de dieta: modelo em roedores para o estudo dos distúrbios relacionados com a obesidade Diet-induced obesity: rodent model for the study of obesity-related disorders

    Directory of Open Access Journals (Sweden)

    Tiago Campos Rosini

    2012-06-01

    mostly to genetic mutations, but this model is far from that found in humans. The use of hypercaloric or hyperlipidemic diets has been used as a model of obesity induction in animals, because of its similarity to the genesis and metabolic responses caused by obesity in humans. The objective of this review is to show the different types of diets used to induce obesity in rodents, the induced metabolic alterations, and to identify some points that should be taken into account so that the model can be effective for the study of obesity-related complications. A search was performed in the PubMed database using the following keywords: 1- "hypercaloric diet" AND "rodent", 2- "hyperlipidic diet" AND "rodent", selecting those considered the most relevant according to the following criteria: date of publication (1995-2011; the use of wild-type animals; detailed description of the diet used and analysis of biochemical and vascular parameters of interest. References were included to introduce subjects such as the increased prevalence of obesity and questions related to the genesis of obesity in humans. The model of diet-induced obesity in rodents can be considered effective when the objective is the study of the physiopathology of metabolic and vascular complications associated with obesity.

  9. Intentional weight loss reduces mortality rate in a rodent model of dietary obesity.

    Science.gov (United States)

    Vasselli, Joseph R; Weindruch, Richard; Heymsfield, Steven B; Pi-Sunyer, F Xavier; Boozer, Carol N; Yi, Nengjun; Wang, Chenxi; Pietrobelli, Angelo; Allison, David B

    2005-04-01

    We used a rodent model of dietary obesity to evaluate effects of caloric restriction-induced weight loss on mortality rate. Research Measures and Procedures: In a randomized parallel-groups design, 312 outbred Sprague-Dawley rats (one-half males) were assigned at age 10 weeks to one of three diets: low fat (LF; 18.7% calories as fat) with caloric intake adjusted to maintain body weight 10% below that for ad libitum (AL)-fed rat food, high fat (HF; 45% calories as fat) fed at the same level, or HF fed AL. At age 46 weeks, the lightest one-third of the AL group was discarded to ensure a more obese group; the remaining animals were randomly assigned to one of three diets: HF-AL, HF with energy restricted to produce body weights of animals restricted on the HF diet throughout life, or LF with energy restricted to produce the body weights of animals restricted on the LF diet throughout life. Life span, body weight, and leptin levels were measured. Animals restricted throughout life lived the longest (p < 0.001). Life span was not different among animals that had been obese and then lost weight and animals that had been nonobese throughout life (p = 0.18). Animals that were obese and lost weight lived substantially longer than animals that remained obese throughout life (p = 0.002). Diet composition had no effect on life span (p = 0.52). Weight loss after the onset of obesity during adulthood leads to a substantial increase in longevity in rats.

  10. Exercise, Obesity, and Cutaneous Wound Healing: Evidence from Rodent and Human Studies.

    Science.gov (United States)

    Pence, Brandt D; Woods, Jeffrey A

    2014-01-01

    Significance: Impaired cutaneous wound healing is a major health concern. Obesity has been shown in a number of studies to impair wound healing, and chronic nonhealing wounds in obesity and diabetes are a major cause of limb amputations in the United States. Recent Advances: Recent evidence indicates that aberrant wound site inflammation may be an underlying cause for delayed healing. Obesity, diabetes, and other conditions such as stress and aging can result in a chronic low-level inflammatory state, thereby potentially affecting wound healing negatively. Critical Issues: Interventions which can speed the healing rate in individuals with slowly healing or nonhealing wounds are of critical importance. Recently, physical exercise training has been shown to speed healing in both aged and obese mice and in older adults. Exercise is a relatively low-cost intervention strategy which may be able to be used clinically to prevent or treat impairments in the wound-healing process. Future Directions: Little is known about the mechanisms by which exercise speeds healing. Future translational studies should address potential mechanisms for these exercise effects. Additionally, clinical studies in obese humans are necessary to determine if findings in obese rodent models translate to the human population.

  11. Preclinical models for obesity research

    Directory of Open Access Journals (Sweden)

    Perry Barrett

    2016-11-01

    Full Text Available A multi-dimensional strategy to tackle the global obesity epidemic requires an in-depth understanding of the mechanisms that underlie this complex condition. Much of the current mechanistic knowledge has arisen from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. These experimental models mimic certain aspects of the human condition and its root causes, particularly the over-consumption of calories and unbalanced diets. As with human obesity, obesity in rodents is the result of complex gene–environment interactions. Here, we review the traditional monogenic models of obesity, their contemporary optogenetic and chemogenetic successors, and the use of dietary manipulations and meal-feeding regimes to recapitulate the complexity of human obesity. We critically appraise the strengths and weaknesses of these different models to explore the underlying mechanisms, including the neural circuits that drive behaviours such as appetite control. We also discuss the use of these models for testing and screening anti-obesity drugs, beneficial bio-actives, and nutritional strategies, with the goal of ultimately translating these findings for the treatment of human obesity.

  12. Subcutaneous oxyntomodulin analogue administration reduces body weight in lean and obese rodents.

    Science.gov (United States)

    Liu, Y-L; Ford, H E; Druce, M R; Minnion, J S; Field, B C T; Shillito, J C; Baxter, J; Murphy, K G; Ghatei, M A; Bloom, S R

    2010-12-01

    To determine the efficacy of a long-acting oxyntomodulin (OXM) analogue, OXM6421, in inhibiting food intake and decreasing body weight in lean and diet-induced obese (DIO) rodents. The glucagon-like peptide-1 (GLP-1) receptor binding affinity and efficacy, sensitivity to enzymatic degradation in vitro and persistence in the circulation after peripheral administration were investigated for OXM6421 and compared with native OXM. The chronic effect of OXM6421 on food intake, body weight and energy expenditure was examined in lean rats, and its anti-obesity potential was evaluated in DIO mice. OXM6421 showed enhanced GLP-1 receptor binding affinity and cyclic adenosine monophosphate (cAMP) stimulation, and higher resistance to enzymatic degradation by dipeptidyl peptidase IV (DPP-IV) and neutral endopeptidase (NEP) compared with native OXM. OXM6421 persisted longer in the circulation than OXM after peripheral administration. Acute administration of OXM6421 potently inhibited food intake in lean rodents, with cumulative effects lasting up to 24 h. In lean rats, daily subcutaneous (s.c.) administration of OXM6421 caused greater weight loss than the pair-fed animals, and a higher rate of oxygen consumption than both the pair-fed and the saline controls. In DIO mice, continuous s.c. infusion of OXM6421 resulted in a significant weight loss, accompanied by an improvement in glucose homeostasis and an increase in circulating adiponectin levels. Once-daily s.c. administration of OXM6421 for 21 days caused sustained weight loss in DIO mice. OXM6421 induces negative energy balance in both lean and obese rodents, suggesting that long-acting OXM analogues may represent a potential therapy for obesity.

  13. New Insights from Rodent Models of Fatty Liver Disease

    Science.gov (United States)

    2011-01-01

    Abstract Rodent models of fatty liver disease are essential research tools that provide a window into disease pathogenesis and a testing ground for prevention and treatment. Models come in many varieties involving dietary and genetic manipulations, and sometimes both. High-energy diets that induce obesity do not uniformly cause fatty liver disease; this has prompted close scrutiny of specific macronutrients and nutrient combinations to determine which have the greatest potential for hepatotoxicity. At the same time, diets that do not cause obesity or the metabolic syndrome but do cause severe steatohepatitis have been exploited to study factors important to progressive liver injury, including cell death, oxidative stress, and immune activation. Rodents with a genetic predisposition to overeating offer yet another model in which to explore the evolution of fatty liver disease. In some animals that overeat, steatohepatitis can develop even without resorting to a high-energy diet. Importantly, these models and others have been used to document that aerobic exercise can prevent or reduce fatty liver disease. This review focuses primarily on lessons learned about steatohepatitis from manipulations of diet and eating behavior. Numerous additional insights about hepatic lipid metabolism, which have been gained from genetically engineered mice, are also mentioned. Antioxid. Redox Signal. 15, 535–550. PMID:21126212

  14. Circulating Irisin Levels Are Not Regulated by Nutritional Status, Obesity, or Leptin Levels in Rodents.

    Science.gov (United States)

    Quiñones, Mar; Folgueira, Cintia; Sánchez-Rebordelo, Estrella; Al-Massadi, Omar

    2015-01-01

    Irisin is a cleaved and secreted fragment of fibronectin type III domain containing 5 (FNDC5) that is mainly released by skeletal muscle and was proposed to mediate the beneficial effects of exercise on metabolism. In the present study we aim to investigate the regulation of the circulating levels of irisin in obese animal models (diet-induced obese (DIO) rats and leptin-deficient (ob/ob) mice), as well as the influence of nutritional status and leptin. Irisin levels were measured by Enzyme-Linked Immunosorbent Assay (ELISA) and Radioimmunoassay (RIA). Serum irisin levels remained unaltered in DIO rats and ob/ob mice. Moreover, its circulating levels were also unaffected by fasting, leptin deficiency, and exogenous leptin administration in rodents. In spite of these negative results we find a negative correlation between irisin and insulin in DIO animals and a positive correlation between irisin and glucose under short-term changes in nutritional status. Our findings indicate that serum irisin levels are not modulated by different physiological settings associated to alterations in energy homeostasis. These results suggest that in rodents circulating levels of irisin are not involved in the pathophysiology of obesity and could be unrelated to metabolic status; however, further studies should clarify its precise role in states of glucose homeostasis imbalance.

  15. Circulating Irisin Levels Are Not Regulated by Nutritional Status, Obesity, or Leptin Levels in Rodents

    Directory of Open Access Journals (Sweden)

    Mar Quiñones

    2015-01-01

    Full Text Available Irisin is a cleaved and secreted fragment of fibronectin type III domain containing 5 (FNDC5 that is mainly released by skeletal muscle and was proposed to mediate the beneficial effects of exercise on metabolism. In the present study we aim to investigate the regulation of the circulating levels of irisin in obese animal models (diet-induced obese (DIO rats and leptin-deficient (ob/ob mice, as well as the influence of nutritional status and leptin. Irisin levels were measured by Enzyme-Linked Immunosorbent Assay (ELISA and Radioimmunoassay (RIA. Serum irisin levels remained unaltered in DIO rats and ob/ob mice. Moreover, its circulating levels were also unaffected by fasting, leptin deficiency, and exogenous leptin administration in rodents. In spite of these negative results we find a negative correlation between irisin and insulin in DIO animals and a positive correlation between irisin and glucose under short-term changes in nutritional status. Our findings indicate that serum irisin levels are not modulated by different physiological settings associated to alterations in energy homeostasis. These results suggest that in rodents circulating levels of irisin are not involved in the pathophysiology of obesity and could be unrelated to metabolic status; however, further studies should clarify its precise role in states of glucose homeostasis imbalance.

  16. Diet-induced obesity exacerbates metabolic and behavioral effects of polycystic ovary syndrome in a rodent model.

    Science.gov (United States)

    Ressler, Ilana B; Grayson, Bernadette E; Ulrich-Lai, Yvonne M; Seeley, Randy J

    2015-06-15

    Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting women of reproductive age. Although a comorbidity of PCOS is obesity, many are lean. We hypothesized that increased saturated fat consumption and obesity would exacerbate metabolic and stress indices in a rodent model of PCOS. Female rats were implanted with the nonaromatizable androgen dihydrotestosterone (DHT) or placebo pellets prior to puberty. Half of each group was maintained ad libitum on either a high-fat diet (HFD; 40% butter fat calories) or nutrient-matched low-fat diet (LFD). Irrespective of diet, DHT-treated animals gained more body weight, had irregular cycles, and were glucose intolerant compared with controls on both diets. HFD/DHT animals had the highest levels of fat mass and insulin resistance. DHT animals demonstrated increased anxiety-related behavior in the elevated plus maze by decreased distance traveled and time in the open arms. HFD consumption increased immobility during the forced-swim test. DHT treatment suppressed diurnal corticosterone measurements in both diet groups. In parallel, DHT treatment significantly dampened stress responsivity to a mild stressor. Brains of DHT animals showed attenuated c-Fos activation in the ventromedial hypothalamus and arcuate nucleus; irrespective of DHT-treatment, however, all HFD animals had elevated hypothalamic paraventricular nucleus c-Fos activation. Whereas hyperandrogenism drives overall body weight gain, glucose intolerance, anxiety behaviors, and stress responsivity, HFD consumption exacerbates the effect of androgens on adiposity, insulin resistance, and depressive behaviors. Copyright © 2015 the American Physiological Society.

  17. Sleep and Obesity: A focus on animal models

    Science.gov (United States)

    Mavanji, Vijayakumar; Billington, Charles J.; Kotz, Catherine M.; Teske, Jennifer A.

    2012-01-01

    The rapid rise in obesity prevalence in the modern world parallels a significant reduction in restorative sleep (Agras et al., 2004; Dixon et al., 2007; Dixon et al., 2001; Gangwisch and Heymsfield, 2004; Gupta et al., 2002; Sekine et al., 2002; Vioque et al., 2000; Wolk et al., 2003). Reduced sleep time and quality increases the risk for obesity, but the underlying mechanisms remain unclear (Gangwisch et al., 2005; Hicks et al., 1986; Imaki et al., 2002; Jennings et al., 2007; Moreno et al., 2006). A majority of the theories linking human sleep disturbances and obesity rely on self-reported sleep. However, studies with objective measurements of sleep/wake parameters suggest a U-shaped relationship between sleep and obesity. Studies in animal models are needed to improve our understanding of the association between sleep disturbances and obesity. Genetic and experimenter-induced models mimicking characteristics of human obesity are now available and these animal models will be useful in understanding whether sleep disturbances determine propensity for obesity, or result from obesity. These models exhibit weight gain profiles consistently different from control animals. Thus a careful evaluation of animal models will provide insight into the relationship between sleep disturbances and obesity in humans. In this review we first briefly consider the fundamentals of sleep and key sleep disturbances, such as sleep fragmentation and excessive daytime sleepiness (EDS), observed in obese individuals. Then we consider sleep deprivation studies and the role of circadian alterations in obesity. We describe sleep/wake changes in various rodent models of obesity and obesity resistance. Finally, we discuss possible mechanisms linking sleep disturbances with obesity. PMID:22266350

  18. The contribution of animal models to the study of obesity.

    Science.gov (United States)

    Speakman, John; Hambly, Catherine; Mitchell, Sharon; Król, Elzbieta

    2008-10-01

    Obesity results from prolonged imbalance of energy intake and energy expenditure. Animal models have provided a fundamental contribution to the historical development of understanding the basic parameters that regulate the components of our energy balance. Five different types of animal model have been employed in the study of the physiological and genetic basis of obesity. The first models reflect single gene mutations that have arisen spontaneously in rodent colonies and have subsequently been characterized. The second approach is to speed up the random mutation rate artificially by treating rodents with mutagens or exposing them to radiation. The third type of models are mice and rats where a specific gene has been disrupted or over-expressed as a deliberate act. Such genetically-engineered disruptions may be generated through the entire body for the entire life (global transgenic manipulations) or restricted in both time and to certain tissue or cell types. In all these genetically-engineered scenarios, there are two types of situation that lead to insights: where a specific gene hypothesized to play a role in the regulation of energy balance is targeted, and where a gene is disrupted for a different purpose, but the consequence is an unexpected obese or lean phenotype. A fourth group of animal models concern experiments where selective breeding has been utilized to derive strains of rodents that differ in their degree of fatness. Finally, studies have been made of other species including non-human primates and dogs. In addition to studies of the physiological and genetic basis of obesity, studies of animal models have also informed us about the environmental aspects of the condition. Studies in this context include exploring the responses of animals to high fat or high fat/high sugar (Cafeteria) diets, investigations of the effects of dietary restriction on body mass and fat loss, and studies of the impact of candidate pharmaceuticals on components of energy

  19. Translational value of animal models of obesity-Focus on dogs and cats.

    Science.gov (United States)

    Osto, Melania; Lutz, Thomas A

    2015-07-15

    A prolonged imbalance between a relative increase in energy intake over a decrease in energy expenditure results in the development of obesity; extended periods of a positive energy balance eventually lead to the accumulation of abnormally high amounts of fat in adipose tissue but also in other organs. Obesity is considered a clinical state of impaired general heath in which the excessive increase in adipose tissue mass may be associated with metabolic disorders such as type 2 diabetes mellitus, hyperlipidemia, hypertension and cardiovascular diseases. This review discusses briefly the use of animal models for the study of obesity and its comorbidities. Generally, most studies are performed with rodents, such as diet induced obesity and genetic models. Here, we focus specifically on two different species, namely dogs and cats. Obese dogs and cats show many features of human obesity. Interestingly, however, dogs and cats differ from each other in certain aspects because even though obese dogs may become insulin resistant, this does not result in the development of diabetes mellitus. In fact, diabetes in dogs is typically not associated with obesity because dogs present a type 1 diabetes-like syndrome. On the other hand, obese cats often develop diabetes mellitus which shares many features with human type 2 diabetes; feline and human diabetes are similar in respect to their pathophysiology, underlying risk factors and treatment strategies. Our review discusses genetic and endocrine factors in obesity, discusses obesity induced changes in lipid metabolism and includes some recent findings on the role of gut microbiota in obesity. Compared to research in rodent models, the array of available techniques and tools is unfortunately still rather limited in dogs and cats. Hence, even though physiological and pathophysiological phenomena are well described in dogs and cats, the underlying mechanisms are often not known and studies investigating causality specifically are

  20. A unique rodent model of cardiometabolic risk associated with the metabolic syndrome and polycystic ovary syndrome.

    Science.gov (United States)

    Shi, Danni; Dyck, Michael K; Uwiera, Richard R E; Russell, Jim C; Proctor, Spencer D; Vine, Donna F

    2009-09-01

    Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovarian morphology and is a complex endocrine disorder that also presents with features of the metabolic syndrome, including obesity, insulin resistance, and dyslipidemia. These latter symptoms form cardiometabolic risk factors predisposing individuals to the development of type 2 diabetes and cardiovascular disease (CVD). To date, animal models to study PCOS in the context of the metabolic syndrome and CVD risk have been lacking. The aim of this study was to investigate the JCR:LA-cp rodent as an animal model of PCOS associated with the metabolic syndrome. Metabolic indices were measured at 6 and 12 wk, and reproductive parameters including ovarian morphology and estrous cyclicity were assessed at 12 wk or adulthood. At 6 wk of age, the cp/cp genotype of the JCR:LA-cp strain developed visceral obesity, insulin resistance, and dyslipidemia (hypertriglyceridemia and hypercholesterolemia) compared with control animals. Serum testosterone concentrations were not significantly different between groups at 6 wk of age. However, at 12 wk, the cp/cp genotype had higher serum testosterone concentrations, compared with control animals, and presented with oligoovulation, a decreased number of corpora lutea, and an increased number of total follicles, in particular atretic and cystic follicles. The cardiometabolic risk factors in the cp/cp animals were exacerbated at 12 wk including obesity, insulin resistance, and dyslipidemia. The results of this study demonstrate that the JCR:LA-cp rodent may be a useful PCOS-like model to study early mechanisms involved in the etiology of cardiometabolic risk factors in the context of both PCOS and the metabolic syndrome.

  1. Effect of Keishibukuryogan on Genetic and Dietary Obesity Models

    Directory of Open Access Journals (Sweden)

    Fengying Gao

    2015-01-01

    Full Text Available Obesity has been recognized as one of the most important risk factors for a variety of chronic diseases, such as diabetes, hypertension/cardiovascular diseases, steatosis/hepatitis, and cancer. Keishibukuryogan (KBG, Gui Zhi Fu Ling Wan in Chinese is a traditional Chinese/Japanese (Kampo medicine that has been known to improve blood circulation and is also known for its anti-inflammatory or scavenging effect. In this study, we evaluated the effect of KBG in two distinct rodent models of obesity driven by either a genetic (SHR/NDmcr-cp rat model or dietary (high-fat diet-induced mouse obesity model mechanism. Although there was no significant effect on the body composition in either the SHR rat or the DIO mouse models, KBG treatment significantly decreased the serum level of leptin and liver TG level in the DIO mouse, but not in the SHR rat model. Furthermore, a lower fat deposition in liver and a smaller size of adipocytes in white adipose tissue were observed in the DIO mice treated with KBG. Importantly, we further found downregulation of genes involved in lipid metabolism in the KBG-treated liver, along with decreased liver TG and cholesterol level. Our present data experimentally support in fact that KBG can be an attractive Kampo medicine to improve obese status through a regulation of systemic leptin level and/or lipid metabolism.

  2. Correction of metabolic abnormalities in a rodent model of obesity, metabolic syndrome, and type 2 diabetes mellitus by inhibitors of hepatic protein kinase C-ι

    Science.gov (United States)

    Sajan, Mini P.; Nimal, Sonali; Mastorides, Stephen; Acevedo-Duncan, Mildred; Kahn, C. Ronald; Fields, Alan P.; Braun, Ursula; Leitges, Michael; Farese, Robert V.

    2013-01-01

    Excessive activity of hepatic atypical protein kinase (aPKC) is proposed to play a critical role in mediating lipid and carbohydrate abnormalities in obesity, the metabolic syndrome, and type 2 diabetes mellitus. In previous studies of rodent models of obesity and type 2 diabetes mellitus, adenoviral-mediated expression of kinase-inactive aPKC rapidly reversed or markedly improved most if not all metabolic abnormalities. Here, we examined effects of 2 newly developed small-molecule PKC-ι/λ inhibitors. We used the mouse model of heterozygous muscle-specific knockout of PKC-λ, in which partial deficiency of muscle PKC-λ impairs glucose transport in muscle and thereby causes glucose intolerance and hyperinsulinemia, which, via hepatic aPKC activation, leads to abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. One inhibitor, 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)], binds to the substrate-binding site of PKC-λ/ι, but not other PKCs. The other inhibitor, aurothiomalate, binds to cysteine residues in the PBl-binding domains of aPKC-λ/ι/ζ and inhibits scaffolding. Treatment with either inhibitor for 7 days inhibited aPKC, but not Akt, in liver and concomitantly improved insulin signaling to Akt and aPKC in muscle and adipocytes. Moreover, both inhibitors diminished excessive expression of hepatic, aPKC-dependent lipogenic, proinflammatory, and gluconeogenic factors; and this was accompanied by reversal or marked improvements in hyperglycemia, hyperinsulinemia, abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. Our findings highlight the pathogenetic importance of insulin signaling to hepatic PKC-ι in obesity, the metabolic syndrome, and type 2 diabetes mellitus and suggest that 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)] and aurothiomalate or similar agents that

  3. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity

    OpenAIRE

    Meyers, Allison M.; Mourra, Devry; Beeler, Jeff A.

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study ...

  4. Relationships between rodent white adipose fat pads and human white adipose fat depots

    Directory of Open Access Journals (Sweden)

    Daniella E. Chusyd

    2016-04-01

    Full Text Available The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of white adipose tissue. Thus, further research is warranted to more carefully define the strengths and limitations of rodent white adipose tissue as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat.

  5. The Cooccurrence of Obesity, Osteoporosis, and Sarcopenia in the Ovariectomized Rat: A Study for Modeling Osteosarcopenic Obesity in Rodents.

    Science.gov (United States)

    Ezzat-Zadeh, Zahra; Kim, Jeong-Su; Chase, P Bryant; Arjmandi, Bahram H

    2017-01-01

    Obesity, osteoporosis, and sarcopenia may individually occur due to age-related gradual alterations in body composition. This study investigates the cooccurrence of these age-related diseases in female animals with low levels of ovarian hormone in the absence of complex multifactorial process of chronological aging. Thirty-six 5- and 10-month-old female rats were chosen to model pre- and postmenopausal women, respectively. Rats were divided into three treatment groups in each age category-sham, ovariectomized (ovx), and ovx + E 2 (17 β -estradiol, 10  μ g/kg)-and were pair-fed. Volunteer wheel running activity, body composition, bone microstructure, serum C-telopeptides of type I collagen, bone specific alkaline phosphatase, E 2 , and gastrocnemius and soleus muscles were analyzed. The cooccurrence of osteoporosis, sarcopenia, and obesity was observed in the older ovx rats associated with a significant ( p obesity and body composition translational research in females without the confounding effect of genetic background.

  6. Joint profiling of miRNAs and mRNAs reveals miRNA mediated gene regulation in the Göttingen minipig obesity model

    DEFF Research Database (Denmark)

    Mentzel, Caroline M. Junker; Alkan, Ferhat; Keinicke, Helle

    2016-01-01

    . In contrast, pigs are emerging as an excellent animal model for obesity studies, due to their similarities in their metabolism, their digestive tract and their genetics, when compared to humans. The Göttingen minipig is a small sized easy-to-handle pig breed which has been extensively used for modeling human...... obesity, due to its capacity to develop severe obesity when fed ad libitum. The aim of this study was to identify differentially expressed of protein-coding genes and miRNAs in a Göttingen minipig obesity model. Liver, skeletal muscle and abdominal adipose tissue were sampled from 7 lean and 7 obese...... and skeletal muscle). miRNAs are small non-coding RNA molecules which have important regulatory roles in a wide range of biological processes, including obesity. Rodents are widely used animal models for human diseases including obesity. However, not all research is applicable for human health or diseases...

  7. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents

    DEFF Research Database (Denmark)

    Finan, Brian; Yang, Bin; Ottaway, Nickki

    2015-01-01

    -in-class monoagonists to reduce body weight, enhance glycemic control and reverse hepatic steatosis in relevant rodent models. Various loss-of-function models, including genetic knockout, pharmacological blockade and selective chemical knockout, confirmed contributions of each constituent activity in vivo. We...

  8. The valproic acid-induced rodent model of autism.

    Science.gov (United States)

    Nicolini, Chiara; Fahnestock, Margaret

    2018-01-01

    Autism is a lifelong neurodevelopmental disorder characterized by impairments in social communication and interaction and by repetitive patterns of behavior, interests and activities. While autism has a strong genetic component, environmental factors including toxins, pesticides, infection and drugs are known to confer autism susceptibility, likely by inducing epigenetic changes. In particular, exposure to valproic acid (VPA) during pregnancy has been demonstrated to increase the risk of autism in children. Furthermore, rodents prenatally exposed to this drug display behavioral phenotypes characteristics of the human condition. Indeed, in utero exposure of rodents to VPA represents a robust model of autism exhibiting face, construct and predictive validity. This model might better represent the many cases of idiopathic autism which are of environmental/epigenetic origins than do transgenic models carrying mutations in single autism-associated genes. The VPA model provides a valuable tool to investigate the neurobiology underlying autistic behavior and to screen for novel therapeutics. Here we review the VPA-induced rodent model of autism, highlighting its importance and reliability as an environmentally-induced animal model of autism. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The Cooccurrence of Obesity, Osteoporosis, and Sarcopenia in the Ovariectomized Rat: A Study for Modeling Osteosarcopenic Obesity in Rodents

    Directory of Open Access Journals (Sweden)

    Zahra Ezzat-Zadeh

    2017-01-01

    Full Text Available Background. Obesity, osteoporosis, and sarcopenia may individually occur due to age-related gradual alterations in body composition. This study investigates the cooccurrence of these age-related diseases in female animals with low levels of ovarian hormone in the absence of complex multifactorial process of chronological aging. Methods. Thirty-six 5- and 10-month-old female rats were chosen to model pre- and postmenopausal women, respectively. Rats were divided into three treatment groups in each age category—sham, ovariectomized (ovx, and ovx + E2 (17β-estradiol, 10 μg/kg—and were pair-fed. Volunteer wheel running activity, body composition, bone microstructure, serum C-telopeptides of type I collagen, bone specific alkaline phosphatase, E2, and gastrocnemius and soleus muscles were analyzed. Results. The cooccurrence of osteoporosis, sarcopenia, and obesity was observed in the older ovx rats associated with a significant (p<0.05 increased fat mass (30%, bone loss (9.6%, decreased normalized muscle mass-to-body-weight ratio (10.5%, and a significant decrease in physical activity (57%. The ratio of tibial bone mineral density to combined muscle mass was significantly decreased in both ovx age categories. Conclusion. Ovariectomized rat could be used as an experimental model to examine the effect of loss of ovarian hormones, while controlling for energy intake and expenditure, to conduct obesity and body composition translational research in females without the confounding effect of genetic background.

  10. Mathematical modeling of sleep state dynamics in a rodent model of shift work

    Directory of Open Access Journals (Sweden)

    Michael J. Rempe

    2018-06-01

    Full Text Available Millions of people worldwide are required to work when their physiology is tuned for sleep. By forcing wakefulness out of the body’s normal schedule, shift workers face numerous adverse health consequences, including gastrointestinal problems, sleep problems, and higher rates of some diseases, including cancers. Recent studies have developed protocols to simulate shift work in rodents with the intention of assessing the effects of night-shift work on subsequent sleep (Grønli et al., 2017. These studies have already provided important contributions to the understanding of the metabolic consequences of shift work (Arble et al., 2015; Marti et al., 2016; Opperhuizen et al., 2015 and sleep-wake-specific impacts of night-shift work (Grønli et al., 2017. However, our understanding of the causal mechanisms underlying night-shift-related sleep disturbances is limited. In order to advance toward a mechanistic understanding of sleep disruption in shift work, we model these data with two different approaches. First we apply a simple homeostatic model to quantify differences in the rates at which sleep need, as measured by slow wave activity during slow wave sleep (SWS rises and falls. Second, we develop a simple and novel mathematical model of rodent sleep and use it to investigate the timing of sleep in a simulated shift work protocol (Grønli et al., 2017. This mathematical framework includes the circadian and homeostatic processes of the two-process model, but additionally incorporates a stochastic process to model the polyphasic nature of rodent sleep. By changing only the time at which the rodents are forced to be awake, the model reproduces some key experimental results from the previous study, including correct proportions of time spent in each stage of sleep as a function of circadian time and the differences in total wake time and SWS bout durations in the rodents representing night-shift workers and those representing day-shift workers

  11. Plasma sphingosine-1-phosphate is elevated in obesity.

    Directory of Open Access Journals (Sweden)

    Greg M Kowalski

    Full Text Available BACKGROUND: Dysfunctional lipid metabolism is a hallmark of obesity and insulin resistance and a risk factor for various cardiovascular and metabolic complications. In addition to the well known increase in plasma triglycerides and free fatty acids, recent work in humans and rodents has shown that obesity is associated with elevations in the bioactive class of sphingolipids known as ceramides. However, in obesity little is known about the plasma concentrations of sphinogsine-1-phosphate (S1P, the breakdown product of ceramide, which is an important signaling molecule in mammalian biology. Therefore, the purpose of this study was to examine the impact of obesity on circulating S1P concentration and its relationship with markers of glucose metabolism and insulin sensitivity. METHODOLOGY/PRINCIPAL FINDINGS: Plasma S1P levels were determined in high-fat diet (HFD-induced and genetically obese (ob/ob mice along with obese humans. Circulating S1P was elevated in both obese mouse models and in obese humans compared with lean healthy controls. Furthermore, in humans, plasma S1P positively correlated with total body fat percentage, body mass index (BMI, waist circumference, fasting insulin, HOMA-IR, HbA1c (%, total and LDL cholesterol. In addition, fasting increased plasma S1P levels in lean healthy mice. CONCLUSION: We show that elevations in plasma S1P are a feature of both human and rodent obesity and correlate with metabolic abnormalities such as adiposity and insulin resistance.

  12. Translational Rodent Models for Research on Parasitic Protozoa-A Review of Confounders and Possibilities.

    Science.gov (United States)

    Ehret, Totta; Torelli, Francesca; Klotz, Christian; Pedersen, Amy B; Seeber, Frank

    2017-01-01

    Rodents, in particular Mus musculus , have a long and invaluable history as models for human diseases in biomedical research, although their translational value has been challenged in a number of cases. We provide some examples in which rodents have been suboptimal as models for human biology and discuss confounders which influence experiments and may explain some of the misleading results. Infections of rodents with protozoan parasites are no exception in requiring close consideration upon model choice. We focus on the significant differences between inbred, outbred and wild animals, and the importance of factors such as microbiota, which are gaining attention as crucial variables in infection experiments. Frequently, mouse or rat models are chosen for convenience, e.g., availability in the institution rather than on an unbiased evaluation of whether they provide the answer to a given question. Apart from a general discussion on translational success or failure, we provide examples where infections with single-celled parasites in a chosen lab rodent gave contradictory or misleading results, and when possible discuss the reason for this. We present emerging alternatives to traditional rodent models, such as humanized mice and organoid primary cell cultures. So-called recombinant inbred strains such as the Collaborative Cross collection are also a potential solution for certain challenges. In addition, we emphasize the advantages of using wild rodents for certain immunological, ecological, and/or behavioral questions. The experimental challenges (e.g., availability of species-specific reagents) that come with the use of such non-model systems are also discussed. Our intention is to foster critical judgment of both traditional and newly available translational rodent models for research on parasitic protozoa that can complement the existing mouse and rat models.

  13. Translational Rodent Models for Research on Parasitic Protozoa—A Review of Confounders and Possibilities

    Directory of Open Access Journals (Sweden)

    Totta Ehret

    2017-06-01

    Full Text Available Rodents, in particular Mus musculus, have a long and invaluable history as models for human diseases in biomedical research, although their translational value has been challenged in a number of cases. We provide some examples in which rodents have been suboptimal as models for human biology and discuss confounders which influence experiments and may explain some of the misleading results. Infections of rodents with protozoan parasites are no exception in requiring close consideration upon model choice. We focus on the significant differences between inbred, outbred and wild animals, and the importance of factors such as microbiota, which are gaining attention as crucial variables in infection experiments. Frequently, mouse or rat models are chosen for convenience, e.g., availability in the institution rather than on an unbiased evaluation of whether they provide the answer to a given question. Apart from a general discussion on translational success or failure, we provide examples where infections with single-celled parasites in a chosen lab rodent gave contradictory or misleading results, and when possible discuss the reason for this. We present emerging alternatives to traditional rodent models, such as humanized mice and organoid primary cell cultures. So-called recombinant inbred strains such as the Collaborative Cross collection are also a potential solution for certain challenges. In addition, we emphasize the advantages of using wild rodents for certain immunological, ecological, and/or behavioral questions. The experimental challenges (e.g., availability of species-specific reagents that come with the use of such non-model systems are also discussed. Our intention is to foster critical judgment of both traditional and newly available translational rodent models for research on parasitic protozoa that can complement the existing mouse and rat models.

  14. Large Animal Stroke Models vs. Rodent Stroke Models, Pros and Cons, and Combination?

    Science.gov (United States)

    Cai, Bin; Wang, Ning

    2016-01-01

    Stroke is a leading cause of serious long-term disability worldwide and the second leading cause of death in many countries. Long-time attempts to salvage dying neurons via various neuroprotective agents have failed in stroke translational research, owing in part to the huge gap between animal stroke models and stroke patients, which also suggests that rodent models have limited predictive value and that alternate large animal models are likely to become important in future translational research. The genetic background, physiological characteristics, behavioral characteristics, and brain structure of large animals, especially nonhuman primates, are analogous to humans, and resemble humans in stroke. Moreover, relatively new regional imaging techniques, measurements of regional cerebral blood flow, and sophisticated physiological monitoring can be more easily performed on the same animal at multiple time points. As a result, we can use large animal stroke models to decrease the gap and promote translation of basic science stroke research. At the same time, we should not neglect the disadvantages of the large animal stroke model such as the significant expense and ethical considerations, which can be overcome by rodent models. Rodents should be selected as stroke models for initial testing and primates or cats are desirable as a second species, which was recommended by the Stroke Therapy Academic Industry Roundtable (STAIR) group in 2009.

  15. Animal models of polycystic ovary syndrome: a focused review of rodent models in relationship to clinical phenotypes and cardiometabolic risk.

    Science.gov (United States)

    Shi, Danni; Vine, Donna F

    2012-07-01

    To review rodent animal models of polycystic ovary syndrome (PCOS), with a focus on those associated with the metabolic syndrome and cardiovascular disease risk factors. Review. Rodent models of PCOS. Description and comparison of animal models. Comparison of animal models to clinical phenotypes of PCOS. Animals used to study PCOS include rodents, mice, rhesus monkeys, and ewes. Major methods to induce PCOS in these models include subcutaneous injection or implantation of androgens, estrogens, antiprogesterone, letrozole, prenatal exposure to excess androgens, and exposure to constant light. In addition, transgenic mice models and spontaneous PCOS-like rodent models have also been developed. Rodents are the most economical and widely used animals to study PCOS and ovarian dysfunction. The model chosen to study the development of PCOS and other metabolic parameters remains dependent on the specific etiologic hypotheses being investigated. Rodent models have been shown to demonstrate changes in insulin metabolism, with or without induction of hyperandrogenemia, and limited studies have investigated cardiometabolic risk factors for type 2 diabetes and cardiovascular disease. Given the clinical heterogeneity of PCOS, the utilization of different animal models may be the best approach to further our understanding of the pathophysiologic mechanisms associated with the early etiology of PCOS and cardiometabolic risk. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Rodent models of congenital and hereditary cataract in man.

    Science.gov (United States)

    Tripathi, B J; Tripathi, R C; Borisuth, N S; Dhaliwal, R; Dhaliwal, D

    1991-01-01

    Because the organogenesis and physiology of the lens are essentially similar in various mammals, an understanding of the etiology and pathogenesis of the formation of cataract in an animal model will enhance our knowledge of cataractogenesis in man. In this review, we summarize the background, etiology, and pathogenesis of cataracts that occur in rodents. The main advantages of using rodent mutants include the well-researched genetics of the animals and the comparative ease of breeding of large litters. Numerous rodent models of congenital and hereditary cataracts have been studied extensively. In mice, the models include the Cts strain, Fraser mouse, lens opacity gene (Lop) strain, Lop-2 and Lop-3 strains, Philly mouse, Nakano mouse, Nop strain, Deer mouse, Emory mouse, Swiss Webster strain, Balb/c-nct/nct mouse, and SAM-R/3 strain. The rat models include BUdR, ICR, Sprague-Dawley, and Wistar rats, the spontaneously hypertensive rat (SHR), the John Rapp inbred strain of Dahl salt-sensitive rat, as well as WBN/Kob, Royal College of Surgeons (RCS), and Brown-Norway rats. Other proposed models for the study of hereditary cataract include the degu and the guinea pig. Because of the ease of making clinical observations in vivo and the subsequent availability of the intact lens for laboratory analyses at different stages of cataract formation, these animals provide excellent models for clinicopathologic correlations, for monitoring of the natural history of the aging process and of metabolic defects, as well as for investigations on the effect of cataract-modulating agents and drugs, including the prospect of gene therapy.

  17. Peptide YY: a potential therapy for obesity.

    Science.gov (United States)

    Renshaw, D; Batterham, R L

    2005-03-01

    Obesity now represents a modern epidemic in western society with major health and economic consequences. Unfortunately, previous pharmacological approaches to the treatment of obesity have been associated with life-threatening side effects and limited efficacy. Over recent years there has been a marked increase in our understanding of the physiological mechanisms that regulate body weight and how these are perturbed in obesity. One therapeutic strategy is to develop drugs which both mimic and enhance the body's own satiety signals. The gut hormone peptide tyrosine tyrosine (PYY), which is released postprandially from the gastrointestinal tract, has recently been shown to be a physiological regulator of food intake. Peripheral administration of PYY reduces feeding in rodents via a mechanism which requires the Y2 receptor and is thought to primarily involve modulation of the hypothalamic arcuate nucleus (ARC) circuitry. In humans a single 90-minute infusion of PYY has been shown to markedly reduce subsequent 24-hour caloric intake in lean, normal-weight and obese subjects. Moreover, obese subjects have been found to have low levels of fasting and postprandial PYY suggesting a role for this hormone in the pathogenesis of obesity. Although studies examining the effects of chronic peripheral administration of PYY to humans are awaited, the results from continuous infusion studies in a number of obese rodent models are encouraging with reductions in food intake, body weight and adiposity observed. Potential therapeutic manipulations based on the PYY system include development of Y2 agonists, exogenously administration of PYY or increased endogenous release from the gastrointestinal tract.

  18. Two new rodent models for actinide toxicity studies

    International Nuclear Information System (INIS)

    Taylor, G.N.; Jones, C.W.; Gardner, P.A.; Lloyd, R.D.; Mays, C.W.; Charrier, K.E.

    1981-01-01

    Two small rodent species, the grasshopper mouse (Onychomys leucogaster) and the deer mouse (Peromyscus maniculatus), have tenacious and high retention in the liver and skeleton of plutonium and americium following intraperitoneal injection of Pu and Am in citrate solution. Liver retention of Pu and Am in the grasshopper mouse is higher than liver retention in the deer mouse. Both of these rodents are relatively long-lived, breed well in captivity, and adapt suitably to laboratory conditions. It is suggested that these two species of mice, in which plutonium retention is high and prolonged in both the skeleton and liver, as it is in man, may be useful animal models for actinide toxicity studies

  19. Optimizing Cardiovascular Benefits of Exercise: A Review of Rodent Models

    Science.gov (United States)

    Davis, Brittany; Moriguchi, Takeshi; Sumpio, Bauer

    2013-01-01

    Although research unanimously maintains that exercise can ward off cardiovascular disease (CVD), the optimal type, duration, intensity, and combination of forms are yet not clear. In our review of existing rodent-based studies on exercise and cardiovascular health, we attempt to find the optimal forms, intensities, and durations of exercise. Using Scopus and Medline, a literature review of English language comparative journal studies of cardiovascular benefits and exercise was performed. This review examines the existing literature on rodent models of aerobic, anaerobic, and power exercise and compares the benefits of various training forms, intensities, and durations. The rodent studies reviewed in this article correlate with reports on human subjects that suggest regular aerobic exercise can improve cardiac and vascular structure and function, as well as lipid profiles, and reduce the risk of CVD. Findings demonstrate an abundance of rodent-based aerobic studies, but a lack of anaerobic and power forms of exercise, as well as comparisons of these three components of exercise. Thus, further studies must be conducted to determine a truly optimal regimen for cardiovascular health. PMID:24436579

  20. Of mice and women: rodent models of placental malaria

    DEFF Research Database (Denmark)

    Hviid, Lars; Marinho, Claudio R F; Staalsoe, Trine

    2010-01-01

    Pregnant women are at increased malaria risk. The infections are characterized by placental accumulation of infected erythrocytes (IEs) with adverse consequences for mother and baby. Placental IE sequestration in the intervillous space is mediated by variant surface antigens (VSAs) selectively...... expressed in placental malaria (PM) and specific for chondroitin sulfate A (CSA). In Plasmodium falciparum, these VSA(PM) appear largely synonymous with the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family variant VAR2CSA. As rodent malaria parasites do not possess PfEMP1 homologs......, the usefulness of experimental mouse PM models remains controversial. However, many features of murine and human PM are similar, including involvement of VSAs analogous to PfEMP1. It thus appears that rodent model studies can further the understanding of VSA-dependent malaria pathogenesis and immunity....

  1. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity.

    Science.gov (United States)

    Walewski, José L; Ge, Fengxia; Lobdell, Harrison; Levin, Nancy; Schwartz, Gary J; Vasselli, Joseph R; Pomp, Afons; Dakin, Gregory; Berk, Paul D

    2014-07-01

    Microarray studies identified Ch12:orf39 (Spexin) as the most down-regulated gene in obese human fat. Therefore, we examined its role in obesity pathogenesis. Spexin effects on food intake, meal patterns, body weight, respiratory exchange ratio (RER), and locomotor activity were monitored electronically in C57BL/6J mice or Wistar rats with diet-induced obesity (DIO). Its effects on adipocyte [(3)H]-oleate uptake were determined. In humans, Spexin gene expression was down-regulated 14.9-fold in obese omental and subcutaneous fat. Circulating Spexin changed in parallel, correlating (r = -0.797) with Leptin. In rats, Spexin (35 µg/kg/day SC) reduced caloric intake ∼32% with corresponding weight loss. Meal patterns were unaffected. In mice, Spexin (25 µg/kg/day IP) significantly reduced the RER at night, and increased locomotion. Spexin incubation in vitro significantly inhibited facilitated fatty acid (FA) uptake into DIO mouse adipocytes. Conditioned taste aversion testing (70 µg/kg/day IP) demonstrated no aversive Spexin effects. Spexin gene expression is markedly down-regulated in obese human fat. The peptide produces weight loss in DIO rodents. Its effects on appetite and energy regulation are presumably central; those on adipocyte FA uptake appear direct and peripheral. Spexin is a novel hormone involved in weight regulation, with potential for obesity therapy. Copyright © 2014 The Obesity Society.

  2. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Melissa N Barber

    Full Text Available BACKGROUND: Obesity and type 2 diabetes (T2DM are associated with increased circulating free fatty acids and triacylglycerols. However, very little is known about specific molecular lipid species associated with these diseases. In order to gain further insight into this, we performed plasma lipidomic analysis in a rodent model of obesity and insulin resistance as well as in lean, obese and obese individuals with T2DM. METHODOLOGY/PRINCIPAL FINDINGS: Lipidomic analysis using liquid chromatography coupled to mass spectrometry revealed marked changes in the plasma of 12 week high fat fed mice. Although a number of triacylglycerol and diacylglycerol species were elevated along with of a number of sphingolipids, a particularly interesting finding was the high fat diet (HFD-induced reduction in lysophosphatidylcholine (LPC levels. As liver, skeletal muscle and adipose tissue play an important role in metabolism, we next determined whether the HFD altered LPCs in these tissues. In contrast to our findings in plasma, only very modest changes in tissue LPCs were noted. To determine when the change in plasma LPCs occurred in response to the HFD, mice were studied after 1, 3 and 6 weeks of HFD. The HFD caused rapid alterations in plasma LPCs with most changes occurring within the first week. Consistent with our rodent model, data from our small human cohort showed a reduction in a number of LPC species in obese and obese individuals with T2DM. Interestingly, no differences were found between the obese otherwise healthy individuals and the obese T2DM patients. CONCLUSION: Irrespective of species, our lipidomic profiling revealed a generalized decrease in circulating LPC species in states of obesity. Moreover, our data indicate that diet and adiposity, rather than insulin resistance or diabetes per se, play an important role in altering the plasma LPC profile.

  3. Integrative rodent models for assessing male reproductive toxicity of environmental endocrine active substances

    Directory of Open Access Journals (Sweden)

    Jacques Auger

    2014-02-01

    Full Text Available In the present review, we first summarize the main benefits, limitations and pitfalls of conventional in vivo approaches to assessing male reproductive structures and functions in rodents in cases of endocrine active substance (EAS exposure from the postulate that they may provide data that can be extrapolated to humans. Then, we briefly present some integrated approaches in rodents we have recently developed at the organism level. We particularly focus on the possible effects and modes of action (MOA of these substances at low doses and in mixtures, real-life conditions and at the organ level, deciphering the precise effects and MOA on the fetal testis. It can be considered that the in vivo experimental EAS exposure of rodents remains the first choice for studies and is a necessary tool (together with the epidemiological approach for understanding the reproductive effects and MOA of EASs, provided the pitfalls and limitations of the rodent models are known and considered. We also provide some evidence that classical rodent models may be refined for studying the multiple consequences of EAS exposure, not only on the reproductive axis but also on various hormonally regulated organs and tissues, among which several are implicated in the complex process of mammalian reproduction. Such models constitute an interesting way of approaching human exposure conditions. Finally, we show that organotypic culture models are powerful complementary tools, especially when focusing on the MOA. All these approaches have contributed in a combinatorial manner to a better understanding of the impact of EAS exposure on human reproduction.

  4. Hypothalamic deep brain stimulation reduces weight gain in an obesity-animal model.

    Directory of Open Access Journals (Sweden)

    William P Melega

    Full Text Available Prior studies of appetite regulatory networks, primarily in rodents, have established that targeted electrical stimulation of ventromedial hypothalamus (VMH can alter food intake patterns and metabolic homeostasis. Consideration of this method for weight modulation in humans with severe overeating disorders and morbid obesity can be further advanced by modeling procedures and assessing endpoints that can provide preclinical data on efficacy and safety. In this study we adapted human deep brain stimulation (DBS stereotactic methods and instrumentation to demonstrate in a large animal model the modulation of weight gain with VMH-DBS. Female Göttingen minipigs were used because of their dietary habits, physiologic characteristics, and brain structures that resemble those of primates. Further, these animals become obese on extra-feeding regimens. DBS electrodes were first bilaterally implanted into the VMH of the animals (n = 8 which were then maintained on a restricted food regimen for 1 mo following the surgery. The daily amount of food was then doubled for the next 2 mo in all animals to produce obesity associated with extra calorie intake, with half of the animals (n = 4 concurrently receiving continuous low frequency (50 Hz VMH-DBS. Adverse motoric or behavioral effects were not observed subsequent to the surgical procedure or during the DBS period. Throughout this 2 mo DBS period, all animals consumed the doubled amount of daily food. However, the animals that had received VMH-DBS showed a cumulative weight gain (6.1±0.4 kg; mean ± SEM that was lower than the nonstimulated VMH-DBS animals (9.4±1.3 kg; p<0.05, suggestive of a DBS-associated increase in metabolic rate. These results in a porcine obesity model demonstrate the efficacy and behavioral safety of a low frequency VMH-DBS application as a potential clinical strategy for modulation of body weight.

  5. Sleep disorders, obesity, and aging: the role of orexin.

    Science.gov (United States)

    Nixon, Joshua P; Mavanji, Vijayakumar; Butterick, Tammy A; Billington, Charles J; Kotz, Catherine M; Teske, Jennifer A

    2015-03-01

    The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding of orexin function, focusing on sleep disorders, energy balance, and aging, in both rodents and humans. We first discuss animal models used in studies of obesity and sleep, including loss of function using transgenic or viral-mediated approaches, gain of function models using exogenous delivery of orexin receptor agonist, and naturally-occurring models in which orexin responsiveness varies by individual. We next explore rodent models of orexin in aging, presenting evidence that orexin loss contributes to age-related changes in sleep and energy balance. In the next section, we focus on clinical importance of orexin in human obesity, sleep, and aging. We include discussion of orexin loss in narcolepsy and potential importance of orexin in insomnia, correlations between animal and human studies of age-related decline, and evidence for orexin involvement in age-related changes in cognitive performance. Finally, we present a summary of recent studies of orexin in neurodegenerative disease. We conclude that orexin acts as an integrative homeostatic signal influencing numerous brain regions, and that this pivotal role results in potential dysregulation of multiple physiological processes when orexin signaling is disrupted or lost. Published by Elsevier B.V.

  6. Spexin is a Novel Human Peptide that Reduces Adipocyte Uptake of Long Chain Fatty Acids and Causes Weight Loss in Rodents with Diet-induced Obesity*

    Science.gov (United States)

    Walewski, José L.; Ge, Fengxia; Lobdell, Harrison; Levin, Nancy; Schwartz, Gary J.; Vasselli, Joseph; Pomp, Afons; Dakin, Gregory; Berk, Paul D.

    2014-01-01

    Objective Microarray studies identified Ch12:orf39 (Spexin) as the most dysregulated gene in obese human fat. Therefore we examined its role in obesity pathogenesis. Design and Methods Spexin effects on food intake, meal patterns, body weight, Respiratory Exchange Ratio (RER), and locomotor activity were monitored electronically in C57BL/6J mice or Wistar rats with dietary-induced obesity (DIO). Its effects on adipocyte [3H]-oleate uptake were determined. Results In humans, Spexin gene expression was down-regulated 14.9-fold in obese omental and subcutaneous fat. Circulating Spexin changed in parallel, correlating (r = −0.797) with Leptin. In rats, Spexin (35 μg/kg/day s.c) reduced caloric intake ~32% with corresponding weight loss. Meal patterns were unaffected. In mice, Spexin (25 μg/kg/day i.p.) significantly reduced the RER at night, and increased locomotion. Spexin incubation in vitro significantly inhibited facilitated fatty acid (FA) uptake into DIO mouse adipocytes. Conditioned taste aversion testing (70μg/kg/day i.p.) demonstrated no aversive Spexin effects. Conclusions Spexin gene expression is markedly down-regulated in obese human fat. The peptide produces weight loss in DIO rodents. Its effects on appetite and energy regulation are presumably central; those on adipocyte FA uptake appear direct and peripheral. Spexin is a novel hormone involved in weight regulation, with potential for obesity therapy. PMID:24550067

  7. Sleep and Obesity

    Directory of Open Access Journals (Sweden)

    Chenzhao Ding

    2018-03-01

    Full Text Available Rising global prevalence and incidence of obesity lead to increased cardiovascular-renal complications and cancers. Epidemiological studies reported a worldwide trend towards suboptimal sleep duration and poor sleep quality in parallel with this obesity epidemic. From rodents and human models, it is highly plausible that abnormalities in sleep, both quantity and quality, impact negatively on energy metabolism. While excess dietary intake and physical inactivity are the known drivers of the obesity epidemic, promotion of healthy sleep habits has emerged as a new target to combat obesity. In this light, present review focuses on the existing literature examining the relationship between sleep physiology and energy homeostasis. Notably, sleep dysregulation perturbs the metabolic milieu via alterations in hormones such as leptin and ghrelin, eating behavior, neuroendocrine and autonomic nervous systems. In addition, shift work and trans-meridian air travel may exert a negative influence on the hypothalamic-pituitary-adrenal axis and trigger circadian misalignment, leading to impaired glucose tolerance and increased fat accumulation. Amassing evidence has also suggested that uncoupling of the circadian clock can increase the risk of adverse metabolic health. Given the importance of sleep in maintaining energy homeostasis and that it is potentially modifiable, promoting good sleep hygiene may create new avenues for obesity prevention and treatment.

  8. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    OpenAIRE

    Steiner, Michel A.; Sciarretta, Carla; Pasquali, Anne; Jenck, Francois

    2013-01-01

    The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS...

  9. Biology of Obesity: Lessons from Animal Models of Obesity

    Directory of Open Access Journals (Sweden)

    Keizo Kanasaki

    2011-01-01

    problems, including diabetes, cardiovascular disease, respiratory failure, muscle weakness, and cancer. The precise molecular mechanisms by which obesity induces these health problems are not yet clear. To better understand the pathomechanisms of human disease, good animal models are essential. In this paper, we will analyze animal models of obesity and their use in the research of obesity-associated human health conditions and diseases such as diabetes, cancer, and obstructive sleep apnea syndrome.

  10. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance

    Science.gov (United States)

    Hotamisligil, Gokhan S.; Shargill, Narinder S.; Spiegelman, Bruce M.

    1993-01-01

    Tumor necrosis factor-α (TNF-α) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-α messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-α protein was also elevated locally and systemically. Neutralization of TNF-α in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-α in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.

  11. Studying autism in rodent models: reconciling endophenotypes with comorbidities.

    Directory of Open Access Journals (Sweden)

    Andrew eArgyropoulos

    2013-07-01

    Full Text Available Autism spectrum disorder (ASD patients commonly exhibit a variety of comorbid traits including seizures, anxiety, aggressive behavior, gastrointestinal problems, motor deficits, abnormal sensory processing and sleep disturbances for which the cause is unknown. These features impact negatively on daily life and can exaggerate the effects of the core diagnostic traits (social communication deficits and repetitive behaviors. Studying endophenotypes relevant to both core and comorbid features of ASD in rodent models can provide insight into biological mechanisms underlying these disorders. Here we review the characterization of endophenotypes in a selection of environmental, genetic and behavioural rodent models of ASD. In addition to exhibiting core ASD-like behaviours, each of these animal models display one or more endophenotypes relevant to comorbid features including altered sensory processing, seizure susceptibility, anxiety-like behaviour and disturbed motor functions, suggesting that these traits are indicators of altered biological pathways in ASD. However, the study of behaviours paralleling comorbid traits in animal models of ASD is an emerging field and further research is needed to assess altered gastrointestinal function, aggression and disorders of sleep onset across models. Future studies should include investigation of these endophenotypes in order to advance our understanding of the etiology of this complex disorder.

  12. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Science.gov (United States)

    Meyers, Allison M; Mourra, Devry; Beeler, Jeff A

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  13. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Directory of Open Access Journals (Sweden)

    Allison M Meyers

    Full Text Available The contribution of high fructose corn syrup (HFCS to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6 received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  14. Detection of thermogenesis in rodents in response to anti-obesity drugs and genetic modification

    Directory of Open Access Journals (Sweden)

    Jonathan R S Arch

    2013-04-01

    Full Text Available Many compounds and genetic manipulations are claimed to confer resistance to obesity in rodents by raising energy expenditure. Examples taken from recent and older literature, demonstrate that such claims are often based on measurements of energy expenditure after body composition has changed and depend on comparisons of energy expenditure divided by body weight. This is misleading because white adipose tissue has less influence than lean tissue on energy expenditure. Application of this approach to human data would suggest that human obesity is usually due to a low metabolic rate, which is not an accepted view. Increased energy expenditure per animal is a surer way of demonstrating thermogenesis, but even then it is important to know whether this is due to altered body composition (repartitioning, or increased locomotor activity rather than thermogenesis per se. Regression analysis offers other approaches. The thermogenic response to some compounds has a rapid onset and so cannot be due to altered body composition. These compounds usually mimic or activate the sympathetic nervous system. Thermogenesis occurs in, but may not be confined to, brown adipose tissue. It should not be assumed that weight loss in response to these treatments is due to thermogenesis unless there is a sustained increase in 24-h energy expenditure. Thyroid hormones and fibroblast growth factor 21 also raise energy expenditure before they affect body composition. Some treatments and genetic modifications alter the diurnal rhythm of energy expenditure. It is important to establish whether this is due to altered locomotor activity or efficiency of locomotion. There are no good examples of compounds that do not affect short-term energy expenditure but have a delayed effect. How and under what conditions a genetic modification or compound increases energy expenditure influences the decision on whether to seek drugs for the target or take a candidate drug into clinical studies.

  15. A rodent malarial model of Plasmodium berghei for the development ...

    African Journals Online (AJOL)

    A rodent malarial model of Plasmodium berghei for the development of pyrimethamine and sulphadoxine-pyrimethamine resistant malaria in mice. ... course approach with 125/6.25mg/kg S/P. The stability of resistance phenotypes, parasite pathogenic disposition and host leukocyte response were also investigated.

  16. Post-traumatic stress disorder and beyond: an overview of rodent stress models.

    Science.gov (United States)

    Schöner, Johanna; Heinz, Andreas; Endres, Matthias; Gertz, Karen; Kronenberg, Golo

    2017-10-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder of high prevalence and major socioeconomic impact. Patients suffering from PTSD typically present intrusion and avoidance symptoms and alterations in arousal, mood and cognition that last for more than 1 month. Animal models are an indispensable tool to investigate underlying pathophysiological pathways and, in particular, the complex interplay of neuroendocrine, genetic and environmental factors that may be responsible for PTSD induction. Since the 1960s, numerous stress paradigms in rodents have been developed, based largely on Seligman's seminal formulation of 'learned helplessness' in canines. Rodent stress models make use of physiological or psychological stressors such as foot shock, underwater trauma, social defeat, early life stress or predator-based stress. Apart from the brief exposure to an acute stressor, chronic stress models combining a succession of different stressors for a period of several weeks have also been developed. Chronic stress models in rats and mice may elicit characteristic PTSD-like symptoms alongside, more broadly, depressive-like behaviours. In this review, the major existing rodent models of PTSD are reviewed in terms of validity, advantages and limitations; moreover, significant results and implications for future research-such as the role of FKBP5, a mediator of the glucocorticoid stress response and promising target for therapeutic interventions-are discussed. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats.

    Science.gov (United States)

    Seoane-Collazo, Patricia; Martínez de Morentin, Pablo B; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel

    2014-05-01

    Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.

  18. Prebiotics as a modulator of gut microbiota in paediatric obesity.

    Science.gov (United States)

    Nicolucci, A C; Reimer, R A

    2017-08-01

    This review highlights our current understanding of the role of gut microbiota in paediatric obesity and the potential role for dietary manipulation of the gut microbiota with prebiotics in managing paediatric obesity. The aetiology of obesity is multifactorial and is now known to include microbial dysbiosis in the gut. Prebiotics are non-digestible carbohydrates which selectively modulate the number and/or composition of gut microbes. The goal of prebiotic consumption is to restore symbiosis and thereby confer health benefits to the host. There is convincing evidence that prebiotics can reduce adiposity and improve metabolic health in preclinical rodent models. Furthermore, there are several clinical trials in adult humans highlighting metabolic and appetite-regulating benefits of prebiotics. In paediatric obesity, however, there are very limited data regarding the potential role of prebiotics as a dietary intervention for obesity management. As the prevalence of paediatric obesity and obesity-associated comorbidities increases globally, interventions that target the progression of obesity from an early age are essential in slowing the obesity epidemic. This review emphasizes the need for further research assessing the role of prebiotics, particularly as an intervention in effectively managing paediatric obesity. © 2016 World Obesity Federation.

  19. Weight and Glucose Reduction Observed with a Combination of Nutritional Agents in Rodent Models Does Not Translate to Humans in a Randomized Clinical Trial with Healthy Volunteers and Subjects with Type 2 Diabetes.

    Directory of Open Access Journals (Sweden)

    Rebecca J Hodge

    Full Text Available Nutritional agents have modest efficacy in reducing weight and blood glucose in animal models and humans, but combinations are less well characterized. GSK2890457 (GSK457 is a combination of 4 nutritional agents, discovered by the systematic assessment of 16 potential components using the diet-induced obese mouse model, which was subsequently evaluated in a human study.In the diet-induced obese mouse model, GSK457 (15% w/w in chow given with a long-acting glucagon-like peptide -1 receptor agonist, exendin-4 AlbudAb, produced weight loss of 30.8% after 28 days of treatment. In db/db mice, a model of diabetes, GSK457 (10% w/w combined with the exendin-4 AlbudAb reduced glucose by 217 mg/dL and HbA1c by 1.2% after 14 days.GSK457 was evaluated in a 6 week randomized, placebo-controlled study that enrolled healthy subjects and subjects with type 2 diabetes to investigate changes in weight and glucose. In healthy subjects, GSK457 well tolerated when titrated up to 40 g/day, and it reduced systemic exposure of metformin by ~ 30%. In subjects with diabetes taking liraglutide 1.8 mg/day, GSK457 did not reduce weight, but it slightly decreased mean glucose by 0.356 mmol/L (95% CI: -1.409, 0.698 and HbAlc by 0.065% (95% CI: -0.495, 0.365, compared to placebo. In subjects with diabetes taking metformin, weight increased in the GSK457-treated group [adjusted mean % increase from baseline: 1.26% (95% CI: -0.24, 2.75], and mean glucose and HbA1c were decreased slightly compared to placebo [adjusted mean glucose change from baseline: -1.22 mmol/L (95% CI: -2.45, 0.01; adjusted mean HbA1c change from baseline: -0.219% (95% CI: -0.910, 0.472].Our data demonstrate remarkable effects of GSK457 in rodent models of obesity and diabetes, but a marked lack of translation to humans. Caution should be exercised with nutritional agents when predicting human efficacy from rodent models of obesity and diabetes.ClinicalTrials.gov NCT01725126.

  20. Spatial memory tasks in rodents: what do they model?

    Science.gov (United States)

    Morellini, Fabio

    2013-10-01

    The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.

  1. New Perspectives on Rodent Models of Advanced Paternal Age: Relevance to Autism

    Directory of Open Access Journals (Sweden)

    Claire J Foldi

    2011-06-01

    Full Text Available Offspring of older fathers have an increased risk of various adverse health outcomes, including autism and schizophrenia. With respect to biological mechanisms for this association, there are many more germline cell divisions in the life history of a sperm relative to that of an oocyte. This leads to more opportunities for copy error mutations in germ cells from older fathers. Evidence also suggests that epigenetic patterning in the sperm from older men is altered. Rodent models provide an experimental platform to examine the association between paternal age and brain development. Several rodent models of advanced paternal age (APA have been published with relevance to intermediate phenotypes related to autism. All four published APA models vary in key features creating a lack of consistency with respect to behavioural phenotypes. A consideration of common phenotypes that emerge from these APA-related mouse models may be informative in the exploration of the molecular and neurobiological correlates of APA.

  2. Functional recovery after facial nerve cable grafting in a rodent model.

    NARCIS (Netherlands)

    Hohman, M.H.; Kleiss, I.J.; Knox, C.J.; Weinberg, J.S.; Heaton, J.T.; Hadlock, T.A.

    2014-01-01

    IMPORTANCE: Cable grafting is widely considered to be the preferred alternative to primary repair of the injured facial nerve; however, quantitative comparison of the 2 techniques has not been previously undertaken in a rodent model. OBJECTIVE: To establish functional recovery parameters after

  3. A social contagious model of the obesity epidemic

    Science.gov (United States)

    Huang, He; Yan, Zhijun; Chen, Yahong; Liu, Fangyan

    2016-11-01

    Obesity has been recognized as a global epidemic by WHO, followed by many empirical evidences to prove its infectiousness. However, the inter-person spreading dynamics of obesity are seldom studied. A distinguishing feature of the obesity epidemic is that it is driven by a social contagion process which cannot be perfectly described by the infectious disease models. In this paper, we propose a novel belief decision model based on the famous Dempster-Shafer theory of evidence to model obesity epidemic as the competing spread of two obesity-related behaviors: physical inactivity and physical activity. The transition of health states is described by an SIS model. Results reveal the existence of obesity epidemic threshold, above which obesity is quickly eradicated. When increasing the fading level of information spread, enlarging the clustering of initial obese seeds, or introducing small-world characteristics into the network topology, the threshold is easily met. Social discrimination against the obese people plays completely different roles in two cases: on one hand, when obesity cannot be eradicated, social discrimination can reduce the number of obese people; on the other hand, when obesity is eradicable, social discrimination may instead cause it breaking out.

  4. Experimental model to induce obesity in rats Modelo experimental para induzir obesidade em ratos

    Directory of Open Access Journals (Sweden)

    Vinicius Von Diemen

    2006-12-01

    Full Text Available The etiology of obesity is multifactorial and is becoming a problem of public health, due to its increased prevalence and the consequent repercussion of its comorbidities on the health of the population. The great similarity and homology between the genomes of rodents and humans make these animal models a major tool to study conditions affecting humans, which can be simulated in rats. Obesity can be induced in animals by neuroendocrine, dietary or genetic changes. The most widely used models to induce obesity in rats are a lesion of the ventromedial hypothalamic nucleus (VMH by administering monosodium glutamate or a direct electrical lesion, ovariectomy, feeding on hypercaloric diets and genetic manipulation for obesity.A obesidade tem etiologia multifatorial e está se tornando um problema de saúde pública devido ao aumento da sua prevalência e a conseqüente repercusão das suas comorbidades na saúde da população. A grande similaridade e homologia entre os genomas dos roedores e dos humanos tornam esses modelos animais uma importante ferramenta para o estudo de condições que afetam os humanos e que podem ser simuladas em ratos. A obesidade pode ser induzida em animais com alterações neuroendócrinas, dietéticas ou genéticas. Os modelos mais utilizados para indução de obesidade em ratos são lesão do núcleo hipotalâmico venteromedial (VMH através da administração de glutamato monossódico ou lesão elétrica direta, ooforectomia, alimentação com dietas hipercalóricas e manipulação genética para obesidade.

  5. The relevance of non-human primate and rodent malaria models for humans

    Directory of Open Access Journals (Sweden)

    Riley Eleanor

    2011-02-01

    Full Text Available Abstract At the 2010 Keystone Symposium on "Malaria: new approaches to understanding Host-Parasite interactions", an extra scientific session to discuss animal models in malaria research was convened at the request of participants. This was prompted by the concern of investigators that skepticism in the malaria community about the use and relevance of animal models, particularly rodent models of severe malaria, has impacted on funding decisions and publication of research using animal models. Several speakers took the opportunity to demonstrate the similarities between findings in rodent models and human severe disease, as well as points of difference. The variety of malaria presentations in the different experimental models parallels the wide diversity of human malaria disease and, therefore, might be viewed as a strength. Many of the key features of human malaria can be replicated in a variety of nonhuman primate models, which are very under-utilized. The importance of animal models in the discovery of new anti-malarial drugs was emphasized. The major conclusions of the session were that experimental and human studies should be more closely linked so that they inform each other, and that there should be wider access to relevant clinical material.

  6. A model of Leptospirosis infection in an African rodent to determine risk to humans: Seasonal fluctuations and the impact of rodent control

    DEFF Research Database (Denmark)

    Holt, J; Davis, S; Leirs, Herwig

    2006-01-01

    Human leptospirosis (Leptospira spp. infection) is aworldwide public health problem that is of greatest concern for humid tropical and subtropical regions. The magnitude of the problem in these areas is larger because of the climatic and environmental conditions the bacterium face outside...... their hosts but also because of the frequency of contacts between people and sources of infection. Rodents are thought to play the most important role in the transmission of human leptospirosis. We here model the dynamics of infection in an African rodent (Mastomys natalensis) that is thought...... to be the principal source of infection in parts of Tanzania. Our model, representing the climatic conditions in central Tanzania, suggests a strong seasonality in the force of infection on humans with a peak in the abundance of infectious mice between January and April in agricultural environments. In urban areas...

  7. Temporal and Spatial Characterization of Gait Pattern in Rodents as an Animal model of Cerebrovascular Lesion

    Directory of Open Access Journals (Sweden)

    Jaison D Cucarián

    2017-09-01

    Full Text Available Animal experimentation is crucial for the advance in the understanding of pathophysiological mechanisms and their application on both clinical diagnosis and neuro-rehabilitation. Particularly, rodent brain lesion is commonly used in the modeling of locomotor, somatosensory and cognitive symptoms. The automated rodent gait analysis has been proposed as a tool for studying locomotor and sensory abilities and its use includes the identification of functional alterations, structural adaptations as well as neuro-rehabilitation mechanisms. From that standpoint, the effectiveness of many therapeutic intervention (i.e. physical exercises has been documented in rodents and humans. The translation from experimental data to clinical conditions requires the continuous collaboration and feedback between researchers and health clinicians looking for the selection of the best rehabilitation protocols obtained from animal research. Here we will show some locomotor alterations, the traditional methods used to assess motor dysfunction and gait abnormalities in rodent models with stroke. The aim of this review is to show some motor deficiencies and some methods used to establish gait disturbances in rodents with cerebrovascular lesion. The review included the search of defined terms (MeSH in PychINFO, Medline and Web of Science, between January 2000 and January 2017. Qualitative and narrative reports, dissertations, end course works and conference resumes were discarded. The review focuses on some clinical signs, their effects on rodent locomotor activity, some methodologies used to create lesion and to study motor function, some assessment methods and some translational aspects.

  8. Animal models of exercise and obesity.

    Science.gov (United States)

    Kasper, Christine E

    2013-01-01

    Animal models have been invaluable in the conduct of nursing research for the past 40 years. This review will focus on specific animal models that can be used in nursing research to study the physiologic phenomena of exercise and obesity when the use of human subjects is either scientifically premature or inappropriate because of the need for sampling tissue or the conduct of longitudinal studies of aging. There exists an extensive body of literature reporting the experimental use of various animal models, in both exercise science and the study of the mechanisms of obesity. Many of these studies are focused on the molecular and genetic mechanisms of organ system adaptation and plasticity in response to exercise, obesity, or both. However, this review will narrowly focus on the models useful to nursing research in the study of exercise in the clinical context of increasing performance and mobility, atrophy and bedrest, fatigue, and aging. Animal models of obesity focus on those that best approximate clinical pathology.

  9. [Alteration of intestinal permeability: the missing link between gut microbiota modifications and inflammation in obesity?].

    Science.gov (United States)

    Genser, Laurent; Poitou, Christine; Brot-Laroche, Édith; Rousset, Monique; Vaillant, Jean-Christophe; Clément, Karine; Thenet, Sophie; Leturque, Armelle

    2016-05-01

    The increasing incidence of obesity and associated metabolic complications is a worldwide public health issue. The role of the gut in the pathophysiology of obesity, with an important part for microbiota, is becoming obvious. In rodent models of diet-induced obesity, the modifications of gut microbiota are associated with an alteration of the intestinal permeability increasing the passage of food or bacterial antigens, which contribute to low-grade inflammation and insulin resistance. In human obesity, intestinal permeability modification, and its role in the crosstalk between gut microbiota changes and inflammation at systemic and tissular levels, are still poorly documented. Hence, further characterization of the triggering mechanisms of such inflammatory responses in obese subjects could enable the development of personalized intervention strategies that will help to reduce the risk of obesity-associated diseases. © 2016 médecine/sciences – Inserm.

  10. Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine

    Directory of Open Access Journals (Sweden)

    Jordan L. Hawkins

    2017-12-01

    Conclusion:. Our findings demonstrate that nVNS inhibits mechanical nociception and represses expression of proteins associated with peripheral and central sensitization of trigeminal neurons in a novel rodent model of episodic migraine.

  11. Morphological and functional maturation of Leydig cells: from rodent models to primates.

    Science.gov (United States)

    Teerds, Katja J; Huhtaniemi, Ilpo T

    2015-01-01

    Leydig cells (LC) are the sites of testicular androgen production. Development of LC occurs in the testes of most mammalian species as two distinct growth phases, i.e. as fetal and pubertal/adult populations. In primates there are indications of a third neonatal growth phase. LC androgen production begins in embryonic life and is crucial for the intrauterine masculinization of the male fetal genital tract and brain, and continues until birth after which it rapidly declines. A short post-natal phase of LC activity in primates (including human) termed 'mini-puberty' precedes the period of juvenile quiescence. The adult population of LC evolves, depending on species, in mid- to late-prepuberty upon reawakening of the hypothalamic-pituitary-testicular axis, and these cells are responsible for testicular androgen production in adult life, which continues with a slight gradual decline until senescence. This review is an updated comparative analysis of the functional and morphological maturation of LC in model species with special reference to rodents and primates. Pubmed, Scopus, Web of Science and Google Scholar databases were searched between December 2012 and October 2014. Studies published in languages other than English or German were excluded, as were data in abstract form only. Studies available on primates were primarily examined and compared with available data from specific animal models with emphasis on rodents. Expression of different marker genes in rodents provides evidence that at least two distinct progenitor lineages give rise to the fetal LC (FLC) population, one arising from the coelomic epithelium and the other from specialized vascular-associated cells along the gonad-mesonephros border. There is general agreement that the formation and functioning of the FLC population in rodents is gonadotrophin-responsive but not gonadotrophin-dependent. In contrast, although there is in primates some controversy on the role of gonadotrophins in the formation of

  12. “Control” laboratory rodents are metabolically morbid: Why it matters

    OpenAIRE

    Martin, Bronwen; Ji, Sunggoan; Maudsley, Stuart; Mattson, Mark P.

    2010-01-01

    Failure to recognize that many standard control rats and mice used in biomedical research are sedentary, obese, glucose intolerant, and on a trajectory to premature death may confound data interpretation and outcomes of human studies. Fundamental aspects of cellular physiology, vulnerability to oxidative stress, inflammation, and associated diseases are among the many biological processes affected by dietary energy intake and exercise. Although overfed sedentary rodents may be reasonable mode...

  13. The relevance of non-human primate and rodent malaria models for humans

    OpenAIRE

    Langhorne, Jean; Buffet, Pierre; Galinski, Mary; Good, Michael; Harty, John; Leroy, Didier; Mota, Maria M; Pasini, Erica; Renia, Laurent; Riley, Eleanor; Stins, Monique; Duffy, Patrick

    2011-01-01

    Abstract At the 2010 Keystone Symposium on "Malaria: new approaches to understanding Host-Parasite interactions", an extra scientific session to discuss animal models in malaria research was convened at the request of participants. This was prompted by the concern of investigators that skepticism in the malaria community about the use and relevance of animal models, particularly rodent models of severe malaria, has impacted on funding decisions and publication of research using animal models....

  14. Modeling Human Nonalcoholic Steatohepatitis-Associated Changes in Drug Transporter Expression Using Experimental Rodent Models

    OpenAIRE

    Canet, Mark J.; Hardwick, Rhiannon N.; Lake, April D.; Dzierlenga, Anika L.; Clarke, John D.; Cherrington, Nathan J.

    2014-01-01

    Nonalcoholic fatty liver disease is a prevalent form of chronic liver disease that can progress to the more advanced stage of nonalcoholic steatohepatitis (NASH). NASH has been shown to alter drug transporter regulation and may have implications in the development of adverse drug reactions. Several experimental rodent models have been proposed for the study of NASH, but no single model fully recapitulates all aspects of the human disease. The purpose of the current study was to determine whic...

  15. Modeling the Western Diet for Preclinical Investigations.

    Science.gov (United States)

    Hintze, Korry J; Benninghoff, Abby D; Cho, Clara E; Ward, Robert E

    2018-05-01

    Rodent models have been invaluable for biomedical research. Preclinical investigations with rodents allow researchers to investigate diseases by using study designs that are not suitable for human subjects. The primary criticism of preclinical animal models is that results are not always translatable to humans. Some of this lack of translation is due to inherent differences between species. However, rodent models have been refined over time, and translatability to humans has improved. Transgenic animals have greatly aided our understanding of interactions between genes and disease and have narrowed the translation gap between humans and model animals. Despite the technological innovations of animal models through advances in genetics, relatively little attention has been given to animal diets. Namely, developing diets that replicate what humans eat will help make animal models more relevant to human populations. This review focuses on commonly used rodent diets that are used to emulate the Western dietary pattern in preclinical studies of obesity and type 2 diabetes, nonalcoholic liver disease, maternal nutrition, and colorectal cancer.

  16. Modeling social norms and social influence in obesity.

    Science.gov (United States)

    Shoham, David A; Hammond, Ross; Rahmandad, Hazhir; Wang, Youfa; Hovmand, Peter

    2015-03-01

    The worldwide increase in obesity has led to changes in what is considered "normal" or desirable weight, especially among populations at higher risk. We show that social norms are key to understanding the obesity epidemic, and that social influence mechanisms provide a necessary linkage between individual obesity-related behaviors and population-level characteristics. Because influence mechanisms cannot be directly observed, we show how three complex systems tools may be used to gain insights into observed epidemiologic patterns: social network analysis, agent-based modeling, and systems dynamics modeling. However, simulation and mathematical modeling approaches raise questions regarding acceptance of findings, especially among policy makers. Nevertheless, we point to modeling successes in obesity and other fields, including the NIH-funded National Collaborative on Childhood Obesity Research (NCCOR) Envison project.

  17. Rodent vertical sleeve gastrectomy alters maternal immune health and fetoplacental development.

    Science.gov (United States)

    Spann, Redin A; Lawson, William J; Bidwell, Gene L; Zamarripa, C Austin; Maranon, Rodrigo O; Bandyopadhyay, Sibali; Taylor, Erin R; Reckelhoff, Jane F; Garrett, Michael R; Grayson, Bernadette E

    2018-01-31

    Bariatric surgery is increasingly employed to improve fertility and reduce obesity-related co-morbidities in obese women. Surgical weight loss not only improves the chance of conception but reduces the risk of pregnancy complications including pre-eclampsia, gestational diabetes, and macrosomia. However, bariatric procedures increase the incidence of intrauterine growth restriction (IUGR), fetal demise, thromboembolism, and other gestational disorders. Using our rodent model of vertical sleeve gastrectomy (VSG), we tested the hypothesis that VSG in diet-induced, obese dams would cause immune and placental structural abnormalities that may be responsible for fetal demise during pregnancy. VSG dams studied on gestational day (G) 19 had reduced circulating T-cell (CD3 + and CD8 + ) populations compared with lean or obese controls. Further, local interleukin (IL) 1β and IL 1 receptor antagonist ( il1rn ) cmRNA were increased in placenta of VSG dams. Placental barrier function was also affected, with increased transplacental permeability to small molecules, increased matrix metalloproteinase 9 expression, and increased apoptosis in VSG. Furthermore, we identified increased placental mTOR signaling that may contribute to preserving the body weight of the fetuses during gestation. These changes occurred in the absence of a macronutrient deficit or gestational hypertension in the VSG dams. In summary, previous VSG in dams may contribute to fetal demise by affecting maternal immune system activity and compromise placental integrity. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Chronic IL-6 Administration Desensitizes IL-6 Response in Liver, Causes Hyperleptinemia and Aggravates Steatosis in Diet-Induced-Obese Mice

    DEFF Research Database (Denmark)

    Gavito, Ana Luisa; Bautista, Dolores; Suarez, Juan

    2016-01-01

    High-fat diet-induced obesity (DIO) is associated with fatty liver and elevated IL-6 circulating levels. IL-6 administration in rodents has yielded contradictory results regarding its effects on steatosis progression. In some models of fatty liver disease, high doses of human IL-6 ameliorate the ...

  19. Neurobiology of rodent self-grooming and its value for translational neuroscience.

    Science.gov (United States)

    Kalueff, Allan V; Stewart, Adam Michael; Song, Cai; Berridge, Kent C; Graybiel, Ann M; Fentress, John C

    2016-01-01

    Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders--including models of autism spectrum disorder and obsessive compulsive disorder--that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.

  20. Translational Modeling to Guide Study Design and Dose Choice in Obesity Exemplified by AZD1979, a Melanin-concentrating Hormone Receptor 1 Antagonist.

    Science.gov (United States)

    Gennemark, P; Trägårdh, M; Lindén, D; Ploj, K; Johansson, A; Turnbull, A; Carlsson, B; Antonsson, M

    2017-07-01

    In this study, we present the translational modeling used in the discovery of AZD1979, a melanin-concentrating hormone receptor 1 (MCHr1) antagonist aimed for treatment of obesity. The model quantitatively connects the relevant biomarkers and thereby closes the scaling path from rodent to man, as well as from dose to effect level. The complexity of individual modeling steps depends on the quality and quantity of data as well as the prior information; from semimechanistic body-composition models to standard linear regression. Key predictions are obtained by standard forward simulation (e.g., predicting effect from exposure), as well as non-parametric input estimation (e.g., predicting energy intake from longitudinal body-weight data), across species. The work illustrates how modeling integrates data from several species, fills critical gaps between biomarkers, and supports experimental design and human dose-prediction. We believe this approach can be of general interest for translation in the obesity field, and might inspire translational reasoning more broadly. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  1. Radiation-induced mammary carcinogenesis in rodent models. What's different from chemical carcinogenesis?

    International Nuclear Information System (INIS)

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Iizuka, Daisuke; Daino, Kazuhiro; Takabatake, Takashi; Okamoto, Mieko; Kakinuma, Shizuko; Shimada, Yoshiya

    2009-01-01

    Ionizing radiation is one of a few well-characterized etiologic factors of human breast cancer. Laboratory rodents serve as useful experimental models for investigating dose responses and mechanisms of cancer development. Using these models, a lot of information has been accumulated about mammary gland cancer, which can be induced by both chemical carcinogens and radiation. In this review, we first list some experimental rodent models of breast cancer induction. We then focus on several topics that are important in understanding the mechanisms and risk modification of breast cancer development, and compare radiation and chemical carcinogenesis models. We will focus on the pathology and natural history of cancer development in these models, genetic changes observed in induced cancers, indirect effects of carcinogens, and finally risk modification by reproductive factors and age at exposure to the carcinogens. In addition, we summarize the knowledge available on mammary stem/progenitor cells as a potential target of carcinogens. Comparison of chemical and radiation carcinogenesis models on these topics indicates certain similarities, but it also indicates clear differences in several important aspects, such as genetic alterations of induced cancers and modification of susceptibility by age and reproductive factors. Identification of the target cell type and relevant translational research for human risk management may be among the important issues that are addressed by radiation carcinogenesis models. (author)

  2. Oro-gustatory perception of dietary lipids and calcium signaling in taste bud cells are altered in nutritionally obesity-prone Psammomys obesus.

    Science.gov (United States)

    Abdoul-Azize, Souleymane; Atek-Mebarki, Feriel; Bitam, Arezki; Sadou, Hassimi; Koceïr, Elhadj Ahmed; Khan, Naim Akhtar

    2013-01-01

    Since the increasing prevalence of obesity is one of the major health problems of the modern era, understanding the mechanisms of oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. We have conducted the present study on Psammomys obesus, the rodent desert gerbil which is a unique polygenic natural animal model of obesity. Our results show that obese animals exhibit a strong preference for lipid solutions in a two-bottle test. Interestingly, the expression of CD36, a lipido-receptor, in taste buds cells (TBC), isolated from circumvallate papillae, was decreased at mRNA level, but remained unaltered at protein level, in obese animals. We further studied the effects of linoleic acid (LA), a long-chain fatty acid, on the increases in free intracellular calcium (Ca(2+)) concentrations, [Ca(2+)]i, in the TBC of P. obesus. LA induced increases in [Ca(2+)]i, largely via CD36, from intracellular pool, followed by the opening of store-operated Ca(2+) (SOC) channels in the TBC of these animals. The action of this fatty acid on the increases in [Ca(2+)]i was higher in obese animals than that in controls. However, the release of Ca(2+) from intracellular stores, studied also by employing thapsigargin, was lower in TBC of obese animals than control rodents. In this study, we show, for the first time, that increased lipid intake and altered Ca(2+) signaling in TBC are associated with obesity in Psammomys obesus.

  3. Tactile learning in rodents: Neurobiology and neuropharmacology.

    Science.gov (United States)

    Roohbakhsh, Ali; Shamsizadeh, Ali; Arababadi, Mohammad Kazemi; Ayoobi, Fateme; Fatemi, Iman; Allahtavakoli, Mohammad; Mohammad-Zadeh, Mohammad

    2016-02-15

    Animal models of learning and memory have been the subject of considerable research. Rodents such as mice and rats are nocturnal animals with poor vision, and their survival depends on their sense of touch. Recent reports have shown that whisker somatosensation is the main channel through which rodents collect and process environmental information. This review describes tactile learning in rodents from a neurobiological and neuropharmacological perspective, and how this is involved in memory-related processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys.

    Science.gov (United States)

    Barnhart, Kirstin F; Christianson, Dawn R; Hanley, Patrick W; Driessen, Wouter H P; Bernacky, Bruce J; Baze, Wallace B; Wen, Sijin; Tian, Mei; Ma, Jingfei; Kolonin, Mikhail G; Saha, Pradip K; Do, Kim-Anh; Hulvat, James F; Gelovani, Juri G; Chan, Lawrence; Arap, Wadih; Pasqualini, Renata

    2011-11-09

    Obesity, defined as body mass index greater than 30, is a leading cause of morbidity and mortality and a financial burden worldwide. Despite significant efforts in the past decade, very few drugs have been successfully developed for the treatment of obese patients. Biological differences between rodents and primates are a major hurdle for translation of anti-obesity strategies either discovered or developed in rodents into effective human therapeutics. Here, we evaluate the ligand-directed peptidomimetic CKGGRAKDC-GG-(D)(KLAKLAK)(2) (henceforth termed adipotide) in obese Old World monkeys. Treatment with adipotide induced targeted apoptosis within blood vessels of white adipose tissue and resulted in rapid weight loss and improved insulin resistance in obese monkeys. Magnetic resonance imaging and dual-energy x-ray absorptiometry confirmed a marked reduction in white adipose tissue. At experimentally determined optimal doses, monkeys from three different species displayed predictable and reversible changes in renal proximal tubule function. Together, these data in primates establish adipotide as a prototype in a new class of candidate drugs that may be useful for treating obesity in humans.

  5. [Effects of diabetes and obesity on the higher brain functions in rodents].

    Science.gov (United States)

    Asato, Megumi; Ikeda, Hiroko; Kamei, Junzo

    2012-11-01

    Metabolic disorders, such as diabetes and obesity, have been indicated to disturb the function of the central nervous system (CNS) as well as several peripheral organs. Clinically, it is well recognized that the prevalence of anxiety and depression is higher in diabetic and obesity patients than in the general population. We have recently indicated that streptozotocin-induced diabetic and diet-induced obesity mice have enhanced fear memory and higher anxiety-like behavior in several tests such as the conditioned fear, tail-suspension, hole-board and elevated open-platform tests. The changes in fear memory and anxiety-like behavior of diabetic and obese mice are due to the dysfunction of central glutamatergic and monoaminergic systems, which is mediated by the changes of intracellular signaling. These results suggest that metabolic disorders strongly affect the function of the CNS and disturb the higher brain functions. These dysfunctions of the CNS in diabetes and obesity are involved in the increased prevalence of anxiety disorders and depression. Normalization of these dysfunctions in the CNS will be a new attractive target to treat the metabolic disorders and their complications.

  6. Modeling the clinical and economic implications of obesity using microsimulation.

    Science.gov (United States)

    Su, W; Huang, J; Chen, F; Iacobucci, W; Mocarski, M; Dall, T M; Perreault, L

    2015-01-01

    The obesity epidemic has raised considerable public health concerns, but there are few validated longitudinal simulation models examining the human and economic cost of obesity. This paper describes a microsimulation model as a comprehensive tool to understand the relationship between body weight, health, and economic outcomes. Patient health and economic outcomes were simulated annually over 10 years using a Markov-based microsimulation model. The obese population examined is nationally representative of obese adults in the US from the 2005-2012 National Health and Nutrition Examination Surveys, while a matched normal weight population was constructed to have similar demographics as the obese population during the same period. Prediction equations for onset of obesity-related comorbidities, medical expenditures, economic outcomes, mortality, and quality-of-life came from published trials and studies supplemented with original research. Model validation followed International Society for Pharmacoeconomics and Outcomes Research practice guidelines. Among surviving adults, relative to a matched normal weight population, obese adults averaged $3900 higher medical expenditures in the initial year, growing to $4600 higher expenditures in year 10. Obese adults had higher initial prevalence and higher simulated onset of comorbidities as they aged. Over 10 years, excess medical expenditures attributed to obesity averaged $4280 annually-ranging from $2820 for obese category I to $5100 for obese category II, and $8710 for obese category III. Each excess kilogram of weight contributed to $140 higher annual costs, on average, ranging from $136 (obese I) to $152 (obese III). Poor health associated with obesity increased work absenteeism and mortality, and lowered employment probability, personal income, and quality-of-life. This validated model helps illustrate why obese adults have higher medical and indirect costs relative to normal weight adults, and shows that medical costs

  7. Optical imaging of oxidative stress in retinitis pigmentosa (RP) in rodent model

    Science.gov (United States)

    Ghanian, Zahra; Maleki, Sepideh; Gopalakrishnan, Sandeep; Sepehr, Reyhaneh; Eells, Janis T.; Ranji, Mahsa

    2013-02-01

    Oxidative stress (OS), which increases during retinal degenerative disorders, contributes to photoreceptor cell loss. The objective of this study was to investigate the changes in the metabolic state of the eye tissue in rodent models of retinitis pigmentosa by using the cryofluorescence imaging technique. The mitochondrial metabolic coenzymes NADH and FADH2 are autofluorescent and can be monitored without exogenous labels using optical techniques. The NADH redox ratio (RR), which is the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), was used as a quantitative diagnostic marker. The NADH RR was examined in an established rodent model of retinitis pigmentosa (RP), the P23H rat, and compared to that of control Sprague-Dawley (SD) rats and P23H NIR treated rats. Our results demonstrated 24% decrease in the mean NADH RR of the eyes from P23H transgenic rats compared to normal rats and 20% increase in the mean NADH RR of the eyes from the P23H NIR treated rats compared to P23H non-treated rats.

  8. Obesity and Low-Grade Inflammation Increase Plasma Follistatin-Like 3 in Humans

    DEFF Research Database (Denmark)

    Brandt, Claus; Pedersen, Maria; Rinnov, Anders

    2014-01-01

    , plasma leptin, fasting insulin, and HOMA B and negatively with HOMA S. Furthermore plasma fstl3 correlated positively with plasma TNF-α and IL-6 levels. Infusion of LPS and TNF-α, but not IL-6 and insulin, increased plasma fstl3 in humans. CONCLUSION: Plasma fstl3 is increased in obese subjects......BACKGROUND: Rodent models suggest that follistatin-like 3 (fstl3) is associated with diabetes and obesity. In humans, plasma fstl3 is reduced with gestational diabetes. In vitro, TNF-α induces fstl3 secretion, which suggests a link to inflammation. OBJECTIVE: To elucidate the association between...... plasma fstl3 and obesity, insulin resistance, and low-grade inflammation in humans. STUDY DESIGN: Plasma fstl3 levels were determined in a cross-sectional study including three groups: patients with type 2 diabetes, impaired glucose tolerance, and healthy controls. In addition, lipopolysaccharide (LPS...

  9. From the Rodent Spinal Cord Injury Model to Human Application: Promises and Challenges.

    Science.gov (United States)

    Dietz, Volker; Schwab, Martin E

    2017-05-01

    Repair of the spinal cord and improvement of mobility after injury has been a matter of basic and clinical research for several decades. A number of repair approaches were performed in animals, mainly rodent models of spinal cord injury (SCI). Some of these experimental therapies resulted in significant regeneration of tract fibers, formation of new connections and circuits, and associated improvement of mobility. Some clinical trials aiming at translating these approaches to the human condition of an SCI are currently on-going. The present therapy, however, remains rehabiliation: Mobility of patients with an SCI can be improved to a limited extent by the exploition of neuroplasticity. In this article the present state of the art in the field of SCI research will be discussed. Studies dealing with the promotion of spinal cord repair and those directed to improve mobility by exploition of neuroplasticity will be summarized. The promises and challenges of translational basic research in rodent SCI models will be presented.

  10. Use of rodents as models of human diseases

    Directory of Open Access Journals (Sweden)

    Thierry F Vandamme

    2014-01-01

    Full Text Available Advances in molecular biology have significantly increased the understanding of the biology of different diseases. However, these discoveries have not yet been fully translated into improved treatments for patients with diseases such as cancers. One of the factors limiting the translation of knowledge from preclinical studies to the clinic has been the limitations of in vivo diseases models. In this brief review, we will discuss the advantages and disadvantages of rodent models that have been developed to simulate human pathologies, focusing in models that employ xenografts and genetic modification. Within the framework of genetically engineered mouse (GEM models, we will review some of the current genetic strategies for modeling diseases in the mouse and the preclinical studies that have already been undertaken. We will also discuss how recent improvements in imaging technologies may increase the information derived from using these GEMs during early assessments of potential therapeutic pathways. Furthermore, it is interesting to note that one of the values of using a mouse model is the very rapid turnover rate of the animal, going through the process of birth to death in a very short timeframe relative to that of larger mammalian species.

  11. The bioeconomics of controlling an African rodent pest species

    DEFF Research Database (Denmark)

    Skonhoft, Anders; Leirs, Herwig; Andreassen, Harry P

    2006-01-01

    The paper treats the economy of controlling an African pest rodent, the multimammate rat, causing major damage in maize production. An ecological population model is presented and used as a basis for the economic analyses carried out at the village level using data from Tanzania. This model...... incorporates both density-dependent and density-independent (stochastic) factors. Rodents are controlled by applying poison, and the costs are made up of the cost of poison plus the damage to maize production. We analyse how the present-value costs of maize production are affected by various rodent control...

  12. An age structured model for obesity prevalence dynamics in populations

    Directory of Open Access Journals (Sweden)

    Gilberto González Parra

    2010-08-01

    Full Text Available Objective. Modeling the correlation of the development of obesity in a population with age and time and predict the dynamics of the correlation of the development of obesity in a population with age and time under different scenarios in Valencia (Spain. Materials and methods. An age structured mathematical model is used to describe the future dynamics of obesity prevalence for different ages in human population with excess weight. Simulation of the model with parameters estimated using the Health Survey of the Region of Valencia 2000 (4.319 interviews and Health Survey of the Region of Valencia 2005 (4.012 interviews. The model considers only overweight and obese populations since these subpopulations are the most relevant on obesity health concern. Results. The model allows predicting and studying the prevalence of obesity for each age. Results showed an increasing trend of obesity in the following years in well accordance with the trend observed in several countries. Conclusions. Based on the numerical simulations it is possible to conclude that the age structured mathematical model is suitable to forecast the obesity epidemic in each age group in different countries. Additionally, this type of models may be applied to study other characteristics of other populations such animal populations.

  13. Quantitative Assessment of Mammary Gland Density in Rodents Using Digital Image Analysis

    Directory of Open Access Journals (Sweden)

    Thompson Henry J

    2011-06-01

    Full Text Available Abstract Background Rodent models have been used extensively to study mammary gland development and for studies of toxicology and carcinogenesis. Mammary gland gross morphology can visualized via the excision of intact mammary gland chains following fixation and staining with carmine using a tissue preparation referred to as a whole mount. Methods are described for the automated collection of digital images from an entire mammary gland whole mount and for the interrogation of digital data using a "masking" technique available with Image-Pro® plus image analysis software (Mediacybernetics. Silver Spring, MD. Results Parallel to mammographic analysis in humans, measurements of rodent mammary gland density were derived from area-based or volume-based algorithms and included: total circumscribed mammary fat pad mass, mammary epithelial mass, and epithelium-free fat pad mass. These values permitted estimation of absolute mass of mammary epithelium as well as breast density. The biological plausibility of these measurements was evaluated in mammary whole mounts from rats and mice. During mammary gland development, absolute epithelial mass increased linearly without significant changes in mammographic density. Treatment of rodents with tamoxifen, 9-cis-retinoic acid, or ovariectomy, and occurrence of diet induced obesity decreased both absolute epithelial mass and mammographic density. The area and volumetric methods gave similar results. Conclusions Digital image analysis can be used for screening agents for potential impact on reproductive toxicity or carcinogenesis as well as for mechanistic studies, particularly for cumulative effects on mammary epithelial mass as well as translational studies of mechanisms that explain the relationship between epithelial mass and cancer risk.

  14. Urban resident attitudes toward rodents, rodent control products, and environmental effects

    Science.gov (United States)

    Rodent control in urban areas can result in the inadvertent mortality of non-target species (e.g., bobcats). However, there is little detailed information about rodent control practices of urban residents. Our objective was to evaluate urban rodent control behaviors in two area...

  15. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans

    NARCIS (Netherlands)

    Nies, V J M; Struik, D; Wolfs, M G M; Rensen, S S; Szalowska, E; Unmehopa, U A; Fluiter, K.; van der Meer, T P; Hajmousa, G; Buurman, W A; Greve, J W; Rezaee, F; Shiri-Sverdlov, R; Vonk, R.J.; Swaab, D F; Wolffenbuttel, B H R; Jonker, J W; van Vliet-Ostaptchouk, J V

    2018-01-01

    BACKGROUND/OBJECTIVES: Mutations in the Tubby gene (TUB) cause late-onset obesity and insulin resistance in mice and syndromic obesity in humans. Although TUB gene function has not yet been fully elucidated, studies in rodents indicate that TUB is involved in the hypothalamic pathways regulating

  16. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans

    NARCIS (Netherlands)

    Nies, V J M; Struik, D; Wolfs, M G M; Rensen, S S; Szalowska, E; Unmehopa, U A; Fluiter, K; van der Meer, T P; Hajmousa, G; Buurman, W A; Greve, J W; Rezaee, F; Shiri-Sverdlov, R; Vonk, R J; Swaab, D F; Wolffenbuttel, B H R; Jonker, J W; van Vliet-Ostaptchouk, J V

    BACKGROUND/OBJECTIVES: Mutations in the Tubby gene (TUB) cause late-onset obesity and insulin resistance in mice and syndromic obesity in humans. Although TUB gene function has not yet been fully elucidated, studies in rodents indicate that TUB is involved in the hypothalamic pathways regulating

  17. Self-administered nicotine differentially impacts body weight gain in obesity-prone and obesity-resistant rats.

    Science.gov (United States)

    Rupprecht, Laura E; Smith, Tracy T; Donny, Eric C; Sved, Alan F

    2017-07-01

    Obesity and tobacco smoking represent the largest challenges to public health, but the causal relationship between nicotine and obesity is poorly understood. Nicotine suppresses body weight gain, a factor impacting smoking initiation and the failure to quit, particularly among obese smokers. The impact of nicotine on body weight regulation in obesity-prone and obesity-resistant populations consuming densely caloric diets is unknown. In the current experiment, body weight gain of adult male rats maintained on a high energy diet (31.8% kcal from fat) distributed into obesity-prone (OP), obesity-resistant (OR) and an intermediate group, which was placed on standard rodent chow (Chow). These rats were surgically implanted with intravenous catheters and allowed to self-administer nicotine (0 or 60μg/kg/infusion, a standard self-administration dose) in 1-h sessions for 20 consecutive days. Self-administered nicotine significantly suppressed body weight gain but not food intake in OP and Chow rats. Self-administered nicotine had no effect on body weight gain in OR rats. These data suggest that: 1) OR rats are also resistant to nicotine-induced suppression of body weight gain; and 2) nicotine may reduce levels of obesity in a subset of smokers prone to obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Oro-gustatory perception of dietary lipids and calcium signaling in taste bud cells are altered in nutritionally obesity-prone Psammomys obesus.

    Directory of Open Access Journals (Sweden)

    Souleymane Abdoul-Azize

    Full Text Available Since the increasing prevalence of obesity is one of the major health problems of the modern era, understanding the mechanisms of oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. We have conducted the present study on Psammomys obesus, the rodent desert gerbil which is a unique polygenic natural animal model of obesity. Our results show that obese animals exhibit a strong preference for lipid solutions in a two-bottle test. Interestingly, the expression of CD36, a lipido-receptor, in taste buds cells (TBC, isolated from circumvallate papillae, was decreased at mRNA level, but remained unaltered at protein level, in obese animals. We further studied the effects of linoleic acid (LA, a long-chain fatty acid, on the increases in free intracellular calcium (Ca(2+ concentrations, [Ca(2+]i, in the TBC of P. obesus. LA induced increases in [Ca(2+]i, largely via CD36, from intracellular pool, followed by the opening of store-operated Ca(2+ (SOC channels in the TBC of these animals. The action of this fatty acid on the increases in [Ca(2+]i was higher in obese animals than that in controls. However, the release of Ca(2+ from intracellular stores, studied also by employing thapsigargin, was lower in TBC of obese animals than control rodents. In this study, we show, for the first time, that increased lipid intake and altered Ca(2+ signaling in TBC are associated with obesity in Psammomys obesus.

  19. Arvicanthis ansorgei, a Novel Model for the Study of Sleep and Waking in Diurnal Rodents

    Science.gov (United States)

    Hubbard, Jeffrey; Ruppert, Elisabeth; Calvel, Laurent; Robin-Choteau, Ludivine; Gropp, Claire-Marie; Allemann, Caroline; Reibel, Sophie; Sage-Ciocca, Dominique; Bourgin, Patrice

    2015-01-01

    Study Objectives: Sleep neurobiology studies use nocturnal species, mainly rats and mice. However, because their daily sleep/wake organization is inverted as compared to humans, a diurnal model for sleep studies is needed. To fill this gap, we phenotyped sleep and waking in Arvicanthis ansorgei, a diurnal rodent widely used for the study of circadian rhythms. Design: Video-electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG) recordings. Setting: Rodent sleep laboratory. Participants: Fourteen male Arvicanthis ansorgei, aged 3 mo. Interventions: 12 h light (L):12 h dark (D) baseline condition, 24-h constant darkness, 6-h sleep deprivation. Measurements and Results: Wake and rapid eye movement (REM) sleep showed similar electrophysiological characteristics as nocturnal rodents. On average, animals spent 12.9 h ± 0.4 awake per 24-h cycle, of which 6.88 h ± 0.3 was during the light period. NREM sleep accounted for 9.63 h ± 0.4, which of 5.13 h ± 0.2 during dark period, and REM sleep for 89.9 min ± 6.7, which of 52.8 min ± 4.4 during dark period. The time-course of sleep and waking across the 12 h light:12 h dark was overall inverted to that observed in rats or mice, though with larger amounts of crepuscular activity at light and dark transitions. A dominant crepuscular regulation of sleep and waking persisted under constant darkness, showing the lack of a strong circadian drive in the absence of clock reinforcement by external cues, such as a running wheel. Conservation of the homeostatic regulation was confirmed with the observation of higher delta power following sustained waking periods and a 6-h sleep deprivation, with subsequent decrease during recovery sleep. Conclusions: Arvicanthis ansorgei is a valid diurnal rodent model for studying the regulatory mechanisms of sleep and so represents a valuable tool for further understanding the nocturnality/diurnality switch. Citation: Hubbard J, Ruppert E, Calvel L, Robin-Choteau L, Gropp CM

  20. Neuregulin 1: a prime candidate for research into gene-environment interactions in schizophrenia? Insights from genetic rodent models

    Directory of Open Access Journals (Sweden)

    Tim eKarl

    2013-08-01

    Full Text Available Schizophrenia is a multi-factorial disease characterized by a high heritability and environmental risk factors. In recent years, an increasing number of researchers worldwide have started investigating the ‘two-hit hypothesis’ of schizophrenia predicting that genetic and environmental risk factors (GxE interactively cause the development of the disorder. This work is starting to produce valuable new animal models and reveal novel insights into the pathophysiology of schizophrenia. This mini review will focus on recent advancements in the field made by challenging mutant and transgenic rodent models for the schizophrenia candidate gene neuregulin 1 (NRG1 with particular environmental factors. It will outline results obtained from mouse and rat models for various Nrg1 isoforms/isoform types (e.g. transmembrane domain Nrg1, Type II Nrg1, which have been exposed to different forms of stress (acute versus chronic, restraint versus social and housing conditions (standard laboratory versus minimally enriched housing. These studies suggest Nrg1 as a prime candidate for GxE interactions in schizophrenia rodent models and that the use of rodent models will enable a better understanding of GxE interactions and the underlying mechanisms.

  1. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans

    NARCIS (Netherlands)

    Nies, V. J. M.; Struik, D.; Wolfs, M. G. M.; Rensen, S. S.; Szalowska, E.; Unmehopa, U. A.; Fluiter, K.; van der Meer, T. P.; Hajmousa, G.; Buurman, W. A.; Greve, J. W.; Rezaee, F.; Shiri-Sverdlov, R.; Vonk, R. J.; Swaab, D. F.; Wolffenbuttel, B. H. R.; Jonker, J. W.; van Vliet-Ostaptchouk, J. V.

    2017-01-01

    Mutations in the Tubby gene (TUB) cause late-onset obesity and insulin resistance in mice and syndromic obesity in humans. Although TUB gene function has not yet been fully elucidated, studies in rodents indicate that TUB is involved in the hypothalamic pathways regulating food intake and adiposity.

  2. Mutation analysis of the MCHR1 gene in human obesity

    DEFF Research Database (Denmark)

    Wermter, Anne-Kathrin; Reichwald, Kathrin; Büch, Thomas

    2005-01-01

    The importance of the melanin-concentrating hormone (MCH) system for regulation of energy homeostasis and body weight has been demonstrated in rodents. We analysed the human MCH receptor 1 gene (MCHR1) with respect to human obesity....

  3. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling

    International Nuclear Information System (INIS)

    Valerio, Luis G.; Arvidson, Kirk B.; Chanderbhan, Ronald F.; Contrera, Joseph F.

    2007-01-01

    Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals

  4. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    Science.gov (United States)

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available The recently developed histological scoring system for non-alcoholic fatty liver disease (NAFLD by the NASH Clinical Research Network (NASH-CRN has been widely used in clinical settings, but is increasingly employed in preclinical research as well. However, it has not been systematically analyzed whether the human scoring system can directly be converted to preclinical rodent models. To analyze this, we systematically compared human NAFLD liver pathology, using human liver biopsies, with liver pathology of several NAFLD mouse models. Based upon the features pertaining to mouse NAFLD, we aimed at establishing a modified generic scoring system that is applicable to broad spectrum of rodent models.The histopathology of NAFLD was analyzed in several different mouse models of NAFLD to define generic criteria for histological assessment (preclinical scoring system. For validation of this scoring system, 36 slides of mouse livers, covering the whole spectrum of NAFLD, were blindly analyzed by ten observers. Additionally, the livers were blindly scored by one observer during two separate assessments longer than 3 months apart.The criteria macrovesicular steatosis, microvesicular steatosis, hepatocellular hypertrophy, inflammation and fibrosis were generally applicable to rodent NAFLD. The inter-observer reproducibility (evaluated using the Intraclass Correlation Coefficient between the ten observers was high for the analysis of macrovesicular steatosis and microvesicular steatosis (ICC = 0.784 and 0.776, all p<0.001, respectively and moderate for the analysis of hypertrophy and inflammation (ICC = 0.685 and 0.650, all p<0.001, respectively. The intra-observer reproducibility between the different observations of one observer was high for the analysis of macrovesicular steatosis, microvesicular steatosis and hypertrophy (ICC = 0.871, 0.871 and 0.896, all p<0.001, respectively and very high for the analysis of inflammation (ICC = 0.931, p

  6. Models and detection of spontaneous recurrent seizures in laboratory rodents

    Directory of Open Access Journals (Sweden)

    Bin Gu

    2017-07-01

    Full Text Available Epilepsy, characterized by spontaneous recurrent seizures (SRS, is a serious and common neurological disorder afflicting an estimated 1% of the population worldwide. Animal experiments, especially those utilizing small laboratory rodents, remain essential to understanding the fundamental mechanisms underlying epilepsy and to prevent, diagnose, and treat this disease. While much attention has been focused on epileptogenesis in animal models of epilepsy, there is little discussion on SRS, the hallmark of epilepsy. This is in part due to the technical difficulties of rigorous SRS detection. In this review, we comprehensively summarize both genetic and acquired models of SRS and discuss the methodology used to monitor and detect SRS in mice and rats.

  7. Osseointegration of biochemically modified implants in an osteoporosis rodent model

    Directory of Open Access Journals (Sweden)

    B Stadlinger

    2013-07-01

    Full Text Available The present study examined the impact of implant surface modifications on osseointegration in an osteoporotic rodent model. Sandblasted, acid-etched titanium implants were either used directly (control or were further modified by surface conditioning with NaOH or by coating with one of the following active agents: collagen/chondroitin sulphate, simvastatin, or zoledronic acid. Control and modified implants were inserted into the proximal tibia of aged ovariectomised (OVX osteoporotic rats (n = 32/group. In addition, aged oestrogen competent animals received either control or NaOH conditioned implants. Animals were sacrificed 2 and 4 weeks post-implantation. The excised tibiae were utilised for biomechanical and morphometric readouts (n = 8/group/readout. Biomechanical testing revealed at both time points dramatically reduced osseointegration in the tibia of oestrogen deprived osteoporotic animals compared to intact controls irrespective of NaOH exposure. Consistently, histomorphometric and microCT analyses demonstrated diminished bone-implant contact (BIC, peri-implant bone area (BA, bone volume/tissue volume (BV/TV and bone-mineral density (BMD in OVX animals. Surface coating with collagen/chondroitin sulphate had no detectable impact on osseointegration. Interestingly, statin coating resulted in a transient increase in BIC 2 weeks post-implantation; which, however, did not correspond to improvement of biomechanical readouts. Local exposure to zoledronic acid increased BIC, BA, BV/TV and BMD at 4 weeks. Yet this translated only into a non-significant improvement of biomechanical properties. In conclusion, this study presents a rodent model mimicking severely osteoporotic bone. Contrary to the other bioactive agents, locally released zoledronic acid had a positive impact on osseointegration albeit to a lesser extent than reported in less challenging models.

  8. Template based rodent brain extraction and atlas mapping.

    Science.gov (United States)

    Weimin Huang; Jiaqi Zhang; Zhiping Lin; Su Huang; Yuping Duan; Zhongkang Lu

    2016-08-01

    Accurate rodent brain extraction is the basic step for many translational studies using MR imaging. This paper presents a template based approach with multi-expert refinement to automatic rodent brain extraction. We first build the brain appearance model based on the learning exemplars. Together with the template matching, we encode the rodent brain position into the search space to reliably locate the rodent brain and estimate the rough segmentation. With the initial mask, a level-set segmentation and a mask-based template learning are implemented further to the brain region. The multi-expert fusion is used to generate a new mask. We finally combine the region growing based on the histogram distribution learning to delineate the final brain mask. A high-resolution rodent atlas is used to illustrate that the segmented low resolution anatomic image can be well mapped to the atlas. Tested on a public data set, all brains are located reliably and we achieve the mean Jaccard similarity score at 94.99% for brain segmentation, which is a statistically significant improvement compared to two other rodent brain extraction methods.

  9. Barriers to developing a valid rodent model of Alzheimer's disease: from behavioural analysis to etiologicalmechanisms

    Directory of Open Access Journals (Sweden)

    Darryl Christopher Gidyk

    2015-07-01

    Full Text Available Sporadic Alzheimer's disease is the most prevalent form of age-related dementia. As such, great effort has been put forth to investigate the etiology, progression, and underlying mechanisms of the disease. Countless studies have been conducted however the details of this disease remain largely unknown. Rodent models provide opportunities to investigate certain aspects of AD that cannot be ethically studied in humans. These animal models vary from study to study and have provided some insight, but no real advancements in the prevention or treatment of the disease. In this Hypothesis and Theory paper, we discuss what we perceive as barriers to impactful discovery in rodent AD research and we offer solutions for moving forward. Although no single model of AD is capable of providing the solution to the growing epidemic of the disease, we encourage a comprehensive approach that acknowledges the complex etiology of AD with the goal of enhancing the bidirectional translatability from bench to bedside and vice versa.

  10. Cushing's syndrome: a model for sarcopenic obesity.

    Science.gov (United States)

    Drey, Michael; Berr, Christina M; Reincke, Martin; Fazel, Julia; Seissler, Jochen; Schopohl, Jochen; Bidlingmaier, Martin; Zopp, Stefanie; Reisch, Nicole; Beuschlein, Felix; Osswald, Andrea; Schmidmaier, Ralf

    2017-09-01

    Obesity and its metabolic impairments are discussed as major risk factors for sarcopenia leading to sarcopenic obesity. Cushing's syndrome is known to be associated with obesity and muscle atrophy. We compared Cushing's syndrome with matched obese controls regarding body composition, physical performance, and biochemical markers to test the hypothesis that Cushing's syndrome could be a model for sarcopenic obesity. By propensity score matching, 47 controls were selected by body mass index and gender as obese controls. Fat mass and muscle mass were measured by bioelectrical impedance analysis. Muscle function was assessed by chair rising test and hand grip strength. Biochemical markers of glucose and lipid metabolism and inflammation (hsCRP) were measured in peripheral blood. Muscle mass did not differ between Cushing's syndrome and obese controls. However, Cushing's syndrome patients showed significantly greater chair rising time (9.5 s vs. 7.3 s, p = 0.008) and significantly lower hand grip strength (32.1 kg vs. 36.8 kg, p = 0.003). Cushing's syndrome patients with impaired fasting glucose have shown the highest limitations in hand grip strength and chair rising time. Similar to published data in ageing medicine, Cushing's syndrome patients show loss of muscle function that cannot be explained by loss of muscle mass. Impaired muscle quality due to fat infiltration may be the reason. This is supported by the observation that Cushing's syndrome patients with impaired glucose metabolism show strongest deterioration of muscle function. Research in sarcopenic obesity in elderly is hampered by confounding comorbidities and polypharmacy. As Cushing's syndrome patients are frequently free of comorbidities and as Cushing's syndrome is potentially curable we suggest Cushing's syndrome as a clinical model for further research in sarcopenic obesity.

  11. Contribution of Large Animals to Translational Research on Prenatal Programming of Obesity and Associated Diseases.

    Science.gov (United States)

    Gonzalez-Bulnes, Antonio; Chavatte-Palmer, Pascale

    2017-01-01

    The awareness of factors causing obesity and associated disorders has grown up in the last years from genome to a more complicated concept (developmental programming) in which prenatal and early-postnatal conditions markedly modify the phenotype and homeostasis of the individuals and determine juvenile growth, life-time fitness/obesity and disease risks. Experimentation in human beings is impeded by ethical issues plus inherent high variability and confounding factors (genetics, lifestyle and socioeconomic heterogeneity) and preclinical studies in adequate translational animal models are therefore decisive. Most of the studies have been performed in rodents, whilst the use of large animals is scarce. Having in mind body-size, handlingeasiness and cost-efficiency, the main large animal species for use in biomedical research are rabbits, sheep and swine. The choice of the model depends on the research objectives. To outline the main features of the use of rabbits, sheep and swine and their contributions as translational models in prenatal programming of obesity and associated disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. DC-Obesity: A New Model for Estimating Differential Lifetime Costs of Overweight and Obesity by Socioeconomic Status.

    Science.gov (United States)

    Sonntag, Diana; Jarczok, Marc N; Ali, Shehzad

    2017-09-01

    The aim of this study was to quantify the magnitude of lifetime costs of overweight and obesity by socioeconomic status (SES). Differential Costs (DC)-Obesity is a new model that uses time-to-event simulation and the Markov modeling approach to compare lifetime excess costs of overweight and obesity among individuals with low, middle, and high SES. SES was measured by a multidimensional aggregated index based on level of education, occupational class, and income by using longitudinal data of the German Socioeconomic Panel (SOEP). Random-effects meta-analysis was applied to combine estimates of (in)direct costs of overweight and obesity. DC-Obesity brings attention to opposite socioeconomic gradients in lifetime costs due to obesity compared to overweight. Compared to individuals with obesity and high SES, individuals with obesity and low SES had lifetime excess costs that were two times higher (€8,526). In contrast, these costs were 20% higher in groups with overweight and high SES than in groups with overweight and low SES (€2,711). The results of this study indicate that SES may play a pivotal role in designing cost-effective and sustainable interventions to prevent and treat overweight and obesity. DC-Obesity may help public policy planners to make informed decisions about obesity programs targeted at vulnerable SES groups. © 2017 The Obesity Society.

  13. Implementing the obesity care model at a community health center in Hawaii to address childhood obesity.

    Science.gov (United States)

    Okihiro, May; Pillen, Michelle; Ancog, Cristeta; Inda, Christy; Sehgal, Vija

    2013-01-01

    Obesity, the most common chronic disease of childhood, is prevalent among economically disadvantaged children. The Chronic Care and Obesity Care Models are comprehensive health care strategies to improve outcomes by linking primary care best practices and community-based programs. Pediatric providers and community health centers are well positioned to design and implement coordinated and synergistic programs to address childhood health disparities. This article describes a comprehensive project based on the Obesity Care Model initiated at a rural community health center in Hawaii to address childhood obesity including: (1) the health care delivery changes constituting the quality improvement project; (2) capacity and team-building activities; (3) use of the project community level data to strengthen community engagement and investment; and (4) the academic-community partnership providing the project framework. We anticipate that these efforts will contribute to the long-term goal of reducing the prevalence of obesity and obesity associated morbidity in the community.

  14. Activity/inactivity circadian rhythm shows high similarities between young obesity-induced rats and old rats.

    Science.gov (United States)

    Bravo Santos, R; Delgado, J; Cubero, J; Franco, L; Ruiz-Moyano, S; Mesa, M; Rodríguez, A B; Uguz, C; Barriga, C

    2016-03-01

    The objective of the present study was to compare differences between elderly rats and young obesity-induced rats in their activity/inactivity circadian rhythm. The investigation was motivated by the differences reported previously for the circadian rhythms of both obese and elderly humans (and other animals), and those of healthy, young or mature individuals. Three groups of rats were formed: a young control group which was fed a standard chow for rodents; a young obesity-induced group which was fed a high-fat diet for four months; and an elderly control group with rats aged 2.5 years that was fed a standard chow for rodents. Activity/inactivity data were registered through actimetry using infrared actimeter systems in each cage to detect activity. Data were logged on a computer and chronobiological analysis were performed. The results showed diurnal activity (sleep time), nocturnal activity (awake time), amplitude, acrophase, and interdaily stability to be similar between the young obesity-induced group and the elderly control group, but different in the young control group. We have concluded that obesity leads to a chronodisruption status in the body similar to the circadian rhythm degradation observed in the elderly.

  15. The gut microbiota and obesity: from correlation to causality.

    Science.gov (United States)

    Zhao, Liping

    2013-09-01

    The gut microbiota has been linked with chronic diseases such as obesity in humans. However, the demonstration of causality between constituents of the microbiota and specific diseases remains an important challenge in the field. In this Opinion article, using Koch's postulates as a conceptual framework, I explore the chain of causation from alterations in the gut microbiota, particularly of the endotoxin-producing members, to the development of obesity in both rodents and humans. I then propose a strategy for identifying the causative agents of obesity in the human microbiota through a combination of microbiome-wide association studies, mechanistic analysis of host responses and the reproduction of diseases in gnotobiotic animals.

  16. MR microscopy of the lung in small rodents

    International Nuclear Information System (INIS)

    Takahashi, Masaya; Kubo, Shigeto; Kiryu, Shigeru; Gee, James; Hatabu, Hiroto

    2007-01-01

    Understanding how the mammalian respiratory system works and how it changes in disease states and under the influence of drugs is frequently pursued in model systems such as small rodents. These have many advantages, including being easily obtained in large numbers as purebred strains. Studies in small rodents are valuable for proof of concept studies and for increasing our knowledge about disease mechanisms. Since the recent developments in the generation of genetically designed animal models of disease, one needs the ability to assess morphology and function in in vivo systems. In this article, we first review previous reports regarding thoracic imaging. We then discuss approaches to take in making use of small rodents to increase MR microscopic sensitivity for these studies and to establish MR methods for clinically relevant lung imaging

  17. The JCR:LA-cp rat: a novel rodent model of cystic medial necrosis.

    Science.gov (United States)

    Pung, Yuh Fen; Chilian, William M; Bennett, Martin R; Figg, Nichola; Kamarulzaman, Mohd Hamzah

    2017-03-01

    Although there are multiple rodent models of the metabolic syndrome, very few develop vascular complications. In contrast, the JCR:LA-cp rat develops both metabolic syndrome and early atherosclerosis in predisposed areas. However, the pathology of the normal vessel wall has not been described. We examined JCR:LA control (+/+) or cp/cp rats fed normal chow diet for 6 or 18 mo. JCR:LA-cp rats developed multiple features of advanced cystic medial necrosis including "cysts," increased collagen formation and proteoglycan deposition around cysts, apoptosis of vascular smooth muscle cells, and spotty medial calcification. These appearances began within 6 mo and were extensive by 18 mo. JCR:LA-cp rats had reduced medial cellularity, increased medial thickness, and vessel hypoxia that was most marked in the adventitia. In conclusion, the normal chow-fed JCR:LA-cp rat represents a novel rodent model of cystic medial necrosis, associated with multiple metabolic abnormalities, vascular smooth muscle cell apoptosis, and vessel hypoxia. NEW & NOTEWORTHY Triggers for cystic medial necrosis (CMN) have been difficult to study due to lack of animal models to recapitulate the pathologies seen in humans. Our study is the first description of CMN in the rat. Thus the JCR:LA-cp rat represents a useful model to investigate the underlying molecular changes leading to the development of CMN. Copyright © 2017 the American Physiological Society.

  18. Embodying, calibrating and caring for a local model of obesity

    DEFF Research Database (Denmark)

    Winther, Jonas; Hillersdal, Line

    Interdisciplinary research collaborations are increasingly made a mandatory 'standard' within strategic research grants. Collaborations between the natural, social and humanistic sciences are conceptualized as uniquely suited to study pressing societal problems. The obesity epidemic has been...... highlighted as such a problem. Within research communities disparate explanatory models of obesity exist (Ulijaszek 2008) and some of these models of obesity are brought together in the Copenhagen-based interdisciplinary research initiative; Governing Obesity (GO) with the aim of addressing the causes...

  19. Influence of benzodiazepines on body weight and food intake in obese and lean Zucker rats.

    Science.gov (United States)

    Blasi, C

    2000-05-01

    1. The gamma-aminobutyric acid (GABA)-ergic system, which is functionally altered in obese (fa/fa) Zucker rats, plays an important role in controlling energy balance within the central nervous system. 2. GABA receptors seem to be involved in the dysfunction of the hypothalamic energy homeostasis-controlling mechanisms in these animals due to a genetically-induced defect of the leptin-neuropeptide Y system. 3. To shed further light on the possible role played by the GABA system in the pathogenesis of this rat model, two benzodiazepine (BDZ) receptor agonists (diazepam and clonazepam) and one BDZ antagonist (flumazenil) were administered intraperitoneally in obese and lean Zucker rats. 4. Body weight gain was reduced by the BDZ agonists in both phenotypes, and one receptor-agonist (diazepam) lowered insulin concentration in obese rats. In GABA-antagonist-treated obese rats, the daily amount of body weight gain and food intake acquired an oscillatory rhythm similar to that of normal rodents. 5. By demonstrating the role of BDZ receptors, these findings may help clarify the pathophysiology of obesity and insulin resistance in fatty Zucker rats.

  20. Interleukin-17A Gene Expression in Morbidly Obese Women

    Directory of Open Access Journals (Sweden)

    Fernando Zapata-Gonzalez

    2015-07-01

    Full Text Available Data from recent studies conducted in rodent models and humans suggest that interleukin-17A (IL-17A plays a role in the induction of inflammation in adipose tissue during obesity. The aim of this study was to assess the gene expression of IL-17A in adipose tissue of morbidly obese patients. We used RT-PCR to evaluate the expression of IL-17A and several adipo/cytokines in the visceral adipose tissue (VAT and subcutaneous adipose tissue (SAT of 10 normal-weight control women (BMI < 25 kg/m2 and 30 morbidly obese women (MO, BMI > 40 kg/m2. We measured serum levels of IL-17A and adipo/cytokines in MO and normal weight women. IL-17A expression was significantly higher in VAT than in SAT in MO patients (p = 0.0127. It was very low in normal-weight controls in both VAT and SAT tissues. We found positive correlations between IL-17A and IL-6, lipocalin-2 and resistin in VAT of MO patients. The circulating level of IL-17A was higher in the normal-weight group than the MO patients (p = 0.032, and it was significantly related to adiponectin and TNFRII levels. In conclusion, IL-17A expression in VAT is increased in morbidly obese women, which suggests a link between obesity and innate immunity in low-grade chronic inflammation in morbidly obese women.

  1. Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses

    Directory of Open Access Journals (Sweden)

    Joseph W. Golden

    2015-01-01

    Full Text Available Human pathogenic hantaviruses and arenaviruses are maintained in nature by persistent infection of rodent carrier populations. Several members of these virus groups can cause significant disease in humans that is generically termed viral hemorrhagic fever (HF and is characterized as a febrile illness with an increased propensity to cause acute inflammation. Human interaction with rodent carrier populations leads to infection. Arenaviruses are also viewed as potential biological weapons threat agents. There is an increased interest in studying these viruses in animal models to gain a deeper understating not only of viral pathogenesis, but also for the evaluation of medical countermeasures (MCM to mitigate disease threats. In this review, we examine current knowledge regarding animal models employed in the study of these viruses. We include analysis of infection models in natural reservoirs and also discuss the impact of strain heterogeneity on the susceptibility of animals to infection. This information should provide a comprehensive reference for those interested in the study of arenaviruses and hantaviruses not only for MCM development but also in the study of viral pathogenesis and the biology of these viruses in their natural reservoirs.

  2. Mechanical Elongation of the Small Intestine: Evaluation of Techniques for Optimal Screw Placement in a Rodent Model

    Directory of Open Access Journals (Sweden)

    P. A. Hausbrandt

    2013-01-01

    Full Text Available Introduction. The aim of this study was to evaluate techniques and establish an optimal method for mechanical elongation of small intestine (MESI using screws in a rodent model in order to develop a potential therapy for short bowel syndrome (SBS. Material and Methods. Adult female Sprague Dawley rats (n=24 with body weight from 250 to 300 g (Σ=283 were evaluated using 5 different groups in which the basic denominator for the technique involved the fixation of a blind loop of the intestine on the abdominal wall with the placement of a screw in the lumen secured to the abdominal wall. Results. In all groups with accessible screws, the rodents removed the implants despite the use of washers or suits to prevent removal. Subcutaneous placement of the screw combined with antibiotic treatment and dietary modifications was finally successful. In two animals autologous transplantation of the lengthened intestinal segment was successful. Discussion. While the rodent model may provide useful basic information on mechanical intestinal lengthening, further investigations should be performed in larger animals to make use of the translational nature of MESI in human SBS treatment.

  3. Modelling hemoglobin and hemoglobin:haptoglobin complex clearance in a non-rodent species– pharmacokinetic and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Felicitas S Boretti

    2014-10-01

    Full Text Available Preclinical studies suggest that haptoglobin (Hp supplementation could be an effective therapeutic modality during acute or chronic hemolytic diseases. Hp prevents Hb extravasation and neutralizes Hb’s oxidative and NO scavenging activity in the vasculature. Small animal models such as mouse, rat and guinea pig appear to be valuable to provide proof-of-concept for Hb neutralization by Hp in diverse pre-clinical conditions. However, these species differ significantly from human in the clearance of Hb:Hp complexes, which leads to long persistence of circulating Hb:Hp complexes after administration of human plasma derived Hp. Alternative animal models must therefore be explored to guide pre-clinical development of these potential therapeutics. In contrast to rodents, dogs have high Hp plasma concentrations comparable to human. In this study we show that like human macrophages, dog peripheral blood monocyte derived macrophages express a glucocorticoid inducible endocytic clearance pathways with a high specificity for the Hb:Hp complex. Evaluating the Beagle dog as a non-rodent model species we provide the first pharmacokinetic parameter estimates of free Hb and Hb:Hp phenotype complexes. The data reflect a drastically reduced volume of distribution (Vc of the complex compared to free Hb, increased exposures (Cmax and AUC and significantly reduced total body clearance (CL with a terminal half-life (t1/2 of approximately 12 hours. Distribution and clearance was identical for dog and human Hb (± glucocorticoid stimulation and for dimeric and multimeric Hp preparations bound to Hb. Collectively, our study supports the dog as a non-rodent animal model to study pharmacological and pharmacokinetic aspects of Hb clearance systems and apply the model to studying Hp therapeutics.

  4. Social defeat models in animal science: What we have learned from rodent models.

    Science.gov (United States)

    Toyoda, Atsushi

    2017-07-01

    Studies on stress and its impacts on animals are very important in many fields of science, including animal science, because various stresses influence animal production and animal welfare. In particular, the social stresses within animal groups have profound impact on animals, with the potential to induce abnormal behaviors and health problems. In humans, social stress induces several health problems, including psychiatric disorders. In animal stress models, social defeat models are well characterized and used in various research fields, particularly in studies concerning mental disorders. Recently, we have focused on behavior, nutrition and metabolism in rodent models of social defeat to elucidate how social stresses affect animals. In this review, recent significant progress in studies related to animal social defeat models are described. In the field of animal science, these stress models may contribute to advances in the development of functional foods and in the management of animal welfare. © 2017 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  5. Animal models of obesity and diabetes mellitus

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Clemmensen, Christoffer; Hofmann, Susanna M

    2018-01-01

    More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover......, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently...... available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models....

  6. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Finan, Brian; Fischer, Katrin

    2015-01-01

    We assessed the efficacy of simultaneous agonism at the glucagon-like peptide-1 receptor (GLP-1R) and the melanocortin-4 receptor (MC4R) for the treatment of obesity and diabetes in rodents. Diet-induced obese (DIO) mice were chronically treated with either the long-acting GLP-1R agonist liraglut...

  7. The bioeconomics of controlling an African rodent pest species

    OpenAIRE

    Skonhoft, Anders; Herwig, Leirs; Andreassen, Harry Peter; Mulungu, Loth S. A.; Stenseth, Nils Christian

    2006-01-01

    The paper treats the economy of controlling an African pest rodent, the multimammate rat, causing major damage in maize production. An ecological population model is presented and used as a basis for the economic analyses carried out at the village level using data from Tanzania. This model incorporates both density-dependent and density-independent (stochastic) factors. Rodents are controlled by applying poison, and the economic benefits depend on the income from maize production minus the c...

  8. Maternal obesity increases the risk of metabolic disease and impacts renal health in offspring

    Science.gov (United States)

    Glastras, Sarah J.; Chen, Hui; Pollock, Carol A.; Saad, Sonia

    2018-01-01

    Obesity, together with insulin resistance, promotes multiple metabolic abnormalities and is strongly associated with an increased risk of chronic disease including type 2 diabetes (T2D), hypertension, cardiovascular disease, non-alcoholic fatty liver disease (NAFLD) and chronic kidney disease (CKD). The incidence of obesity continues to rise in astronomical proportions throughout the world and affects all the different stages of the lifespan. Importantly, the proportion of women of reproductive age who are overweight or obese is increasing at an alarming rate and has potential ramifications for offspring health and disease risk. Evidence suggests a strong link between the intrauterine environment and disease programming. The current review will describe the importance of the intrauterine environment in the development of metabolic disease, including kidney disease. It will detail the known mechanisms of fetal programming, including the role of epigenetic modulation. The evidence for the role of maternal obesity in the developmental programming of CKD is derived mostly from our rodent models which will be described. The clinical implication of such findings will also be discussed. PMID:29483369

  9. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet.

    Science.gov (United States)

    Sampey, Brante P; Vanhoose, Amanda M; Winfield, Helena M; Freemerman, Alex J; Muehlbauer, Michael J; Fueger, Patrick T; Newgard, Christopher B; Makowski, Liza

    2011-06-01

    Obesity has reached epidemic proportions worldwide and reports estimate that American children consume up to 25% of calories from snacks. Several animal models of obesity exist, but studies are lacking that compare high-fat diets (HFD) traditionally used in rodent models of diet-induced obesity (DIO) to diets consisting of food regularly consumed by humans, including high-salt, high-fat, low-fiber, energy dense foods such as cookies, chips, and processed meats. To investigate the obesogenic and inflammatory consequences of a cafeteria diet (CAF) compared to a lard-based 45% HFD in rodent models, male Wistar rats were fed HFD, CAF or chow control diets for 15 weeks. Body weight increased dramatically and remained significantly elevated in CAF-fed rats compared to all other diets. Glucose- and insulin-tolerance tests revealed that hyperinsulinemia, hyperglycemia, and glucose intolerance were exaggerated in the CAF-fed rats compared to controls and HFD-fed rats. It is well-established that macrophages infiltrate metabolic tissues at the onset of weight gain and directly contribute to inflammation, insulin resistance, and obesity. Although both high fat diets resulted in increased adiposity and hepatosteatosis, CAF-fed rats displayed remarkable inflammation in white fat, brown fat and liver compared to HFD and controls. In sum, the CAF provided a robust model of human metabolic syndrome compared to traditional lard-based HFD, creating a phenotype of exaggerated obesity with glucose intolerance and inflammation. This model provides a unique platform to study the biochemical, genomic and physiological mechanisms of obesity and obesity-related disease states that are pandemic in western civilization today.

  10. The Revised Neurobehavioral Severity Scale (NSS-R) for Rodents.

    Science.gov (United States)

    Yarnell, Angela M; Barry, Erin S; Mountney, Andrea; Shear, Deborah; Tortella, Frank; Grunberg, Neil E

    2016-04-08

    Motor and sensory deficits are common following traumatic brain injury (TBI). Although rodent models provide valuable insight into the biological and functional outcomes of TBI, the success of translational research is critically dependent upon proper selection of sensitive, reliable, and reproducible assessments. Published literature includes various observational scales designed to evaluate post-injury functionality; however, the heterogeneity in TBI location, severity, and symptomology can complicate behavioral assessments. The importance of choosing behavioral outcomes that can be reliably and objectively quantified in an efficient manner is becoming increasingly important. The Revised Neurobehavioral Severity Scale (NSS-R) is a continuous series of specific, sensitive, and standardized observational tests that evaluate balance, motor coordination, and sensorimotor reflexes in rodents. The tasks follow a specific order designed to minimize interference: balance, landing, tail raise, dragging, righting reflex, ear reflex, eye reflex, sound reflex, tail pinch, and hindpaw pinch. The NSS-R has proven to be a reliable method differentiating brain-injured rodents from non-brain-injured rodents across many brain injury models. Copyright © 2016 John Wiley & Sons, Inc.

  11. Decreased triiodothyronine receptor binding in skeletal muscle nuclei and erythrocyte membranes of obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Gilvary, E.P.

    1988-01-01

    Hindlimb skeletal muscle weights and binding of L-tri-iodothyronine (T 3 ) to isolated nuclei of this tissue were investigated in obese (ob/ob) mice and their lean littermates. Maximal binding capacities (Bmax) and dissociation constants (Kd) were determined by incubating isolated muscle nuclei with increasing conc. of 125 I-T 3 (0.4 nM to 4nM). At 12 wks. of age, although weighing substantially more, obese mice had only 55% as much muscle mass as their lean littermates. There was no phenotype effect observed for Kd, however, Bmax was significantly less for the obese mice. In a second experiment, a 16-wk. feeding study was conducted with 4 groups of mice according to the following design: lean mice fed rodent chow; obese mice fed rodent chow; obese mice, n-6 fatty acid (FA)-rich diet; and obese mice, n-3FA-rich diet. Erythrocyte T 3 receptor binding capacities were measured by incubating red cell ghosts from mice of these 4 groups with 125 I-T 3 . As with skeletal muscle nuclei there were no phenotype effects observed for Kd between any two groups. In contrasts obese mice fed chow and n-6FA-rich diets both exhibited lower Bmax than their lean counterparts, while no significant difference was observed between the latter group and the obese mice fed an n-3FA-rich diet. Bmax values of the n-6 group were also decreased compared to the n-3 group

  12. Optical imaging of mitochondrial redox state in rodent model of retinitis pigmentosa

    Science.gov (United States)

    Maleki, Sepideh; Gopalakrishnan, Sandeep; Ghanian, Zahra; Sepehr, Reyhaneh; Schmitt, Heather; Eells, Janis; Ranji, Mahsa

    2013-01-01

    Oxidative stress (OS) and mitochondrial dysfunction contribute to photoreceptor cell loss in retinal degenerative disorders. The metabolic state of the retina in a rodent model of retinitis pigmentosa (RP) was investigated using a cryo-fluorescence imaging technique. The mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent and can be monitored without exogenous labels using optical techniques. The cryo-fluorescence redox imaging technique provides a quantitative assessment of the metabolism. More specifically, the ratio of the fluorescence intensity of these fluorophores (NADH/FAD), the NADH redox ratio (RR), is a marker of the metabolic state of the tissue. The NADH RR and retinal function were examined in an established rodent model of RP, the P23H rat compared to that of nondystrophic Sprague-Dawley (SD) rats. The NADH RR mean values were 1.11±0.03 in the SD normal and 0.841±0.01 in the P23H retina, indicating increased OS in the P23H retina. Electroretinographic data revealed a significant reduction in photoreceptor function in P23H animals compared to SD nozrmal rats. Thus, cryo-fluorescence redox imaging was used as a quantitative marker of OS in eyes from transgenic rats and demonstrated that alterations in the oxidative state of eyes occur during the early stages of RP.

  13. Mechanisms underlying weight loss and metabolic improvements in rodent models of bariatric surgery

    Science.gov (United States)

    Arble, Deanna M.; Sandoval, Darleen A.; Seeley, Randy J.

    2014-01-01

    Obesity is a growing health risk with few successful treatment options and fewer still that target both obesity and obesity-associated comorbidities. Despite ongoing scientific efforts, the most effective treatment option to date was not developed from basic research but by surgeons observing outcomes in the clinic. Bariatric surgery is the most successful treatment for significant weight loss, resolution of type 2 diabetes and the prevention of future weight gain. Recent work with animal models has shed considerable light on the molecular underpinnings of the potent effects of these ‘metabolic’ surgical procedures. Here we review data from animal models and how these studies have evolved our understanding of the critical signalling systems that mediate the effects of bariatric surgery. These insights could lead to alternative therapies able to accomplish effects similar to bariatric surgery in a less invasive manner. PMID:25374275

  14. Traumatic brain injury–Modeling neuropsychiatric symptoms in rodents

    Directory of Open Access Journals (Sweden)

    Oz eMalkesman

    2013-10-01

    Full Text Available Each year in the United States, approximately 1.5 million people sustain a traumatic brain injury (TBI. Victims of TBI can suffer from chronic post-TBI symptoms, such as sensory and motor deficits, cognitive impairments including problems with memory, learning, and attention, and neuropsychiatric symptoms such as depression, anxiety, irritability, aggression, and suicidal rumination. Although partially associated with the site and severity of injury, the biological mechanisms associated with many of these symptoms—and why some patients experience differing assortments of persistent maladies—are largely unknown. The use of animal models is a promising strategy for elucidation of the mechanisms of impairment and treatment, and learning, memory, sensory and motor tests have widespread utility in rodent models of TBI and psychopharmacology. Comparatively, behavioral tests for the evaluation of neuropsychiatric symptomatology are rarely employed in animal models of TBI and, as determined in this review, the results have been inconsistent. Animal behavioral studies contribute to the understanding of the biological mechanisms by which TBI is associated with neurobehavioral symptoms and offer a powerful means for pre-clinical treatment validation. Therefore, further exploration of the utility of animal behavioral tests for the study of injury mechanisms and therapeutic strategies for the alleviation of emotional symptoms are relevant and essential.

  15. The physiological response of obese rat model with rambutan peel extract treatment

    Directory of Open Access Journals (Sweden)

    Sri Rahayu Lestari

    2014-09-01

    Full Text Available Objective: To determine body weight gain, expression of Igf-1 and Igf-1 receptor on obese rat model treated with rambutan peel extract (RPE as a physiological response. Methods: Normal and obese rat feed with normal and high calorie diet around 1 2 weeks and continued to treat with ellagic acid, RPE 15, 30 and 60 mg/kg body weight respectively. Physiological responses observed were weight gain and expression of Igf-1 with its receptor. Body weight of rat was weighed once per week. Expression of Igf-1 and igf-1R observed with fluorescence immunohistochemistry. The intensity of Igf-1 and Igf-1R expression was analysis using FSX-BSW software. Results: The lowest weight gain was obtained on obese rat model treated with RPE 30 mg/kg body weight. The expression of Igf-1 and Igf-1R were reduced on obese rat model treated with RPE compared with obese rat model of non treatment (P<0.05. The low expression of Igf-1 and Igf-1R was found on obese rat model treated with ellagic acid and RPE 30 mg/kg body weight. Conclusions: The RPE was effecting to the physiological response on obese rat model. The RPE 30 mg/kg body weight inhibited body weight gain and decreased the expression of Igf-1 and Igf- 1R of obese rat model.

  16. Functional characterization and expression of thalamic GABA(B) receptors in a rodent model of Parkinson's disease

    NARCIS (Netherlands)

    de Groote, C; Wullner, U; Loschmann, PA; Luiten, PGM; Klockgether, T

    1999-01-01

    Increased GABAergic neurotransmission of the basal ganglia output nuclei projecting to the motor thalamus is thought to contribute to the pathophysiology of Parkinson's disease. We investigated the functional role of thalamic GABA(B) receptors in a rodent model of Parkinson's disease. First, we

  17. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity

    Science.gov (United States)

    Timper, Katharina; Brüning, Jens C.

    2017-01-01

    ABSTRACT The ‘obesity epidemic’ represents a major global socioeconomic burden that urgently calls for a better understanding of the underlying causes of increased weight gain and its associated metabolic comorbidities, such as type 2 diabetes mellitus and cardiovascular diseases. Improving our understanding of the cellular basis of obesity could set the stage for the development of new therapeutic strategies. The CNS plays a pivotal role in the regulation of energy and glucose homeostasis. Distinct neuronal cell populations, particularly within the arcuate nucleus of the hypothalamus, sense the nutrient status of the organism and integrate signals from peripheral hormones including pancreas-derived insulin and adipocyte-derived leptin to regulate calorie intake, glucose metabolism and energy expenditure. The arcuate neurons are tightly connected to other specialized neuronal subpopulations within the hypothalamus, but also to various extrahypothalamic brain regions, allowing a coordinated behavioral response. This At a Glance article gives an overview of the recent knowledge, mainly derived from rodent models, regarding the CNS-dependent regulation of energy and glucose homeostasis, and illustrates how dysregulation of the neuronal networks involved can lead to overnutrition and obesity. The potential impact of recent research findings in the field on therapeutic treatment strategies for human obesity is also discussed. PMID:28592656

  18. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity.

    Science.gov (United States)

    Timper, Katharina; Brüning, Jens C

    2017-06-01

    The 'obesity epidemic' represents a major global socioeconomic burden that urgently calls for a better understanding of the underlying causes of increased weight gain and its associated metabolic comorbidities, such as type 2 diabetes mellitus and cardiovascular diseases. Improving our understanding of the cellular basis of obesity could set the stage for the development of new therapeutic strategies. The CNS plays a pivotal role in the regulation of energy and glucose homeostasis. Distinct neuronal cell populations, particularly within the arcuate nucleus of the hypothalamus, sense the nutrient status of the organism and integrate signals from peripheral hormones including pancreas-derived insulin and adipocyte-derived leptin to regulate calorie intake, glucose metabolism and energy expenditure. The arcuate neurons are tightly connected to other specialized neuronal subpopulations within the hypothalamus, but also to various extrahypothalamic brain regions, allowing a coordinated behavioral response. This At a Glance article gives an overview of the recent knowledge, mainly derived from rodent models, regarding the CNS-dependent regulation of energy and glucose homeostasis, and illustrates how dysregulation of the neuronal networks involved can lead to overnutrition and obesity. The potential impact of recent research findings in the field on therapeutic treatment strategies for human obesity is also discussed. © 2017. Published by The Company of Biologists Ltd.

  19. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity

    Directory of Open Access Journals (Sweden)

    Katharina Timper

    2017-06-01

    Full Text Available The ‘obesity epidemic’ represents a major global socioeconomic burden that urgently calls for a better understanding of the underlying causes of increased weight gain and its associated metabolic comorbidities, such as type 2 diabetes mellitus and cardiovascular diseases. Improving our understanding of the cellular basis of obesity could set the stage for the development of new therapeutic strategies. The CNS plays a pivotal role in the regulation of energy and glucose homeostasis. Distinct neuronal cell populations, particularly within the arcuate nucleus of the hypothalamus, sense the nutrient status of the organism and integrate signals from peripheral hormones including pancreas-derived insulin and adipocyte-derived leptin to regulate calorie intake, glucose metabolism and energy expenditure. The arcuate neurons are tightly connected to other specialized neuronal subpopulations within the hypothalamus, but also to various extrahypothalamic brain regions, allowing a coordinated behavioral response. This At a Glance article gives an overview of the recent knowledge, mainly derived from rodent models, regarding the CNS-dependent regulation of energy and glucose homeostasis, and illustrates how dysregulation of the neuronal networks involved can lead to overnutrition and obesity. The potential impact of recent research findings in the field on therapeutic treatment strategies for human obesity is also discussed.

  20. Long-lived cancer-resistant rodents as new model species for cancer research

    Directory of Open Access Journals (Sweden)

    Jorge eAzpurua

    2013-01-01

    Full Text Available Most rodents are small and short-lived, but several lineages have independently evolved long lifespans without a concomitant increase in body mass. Most notably, the two subterranean species naked mole rat (NMR and blind mole rat (BMR which have maximum lifespans of 32 and 21 years respectively. The longevity of these species has sparked interest in the tumor suppression strategies that may have also evolved, because for many rodent species (including mice, rats, guinea pigs, gerbils and hamsters tumors are major source of late-life mortality. Here, we review the recent literature on anticancer mechanisms in long-lived rodents. Both NMR and BMR seem to have developed tumor defenses that rely on extra-cellular signals. However, while the NMR relies on a form of contact inhibition to suppress growth, the BMR evolved a mechanism mediated by the release of interferon and rapid necrotic cell death. Although both organisms ultimately rely on canonical downstream tumor suppressors (pRB and p53 the studies reveal species can evolve different strategies to achieve tumor-resistance. Importantly, studies of these cancer-resistant rodents may benefit human health if such mechanisms can be activated in human cells.

  1. Monosodium glutamate neonatal treatment induces cardiovascular autonomic function changes in rodents

    Directory of Open Access Journals (Sweden)

    Signorá Peres Konrad

    2012-10-01

    Full Text Available OBJECTIVES: The aim of this study was to evaluate cardiovascular autonomic function in a rodent obesity model induced by monosodium glutamate injections during the first seven days of life. METHOD: The animals were assigned to control (control, n = 10 and monosodium glutamate (monosodium glutamate, n = 13 groups. Thirty-three weeks after birth, arterial and venous catheters were implanted for arterial pressure measurements, drug administration, and blood sampling. Baroreflex sensitivity was evaluated according to the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine infusion, respectively. Sympathetic and vagal effects were determined by administering methylatropine and propranolol. RESULTS: Body weight, Lee index, and epididymal white adipose tissue values were higher in the monosodium glutamate group in comparison to the control group. The monosodium glutamate-treated rats displayed insulin resistance, as shown by a reduced glucose/insulin index (-62.5%, an increased area under the curve of total insulin secretion during glucose overload (39.3%, and basal hyperinsulinemia. The mean arterial pressure values were higher in the monosodium glutamate rats, whereas heart rate variability (>7 times, bradycardic responses (>4 times, and vagal (~38% and sympathetic effects (~36% were reduced as compared to the control group. CONCLUSION: Our results suggest that obesity induced by neonatal monosodium glutamate treatment impairs cardiac autonomic function and most likely contributes to increased arterial pressure and insulin resistance.

  2. Periodic solutions of nonautonomous differential systems modeling obesity population

    International Nuclear Information System (INIS)

    Arenas, Abraham J.; Gonzalez-Parra, Gilberto; Jodar, Lucas

    2009-01-01

    In this paper we study the periodic behaviour of the solutions of a nonautonomous model for obesity population. The mathematical model represented by a nonautonomous system of nonlinear ordinary differential equations is used to model the dynamics of obese populations. Numerical simulations suggest periodic behaviour of subpopulations solutions. Sufficient conditions which guarantee the existence of a periodic positive solution are obtained using a continuation theorem based on coincidence degree theory.

  3. Periodic solutions of nonautonomous differential systems modeling obesity population

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, Abraham J. [Departamento de Matematicas y Estadistica, Universidad de Cordoba Monteria (Colombia)], E-mail: aarenas@sinu.unicordoba.edu.co; Gonzalez-Parra, Gilberto [Departamento de Calculo, Universidad de los Andes, Merida (Venezuela, Bolivarian Republic of)], E-mail: gcarlos@ula.ve; Jodar, Lucas [Instituto de Matematica Multidisciplinar, Universidad Politecnica de Valencia Edificio 8G, 2o, 46022 Valencia (Spain)], E-mail: ljodar@imm.upv.es

    2009-10-30

    In this paper we study the periodic behaviour of the solutions of a nonautonomous model for obesity population. The mathematical model represented by a nonautonomous system of nonlinear ordinary differential equations is used to model the dynamics of obese populations. Numerical simulations suggest periodic behaviour of subpopulations solutions. Sufficient conditions which guarantee the existence of a periodic positive solution are obtained using a continuation theorem based on coincidence degree theory.

  4. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21

    NARCIS (Netherlands)

    Müller, Timo D.; Sullivan, Lorraine M.; Habegger, Kirk; Yi, Chun-Xia; Kabra, Dhiraj; Grant, Erin; Ottaway, Nickki; Krishna, Radha; Holland, Jenna; Hembree, Jazzminn; Perez-Tilve, Diego; Pfluger, Paul T.; DeGuzman, Michael J.; Siladi, Marc E.; Kraynov, Vadim S.; Axelrod, Douglas W.; DiMarchi, Richard; Pinkstaff, Jason K.; Tschöp, Matthias H.

    2012-01-01

    The identification of leptin as a mediator of body weight regulation provided much initial excitement for the treatment of obesity. Unfortunately, leptin monotherapy is insufficient in reversing obesity in rodents or humans. Recent findings suggest that amylin is able to restore leptin sensitivity

  5. In vivo efficacy of acyl CoA: diacylglycerol acyltransferase (DGAT) 1 inhibition in rodent models of postprandial hyperlipidemia.

    Science.gov (United States)

    King, Andrew J; Segreti, Jason A; Larson, Kelly J; Souers, Andrew J; Kym, Philip R; Reilly, Regina M; Collins, Christine A; Voorbach, Martin J; Zhao, Gang; Mittelstadt, Scott W; Cox, Bryan F

    2010-07-10

    Postprandial serum triglyceride concentrations have recently been identified as a major, independent risk factor for future cardiovascular events. As a result, postprandial hyperlipidemia has emerged as a potential therapeutic target. The purpose of this study was two-fold. Firstly, to describe and characterize a standardized model of postprandial hyperlipidemia in multiple rodent species; and secondly, apply these rodent models to the evaluation of a novel class of pharmacologic agent; acyl CoA:diacylglycerol acyltransferase (DGAT) 1 inhibitors. Serum triglycerides were measured before and for 4h after oral administration of a standardized volume of corn oil, to fasted C57BL/6, ob/ob, apoE(-/-) and CD-1 mice; Sprague-Dawley and JCR/LA-cp rats; and normolipidemic and hyperlipidemic hamsters. Intragastric administration of corn oil increased serum triglycerides in all animals evaluated, however the magnitude and time-course of the postprandial triglyceride excursion varied. The potent and selective DGAT-1 inhibitor A-922500 (0.03, 0.3 and 3 mg/kg, p.o.), dose-dependently attenuated the maximal postprandial rise in serum triglyceride concentrations in all species tested. At the highest dose of DGAT-1 inhibitor, the postprandial triglyceride response was abolished. This study provides a comprehensive characterization of the time-course of postprandial hyperlipidemia in rodents. In addition, the ability of DGAT-1 inhibitors to attenuate postprandial hyperlipidemia in multiple rodent models, including those that feature insulin resistance, is documented. Exaggerated postprandial hyperlipidemia is inherent to insulin-resistant states in humans and contributes to the substantially elevated cardiovascular risk observed in these patients. Therefore, by attenuating postprandial hyperlipidemia, DGAT-1 inhibition may represent a novel therapeutic approach to reduce cardiovascular risk. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Rodent model choice has major impact on variability of standard preclinical readouts associated with diabetes and obesity research

    DEFF Research Database (Denmark)

    Jensen, Victoria Svop; Porsgaard, Trine; Lykkesfeldt, Jens

    2016-01-01

    was to compare the phenotypic variation in commonly used experimental readouts within obesity and diabetes research, for four of the most frequently used mouse strains: inbred C57BL/6 and BALB/c and outbred NMRI and CD-1 mice. The variation for all readouts was examined by calculating the coefficient...

  7. [Biological and neural bases of partner preferences in rodents: models to understand human pair bonds].

    Science.gov (United States)

    Coria-Avila, G A; Hernández-Aguilar, M E; Toledo-Cárdenas, R; García-Hernández, L I; Manzo, J; Pacheco, P; Miquel, M; Pfaus, J G

    To analyse the biological and neural bases of partner preference formation in rodents as models to understand human pair bonding. Rodents are social individuals, capable of forming short- or long-lasting partner preferences that develop slowly by stimuli like cohabitation, or rapidly by stimuli like sex and stress. Dopamine, corticosteroids, oxytocin, vasopressin, and opioids form the neurochemical substrate for pair bonding in areas like the nucleus accumbens, the prefrontal cortex, the piriform cortex, the medial preoptic area, the ventral tegmental area and the medial amygdala, among others. Additional areas may participate depending on the nature of the conditioned stimuli by which and individual recognizes a preferred partner. Animal models help us understand that the capacity of an individual to display long-lasting and selective preferences depends on neural bases, selected throughout evolution. The challenge in neuroscience is to use this knowledge to create new solutions for mental problems associated with the incapacity of an individual to display a social bond, keep one, or cope with the disruption of a consolidated one.

  8. The in vivo rodent test systems for assessment of carcinogenic potential

    DEFF Research Database (Denmark)

    van der Laan, Jan-Willem; Spindler, Per

    2002-01-01

    A Drug Information Association (DIA) workshop was held in May 2001 to discuss the outcome of the International Life Sciences Institute-Health and Environmental Sciences Institute (ILSI-HESI) project on alternative models for carcinogenicity assessment such as the P53(+/-) and XPA(+/-) knockout...... mouse models, the RasH2 and Tg.AC transgenic mouse models, and the neonatal mouse model. The "ICH Guideline S1B on Testing for Carcinogenicity of Pharmaceuticals" advocates that carcinogenicity testing of pharmaceuticals, when needed, might be carried out choosing one 2-year rodent carcinogenicity study...... (rat) plus one other study that supplements the 2-year study and providing additional information that is not readily available from the 2-year study: either (1) a short- or medium-term in vivo rodent test system or (2) a 2-year carcinogenicity study in a second rodent species (mouse). Another topic...

  9. Modelling the emergence of rodent filial huddling from physiological huddling

    Science.gov (United States)

    Wilson, Stuart P.

    2017-11-01

    Huddling behaviour in neonatal rodents reduces the metabolic costs of physiological thermoregulation. However, animals continue to huddle into adulthood, at ambient temperatures where they are able to sustain a basal metabolism in isolation from the huddle. This `filial huddling' in older animals is known to be guided by olfactory rather than thermal cues. The present study aimed to test whether thermally rewarding contacts between young mice, experienced when thermogenesis in brown adipose fat tissue (BAT) is highest, could give rise to olfactory preferences that persist as filial huddling interactions in adults. To this end, a simple model was constructed to fit existing data on the development of mouse thermal physiology and behaviour. The form of the model that emerged yields a remarkable explanation for filial huddling; associative learning maintains huddling into adulthood via processes that reduce thermodynamic entropy from BAT metabolism and increase information about social ordering among littermates.

  10. Hypothalamic obesity in patients with craniopharyngioma: Profound changes of several weight regulatory circuits

    Directory of Open Access Journals (Sweden)

    Christian eRoth

    2011-10-01

    Full Text Available One of the most striking examples of dysfunctional hypothalamic signaling of energy homeostasis is observed in patients with hypothalamic lesions leading to hypothalamic obesity (HO. This drastic condition is frequently seen in patients with craniopharyngioma (CP, an embryological tumor located in the hypothalamic and/or pituitary region, frequently causing not only hypopituitarism, but also leading to damage of medial hypothalamic nuclei due to the tumor and its treatment. HO syndrome in CP patients is characterized by fatigue, decreased physical activity, uncontrolled appetite, and morbid obesity, and is associated with insulin and leptin resistance. Mechanisms leading to the profoundly disturbed energy homeostasis are complex. This review summarizes different aspects of important clinical studies as well as data obtained in rodent studies. In addition a model is provided describing how medial hypothalamic lesion can interact simultaneously with several weight regulating circuitries.

  11. Mathematical methods to model rodent behavior in the elevated plus-maze.

    Science.gov (United States)

    Arantes, Rafael; Tejada, Julián; Bosco, Geraldine G; Morato, Silvio; Roque, Antonio C

    2013-11-15

    The elevated plus maze is a widely used experimental test to study anxiety-like rodent behavior. It is made of four arms, two open and two closed, connected at a central area forming a plus shaped maze. The whole apparatus is elevated 50 cm from the floor. The anxiety of the animal is usually assessed by the number of entries and duration of stay in each arm type during a 5-min period. Different mathematical methods have been proposed to model the mechanisms that control the animal behavior in the maze, such as factor analysis, statistical inference on Markov chains and computational modeling. In this review we discuss these methods and propose possible extensions of them as a direction for future research. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A developmental cascade perspective of paediatric obesity: a conceptual model and scoping review.

    Science.gov (United States)

    Smith, Justin D; Egan, Kaitlyn N; Montaño, Zorash; Dawson-McClure, Spring; Jake-Schoffman, Danielle E; Larson, Madeline; St George, Sara M

    2018-04-05

    Considering the immense challenge of preventing obesity, the time has come to reconceptualise the way we study the obesity development in childhood. The developmental cascade model offers a longitudinal framework to elucidate the way cumulative consequences and spreading effects of risk and protective factors, across and within biopsychosocial spheres and phases of development, can propel individuals towards obesity. In this article, we use a theory-driven model-building approach and a scoping review that included 310 published studies to propose a developmental cascade model of paediatric obesity. The proposed model provides a basis for testing hypothesised cascades with multiple intervening variables and complex longitudinal processes. Moreover, the model informs future research by resolving seemingly contradictory findings on pathways to obesity previously thought to be distinct (low self-esteem, consuming sugary foods, and poor sleep cause obesity) that are actually processes working together over time (low self-esteem causes consumption of sugary foods which disrupts sleep quality and contributes to obesity). The findings of such inquiries can aid in identifying the timing and specific targets of preventive interventions across and within developmental phases. The implications of such a cascade model of paediatric obesity for health psychology and developmental and prevention sciences are discussed.

  13. Transplacental Nutrient Transport Mechanisms of Intrauterine Growth Restriction in Rodent Models and Humans.

    Science.gov (United States)

    Winterhager, Elke; Gellhaus, Alexandra

    2017-01-01

    Although the causes of intrauterine growth restriction (IUGR) have been intensively investigated, important information is still lacking about the role of the placenta as a link from adverse maternal environment to adverse pregnancy outcomes of IUGR and preterm birth. IUGR is associated with an increased risk of cardiovascular, metabolic, and neurological diseases later in life. Determination of the most important pathways that regulate transplacental transport systems is necessary for identifying marker genes as diagnostic tools and for developing drugs that target the molecular pathways. Besides oxygen, the main nutrients required for appropriate fetal development and growth are glucose, amino acids, and fatty acids. Dysfunction in transplacental transport is caused by impairments in both placental morphology and blood flow, as well as by factors such as alterations in the expression of insulin-like growth factors and changes in the mTOR signaling pathway leading to a change in nutrient transport. Animal models are important tools for systematically studying such complex events. Debate centers on whether the rodent placenta is an appropriate tool for investigating the alterations in the human placenta that result in IUGR. This review provides an overview of the alterations in expression and activity of nutrient transporters and alterations in signaling associated with IUGR and compares these findings in rodents and humans. In general, the data obtained by studies of the various types of rodent and human nutrient transporters are similar. However, direct comparison is complicated by the fact that the results of such studies are controversial even within the same species, making the interpretation of the results challenging. This difficulty could be due to the absence of guidelines of the experimental design and, especially in humans, the use of trophoblast cell culture studies instead of clinical trials. Nonetheless, developing new therapy concepts for IUGR will

  14. Transplacental Nutrient Transport Mechanisms of Intrauterine Growth Restriction in Rodent Models and Humans

    Directory of Open Access Journals (Sweden)

    Elke Winterhager

    2017-11-01

    Full Text Available Although the causes of intrauterine growth restriction (IUGR have been intensively investigated, important information is still lacking about the role of the placenta as a link from adverse maternal environment to adverse pregnancy outcomes of IUGR and preterm birth. IUGR is associated with an increased risk of cardiovascular, metabolic, and neurological diseases later in life. Determination of the most important pathways that regulate transplacental transport systems is necessary for identifying marker genes as diagnostic tools and for developing drugs that target the molecular pathways. Besides oxygen, the main nutrients required for appropriate fetal development and growth are glucose, amino acids, and fatty acids. Dysfunction in transplacental transport is caused by impairments in both placental morphology and blood flow, as well as by factors such as alterations in the expression of insulin-like growth factors and changes in the mTOR signaling pathway leading to a change in nutrient transport. Animal models are important tools for systematically studying such complex events. Debate centers on whether the rodent placenta is an appropriate tool for investigating the alterations in the human placenta that result in IUGR. This review provides an overview of the alterations in expression and activity of nutrient transporters and alterations in signaling associated with IUGR and compares these findings in rodents and humans. In general, the data obtained by studies of the various types of rodent and human nutrient transporters are similar. However, direct comparison is complicated by the fact that the results of such studies are controversial even within the same species, making the interpretation of the results challenging. This difficulty could be due to the absence of guidelines of the experimental design and, especially in humans, the use of trophoblast cell culture studies instead of clinical trials. Nonetheless, developing new therapy

  15. Differential effects of subcutaneous electrical stimulation (SQS) and transcutaneous electrical nerve stimulation (TENS) in rodent models of chronic neuropathic or inflammatory pain.

    Science.gov (United States)

    Vera-Portocarrero, Louis P; Cordero, Toni; Billstrom, Tina; Swearingen, Kim; Wacnik, Paul W; Johanek, Lisa M

    2013-01-01

    Electrical stimulation has been used for many years for the treatment of pain. Present-day research demonstrates that stimulation targets and parameters impact the induction of specific pain-modulating mechanisms. New targets are increasingly being investigated clinically, but the scientific rationale for a particular target is often not well established. This present study compares the behavioral effects of targeting peripheral axons by electrode placement in the subcutaneous space vs. electrode placement on the surface of the skin in a rodent model. Rodent models of inflammatory and neuropathic pain were used to investigate subcutaneous electrical stimulation (SQS) vs. transcutaneous electrical nerve stimulation (TENS). Electrical parameters and relative location of the leads were held constant under each condition. SQS had cumulative antihypersensitivity effects in both inflammatory and neuropathic pain rodent models, with significant inhibition of mechanical hypersensitivity observed on days 3-4 of treatment. In contrast, reduction of thermal hyperalgesia in the inflammatory model was observed during the first four days of treatment with SQS, and reduction of cold allodynia in the neuropathic pain model was seen only on the first day with SQS. TENS was effective in the inflammation model, and in agreement with previous studies, tolerance developed to the antihypersensitivity effects of TENS. With the exception of a reversal of cold hypersensitivity on day 1 of testing, TENS did not reveal significant analgesic effects in the neuropathic pain rodent model. The results presented show that TENS and SQS have different effects that could point to unique biologic mechanisms underlying the analgesic effect of each therapy. Furthermore, this study is the first to demonstrate in an animal model that SQS attenuates neuropathic and inflammatory-induced pain behaviors. © 2013 Medtronic, Inc.

  16. L-cysteine suppresses ghrelin and reduces appetite in rodents and humans.

    Science.gov (United States)

    McGavigan, A K; O'Hara, H C; Amin, A; Kinsey-Jones, J; Spreckley, E; Alamshah, A; Agahi, A; Banks, K; France, R; Hyberg, G; Wong, C; Bewick, G A; Gardiner, J V; Lehmann, A; Martin, N M; Ghatei, M A; Bloom, S R; Murphy, K G

    2015-03-01

    High-protein diets promote weight loss and subsequent weight maintenance, but are difficult to adhere to. The mechanisms by which protein exerts these effects remain unclear. However, the amino acids produced by protein digestion may have a role in driving protein-induced satiety. We tested the effects of a range of amino acids on food intake in rodents and identified l-cysteine as the most anorexigenic. Using rodents we further studied the effect of l-cysteine on food intake, behaviour and energy expenditure. We proceeded to investigate its effect on neuronal activation in the hypothalamus and brainstem before investigating its effect on gastric emptying and gut hormone release. The effect of l-cysteine on appetite scores and gut hormone release was then investigated in humans. l-Cysteine dose-dependently decreased food intake in both rats and mice following oral gavage and intraperitoneal administration. This effect did not appear to be secondary to behavioural or aversive side effects. l-Cysteine increased neuronal activation in the area postrema and delayed gastric emptying. It suppressed plasma acyl ghrelin levels and did not reduce food intake in transgenic ghrelin-overexpressing mice. Repeated l-cysteine administration decreased food intake in rats and obese mice. l-Cysteine reduced hunger and plasma acyl ghrelin levels in humans. Further work is required to determine the chronic effect of l-cysteine in rodents and humans on appetite and body weight, and whether l-cysteine contributes towards protein-induced satiety.

  17. Neurogenetics of aggressive behavior: studies in rodents.

    Science.gov (United States)

    Takahashi, Aki; Miczek, Klaus A

    2014-01-01

    Aggressive behavior is observed in many animal species, such as insects, fish, lizards, frogs, and most mammals including humans. This wide range of conservation underscores the importance of aggressive behavior in the animals' survival and fitness, and the likely heritability of this behavior. Although typical patterns of aggressive behavior differ between species, there are several concordances in the neurobiology of aggression among rodents, primates, and humans. Studies with rodent models may eventually help us to understand the neurogenetic architecture of aggression in humans. However, it is important to recognize the difference between the ecological and ethological significance of aggressive behavior (species-typical aggression) and maladaptive violence (escalated aggression) when applying the findings of aggression research using animal models to human or veterinary medicine. Well-studied rodent models for aggressive behavior in the laboratory setting include the mouse (Mus musculus), rat (Rattus norvegicus), hamster (Mesocricetus auratus), and prairie vole (Microtus ochrogaster). The neural circuits of rodent aggression have been gradually elucidated by several techniques, e.g., immunohistochemistry of immediate-early gene (c-Fos) expression, intracranial drug microinjection, in vivo microdialysis, and optogenetics techniques. Also, evidence accumulated from the analysis of gene-knockout mice shows the involvement of several genes in aggression. Here, we review the brain circuits that have been implicated in aggression, such as the hypothalamus, prefrontal cortex (PFC), dorsal raphe nucleus (DRN), nucleus accumbens (NAc), and olfactory system. We then discuss the roles of glutamate and γ-aminobutyric acid (GABA), excitatory and inhibitory amino acids in the brain, as well as their receptors, in controlling aggressive behavior, focusing mainly on recent findings. At the end of this chapter, we discuss how genes can be identified that underlie individual

  18. Obesity does not aggravate vitrification injury in mouse embryos: a prospective study

    Directory of Open Access Journals (Sweden)

    Ma Wenhong

    2012-08-01

    Full Text Available Abstract Background Obesity is associated with poor reproductive outcomes, but few reports have examined thawed embryo transfer in obese women. Many studies have shown that increased lipid accumulation aggravates vitrification injury in porcine and bovine embryos, but oocytes of these species have high lipid contents (63 ng and 161 ng, respectively. Almost nothing is known about lipids in human oocytes except that these cells are anecdotally known to be relatively lipid poor. In this regard, human oocytes are considered to be similar to those of the mouse, which contain approximately 4 ng total lipids/oocyte. To date, no available data show the impact of obesity on vitrification in mouse embryos. The aim of this study was to establish a murine model of maternal diet-induced obesity and to characterize the effect of obesity on vitrification by investigating the survival rate and embryo developmental competence after thawing. Methods Prospective comparisons were performed between six–eight-cell embryos from obese and normal-weight mice and between fresh and vitrified embryos. Female C57BL/6 mice were fed standard rodent chow (normal-weight group or a high-fat diet (obese group for 6 weeks. The mice were mated, zygotes were collected from oviducts and cultured for 3 days, and six–eight-cell embryos were then selected to assess lipid content in fresh embryos and to evaluate differences in apoptosis, survival, and development rates in response to vitrification. Results In fresh embryos from obese mice, the lipid content (0.044 vs 0.030, Pvs.9.3%, Pvs. 93.1%, P Conclusions This study demonstrated that differences in survival and developmental rates between embryos from obese and normal-weight mice were eliminated after vitrification. Thus, maternal obesity does not aggravate vitrification injury, but obesity alone greatly impairs pre-implantation embryo survival and development.

  19. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models.

    Science.gov (United States)

    Horder, Jamie; Petrinovic, Marija M; Mendez, Maria A; Bruns, Andreas; Takumi, Toru; Spooren, Will; Barker, Gareth J; Künnecke, Basil; Murphy, Declan G

    2018-05-25

    Autism spectrum disorder (ASD) is a pervasive neurodevelopmental syndrome with a high human and economic burden. The pathophysiology of ASD is largely unclear, thus hampering development of pharmacological treatments for the core symptoms of the disorder. Abnormalities in glutamate and GABA signaling have been hypothesized to underlie ASD symptoms, and may form a therapeutic target, but it is not known whether these abnormalities are recapitulated in humans with ASD, as well as in rodent models of the disorder. We used translational proton magnetic resonance spectroscopy ([1H]MRS) to compare glutamate and GABA levels in adult humans with ASD and in a panel of six diverse rodent ASD models, encompassing genetic and environmental etiologies. [1H]MRS was performed in the striatum and the medial prefrontal cortex, of the humans, mice, and rats in order to allow for direct cross-species comparisons in specific cortical and subcortical brain regions implicated in ASD. In humans with ASD, glutamate concentration was reduced in the striatum and this was correlated with the severity of social symptoms. GABA levels were not altered in either brain region. The reduction in striatal glutamate was recapitulated in mice prenatally exposed to valproate, and in mice and rats carrying Nlgn3 mutations, but not in rodent ASD models with other etiologies. Our findings suggest that glutamate/GABA abnormalities in the corticostriatal circuitry may be a key pathological mechanism in ASD; and may be linked to alterations in the neuroligin-neurexin signaling complex.

  20. Family Environment and Childhood Obesity: A New Framework with Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2017-02-01

    Full Text Available The main purpose of the current article is to introduce a framework of the complexity of childhood obesity based on the family environment. A conceptual model that quantifies the relationships and interactions among parental socioeconomic status, family food security level, child’s food intake and certain aspects of parental feeding behaviour is presented using the structural equation modeling (SEM concept. Structural models are analysed in terms of the direct and indirect connections among latent and measurement variables that lead to the child weight indicator. To illustrate the accuracy, fit, reliability and validity of the introduced framework, real data collected from 630 families from Urumqi (Xinjiang, China were considered. The framework includes two categories of data comprising the normal body mass index (BMI range and obesity data. The comparison analysis between two models provides some evidence that in obesity modeling, obesity data must be extracted from the dataset and analysis must be done separately from the normal BMI range. This study may be helpful for researchers interested in childhood obesity modeling based on family environment.

  1. Exercise, Obesity and CNS Control of Metabolic Homeostasis: A Review

    Science.gov (United States)

    Smith, John K.

    2018-01-01

    This review details the manner in which the central nervous system regulates metabolic homeostasis in normal weight and obese rodents and humans. It includes a review of the homeostatic contributions of neurons located in the hypothalamus, the midbrain and limbic structures, the pons and the medullary area postrema, nucleus tractus solitarius, and vagus nucleus, and details how these brain regions respond to circulating levels of orexigenic hormones, such as ghrelin, and anorexigenic hormones, such as glucagon-like peptide 1 and leptin. It provides an insight as to how high intensity exercise may improve homeostatic control in overweight and obese subjects. Finally, it provides suggestions as to how further progress can be made in controlling the current pandemic of obesity and diabetes.

  2. Zinc metabolism in genetically obese mice

    International Nuclear Information System (INIS)

    Kennedy, M.L.; Failla, M.L.

    1986-01-01

    Recent reports indicate that the concentrations and total amounts of several essential trace metals in various tissues of genetically obese rodents differ markedly from lean controls. In the present studies the absorption, retention and tissue distribution of zinc was compared in obese (ob/ob) and lean (+/?) C57BL/6J mice. When administered 0.1 and 1 umole 65 Zn by stomach tube and killed after 4 h, fasted 10 week old obese mice had 2.7 and 2.2 times more radioactivity in their carcasses, respectively, than age-matched lean mice. Higher levels of 65 Zn were also present in the intestinal mucosa of obese mice. To eliminate possible differences in the effects of fasting and gastric emptying rates between the phenotypes, zinc absorption and retention were determined according to the method of Heth and Hoekstra. Analysis of data revealed that obese and lean mice absorbed 43 and 18% of the oral dose, respectively. Also, the rate of 65 Zn excretion between 2 and 6 days post-treatment was similar for obese and lean mice. After 6 days obese mice had significantly lower levels of radioisotope in skin, muscle plus bone, spleen and testes and higher levels of 65 Zn in liver, small intestine and adipose tissue compared to tissues from lean mice. These results demonstrate increased absorption, altered tissue distribution and similar excretion of zinc in ob/ob mice

  3. Gut microbiota changes as a risk factor for obesity.

    Science.gov (United States)

    Kvit, Krystyna B; Kharchenko, Natalia V

    The number of obese people in recent decades is increasing significantly. Among the many aspects of obesity in the last decade, the role and importance of changes in the gut microbiota (GM) attracts special attention. The aim of the review was to analyze the results of studies, focused on the role of gut microbiota in the obesity development. Screening was conducted on 33 researches, which examined the role of the gut microbiota balance in the development of obesity. Among them, 13 studies were selected for more detailed analysis. Obesity revealed typical changes in GM: an increase in the number of microbes of the genus Firmicutes and a decrease in the number of microbes of the genus Bacteroeidetes, which is particularly vividly demonstrated by studies of rodents. In obese mice, the microfamilies of the genus Firmicutes account for 80% of all GM (in control animals 60%), and the number of microorganisms of the genus Bacteroeidetes decreases by half (from 40 to 20%), compared to mice with normal weight. Despite the complexity of the question of the relationship between GM and obesity, the totality of the data received, especially the results of experimental studies, affirm the thesis that changes in GM may contribute to the development of obesity.

  4. 21 CFR 1250.96 - Rodent control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rodent control. 1250.96 Section 1250.96 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.96 Rodent control. Vessels shall be... of rodent control. ...

  5. Studies into abnormal aggression in humans and rodents: Methodological and translational aspects.

    Science.gov (United States)

    Haller, Jozsef

    2017-05-01

    Here we review the principles based on which aggression is rendered abnormal in humans and laboratory rodents, and comparatively overview the main methodological approaches based on which this behavior is studied in the two categories of subjects. It appears that the discriminating property of abnormal aggression is rule breaking, which renders aggression dysfunctional from the point of view of the perpetrator. We show that rodent models of abnormal aggression were created by the translation of human conditions into rodent equivalents, and discuss how findings obtained with such models may be "translated back" to human conditions when the mechanisms underlying aggression and its possibilities of treatment are investigated. We suggest that the complementary nature of human and rodent research approaches invite a more intense cross-talk between the two sides of aggression research than the one presently observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of obesity, energy restriction and neutering on the faecal microbiota of cats.

    Science.gov (United States)

    Fischer, Manuela M; Kessler, Alexandre M; Kieffer, Dorothy A; Knotts, Trina A; Kim, Kyoungmi; Wei, Alfreda; Ramsey, Jon J; Fascetti, Andrea J

    2017-10-01

    Surveys report that 25-57 % of cats are overweight or obese. The most evinced cause is neutering. Weight loss often fails; thus, new strategies are needed. Obesity has been associated with altered gut bacterial populations and increases in microbial dietary energy extraction, body weight and adiposity. This study aimed to determine whether alterations in intestinal bacteria were associated with obesity, energy restriction and neutering by characterising faecal microbiota using 16S rRNA gene sequencing in eight lean intact, eight lean neutered and eight obese neutered cats before and after 6 weeks of energy restriction. Lean neutered cats had a bacterial profile similar to obese rodents and humans, with a greater abundance (Pcats was due to a bloom in Peptostreptococcaceae. Obese cats had an 18 % reduction in fat mass after energy restriction (Pcats. Additional work is needed to understand how neutering, obesity and weight loss are related to changes in feline microbiota and how these microbial shifts affect host physiology.

  7. Cell Death and Heart Failure in Obesity: Role of Uncoupling Proteins

    Directory of Open Access Journals (Sweden)

    Angélica Ruiz-Ramírez

    2016-01-01

    Full Text Available Metabolic diseases such as obesity, metabolic syndrome, and type II diabetes are often characterized by increased reactive oxygen species (ROS generation in mitochondrial respiratory complexes, associated with fat accumulation in cardiomyocytes, skeletal muscle, and hepatocytes. Several rodents studies showed that lipid accumulation in cardiac myocytes produces lipotoxicity that causes apoptosis and leads to heart failure, a dynamic pathological process. Meanwhile, several tissues including cardiac tissue develop an adaptive mechanism against oxidative stress and lipotoxicity by overexpressing uncoupling proteins (UCPs, specific mitochondrial membrane proteins. In heart from rodent and human with obesity, UCP2 and UCP3 may protect cardiomyocytes from death and from a state progressing to heart failure by downregulating programmed cell death. UCP activation may affect cytochrome c and proapoptotic protein release from mitochondria by reducing ROS generation and apoptotic cell death. Therefore the aim of this review is to discuss recent findings regarding the role that UCPs play in cardiomyocyte survival by protecting against ROS generation and maintaining bioenergetic metabolism homeostasis to promote heart protection.

  8. The impact of maternal obesity during pregnancy on offspring immunity.

    Science.gov (United States)

    Wilson, Randall M; Messaoudi, Ilhem

    2015-12-15

    In the United States, approximately 64% of women of childbearing age are either overweight or obese. Maternal obesity during pregnancy is associated with a greater risk for adverse maternal-fetal outcomes. Adverse health outcomes for the offspring can persist into adulthood, increasing the incidence of several chronic conditions including cardiovascular disease, diabetes, and asthma. Since these diseases have a significant inflammatory component, these observations are indicative of perturbation of the normal development and maturation of the immune system of the offspring in utero. This hypothesis is strongly supported by data from several rodent studies. Although the mechanisms of these perturbations are not fully understood, it is thought that increased placental inflammation due to obesity may directly affect neonatal development through alterations in nutrient transport. In this review we examine the impact of maternal obesity on the neonatal immune system, and potential mechanisms for the changes observed. Published by Elsevier Ireland Ltd.

  9. Virtual reality systems for rodents.

    Science.gov (United States)

    Thurley, Kay; Ayaz, Aslı

    2017-02-01

    Over the last decade virtual reality (VR) setups for rodents have been developed and utilized to investigate the neural foundations of behavior. Such VR systems became very popular since they allow the use of state-of-the-art techniques to measure neural activity in behaving rodents that cannot be easily used with classical behavior setups. Here, we provide an overview of rodent VR technologies and review recent results from related research. We discuss commonalities and differences as well as merits and issues of different approaches. A special focus is given to experimental (behavioral) paradigms in use. Finally we comment on possible use cases that may further exploit the potential of VR in rodent research and hence inspire future studies.

  10. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia

    Directory of Open Access Journals (Sweden)

    Wahl D

    2017-09-01

    Full Text Available Devin Wahl,1,2 Sean CP Coogan,1,3 Samantha M Solon-Biet,1,2 Rafael de Cabo,4 James B Haran,5 David Raubenheimer,1,6,7 Victoria C Cogger,1,2 Mark P Mattson,8 Stephen J Simpson,1,2,7 David G Le Couteur1,2 1Charles Perkins Centre, University of Sydney, Sydney, 2Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, NSW, Australia; 3Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada; 4Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; 5Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA; 6Faculty of Veterinary Science, 7School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; 8Laboratory of Neurosciences, National Institute on Aging’s Intramural Research Program, National Institutes of Health, Baltimore, MD, USA Abstract: Evaluation of behavior and cognition in rodent models underpins mechanistic and interventional studies of brain aging and neurodegenerative diseases, especially ­dementia. Commonly used tests include Morris water maze, Barnes maze, object recognition, fear ­conditioning, radial arm water maze, and Y maze. Each of these tests reflects some aspects of human memory including episodic memory, recognition memory, semantic memory, spatial memory, and emotional memory. Although most interventional studies in rodent models of dementia have focused on pharmacological agents, there are an increasing number of studies that have evaluated nutritional interventions including caloric restriction, intermittent fasting, and manipulation of macronutrients. Dietary interventions have been shown to influence ­various cognitive and behavioral tests in rodents indicating that nutrition can influence brain aging and possibly neurodegeneration. Keywords: calorie restriction, intermittent fasting, aging, memory, macronutrients

  11. Modeling natural photic entrainment in a subterranean rodent (Ctenomys aff. knighti, the Tuco-Tuco.

    Directory of Open Access Journals (Sweden)

    Danilo E F L Flôres

    Full Text Available Subterranean rodents spend most of the day inside underground tunnels, where there is little daily change in environmental variables. Our observations of tuco-tucos (Ctenomys aff. knighti in a field enclosure indicated that these animals perceive the aboveground light-dark cycle by several bouts of light-exposure at irregular times during the light hours of the day. To assess whether such light-dark pattern acts as an entraining agent of the circadian clock, we first constructed in laboratory the Phase Response Curve for 1 h light-pulses (1000lux. Its shape is qualitatively similar to other curves reported in the literature and to our knowledge it is the first Phase Response Curve of a subterranean rodent. Computer simulations were performed with a non-linear limit-cycle oscillator subjected to a simple model of the light regimen experienced by tuco-tucos. Results showed that synchronization is achieved even by a simple regimen of a single daily light pulse scattered uniformly along the light hours of the day. Natural entrainment studies benefit from integrated laboratory, field and computational approaches.

  12. Semi-physiological model of postprandial triglyceride response in lean, obese and very obese individuals after a high-fat meal.

    Science.gov (United States)

    Leohr, Jennifer; Heathman, Michael; Kjellsson, Maria C

    2018-03-01

    To quantify the postprandial triglyceride (TG) response of chylomicrons and very-low-density lipoprotein-V6 (VLDL-V6) after a high-fat meal in lean, obese and very obese healthy individuals, using a mechanistic population lipokinetic modelling approach. Healthy individuals from three body mass index population categories: lean (18.5-24.9 kg/m 2 ), obese (30-33 kg/m 2 ), and very obese (34-40 kg/m 2 ) were enrolled in a clinical study to assess the TG response after a high-fat meal, containing 60% fat. Non-linear mixed-effect modelling was used to analyse the TG concentrations of chylomicrons and large VLDL-V6 particles. The TGs in chylomicrons and VLDL-V6 particles had a prominent postprandial peak and represented the majority of the postprandial response; only the VLDL-V6 showed a difference across the populations. A turn-over model successfully described the TG concentration-time profiles of both chylomicrons and large VLDL-V6 particles after the high-fat meal. This model consisted of four compartments: two transit compartments for the lag between meal consumption and appearance of TGs in the blood, and one compartment each for the chylomicrons and large VLDL-V6 particles. The rate constants for the production of chylomicrons and elimination of large VLDL-V6 particles, along with the conversion rate of chylomicrons to large VLDL-V6 particles were well defined. This is the first lipokinetic model to describe the absorption of TGs from dietary fats into the blood stream and compares the dynamics of TGs in chylomicrons and large VLDL-V6 particles among lean, obese and very obese people. Such a model can be used to identify where pharmacological therapies act, thereby improving the determination of efficacy, and identifying complementary mechanisms for combinational drug therapies. © 2017 John Wiley & Sons Ltd.

  13. Systems Thinking and Simulation Modeling to Inform Childhood Obesity Policy and Practice.

    Science.gov (United States)

    Powell, Kenneth E; Kibbe, Debra L; Ferencik, Rachel; Soderquist, Chris; Phillips, Mary Ann; Vall, Emily Anne; Minyard, Karen J

    In 2007, 31.7% of Georgia adolescents in grades 9-12 were overweight or obese. Understanding the impact of policies and interventions on obesity prevalence among young people can help determine statewide public health and policy strategies. This article describes a systems model, originally launched in 2008 and updated in 2014, that simulates the impact of policy interventions on the prevalence of childhood obesity in Georgia through 2034. In 2008, using information from peer-reviewed reports and quantitative estimates by experts in childhood obesity, physical activity, nutrition, and health economics and policy, a group of legislators, legislative staff members, and experts trained in systems thinking and system dynamics modeling constructed a model simulating the impact of policy interventions on the prevalence of childhood obesity in Georgia through 2034. Use of the 2008 model contributed to passage of a bill requiring annual fitness testing of schoolchildren and stricter enforcement of physical education requirements. We updated the model in 2014. With no policy change, the updated model projects that the prevalence of obesity among children and adolescents aged ≤18 in Georgia would hold at 18% from 2014 through 2034. Mandating daily school physical education (which would reduce prevalence to 12%) and integrating moderate to vigorous physical activity into elementary classrooms (which would reduce prevalence to 10%) would have the largest projected impact. Enacting all policies simultaneously would lower the prevalence of childhood obesity from 18% to 3%. Systems thinking, especially with simulation models, facilitates understanding of complex health policy problems. Using a simulation model to educate legislators, educators, and health experts about the policies that have the greatest short- and long-term impact should encourage strategic investment in low-cost, high-return policies.

  14. Brain Transcriptome Profiles in Mouse Model Simulating Features of Post-traumatic Stress Disorder

    Science.gov (United States)

    2015-02-28

    analyses of DEGs suggested pos- sible roles in anxiety-related behavioral responses, synaptic plasticity, neurogenesis, inflammation, obesity...Behavioral evaluation of mouse model We established [29] a rodent model manifesting PTSD- like behavioral features. We believe that, because the stres - sor...hippo- campus (HC), medial prefrontal cortex (MPFC) play primary roles in fear learning and memory, and thus, may contribute to the behavioral

  15. Behavioral testing in rodent models of orofacial neuropathic and inflammatory pain

    Science.gov (United States)

    Krzyzanowska, Agnieszka; Avendaño, Carlos

    2012-01-01

    Orofacial pain conditions are often very debilitating to the patient and difficult to treat. While clinical interest is high, the proportion of studies performed in the orofacial region in laboratory animals is relatively low, compared with other body regions. This is partly due to difficulties in testing freely moving animals and therefore lack of reliable testing methods. Here we present a comprehensive review of the currently used rodent models of inflammatory and neuropathic pain adapted to the orofacial areas, taking into account the difficulties and drawbacks of the existing approaches. We examine the available testing methods and procedures used for assessing the behavioral responses in the face in both mice and rats and provide a summary of some pharmacological agents used in these paradigms to date. The use of these agents in animal models is also compared with outcomes observed in the clinic. PMID:23139912

  16. Aberrant dopamine D2-like receptor function in a rodent model of schizophrenia.

    Science.gov (United States)

    Perez, Stephanie M; Lodge, Daniel J

    2012-11-01

    Based on the observation that antipsychotic medications display antagonist properties at dopamine D2-like receptors, aberrant dopamine signaling has been proposed to underlie psychosis in patients with schizophrenia. Thus, it is not surprising that considerable research has been devoted to understanding the mechanisms involved in the antipsychotic action of these compounds. It is important to note that the majority of these studies have been performed in "normal" experimental animals. Given that these animals do not possess the aberrant neuronal information processing typically associated with schizophrenia, the aim of the current study was to examine the dopamine D2 receptor system in a rodent model of schizophrenia. Here, we demonstrate that methylazoxymethanol acetate (MAM)-treated rats display an enhanced effect of quinpirole on dopamine neuron activity and an aberrant locomotor response to D2-like receptor activation, suggesting changes in postsynaptic D2-like receptor function. To better understand the mechanisms underlying the enhanced response to D2-like ligands in MAM-treated rats, we examined the expression of D2, D3, and dopamine transporter mRNA in the nucleus accumbens and ventral tegmental area by quantitative reverse transcription-polymerase chain reaction. MAM-treated rats displayed a significant increase in dopamine D3 receptor mRNA expression in the nucleus accumbens with no significant changes in the expression of the D2 receptor. Taken together, these data demonstrate robust alterations in dopamine D2-like receptor function in a rodent model of schizophrenia and provide evidence that preclinical studies examining the mechanisms of antipsychotic drug action should be performed in animal models that mirror aspects of the abnormal neuronal transmission thought to underlie symptoms of schizophrenia.

  17. Applications of Systems Genetics and Biology for Obesity Using Pig Models

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Kadarmideen, Haja N.

    2016-01-01

    approach, a branch of systems biology. In this chapter, we will describe the state of the art of genetic studies on human obesity, using pig populations. We will describe the features of using the pig as a model for human obesity and briefly discuss the genetics of obesity, and we will focus on systems...

  18. Reducing Societal Obesity: Establishing a Separate Exercise Model through Studies of Group Behavior.

    Science.gov (United States)

    Puterbaugh, J S

    2016-01-01

    The past 50 years has brought attention to high and increasing levels of human obesity in most of the industrialized world. The medical profession has noticed, has evaluated, and has developed models for studying, preventing, and reversing obesity. The current model prescribes activity in specific quantities such as days, minutes, heart rates, and footfalls. Although decreased levels of activity have come from changes revolving around built environments and social networks, the existing medical model to lower body weights by increasing activity remains individually prescriptive. It is not working. The study of societal obesity precludes the individual and must involve group behavioral studies. Such studies necessitate acquiring separate tools and, therefore, require a significant change in the evaluation and treatment of obesity. Finding groups with common activities and lower levels of obesity would allow the development of new models of land use and encourage active lifestyles through shared interests.

  19. Comparing strategies for controlling an African pest rodent: an empirically based theoretical study

    DEFF Research Database (Denmark)

    Stenseth, Nils Chr.; Leirs, Herwig; Mercelis, Saskia

    2001-01-01

    of rats. Control measures affecting survival as well as reproduction were considered.4. The model showed that control measures reducing survival will only have long-term effects on population size if they are also applied when rodent densities are low. Control measures applied only when rodent densities...... are high will not have persistent effects, even at high mortality rates.5. The model demonstrated that control measures reducing reproduction are likely to prevent Mastomys outbreaks, but will keep densities low over a long period only when the contraceptive effect is strong (> 75% reduction).6. Provided...... in particular cause major economic losses in Africa through damage to crops. Attempts to develop dynamic population models for this and other pest rodents are ongoing. 2. Demographic estimates from a capture-mark-recapture (CMR) study in Tanzania were used to parameterize a population model for this species...

  20. Designing an Agent-Based Model for Childhood Obesity Interventions: A Case Study of ChildObesity180.

    Science.gov (United States)

    Hennessy, Erin; Ornstein, Joseph T; Economos, Christina D; Herzog, Julia Bloom; Lynskey, Vanessa; Coffield, Edward; Hammond, Ross A

    2016-01-07

    Complex systems modeling can provide useful insights when designing and anticipating the impact of public health interventions. We developed an agent-based, or individual-based, computation model (ABM) to aid in evaluating and refining implementation of behavior change interventions designed to increase physical activity and healthy eating and reduce unnecessary weight gain among school-aged children. The potential benefits of applying an ABM approach include estimating outcomes despite data gaps, anticipating impact among different populations or scenarios, and exploring how to expand or modify an intervention. The practical challenges inherent in implementing such an approach include data resources, data availability, and the skills and knowledge of ABM among the public health obesity intervention community. The aim of this article was to provide a step-by-step guide on how to develop an ABM to evaluate multifaceted interventions on childhood obesity prevention in multiple settings. We used data from 2 obesity prevention initiatives and public-use resources. The details and goals of the interventions, overview of the model design process, and generalizability of this approach for future interventions is discussed.

  1. Bone morphology of the hind limbs in two caviomorph rodents.

    Science.gov (United States)

    de Araújo, F A P; Sesoko, N F; Rahal, S C; Teixeira, C R; Müller, T R; Machado, M R F

    2013-04-01

    In order to evaluate the hind limbs of caviomorph rodents a descriptive analysis of the Cuniculus paca (Linnaeus, 1766) and Hydrochoerus hydrochaeris (Linnaeus, 1766) was performed using anatomical specimens, radiography, computed tomography (CT) and full-coloured prototype models to generate bone anatomy data. The appendicular skeleton of the two largest rodents of Neotropical America was compared with the previously reported anatomical features of Rattus norvegicus (Berkenhout, 1769) and domestic Cavia porcellus (Linnaeus, 1758). The structures were analyzed macroscopically and particular findings of each species reported. Features including the presence of articular fibular projection and lunulae were observed in the stifle joint of all rodents. Imaging aided in anatomical description and, specifically in the identification of bone structures in Cuniculus paca and Hydrochoerus hydrochaeris. The imaging findings were correlated with the anatomical structures observed. The data may be used in future studies comparing these animals to other rodents and mammalian species. © 2012 Blackwell Verlag GmbH.

  2. Effects of diet-induced obesity on motivation and pain behavior in an operant assay.

    Science.gov (United States)

    Rossi, H L; Luu, A K S; Kothari, S D; Kuburas, A; Neubert, J K; Caudle, R M; Recober, A

    2013-04-03

    Obesity has been associated with multiple chronic pain disorders, including migraine. We hypothesized that diet-induced obesity would be associated with a reduced threshold for thermal nociception in the trigeminal system. In this study, we sought to examine the effect of diet-induced obesity on facial pain behavior. Mice of two different strains were fed high-fat or regular diet (RD) and tested using a well-established operant facial pain assay. We found that the effects of diet on behavior in this assay were strain and reward dependent. Obesity-prone C57BL/6J mice fed a high-fat diet (HFD) display lower number of licks of a caloric, palatable reward (33% sweetened condensed milk or 30% sucrose) than control mice. This occurred at all temperatures, in both sexes, and was evident even before the onset of obesity. This diminished reward-seeking behavior was not observed in obesity-resistant SKH1-E (SK) mice. These findings suggest that diet and strain interact to modulate reward-seeking behavior. Furthermore, we observed a difference between diet groups in operant behavior with caloric, palatable rewards, but not with a non-caloric neutral reward (water). Importantly, we found no effect of diet-induced obesity on acute thermal nociception in the absence of inflammation or injury. This indicates that thermal sensation in the face is not affected by obesity-associated peripheral neuropathy as it occurs when studying pain behaviors in the rodent hindpaw. Future studies using this model may reveal whether obesity facilitates the development of chronic pain after injury or inflammation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Reliable critical sized defect rodent model for cleft palate research.

    Science.gov (United States)

    Mostafa, Nesrine Z; Doschak, Michael R; Major, Paul W; Talwar, Reena

    2014-12-01

    Suitable animal models are necessary to test the efficacy of new bone grafting therapies in cleft palate surgery. Rodent models of cleft palate are available but have limitations. This study compared and modified mid-palate cleft (MPC) and alveolar cleft (AC) models to determine the most reliable and reproducible model for bone grafting studies. Published MPC model (9 × 5 × 3 mm(3)) lacked sufficient information for tested rats. Our initial studies utilizing AC model (7 × 4 × 3 mm(3)) in 8 and 16 weeks old Sprague Dawley (SD) rats revealed injury to adjacent structures. After comparing anteroposterior and transverse maxillary dimensions in 16 weeks old SD and Wistar rats, virtual planning was performed to modify MPC and AC defects dimensions, taking the adjacent structures into consideration. Modified MPC (7 × 2.5 × 1 mm(3)) and AC (5 × 2.5 × 1 mm(3)) defects were employed in 16 weeks old Wistar rats and healing was monitored by micro-computed tomography and histology. Maxillary dimensions in SD and Wistar rats were not significantly different. Preoperative virtual planning enhanced postoperative surgical outcomes. Bone healing occurred at defect margin leaving central bone void confirming the critical size nature of the modified MPC and AC defects. Presented modifications for MPC and AC models created clinically relevant and reproducible defects. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Stress in adolescence and drugs of abuse in rodent models: Role of dopamine, CRF, and HPA axis

    Science.gov (United States)

    Burke, Andrew R.; Miczek, Klaus A.

    2014-01-01

    Rationale Research on adolescence and drug abuse increased substantially in the past decade. However, drug-addiction related behaviors following stressful experiences during adolescence are less studied. We focus on rodent models of adolescent stress cross-sensitization to drugs of abuse. Objectives Review the ontogeny of behavior, dopamine, corticotropin-releasing factor (CRF), and the hypothalamic pituitary adrenal (HPA) axis in adolescent rodents. We evaluate evidence that stressful experiences during adolescence engender hypersensitivity to drugs of abuse and offer potential neural mechanisms. Results and Conclusions Much evidence suggests that final maturation of behavior, dopamine systems, and HPA axis occurs during adolescence. Stress during adolescence increases amphetamine- and ethanol-stimulated locomotion, preference, and self-administration under many conditions. The influence of adolescent stress on subsequent cocaine- and nicotine-stimulated locomotion and preference is less clear. The type of adolescent stress, temporal interval between stress and testing, species, sex, and the drug tested are key methodological determinants for successful cross-sensitization procedures. The sensitization of the mesolimbic dopamine system is proposed to underlie stress cross-sensitization to drugs of abuse in both adolescents and adults through modulation by CRF. Reduced levels of mesocortical dopamine appear to be a unique consequence of social stress during adolescence. Adolescent stress may reduce the final maturation of cortical dopamine through D2 dopamine receptor regulation of dopamine synthesis or glucocorticoid-facilitated pruning of cortical dopamine fibers. Certain rodent models of adolescent adversity are useful for determining neural mechanisms underlying the cross-sensitization to drugs of abuse. PMID:24370534

  5. Implementing the Obesity Care Model at a Community Health Center in Hawaii to Address Childhood Obesity

    OpenAIRE

    Okihiro, May; Pillen, Michelle; Ancog, Cristeta; Inda, Christy; Sehgal, Vija

    2013-01-01

    Obesity, the most common chronic disease of childhood, is prevalent among economically disadvantaged children. The Chronic Care and Obesity Care Models are comprehensive health care strategies to improve outcomes by linking primary care best practices and community-based programs. Pediatric providers and community health centers are well positioned to design and implement coordinated and synergistic programs to address childhood health disparities. This article describes a comprehensive proje...

  6. Early-Life Antibiotic Exposure, Gut Microbiota Development, and Predisposition to Obesity.

    Science.gov (United States)

    Azad, Meghan B; Moossavi, Shirin; Owora, Arthur; Sepehri, Shadi

    2017-01-01

    Antibiotics are often prescribed inappropriately to infants and young children, with potentially adverse effects on the developing gut microbiota and related metabolic processes. We review evidence from 17 epidemiologic studies suggesting that antibiotic exposure during critical periods of early development may influence weight gain and the development of obesity. Complementary research in both humans and rodents indicates that gut microbiota play a key role in this process, although further research is needed to confirm and characterize the causal mechanisms involved. Obesity is a complex and multifactorial condition; thus, a multipronged prevention strategy will be required to curb the current obesity epidemic. Evidence to date suggests this strategy should include the judicious use of antibiotics, especially in early life when the developing gut microbiota is particularly susceptible to perturbations with long-lasting implications for metabolic programming and obesity risk. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  7. Computer modeling of obesity links theoretical energetic measures with experimental measures of fuel use for lean and obese men.

    Science.gov (United States)

    Rossow, Heidi A; Calvert, C Chris

    2014-10-01

    The goal of this research was to use a computational model of human metabolism to predict energy metabolism for lean and obese men. The model is composed of 6 state variables representing amino acids, muscle protein, visceral protein, glucose, triglycerides, and fatty acids (FAs). Differential equations represent carbohydrate, amino acid, and FA uptake and output by tissues based on ATP creation and use for both lean and obese men. Model parameterization is based on data from previous studies. Results from sensitivity analyses indicate that model predictions of resting energy expenditure (REE) and respiratory quotient (RQ) are dependent on FA and glucose oxidation rates with the highest sensitivity coefficients (0.6, 0.8 and 0.43, 0.15, respectively, for lean and obese models). Metabolizable energy (ME) is influenced by ingested energy intake with a sensitivity coefficient of 0.98, and a phosphate-to-oxygen ratio by FA oxidation rate and amino acid oxidation rate (0.32, 0.24 and 0.55, 0.65 for lean and obese models, respectively). Simulations of previously published studies showed that the model is able to predict ME ranging from 6.6 to 9.3 with 0% differences between published and model values, and RQ ranging from 0.79 to 0.86 with 1% differences between published and model values. REEs >7 MJ/d are predicted with 6% differences between published and model values. Glucose oxidation increases by ∼0.59 mol/d, RQ increases by 0.03, REE increases by 2 MJ/d, and heat production increases by 1.8 MJ/d in the obese model compared with lean model simulations. Increased FA oxidation results in higher changes in RQ and lower relative changes in REE. These results suggest that because fat mass is directly related to REE and rate of FA oxidation, body fat content could be used as a predictor of RQ. © 2014 American Society for Nutrition.

  8. Dietary Protein Source and Cyclooxygenase-Inhibition Influence Development of Diet-Induced Obesity, Glucose Homeostasis and Brown Adipose Tissue

    DEFF Research Database (Denmark)

    Aune, Ulrike Liisberg

    striking differences between various protein sources in relation to the development of obesity, insulin resistance and hepatic lipid accumulation. Casein protein, despite being the regular protein source used in experimental diets for rodents, seems to provide strong protection against obesity. This was......, the lean protein source, pork, seemed to promote obesity. However, this was attenuated when pork was exchanged for cod. Reduced feed-intake in the cod-fed mice could provide some explanation for this, but, other mechanisms, potentially involving endocannabinoids, may play a role. The small amount...

  9. Thirty days of resveratrol supplementation does not affect postprandial incretin hormone responses, but suppresses postprandial glucagon in obese subjects

    DEFF Research Database (Denmark)

    Knop, F K; Konings, E; Timmers, S

    2013-01-01

    AIMS: Resveratrol, a natural polyphenolic compound produced by various plants (e.g. red grapes) and found in red wine, has glucose-lowering effects in humans and rodent models of obesity and/or diabetes. The mechanisms behind these effects have been suggested to include resveratrol......-induced secretion of the gut incretin hormone glucagon-like peptide-1. We investigated postprandial incretin hormone and glucagon responses in obese human subjects before and after 30 days of resveratrol supplementation. METHODS: Postprandial plasma responses of the incretin hormones glucagon-like peptide-1...... and glucose-dependent insulinotropic polypeptide and glucagon were evaluated in 10 obese men [subjects characteristics (mean ± standard error of the mean): age 52 ± 2 years; BMI 32 ± 1 kg/m(2) , fasting plasma glucose 5.5 ± 0.1 mmol/l] who had been given a dietary supplement of resveratrol (Resvida(®) 150 mg...

  10. Vision in laboratory rodents-Tools to measure it and implications for behavioral research.

    Science.gov (United States)

    Leinonen, Henri; Tanila, Heikki

    2017-07-29

    Mice and rats are nocturnal mammals and their vision is specialized for detection of motion and contrast in dim light conditions. These species possess a large proportion of UV-sensitive cones in their retinas and the majority of their optic nerve axons target superior colliculus rather than visual cortex. Therefore, it was a widely held belief that laboratory rodents hardly utilize vision during day-time behavior. This dogma is being questioned as accumulating evidence suggests that laboratory rodents are able to perform complex visual functions, such as perceiving subjective contours, and that declined vision may affect their performance in many behavioral tasks. For instance, genetic engineering may have unexpected consequences on vision as mouse models of Alzheimer's and Huntington's diseases have declined visual function. Rodent vision can be tested in numerous ways using operant training or reflex-based behavioral tasks, or alternatively using electrophysiological recordings. In this article, we will first provide a summary of visual system and explain its characteristics unique to rodents. Then, we present well-established techniques to test rodent vision, with an emphasis on pattern vision: visual water test, optomotor reflex test, pattern electroretinography and pattern visual evoked potentials. Finally, we highlight the importance of visual phenotyping in rodents. As the number of genetically engineered rodent models and volume of behavioral testing increase simultaneously, the possibility of visual dysfunctions needs to be addressed. Neglect in this matter potentially leads to crude biases in the field of neuroscience and beyond. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Experimental evidence of obesity as a risk factor for severe acute pancreatitis.

    Science.gov (United States)

    Frossard, Jean-Louis; Lescuyer, Pierre; Pastor, Catherine M

    2009-11-14

    The incidence of acute pancreatitis, an inflammation of the pancreas, is increasing worldwide. Pancreatic injury is mild in 80%-90% of patients who recover without complications. The remaining patients may develop a severe disease with local complications such as acinar cell necrosis, abscess and remote organ injury including lung injury. The early prediction of the severity of the disease is an important goal for physicians in management of patients with acute pancreatitis in order to optimize the therapy and to prevent organ dysfunction and local complications. For that purpose, multiple clinical scale scores have been applied to patients with acute pancreatitis. Recently, a new problem has emerged: the increased severity of the disease in obese patients. However, the mechanisms by which obesity increases the severity of acute pancreatitis are unclear. Several hypotheses have been suggested: (1) obese patients have an increased inflammation within the pancreas; (2) obese patients have an increased accumulation of fat within and around the pancreas where necrosis is often located; (3) increase in both peri- and intra-pancreatic fat and inflammatory cells explain the high incidence of pancreatic inflammation and necrosis in obese patients; (4) hepatic dysfunction associated with obesity might enhance the systemic inflammatory response by altering the detoxification of inflammatory mediators; and (5) ventilation/perfusion mismatch leading to hypoxia associated with a low pancreatic flow might reduce the pancreatic oxygenation and further enhance pancreatic injury. Recent experimental investigations also show an increased mortality and morbidity in obese rodents with acute pancreatitis and the implication of the adipokines leptin and adiponectin. Such models are important to investigate whether the inflammatory response of the disease is enhanced by obesity. It is exciting to speculate that manipulation of the adipokine milieu has the potential to influence the

  12. Cardiomyocyte Triglyceride Accumulation and Reduced Ventricular Function in Mice with Obesity Reflect Increased Long Chain Fatty Acid Uptake and De Novo Fatty Acid Synthesis

    Directory of Open Access Journals (Sweden)

    Fengxia Ge

    2012-01-01

    Full Text Available A nonarteriosclerotic cardiomyopathy is increasingly seen in obese patients. Seeking a rodent model, we studied cardiac histology, function, cardiomyocyte fatty acid uptake, and transporter gene expression in male C57BL/6J control mice and three obesity groups: similar mice fed a high-fat diet (HFD and db/db and ob/ob mice. At sacrifice, all obesity groups had increased body and heart weights and fatty livers. By echocardiography, ejection fraction (EF and fractional shortening (FS of left ventricular diameter during systole were significantly reduced. The Vmax for saturable fatty acid uptake was increased and significantly correlated with cardiac triglycerides and insulin concentrations. Vmax also correlated with expression of genes for the cardiac fatty acid transporters Cd36 and Slc27a1. Genes for de novo fatty acid synthesis (Fasn, Scd1 were also upregulated. Ten oxidative phosphorylation pathway genes were downregulated, suggesting that a decrease in cardiomyocyte ATP synthesis might explain the decreased contractile function in obese hearts.

  13. Analgesic and Anti-Inflammatory Effects of 80% Methanol Extract of Leonotis ocymifolia (Burm.f. Iwarsson Leaves in Rodent Models

    Directory of Open Access Journals (Sweden)

    Asnakech Alemu

    2018-01-01

    Full Text Available Background. Pain and inflammation are the major health problems commonly treated with traditional remedies mainly using medicinal plants. Leonotis ocymifolia is one of such medicinal plants used in folkloric medicine of Ethiopia. However, the plant has not been scientifically evaluated. The aim of this study was to evaluate analgesic and anti-inflammatory effects of the 80% methanol leaves extract of Leonotis ocymifolia using rodent models. Method. The central and peripheral analgesic effect of the extract at 100, 200, and 400 mg/kg dose levels was evaluated using hot plate and acetic acid induced writhing rodent models, whereas carrageenan induced paw edema and cotton pellet granuloma methods were used to screen anti-inflammatory effect of the extract at the same dose levels. Acute toxicity test was also done. Data were analyzed using one-way ANOVA followed by Tukey’s post hoc test and p<0.05 was considered significant. Results. The extract did not produce mortality up to 2000 mg/kg. All tested doses of the extract showed significant analgesic effect with maximum latency response of 62.8% and inhibition of acetic acid induced writhing. Maximum anti-inflammatory effect was recorded at 6 h after induction, with 75.88% reduction in carrageenan induced paw edema. Moreover, all tested doses of extract significantly inhibited the formation of inflammatory exudates and granuloma formation (p<0.001. Conclusion. The study indicated that the extract was safe in mice and it has both analgesic and anti-inflammatory effect in rodent models.

  14. The effect of tear size and nerve injury on rotator cuff muscle fatty degeneration in a rodent animal model.

    Science.gov (United States)

    Kim, H Mike; Galatz, Leesa M; Lim, Chanteak; Havlioglu, Necat; Thomopoulos, Stavros

    2012-07-01

    Irreversible muscle changes after rotator cuff tears is a well-known negative prognostic factor after shoulder surgery. Currently, little is known about the pathomechanism of fatty degeneration of the rotator cuff muscles after chronic cuff tears. The purposes of this study were to (1) develop a rodent animal model of chronic rotator cuff tears that can reproduce fatty degeneration of the cuff muscles seen clinically, (2) describe the effects of tear size and concomitant nerve injury on muscle degeneration, and (3) evaluate the changes in gene expression of relevant myogenic and adipogenic factors after rotator cuff tears using the animal model. Rotator cuff tears were created in rodents with and without transection of the suprascapular nerve. The supraspinatus and infraspinatus muscles were examined at 2, 8, and 16 weeks after injury for histologic evidence of fatty degeneration and expression of myogenic and adipogenic genes. Histologic analysis revealed adipocytes, intramuscular fat globules, and intramyocellular fat droplets in the tenotomized and neurotomized supraspinatus and infraspinatus muscles. Changes increased with time and were most severe in the muscles with combined tenotomy and neurotomy. Adipogenic and myogenic transcription factors and markers were upregulated in muscles treated with tenotomy or tenotomy combined with neurotomy compared with normal muscles. The rodent animal model described in this study produces fatty degeneration of the rotator cuff muscles similar to human muscles after chronic cuff tears. The severity of changes was associated with tear size and concomitant nerve injury. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  15. A biometric approach to laboratory rodent identification.

    Science.gov (United States)

    Cameron, Jens; Jacobson, Christina; Nilsson, Kenneth; Rögnvaldsson, Thorsteinn

    2007-03-01

    Individual identification of laboratory rodents typically involves invasive methods, such as tattoos, ear clips, and implanted transponders. Beyond the ethical dilemmas they may present, these methods may cause pain or distress that confounds research results. The authors describe a prototype device for biometric identification of laboratory rodents that would allow researchers to identify rodents without the complications of other methods. The device, which uses the rodent's ear blood vessel pattern as the identifier, is fast, automatic, noninvasive, and painless.

  16. Odor supported place cell model and goal navigation in rodents

    DEFF Research Database (Denmark)

    Kulvicius, Tomas; Tamosiunaite, Minija; Ainge, James

    2008-01-01

    Experiments with rodents demonstrate that visual cues play an important role in the control of hippocampal place cells and spatial navigation. Nevertheless, rats may also rely on auditory, olfactory and somatosensory stimuli for orientation. It is also known that rats can track odors or self......-generated scent marks to find a food source. Here we model odor supported place cells by using a simple feed-forward network and analyze the impact of olfactory cues on place cell formation and spatial navigation. The obtained place cells are used to solve a goal navigation task by a novel mechanism based on self......-marking by odor patches combined with a Q-learning algorithm. We also analyze the impact of place cell remapping on goal directed behavior when switching between two environments. We emphasize the importance of olfactory cues in place cell formation and show that the utility of environmental and self...

  17. [Non-linear System Dynamics Simulation Modeling of Adolescent Obesity: Using Korea Youth Risk Behavior Web-based Survey].

    Science.gov (United States)

    Lee, Hanna; Park, Eun Suk; Yu, Jae Kook; Yun, Eun Kyoung

    2015-10-01

    The purpose of this study was to develop a system dynamics model for adolescent obesity in Korea that could be used for obesity policy analysis. On the basis of the casual loop diagram, a model was developed by converting to stock and flow diagram. The Vensim DSS 5.0 program was used in the model development. We simulated method of moments to the calibration of this model with data from The Korea Youth Risk Behavior Web-based Survey 2005 to 2013. We ran the scenario simulation. This model can be used to understand the current adolescent obesity rate, predict the future obesity rate, and be utilized as a tool for controlling the risk factors. The results of the model simulation match well with the data. It was identified that a proper model, able to predict obesity probability, was established. These results of stock and flow diagram modeling in adolescent obesity can be helpful in development of obesity by policy planners and other stakeholders to better anticipate the multiple effects of interventions in both the short and the long term. In the future we suggest the development of an expanded model based on this adolescent obesity model.

  18. Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition.

    Science.gov (United States)

    Morris, Margaret J; Beilharz, Jessica E; Maniam, Jayanthi; Reichelt, Amy C; Westbrook, R Frederick

    2015-11-01

    Changes in food composition and availability have contributed to the dramatic increase in obesity over the past 30-40 years in developed and, increasingly, in developing countries. The brain plays a critical role in regulating energy balance. Some human studies have demonstrated increased preference for high fat and high sugar foods in people reporting greater stress exposure. We have examined neurochemical changes in the brain in rodent models during the development of obesity, including the impact of obesity on cognition, reward neurocircuitry and stress responsiveness. Using supermarket foods high in fat and sugar, we showed that such a diet leads to changes in neurotransmitters involved in the hedonic appraisal of foods, indicative of an addiction-like capacity of foods high in fat and/or sugar. Importantly, withdrawal of the palatable diet led to a stress-like response. Furthermore, access to this palatable diet attenuated the physiological effects of acute stress (restraint), indicating that it could act as a comfort food. In more chronic studies, the diet also attenuated anxiety-like behavior in rats exposed to stress (maternal separation) early in life, but these rats may suffer greater metabolic harm than rats exposed to the early life stressor but not provided with the palatable diet. Impairments in cognitive function have been associated with obesity in both people and rodents. However, as little as 1 week of exposure to a high fat, high sugar diet selectively impaired place but not object recognition memory in the rat. Excess sugar alone had similar effects, and both diets were linked to increased inflammatory markers in the hippocampus, a critical region involved in memory. Obesity-related inflammatory changes have been found in the human brain. Ongoing work examines interventions to prevent or reverse diet-induced cognitive impairments. These data have implications for minimizing harm caused by unhealthy eating. Copyright © 2014 Elsevier Ltd. All

  19. Zinc metabolism in genetically obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Kennedy, M.L.; Failla, M.L.

    1987-01-01

    Recent reports indicate that the concentrations and total amounts of several essential trace metals in various tissues of genetically obese rodents differ markedly from those in lean controls. In the present studies the absorption, retention and tissue distribution of zinc and constitutive levels of zinc-metallothionein (Zn-MT) in selected tissues were compared in obese (ob/ob) and lean (+/?) C57BL/6J mice. When 5-, 10- and 22-wk-old mice were administered 1.2 mumol 65 Zn by stomach tube the apparent absorption of 65 Zn by obese mice was 1.5, 2.2 and 3.9 times higher, respectively, than that in age-matched lean mice. Retention of orally administered 65 Zn after 96 h was also substantially higher in obese mice than in lean mice. To assess the possible influences of hyperphagia and intestinal hypertrophy on the enhanced apparent absorption of 65 Zn by obese mice food intake by an additional group of obese mice was restricted to that of age-matched lean controls. When actual absorption of zinc was determined according to the method of Heth and Hoekstra, groups of ad libitum--fed obese, pair-fed obese and lean mice absorbed 38, 32 and 18% of administered 65 Zn, respectively. In contrast, the rate of 65 Zn excretion 2-6 d after oral or subcutaneous administration of the metal was similar for obese and lean mice. Unrestricted and pair-fed obese mice had significantly lower percentages of carcass 65 Zn present in skin, muscle plus bone, spleen and testes and higher percentages present in liver, small intestine and adipose tissue than lean mice

  20. The rodent ultrasound production mechanism.

    Science.gov (United States)

    Roberts, L H

    1975-03-01

    Rodents produce two types of sounds, audible and ultrasonic, that differ markedly in physical structure. Studies of sound production in light gases show that whereas the audible cries appear to be produced, as in the case of most other mammals, by vibrating structures in the larynx, the ultrasonic cries are produced by a different mechanism, probably a whistle. 'Bird-call' whistles are shown to have all the properties of rodent ultrasonic cries and to mimic them in almost every detail. Thus it is concluded that rodents have two distinct sound production mechanisms, one for audible cries and one for ultrasonic cries.

  1. Rodent Models of Alcoholic Liver Disease: Role of Binge Ethanol Administration

    Directory of Open Access Journals (Sweden)

    Shubha Ghosh Dastidar

    2018-01-01

    Full Text Available Both chronic and acute (binge alcohol drinking are important health and economic concerns worldwide and prominent risk factors for the development of alcoholic liver disease (ALD. There are no FDA-approved medications to prevent or to treat any stage of ALD. Therefore, discovery of novel therapeutic strategies remains a critical need for patients with ALD. Relevant experimental animal models that simulate human drinking patterns and mimic the spectrum and severity of alcohol-induced liver pathology in humans are critical to our ability to identify new mechanisms and therapeutic targets. There are several animal models currently in use, including the most widely utilized chronic ad libitum ethanol (EtOH feeding (Lieber–DeCarli liquid diet model, chronic intragastric EtOH administration (Tsukamoto–French model, and chronic-plus-binge EtOH challenge (Bin Gao—National Institute on Alcohol Abuse and Alcoholism (NIAAA model. This review provides an overview of recent advances in rodent models of binge EtOH administration which help to recapitulate different features and etiologies of progressive ALD. These models include EtOH binge alone, and EtOH binge coupled with chronic EtOH intake, a high fat diet, or endotoxin challenge. We analyze the strengths, limitations, and translational relevance of these models, as well as summarize the liver injury outcomes and mechanistic insights. We further discuss the application(s of binge EtOH models in examining alcohol-induced multi-organ pathology, sex- and age-related differences, as well as circadian rhythm disruption.

  2. Accelerated cognitive decline in a rodent model for temporal lobe epilepsy

    NARCIS (Netherlands)

    Schipper, Sandra; Aalbers, Marlien W.; Rijkers, Kim; Lagiere, Melanie; Bogaarts, Jan G.; Blokland, Arjan; Klinkenberg, Sylvia; Hoogland, Govert; Vles, Johan S. H.

    2016-01-01

    Objective: Cognitive impairment is frequently observed in patients with temporal lobe epilepsy. It is hypothesized that cumulative seizure exposure causes accelerated cognitive decline in patients with epilepsy. We investigated the influence of seizure frequency on cognitive decline in a rodent

  3. Excessive endoplasmic reticulum stress and decreased neuroplasticity-associated proteins in prefrontal cortex of obese rats and the regulatory effects of aerobic exercise.

    Science.gov (United States)

    Li, Feng; Liu, Bei Bei; Cai, Ming; Li, Jing Jing; Lou, Shu-Jie

    2018-04-06

    Studies have shown high fat diet induced obesity may cause cognition impairment and down-regulation of neuroplasticity-associated proteins, while aerobic exercise could improve that damage. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating neuroplasticity-associated proteins expression, folding and post-translational modification in hippocampus of obese rodent models, however, the effects of ERS on neuroplasticity-associated proteins and possible underlying mechanisms in prefrontal cortex are not fully clear. In order to clarify changes of neuroplasticity-associated proteins and ERS in the prefrontal cortex of obese rats, male SD rats were fed on high fat diet for 8 weeks to establish the obese model. Then, 8 weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that high fat diet induced obesity caused hyperlipidemia, and significantly promoted FATP1 expression in the prefrontal cortex, meanwhile, we found up-regulation of GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2, reflecting the activation of ERS and ERS-mediated apoptosis. Moreover, reduced BDNF and SYN was found in obese rats. However, FATP1, GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2 expressions were obviously reversed by aerobic exercise intervention. These results suggested that dietary obesity could induce Prefrontal ERS in SD rats and excessive ERS may play a critical role in decreasing the levels of neuroplasticity-associated proteins. Moreover, aerobic exercise could relieve ERS, thus promoted the expression of neuroplasticity-associated proteins. Copyright © 2018. Published by Elsevier Inc.

  4. An F2 pig resource population as a model for genetic studies of obesity and obesity-related diseases in humans

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Kadarmideen, Haja; Mark, Thomas

    2013-01-01

    Obesity is a rising worldwide public health problem. Difficulties to precisely measure various obesity traits and the genetic heterogeneity in human have been major impediments to completely disentangle genetic factors causing obesity. The pig is a relevant model for studying human obesity...... and obesity-related (OOR) traits. Using founder breeds divergent with respect to obesity traits we have created an F2 pig resource population (454 pigs), which has been intensively phenotyped for 36 OOR traits. The main rationale for our study is to characterize the genetic architecture of OOR traits in the F...... and genetic variation in the F2 population, respectively. This fulfills the purpose of creating a resource population divergent for OOR traits. Strong genetic correlations were found between weight and lean mass at dual energy x-ray absorptiometry (DXA) scanning (0.56 – 0.97). Weight and conformation also...

  5. Using tests and models to assess antidepressant-like activity in rodents

    Directory of Open Access Journals (Sweden)

    Kedzierska Ewa

    2016-06-01

    Full Text Available In today's world, depression is one of the more prevalent forms of mental illness. According to WHO, about 10%-30% of all women and 7%-15% of all men are afflicted by depression at least once in their life-times. Today, depression is assessed to be affecting 350 million people. Regarding this issue, an important challenge for current psychopharmacology is to develop new, more effective pharmacotherapy and to understand the mechanism of action of known antidepressants. Furthermore, there is the necessity to improve the effectiveness of anti-depression treatment by way of bringing about an understanding of the neurobiology of this illness. In achieving these objectives, animal models of depression can be useful. Yet, presently, all available animal models of depression rely on two principles: the actions of known antidepressants or the responses to stress. In this paper, we present an overview of the most widely used animal tests and models that are employed in assessing antidepressant-like activity in rodents. These include amphetamine potentiation, reversal of reserpine action, the forced swimming test, the tail suspension test, learned helplessness, chronic mild stress and social defeat stress. Moreover, the advantages and major drawbacks of each model are also discussed.

  6. A living model for obesity and aging research: Caenorhabditis elegans.

    Science.gov (United States)

    Shen, Peiyi; Yue, Yiren; Park, Yeonhwa

    2018-03-24

    Caenorhabditis elegans (C. elegans) is a free-living nematode that has been extensively utilized as an animal model for research involving aging and neurodegenerative diseases, like Alzheimer's and Parkinson's, etc. Compared with traditional animal models, this small nematode possesses many benefits, such as small body size, short lifespan, completely sequenced genome, and more than 65% of the genes associated with human disease. All these characteristics make this organism an ideal living system for obesity and aging studies. This review gives a brief introduction of C. elegans as an animal model, highlights some advantages of research using this model and describes methods to evaluate the effect of treatments on obesity and aging of this organism.

  7. Characterizing ingestive behavior through licking microstructure: Underlying neurobiology and its use in the study of obesity in animal models.

    Science.gov (United States)

    Johnson, Alexander W

    2018-02-01

    Ingestive behavior is controlled by multiple distinct peripheral and central physiological mechanisms that ultimately determine whether a particular food should be accepted or avoided. As rodents consume a fluid they display stereotyped rhythmic tongue movements, and by analyzing the temporal distribution of pauses of licking, it is possible through analyses of licking microstructure to uncover dissociable evaluative and motivational variables that contribute to ingestive behavior. The mean number of licks occurring within each burst of licking (burst and cluster size) reflects the palatability of the consumed solution, whereas the frequency of initiating novel bouts of licking behavior (burst and cluster number) is dependent upon the degree of gastrointestinal inhibition that accrues through continued fluid ingestion. This review describes the analysis of these measures within a context of the behavioral variables that come to influence the acceptance or avoidance of a fluid, and the neurobiological mechanisms that underlie alterations in the temporal distribution of pauses of licks. The application of these studies to models of obesity in animals is also described. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  8. Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system.

    Science.gov (United States)

    Buckman, Laura B; Hasty, Alyssa H; Flaherty, David K; Buckman, Christopher T; Thompson, Misty M; Matlock, Brittany K; Weller, Kevin; Ellacott, Kate L J

    2014-01-01

    Obesity is associated with chronic low-grade inflammation in peripheral tissues caused, in part, by the recruitment of inflammatory monocytes into adipose tissue. Studies in rodent models have also shown increased inflammation in the central nervous system (CNS) during obesity. The goal of this study was to determine whether obesity is associated with recruitment of peripheral immune cells into the CNS. To do this we used a bone marrow chimerism model to track the entry of green-fluorescent protein (GFP) labeled peripheral immune cells into the CNS. Flow cytometry was used to quantify the number of GFP(+) immune cells recruited into the CNS of mice fed a high-fat diet compared to standard chow fed controls. High-fat feeding resulted in obesity associated with a 30% increase in the number of GFP(+) cells in the CNS compared to control mice. Greater than 80% of the GFP(+) cells recruited to the CNS were also CD45(+) CD11b(+) indicating that the GFP(+) cells displayed characteristics of microglia/macrophages. Immunohistochemistry further confirmed the increase in GFP(+) cells in the CNS of the high-fat fed group and also indicated that 93% of the recruited cells were found in the parenchyma and had a stellate morphology. These findings indicate that peripheral immune cells can be recruited to the CNS in obesity and may contribute to the inflammatory response. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Food quality and motivation: a refined low-fat diet induces obesity and impairs performance on a progressive ratio schedule of instrumental lever pressing in rats.

    Science.gov (United States)

    Blaisdell, Aaron P; Lau, Yan Lam Matthew; Telminova, Ekatherina; Lim, Hwee Cheei; Fan, Boyang; Fast, Cynthia D; Garlick, Dennis; Pendergrass, David C

    2014-04-10

    Purified high-fat diet (HFD) feeding causes deleterious metabolic and cognitive effects when compared with unrefined low-fat diets in rodent models. These effects are often attributed to the diet's high content of fat, while less attention has been paid to other mechanisms associated with the diet's highly refined state. Although the effects of HFD feeding on cognition have been explored, little is known about the impact of refined vs. unrefined food on cognition. We tested the hypothesis that a refined low-fat diet (LFD) increases body weight and adversely affects cognition relative to an unrefined diet. Rats were allowed ad libitum access to unrefined rodent chow (CON, Lab Diets 5001) or a purified low-fat diet (REF, Research Diets D12450B) for 6 months, and body weight and performance on an instrumental lever pressing task were recorded. After six months on their respective diets, group REF gained significantly more weight than group CON. REF rats made significantly fewer lever presses and exhibited dramatically lower breaking points than CON rats for sucrose and water reinforcement, indicating a chronic reduction of motivation for instrumental performance. Switching the rats' diet for 9 days had no effect on these measures. Diet-induced obesity produces a substantial deficit in motivated behavior in rats, independent of dietary fat content. This holds implications for an association between obesity and motivation. Specifically, behavioral traits comorbid with obesity, such as depression and fatigue, may be effects of obesity rather than contributing causes. To the degree that refined foods contribute to obesity, as demonstrated in our study, they may play a significant contributing role to other behavioral and cognitive disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Exercise, Obesity and CNS Control of Metabolic Homeostasis: A Review

    OpenAIRE

    John K. Smith

    2018-01-01

    This review details the manner in which the central nervous system regulates metabolic homeostasis in normal weight and obese rodents and humans. It includes a review of the homeostatic contributions of neurons located in the hypothalamus, the midbrain and limbic structures, the pons and the medullary area postrema, nucleus tractus solitarius, and vagus nucleus, and details how these brain regions respond to circulating levels of orexigenic hormones, such as ghrelin, and anorexigenic hormones...

  11. Wild Rodent Ectoparasites Collected from Northwestern Iran

    Directory of Open Access Journals (Sweden)

    Zabihollah Zarei

    2017-04-01

    Full Text Available Background: Rodents play an important role as reservoir of some pathogens, and the host of some ectoparasites as well. These ectoparasites can transmit rodents’ pathogens to human or animals. The aim of this study was to assess the distribution and infestation load of ectoparasites on rodents in Meshkin-Shahr District, northwestern Iran.Method: Rodents were captured using baited live traps in spring 2014 from Meshkin-Shahr District and were trans­ferred to the laboratory for identification to the species level. Their ectoparasites were collected, mounted and identi­fied.Results: Three rodent species including Meriones persicus (74%, Mus musculus (16.9% and Cricetulus migrato­rius (9% were identified. Among all rodents, 185 specimens (90.69% were infested with a total of 521 ectopara­sites. Overall, 10 arthropods species were collected, including fleas (97.6%, one mite (1.6% and one louse species (0.6% as follows: Xenopsylla nubica, X. astia, X. buxtoni, X. cheopis, Nosopsyllus fasciatus, N. iranus, Cten­ocephalides felis, Ctenophthalmus rettigismiti, Ornithonyssus sp and one species of genus Polyplax. The most prev­alent ectoparasites species was X. nubica (89%.Conclusion: Nearly all rodent species were infested with Xenopsylla species. Monitoring of ectoparasites on infested rodents is very important for awareness and early warning towards control of arthropod-borne diseases.

  12. Pediatric Obesity Empowerment Model Group Medical Visits (POEM-GMV) as Treatment for Pediatric Obesity in an Underserved Community.

    Science.gov (United States)

    Geller, Jeffrey S; Dube, Eileen T; Cruz, Glavielinys A; Stevens, Jason; Keating Bench, Kara

    2015-10-01

    This is a retrospective cohort study to evaluate a novel group medical visit (GMV) program using an empowerment curriculum as treatment for pediatric obesity in a federally qualified community health center. Biometric and self-reported data were reviewed from 417 overweight or obese children ages 5-18 attending the pediatric obesity empowerment model GMV program (POEM-GMV) at least twice during a 3-year period. Variables were evaluated using paired means t-test. Pearson's correlation test was used to evaluate variables and the BMI z-score. Subanalysis by gender was performed. The average participant was 10.48 ± 2.53 years old and participated for 301 ± 287 days. BMI z-score reduced from 2.99 ± 0.96 to 2.88 ± 0.88 (p pediatric obesity in an underserved community. There were statistically significantly improved outcomes in obesity, especially for boys. Significant improvement was observed in many lifestyle factors associated with obesity. Weight loss most closely correlated with reduced stress levels and sugary beverage consumption. Additional studies are needed to further evaluate the efficacy of POEM-GMV.

  13. An improved cost-effective, reproducible method for evaluation of bone loss in a rodent model.

    Science.gov (United States)

    Fine, Daniel H; Schreiner, Helen; Nasri-Heir, Cibele; Greenberg, Barbara; Jiang, Shuying; Markowitz, Kenneth; Furgang, David

    2009-02-01

    This study was designed to investigate the utility of two "new" definitions for assessment of bone loss in a rodent model of periodontitis. Eighteen rats were divided into three groups. Group 1 was infected by Aggregatibacter actinomycetemcomitans (Aa), group 2 was infected with an Aa leukotoxin knock-out, and group 3 received no Aa (controls). Microbial sampling and antibody titres were determined. Initially, two examiners measured the distance from the cemento-enamel-junction to alveolar bone crest using the three following methods; (1) total area of bone loss by radiograph, (2) linear bone loss by radiograph, (3) a direct visual measurement (DVM) of horizontal bone loss. Two "new" definitions were adopted; (1) any site in infected animals showing bone loss >2 standard deviations above the mean seen at that site in control animals was recorded as bone loss, (2) any animal with two or more sites in any quadrant affected by bone loss was considered as diseased. Using the "new" definitions both evaluators independently found that infected animals had significantly more disease than controls (DVM system; p<0.05). The DVM method provides a simple, cost effective, and reproducible method for studying periodontal disease in rodents.

  14. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity.

    Science.gov (United States)

    Tai, Ningwen; Wong, F Susan; Wen, Li

    2015-03-01

    Diabetes is a group of metabolic disorders characterized by persistent hyperglycemia and has become a major public health concern. Autoimmune type 1 diabetes (T1D) and insulin resistant type 2 diabetes (T2D) are the two main types. A combination of genetic and environmental factors contributes to the development of these diseases. Gut microbiota have emerged recently as an essential player in the development of T1D, T2D and obesity. Altered gut microbiota have been strongly linked to disease in both rodent models and humans. Both classic 16S rRNA sequencing and shot-gun metagenomic pyrosequencing analysis have been successfully applied to explore the gut microbiota composition and functionality. This review focuses on the association between gut microbiota and diabetes and discusses the potential mechanisms by which gut microbiota regulate disease development in T1D, T2D and obesity.

  15. Overview of Animal Models of Obesity

    Science.gov (United States)

    Lutz, Thomas A.; Woods, Stephen C.

    2012-01-01

    This is a review of animal models of obesity currently used in research. We have focused upon more commonly utilized models since there are far too many newly created models to consider, especially those caused by selective molecular genetic approaches modifying one or more genes in specific populations of cells. Further, we will not discuss the generation and use of inducible transgenic animals (induced knock-out or knock-in) even though they often bear significant advantages compared to traditional transgenic animals; influences of the genetic modification during the development of the animals can be minimized. The number of these animal models is simply too large to be covered in this chapter. PMID:22948848

  16. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression.

    Science.gov (United States)

    Rajkumar, Ramamoorthy; Dawe, Gavin S

    2018-04-07

    Olfactory bulbectomy (OBX) has been used as a model of depression over several decades. This model presupposes a mechanism that is still not proven in clinical depression. A wealth of clinical literature has focused on the derangements in frontal cortex (prefrontal, orbitofrontal and anterior cingulate cortices) associated with depression. In this comprehensive review, anatomical, electrophysiological and molecular sequelae of bulbectomy in the rodent frontal cortex are explored and compared with findings on brains of humans with major depression. Certain commonalities in neurobiological features of the perturbed frontal cortex in the bulbectomised rodent and the depressed human brain are evident. Also, meta-analysis reports on clinical studies on depressed patients provide prima facie evidence that perturbations in the frontal cortex are associated with major depression. Analysing the pattern of perturbations in the chemical neuroanatomy of the frontal cortex will contribute to understanding of the neurobiology of depression. Revisiting the OBX model of depression to examine these neurobiological changes in frontal cortex with contemporary imaging, proteomics, lipidomics, metabolomics and epigenomics technologies is proposed as an approach to enhance the translational value of this animal model to facilitate identification of targets and biomarkers for clinical depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. An assessment of the utilization of the preclinical rodent model literature in clinical trials of putative therapeutics for the treatment of alcohol use disorders.

    Science.gov (United States)

    Barajaz, Ashley M; Kliethermes, Christopher L

    2017-12-01

    Rodent models of Alcohol Use Disorders (AUD) are used extensively by preclinical researchers to develop new therapeutics for the treatment of AUD. Although these models play an important role in the development of novel, targeted therapeutics, their role in bringing therapeutics to clinical trials is unclear, as off-label use of existing medications not approved for the treatment of AUD is commonly seen in the clinic and clinical trials. In the current study, we used the Clinicaltrials.gov database to obtain a list of drugs that have been tested for efficacy in a clinical trial between 1997 and 2017. We then conducted a set of literature searches to determine which of the 98 unique drugs we identified had shown efficacy in a rodent model of an AUD prior to being tested in a clinical trial. We found that slightly less than half of the drugs tested in clinical trials (48%) had shown prior efficacy in any rodent model of an AUD, while the remaining 52% of drugs were used off-label, or in some cases, following non-published studies. This study raises the question of how clinical researchers incorporate results from preclinical studies in the decision to bring a drug to a clinical trial. Our results underscore the need for ongoing communication among preclinical and clinical researchers. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Early life stress paradigms in rodents: potential animal models of depression?

    Science.gov (United States)

    Schmidt, Mathias V; Wang, Xiao-Dong; Meijer, Onno C

    2011-03-01

    While human depressive illness is indeed uniquely human, many of its symptoms may be modeled in rodents. Based on human etiology, the assumption has been made that depression-like behavior in rats and mice can be modulated by some of the powerful early life programming effects that are known to occur after manipulations in the first weeks of life. Here we review the evidence that is available in literature for early life manipulation as risk factors for the development of depression-like symptoms such as anhedonia, passive coping strategies, and neuroendocrine changes. Early life paradigms that were evaluated include early handling, separation, and deprivation protocols, as well as enriched and impoverished environments. We have also included a small number of stress-related pharmacological models. We find that for most early life paradigms per se, the actual validity for depression is limited. A number of models have not been tested with respect to classical depression-like behaviors, while in many cases, the outcome of such experiments is variable and depends on strain and additional factors. Because programming effects confer vulnerability rather than disease, a number of paradigms hold promise for usefulness in depression research, in combination with the proper genetic background and adult life challenges.

  19. WNIN/GR-Ob - an insulin-resistant obese rat model from inbred WNIN strain.

    Science.gov (United States)

    Harishankar, N; Vajreswari, A; Giridharan, N V

    2011-09-01

    WNIN/GR-Ob is a mutant obese rat strain with impaired glucose tolerance (IGT) developed at the National Institute of Nutrition (NIN), Hyderabad, India, from the existing 80 year old Wistar rat (WNIN) stock colony. The data presented here pertain to its obese nature along with IGT trait as evidenced by physical, physiological and biochemical parameters. The study also explains its existence, in three phenotypes: homozygous lean (+/+), heterozygous carrier (+/-) and homozygous obese (-/-). Thirty animals (15 males and 15 females) from each phenotype (+/+, +/-, -/-) and 24 lean and obese (6 males and 6 females) rats were taken for growth and food intake studies respectively. Twelve adult rats from each phenotype were taken for body composition measurement by total body electrical conductivity (TOBEC); 12 rats of both genders from each phenotype at different ages were taken for clinical chemistry parameters. Physiological indices of insulin resistance were calculated according to the homeostasis model assessment for insulin resistance (HOMA-IR) and also by studying U¹⁴C 2-deoxy glucose uptake (2DG). WNINGR-Ob mutants had high growth, hyperphagia, polydipsia, polyurea, glycosuria, and significantly lower lean body mass, higher fat mass as compared with carrier and lean rats. These mutants, at 50 days of age displayed abnormal response to glucose load (IGT), hyperinsulinaemia, hypertriglyceridaemia, hypercholesterolaemia and hyperleptinaemia. Basal and insulin-stimulated glucose uptakes by diaphragm were significantly decreased in obese rats as compared with lean rats. Obese rats of the designated WNIN/GR-Ob strain showed obesity with IGT, as adjudged by physical, physiological and biochemical indices. These indices varied among the three phenotypes, being lowest in lean, highest in obese and intermediate in carrier phenotypes thereby suggesting that obesity is inherited as autosomal incomplete dominant trait in this strain. This mutant obese rat model is easy to

  20. Obesity: considerations about etiology, metabolism, and the use of experimental models

    Directory of Open Access Journals (Sweden)

    Lancha Junior AH

    2012-04-01

    Full Text Available Luciana O Pereira-Lancha, Patricia L Campos-Ferraz, Antonio H Lancha JuniorSchool of Physical Education and Sport, University of Sao Paulo, Sao Paulo, BrazilAbstract: Studies have been conducted in order to identify the main factors that contribute to the development of obesity. The role of genetics has also been extensively studied. However, the substantial augmentation of obesity prevalence in the last 20 years cannot be justified only by genetic alterations that, theoretically, would have occurred in such a short time. Thus, the difference in obesity prevalence in various population groups is also related to environmental factors, especially diet and the reduction of physical activity. These aspects, interacting or not with genetic factors, could explain the excess of body fat in large proportions worldwide. This article will focus on positive energy balance, high-fat diet, alteration in appetite control hormones, insulin resistance, amino acids metabolism, and the limitation of the experimental models to address this complex issue.Keywords: obesity, diet, leptin, fat, ghrelin, experimental models

  1. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents.

    Directory of Open Access Journals (Sweden)

    Ola Fjellström

    Full Text Available Type 2 diabetes (T2D occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents.

  2. Effect of tramadol on pain-related behaviors and bladder overactivity in rodent cystitis models.

    Science.gov (United States)

    Oyama, Tatsuya; Homan, Takashi; Kyotani, Junko; Oka, Michiko

    2012-02-15

    Tramadol is a widely used analgesic that stimulates the μ opioid receptor and inhibits serotonin and noradrenalin reuptake. There have been studies on the analgesic effects of tramadol based on the tail-flick test, the formalin test, and the induction of allodynia by sciatic-nerve ligation. However, the effects of tramadol on behaviors related to bladder pain and bladder overactivity induced by cystitis have not been reported. To investigate the usefulness of tramadol for patients with cystitis, we investigated these effects of tramadol in rodent cystitis models. Intraperitoneal injection of cyclophosphamide caused bladder-specific inflammation and increases in pain-related behaviors, the number of voids and bladder weight in mice. Tramadol suppressed the cyclophosphamide-induced pain-related behaviors but did not affect the number of voids or the bladder weight. During continuous-infusion cystometrograms in anesthetized rats, cyclophosphamide shortened the intercontraction interval, indicating bladder overactivity. Tramadol significantly prolonged the intercontraction interval, and the effect was partially blocked by the opioid antagonist naloxone. This finding indicates that μ opioid receptors may be involved in the action of tramadol. In conclusion, tramadol ameliorated cyclophosphamide-induced bladder-pain-related behaviors and bladder overactivity in rodents. These findings suggest that tramadol might be a treatment option for cystitis-induced bladder pain and bladder overactivity. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Obesity and internalized weight stigma: a formulation model for an emerging psychological problem.

    Science.gov (United States)

    Ratcliffe, Denise; Ellison, Nell

    2015-03-01

    Obese individuals frequently experience weight stigma and this is associated with psychological distress and difficulties. The process of external devaluation can lead to negative self-perception and evaluation and some obese individuals develop "internalized weight stigma". The prevalence of weight stigma is well established but there is a lack of information about the interplay between external and internal weight stigma. To synthesize the literature on the psychological effects of weight stigma into a formulation model that addresses the maintenance of internalized weight stigma. Current research on the psychological impact of weight stigma was reviewed. We identify cognitive, behavioural and attentional processes that maintain psychological conditions where self-evaluation plays a central role. A model was developed based on clinical utility. The model focuses on identifying factors that influence and maintain internalized weight stigma. We highlight the impact of negative societal and interpersonal experiences of weight stigma on how individuals view themselves as an obese person. Processing the self as a stigmatized individual is at the core of the model. Maintenance factors include negative self-judgements about the meaning of being an obese individual, attentional and mood shifts, and avoidance and safety behaviours. In addition, eating and weight management behaviours become deregulated and maintain both obesity and weight stigma. As obesity increases, weight stigma and the associated psychological effects are likely to increase. We provide a framework for formulating and intervening with internalized weight stigma as well as making therapists aware of the applicability and transferability of strategies that they may already use with other presenting problems.

  4. Rodent models of adaptive decision making.

    Science.gov (United States)

    Izquierdo, Alicia; Belcher, Annabelle M

    2012-01-01

    Adaptive decision making affords the animal the ability to respond quickly to changes in a dynamic environment: one in which attentional demands, cost or effort to procure the reward, and reward contingencies change frequently. The more flexible the organism is in adapting choice behavior, the more command and success the organism has in navigating its environment. Maladaptive decision making is at the heart of much neuropsychiatric disease, including addiction. Thus, a better understanding of the mechanisms that underlie normal, adaptive decision making helps achieve a better understanding of certain diseases that incorporate maladaptive decision making as a core feature. This chapter presents three general domains of methods that the experimenter can manipulate in animal decision-making tasks: attention, effort, and reward contingency. Here, we present detailed methods of rodent tasks frequently employed within these domains: the Attentional Set-Shift Task, Effortful T-maze Task, and Visual Discrimination Reversal Learning. These tasks all recruit regions within the frontal cortex and the striatum, and performance is heavily modulated by the neurotransmitter dopamine, making these assays highly valid measures in the study of psychostimulant addiction.

  5. The obese Göttingen minipig as a model of the metabolic syndrome

    DEFF Research Database (Denmark)

    Johansen, T.; Malmlöf, K.; Hansen, Harald S.

    2001-01-01

    The objective of the study reported here was to induce obesity in the female Göttingen minipig to establish a model of the human metabolic syndrome. Nine- to ten-month-old female Göttingen minipigs received a high-fat high-energy (HFE) diet or a low-fat, low-energy (LFE) diet. The energy contents...... of the metabolic impairments seen in obese humans, and may thus serve as a model of the metabolic syndrome....

  6. Vitamin A as a key regulator of obesity & its associated disorders: Evidences from an obese rat model

    Directory of Open Access Journals (Sweden)

    Shanmugam M Jeyakumar

    2015-01-01

    Full Text Available During the last century, vitamin A has evolved from its classical role as a fat-soluble vitamin and attained the status of para-/autocrine hormone. Besides its well-established role in embryogenesis, growth and development, reproduction and vision, vitamin A has also been implicated in several other physiological processes. Emerging experimental evidences emphasize adipose tissue as an active endocrine organ with great propensity to continuous growth (throughout life. Due to various genetic and lifestyle factors, excess energy accumulates in adipose tissue as fat, resulting in obesity and other complications such as type 2 diabetes, hypertension, and cardiovascular disease. Recent in vitro and in vivo studies have shed light on vitamin A metabolites; retinaldehyde and retinoic acid and participation of their pathway proteins in the regulation of adipose tissue metabolism and thus, obesity. In this context, we discuss here some of our important findings, which establish the role of vitamin A (supplementation in obesity and its associated disorders by employing an obese rat model; WNIN/Ob strain.

  7. Seaweed Fucoxanthin Supplementation Improves Obesity Parameters in Mild Obese Japanese Subjects

    Directory of Open Access Journals (Sweden)

    Shoketsu Hitoe

    2017-04-01

    Full Text Available Background: Fucoxanthin is a seaweed xanthophyll that has demonstrated an anti-obesity effect in rodents. However,clinical investigations of its influence on mildly obese subjects has not been performed. We conducted a clinical trial of fucoxanthin supplementation in Japanese obese subjects.Methods: We examined the effect of fucoxanthin (1 or 3 mg daily in a double-blind placebo-controlled study. Capsules containing fucoxanthin or placebo capsules were administered for 4 weeks to male and female Japanese adults with a body mass index (BMI of more than 25 kg/m2. Before and after treatment, the body weight, body composition, abdominal fat area, and the circumferences of the neck, arm,and thigh were evaluated.Results: There was significant reduction of the relative (ratio versus before treatment body weight,BMI, and visceral fat area in the 3 mg/day fucoxanthin group compared to the placebo group. Relative values of total fat mass, subcutaneous fat area, waist circumference, and right thigh circumference were also significantly lower in the 1 mg/day fucoxanthin group than the placebo group. A significant decrease of the absoluteright thigh circumference was noted in the 1 mg/day fucoxanthin group compared to the placebo group. In the subjects ingesting fucoxanthin, there were no abnormalities of the blood pressure, pulse rate, blood parameters, and urinalysis parameters, which thereby suggests adverse effects.Conclusions: Fucoxanthin reduced body weight, BMI, and abdominal fat by acting on both visceraland subcutaneous fat. Consequently, Fucoxanthin may be able to improve a moderate overweight state in both men and women.

  8. Systems biology integration of proteomic data in rodent models of depression reveals involvement of the immune response and glutamatergic signaling.

    Science.gov (United States)

    Carboni, Lucia; Nguyen, Thanh-Phuong; Caberlotto, Laura

    2016-12-01

    The pathophysiological basis of major depression is incompletely understood. Recently, numerous proteomic studies have been performed in rodent models of depression to investigate the molecular underpinnings of depressive-like behaviours with an unbiased approach. The objective of the study is to integrate the results of these proteomic studies in depression models to shed light on the most relevant molecular pathways involved in the disease. Network analysis is performed integrating preexisting proteomic data from rodent models of depression. The IntAct mouse and the HRPD are used as reference protein-protein interaction databases. The functionality analyses of the networks are then performed by testing overrepresented GO biological process terms and pathways. Functional enrichment analyses of the networks revealed an association with molecular processes related to depression in humans, such as those involved in the immune response. Pathways impacted by clinically effective antidepressants are modulated, including glutamatergic signaling and neurotrophic responses. Moreover, dysregulations of proteins regulating energy metabolism and circadian rhythms are implicated. The comparison with protein pathways modulated in depressive patients revealed significant overlapping. This systems biology study supports the notion that animal models can contribute to the research into the biology and therapeutics of depression. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. PYY(3-36) reduces food intake and body weight and improves insulin sensitivity in rodent models of diet-induced obesity

    DEFF Research Database (Denmark)

    Vrang, Niels; Madsen, Andreas Nygaard; Tang-Christensen, Mads

    2006-01-01

    The gut hormone peptide YY (PYY) was recently proposed to comprise an endogenous satiety factor. We have studied acute anorectic functions of PYY(3-36) in mice and rats, as well as metabolic effects of chronic PYY(3-36) administration to diet-induced obese (DIO) mice and rats. A single intraperit......The gut hormone peptide YY (PYY) was recently proposed to comprise an endogenous satiety factor. We have studied acute anorectic functions of PYY(3-36) in mice and rats, as well as metabolic effects of chronic PYY(3-36) administration to diet-induced obese (DIO) mice and rats. A single...... intraperitoneal injection of PYY(3-36) inhibited food intake in mice, but not in rats. We next investigated the effects of increasing doses (100, 300, and 1,000 microg.kg-1.day-1) of PYY(3-36) administered subcutaneously via osmotic minipumps on food intake and body weight in DIO C57BL/6J mice. Whereas only...... the highest dose (1,000 microg.kg-1.day-1) of PYY(3-36) significantly reduced food intake over the first 3 days, body weight gain was dose dependently reduced, and on day 28 the group treated with 1,000 microg.kg-1.day-1 PYY(3-36) weighed approximately 10% less than the vehicle-treated group. Mesenteric...

  10. How many food additives are rodent carcinogens?

    Science.gov (United States)

    Johnson, F M

    2002-01-01

    One generally assumes that chemical agents added to foods are reasonably free of risks to human health, and practically everyone consumes some additives in his or her food daily throughout life. In the United States, the 1958 Food Additives Amendment to the Federal Food, Drug and Cosmetic Act of 1938 requires food manufacturers to demonstrate the safety of food additives to the Food and Drug Administration (FDA). The Amendment contains a provision that prohibits approval of an additive if it is found to cause cancer in humans or animals. In the present study, data from the National Toxicology Program rodent bioassay (NTPRB) were used to identify a sample of approximately 50 rodent-tested additives and other chemicals added to food that had been evaluated independently of the FDA/food industry. Surprisingly, the sample shows more than 40% of these food chemicals to be carcinogenic in one or more rodent groups. If this percentage is extrapolated to all substances added to food in the United States, it would imply that more than 1000 of such substances are potential rodent carcinogens. The NTP and FDA test guidelines use similar, though not necessarily identical, rodent test procedures, including near lifetime exposures to the maximum tolerated dose. The FDA specifies that test chemicals should be administered by the oral route. However, the oral route includes three methods of delivering chemicals, that is, mixed in the food or water or delivered by stomach tube (gavage). The NTP data show only 1 of 18 food chemicals mixed in the food are rodent carcinogens, but 16 of 23 gavage-administered food chemicals are carcinogenic to rodents. The distribution suggests that among orally delivered chemicals, those administered in the feed will more likely prove to be noncarcinogens than chemicals given by gavage. The rodent data also reveal that effects may vary according to dose and genotype, as well as by route of administration, to further complicate extrapolation to humans

  11. The Young Gottingen Minipig as a Model of Childhood and Adolescent Obesity

    DEFF Research Database (Denmark)

    Christoffersen, Berit; Golozoubova, Valeria; Pacini, Giovanni

    2013-01-01

    Objective: Gender and sex hormones influence the development of obesity and metabolic syndrome in humans and Gottingen minipigs. The aim of this study was to investigate possible gender differences in the metabolic response to a high energy diet in young Gottingen minipigs as a model of childhood...... Gottingen minipig, and especially the female gender, seems to be a potential model for diet induced childhood/adolescent obesity and metabolic syndrome......./adolescent obesity. Design and Methods: Nine-week-old male and female Gottingen minipigs were fed restrictedly on either a low energy diet (LED) or a high energy diet (HED) for 4 months (n = 5-7). Parameters of interest were fat percentage, visceral fat mass, plasma lipids and glucose tolerance, insulin resistance...

  12. Opportunities for improving animal welfare in rodent models of epilepsy and seizures.

    Science.gov (United States)

    Lidster, Katie; Jefferys, John G; Blümcke, Ingmar; Crunelli, Vincenzo; Flecknell, Paul; Frenguelli, Bruno G; Gray, William P; Kaminski, Rafal; Pitkänen, Asla; Ragan, Ian; Shah, Mala; Simonato, Michele; Trevelyan, Andrew; Volk, Holger; Walker, Matthew; Yates, Neil; Prescott, Mark J

    2016-02-15

    Animal models of epilepsy and seizures, mostly involving mice and rats, are used to understand the pathophysiology of the different forms of epilepsy and their comorbidities, to identify biomarkers, and to discover new antiepileptic drugs and treatments for comorbidities. Such models represent an important area for application of the 3Rs (replacement, reduction and refinement of animal use). This report provides background information and recommendations aimed at minimising pain, suffering and distress in rodent models of epilepsy and seizures in order to improve animal welfare and optimise the quality of studies in this area. The report includes practical guidance on principles of choosing a model, induction procedures, in vivo recordings, perioperative care, welfare assessment, humane endpoints, social housing, environmental enrichment, reporting of studies and data sharing. In addition, some model-specific welfare considerations are discussed, and data gaps and areas for further research are identified. The guidance is based upon a systematic review of the scientific literature, survey of the international epilepsy research community, consultation with veterinarians and animal care and welfare officers, and the expert opinion and practical experience of the members of a Working Group convened by the United Kingdom's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Conspecific Interactions in Adult Laboratory Rodents: Friends or Foes?

    Science.gov (United States)

    Lukas, Michael; de Jong, Trynke R

    2017-01-01

    Interactions between adult conspecifics, including sexual behaviors, affiliation, and aggression are crucial for the well-being, survival, and reproduction of mammals. This holds true for any mammalian species, but certainly for humans: An inability to optimally navigate the social system can have a strong negative impact on physical and mental health. Translational rodent models have been used for decades to unravel the neural pathways and substrates involved in normal and abnormal conspecific interactions. Researchers in the field of translational social neuroscience face a double challenge: Not only do they need to pay considerable attention to the behavioral ecology of their model species or their ancestors, they also have to expect a relatively large variability in behavior and adjust their experimental design accordingly. In this chapter, we will lay out traditional and novel rodent models and paradigms to study sexual, affiliative, and aggressive interactions among adult conspecifics. We will discuss the merits and main findings and briefly consider the most promising novel directions. Finally, we review the modulatory involvement of two major players in mammal social interaction: the central oxytocin and vasopressin system.

  14. Convergent and Divergent Adaptations of Subterranean Rodents

    DEFF Research Database (Denmark)

    Fang, Xiaodong

    Subterranean rodents comprise approximately 250 species that spend their entire lives in underground, unventilated tunnels, distributed along all continents except Australia and Antarctica. Subterranean rodents escape from predators and extreme climatic fluctuations in their underground habitats,...

  15. Long-term characterization of the diet-induced obese and diet-resistant rat model

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel

    2010-01-01

    , namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization......, the results underscore the effectiveness of GLP-1 mimetics both as anti-diabetes and anti-obesity agents....

  16. Methods for Dissecting Motivation and Related Psychological Processes in Rodents.

    Science.gov (United States)

    Ward, Ryan D

    2016-01-01

    Motivational impairments are increasingly recognized as being critical to functional deficits and decreased quality of life in patients diagnosed with psychiatric disease. Accordingly, much preclinical research has focused on identifying psychological and neurobiological processes which underlie motivation . Inferring motivation from changes in overt behavioural responding in animal models, however, is complicated, and care must be taken to ensure that the observed change is accurately characterized as a change in motivation , and not due to some other, task-related process. This chapter discusses current methods for assessing motivation and related psychological processes in rodents. Using an example from work characterizing the motivational impairments in an animal model of the negative symptoms of schizophrenia, we highlight the importance of careful and rigorous experimental dissection of motivation and the related psychological processes when characterizing motivational deficits in rodent models . We suggest that such work is critical to the successful translation of preclinical findings to therapeutic benefits for patients.

  17. Rodent-borne diseases and their public health importance in Iran.

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Rabiee

    2018-04-01

    Full Text Available Rodents are reservoirs and hosts for several zoonotic diseases such as plague, leptospirosis, and leishmaniasis. Rapid development of industry and agriculture, as well as climate change throughout the globe, has led to change or increase in occurrence of rodent-borne diseases. Considering the distribution of rodents throughout Iran, the aim of this review is to assess the risk of rodent-borne diseases in Iran.We searched Google Scholar, PubMed, Science Direct, Scientific Information Database (SID, and Magiran databases up to September 2016 to obtain articles reporting occurrence of rodent-borne diseases in Iran and extract information from them. Out of 70 known rodent-borne diseases, 34 were reported in Iran: 17 (50% parasitic diseases, 13 (38% bacterial diseases, and 4 (12% viral diseases. Twenty-one out of 34 diseases were reported from both humans and rodents. Among the diseases reported in the rodents of Iran, plague, leishmaniasis, and hymenolepiasis were the most frequent. The most infected rodents were Rattus norvegicus (16 diseases, Mus musculus (14 diseases, Rattus rattus (13 diseases, Meriones persicus (7 diseases, Apodemus spp. (5 diseases, Tatera indica (4 diseases, Meriones libycus (3 diseases, Rhombomys opimus (3 diseases, Cricetulus migratorius (3 diseases, and Nesokia indica (2 diseases.The results of this review indicate the importance of rodent-borne diseases in Iran. Considering notable diversity of rodents and their extensive distribution throughout the country, it is crucial to pay more attention to their role in spreading infectious diseases for better control of the diseases.

  18. Rodent-borne diseases and their public health importance in Iran

    Science.gov (United States)

    Mahmoudi, Ahmad; Siahsarvie, Roohollah; Kryštufek, Boris; Mostafavi, Ehsan

    2018-01-01

    Background Rodents are reservoirs and hosts for several zoonotic diseases such as plague, leptospirosis, and leishmaniasis. Rapid development of industry and agriculture, as well as climate change throughout the globe, has led to change or increase in occurrence of rodent-borne diseases. Considering the distribution of rodents throughout Iran, the aim of this review is to assess the risk of rodent-borne diseases in Iran. Methodology/Principal finding We searched Google Scholar, PubMed, Science Direct, Scientific Information Database (SID), and Magiran databases up to September 2016 to obtain articles reporting occurrence of rodent-borne diseases in Iran and extract information from them. Out of 70 known rodent-borne diseases, 34 were reported in Iran: 17 (50%) parasitic diseases, 13 (38%) bacterial diseases, and 4 (12%) viral diseases. Twenty-one out of 34 diseases were reported from both humans and rodents. Among the diseases reported in the rodents of Iran, plague, leishmaniasis, and hymenolepiasis were the most frequent. The most infected rodents were Rattus norvegicus (16 diseases), Mus musculus (14 diseases), Rattus rattus (13 diseases), Meriones persicus (7 diseases), Apodemus spp. (5 diseases), Tatera indica (4 diseases), Meriones libycus (3 diseases), Rhombomys opimus (3 diseases), Cricetulus migratorius (3 diseases), and Nesokia indica (2 diseases). Conclusions/Significance The results of this review indicate the importance of rodent-borne diseases in Iran. Considering notable diversity of rodents and their extensive distribution throughout the country, it is crucial to pay more attention to their role in spreading infectious diseases for better control of the diseases. PMID:29672510

  19. Epidemiology of Leptospira Transmitted by Rodents in Southeast Asia

    Science.gov (United States)

    Mielcarek, Mathilde; Tatard, Caroline; Chaval, Yannick; Suputtamongkol, Yupin; Buchy, Philippe; Jittapalapong, Sathaporn; Herbreteau, Vincent; Morand, Serge

    2014-01-01

    Background Leptospirosis is the most common bacterial zoonoses and has been identified as an important emerging global public health problem in Southeast Asia. Rodents are important reservoirs for human leptospirosis, but epidemiological data is lacking. Methodology/Principal Findings We sampled rodents living in different habitats from seven localities distributed across Southeast Asia (Thailand, Lao PDR and Cambodia), between 2009 to 2010. Human isolates were also obtained from localities close to where rodents were sampled. The prevalence of Leptospira infection was assessed by real-time PCR using DNA extracted from rodent kidneys, targeting the lipL32 gene. Sequencing rrs and secY genes, and Multi Locus Variable-number Tandem Repeat (VNTR) analyses were performed on DNA extracted from rat kidneys for Leptospira isolates molecular typing. Four species were detected in rodents, L. borgpetersenii (56% of positive samples), L. interrogans (36%), L. kirschneri (3%) and L. weilli (2%), which were identical to human isolates. Mean prevalence in rodents was approximately 7%, and largely varied across localities and habitats, but not between rodent species. The two most abundant Leptospira species displayed different habitat requirements: L. interrogans was linked to humid habitats (rice fields and forests) while L. borgpetersenii was abundant in both humid and dry habitats (non-floodable lands). Conclusion/Significance L. interrogans and L. borgpetersenii species are widely distributed amongst rodent populations, and strain typing confirmed rodents as reservoirs for human leptospirosis. Differences in habitat requirements for L. interrogans and L. borgpetersenii supported differential transmission modes. In Southeast Asia, human infection risk is not only restricted to activities taking place in wetlands and rice fields as is commonly accepted, but should also include tasks such as forestry work, as well as the hunting and preparation of rodents for consumption, which

  20. Ectoparasites of Rodents Captured in Hamedan, Western Iran

    Directory of Open Access Journals (Sweden)

    Hamid Zendehfili

    2015-10-01

    Full Text Available Background: Rodents with a population greater than the entire population of other mammals on earth are the source of economic losses and health conflicts. One of the major health problems with the rodents is their role as reservoir hosts of zoonotic diseases. The aim of this study was to assess the infestation of commensal rodents with ectoparasites in Hamedan City, Western Iran.Methods: The samples were collected by live traps during years 2012–2013. After transferring the samples to the Entomological Laboratory of Hamedan University of Medical Sciences, their ectoparasites were collected andidentified.Results: A total of 171 slides were prepared from 105 captured commensal rodents: Mus musculus, Rattus rattus and R. norvegicus comprising three orders namely Mesostigmata: Hypoaspis (Laelaspis astronomica, Dermanyssius sp, Pachylaelapidae (male. Metastigmata: Rhipicephalus sp and Anoplura: Polyplax spinulosa were recovered in Hamedan City. Seventy (66.6% rodents were found infested with at least one species of ectoparasites.Conclusion: The results of our study indicate that ectoparasites infestation in commensal rodents of Hamedan city is high and more attention by local health authorities is needed to prevent zoonotic diseases.

  1. Postnatal treatment with metyrapone attenuates the effects of diet-induced obesity in female rats exposed to early-life stress.

    Science.gov (United States)

    Murphy, Margaret O; Herald, Joseph B; Wills, Caleb T; Unfried, Stanley G; Cohn, Dianne M; Loria, Analia S

    2017-02-01

    Experimental studies in rodents have shown that females are more susceptible to exhibiting fat expansion and metabolic disease compared with males in several models of fetal programming. This study tested the hypothesis that female rat pups exposed to maternal separation (MatSep), a model of early-life stress, display an exacerbated response to diet-induced obesity compared with male rats. Also, we tested whether the postnatal treatment with metyrapone (MTP), a corticosterone synthase inhibitor, would attenuate this phenotype. MatSep was performed in WKY offspring by separation from the dam (3 h/day, postnatal days 2-14). Upon weaning, male and female rats were placed on a normal (ND; 18% kcal fat) or high-fat diet (HFD; 60% kcal fat). Nondisturbed littermates served as controls. In male rats, no diet-induced differences in body weight (BW), glucose tolerance, and fat tissue weight and morphology were found between MatSep and control male rats. However, female MatSep rats displayed increased BW gain, fat pad weights, and glucose intolerance compared with control rats (P obesity risk factors, including elevated adiposity, hyperleptinemia, and glucose intolerance. These findings show that exposure to stress hormones during early life could be a key event to enhance diet-induced obesity and metabolic disease in female rats. Thus, pharmacological and/or behavioral inflection of the stress levels is a potential therapeutic approach for prevention of early life stress-enhanced obesity and metabolic disease. Copyright © 2017 the American Physiological Society.

  2. Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet.

    Science.gov (United States)

    Wald, Hallie S; Myers, Kevin P

    2015-11-01

    Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Attentional Mechanisms in Food Craving and Overeating: A study of an addiction model of obesity

    NARCIS (Netherlands)

    I.M.T. Nijs (Ilse)

    2010-01-01

    textabstractDuring the past few decades the prevalence of obesity has increased remarkably. The increased availability of high-calorie food, leading to overeating, is acknowledged to be one of the factors responsible for the current obesity epidemic. Starting from an addiction model of obesity,

  4. Differential Effect of Electroacupuncture on Inflammatory Adipokines in Two Rat Models of Obesity

    Directory of Open Access Journals (Sweden)

    Jacqueline J.T. Liaw

    2016-08-01

    Full Text Available Chronic inflammation is known to be associated with visceral obesity and insulin resistance which are characterized by altered levels of production of pro- and anti-inflammatory adipokines. The dysregulation of the production of inflammatory adipokines and their functions in obese individuals leads to a state of chronic low-grade inflammation and may promote obesity-linked metabolic disorders and cardiovascular diseases such as insulin resistance, metabolic syndrome, and atherosclerosis. Electroacupuncture (EA was tested to see if there was a difference in its effect on pro- and anti-inflammatory adipokine levels in the blood serum and the white adipose tissue of obese Zucker fatty rats and high-fat diet-induced obese Long Evans rats. In the two rat models of obesity, on Day 12 of treatment, repeated applications of EA were seen to have had a significant differential effect for serum tumor necrosis factor-α, adiponectin, the adiponectin:leptin ratio, and blood glucose. For the adipose tissue, there was a differential effect for adiponectin that was on the borderline of significance. To explore these changes further and how they might affect insulin resistance would require a modification to the research design to use larger group sizes for the two models or to give a greater number of EA treatments.

  5. A Community-Based Surveillance on Determinants of Rodent Infestation

    Directory of Open Access Journals (Sweden)

    Hsiu-Hua Pai

    2003-01-01

    Full Text Available Rodent infestation is an important factor in the transmission of infectious diseases of public health importance. From October to November 1998, surveillance stations were established in 110 boroughs of Kaohsiung City in southern Taiwan. Boroughs were chosen by random sampling 10 boroughs from each of 11 districts (464 boroughs in the city. The extent of rodent infestation was determined by cage trapping. The possibility of applying a community-based control program was evaluated by investigating associated demographic and environmental factors as well as related knowledge, attitudes, and behaviors. A total of 90 rodents were trapped in 41% of the 110 boroughs. Using univariate analyses, 17 factors were significantly associated with rodent infestation. A lack of knowledge that rodent control relies on community cooperation was the most important factor among the seven variables associated with the extent of rodent infestation (OR 3.1 by logistic multiple regression. This revealed the importance of community cooperation in controlling rodent infestation. Moreover, improvement of environmental hygiene associated with garbage problems, such as cleanliness of storage rooms and closets, and the hygiene of empty space and resource recycling stations should not be ignored.

  6. Finding big shots: small-area mapping and spatial modelling of obesity among Swiss male conscripts.

    Science.gov (United States)

    Panczak, Radoslaw; Held, Leonhard; Moser, André; Jones, Philip A; Rühli, Frank J; Staub, Kaspar

    2016-01-01

    In Switzerland, as in other developed countries, the prevalence of overweight and obesity has increased substantially since the early 1990s. Most of the analyses so far have been based on sporadic surveys or self-reported data and did not offer potential for small-area analyses. The goal of this study was to investigate spatial variation and determinants of obesity among young Swiss men using recent conscription data. A complete, anonymized dataset of conscription records for the 2010-2012 period were provided by Swiss Armed Forces. We used a series of Bayesian hierarchical logistic regression models to investigate the spatial pattern of obesity across 3,187 postcodes, varying them by type of random effects (spatially unstructured and structured), level of adjustment by individual (age and professional status) and area-based [urbanicity and index of socio-economic position (SEP)] characteristics. The analysed dataset consisted of 100,919 conscripts, out of which 5,892 (5.8 %) were obese. Crude obesity prevalence increased with age among conscripts of lower individual and area-based SEP and varied greatly over postcodes. Best model's estimates of adjusted odds ratios of obesity on postcode level ranged from 0.61 to 1.93 and showed a strong spatial pattern of obesity risk across the country. Odds ratios above 1 concentrated in central and north Switzerland. Smaller pockets of elevated obesity risk also emerged around cities of Geneva, Fribourg and Lausanne. Lower estimates were observed in North-East and East as well as south of the Alps. Importantly, small regional outliers were observed and patterning did not follow administrative boundaries. Similarly as with crude obesity prevalence, the best fitting model confirmed increasing risk of obesity with age and among conscripts of lower professional status. The risk decreased with higher area-based SEP and, to a lesser degree - in rural areas. In Switzerland, there is a substantial spatial variation in obesity risk

  7. Carbamazepine potentiates the effectiveness of morphine in a rodent model of neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Michael R Due

    Full Text Available Approximately 60% of morphine is glucuronidated to morphine-3-glucuronide (M3G which may aggravate preexisting pain conditions. Accumulating evidence indicates that M3G signaling through neuronal Toll-like receptor 4 (TLR4 may be central to this proalgesic signaling event. These events are known to include elevated neuronal excitability, increased voltage-gated sodium (NaV current, tactile allodynia and decreased opioid analgesic efficacy. Using an in vitro ratiometric-based calcium influx analysis of acutely dissociated small and medium-diameter neurons derived from lumbar dorsal root ganglion (DRG, we observed that M3G-sensitive neurons responded to lipopolysaccharide (LPS and over 35% of these M3G/LPS-responsive cells exhibited sensitivity to capsaicin. In addition, M3G-exposed sensory neurons significantly increased excitatory activity and potentiated NaV current as measured by current and voltage clamp, when compared to baseline level measurements. The M3G-dependent excitability and potentiation of NaV current in these sensory neurons could be reversed by the addition of carbamazepine (CBZ, a known inhibitor of several NaV currents. We then compared the efficacy between CBZ and morphine as independent agents, to the combined treatment of both drugs simultaneously, in the tibial nerve injury (TNI model of neuropathic pain. The potent anti-nociceptive effects of morphine (5 mg/kg, i.p. were observed in TNI rodents at post-injury day (PID 7-14 and absent at PID21-28, while administration of CBZ (10 mg/kg, i.p. alone failed to produce anti-nociceptive effects at any time following TNI (PID 7-28. In contrast to either drug alone at PID28, the combination of morphine and CBZ completely attenuated tactile hyperalgesia in the rodent TNI model. The basis for the potentiation of morphine in combination with CBZ may be due to the effects of a latent upregulation of NaV1.7 in the DRG following TNI. Taken together, our observations demonstrate a

  8. Intestinal tumorigenesis is not affected by progesterone signaling in rodent models.

    Directory of Open Access Journals (Sweden)

    Jarom Heijmans

    Full Text Available Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal and neoplastic intestinal tissue, we found that the progesterone receptor (PR is not expressed. Expression was confined to sporadic mesenchymal cells. To analyze the influence of systemic progesterone receptor signaling, we crossed mice that lacked the progesterone receptor (PRKO to the Apc(Min/+ mouse, a model for spontaneous intestinal polyposis. PRKO-Apc(Min/+ mice exhibited no change in polyp number, size or localization compared to Apc(Min/+. To examine effects of progestins on the intestinal epithelium that are independent of the PR, we treated mice with MPA. We found no effects of either progesterone or MPA on gross intestinal morphology or epithelial proliferation. Also, in rats treated with MPA, injection with the carcinogen azoxymethane did not result in a difference in the number or size of aberrant crypt foci, a surrogate end-point for adenoma development. We conclude that expression of the progesterone receptor is limited to cells in the intestinal mesenchyme. We did not observe any effect of progesterone receptor signaling or of progestin treatment in rodent models of intestinal tumorigenesis.

  9. Hunting, Food Preparation, and Consumption of Rodents in Lao PDR.

    Directory of Open Access Journals (Sweden)

    Kanokwan Suwannarong

    Full Text Available A cross-sectional study was conducted in 29 villages of Khamkeuth District in Bolikhamxay Province in the Lao PDR during March to May 2013. The study aimed to determine the characteristics associated with rodent consumption and related behaviors among different ethnic groups, ages, and genders. Five-hundred-eighty-four (584 males and females from 18-50 years of age participated in this study. Half of them were Hmong (292, 50% while 152 respondents were Lao-Tai (26% or other ethnic groups (140, 24%. Most of the respondents (79.5% had farming as their main occupation. Prevalences of the studied outcomes were high: 39.9 for hunting or capturing rodents in the previous year, 77.7% for preparing rodents as food, and 86.3% for rodent consumption. Multivariable logistic regression analysis showed that likelihood of these types of rodent contact was more consistently associated with behavioral factors (gathering things from the forest and elsewhere, cultivation-related activities, and taking measures to prevent rodent-borne disease than with socio-demographic, environmental, or cultural factors. The strongest associations were observed for gathering things; these associations were consistently positive and statistically significant. Although this study did not directly assess rodent-borne zoonosis risk, we believe that study findings raise concern that such risk may be substantial in the study area and other similar areas. Further epidemiological studies on the association between rodent-borne disease infection and rodent hunting, preparation for food, and consumption are recommended. Moreover, further studies are needed on the association between these potential exposure factors (i.e., rodent hunting, preparation for food, and consumption and rodent-borne infections, especially among ethnic groups like the Hmong in Lao PDR and those in neighboring countries with similar socio-demographic, environmental, behavioral and cultural contexts.

  10. Dietary patterns of two herbivorous rodents: and Parotomys brantsii ...

    African Journals Online (AJOL)

    Frequency of occurrence of plant species in the diets were compared with availability of the plants in the rodents' habitats. Both rodents are generalist herbivores, eating plants species in proportion to the availability in their habitats. Dietary patterns, diversity of diet and degree of overlap between rodent's diets are a function ...

  11. Thermoregulation of the subterranean rodent genus Bathyergus ...

    African Journals Online (AJOL)

    The thermoregulation of the largest subterranean rodent, genus Bathyergus, comprising two species, B. suillus and B. janetta,occurring in mesic and semiarid habitats respectively, was investigated and compared with that of other subterranean rodents. Both species display low resting metabolic rates and low body ...

  12. A Field Study of Plague and Tularemia in Rodents, Western Iran.

    Science.gov (United States)

    Mostafavi, Ehsan; Shahraki, Abdolrazagh Hashemi; Japoni-Nejad, Alireza; Esmaeili, Saber; Darvish, Jamshid; Sedaghat, Mohammad Mehdi; Mohammadi, Ali; Mohammadi, Zeinolabedin; Mahmoudi, Ahmad; Pourhossein, Behzad; Ghasemi, Ahmad; Gyuranecz, Miklós; Carniel, Elisabeth

    2017-04-01

    Kurdistan Province in Iran is a historical focus for plague and tularemia. This study aimed at assessing the current status of these two foci by studying their rodent reservoirs. Rodents were trapped and their ectoparasites were collected. The genus and species of both rodents and ectoparasites were determined. Serological analyses of rodent blood samples were done by enzyme-linked immunosorbent assay for plague and by standard tube agglutination assay for tularemia. Rodent spleen samples were subjected to bacterial culture, microscopic examination, and real-time PCR to search for active plague or tularemia infection. During this study, 245 rodents were trapped, of which the most abundant genera were Apodemus (40%), Mus (24.49%), and Meriones (12.65%). One hundred fifty-three fleas, 37 mites, and 54 ticks were collected on these rodents. The results of all direct and indirect tests were negative for plague. Serological tests were positive for tularemia in 4.8% of trapped rodents. This study is the first report on the presence of tularemia infection in rodents in Western Iran. Since Meriones persicus is a known reservoir for plague and tularemia, and this rodent carried plague and tularemia vectors in Marivan and Sanandaj districts, there is a real potential for the occurrence of these two diseases in this region.

  13. Effects of glyphosate exposure on sperm concentration in rodents: A systematic review and meta-analysis.

    Science.gov (United States)

    Cai, Wenyan; Ji, Ying; Song, Xianping; Guo, Haoran; Han, Lei; Zhang, Feng; Liu, Xin; Zhang, Hengdong; Zhu, Baoli; Xu, Ming

    2017-10-01

    Correlation between exposure to glyphosate and sperm concentrations is important in reproductive toxicity risk assessment for male reproductive functions. Many studies have focused on reproductive toxicity on glyphosate, however, results are still controversial. We conducted a systematic review of epidemiological studies on the association between glyphosate exposure and sperm concentrations of rodents. The aim of this study is to explore the potential adverse effects of glyphosate on reproductive function of male rodents. Systematic and comprehensive literature search was performed in MEDLINE, TOXLINE, Embase, WANFANG and CNKI databases with different combinations of glyphosate exposure and sperm concentration. 8 studies were eventually identified and random-effect model was conducted. Heterogeneity among study results was calculated via chi-square tests. Ten independent experimental datasets from these eight studies were acquired to synthesize the random-effect model. A decrease in sperm concentrations was found with mean difference of sperm concentrations(MDsperm)=-2.774×10 6 /sperm/g/testis(95%CI=-0.969 to -4.579) in random-effect model after glyphosate exposure. There was also a significant decrease after fitting the random-effect model: MDsperm=-1.632×10 6 /sperm/g/testis (95%CI=-0.662 to -2.601). The results of meta-analysis support the hypothesis that glyphosate exposure decreased sperm concentration in rodents. Therefore, we conclude that glyphosate is toxic to male rodent's reproductive system. Copyright © 2017. Published by Elsevier B.V.

  14. Uus Multiphonic Rodent

    Index Scriptorium Estoniae

    2009-01-01

    Tartus tegutsenud eksperimentaal-rock-duo Opium Flirt Eestisse jäänud liige Erki Hõbe (paarimees Ervin Trofimov tegutseb Ungaris) annab välja oma teise sooloalbumi nime all Multiphonic Rodent, heliplaadi "Astral Dance" esitluskontsert toimub 5. veebruaril Tallinnas baaris Juuksur

  15. The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward.

    Science.gov (United States)

    Novak, Colleen M; Burghardt, Paul R; Levine, James A

    2012-03-01

    Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The use of a running wheel to measure activity in rodents: Relationship to energy balance, general activity, and reward

    Science.gov (United States)

    Levine, James A.

    2015-01-01

    Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems—including those related to the stress response, mood, and reward, and those responsive to growth factors—that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. PMID:22230703

  17. A Theoretical and Experimental Investigation of Mechanical Damage to Rodent Sperm Generated by Microscale Ice Formation.

    Science.gov (United States)

    Han, X; Critser, J K

      BACKGROUND: Rodent sperm cryopreservation is of critical importance for the maintenance of lines or strains of genetically engineered mice and rats. However, rodent sperm are extremely mechanically sensitive due to their unusual morphology, and are severely damaged using current methods of cryopreservation. Those methods result in poor post thaw motility (PTM) for mouse. To investigate the mechanism of mechanical damage introduced to rodent sperm during freezing, a micro-mechanical model was established to analyze the sperm radial and axial thermal stresses generated by microscale extracellular ice formation. PTM of mouse sperm cryopreserved in capillaries of different radii (100, 200, 344, 526, 775µm) was measured using a standard computer-assisted sperm analysis system. The model predicts that when one of the inner dimensions of the containers (the inner diameter of plastic straws or straw capillaries) is on the same order of magnitude of sperm length, axial stress is significantly increased. The experimental results showed that the value of PTM was decreased from 38 ± 8 % in the larger (775µm) capillaries to 0 ± 0 % in the smaller (100 µm) ones. Theoretical analysis based on the established model were experimentally validated and can be used to guide the design of novel devices to improve the efficiency of rodent sperm cryopreservation.

  18. One Health Solutions to Obesity in People and Their Pets.

    Science.gov (United States)

    Bartges, J; Kushner, R F; Michel, K E; Sallis, R; Day, M J

    2017-05-01

    Despite the high prevalence of overweight and obesity in the human and companion animal populations, and the global trends for increasing numbers of affected people and pets, there are few successful interventions that are proven to combat this complex multifactorial problem. One key strategy involves effective communication between human and veterinary healthcare professionals with patients and clients about obesity. In human healthcare, the focus of communication should be on physical activity as part of overall health and wellbeing, rather than assessment of the body mass index; clinical examination of patients should record levels of physical activity as a key 'vital sign' as part of their assessment. Successful weight loss programmes for companion animals also involves strategic communication with the entire healthcare team leading clients through the 'stages of change'. There is great potential in employing a 'One Health' framework to provide novel solutions for the prevention and treatment of this condition in people and their pets. Comparative clinical research into the biology of obesity and its comorbidities in dogs and cats is likely to lead to knowledge relevant to the equivalent human conditions. The advantages of companion animal clinical research over traditional rodent models include the outbred genetic background and relatively long lifespan of pets and the fact that they share the human domestic environment. The human-companion animal bond can be leveraged to create successful programmes that promote physical activity in people and their pets with obesity. Dog walking is a proven motivator for human physical activity, with health benefits to both the owner and the dog. Realizing the potential of a One Health approach will require the efforts and leadership of a committed group of like-minded individuals representing a range of scientific and medical disciplines. Interested parties will need the means and opportunities to communicate and to

  19. Modelling Gender Differences in the Economic and Social Influences of Obesity in Australian Young People.

    Science.gov (United States)

    Avsar, Gulay; Ham, Roger; Tannous, W Kathy

    2017-03-03

    In Australia, as in many other developed economies, the prevalence of obesity has risen significantly in all age groups and especially in young males and females over the past decade. Using data from the Household, Income and Labour Dynamics in Australia (HILDA) Survey, this paper investigates the influence of economic, personality and social factor demographics on the incidence of obesity in Australian youths. The study uses two random parameters logit models, including one that allows for gender-specific differences in the conditioning variables. The models reveal notable differences between the most important variables affecting the incidence of obesity amongst females compared to males. These differences are notable to consider for policy and intervention programs aimed at reducing the problem of obesity.

  20. Modelling Gender Differences in the Economic and Social Influences of Obesity in Australian Young People

    Directory of Open Access Journals (Sweden)

    Gulay Avsar

    2017-03-01

    Full Text Available In Australia, as in many other developed economies, the prevalence of obesity has risen significantly in all age groups and especially in young males and females over the past decade. Using data from the Household, Income and Labour Dynamics in Australia (HILDA Survey, this paper investigates the influence of economic, personality and social factor demographics on the incidence of obesity in Australian youths. The study uses two random parameters logit models, including one that allows for gender-specific differences in the conditioning variables. The models reveal notable differences between the most important variables affecting the incidence of obesity amongst females compared to males. These differences are notable to consider for policy and intervention programs aimed at reducing the problem of obesity.

  1. Characterisation of Gut Microbiota in Ossabaw and Göttingen Minipigs as Models of Obesity and Metabolic Syndrome

    DEFF Research Database (Denmark)

    Pedersen, Rebecca; Ingerslev, Hans-Christian; Sturek, Michael

    2013-01-01

    Background Recent evidence suggests that the gut microbiota is an important contributing factor to obesity and obesity related metabolic disorders, known as the metabolic syndrome. The aim of this study was to characterise the intestinal microbiota in two pig models of obesity namely Göttingen mi...... obese Göttingen and Ossabaw minipigs. In both pig models diet seems to be the defining factor that shapes the gut microbiota as observed by changes in different bacteria divisions between lean and obese minipigs....... minipigs and the Ossabaw minipigs. Methods and Findings The cecal, ileal and colonic microbiota from lean and obese Osabaw and Göttingen minipigs were investigated by Illumina-based sequencing and by high throughput qPCR, targeting the 16S rRNA gene in different phylogenetic groups of bacteria. The weight...

  2. Rodent management: the man/environment interface

    International Nuclear Information System (INIS)

    Jackson, W.B.

    1978-01-01

    Rodents which interact with man generally are regarded as undesirable. Attempts at eliminating such rodents by increasing predation (including traps, microbiological agents, toxicants) have been relatively unsuccessful. Management by environmental manipulation must be basic. This then can be supplemented with predation at critical points where public health, use practices, or imperfections in the system demand. Society mores, practices, and economic considerations also have significant impact on the management system

  3. What are we 'tweeting' about obesity? Mapping tweets with Topic Modeling and Geographic Information System.

    Science.gov (United States)

    Ghosh, Debarchana Debs; Guha, Rajarshi

    2013-01-01

    Public health related tweets are difficult to identify in large conversational datasets like Twitter.com. Even more challenging is the visualization and analyses of the spatial patterns encoded in tweets. This study has the following objectives: How can topic modeling be used to identify relevant public health topics such as obesity on Twitter.com? What are the common obesity related themes? What is the spatial pattern of the themes? What are the research challenges of using large conversational datasets from social networking sites? Obesity is chosen as a test theme to demonstrate the effectiveness of topic modeling using Latent Dirichlet Allocation (LDA) and spatial analysis using Geographic Information System (GIS). The dataset is constructed from tweets (originating from the United States) extracted from Twitter.com on obesity-related queries. Examples of such queries are 'food deserts', 'fast food', and 'childhood obesity'. The tweets are also georeferenced and time stamped. Three cohesive and meaningful themes such as 'childhood obesity and schools', 'obesity prevention', and 'obesity and food habits' are extracted from the LDA model. The GIS analysis of the extracted themes show distinct spatial pattern between rural and urban areas, northern and southern states, and between coasts and inland states. Further, relating the themes with ancillary datasets such as US census and locations of fast food restaurants based upon the location of the tweets in a GIS environment opened new avenues for spatial analyses and mapping. Therefore the techniques used in this study provide a possible toolset for computational social scientists in general and health researchers in specific to better understand health problems from large conversational datasets.

  4. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species

    Science.gov (United States)

    Semple, Bridgette D.; Blomgren, Klas; Gimlin, Kayleen; Ferriero, Donna M.; Noble-Haeusslein, Linda J.

    2013-01-01

    Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7–10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxicischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. PMID:23583307

  5. Global and 3D spatial assessment of neuroinflammation in rodent models of Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Shashank Gupta

    Full Text Available Multiple Sclerosis (MS is a progressive autoimmune inflammatory and demyelinating disease of the central nervous system (CNS. T cells play a key role in the progression of neuroinflammation in MS and also in the experimental autoimmune encephalomyelitis (EAE animal models for the disease. A technology for quantitative and 3 dimensional (3D spatial assessment of inflammation in this and other CNS inflammatory conditions is much needed. Here we present a procedure for 3D spatial assessment and global quantification of the development of neuroinflammation based on Optical Projection Tomography (OPT. Applying this approach to the analysis of rodent models of MS, we provide global quantitative data of the major inflammatory component as a function of the clinical course. Our data demonstrates a strong correlation between the development and progression of neuroinflammation and clinical disease in several mouse and a rat model of MS refining the information regarding the spatial dynamics of the inflammatory component in EAE. This method provides a powerful tool to investigate the effect of environmental and genetic forces and for assessing the therapeutic effects of drug therapy in animal models of MS and other neuroinflammatory/neurodegenerative disorders.

  6. Using the Activity-based Anorexia Rodent Model to Study the Neurobiological Basis of Anorexia Nervosa.

    Science.gov (United States)

    Chowdhury, Tara Gunkali; Chen, Yi-Wen; Aoki, Chiye

    2015-10-22

    Anorexia nervosa (AN) is a psychiatric illness characterized by excessively restricted caloric intake and abnormally high levels of physical activity. A challenging illness to treat, due to the lack of understanding of the underlying neurobiology, AN has the highest mortality rate among psychiatric illnesses. To address this need, neuroscientists are using an animal model to study how neural circuits may contribute toward vulnerability to AN and may be affected by AN. Activity-based anorexia (ABA) is a bio-behavioral phenomenon described in rodents that models the key symptoms of anorexia nervosa. When rodents with free access to voluntary exercise on a running wheel experience food restriction, they become hyperactive - running more than animals with free access to food. Here, we describe the procedures by which ABA is induced in adolescent female C57BL/6 mice. On postnatal day 36 (P36), the animal is housed with access to voluntary exercise on a running wheel. After 4 days of acclimation to the running wheel, on P40, all food is removed from the cage. For the next 3 days, food is returned to the cage (allowing animals free food access) for 2 hr daily. After the fourth day of food restriction, free access to food is returned and the running wheel is removed from the cage to allow the animals to recover. Continuous multi-day analysis of running wheel activity shows that mice become hyperactive within 24 hr following the onset of food restriction. The mice run even during the limited time during which they have access to food. Additionally, the circadian pattern of wheel running becomes disrupted by the experience of food restriction. We have been able to correlate neurobiological changes with various aspects of the animals' wheel running behavior to implicate particular brain regions and neurochemical changes with resilience and vulnerability to food-restriction induced hyperactivity.

  7. Can a native rodent species limit the invasive potential of a non-native rodent species in tropical agroforest habitats?

    Science.gov (United States)

    Stuart, Alexander M; Prescott, Colin V; Singleton, Grant R

    2016-06-01

    Little is known about native and non-native rodent species interactions in complex tropical agroecosystems. We hypothesised that the native non-pest rodent Rattus everetti may be competitively dominant over the invasive pest rodent Rattus tanezumi within agroforests. We tested this experimentally by using pulse removal for three consecutive months to reduce populations of R. everetti in agroforest habitat, and assessed over 6 months the response of R. tanezumi and other rodent species. Following removal, R. everetti individuals rapidly immigrated into removal sites. At the end of the study period, R. tanezumi were larger and there was a significant shift in their microhabitat use with respect to the use of ground vegetation cover following the perturbation of R. everetti. Irrespective of treatment, R. tanezumi selected microhabitat with less tree canopy cover, indicative of severely disturbed habitat, whereas R. everetti selected microhabitat with a dense canopy. Our results suggest that sustained habitat disturbance in agroforests favours R. tanezumi, while the regeneration of agroforests towards a more natural state would favour native species and may reduce pest pressure in adjacent crops. In addition, the rapid recolonisation of R. everetti suggests this species would be able to recover from non-target impacts of short-term rodent pest control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    Science.gov (United States)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  9. Bisphenol A induces steatosis in HepaRG cells using a model of perinatal exposure

    OpenAIRE

    Bucher , Simon; Jalili , Pégah; Le Guillou , Dounia; Begriche , Karima; Rondel , Karine; Martinais , Sophie; Zalko , Daniel; Corlu , Anne; Robin , Marie-Anne; Fromenty , Bernard

    2017-01-01

    International audience; Human exposure to bisphenol A (BPA) could favor obesity and related metabolic disorders such as hepatic steatosis. Investigations in rodents have shown that these deleterious effects are observed not only when BPA is administered during the adult life but also with different protocols of perinatal exposure. Whether perinatal BPA exposure could pose a risk in human is currently unknown, and thus appropriate in vitro models could be important to tackle this major issue. ...

  10. Modelling the vicious circle between obesity and physical activity in children and adolescents using a bivariate probit model with endogenous regressors.

    Science.gov (United States)

    Yeh, C-Y; Chen, L-J; Ku, P-W; Chen, C-M

    2015-01-01

    The increasing prevalence of obesity in children and adolescents has become one of the most important public health issues around the world. Lack of physical activity is a risk factor for obesity, while being obese could reduce the likelihood of participating in physical activity. Failing to account for the endogeneity between obesity and physical activity would result in biased estimation. This study investigates the relationship between overweight and physical activity by taking endogeneity into consideration. It develops an endogenous bivariate probit model estimated by the maximum likelihood method. The data included 4008 boys and 4197 girls in the 5th-9th grades in Taiwan in 2007-2008. The relationship between overweight and physical activity is significantly negative in the endogenous model, but insignificant in the comparative exogenous model. This endogenous relationship presents a vicious circle in which lower levels of physical activity lead to overweight, while those who are already overweight engage in less physical activity. The results not only reveal the importance of endogenous treatment, but also demonstrate the robust negative relationship between these two factors. An emphasis should be put on overweight and obese children and adolescents in order to break the vicious circle. Promotion of physical activity by appropriate counselling programmes and peer support could be effective in reducing the prevalence of obesity in children and adolescents.

  11. Calorie restriction in rodents: Caveats to consider.

    Science.gov (United States)

    Ingram, Donald K; de Cabo, Rafael

    2017-10-01

    The calorie restriction paradigm has provided one of the most widely used and most useful tools for investigating mechanisms of aging and longevity. By far, rodent models have been employed most often in these endeavors. Over decades of investigation, claims have been made that the paradigm produces the most robust demonstration that aging is malleable. In the current review of the rodent literature, we present arguments that question the robustness of the paradigm to increase lifespan and healthspan. Specifically, there are several questions to consider as follows: (1) At what age does CR no longer produce benefits? (2) Does CR attenuate cognitive decline? (3) Are there negative effects of CR, including effects on bone health, wound healing, and response to infection? (4) How important is schedule of feeding? (5) How long does CR need to be imposed to be effective? (6) How do genotype and gender influence CR? (7) What role does dietary composition play? Consideration of these questions produce many caveats that should guide future investigations to move the field forward. Published by Elsevier B.V.

  12. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    Directory of Open Access Journals (Sweden)

    J.E. Hall

    2000-06-01

    Full Text Available Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R. However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this

  13. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes

    Science.gov (United States)

    Vasudevan, Srikanth; Patel, Kunal; Welle, Cristin

    2017-02-01

    Objective. In the US alone, there are approximately 185 000 cases of limb amputation annually, which can reduce the quality of life for those individuals. Current prosthesis technology could be improved by access to signals from the nervous system for intuitive prosthesis control. After amputation, residual peripheral nerves continue to convey motor signals and electrical stimulation of these nerves can elicit sensory percepts. However, current technology for extracting information directly from peripheral nerves has limited chronic reliability, and novel approaches must be vetted to ensure safe long-term use. The present study aims to optimize methods to establish a test platform using rodent model to assess the long term safety and performance of electrode interfaces implanted in the peripheral nerves. Approach. Floating Microelectrode Arrays (FMA, Microprobes for Life Sciences) were implanted into the rodent sciatic nerve. Weekly in vivo recordings and impedance measurements were performed in animals to assess performance and physical integrity of electrodes. Motor (walking track analysis) and sensory (Von Frey) function tests were used to assess change in nerve function due to the implant. Following the terminal recording session, the nerve was explanted and the health of axons, myelin and surrounding tissues were assessed using immunohistochemistry (IHC). The explanted electrodes were visualized under high magnification using scanning electrode microscopy (SEM) to observe any physical damage. Main results. Recordings of axonal action potentials demonstrated notable session-to-session variability. Impedance of the electrodes increased upon implantation and displayed relative stability until electrode failure. Initial deficits in motor function recovered by 2 weeks, while sensory deficits persisted through 6 weeks of assessment. The primary cause of failure was identified as lead wire breakage in all of animals. IHC indicated myelinated and unmyelinated axons

  14. Testing the limits of Rodent Sperm Analysis: azoospermia in an otherwise healthy wild rodent population.

    Science.gov (United States)

    Tannenbaum, Lawrence V; Thran, Brandolyn H; Willams, Keith J

    2009-01-01

    By comparing the sperm parameters of small rodents trapped at contaminated terrestrial sites and nearby habitat-matched noncontaminated locations, the patent-pending Rodent Sperm Analysis (RSA) method provides a direct health status appraisal for the maximally chemical-exposed mammalian ecological receptor in the wild. RSA outcomes have consistently allowed for as definitive determinations of receptor health as are possible at the present time, thereby streamlining the ecological risk assessment (ERA) process. Here, we describe the unanticipated discovery, at a contaminated US EPA Superfund National Priorities List site, of a population of Hispid cotton rats (Sigmodon hispidus), with a high percentage of adult males lacking sperm entirely (azoospermia). In light of the RSA method's role in streamlining ERAs and in bringing contaminated Superfund-type site investigations to closure, we consider the consequences of the discovery. The two matters specifically discussed are (1) the computation of a population's average sperm count where azoospermia is present and (2) the merits of the RSA method and its sperm parameter thresholds-for-effect when azoospermia is masked in an otherwise apparently healthy rodent population.

  15. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model

    NARCIS (Netherlands)

    Koopman, F. A.; Vosters, J. L.; Roescher, N.; Broekstra, N.; Tak, P. P.; Vervoordeldonk, M. J.

    2015-01-01

    Activation of the cholinergic anti-inflammatory pathway (CAP) has been shown to reduce inflammation in animal models, while abrogation of the pathway increases inflammation. We investigated whether modulation of CAP influences inflammation in the non-obese diabetic (NOD) mouse model for Sjögren's

  16. Forecasting rodent outbreaks in Africa

    DEFF Research Database (Denmark)

    Leirs, Herwig; Verhagen, Ron; Verheyen, Walter

    1996-01-01

    1. Rainfall data were collated for years preceding historical outbreaks of Mastomys rats in East Africa in order to test the hypothesis that such outbreaks occur after long dry periods. 2. Rodent outbreaks were generally not preceded by long dry periods. 3. Population dynamics of Mastomys...... natalensis rats in Tanzania are significantly affected by the distribution of rainfall during the rainy season. 4. All previous rodent outbreaks in Tanzania were preceded by abundant rainfall early in the rainy season, i.e, towards the end of the year. 5. A flow chart is constructed to assess the likelihood...

  17. Old World hantaviruses in rodents in New Orleans, Louisiana.

    Science.gov (United States)

    Cross, Robert W; Waffa, Bradley; Freeman, Ashley; Riegel, Claudia; Moses, Lina M; Bennett, Andrew; Safronetz, David; Fischer, Elizabeth R; Feldmann, Heinz; Voss, Thomas G; Bausch, Daniel G

    2014-05-01

    Seoul virus, an Old World hantavirus, is maintained in brown rats and causes a mild form of hemorrhagic fever with renal syndrome (HFRS) in humans. We captured rodents in New Orleans, Louisiana and tested them for the presence of Old World hantaviruses by reverse transcription polymerase chain reaction (RT-PCR) with sequencing, cell culture, and electron microscopy; 6 (3.4%) of 178 rodents captured--all brown rats--were positive for a Seoul virus variant previously coined Tchoupitoulas virus, which was noted in rodents in New Orleans in the 1980s. The finding of Tchoupitoulas virus in New Orleans over 25 years since its first discovery suggests stable endemicity in the city. Although the degree to which this virus causes human infection and disease remains unknown, repeated demonstration of Seoul virus in rodent populations, recent cases of laboratory-confirmed HFRS in some US cities, and a possible link with hypertensive renal disease warrant additional investigation in both rodents and humans.

  18. High intake of palatable food predicts binge-eating independent of susceptibility to obesity: an animal model of lean vs obese binge-eating and obesity with and without binge-eating.

    Science.gov (United States)

    Boggiano, M M; Artiga, A I; Pritchett, C E; Chandler-Laney, P C; Smith, M L; Eldridge, A J

    2007-09-01

    To determine the stability of individual differences in non-nutritive 'junk' palatable food (PF) intake in rats; assess the relationship of these differences to binge-eating characteristics and susceptibility to obesity; and evaluate the practicality of using these differences to model binge-eating and obesity. Binge-eating prone (BEP) and resistant (BER) groups were identified. Differential responses to stress, hunger, macronutrient-varied PFs, a diet-induced obesity (DIO) regimen and daily vs intermittent access to a PF+chow diet, were assessed. One hundred and twenty female Sprague-Dawley rats. Reliability of intake patterns within rats; food intake and body weight after various challenges over acute (1, 2, 4 h), 24-h and 2-week periods. Although BEP and BER rats did not differ in amount of chow consumed, BEPs consumed >50% more intermittent PF than BERs (PBEPs suppressed chow but not PF intake when stressed, and ate as much when sated as when hungry. Conversely, BERs were more affected by stress and ate less PF, not chow, when stressed and were normally hyperphagic to energy deficit. BEP overeating generalized to other PFs varying in sucrose, fat and nutrition content. Half the rats in each group proved to be obesity prone after a no-choice high fat diet (DIO diet) but a continuous diet of PF+chow normalized the BEPs high drive for PF. Greater intermittent intake of PF predicts binge-eating independent of susceptibility to weight gain. Daily fat consumption in a nutritious source (DIO-diet; analogous to a fatty meal) promoted overeating and weight gain but limiting fat to daily non-nutritive food (PF+chow; analogous to a snack with a low fat meal), did not. The data offer an animal model of lean and obese binge-eating, and obesity with and without binge-eating that can be used to identify the unique physiology of these groups and henceforth suggest more specifically targeted treatments for binge-eating and obesity.

  19. Evaluating rodent motor functions: Which tests to choose?

    Science.gov (United States)

    Schönfeld, Lisa-Maria; Dooley, Dearbhaile; Jahanshahi, Ali; Temel, Yasin; Hendrix, Sven

    2017-12-01

    Damage to the motor cortex induced by stroke or traumatic brain injury (TBI) can result in chronic motor deficits. For the development and improvement of therapies, animal models which possess symptoms comparable to the clinical population are used. However, the use of experimental animals raises valid ethical and methodological concerns. To decrease discomfort by experimental procedures and to increase the quality of results, non-invasive and sensitive rodent motor tests are needed. A broad variety of rodent motor tests are available to determine deficits after stroke or TBI. The current review describes and evaluates motor tests that fall into three categories: Tests to evaluate fine motor skills and grip strength, tests for gait and inter-limb coordination and neurological deficit scores. In this review, we share our thoughts on standardized data presentation to increase data comparability between studies. We also critically evaluate current methods and provide recommendations for choosing the best behavioral test for a new research line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Specific and strain-independent effects of dexamethasone in the prevention and treatment of experimental autoimmune encephalomyelitis in rodents

    DEFF Research Database (Denmark)

    Donia, M; Mangano, K; Quattrocchi, C

    2010-01-01

    Experimental autoimmune encephalomyelitis in rodents (EAE) is a generally accepted in vivo model for immunopathogenic mechanisms underlying multiple sclerosis (MS). There are, however, different forms of rodent EAE, and therapeutic regimens may affect these forms differently. We have therefore te...... predictors of drug efficacy in at least some variants of human MS. Better understanding of the clinical and immunopharmacologic features of these models might prove useful when testing new drug candidates for MS treatment....

  1. Assessing factors related to waist circumference and obesity: application of a latent variable model.

    Science.gov (United States)

    Dalvand, Sahar; Koohpayehzadeh, Jalil; Karimlou, Masoud; Asgari, Fereshteh; Rafei, Ali; Seifi, Behjat; Niksima, Seyed Hassan; Bakhshi, Enayatollah

    2015-01-01

    Because the use of BMI (Body Mass Index) alone as a measure of adiposity has been criticized, in the present study our aim was to fit a latent variable model to simultaneously examine the factors that affect waist circumference (continuous outcome) and obesity (binary outcome) among Iranian adults. Data included 18,990 Iranian individuals aged 20-65 years that are derived from the third National Survey of Noncommunicable Diseases Risk Factors in Iran. Using latent variable model, we estimated the relation of two correlated responses (waist circumference and obesity) with independent variables including age, gender, PR (Place of Residence), PA (physical activity), smoking status, SBP (Systolic Blood Pressure), DBP (Diastolic Blood Pressure), CHOL (cholesterol), FBG (Fasting Blood Glucose), diabetes, and FHD (family history of diabetes). All variables were related to both obesity and waist circumference (WC). Older age, female sex, being an urban resident, physical inactivity, nonsmoking, hypertension, hypercholesterolemia, hyperglycemia, diabetes, and having family history of diabetes were significant risk factors that increased WC and obesity. Findings from this study of Iranian adult settings offer more insights into factors associated with high WC and high prevalence of obesity in this population.

  2. Assessing Factors Related to Waist Circumference and Obesity: Application of a Latent Variable Model

    Directory of Open Access Journals (Sweden)

    Sahar Dalvand

    2015-01-01

    Full Text Available Background. Because the use of BMI (Body Mass Index alone as a measure of adiposity has been criticized, in the present study our aim was to fit a latent variable model to simultaneously examine the factors that affect waist circumference (continuous outcome and obesity (binary outcome among Iranian adults. Methods. Data included 18,990 Iranian individuals aged 20–65 years that are derived from the third National Survey of Noncommunicable Diseases Risk Factors in Iran. Using latent variable model, we estimated the relation of two correlated responses (waist circumference and obesity with independent variables including age, gender, PR (Place of Residence, PA (physical activity, smoking status, SBP (Systolic Blood Pressure, DBP (Diastolic Blood Pressure, CHOL (cholesterol, FBG (Fasting Blood Glucose, diabetes, and FHD (family history of diabetes. Results. All variables were related to both obesity and waist circumference (WC. Older age, female sex, being an urban resident, physical inactivity, nonsmoking, hypertension, hypercholesterolemia, hyperglycemia, diabetes, and having family history of diabetes were significant risk factors that increased WC and obesity. Conclusions. Findings from this study of Iranian adult settings offer more insights into factors associated with high WC and high prevalence of obesity in this population.

  3. Effects of early life adverse experiences on brain activity: Implications from maternal separation models in rodents

    Directory of Open Access Journals (Sweden)

    Mayumi eNishi

    2014-06-01

    Full Text Available During postnatal development, adverse early life experiences can affect the formation of neuronal circuits and exert long-lasting influences on neural function. Many studies have shown that daily repeated MS, an animal model of early life stress, can modulate the hypothalamic-pituitary-adrenal axis (HPA axis and can affect subsequent brain function and emotional behavior during adulthood. However, the molecular basis of the long-lasting effects of early life stress on brain function has not been completely elucidated. In this review, we introduce various cases of MS in rodents and illustrate the alterations in HPA axis activity by focusing on corticosterone (CORT, an end product of the HPA axis in rodents. We then present a characterization of the brain regions affected by various patterns of MS, including repeated MS and single time MS at various stages before weaning, by investigating c-Fos expression, a biological marker of neuronal activity. These CORT and c-Fos studies suggest that repeated early life stress may affect neuronal function in region- and temporal-specific manners, indicating a critical period for habituation to early life stress. Next, we discuss how early life stress can impact behavior, namely by inducing depression, anxiety or eating disorders. Furthermore, alterations in gene expression in adult mice exposed to MS, especially epigenetic changes of DNA methylation, are discussed.

  4. Lassa fever or lassa hemorrhagic fever risk to humans from rodent-borne zoonoses.

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M; Megahed, Laila Abdel-Mawla; Abdalla Saleh, Hala Ahmed; Morsy, Tosson A

    2015-04-01

    Viral hemorrhagic fevers (VHFs) typically manifest as rapidly progressing acute febrile syndromes with profound hemorrhagic manifestations and very high fatality rates. Lassa fever, an acute hemorrhagic fever characterized by fever, muscle aches, sore throat, nausea, vomiting, diarrhea and chest and abdominal pain. Rodents are important reservoirs of rodent-borne zoonosis worldwide. Transmission rodents to humans occur by aerosol spread, either from the genus Mastomys rodents' excreta (multimammate rat) or through the close contact with infected patients (nosocomial infection). Other rodents of the genera Rattus, Mus, Lemniscomys, and Praomys are incriminated rodents hosts. Now one may ask do the rodents' ectoparasites play a role in Lassa virus zoonotic transmission. This paper summarized the update knowledge on LHV; hopping it might be useful to the clinicians, nursing staff, laboratories' personals as well as those concerned zoonoses from rodents and rodent control.

  5. Comparison of two rodent models of maternal separation on juvenile social behavior

    Directory of Open Access Journals (Sweden)

    Betty eZimmerberg

    2011-06-01

    Full Text Available Early childhood deprivation is associated with an increased risk of attachment disorders and psychopathology. The neural consequences of exposure to stress early in life have used two major rodent models to provide important tools for translational research. Although both models have been termed Maternal Separation, the paradigms differ in ways that clearly shift the focus of stress between maternal and offspring units. The first model, here called Early Deprivation (ED, isolates pups individually while the dam is left not alone, but with a subset of littermates in the home nest (Stay-at-homes. The other model, here called Maternal Separation (MS, isolates the dam in a novel cage while the pups are separated together. In this study, these two early stress models were directly compared for their effects on social behaviors in male and female juvenile offspring. Although both models altered play behavior compared to controls, patterns of prosocial behaviors versus submissive behaviors differed by model and sex. Additionally, there were main effects of sex, with female ED subjects exhibited masculinizing effects of early stress during play sessions. Maternal behavior upon reunion with the isolated subjects was significantly increased in the MS condition compared to both ED and control conditions, which also differed but by a lesser magnitude. Stay-at-homes were tested since some laboratories use them for controls rather than undisturbed litters; they displayed significantly different sex-dependent play compared to undisturbed subjects. These results indicate that early stress effects vary by paradigm of separation. We suggest that MS produces greater stress on the dam and thus greater maternal mediation, while ED causes greater stress on the neonates, resulting in different behavioral sequela that warrant attention when using these models for translational research.

  6. A PYY Q62P variant linked to human obesity

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Kavaslar, Nihan; Schackwitz, Wendy; Ustaszewska,Anna; Collier, John Michael; Hebert, Sybil; Doelle, Heather; Dent,Robert; Pennacchio, Len A.; McPherson, Ruth

    2005-06-27

    Members of the pancreatic polypeptide family and the irreceptors have been implicated in the control of food intake in rodents and humans. To investigate whether nucleotide changes in these candidate genes result in abnormal weight in humans, we sequenced the coding exons and splice sites of seven family members (NPY, PYY, PPY, NPY1R, NPY2R, NPY4R, and NPY5R) in a large cohort of extremely obese (n=379) and lean (n=378) individuals. In total we found eleven rare non-synonymous variants, four of which exhibited familial segregation, NPY1R L53P and PPY P63L with leanness and NPY2R D42G and PYY Q62P with obesity. Functional analysis of the obese variants revealed NPY2R D42G to have reduced cell surface expression, while previous cell culture based studies indicated variant PYY Q62P to have altered receptor binding selectivity and we show that it fails to reduce food intake through mouse peptide injection experiments. These results support that rare non-synonymous variants within these genes can alter susceptibility to human body mass index extremes.

  7. Increased placental nutrient transport in a novel mouse model of maternal obesity with fetal overgrowth.

    Science.gov (United States)

    Rosario, Fredrick J; Kanai, Yoshikatsu; Powell, Theresa L; Jansson, Thomas

    2015-08-01

    To identify possible mechanisms linking obesity in pregnancy to increased fetal adiposity and growth, a unique mouse model of maternal obesity associated with fetal overgrowth was developed, and the hypothesis that maternal obesity causes up-regulation of placental nutrient transporter expression and activity was tested. C57BL/6J female mice were fed a control (C) or a high-fat/high-sugar (HF/HS) pelleted diet supplemented by ad libitum access to sucrose (20%) solution, mated, and studied at embryonic day 18.5. HF/HS diet increased maternal fat mass by 2.2-fold (P Maternal circulating insulin, leptin, and cholesterol were increased (P maternal obesity. © 2015 The Obesity Society.

  8. Examining the media portrayal of obesity through the lens of the Common Sense Model of Illness Representations.

    Science.gov (United States)

    De Brún, Aoife; McCarthy, Mary; McKenzie, Kenneth; McGloin, Aileen

    2015-01-01

    This study examined the Irish media discourse on obesity by employing the Common Sense Model of Illness Representations. A media sample of 368 transcripts was compiled from newspaper articles (n = 346), radio discussions (n = 5), and online news articles (n = 17) on overweight and obesity from the years 2005, 2007, and 2009. Using the Common Sense Model and framing theory to guide the investigation, a thematic analysis was conducted on the media sample. Analysis revealed that the behavioral dimensions of diet and activity levels were the most commonly cited causes of and interventions in obesity. The advertising industry was blamed for obesity, and there were calls for increased government action to tackle the issue. Physical illness and psychological consequences of obesity were prevalent in the sample, and analysis revealed that the economy, regardless of its state, was blamed for obesity. These results are discussed in terms of expectations of audience understandings of the issue and the implications of these dominant portrayals and framings on public support for interventions. The article also outlines the value of a qualitative analytical framework that combines the Common Sense Model and framing theory in the investigation of illness narratives.

  9. Bipolar electrocautery: A rodent model of Sunderland third-degree nerve injury.

    Science.gov (United States)

    Moradzadeh, Arash; Brenner, Michael J; Whitlock, Elizabeth L; Tong, Alice Y; Luciano, Janina P; Hunter, Daniel A; Myckatyn, Terence M; Mackinnon, Susan E

    2010-01-01

    To determine the Sunderland classification of a bipolar electrocautery injury. Twenty-two rats received crush (a reproducible Sunderland second-degree injury) or bipolar electrocautery injury and were evaluated for functional, histomorphometric, and immunohistochemical recovery at 21 or 42 days. Animal experiments were performed between July 3 and December 12, 2007. Axonal regeneration and end plate reinnervation were evaluated in double transgenic cyan fluorescent protein-conjugated Thy1 and green fluorescent protein-conjugated S100 mice. Compared with crush injury, bipolar electrocautery injury caused greater disruption of myelin and neurofilament architecture at the injury site and decreased nerve fiber counts and percentage of neural tissue distal to the injury (P =.007). Complete functional recovery was seen after crush but not bipolar electrocautery injury. Serial live imaging demonstrated axonal regeneration at week 1 after crush and at week 3 after bipolar electrocautery injury. Qualitative assessment of motor end plate reinnervation at 42 days demonstrated complete neuromuscular end plate reinnervation in the crush group and only limited reinnervation in the bipolar electrocautery group. Bipolar electrocautery injury in a rodent model resulted in a Sunderland third-degree injury, characterized by gradual, incomplete recovery without intervention.

  10. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome.

    Science.gov (United States)

    Steiner, Michel A; Sciarretta, Carla; Pasquali, Anne; Jenck, Francois

    2013-01-01

    The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS). Rats were fed either standard chow (SC) or a cafeteria (CAF) diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S) diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks) and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure) were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% vs. controls) and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG) plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this model.

  11. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Michel Alexander Steiner

    2013-12-01

    Full Text Available The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1 in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO associated with metabolic syndrome (MetS. Rats were fed either standard chow (SC or a cafeteria (CAF diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% versus controls and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this

  12. [Effects of transtheoretical model intervention on improving self-esteem of obese children].

    Science.gov (United States)

    Zhang, Xueyan; Zhou, Leshan; Li, Chenchen

    2013-07-01

    To explore the effects of transtheoretical model (TTM) intervention on improving self-esteem status of obese children. A quasi-experimental research was conducted using a repeated-measure, pretest-posttest control group design in one randomly-selected boarding school of Changsha, Hunan Province in China. Seventy-three obesity students (54 males, 19 females) among grade three to six were included. All participants received first assessment, including: demographic data, stage of change questionnaire, and the Self-Esteem Scale (SES). According to the baseline data, different intervention measures based on TTM were given to different students to promote them to begin exercise and improve their self-esteem status. Follow-up assessments were collected respectively at 1- and 6- month after intervention. Intervention effects on proportion of obese children and self-esteem status as well as BMI were explored. All analyses were conducted using SPSS 17.0. After intervention, the proportion of obese children in precontemplation and maintenance stages was significantly different (P children who are in the later stages have higher self-esteem scores than those in former stages. Intervention based on TTM can help obese children move through the stages of change.

  13. Multiple Co-infections of Rodents with Hantaviruses, Leptospira, and Babesia in Croatia

    Science.gov (United States)

    Turk, Nenad; Korva, Miša; Margaletić, Josip; Beck, Relja; Vucelja, Marko; Habuš, Josipa; Svoboda, Petra; Županc, Tatjana Avšič; Henttonen, Heikki; Markotić, Alemka

    2012-01-01

    Abstract Hantaviruses, Leptospira spp., and Babesia spp. are rodent-borne pathogens present worldwide. We studied multiple co-infections of small rodents in Croatia with all three pathogens. Twenty-eight Apodemus flavicollis and 16 Myodes glareolus were tested for the presence of hantavirus RNA by real-time RT-PCR, Leptospira strains by renoculture method and Babesia DNA by PCR. Anti-hantavirus antibodies and anti-Leptospira antibodies were detected by serological methods. Very high infection rates with each pathogen were found in A. flavicollis: 20 of 28 rodents (71%) were infected with Dobrava virus, 13 rodents (46%) were infected with Leptospira, and 5 rodents (18%) were infected with Babesia. Multiple co-infections with all three pathogens were found in 3 of 28 (11%) A. flavicollis animals, suggesting that the same rodent host can be infected with several pathogens at the same time. Dual infections with both hantaviruses and Leptospira were found in 7 of 44 rodents (16%), with hantaviruses and Babesia in 2 rodents (5%), and double infection with both Leptospira and Babesia were found in 1 rodent (2%). Since hantaviruses, Leptospira, and Babesia have similar geographical distributions, it is to be expected that in other parts of the world multiple co-infections, representing a serious threat to public health, can be found. PMID:22217170

  14. Stimulant and motivational effects of alcohol: lessons from rodent and primate models.

    Science.gov (United States)

    Brabant, Christian; Guarnieri, Douglas J; Quertemont, Etienne

    2014-07-01

    In several animal species including humans, the acute administration of low doses of alcohol increases motor activity. Different theories have postulated that alcohol-induced hyperactivity is causally related to alcoholism. Moreover, a common biological mechanism in the mesolimbic dopamine system has been proposed to mediate the stimulant and motivational effects of alcohol. Numerous studies have examined whether alcohol-induced hyperactivity is related to alcoholism using a great variety of animal models and several animal species. However, there is no review that has summarized this extensive literature. In this article, we present the various experimental models that have been used to study the relationship between the stimulant and motivational effects of alcohol in rodents and primates. Furthermore, we discuss whether the theories hypothesizing a causal link between alcohol-induced hyperactivity and alcoholism are supported by published results. The reviewed findings indicate that animal species that are stimulated by alcohol also exhibit alcohol preference. Additionally, the role of dopamine in alcohol-induced hyperactivity is well established since blocking dopaminergic activity suppresses the stimulant effects of alcohol. However, dopamine transmission plays a much more complex function in the motivational properties of alcohol and the neuronal mechanisms involved in alcohol stimulation and reward are distinct. Overall, the current review provides mixed support for theories suggesting that the stimulant effects of alcohol are related to alcoholism and highlights the importance of animal models as a way to gain insight into alcoholism. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Predictors of Quality of Life in Portuguese Obese Patients: A Structural Equation Modeling Application

    Directory of Open Access Journals (Sweden)

    Estela Vilhena

    2014-01-01

    Full Text Available Living with obesity is an experience that may affect multiple aspects of an individual’s life. Obesity is considered a relevant public health problem in modern societies. To determine the comparative efficacy of different treatments and to assess their impact on patients’ everyday life, it is important to identify factors that are relevant to the quality of life of obese patients. The present study aims to evaluate, in Portuguese obese patients, the simultaneous impact of several psychosocial factors on quality of life. This study also explores the mediating role of stigma in the relationship between positive/negative affect and quality of life. A sample of 215 obese patients selected from the main hospitals in Portugal completed self-report questionnaires to assess sociodemographic, clinical, psychosocial, and quality of life variables. Data were analysed using structural equation modeling. The model fitted the data reasonably well, CFI = 0.9, RMSEA = 0.06. More enthusiastic and more active patients had a better quality of life. Those who reflect lower perception of stigma had a better physical and mental health. Partial mediation effects of stigma between positive affect and mental health and between negative affect and physical health were found. The stigma is pervasive and causes consequences for psychological and physical health.

  16. Transformation of the rodent malaria parasite Plasmodium chabaudi

    OpenAIRE

    Spence, Philip J; Cunningham, Deirdre; Jarra, William; Lawton, Jennifer; Langhorne, Jean; Thompson, Joanne

    2011-01-01

    The rodent malaria parasite Plasmodium chabaudi chabaudi shares many features with human malaria species, including P. falciparum, and is the in vivo model of choice for many aspects of malaria research in the mammalian host, from sequestration of parasitized erythrocytes, to antigenic variation and host immunity and immunopathology. this protocol describes an optimized method for the transformation of mature blood-stage P.c. chabaudi and a description of a vector that targets efficient, sing...

  17. Improved protocols for the study of urinary electrolyte excretion and blood pressure in rodents: use of gel food and stepwise changes in diet composition.

    Science.gov (United States)

    Nizar, Jonathan M; Bouby, Nadine; Bankir, Lise; Bhalla, Vivek

    2018-06-01

    Many experimental protocols in rodents require the comparison of groups that are fed different diets. Changes in dietary electrolyte and/or fat content can influence food intake, which can potentially introduce bias or confound the results. Unpalatable diets slow growth or cause weight loss, which is exacerbated by housing the animals in individual metabolic cages or by surgery. For balance studies in mice, small changes in body weight and food intake and low urinary flow can amplify these challenges. Powder food can be administered as gel with the addition of a desired amount of water, electrolytes, drugs (if any), and a small amount of agar. We describe here how the use of gel food to vary water, Na, K, and fat content can reduce weight loss and improve reproducibility of intake, urinary excretion, and blood pressure in rodents. In addition, mild food restriction reduces the interindividual variability and intergroup differences in food intake and associated variables, thus improving the statistical power of an experiment. Finally, we also demonstrate the advantages of using gel food for weight-based drug dosing. These protocols can improve the accuracy and reproducibility of experimental data where dietary manipulations are needed and are especially advisable in rodent studies related to water balance, obesity, and blood pressure.

  18. A cell kinetic model of granulopoiesis under radiation exposure: Extension from rodents to canines and humans

    International Nuclear Information System (INIS)

    Hu, S.; Cucinotta, F. A.

    2011-01-01

    As significant ionising radiation exposure will occur during prolonged space travel in future, it is essential to understand their adverse effects on the radiosensitive organ systems that are important for immediate survival of humans, e.g. the haematopoietic system. In this paper, a bio-mathematical model of granulopoiesis is used to analyse the granulocyte changes seen in the blood of mammalians under acute and continuous radiation exposure. This is one of a set of haematopoietic models that have been successfully utilised to simulate and interpret the experimental data of acute and chronic radiation on rodents. Extension to canine and human systems indicates that the results of the model are consistent with the cumulative experimental and empirical data from various sources, implying the potential to integrate them into one united model system to monitor the haematopoietic response of various species under irradiation. The suppression of granulocytes' level of a space traveller under chronic stress of low-dose irradiation as well as the granulopoietic response when encountering a historically large solar particle event is also discussed. (authors)

  19. Small area estimation of obesity prevalence and dietary patterns: a model applied to Rio de Janeiro city, Brazil.

    Science.gov (United States)

    Cataife, Guido

    2014-03-01

    We propose the use of previously developed small area estimation techniques to monitor obesity and dietary habits in developing countries and apply the model to Rio de Janeiro city. We estimate obesity prevalence rates at the Census Tract through a combinatorial optimization spatial microsimulation model that matches body mass index and socio-demographic data in Brazil's 2008-9 family expenditure survey with Census 2010 socio-demographic data. Obesity ranges from 8% to 25% in most areas and affects the poor almost as much as the rich. Male and female obesity rates are uncorrelated at the small area level. The model is an effective tool to understand the complexity of the problem and to aid in policy design. © 2013 Published by Elsevier Ltd.

  20. Preliminary evidence for obesity-associated insulin resistance in adolescents without elevations of inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Cohen Jessica I

    2012-06-01

    Full Text Available Abstract Background To ascertain whether the associations between obesity, inflammation, and insulin resistance established in human adult studies are found among adolescents. Methods We contrasted 36 obese and 24 lean youth on fasting glucose, insulin levels, lipid profile, hemoglobin A1C, markers of hepatic function, white blood cell count, C-reactive protein (CRP and fibrinogen levels. The cytokines IL-6, TNF-α, IFN-γ, IL-10 and IL-4 and the adipokines leptin, resistin, and adiponectin were also compared between the two groups. The fasting glucose and insulin values were used to estimate the degree of insulin resistance with the homeostatic model assessment of insulin resistance (HOMA-IR. T-tests and correlations were run to examine group differences and associations between groups. In addition, regression analyses were used to ascertain whether the markers of inflammation were predictive of the degree of insulin resistance. Results Although obese adolescents had clear evidence of insulin resistance, only CRP, fibrinogen and leptin were elevated; there were no group differences in pro- or anti-inflammatory cytokines nor adiponectin and resistin. Anthropometric measures of obesity and level of insulin resistance were highly correlated to the acute phase reactants CRP and fibrinogen; however, the degree of insulin resistance was not predicted by the pro- or anti-inflammatory cytokine markers. Obese adolescents had higher white blood cell counts. In addition they had higher circulating alanine aminotransferase concentrations and lower circulating albumin and total protein than lean adolescents, possibly as a result of hepatocyte damage from fatty liver. Conclusion Unlike rodent or adult studies, we found that wide-spread systemic inflammation is not necessarily associated with insulin resistance among adolescents. This finding does not support the current paradigm that the associations between obesity and insulin resistance are, to a

  1. Leptospira and rodents in Cambodia : environmental determinants of infection

    OpenAIRE

    Ivanova, S.; Herbreteau, Vincent; Blasdell, K.; Chaval, Y.; Buchy, P.; Guillard, B.; Morand, S.

    2012-01-01

    We investigated infection of rodents and shrews by Leptospira spp. in two localities of Cambodia (Veal Renh, Kaev Seima) and in four types of habitat (forests, non-flooded lands, lowland rain-fed paddy fields, houses) during the wet and the dry seasons. Habitat preference was common, and rodent and shrew species were found only in houses or in rain-fed paddy fields or in forests. Among 649 small mammals trapped belonging to 12 rodent species and 1 shrew species, 71 of 642 animals tested were ...

  2. Disruption of the Serotonergic System after Neonatal Hypoxia-Ischemia in a Rodent Model

    Directory of Open Access Journals (Sweden)

    Kathryn M. Buller

    2012-01-01

    Full Text Available Identifying which specific neuronal phenotypes are vulnerable to neonatal hypoxia-ischemia, where in the brain they are damaged, and the mechanisms that produce neuronal losses are critical to determine the anatomical substrates responsible for neurological impairments in hypoxic-ischemic brain-injured neonates. Here we describe our current work investigating how the serotonergic network in the brain is disrupted in a rodent model of preterm hypoxia-ischemia. One week after postnatal day 3 hypoxia-ischemia, losses of serotonergic raphé neurons, reductions in serotonin levels in the brain, and reduced serotonin transporter expression are evident. These changes can be prevented using two anti-inflammatory interventions; the postinsult administration of minocycline or ibuprofen. However, each drug has its own limitations and benefits for use in neonates to stem damage to the serotonergic network after hypoxia-ischemia. By understanding the fundamental mechanisms underpinning hypoxia-ischemia-induced serotonergic damage we will hopefully move closer to developing a successful clinical intervention to treat neonatal brain injury.

  3. Tularemia and plague survey in rodents in an earthquake zone in southeastern Iran

    Science.gov (United States)

    Gyuranecz, Miklós

    2015-01-01

    OBJECTIVES: Earthquakes are one the most common natural disasters that lead to increased mortality and morbidity from transmissible diseases, partially because the rodents displaced by an earthquake can lead to an increased rate of disease transmission. The aim of this study was to evaluate the prevalence of plague and tularemia in rodents in the earthquake zones in southeastern Iran. METHODS: In April 2013, a research team was dispatched to explore the possible presence of diseases in rodents displaced by a recent earthquake magnitude 7.7 around the cities of Khash and Saravan in Sistan and Baluchestan Province. Rodents were trapped near and in the earthquake zone, in a location where an outbreak of tularemia was reported in 2007. Rodent serums were tested for a serological survey using an enzyme-linked immunosorbent assay. RESULTS: In the 13 areas that were studied, nine rodents were caught over a total of 200 trap-days. Forty-eight fleas and 10 ticks were obtained from the rodents. The ticks were from the Hyalomma genus and the fleas were from the Xenopsylla genus. All the trapped rodents were Tatera indica. Serological results were negative for plague, but the serum agglutination test was positive for tularemia in one of the rodents. Tatera indica has never been previously documented to be involved in the transmission of tularemia. CONCLUSIONS: No evidence of the plague cycle was found in the rodents of the area, but evidence was found of tularemia infection in rodents, as demonstrated by a positive serological test for tularemia in one rodent. PMID:26602769

  4. Impact Response Comparison Between Parametric Human Models and Postmortem Human Subjects with a Wide Range of Obesity Levels.

    Science.gov (United States)

    Zhang, Kai; Cao, Libo; Wang, Yulong; Hwang, Eunjoo; Reed, Matthew P; Forman, Jason; Hu, Jingwen

    2017-10-01

    Field data analyses have shown that obesity significantly increases the occupant injury risks in motor vehicle crashes, but the injury assessment tools for people with obesity are largely lacking. The objectives of this study were to use a mesh morphing method to rapidly generate parametric finite element models with a wide range of obesity levels and to evaluate their biofidelity against impact tests using postmortem human subjects (PMHS). Frontal crash tests using three PMHS seated in a vehicle rear seat compartment with body mass index (BMI) from 24 to 40 kg/m 2 were selected. To develop the human models matching the PMHS geometry, statistical models of external body shape, rib cage, pelvis, and femur were applied to predict the target geometry using age, sex, stature, and BMI. A mesh morphing method based on radial basis functions was used to rapidly morph a baseline human model into the target geometry. The model-predicted body excursions and injury measures were compared to the PMHS tests. Comparisons of occupant kinematics and injury measures between the tests and simulations showed reasonable correlations across the wide range of BMI levels. The parametric human models have the capability to account for the obesity effects on the occupant impact responses and injury risks. © 2017 The Obesity Society.

  5. A Hamster Model of Diet-Induced Obesity for Preclinical Evaluation of Anti-Obesity, Anti-Diabetic and Lipid Modulating Agents.

    Directory of Open Access Journals (Sweden)

    Louise S Dalbøge

    Full Text Available Unlike rats and mice, hamsters develop hypercholesterolemia, and hypertriglyceridemia when fed a cholesterol-rich diet. Because hyperlipidemia is a hallmark of human obesity, we aimed to develop and characterize a novel diet-induced obesity (DIO and hypercholesterolemia Golden Syrian hamster model.Hamsters fed a highly palatable fat- and sugar-rich diet (HPFS for 12 weeks showed significant body weight gain, body fat accumulation and impaired glucose tolerance. Cholesterol supplementation to the diet evoked additional hypercholesterolemia. Chronic treatment with the GLP-1 analogue, liraglutide (0.2 mg/kg, SC, BID, 27 days, normalized body weight and glucose tolerance, and lowered blood lipids in the DIO-hamster. The dipeptidyl peptidase-4 (DPP-4 inhibitor, linagliptin (3.0 mg/kg, PO, QD also improved glucose tolerance. Treatment with peptide YY3-36 (PYY3-36, 1.0 mg/kg/day or neuromedin U (NMU, 1.5 mg/kg/day, continuously infused via a subcutaneous osmotic minipump for 14 days, reduced body weight and energy intake and changed food preference from HPFS diet towards chow. Co-treatment with liraglutide and PYY3-36 evoked a pronounced synergistic decrease in body weight and food intake with no lower plateau established. Treatment with the cholesterol uptake inhibitor ezetimibe (10 mg/kg, PO, QD for 14 days lowered plasma total cholesterol with a more marked reduction of LDL levels, as compared to HDL, indicating additional sensitivity to cholesterol modulating drugs in the hyperlipidemic DIO-hamster. In conclusion, the features of combined obesity, impaired glucose tolerance and hypercholesterolemia in the DIO-hamster make this animal model useful for preclinical evaluation of novel anti-obesity, anti-diabetic and lipid modulating agents.

  6. The association of cysteine with obesity, inflammatory cytokines and insulin resistance in Hispanic children and adolescents.

    Directory of Open Access Journals (Sweden)

    Amany K Elshorbagy

    Full Text Available Plasma total cysteine (tCys independently relates to fat mass in adults. Dietary cyst(eine promotes adiposity and decreases glucose tolerance in some rodent models, but alleviates insulin resistance in others.To investigate whether the association of tCys with body fat extends to children at particular risk of obesity, and whether tCys is associated with insulin resistance and obesity-associated inflammation.We explored the cross-sectional relations of fasting plasma tCys and related metabolites with body composition measured by dual-energy X-ray absorptiometry in 984 Hispanic children and adolescents aged 4-19 years from the Viva La Familia Study. Linear and logistic regression and dose-response curves were used to evaluate relations of tCys with obesity, insulin resistance and inflammatory markers including interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α, monocyte chemoattractant protein-1 (MCP-1 and C-reactive protein (CRP.tCys, methionine and total homocysteine (tHcy increased with age. Upper tCys quartile was independently associated with a 5-fold increased risk of obesity (95% CI 3.5-8.0, P<0.001, and 2-fold risk of insulin resistance (95% CI: 1.6-5.0, P<0.001; adjusted for body fat%. Within the overweight/obese subgroup, but not in normal-weight children, tCys accounted for 9% of the variability in body fat% (partial r = 0.30, P<0.001; adjusted for age and gender. tCys correlated positively with serum non-esterified fatty acids and leptin, partly independent of body fat, but was not associated with serum IL-6, TNF-α or MCP-1. A positive correlation with CRP disappeared after adjustment for BMI.tCys is independently associated with obesity and insulin resistance in Hispanic children and adolescents, highlighting a previously underappreciated link between the sulfur amino acid metabolic pathway and obesity and cardiometabolic risk.

  7. Branched-chain amino acids in metabolic signaling and insulin resistance

    Science.gov (United States)

    Branched-chain amino acids (BCAAs) are important directly- and indirectly-acting nutrient signals. Frequently, their actions have been reported to be anti-obesity in nature, especially in rodent models. Yet, circulating BCAAs tend to be elevated in obesity, and even associated with poorer metaboli...

  8. The role of leptin in human lipid and glucose metabolism: the effects of acute recombinant human leptin infusion in young healthy males

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2011-01-01

    Obese and lean humans treated with leptin have not experienced convincing weight-loss results compared with the dramatic weight losses observed in obese rodents.......Obese and lean humans treated with leptin have not experienced convincing weight-loss results compared with the dramatic weight losses observed in obese rodents....

  9. Subcutaneous and gonadal adipose tissue transcriptome differences in lean and obese female dogs.

    Science.gov (United States)

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2013-12-01

    Canine obesity leads to shortened life span and increased disease incidence. Adipose tissue depots are known to have unique metabolic and gene expression profiles in rodents and humans, but few comparisons of depot gene expression have been performed in the dog. Using microarray technology, our objective was to identify differentially expressed genes and enriched functional pathways between subcutaneous and gonadal adipose of lean and obese dogs to better understand the pathogenesis of obesity in the dog. Because no depot × body weight status interactions were identified in the microarray data, depot differences were the primary focus. A total of 946 and 703 transcripts were differentially expressed (FDR P metabolism and synthesis and degradation of ketone bodies. We have identified a core set of genes differentially expressed between subcutaneous and gonadal adipose tissue in dogs regardless of body weight. These genes contribute to depot-specific differences in immune function, extracellular matrix remodeling and lysosomal function and may contribute to the physiological differences noted between depots. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  10. The characteristics of the pediatric model for counteracting obesity in Serbia

    Directory of Open Access Journals (Sweden)

    Banićević Miloš

    2012-01-01

    Full Text Available Basic data on the establishment, features and results of the health care system for children and adolescents in the Republic of Serbia during the period 1950-1990 are given in the introductory remarks. Enormous pressure for the change of the health sector ownership and the profile of physicians in the primary pediatric care in the last decade of 20th century and at the beginning of 21st century is also emphasized. The destructive consequences of the sanctions of international community (1992-1995, NATO aggression (1999 and the change of the political system in Serbia (2000 caused the huge loss of gross domestic product, increase of the unemployment and poverty rates, and the decrease of the health expenditure rate to unsustainable levels (200-300 USD per capita. In spite of all misfortunes, Pediatric Association of Serbia, in response to the global obesity epidemic, offered in 2007 to the Ministry of health and the National Institute for health insurance the Project 'The prevention and treatment of obesity in children and adolescents in Serbia', as the pediatric chapter for future National strategy for counteracting obesity. The Project, ie the pediatric model for counteracting obesity is funded on the features of the health care system for children and adolescents in our country. The solidarity of the society and the continuous education of health care workers, adolescents and their parents about the significance of obesity epidemic are, in our conviction, key factors for the strengthening of adolescent's conscience on individual responsibility for own health as the prerequisite for successful control of obesity epidemic in adolescents.

  11. Which strategies reduce breast cancer mortality most? Collaborative modeling of optimal screening, treatment, and obesity prevention.

    Science.gov (United States)

    Mandelblatt, Jeanne; van Ravesteyn, Nicolien; Schechter, Clyde; Chang, Yaojen; Huang, An-Tsun; Near, Aimee M; de Koning, Harry; Jemal, Ahmedin

    2013-07-15

    US breast cancer mortality is declining, but thousands of women still die each year. Two established simulation models examine 6 strategies that include increased screening and/or treatment or elimination of obesity versus continuation of current patterns. The models use common national data on incidence and obesity prevalence, competing causes of death, mammography characteristics, treatment effects, and survival/cure. Parameters are modified based on obesity (defined as BMI  ≥  30 kg/m(2) ). Outcomes are presented for the year 2025 among women aged 25+ and include numbers of cases, deaths, mammograms and false-positives; age-adjusted incidence and mortality; breast cancer mortality reduction and deaths averted; and probability of dying of breast cancer. If current patterns continue, the models project that there would be about 50,100-57,400 (range across models) annual breast cancer deaths in 2025. If 90% of women were screened annually from ages 40 to 54 and biennially from ages 55 to 99 (or death), then 5100-6100 fewer deaths would occur versus current patterns, but incidence, mammograms, and false-positives would increase. If all women received the indicated systemic treatment (with no screening change), then 11,400-14,500 more deaths would be averted versus current patterns, but increased toxicity could occur. If 100% received screening plus indicated therapy, there would be 18,100-20,400 fewer deaths. Eliminating obesity yields 3300-5700 fewer breast cancer deaths versus continuation of current obesity levels. Maximal reductions in breast cancer deaths could be achieved through optimizing treatment use, followed by increasing screening use and obesity prevention. © 2013 American Cancer Society.

  12. Semi-Autonomous Rodent Habitat for Deep Space Exploration

    Science.gov (United States)

    Alwood, J. S.; Shirazi-Fard, Y.; Pletcher, D.; Globus, R.

    2018-01-01

    NASA has flown animals to space as part of trailblazing missions and to understand the biological responses to spaceflight. Mice traveled in the Lunar Module with the Apollo 17 astronauts and now mice are frequent research subjects in LEO on the ISS. The ISS rodent missions have focused on unravelling biological mechanisms, better understanding risks to astronaut health, and testing candidate countermeasures. A critical barrier for longer-duration animal missions is the need for humans-in-the-loop to perform animal husbandry and perform routine tasks during a mission. Using autonomous or telerobotic systems to alleviate some of these tasks would enable longer-duration missions to be performed at the Deep Space Gateway. Rodent missions performed using the Gateway as a platform could address a number of critical risks identified by the Human Research Program (HRP), as well as Space Biology Program questions identified by NRC Decadal Survey on Biological and Physical Sciences in Space, (2011). HRP risk areas of potentially greatest relevance that the Gateway rodent missions can address include those related to visual impairment (VIIP) and radiation risks to central nervous system, cardiovascular disease, as well as countermeasure testing. Space Biology focus areas addressed by the Gateway rodent missions include mechanisms and combinatorial effects of microgravity and radiation. The objectives of the work proposed here are to 1) develop capability for semi-autonomous rodent research in cis-lunar orbit, 2) conduct key experiments for testing countermeasures against low gravity and space radiation. The hardware and operations system developed will enable experiments at least one month in duration, which potentially could be extended to one year in duration. To gain novel insights into the health risks to crew of deep space travel (i.e., exposure to space radiation), results obtained from Gateway flight rodents can be compared to ground control groups and separate groups

  13. Characterisation of gut microbiota in Ossabaw and Göttingen minipigs as models of obesity and metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Rebecca Pedersen

    Full Text Available Recent evidence suggests that the gut microbiota is an important contributing factor to obesity and obesity related metabolic disorders, known as the metabolic syndrome. The aim of this study was to characterise the intestinal microbiota in two pig models of obesity namely Göttingen minipigs and the Ossabaw minipigs.The cecal, ileal and colonic microbiota from lean and obese Osabaw and Göttingen minipigs were investigated by Illumina-based sequencing and by high throughput qPCR, targeting the 16S rRNA gene in different phylogenetic groups of bacteria. The weight gain through the study was significant in obese Göttingen and Ossabaw minipigs. The lean Göttingen minipigs' cecal microbiota contained significantly higher abundance of Firmicutes (P<0.006, Akkermensia (P<0.01 and Methanovibribacter (P<0.01 than obese Göttingen minipigs. The obese Göttingen cecum had higher abundances of the phyla Spirochaetes (P<0.03, Tenericutes (P<0.004, Verrucomicrobia (P<0.005 and the genus Bacteroides (P<0.001 compared to lean minipigs. The relative proportion of Clostridium cluster XIV was 7.6-fold higher in cecal microbiota of obese Göttingen minipigs as compared to lean. Obese Ossabaw minipigs had a higher abundance of Firmicutes in terminal ileum and lower abundance of Bacteroidetes in colon than lean Ossabaw minipigs (P<0.01. Obese Ossabaws had significantly lower abundances of the genera Prevotella and Lactobacillus and higher abundance of Clostridium in their colon than the lean Ossabaws. Overall, the Göttingen and Ossabaw minipigs displayed different microbial communities in response to diet-induced obesity in the different sections of their intestine.Obesity-related changes in the composition of the gut microbiota were found in lean versus obese Göttingen and Ossabaw minipigs. In both pig models diet seems to be the defining factor that shapes the gut microbiota as observed by changes in different bacteria divisions between lean and obese

  14. Impact of the gut microbiota on rodent models of human disease.

    Science.gov (United States)

    Hansen, Axel Kornerup; Hansen, Camilla Hartmann Friis; Krych, Lukasz; Nielsen, Dennis Sandris

    2014-12-21

    Traditionally bacteria have been considered as either pathogens, commensals or symbionts. The mammal gut harbors 10(14) organisms dispersed on approximately 1000 different species. Today, diagnostics, in contrast to previous cultivation techniques, allow the identification of close to 100% of bacterial species. This has revealed that a range of animal models within different research areas, such as diabetes, obesity, cancer, allergy, behavior and colitis, are affected by their gut microbiota. Correlation studies may for some diseases show correlation between gut microbiota composition and disease parameters higher than 70%. Some disease phenotypes may be transferred when recolonizing germ free mice. The mechanistic aspects are not clear, but some examples on how gut bacteria stimulate receptors, metabolism, and immune responses are discussed. A more deeper understanding of the impact of microbiota has its origin in the overall composition of the microbiota and in some newly recognized species, such as Akkermansia muciniphila, Segmented filamentous bacteria and Faecalibacterium prausnitzii, which seem to have an impact on more or less severe disease in specific models. Thus, the impact of the microbiota on animal models is of a magnitude that cannot be ignored in future research. Therefore, either models with specific microbiota must be developed, or the microbiota must be characterized in individual studies and incorporated into data evaluation.

  15. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns.

    Science.gov (United States)

    la Fleur, S E; Luijendijk, M C M; van der Zwaal, E M; Brans, M A D; Adan, R A H

    2014-05-01

    Rats subjected to a free-choice high-fat high-sugar (fcHFHS) diet persistently overeat, exhibit increased food-motivated behavior and become overtly obese. Conversely, several studies using a non-choice (nc) high-energy diet showed only an initial increase in food intake with unaltered or reduced food-motivated behavior. This raises the question of the importance of choice in the persistence of hyperphagia in rats on a fcHFHS diet. Meal patterns, food intake and body weight gain were studied in male Wistar rats on free-choice diets with fat and/or sugar and in rats on nc diets with fat and sugar (custom made with ingredients similar to the fcHFHS diet). Rats on a ncHFHS diet initially overconsumed, but reduced intake thereafter, whereas rats on a fcHFHS diet remained hyperphagic. Because half of the sugar intake in the fcHFHS group occurred during the inactive period, we next determined whether sugar intake during the light phase was a necessary requirement for hyperphagia, by restricting access to liquid sugar to either the light or dark period with unlimited access to fat and chow. Results showed that hyperphagia occurred irrespective of the timing of sugar intake. Meal pattern analysis revealed consumption of larger but fewer meals in the ncHFHS group, as well as the fcHF group. Interestingly, meal number was increased in all rats drinking liquid sugar (whether on a fcHFHS or a fcHS diet), whereas a compensatory decrease in meal size was only observed in the fcHS group, but not the fcHFHS group. We hereby show the importance of choice in the observation of fcHFHS diet-induced hyperphagia, which results in increases in meal number due to sugar drinking without any compensatory decrease in meal size. We thus provide a novel dietary model in rats that mimics important features of human overconsumption that have been ignored in rodent models of obesity.

  16. Altered Tracer Distribution and Clearance in the Extracellular Space of the Substantia Nigra in a Rodent Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Yuan Fang

    2017-07-01

    Full Text Available The relationship between extracellular space (ECS diffusion parameters and brain drug clearance is not well-studied, especially in the context of Parkinson's disease (PD. Therefore, we used a rodent model of PD to explore the distribution and clearance of a magnetic resonance tracer. Forty male Sprague Dawley rats were randomized into four different groups: a PD group, a Madopar group (PD + Madopar treatment, a sham group, and a control group. All rats received an injection of the extracellular tracer gadolinium-diethylene triaminepentacetic acid (Gd-DTPA directly into the substantia nigra (SN. ECS diffusion parameters including the effective diffusion coefficient (D*, clearance coefficient (k', ratio of the maximum distribution volume of the tracer (Vd-max%, and half-life (t1/2 were measured. We found that all parameters were significantly increased in the PD group compared to the other three groups (D*: F = 5.774, p = 0.0025; k': F = 20.00, P < 0.0001; Vd-max%: F = 12.81, P < 0.0001; and t1/2: F = 23.35, P < 0.0001. In conclusion, the PD group exhibited a wider distribution and lower clearance of the tracer compared to the other groups. Moreover, k' was more sensitive than D* for monitoring morphological and functional changes in the ECS in a rodent model of PD.

  17. Study of hantavirus infection in captive breed colonies of wild rodents

    Directory of Open Access Journals (Sweden)

    RC Oliveira

    2004-10-01

    Full Text Available Wild sigmondontine rodents are known to be the reservoir of several serotypes of New World hantaviruses. The mechanism of viral transmission is by aerosol inhalation of the excreta from infected rodents. Considering that the captive breed colonies of various wild mammals may present a potencial risk for hantaviral transmission, we examined 85 speciemens of Thrichomys spp. (Echimyidae and 17 speciemens of Nectomys squamipes (Sigmodontinae from our colony for the presence of hantavirus infections. Blood samples were assayed for the presence of antibodies to Andes nucleocapsid antigen using enzyme-linked immunosorbent assay (ELISA. Additionally, serum samples from workers previously exposed to wild rodents, in the laboratories where the study was conducted, were also tested by ELISA to investigate prevalence of anti-hantavirus IgG antibodies. All blood samples were negative for hantavirus antibodies. Although these results suggest that those rodent's colonies are hantavirus free, the work emphasizes the need for hantavirus serological monitoring in wild colonized rodents and secure handling potentially infected rodents as important biosafety measures.

  18. Thieving rodents as substitute dispersers of megafaunal seeds

    Science.gov (United States)

    Jansen, Patrick A.; Hirsch, Ben T.; Emsens, Willem-Jan; Zamora-Gutierrez, Veronica; Wikelski, Martin; Kays, Roland

    2012-01-01

    The Neotropics have many plant species that seem to be adapted for seed dispersal by megafauna that went extinct in the late Pleistocene. Given the crucial importance of seed dispersal for plant persistence, it remains a mystery how these plants have survived more than 10,000 y without their mutualist dispersers. Here we present support for the hypothesis that secondary seed dispersal by scatter-hoarding rodents has facilitated the persistence of these large-seeded species. We used miniature radio transmitters to track the dispersal of reputedly megafaunal seeds by Central American agoutis, which scatter-hoard seeds in shallow caches in the soil throughout the forest. We found that seeds were initially cached at mostly short distances and then quickly dug up again. However, rather than eating the recovered seeds, agoutis continued to move and recache the seeds, up to 36 times. Agoutis dispersed an estimated 35% of seeds for >100 m. An estimated 14% of the cached seeds survived to the next year, when a new fruit crop became available to the rodents. Serial video-monitoring of cached seeds revealed that the stepwise dispersal was caused by agoutis repeatedly stealing and recaching each other’s buried seeds. Although previous studies suggest that rodents are poor dispersers, we demonstrate that communities of rodents can in fact provide highly effective long-distance seed dispersal. Our findings suggest that thieving scatter-hoarding rodents could substitute for extinct megafaunal seed dispersers of tropical large-seeded trees. PMID:22802644

  19. Measuring Motivation and Reward-Related Decision Making in the Rodent Operant Touchscreen System.

    Science.gov (United States)

    Heath, Christopher J; Phillips, Benjamin U; Bussey, Timothy J; Saksida, Lisa M

    2016-01-04

    This unit is designed to facilitate implementation of the fixed and progressive ratio paradigms and the effort-related choice task in the rodent touchscreen apparatus to permit direct measurement of motivation and reward-related decision making in this equipment. These protocols have been optimized for use in the mouse and reliably yield stable performance levels that can be enhanced or suppressed by systemic pharmacological manipulation. Instructions are also provided for the adjustment of task parameters to permit use in mouse models of neurodegenerative disease. These tasks expand the utility of the rodent touchscreen apparatus beyond the currently available battery of cognitive assessment paradigms. Copyright © 2016 John Wiley & Sons, Inc.

  20. Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.

    Science.gov (United States)

    Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J

    2017-08-01

    The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.

  1. Olfactory discrimination and memory deficits in the Flinders Sensitive Line rodent model of depression.

    Science.gov (United States)

    Cook, A; Pfeiffer, L-M; Thiele, S; Coenen, V A; Döbrössy, M D

    2017-10-01

    Major Depressive Disorder (MDD) is a heterogeneous psychiatric disorder with broad symptomatic manifestations. The current study examined, for the first time, olfactory memory and discrimination in the Flinders Sensitive Line (FSL) rodent model of depression. Male FSL rats and controls were trained on an Olfactory Discrimination (OD) and a Social Interaction (SI) test. On the OD test, the FSL and controls performed similarly at the shortest inter-trial interval (5min), however, with extended delay of 30min, the FSLs had a recall and odour discrimination deficit. At the longest delay (60min) both groups performed poorly. The FSL rats i.) had a deficit in olfactory discrimination suggesting impairment in olfactory memory and recall; ii.) were less likely to socialize with unfamiliar rats. The data suggests that FSL animals have an impaired olfactory information processing capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Reduced insulin-like growth factor-I serum levels in formerly obese women subjected to laparoscopic-adjustable gastric banding or diet-induced long-term caloric restriction.

    Science.gov (United States)

    Mitterberger, Maria C; Mattesich, Monika; Klaver, Elise; Piza-Katzer, Hildegunde; Zwerschke, Werner

    2011-11-01

    Life-span extension in laboratory rodents induced by long-term caloric restriction correlates with decreased serum insulin-like growth factor-I (IGF-I) levels. Reduced activity of the growth hormone/IGF-I signaling system slows aging and increases longevity in mutant mouse models. In the present study, we show that long-term caloric restriction achieved by two different interventions for 4 years, either laparoscopic-adjustable gastric banding or reducing diet, leads to reduced IGF-I serum levels in formerly obese women relative to normal-weight women eating ad libitum. Moreover, we present evidence that the long-term caloric restriction interventions reduce fasting growth hormone serum levels. The present study indicates that the activity of the growth hormone/IGF-I axis is reduced in long-term calorically restricted formerly obese humans. Furthermore, our findings suggest that the duration and severity of the caloric restriction intervention are important for the outcome on the growth hormone/IGF-I axis in humans.

  3. The role of rodents in avian influenza outbreaks in poultry farms: a review.

    Science.gov (United States)

    Velkers, Francisca C; Blokhuis, Simon J; Veldhuis Kroeze, Edwin J B; Burt, Sara A

    2017-12-01

    Wild migratory birds are associated with global avian influenza virus (AIV) spread. Although direct contact with wild birds and contaminated fomites is unlikely in modern non-free range poultry farms applying biosecurity measures, AIV outbreaks still occur. This suggests involvement of other intermediate factors for virus transmission between wild birds and poultry. This review describes current evidence of the potential role of rodents in AIV transmission from wild birds to poultry and between poultry houses. Rodents can be abundant around poultry houses, share their habitat with waterfowl and can readily enter poultry houses. Survival of AIV from waterfowl in poultry house surroundings and on the coat of rodents suggests that rodents are likely to act as mechanical vector. AIVs can replicate in rodents without adaptation, resulting in high viral titres in lungs and nasal turbinates, virus presence in nasal washes and saliva, and transmission to naïve contact animals. Therefore, active AIV shedding by infected rodents may play a role in transmission to poultry. Further field and experimental studies are needed to provide evidence for a role of rodents in AIV epidemiology. Making poultry houses rodent-proof and the immediate surroundings unattractive for rodents are recommended as preventive measures against possible AIV introduction.

  4. Visceral obesity and psychosocial stress: a generalised control theory model

    Science.gov (United States)

    Wallace, Rodrick

    2016-07-01

    The linking of control theory and information theory via the Data Rate Theorem and its generalisations allows for construction of necessary conditions statistical models of body mass regulation in the context of interaction with a complex dynamic environment. By focusing on the stress-related induction of central obesity via failure of HPA axis regulation, we explore implications for strategies of prevention and treatment. It rapidly becomes evident that individual-centred biomedical reductionism is an inadequate paradigm. Without mitigation of HPA axis or related dysfunctions arising from social pathologies of power imbalance, economic insecurity, and so on, it is unlikely that permanent changes in visceral obesity for individuals can be maintained without constant therapeutic effort, an expensive - and likely unsustainable - public policy.

  5. Accelerated cognitive decline in a rodent model for temporal lobe epilepsy.

    Science.gov (United States)

    Schipper, Sandra; Aalbers, Marlien W; Rijkers, Kim; Lagiere, Melanie; Bogaarts, Jan G; Blokland, Arjan; Klinkenberg, Sylvia; Hoogland, Govert; Vles, Johan S H

    2016-12-01

    Cognitive impairment is frequently observed in patients with temporal lobe epilepsy. It is hypothesized that cumulative seizure exposure causes accelerated cognitive decline in patients with epilepsy. We investigated the influence of seizure frequency on cognitive decline in a rodent model for temporal lobe epilepsy. Neurobehavioral assessment was performed before and after surgery, after the induction of self-sustaining limbic status epilepticus (SSLSE), and in the chronic phase in which rats experienced recurrent seizures. Furthermore, we assessed potential confounders of memory performance. Rats showed a deficit in spatial working memory after the induction of the SSLSE, which endured in the chronic phase. A progressive decline in recognition memory developed in SSLSE rats. Confounding factors were absent. Seizure frequency and also the severity of the status epilepticus were not correlated with the severity of cognitive deficits. The effect of the seizure frequency on cognitive comorbidity in epilepsy has long been debated, possibly because of confounders such as antiepileptic medication and the heterogeneity of epileptic etiologies. In an animal model of temporal lobe epilepsy, we showed that a decrease in spatial working memory does not relate to the seizure frequency. This suggests for other mechanisms are responsible for memory decline and potentially a common pathophysiology of cognitive deterioration and the occurrence and development of epileptic seizures. Identifying this common denominator will allow development of more targeted interventions treating cognitive decline in patients with epilepsy. The treatment of interictal symptoms will increase the quality of life of many patients with epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Classification of Multiple Seizure-Like States in Three Different Rodent Models of Epileptogenesis.

    Science.gov (United States)

    Guirgis, Mirna; Serletis, Demitre; Zhang, Jane; Florez, Carlos; Dian, Joshua A; Carlen, Peter L; Bardakjian, Berj L

    2014-01-01

    Epilepsy is a dynamical disease and its effects are evident in over fifty million people worldwide. This study focused on objective classification of the multiple states involved in the brain's epileptiform activity. Four datasets from three different rodent hippocampal preparations were explored, wherein seizure-like-events (SLE) were induced by the perfusion of a low - Mg(2+) /high-K(+) solution or 4-Aminopyridine. Local field potentials were recorded from CA3 pyramidal neurons and interneurons and modeled as Markov processes. Specifically, hidden Markov models (HMM) were used to determine the nature of the states present. Properties of the Hilbert transform were used to construct the feature spaces for HMM training. By sequentially applying the HMM training algorithm, multiple states were identified both in episodes of SLE and nonSLE activity. Specifically, preSLE and postSLE states were differentiated and multiple inner SLE states were identified. This was accomplished using features extracted from the lower frequencies (1-4 Hz, 4-8 Hz) alongside those of both the low- (40-100 Hz) and high-gamma (100-200 Hz) of the recorded electrical activity. The learning paradigm of this HMM-based system eliminates the inherent bias associated with other learning algorithms that depend on predetermined state segmentation and renders it an appropriate candidate for SLE classification.

  7. Obesity decreases the oxidant stress induced by tobacco smoke in a rat model.

    Science.gov (United States)

    Montaño, Martha; Pérez-Ramos, J; Esquivel, A; Rivera-Rosales, R; González-Avila, G; Becerril, C; Checa, M; Ramos, C

    2016-09-01

    Obesity and emphysema are associated with low-grade systemic inflammation and oxidant stress. Assuming that the oxidant stress induced by emphysema would be decreased by obesity, we analyzed the oxidant/antioxidant state in a rat model combining both diseases simultaneously. Obesity was induced using sucrose, while emphysema by exposure to tobacco smoke. End-points evaluated were: body weight, abdominal fat, plasma dyslipidemia and malondialdehyde (MDA), insulin and glucose AUC, activities of Mn-superoxide dismutase (Mn-SOD), glutathione reductase (GR), glutathione transferase (GST) and glutathione peroxidase (GPx); lung MnSOD and 3-nitrotyrosine (3-NT) immunostaining, and expression of αV and β6 integrin subunits. In rats with obesity, the body weight, abdominal fat, plasma triglyceride levels, glucose AUC, insulin levels, GST activity, and αV and β6 integrin expressions were amplified. The rats with emphysema had lower values of body weight, abdominal fat, plasma insulin, triglycerides and glucose AUC but higher values of plasma MDA, GPx activity, and the lung expression of the αV and β6 integrins. The combination of obesity and emphysema compared to either condition alone led to diminished body weight, abdominal fat, plasma insulin MDA levels, GPx and GST activities, and αV and β6 integrin expressions; these parameters were all previously increased by obesity. Immunostaining for MnSOD augmented in all experimental groups, but the staining for 3-NT only increased in rats treated with tobacco alone or combined with sucrose. Results showed that obesity reduces oxidant stress and integrin expression, increasing antioxidant enzyme activities; these changes seem to partly contribute to a protective mechanism of obesity against emphysema development.

  8. Activity of nucleic acid polymers in rodent models of HBV infection.

    Science.gov (United States)

    Schöneweis, Katrin; Motter, Neil; Roppert, Pia L; Lu, Mengji; Wang, Baoju; Roehl, Ingo; Glebe, Dieter; Yang, Dongliang; Morrey, John D; Roggendorf, Michael; Vaillant, Andrew

    2018-01-01

    Nucleic acid polymers (NAPs) block the release of HBsAg from infected hepatocytes. These compounds have been previously shown to have the unique ability to eliminate serum surface antigen in DHBV-infected Pekin ducks and achieve multilog reduction of HBsAg or HBsAg loss in patients with chronic HBV infection and HBV/HDV coinfection. In ducks and humans, the blockage of HBsAg release by NAPs occurs by the selective targeting of the assembly and/or secretion of subviral particles (SVPs). The clinically active NAP species REP 2055 and REP 2139 were investigated in other relevant animal models of HBV infection including woodchucks chronically infected with WHV, HBV transgenic mice and HBV infected SCID-Hu mice. The liver accumulation of REP 2139 in woodchucks following subcutaneous administration was examined and was found to be similar to that observed in mice and ducks. However, in woodchucks, NAP treatment was associated with only mild (36-79% relative to baseline) reductions in WHsAg (4/10 animals) after 3-5 weeks of treatment without changes in serum WHV DNA. In HBV infected SCID-Hu mice, REP 2055 treatment was not associated with any reduction of HBsAg, HBeAg or HBV DNA in the serum after 28 days of treatment. In HBV transgenic mice, no reductions in serum HBsAg were observed with REP 2139 with up to 12 weeks of treatment. In conclusion, the antiviral effects of NAPs in DHBV infected ducks and patients with chronic HBV infection were weak or absent in woodchuck and mouse models despite similar liver accumulation of NAPs in all these species, suggesting that the mechanisms of SVP assembly and or secretion present in rodent models differs from that in DHBV and chronic HBV infections. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model

    Science.gov (United States)

    Li, Weidong; Rukavina, Paul

    2012-01-01

    In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…

  10. Landscape epidemiology in urban environments: The example of rodent-borne Trypanosoma in Niamey, Niger.

    Science.gov (United States)

    Rossi, Jean-Pierre; Kadaouré, Ibrahima; Godefroid, Martin; Dobigny, Gauthier

    2017-10-05

    Trypanosomes are protozoan parasites found worldwide, infecting humans and animals. In the past decade, the number of reports on atypical human cases due to Trypanosoma lewisi or T. lewisi-like has increased urging to investigate the multiple factors driving the disease dynamics, particularly in cities where rodents and humans co-exist at high densities. In the present survey, we used a species distribution model, Maxent, to assess the spatial pattern of Trypanosoma-positive rodents in the city of Niamey. The explanatory variables were landscape metrics describing urban landscape composition and physiognomy computed from 8 land-cover classes. We computed the metrics around each data location using a set of circular buffers of increasing radii (20m, 40m, 60m, 80m and 100m). For each spatial resolution, we determined the optimal combination of feature class and regularization multipliers by fitting Maxent with the full dataset. Since our dataset was small (114 occurrences) we expected an important uncertainty associated to data partitioning into calibration and evaluation datasets. We thus performed 350 independent model runs with a training dataset representing a random subset of 80% of the occurrences and the optimal Maxent parameters. Each model yielded a map of habitat suitability over Niamey, which was transformed into a binary map implementing a threshold maximizing the sensitivity and the specificity. The resulting binary maps were combined to display the proportion of models that indicated a good environmental suitability for Trypanosoma-positive rodents. Maxent performed better with landscape metrics derived from buffers of 80m. Habitat suitability for Trypanosoma-positive rodents exhibited large patches linked to urban features such as patch richness and the proportion of landscape covered by concrete or tarred areas. Such inferences could be helpful in assessing areas at risk, setting of monitoring programs, public and medical staff awareness or even

  11. Towards sustainable management of rodents in organic animal husbandry

    NARCIS (Netherlands)

    Meerburg, B.G.; Bonde, M.; Brom, F.W.A.; Endepols, S.; Jensen, A.N.; Leirs, H.; Lodal, J.; Singleton, G.R.; Pelz, H.J.; Rodenburg, T.B.; Kijlstra, A.

    2004-01-01

    From 26 to 28 May 2004 an international seminar was held in Wageningen, the Netherlands, about current knowledge and advice on rodent management on organic pig and poultry farms in Western Europe. This paper summarizes the discussions. Rodent management is necessary to protect the food production

  12. Modeling the effect of sedentary behaviour on the prevention of population obesity using the system dynamics approach

    Science.gov (United States)

    Abidin, Norhaslinda Zainal; Zaibidi, Nerda Zura; Zulkepli, Jafri Hj

    2015-10-01

    Obesity is a medical condition where an individual has an excessive amount of body fat. There are many factors contributing to obesity and one of them is the sedentary behaviour. Rapid development in industrialization and urbanization has brought changes to Malaysia's socioeconomic, especially the lifestyles of Malaysians. With this lifestyle transition, one of the impact is on weight and obesity. How does sedentary behaviour have an impact on the growth of Malaysian population's weight and obesity? What is the most effective sedentary behaviour preventing strategy to obesity? Is it through reduction in duration or frequency of sedentary behaviour? Thus, the aim of this paper is to design an intervention to analyse the effect of decreasing duration and frequency of sedentary behaviour on the population reversion trends of average weight (AW), average body mass index (ABMI), and prevalence of overweight and obesity (POVB). This study combines the different strands of sub-models comprised of nutrition, physical activity and body metabolism, and then synthesis these knowledge into a system dynamics of weight behaviour model, namely SIMULObese. Findings from this study revealed that Malaysian's adults spend a lot of time engaged in sedentary behaviour and this resulted in weight gain and obesity. Comparing between frequency and duration of sedentary behaviour, this study reported that reduced in duration or time spend in sedentary behaviour is a better preventing strategy to obesity compared to duration. As a summary, this study highlighted the importance of decreasing the frequency and duration of sedentary behaviour in developing guidelines to prevent obesity.

  13. Hantavirus Immunology of Rodent Reservoirs: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Tony Schountz

    2014-03-01

    Full Text Available Hantaviruses are hosted by rodents, insectivores and bats. Several rodent-borne hantaviruses cause two diseases that share many features in humans, hemorrhagic fever with renal syndrome in Eurasia or hantavirus cardiopulmonary syndrome in the Americas. It is thought that the immune response plays a significant contributory role in these diseases. However, in reservoir hosts that have been closely examined, little or no pathology occurs and infection is persistent despite evidence of adaptive immune responses. Because most hantavirus reservoirs are not model organisms, it is difficult to conduct meaningful experiments that might shed light on how the viruses evade sterilizing immune responses and why immunopathology does not occur. Despite these limitations, recent advances in instrumentation and bioinformatics will have a dramatic impact on understanding reservoir host responses to hantaviruses by employing a systems biology approach to identify important pathways that mediate virus/reservoir relationships.

  14. Effects of rodent community diversity and composition on prevalence of an endemic bacterial pathogen - Bartonella

    Science.gov (United States)

    Bai, Y.; Kosoy, M.Y.; Calisher, C.H.; Cully, J.F.; Collinge, S.K.

    2009-01-01

    By studying Bartonella prevalence in rodent communities from 23 geographic sites in the western United States and one site in northern Mexico, the present study focused on the effects of rodent community diversity (measured by richness and Shannon index) and composition on prevalence of Bartonella infections. The analysis showed negative correlations of Bartonella prevalence with rodent richness and Shannon index. Further, Bartonella prevalence varied among rodent genera/species. Three models were applied to explain the observations. (1) Within-species/genus transmission: Bartonella strains usually are host-specific and adding non-host species would decrease Bartonella prevalence in its principal host through reduction of host contact (encounter reduction); (2) Frequency-dependence: Adding hosts would decrease the proportion of all infected individuals in the community, resulting in a reduction in the number of contacts between susceptible and infected individuals that usually leads to transmission (transmission reduction); and (3) Dominant species effect: Dominant species, if not susceptible to Bartonellae, can constrain the abundance of susceptible hosts (susceptible host regulation). These mechanisms work in concert; and the level of Bartonella prevalence is an outcome of regulation of all of these mechanisms on the entire system.

  15. Population dynamics of Rodents and Insectivores in lowland tropical ...

    African Journals Online (AJOL)

    The community structure of rodents and insectivores in the lowland tropical rainforest of Okomu National Park, Edo State, Nigeria was assessed using a combination of live-trapping and sighting techniques during the dry and wet seasons. Seventeen species (14 species of rodent, 3 species of insectivores) were captured, ...

  16. Thrombospondin1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model.

    Directory of Open Access Journals (Sweden)

    Yanzhang Li

    Full Text Available Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1 is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice.Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF or a high-fat (HF diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype.TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin resistance. These data suggest that TSP1 may serve as a

  17. Multiple infections of rodents with zoonotic pathogens in Austria.

    Science.gov (United States)

    Schmidt, Sabrina; Essbauer, Sandra S; Mayer-Scholl, Anne; Poppert, Sven; Schmidt-Chanasit, Jonas; Klempa, Boris; Henning, Klaus; Schares, Gereon; Groschup, Martin H; Spitzenberger, Friederike; Richter, Dania; Heckel, Gerald; Ulrich, Rainer G

    2014-07-01

    Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.

  18. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats.

    Science.gov (United States)

    Zhang, Xiao-Juan; Zhou, Li-Hong; Ban, Xiang; Liu, Dian-Xin; Jiang, Wei; Liu, Xiao-Min

    2011-10-01

    Mammals spontaneously prefer lipid rich foods. Overconsumption of high-fat diet leads to obesity and related diseases. Recent findings indicate that taste may participate in the orosensory perception of dietary lipids and the fatty taste may contribute to a preference for and excessive consumption of dietary fat. CD36, a trans-membrane glycoprotein, which is located in the taste buds of circumvallate papillae of rodents, appears to be a plausible receptor for this fatty taste. Obese subjects present a stronger preference for fatty foods, though the mechanisms involved are complex and are not fully investigated. Our data from immunofluorescence and real-time RT-PCR showed that the expression levels of CD36 in circumvallate taste buds were significantly lower in high-fat diet induced obese rats as compared with that of control rats fed a normal diet. These results suggest that decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats may be associated with diminished fatty taste sensitivity and in order to compensate the preference for dietary fat, rats consume more fatty foods. Therapeutic strategies designed to alter or manipulate CD36 expression or function in taste buds may have important implications in treating obesity and related diseases. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. Farmer survey in the hinterland of Kisangani (Democratic Republic of Congo) on rodent crop damage and rodent control techniques used

    DEFF Research Database (Denmark)

    Drazo, Nicaise Amundala; Kennis, Jan; Leirs, Herwig

    2008-01-01

    We conducted a survey on rodent crop damage among farmers in the hinterland of Kisangani (Democratic Republic of Congo). We studied the amount of crop damage, the rodent groups causing crop damage, the growth stages affected and the control techniques used. We conducted this survey in three...... municipalities using a standard questionnaire form translated into local languages, between November 2005 and June 2006 and during July 2007. We used the Quotas method and interviewed 70 households per municipality. Farmers indicated rodent groups implicated in crop damage on color photographs. Two types...... of survey techniques were used: individual and focus-group surveys. The sugar cane rat, Thryonomys sp. and Lemniscomys striatus caused most damage to crops, but inside granaries, Rattus rattus was the primary pest species eating stored food supplies and causing damage to stored goods. Cassava and maize were...

  20. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology

    NARCIS (Netherlands)

    Liang, W.; Menke, A.L.; Driessen, A.; Koek, G.H.; Lindeman, J.H.; Stoop, R.; Havekes, L.M.; Kleemann., R.; Hoek, A.M. van den

    2014-01-01

    Results: The criteria macrovesicular steatosis, microvesicular steatosis, hepatocellular hypertrophy, inflammation and fibrosis were generally applicable to rodent NAFLD. The inter-observer reproducibility (evaluated using the Intraclass Correlation Coefficient) between the ten observers was high

  1. Ecology of rodents at an old quarry in Zambia

    African Journals Online (AJOL)

    Ecology of rodents at an old quarry in Zambia. E.N. Chidumayo. Livingstone Museum, Zambia. An old quarry, 2,5 hain size near Livingstone in southern. Zambia was kill- and live-trapped between September 1974 and December 1976 to determine ecological relations among. rodent species inhabiting it. Seven species ...

  2. Sleep in the Cape Mole Rat: A Short-Sleeping Subterranean Rodent.

    Science.gov (United States)

    Kruger, Jean-Leigh; Gravett, Nadine; Bhagwandin, Adhil; Bennett, Nigel C; Archer, Elizabeth K; Manger, Paul R

    2016-01-01

    The Cape mole rat Georychus capensis is a solitary subterranean rodent found in the western and southern Cape of South Africa. This approximately 200-gram bathyergid rodent shows a nocturnal circadian rhythm, but sleep in this species is yet to be investigated. Using telemetric recordings of the electroencephalogram (EEG) and electromyogram (EMG) in conjunction with video recordings, we were able to show that the Cape mole rat, like all other rodents, has sleep periods composed of both rapid eye movement (REM) and slow-wave (non-REM) sleep. These mole rats spent on average 15.4 h awake, 7.1 h in non-REM sleep and 1.5 h in REM sleep each day. Cape mole rats sleep substantially less than other similarly sized terrestrial rodents but have a similar percentage of total sleep time occupied by REM sleep. In addition, the duration of both non-REM and REM sleep episodes was markedly shorter in the Cape mole rat than has been observed in terrestrial rodents. Interestingly, these features (total sleep time and episode duration) are similar to those observed in another subterranean bathyergid mole rat, i.e. Fukomys mechowii. Thus, there appears to be a bathyergid type of sleep amongst the rodents that may be related to their environment and the effect of this on their circadian rhythm. Investigating further species of bathyergid mole rats may fully define the emerging picture of sleep in these subterranean African rodents. © 2016 S. Karger AG, Basel.

  3. Mice Expressing a "Hyper-Sensitive" Form of the Cannabinoid Receptor 1 (CB1 Are Neither Obese Nor Diabetic.

    Directory of Open Access Journals (Sweden)

    David J Marcus

    Full Text Available Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease. Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure. Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism. Therefore, the hypothesis that sustained endocannabinoid signaling can lead to obesity and diabetes was examined in this study using S426A/S430A mutant mice expressing a desensitization-resistant CB1 receptor. These mice display exaggerated and prolonged responses to acute administration of phytocannabinoids, synthetic cannabinoids, and endocannabinoids. As a consequence these mice represent a novel model for determining the effect of enhanced endocannabinoid signaling on metabolic disease. S426A/S430A mutants consumed equivalent amounts of both high fat (45% and low fat (10% chow control diet compared to wild-type littermate controls. S426A/S430A mutants and wild-type mice fed either high or low fat control diet displayed similar fasting blood glucose levels and normal glucose clearance following a 2 g/kg glucose challenge. Furthermore, S426A/S430A mutants and wild-type mice consumed similar amounts of chow following an overnight fast. While both THC and JZL195 significantly increased food intake two hours after injection, this increase was similar between the S426A/S430A mutant and wildtype control mice Our results indicate that S426A/S430A mutant mice expressing the desensitization-resistant form of CB1 do not exhibit differences in body weight, food intake, glucose homeostasis, or re-feeding following a fast.

  4. Natural Intestinal Protozoa in Rodents (Rodentia: Gerbillinae, Murinae, Cricetinae in Northwestern Iran

    Directory of Open Access Journals (Sweden)

    Mehdi MOHEBALI

    2017-09-01

    Full Text Available Background: Majority of parasitic infections in rodents have zoonotic importance. This study aimed to determine the frequency and intensity of intestinal protozoa infections of rodents including Meriones persicus, Mus musculus and, Cricetulus migratorius.Methods: This survey was conducted in Meshkin Shahr district in northwestern Iran from Mar. to Dec. of 2014. Intestinal samples of 204 rodents including M. persicus (n=117, M. musculus (n=63 and C. migratorius (n=24 were parasitologically examined. Formalin-ether concentration method was done for all of rodents stool samples and observed with light microscope. All of suspected cases were stained with trichorome staining Method. Cultivation in dichromate potassium 2.5% was carried out for all of coccidian positive samples. Acid fast and aniline blue staining methods were used for detecting of coccidian oocysts and intestinal microsporidial spores, respectively.Results: About 121(59.3% of the caught rodents were generally infected with intestinal protozoa. Entamoeba muris 14(6.9%, Trichomonas muris 55(27.0%, Chilomastix betencourtti 17 (8.3%, Giardia muris 19(9.3%, Eimeria spp. 46(22.5%, Isospora spp. 4(2% and Cryptosporidium spp. 1(0.5% were found from the collected rodents. Microsporidian spores were identified in 63 (31% out of the 204 collected rodents using aniline blue staining method.Conclusion: Since some of the infections are zoonotic importance thus, control of rodents can be decreased new cases of the parasitic zoonoses in humans.

  5. Natural Intestinal Protozoa in Rodents (Rodentia: Gerbillinae, Murinae, Cricetinae) in Northwestern Iran

    Science.gov (United States)

    MOHEBALI, Mehdi; ZAREI, Zabiholah; Khanaliha, Khadijeh; KIA, Eshrat Beigom; MOTAVALLI-HAGHI, Afsaneh; DAVOODI, Jaber; REZAEIAN, Tahereh; TARIGHI, Fathemeh; REZAEIAN, Mostafa

    2017-01-01

    Background: Majority of parasitic infections in rodents have zoonotic importance. This study aimed to determine the frequency and intensity of intestinal protozoa infections of rodents including Meriones persicus, Mus musculus and, Cricetulus migratorius. Methods: This survey was conducted in Meshkin Shahr district in northwestern Iran from Mar. to Dec. of 2014. Intestinal samples of 204 rodents including M. persicus (n=117), M. musculus (n=63) and C. migratorius (n=24) were parasitologically examined. Formalin-ether concentration method was done for all of rodents stool samples and observed with light microscope. All of suspected cases were stained with trichorome staining Method. Cultivation in dichromate potassium 2.5% was carried out for all of coccidian positive samples. Acid fast and aniline blue staining methods were used for detecting of coccidian oocysts and intestinal microsporidial spores, respectively. Results: About 121(59.3%) of the caught rodents were generally infected with intestinal protozoa. Entamoeba muris 14(6.9%), Trichomonas muris 55(27.0%), Chilomastix betencourtti 17 (8.3%), Giardia muris 19(9.3%), Eimeria spp. 46(22.5%), Isospora spp. 4(2%) and Cryptosporidium spp. 1(0.5%) were found from the collected rodents. Microsporidian spores were identified in 63 (31%) out of the 204 collected rodents using aniline blue staining method. Conclusion: Since some of the infections are zoonotic importance thus, control of rodents can be decreased new cases of the parasitic zoonoses in humans. PMID:28979348

  6. Study of risk factors affecting both hypertension and obesity outcome by using multivariate multilevel logistic regression models

    Directory of Open Access Journals (Sweden)

    Sepedeh Gholizadeh

    2016-07-01

    Full Text Available Background:Obesity and hypertension are the most important non-communicable diseases thatin many studies, the prevalence and their risk factors have been performedin each geographic region univariately.Study of factors affecting both obesity and hypertension may have an important role which to be adrressed in this study. Materials &Methods:This cross-sectional study was conducted on 1000 men aged 20-70 living in Bushehr province. Blood pressure was measured three times and the average of them was considered as one of the response variables. Hypertension was defined as systolic blood pressure ≥140 (and-or diastolic blood pressure ≥90 and obesity was defined as body mass index ≥25. Data was analyzed by using multilevel, multivariate logistic regression model by MlwiNsoftware. Results:Intra class correlations in cluster level obtained 33% for high blood pressure and 37% for obesity, so two level model was fitted to data. The prevalence of obesity and hypertension obtained 43.6% (0.95%CI; 40.6-46.5, 29.4% (0.95%CI; 26.6-32.1 respectively. Age, gender, smoking, hyperlipidemia, diabetes, fruit and vegetable consumption and physical activity were the factors affecting blood pressure (p≤0.05. Age, gender, hyperlipidemia, diabetes, fruit and vegetable consumption, physical activity and place of residence are effective on obesity (p≤0.05. Conclusion: The multilevel models with considering levels distribution provide more precise estimates. As regards obesity and hypertension are the major risk factors for cardiovascular disease, by knowing the high-risk groups we can d careful planning to prevention of non-communicable diseases and promotion of society health.

  7. SU-C-18C-04: Evaluation of Effective Dose During Ureteroscopy for Obese and Non-Obese Patients

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C; Nguyen, G; Chung, Y; Yoshizumi, T [Duke University, Durham, NC (United States); Cabrera, F; Lipkin, M [Duke University Medical Center, Durham, NC (United States); Shin, R [Duke University Medical Center, Durham, North Carolina (United States)

    2014-06-01

    Purpose: Ureteroscopy involves fluoroscopy which potentially results in considerable amount of radiation dose to the patient. Purpose of this study was two-fold: (a) to develop the effective dose computational model for obese and non-obese patients undergoing left and right ureteroscopy, and (b) to evaluate the utility of a commercial Monte Carlo software for dose assessment in ureteroscopy. Methods: Organ dose measurements were performed on an adult male anthropomorphic phantom, representing the non-obese patients, with 20 high-sensitivity MOSFET detectors and two 0.18cc ionization chambers placed in selected organs. Fat-equivalent paddings were placed around the abdominal region to simulate for obese patients. Effective dose (ED) was calculated using ICRP 103 tissue weighting factors and normalized to the effective dose rate in miliSivert per second (mSv/s). In addition, a commercial Monte Carlo (MC) dose estimation program was used to estimate ED for the non-obese model, with table attenuation correction applied to simulate clinical procedure. Results: For the equipment and protocols involved in this study, the MOSFETderived ED rates for the obese patient model (‘Left’: 0.0092±0.0004 mSv/s; ‘Right’: 0.0086±0.0004 mSv/s) was found to be more than twice as much as that to the non-obese patient model (‘Left’: 0.0041±0.0003 mSv/s; ‘Right’: 0.0036±0.0007 mSv/s). The MC-derived ED rates for the non-obese patient model (‘Left’: 0.0041 mSv/s; ‘Right’: 0.0036 mSv/s; with statistical uncertainty of 1%) showed a good agreement with the MOSFET method. Conclusion: The significant difference in ED rate between the obese and non-obese patient models shows the limitation of directly applying commercial softwares for obese patients and leading to considerable underestimation of ED. Although commercial softwares offer a convenient means of dose estimation, but the utility may be limited to standard-man geometry as the software does not account for

  8. SU-C-18C-04: Evaluation of Effective Dose During Ureteroscopy for Obese and Non-Obese Patients

    International Nuclear Information System (INIS)

    Wang, C; Nguyen, G; Chung, Y; Yoshizumi, T; Cabrera, F; Lipkin, M; Shin, R

    2014-01-01

    Purpose: Ureteroscopy involves fluoroscopy which potentially results in considerable amount of radiation dose to the patient. Purpose of this study was two-fold: (a) to develop the effective dose computational model for obese and non-obese patients undergoing left and right ureteroscopy, and (b) to evaluate the utility of a commercial Monte Carlo software for dose assessment in ureteroscopy. Methods: Organ dose measurements were performed on an adult male anthropomorphic phantom, representing the non-obese patients, with 20 high-sensitivity MOSFET detectors and two 0.18cc ionization chambers placed in selected organs. Fat-equivalent paddings were placed around the abdominal region to simulate for obese patients. Effective dose (ED) was calculated using ICRP 103 tissue weighting factors and normalized to the effective dose rate in miliSivert per second (mSv/s). In addition, a commercial Monte Carlo (MC) dose estimation program was used to estimate ED for the non-obese model, with table attenuation correction applied to simulate clinical procedure. Results: For the equipment and protocols involved in this study, the MOSFETderived ED rates for the obese patient model (‘Left’: 0.0092±0.0004 mSv/s; ‘Right’: 0.0086±0.0004 mSv/s) was found to be more than twice as much as that to the non-obese patient model (‘Left’: 0.0041±0.0003 mSv/s; ‘Right’: 0.0036±0.0007 mSv/s). The MC-derived ED rates for the non-obese patient model (‘Left’: 0.0041 mSv/s; ‘Right’: 0.0036 mSv/s; with statistical uncertainty of 1%) showed a good agreement with the MOSFET method. Conclusion: The significant difference in ED rate between the obese and non-obese patient models shows the limitation of directly applying commercial softwares for obese patients and leading to considerable underestimation of ED. Although commercial softwares offer a convenient means of dose estimation, but the utility may be limited to standard-man geometry as the software does not account for

  9. Early Eocene rodents (Mammalia) from the Subathu Formation of ...

    Indian Academy of Sciences (India)

    1997a, b). Most of the rodents from this stratigraphic level have been referred to a rather diverse family Cha- pattimyidae ... Herein we describe a new early Eocene rodent assemblage .... thick zone of brownish red shales that occur as a ..... 1997b;. Plate 3, figure 31). ...... northwestern Pakistan and remarks on the collision.

  10. The effect of food portion sizes on the obesity prevention using system dynamics modelling

    Science.gov (United States)

    Abidin, Norhaslinda Zainal; Zulkepli, Jafri Hj; Zaibidi, Nerda Zura

    2014-09-01

    The rise in income and population growth have increased the demand for food and induced changes in food habits, food purchasing and consumption patterns in Malaysia. With this transition, one of the plausible causes of weight gain and obesity is the frequent consumption of outside food which is synonymous with bigger portion size. Therefore, the aim of this paper is to develop a system dynamics model to analyse the effect of reducing food portion size on weight and obesity prevention. This study combines the different strands of knowledge comprise of nutrition, physical activity and body metabolism. These elements are synthesized into a system dynamics model called SIMULObese. Findings from this study suggested that changes in eating behavior should not emphasize only on limiting the food portion size consumption. The efforts should also consider other eating events such as controlling the meal frequency and limiting intake of high-calorie food in developing guidelines to prevent obesity.

  11. Research Note. Occurrence of gastrointestinal helminths in commensal rodents from Tabasco, Mexico

    Directory of Open Access Journals (Sweden)

    Cigarroa-Toledo N.

    2017-06-01

    Full Text Available The aim of this study was to determine the prevalence and species composition of helminths in commensal rodents captured inside private residences in the city of Villahermosa in Tabasco, Mexico. Trapping was performed at each house for three consecutive nights from October to December 2015. Fifty commensal rodents were captured: 23 Rattus norvegicus, 16 Mus musculus and 11 Rattus rattus. Rodents were transported alive to the laboratory and held in cages until they defecated. Feces were analyzed for helminth eggs using the Sheather’s flotation technique. The overall prevalence of helminths in rodents was 60 %: R. norvegicus was more likely to be parasitized (87.0 % than R. rattus (63.6 % and M. musculus (18.8 %. Eggs from at least 13 species of helminths were identified: Hymenolepis diminuta, Rodentolepis nana, Moniliformis moniliformis, Heligmosomoides polygyrus, Heterakis spumosa, Mastophorus muris, Nippostrongylus brasiliensis, Strongyloides ratti, Syphacia obvelata, Syphacia muris, Toxocara sp., Trichosomoides crassicauda, and Trichuris muris. This is the first study to report the presence of H. polygyrus, S. ratti and T. crassicauda in commensal rodents in Mexico. In conclusion, our results suggest that helminths commonly infect commensal rodents in Villahermosa and therefore rodents present a health risk to inhabitants in this region.

  12. A Functional Analysis of Circadian Pacemakers in Nocturnal Rodents. IV. Entrainment : Pacemaker as Clock

    NARCIS (Netherlands)

    Pittendrigh, Colin S.; Daan, Serge

    1976-01-01

    1. In the first part of the paper, the model of non-parametric entrainment of circadian pacemakers is tested for the case of nocturnal rodents. The model makes use of the available data on freerunning period (τ) in constant darkness and on phase response curves (PRC) for short light pulses. It is

  13. Wild rodents as a model to discover genes and pathways underlying natural variation in infectious disease susceptibility.

    Science.gov (United States)

    Turner, A K; Paterson, S

    2013-11-01

    Individuals vary in their susceptibility to infectious disease, and it is now well established that host genetic factors form a major component of this variation. The discovery of genes underlying susceptibility has the potential to lead to improved disease control, through the identification and management of vulnerable individuals and the discovery of novel therapeutic targets. Laboratory rodents have proved invaluable for ascertaining the function of genes involved in immunity to infection. However, these captive animals experience conditions very different to the natural environment, lacking the genetic diversity and environmental pressures characteristic of natural populations, including those of humans. It has therefore often proved difficult to translate basic laboratory research to the real world. In order to further our understanding of the genetic basis of infectious disease resistance, and the evolutionary forces that drive variation in susceptibility, we propose that genetic research traditionally conducted on laboratory animals is expanded to the more ecologically valid arena of natural populations. In this article, we highlight the potential of using wild rodents as a new resource for biomedical research, to link the functional genetic knowledge gained from laboratory rodents with the variation in infectious disease susceptibility observed in humans and other natural populations. © 2013 John Wiley & Sons Ltd.

  14. Vitamin D depletion does not affect key aspects of the preeclamptic phenotype in a transgenic rodent model for preeclampsia

    DEFF Research Database (Denmark)

    Andersen, Louise Bjørkholt; Golic, Michaela; Przybyl, Lukasz

    2016-01-01

    Maternal vitamin D deficiency is proposed as a risk factor for preeclampsia in humans. We tested the hypothesis that vitamin D depletion aggravates and high supplementation ameliorates the preeclampsia phenotype in an established transgenic rat model of human renin-angiotensin system......-mediated preeclampsia. Adult rat dams, transgenic for human angiotensinogen (hAGT) and mated with male rats transgenic for human renin (hREN), were fed either vitamin D-depleted chow (VDd) or enriched chow (VDh) 2 weeks before mating and during pregnancy. Mean blood pressure was recorded by tail-cuff, and 24-hour urine...... of the preeclampsia phenotype using the transgenic rodent model of human renin-angiotensin system-mediated pre-eclampsia, plausibly due to altered vitamin D metabolism or excretion in the transgenic rats....

  15. Bile salt-stimulated lipase plays an unexpected role in arthritis development in rodents.

    Directory of Open Access Journals (Sweden)

    Susanne Lindquist

    Full Text Available OBJECTIVE: The present study aimed to explore the hypothesis that bile salt-stimulated lipase (BSSL, in addition to being a key enzyme in dietary fat digestion during early infancy, plays an important role in inflammation, notably arthritis. METHODS: Collagen-induced arthritis (CIA and pristane-induced arthritis (PIA in rodents are commonly used experimental models that reproduce many of the pathogenic mechanisms of human rheumatoid arthritis, i.e. increased cellular infiltration, synovial hyperplasia, pannus formation, and erosion of cartilage and bone in the distal joints. We used the CIA model to compare the response in BSSL wild type (BSSL-WT mice with BSSL-deficient 'knock-out' (BSSL-KO and BSSL-heterozygous (BSSL-HET littermates. We also investigated if intraperitoneal injection of BSSL-neutralizing antibodies affected the development or severity of CIA and PIA in mice and rats, respectively. RESULTS: In two consecutive studies, we found that BSSL-KO male mice, in contrast to BSSL-WT littermates, were significantly protected from developing arthritis. We also found that BSSL-HET mice were less prone to develop disease compared to BSSL-WT mice, but not as resistant as BSSL-KO mice, suggesting a gene-dose effect. Moreover, we found that BSSL-neutralizing antibody injection reduced both the incidence and severity of CIA and PIA in rodents. CONCLUSION: Our data strongly support BSSL as a key player in the inflammatory process, at least in rodents. It also suggests the possibility that BSSL-neutralizing agents could serve as a therapeutic model to reduce the inflammatory response in humans.

  16. Hypericum perforatum as a cognitive enhancer in rodents: A meta-analysis

    Science.gov (United States)

    Ben-Eliezer, Daniel; Yechiam, Eldad

    2016-01-01

    Considered an antidepressant and anti-anxiety agent, Hypericum perforatum affects multiple neurotransmitters in a non-competitive synergistic manner, and may have nootropic potential. We quantitatively reviewed the pre-clinical literature to examine if there is a cognitive-enhancing effect of H. perforatum in healthy rodents. Additionally, within these studies, we compared the effects observed in intact rodents versus those whose performance has been impaired, mostly through stress manipulations. The meta-analysis incorporated studies that examined the effect of H. perforatum versus placebo on memory indices of task performance. All analyses were based on weighting different studies according to their inverse variance. Thirteen independent studies (published 2000–2014) involving 20 experimental comparisons met our inclusion criteria. The results showed a large positive effect of H. perforatum on cognitive performance for intact, healthy rodents (d = 1.11), though a larger effect emerged for stress-impaired rodents (d = 3.10 for restraint stress). The positive effect on intact rodents was observed in tasks assessing reference memory as well as working memory, and was not moderated by the type of memory or motivation (appetitive versus aversive). Thus, while primarily considered as a medication for depression, H. perforatum shows considerable nootropic potential in rodents. PMID:27762349

  17. Neurogenic inflammation in human and rodent skin

    DEFF Research Database (Denmark)

    Schmelz, M; Petersen, Lars Jelstrup

    2001-01-01

    The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...... about neurogenic inflammation in human skin, including the involvement of mast cells.......The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...

  18. Public Health Implications of Changing Rodent Importation Patterns - United States, 1999-2013.

    Science.gov (United States)

    Lankau, E W; Sinclair, J R; Schroeder, B A; Galland, G G; Marano, N

    2017-04-01

    The United States imports a large volume of live wild and domestic animal species; these animals pose a demonstrated risk for introduction of zoonotic diseases. Rodents are imported for multiple purposes, including scientific research, zoo exhibits and the pet trade. Current U.S. public health regulatory restrictions specific to rodent importation pertain only to those of African origin. To understand the impacts of these regulations and the potential public health risks of international rodent trade to the United States, we evaluated live rodent import records during 1999-2013 by shipment volume and geographic origin, source (e.g. wild-caught versus captive- or commercially bred), intended purpose and rodent taxonomy. Live rodent imports increased from 2737 animals during 1999 to 173 761 animals during 2013. Increases in both the number and size of shipments contributed to this trend. The proportion of wild-captured imports declined from 75% during 1999 to guinea pigs and hamsters arriving from other countries in North America were predominant taxa underlying this trend. After 2003, African-origin imports became sporadic events under the federal permit process. These patterns suggest development of large-scale captive rodent breeding markets abroad for commercial sale in the United States. While the shift from wild-captured imports alleviates many conservation concerns and risks for novel disease emergence, such consolidated sourcing might elevate exposure risks for zoonotic diseases associated with high-density rodent breeding (e.g. lymphocytic choriomeningitis or salmonellosis). A responsive border health system must periodically re-evaluate importation regulations in conjunction with key stakeholders to ensure a balance between the economic benefits of rodent trade against the potential public health risks. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  19. Effects of Climate and Rodent Factors on Hemorrhagic Fever with Renal Syndrome in Chongqing, China, 1997-2008.

    Directory of Open Access Journals (Sweden)

    Yuntao Bai

    Full Text Available China has the highest global incidence of hemorrhagic fever with renal syndrome (HFRS, constituting 90% of the cases in the world. Chongqing, located in the Three Gorges Reservoir Region, has been experiencing differences in the occurrence of HFRS from 1997 to 2008. The current study was designed to explore the effects of climate and rodent factors on the transmission of HFRS in Chongqing. Data on monthly HFRS cases, rodent strains, and climatic factors were collected from 1997 to 2008. Spatio-temporal analysis indicated that most HFRS cases were clustered in central Chongqing and that the incidence of HFRS decreased from 1997 to 2008. Poisson regression models showed that temperature (with lagged months of 0 and 5 and rainfall (with 2 lagged months were key climatic factors contributing to the transmission of HFRS. A zero-inflated negative binomial model revealed that rodent density was also significantly associated with the occurrence of HFRS in the Changshou district. The monthly trend in HFRS incidence was positively associated with rodent density and rainfall and negatively associated with temperature. Possible mechanisms are proposed through which construction of the dam influenced the incidence of HFRS in Chongqing. The findings of this study may contribute to the development of early warning systems for the control and prevention of HFRS in the Three Gorges Reservoir Region.

  20. Multiparameter rodent chronic model for complex evaluation of alcoholism-mediated metabolic violations.

    Science.gov (United States)

    Shayakhmetova, Ganna M; Bondarenko, Larysa B; Kovalenko, Valentina M; Kharchenko, Olga I; Bohun, Larisa I; Omelchenko, Yuliya O

    2015-01-01

    Despite of the wide spectrum of alcoholism experimental models, the majority of them are very specialized on the short list of investigated parameters and could not provide reproduction of complex metabolic changes in the rats. The aim of the present study was to estimate whether rats selected by high alcohol preference, allowed free access to 15% alcohol for 150 days, develop simultaneous multilevel disturbances of cell macromolecules structure, metabolism and oxidative/nitrosative stress. Wistar albino male rats were divided into groups: I - rats selected by preferences to alcohol were used for chronic alcoholism modeling by replacing water with 15% ethanol (150 days), II - control. Contents of amino acids in serum, liver mRNA CYP2E1 and CYP3A2 expression, DNA fragmentation and lipid peroxidation levels, the reduced glutathione content, superoxide dismutase, catalase, iNOS and cNOS activities were evaluated. In serum of ethanol-treated rats contents of aspartic acid, serine, glycine, alanine and valine were decreased whereas contents of histidine, methionine and phenylalanine were increased. Liver CYP2E1, CYP3A2 mRNA expression, DNA fragmentation levels significantly elevated. Level of cNOS in ethanol-treated rat's hepatocytes was within the normal limits, whereas iNOS activity was raised 1.6 times. Liver pro- and anti-oxidant system alterations were shown. Rats' chronic 15% alcohol consumption (150 days) led solely to complex metabolomic changes at different levels, which simultaneously characterized cell macromolecules structure, metabolism, and oxidative/nitrosative stress. Rodent model of chronic alcoholism in the proposed modification could be an adequate and reasonably priced tool for further preclinical development and testing of pharmacotherapeutic agents.

  1. Metformin blocks progression of obesity-activated thyroid cancer in a mouse model.

    Science.gov (United States)

    Park, Jeongwon; Kim, Won Gu; Zhao, Li; Enomoto, Keisuke; Willingham, Mark; Cheng, Sheue-Yann

    2016-06-07

    Compelling epidemiologic evidence indicates that obesity is associated with a high risk of human malignancies, including thyroid cancer. We previously demonstrated that a high fat diet (HFD) effectively induces the obese phenotype in a mouse model of aggressive follicular thyroid cancer (ThrbPV/PVPten+/-mice). We showed that HFD promotes cancer progression through aberrant activation of the leptin-JAK2-STAT3 signaling pathway. HFD-promoted thyroid cancer progression allowed us to test other molecular targets for therapeutic opportunity for obesity-induced thyroid cancer. Metformin is a widely used drug to treat patients with type II diabetes. It has been shown to reduce incidences of neoplastic diseases and cancer mortality in type II diabetes patients. The present study aimed to test whether metformin could be a therapeutic for obesity-activated thyroid cancer. ThrbPV/PVPten+/-mice were fed HFD together with metformin or vehicle-only, as controls, for 20 weeks. While HFD-ThrbPV/PVPten+/-mice had shorter survival than LFD-treated mice, metformin had no effects on the survival of HFD-ThrbPV/PVPten+/-mice. Remarkably, metformin markedly decreased occurrence of capsular invasion and completely blocked vascular invasion and anaplasia in HFD-ThrbPV/PVPten+/-mice without affecting thyroid tumor growth. The impeded cancer progression was due to the inhibitory effect of metformin on STAT3-ERK-vimentin and fibronectin-integrin signaling to decrease tumor cell invasion and de-differentiation. The present studies provide additional molecular evidence to support the link between obesity and thyroid cancer risk. Importantly, our findings suggest that metformin could be used as an adjuvant in combination with antiproliferative modalities to improve the outcome of patients with obesity-activated thyroid cancer.

  2. A putative model of overeating and obesity based on brain-derived neurotrophic factor: direct and indirect effects.

    Science.gov (United States)

    Ooi, Cara L; Kennedy, James L; Levitan, Robert D

    2012-08-01

    Increased food intake is a major contributor to the obesity epidemic in all age groups. Elucidating brain systems that drive overeating and that might serve as targets for novel prevention and treatment interventions is thus a high priority for obesity research. The authors consider 2 major pathways by which decreased activity of brain-derived neurotrophic factor (BDNF) may confer vulnerability to overeating and weight gain in an obesogenic environment. The first "direct" pathway focuses on the specific role of BDNF as a mediator of food intake control at brain areas rich in BDNF receptors, including the hypothalamus and hindbrain. It is proposed that low BDNF activity limited to this direct pathway may best explain overeating and obesity outside the context of major neuropsychiatric disturbance. A second "indirect" pathway considers the broad neurotrophic effects of BDNF on key monoamine systems that mediate mood dysregulation, impulsivity, and executive dysfunction as well as feeding behavior per se. Disruption in this pathway may best explain overeating and obesity in the context of various neuropsychiatric disturbances including mood disorders, attention-deficit disorder, and/or binge eating disorders. An integrative model that considers these potential roles of BDNF in promoting obesity is presented. The implications of this model for the early prevention and treatment of obesity are also considered.

  3. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity

    Directory of Open Access Journals (Sweden)

    Nathalie eCastanon

    2015-07-01

    Full Text Available Obesity is associated with a high prevalence of mood disorders and cognitive dysfunctions in addition to being a significant risk factor for important health complications such as cardiovascular diseases and type 2 diabetes. Identifying the pathophysiological mechanisms underlying these health issues is a major public health challenge. Based on recent findings, from studies conducted on animal models of obesity, it has been proposed that inflammatory processes may participate in both the peripheral and brain disorders associated with the obesity condition including the development of emotional and cognitive alterations. This is supported by the fact that obesity is characterized by peripheral low-grade inflammation, originating from increased adipose tissue mass and/or dysbiosis (changes in gut microbiota environment, both of which contribute to increased susceptibility to immune-mediated diseases. In this review, we provide converging evidence showing that obesity is associated with exacerbated neuroinflammation leading to dysfunction in vulnerable brain regions associated with mood regulation, learning and memory such as the hippocampus. These findings give new insights to the pathophysiological mechanisms contributing to the development of brain disorders in the context of obesity and provide valuable data for introducing new therapeutic strategies for the treatment of neuropsychiatric complications often reported in obese patients.

  4. Large scale serial two-photon microscopy to investigate local vascular changes in whole rodent brain models of Alzheimer's disease

    Science.gov (United States)

    Delafontaine-Martel, P.; Lefebvre, J.; Damseh, R.; Castonguay, A.; Tardif, P.; Lesage, F.

    2018-02-01

    In this study, an automated serial two-photon microscope was used to image a fluorescent gelatin filled rodent's brain in 3D. A method to compute vascular density using automatic segmentation was combined with coregistration techniques to build group-level vasculature metrics. By studying the medial prefrontal cortex and the hippocampal formation of 3 age groups (2, 4.5 and 8 months old), we compared vascular density for both WT and an Alzheimer model transgenic brain (APP/PS1). We observe a loss of vascular density caused by the ageing process and we propose further analysis to confirm our results.

  5. Similarities between obesity in pets and children: the addiction model.

    Science.gov (United States)

    Pretlow, Robert A; Corbee, Ronald J

    2016-09-01

    Obesity in pets is a frustrating, major health problem. Obesity in human children is similar. Prevailing theories accounting for the rising obesity rates - for example, poor nutrition and sedentary activity - are being challenged. Obesity interventions in both pets and children have produced modest short-term but poor long-term results. New strategies are needed. A novel theory posits that obesity in pets and children is due to 'treats' and excessive meal amounts given by the 'pet-parent' and child-parent to obtain affection from the pet/child, which enables 'eating addiction' in the pet/child and results in parental 'co-dependence'. Pet-parents and child-parents may even become hostage to the treats/food to avoid the ire of the pet/child. Eating addiction in the pet/child also may be brought about by emotional factors such as stress, independent of parental co-dependence. An applicable treatment for child obesity has been trialled using classic addiction withdrawal/abstinence techniques, as well as behavioural addiction methods, with significant results. Both the child and the parent progress through withdrawal from specific 'problem foods', next from snacking (non-specific foods) and finally from excessive portions at meals (gradual reductions). This approach should adapt well for pets and pet-parents. Pet obesity is more 'pure' than child obesity, in that contributing factors and treatment points are essentially under the control of the pet-parent. Pet obesity might thus serve as an ideal test bed for the treatment and prevention of child obesity, with focus primarily on parental behaviours. Sharing information between the fields of pet and child obesity would be mutually beneficial.

  6. Public Health and Rodents: A Game of Cat and Mouse

    NARCIS (Netherlands)

    Meerburg, B.G.

    2015-01-01

    Rodents are the most abundant order of living mammals, distributed on every continent except Antarctic and represent 43 % of all mammalian species. Beside causing food losses and infrastructural damage, rodents can harbour pathogens that may cause serious problems to human and animal health.

  7. Efficacy of a laparoscopic gastric restrictive device in an obese canine model.

    Science.gov (United States)

    Guo, Xiaomei; Mattar, Samer G; Mimms, Scott E; Navia, Jose A; Kassab, Ghassan S

    2014-01-01

    Bariatric surgery using laparoscopic techniques is the most effective treatment for morbid obesity. The objective of the study is to assess the safety and efficacy of a novel laparoscopic reversible gastric restrictive (RGR) device in a group of obese dogs. An implant was also performed in a cadaver to assess implant feasibility in a human. Four obese mongrel dogs were subjected to RGR implantation for 3 months followed by recovery for an additional 6 weeks after device removal. Food intake, body weight, radiographic barium imaging, and gastric endoscopy were used to monitor RGR performance before implant, after implant, and implant removal. An additional RGR laparoscopic implantation procedure was performed in a human cadaver. The implanted obese dogs exhibited a significant decrease in food intake and body weight over 3 months with the RGR device. The reduction of food intake was sustained at an average of 46 % after implant and the excess weight loss reached an average of 75 % at the end of 12 weeks with recovery to approximately 78 % of baseline after 6 weeks of implant removal. Barium imaging and gastric endoscopy both confirmed passage for food through the restrictive device channel in the stomach. The RGR device was successfully implanted laparoscopically on the cadaver stomach in less than an hour. The RGR device is laparoscopically deliverable and removable with effective and sustainable weight loss over a 12-week period in an obese dog model. The implant is also technically feasible in man.

  8. First Isolates of Leptospira spp., from Rodents Captured in Angola

    Science.gov (United States)

    Fortes-Gabriel, Elsa; Carreira, Teresa; Vieira, Maria Luísa

    2016-01-01

    Rodents play an important role in the transmission of pathogenic Leptospira spp. However, in Angola, neither the natural reservoirs of these spirochetes nor leptospirosis diagnosis has been considered. Regarding this gap, we captured rodents in Luanda and Huambo provinces to identify circulating Leptospira spp. Rodent kidney tissue was cultured and DNA amplified and sequenced. Culture isolates were evaluated for pathogenic status and typing with rabbit antisera; polymerase chain reaction (PCR) and sequencing were also performed. A total of 37 rodents were captured: Rattus rattus (15, 40.5%), Rattus norvegicus (9, 24.3%), and Mus musculus (13, 35.2%). Leptospiral DNA was amplified in eight (21.6%) kidney samples. From the cultures, we obtained four (10.8%) Leptospira isolates belonging to the Icterohaemorrhagiae and Ballum serogroups of Leptospira interrogans and Leptospira borgpetersenii genospecies, respectively. This study provides information about circulating leptospires spread by rats and mice in Angola. PMID:26928840

  9. Molecular Survey of Zoonotic Agents in Rodents and Other Small Mammals in Croatia.

    Science.gov (United States)

    Tadin, Ante; Tokarz, Rafal; Markotić, Alemka; Margaletić, Josip; Turk, Nenad; Habuš, Josipa; Svoboda, Petra; Vucelja, Marko; Desai, Aaloki; Jain, Komal; Lipkin, W Ian

    2016-02-01

    Croatia is a focus for many rodent-borne zoonosis. Here, we report a survey of 242 rodents and small mammals, including 43 Myodes glareolus, 131 Apodemus flavicollis, 53 Apodemus agrarius, three Apodemus sylvaticus, six Sorex araneus, four Microtus arvalis, one Microtus agrestis, and one Muscardinus avellanarius, collected at eight sites in Croatia over an 8-year period. Multiplex MassTag polymerase chain reaction (PCR) was used for detection of Borrelia, Rickettsia, Bartonella, Babesia, Ehrlichia, Anaplasma, Francisella tularensis, and Coxiella burnetii. Individual PCR assays were used for detection of Leptospira, lymphocytic choriomeningitis virus, orthopoxviruses, flaviviruses, hantaviruses, and Toxoplasma gondii. Of the rodents, 52 (21.5%) were infected with Leptospira, 9 (3.7%) with Borrelia miyamotoi, 5 (2%) with Borrelia afzelii, 29 (12.0%) with Bartonella, 8 (3.3%) with Babesia microti, 2 (0.8%) with Ehrlichia, 4 (1.7%) with Anaplasma, 2 (0.8%) with F. tularensis, 43 (17.8%) with hantaviruses, and 1 (0.4%) with an orthopoxvirus. Other agents were not detected. Multiple infections were found in 32 rodents (13.2%): dual infections in 26 rodents (10.7%), triple infections in four rodents (2.9%), and quadruple infections in two rodents (0.8%). Our findings indicate that rodents in Croatia harbor a wide range of bacteria and viruses that are pathogenic to humans. © The American Society of Tropical Medicine and Hygiene.

  10. Stress, overeating, and obesity: Insights from human studies and preclinical models.

    Science.gov (United States)

    Razzoli, Maria; Pearson, Carolyn; Crow, Scott; Bartolomucci, Alessandro

    2017-05-01

    Eating disorders and obesity have become predominant in human society. Their association to modern lifestyle, encompassing calorie-rich diets, psychological stress, and comorbidity with major diseases are well documented. Unfortunately the biological basis remains elusive and the pharmacological treatment inadequate, in part due to the limited availability of valid animal models. Human research on binge eating disorder (BED) proves a strong link between stress exposure and bingeing: state-levels of stress and negative affect are linked to binge eating in individuals with BED both in laboratory settings and the natural environment. Similarly, classical animal models of BED reveal an association between acute exposure to stressors and binging but they are often associated with unchanged or decreased body weight, thus reflecting a negative energy balance, which is uncommon in humans where most commonly BED is associated with excessive or unstable body weight gain. Recent mouse models of subordination stress induce spontaneous binging and hyperphagia, altogether more closely mimicking the behavioral and metabolic features of human BED. Therefore the translational relevance of subordination stress models could facilitate the identification of the neurobiological basis of BED and obesity-associated disease and inform on the development of innovative therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Hou Jue

    2010-07-01

    Full Text Available Abstract Background Leucine may function as a signaling molecule to regulate metabolism. We have previously shown that dietary leucine supplementation significantly improves glucose and energy metabolism in diet-induced obese mice, suggesting that leucine supplementation could potentially be a useful adjuvant therapy for obesity and type 2 diabetes. Since the underlying cause for obesity and type 2 diabetes is multifold, we further investigated metabolic effects of leucine supplementation in obese/diabetes mouse models with different etiologies, and explored the underlying molecular mechanisms. Methods Leucine supplementation was carried out in NONcNZO10/LtJ (RCS10 - a polygenic model predisposed to beta cell failure and type 2 diabetes, and in B6.Cg-Ay/J (Ay - a monogenic model for impaired central melanocortin receptor signaling, obesity, and severe insulin resistance. Mice in the treatment group received the drinking water containing 1.5% leucine for up to 8 months; control mice received the tap water. Body weight, body composition, blood HbA1c levels, and plasma glucose and insulin levels were monitored throughout and/or at the end of the study period. Indirect calorimetry, skeletal muscle gene expression, and adipose tissue inflammation were also assessed in Ay mice. Results Leucine supplementation significantly reduced HbA1c levels throughout the study period in both RCS10 and Ay mice. However, the treatment had no long term effect on body weight or adiposity. The improvement in glycemic control was associated with an increased insulin response to food challenge in RCS10 mice and decreased plasma insulin levels in Ay mice. In leucine-treated Ay mice, energy expenditure was increased by ~10% (p y mice whereas the expression levels of MCP-1 and TNF-alpha and macrophage infiltration in adipose tissue were significantly reduced. Conclusions Chronic leucine supplementation significantly improves glycemic control in multiple mouse models of

  12. Physical exercise reduces pyruvate carboxylase (PCB) and contributes to hyperglycemia reduction in obese mice.

    Science.gov (United States)

    Muñoz, Vitor Rosetto; Gaspar, Rafael Calais; Crisol, Barbara Moreira; Formigari, Guilherme Pedron; Sant'Ana, Marcella Ramos; Botezelli, José Diego; Gaspar, Rodrigo Stellzer; da Silva, Adelino S R; Cintra, Dennys Esper; de Moura, Leandro Pereira; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2018-07-01

    The present study evaluated the effects of exercise training on pyruvate carboxylase protein (PCB) levels in hepatic tissue and glucose homeostasis control in obese mice. Swiss mice were distributed into three groups: control mice (CTL), fed a standard rodent chow; diet-induced obesity (DIO), fed an obesity-inducing diet; and a third group, which also received an obesity-inducing diet, but was subjected to an exercise training protocol (DIO + EXE). Protocol training was carried out for 1 h/d, 5 d/wk, for 8 weeks, performed at an intensity of 60% of exhaustion velocity. An insulin tolerance test (ITT) was performed in the last experimental week. Twenty-four hours after the last physical exercise session, the animals were euthanized and the liver was harvested for molecular analysis. Firstly, DIO mice showed increased epididymal fat and serum glucose and these results were accompanied by increased PCB and decreased p-Akt in hepatic tissue. On the other hand, physical exercise was able to increase the performance of the mice and attenuate PCB levels and hyperglycemia in DIO + EXE mice. The above findings show that physical exercise seems to be able to regulate hyperglycemia in obese mice, suggesting the participation of PCB, which was enhanced in the obese condition and attenuated after a treadmill running protocol. This is the first study to be aimed at the role of exercise training in hepatic PCB levels, which may be a novel mechanism that can collaborate to reduce the development of hyperglycemia and type 2 diabetes in DIO mice.

  13. Intraoperative laser speckle contrast imaging improves the stability of rodent middle cerebral artery occlusion model

    Science.gov (United States)

    Yuan, Lu; Li, Yao; Li, Hangdao; Lu, Hongyang; Tong, Shanbao

    2015-09-01

    Rodent middle cerebral artery occlusion (MCAO) model is commonly used in stroke research. Creating a stable infarct volume has always been challenging for technicians due to the variances of animal anatomy and surgical operations. The depth of filament suture advancement strongly influences the infarct volume as well. We investigated the cerebral blood flow (CBF) changes in the affected cortex using laser speckle contrast imaging when advancing suture during MCAO surgery. The relative CBF drop area (CBF50, i.e., the percentage area with CBF less than 50% of the baseline) showed an increase from 20.9% to 69.1% when the insertion depth increased from 1.6 to 1.8 cm. Using the real-time CBF50 marker to guide suture insertion during the surgery, our animal experiments showed that intraoperative CBF-guided surgery could significantly improve the stability of MCAO with a more consistent infarct volume and less mortality.

  14. Applying data envelopment analysis to preventive medicine: a novel method for constructing a personalized risk model of obesity.

    Directory of Open Access Journals (Sweden)

    Hiroto Narimatsu

    Full Text Available Data envelopment analysis (DEA is a method of operations research that has not yet been applied in the field of obesity research. However, DEA might be used to evaluate individuals' susceptibility to obesity, which could help establish effective risk models for the onset of obesity. Therefore, we conducted this study to evaluate the feasibility of applying DEA to predict obesity, by calculating efficiency scores and evaluating the usefulness of risk models. In this study, we evaluated data from the Takahata study, which was a population-based cohort study (with a follow-up study of Japanese people who are >40 years old. For our analysis, we used the input-oriented Charnes-Cooper-Rhodes model of DEA, and defined the decision-making units (DMUs as individual subjects. The inputs were defined as (1 exercise (measured as calories expended and (2 the inverse of food intake (measured as calories ingested. The output was defined as the inverse of body mass index (BMI. Using the β coefficients for the participants' single nucleotide polymorphisms, we then calculated their genetic predisposition score (GPS. Both efficiency scores and GPS were available for 1,620 participants from the baseline survey, and for 708 participants from the follow-up survey. To compare the strengths of the associations, we used models of multiple linear regressions. To evaluate the effects of genetic factors and efficiency score on body mass index (BMI, we used multiple linear regression analysis, with BMI as the dependent variable, GPS and efficiency scores as the explanatory variables, and several demographic controls, including age and sex. Our results indicated that all factors were statistically significant (p < 0.05, with an adjusted R2 value of 0.66. Therefore, it is possible to use DEA to predict environmentally driven obesity, and thus to establish a well-fitted model for risk of obesity.

  15. Developmental origins of metabolic disorders: The need for biomarker candidates and therapeutic targets from adequate preclinical models

    Directory of Open Access Journals (Sweden)

    Antonio Gonzalez-Bulnes

    2016-03-01

    Full Text Available The investigation on obesity and associated disorders have changed from an scenario in which genome drove the phenotype to a dynamic setup in which prenatal and early-postnatal conditions are determinant. However, research in human beings is difficult due to confounding factors (lifestyle and socioeconomic heterogeneity plus ethical issues. Hence, there is currently an intensive effort for developing adequate preclinical models, aiming for an adequate combination of basic studies in rodent models and specific preclinical studies in large animals. The results of these research strategies may increase the identification and development of contrasted biomarkers and therapeutic targets.

  16. Translational rodent models of Korsakoff syndrome reveal the critical neuroanatomical substrates of memory dysfunction and recovery.

    Science.gov (United States)

    Savage, Lisa M; Hall, Joseph M; Resende, Leticia S

    2012-06-01

    Investigation of the amnesic disorder Korsakoff Syndrome (KS) has been vital in elucidating the critical brain regions involved in learning and memory. Although the thalamus and mammillary bodies are the primary sites of neuropathology in KS, functional deactivation of the hippocampus and certain cortical regions also contributes to the chronic cognitive dysfunction reported in KS. The rodent pyrithiamine-induced thiamine deficiency (PTD) model has been used to study the extent of hippocampal and cortical neuroadaptations in KS. In the PTD model, the hippocampus, frontal and retrosplenial cortical regions display loss of cholinergic innervation, decreases in behaviorally stimulated acetylcholine release and reductions in neurotrophins. While PTD treatment results in significant impairment in measures of spatial learning and memory, other cognitive processes are left intact and may be recruited to improve cognitive outcome. In addition, behavioral recovery can be stimulated in the PTD model by increasing acetylcholine levels in the medial septum, hippocampus and frontal cortex, but not in the retrosplenial cortex. These data indicate that although the hippocampus and frontal cortex are involved in the pathogenesis of KS, these regions retain neuroplasticity and may be critical targets for improving cognitive outcome in KS.

  17. Wild Rodents as Experimental Intermediate Hosts of Lagochilascaris minor Leiper, 1909

    Directory of Open Access Journals (Sweden)

    Julieta Machado Paçô

    1999-07-01

    Full Text Available A total of 25 specimens of Cavia porcellus (guinea pig, 5 Dasyprocta agouti (agouti, and 22 Calomys callosus (vesper mice were inoculated with infective eggs of Lagochilascaris minor. The inoculum was prepared with embryonated eggs and orally administered to each individual animal through an esophagus probe. In parallel, 100 specimens of Felis catus domesticus were individually fed with 55-70 nodules containing 3rd-stage larvae encysted in tissues of infected rodents. Animals were examined and necropsied at different time intervals. The migration and encystment of L3 larva was observed in viscera, skeletal muscle, adipose and subcutaneous tissues from all rodents. Adult worms localized at abscesses in the cervical region, rhino, and oropharynx were recovered from domestic cats inoculated with infected rodent tissues. Through this study we can conclude that: (1 wild rodents act as intermediate hosts, characterizing this ascarid heteroxenic cycle; (2 in natural conditions rodents could possibly act as either intermediate hosts or paratenic hosts of Lagochilascaris minor; (3 despite the occurrence of an auto-infecting cycle, in prime-infection of felines (definite hosts the cycle is only completed when intermediate hosts are provided; and (4 in the wild, rodents could serve as a source of infection for humans as they are frequently used as food in regions with the highest incidence of human lagochilascariasis.

  18. The fast food and obesity link: consumption patterns and severity of obesity.

    Science.gov (United States)

    Garcia, Ginny; Sunil, Thankam S; Hinojosa, Pedro

    2012-05-01

    Rates of extreme forms of obesity are rapidly rising, as is the use of bariatric surgery for its treatment. The aim of the present study was to examine selected behavioral factors associated with severity of obesity among preoperative bariatric surgery patients in the San Antonio area, focusing specifically on the effects of fast food consumption. We used ordered logistic regression to model behavioral and attitudinal effects on obesity outcomes among 270 patients. These outcomes were based on the severity of obesity and were measured on the basis of body mass index. Our results indicated that, among the behavioral factors, fast food consumption exerted the largest influence on higher levels of obesity. These remained after controlling for several social and demographic characteristics. Our findings suggest that higher rates of fast food consumption are connected to the increasing rates of severe obesity. Given that morbid and super morbid obesity rates are growing at a more advanced pace than moderate obesity, it is necessary to explore the behavioral characteristics associated with these trends.

  19. Transgenic animal model for studying the mechanism of obesity-associated stress urinary incontinence.

    Science.gov (United States)

    Wang, Lin; Lin, Guiting; Lee, Yung-Chin; Reed-Maldonado, Amanda B; Sanford, Melissa T; Wang, Guifang; Li, Huixi; Banie, Lia; Xin, Zhengcheng; Lue, Tom F

    2017-02-01

    To study and compare the function and structure of the urethral sphincter in female Zucker lean (ZL) and Zucker fatty (ZF) rats and to assess the viability of ZF fats as a model for female obesity-associated stress urinary incontinence (SUI). Two study arms were created: a ZL arm including 16-week-old female ZL rats (ZUC-Lepr fa 186; n = 12) and a ZF arm including 16-week-old female ZF rats (ZUC-Lepr fa 185; n = 12). I.p. insulin tolerance testing was carried out before functional study. Metabolic cages, conscious cystometry and leak point pressure (LPP) assessments were conducted. Urethral tissues were harvested for immunofluorescence staining to check intramyocellular lipid (IMCL) and sphincter muscle (smooth muscle and striated muscle) composition. The ZF rats had insulin resistance, a greater voiding frequency and lower LPP compared with ZL rats (P Obesity impairs urethral sphincter function via IMCL deposition and leads to atrophy and distortion of urethral striated muscle. The ZF rats could be a consistent and reliable animal model in which to study obesity-associated SUI. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  20. Responses of nocturnal rodents to shrub encroachment in Banni grasslands, Gujarat, India

    Science.gov (United States)

    Jayadevan, A.

    2016-12-01

    Shrub encroachment is one of the greatest threats to grasslands globally. These woodlands can strongly influence the behaviour of small mammals adapted to more open habitats, which rely on high visibility for early detection of predators. In semi-arid grasslands, rodents are considered keystone species. Although shrub encroachment is known to negatively affect rodent assemblages, its impact on the foraging behaviour of rodents, which is known to vary in response to risky situations, is unknown. Understanding whether shrub encroachment alters such antipredator behaviour is important as antipredator behaviour can alter the distribution, abundance and ultimately, survival of prey species. In this study, I explored the effects of shrub encroachment on the foraging behaviour of nocturnal rodent communities in the Banni grasslands, India. I examined foraging behaviour, quantified using the giving-up density (GUD) framework and the number of rodent crossings around food patches, in two habitats that differed in the extent of shrub encroachment. Under the GUD framework, the amount of food left behind by a forager in a food patch reflects the costs of feeding at the patch. Higher GUDs imply higher foraging costs. I also investigated how removal of an invasive woody plant, Prosopis juliflora would affect foraging behaviour of nocturnal rodents. High shrub encroachment was associated with higher foraging costs (higher GUDs) and lower activity than the sparsely wooded habitat, likely due to low visibility in the densely wooded habitat. The dense habitat also supported a higher richness and relative abundance of generalist rodents than the sparse habitat, likely due to the increased heterogeneity of the habitat. The tree removal experiment revealed that rodents had lower GUDs (i.e., low foraging costs) after the event of tree cutting. This may be due to the reduction of cover in the habitat, leading to higher visibility and lower predation risk. My results suggest that shrub

  1. Effect of woodland patch size on rodent seed predation in a fragmented landscape

    Directory of Open Access Journals (Sweden)

    J. Loman

    2007-05-01

    Full Text Available Predation on large woody plant seeds; chestnuts, acorns and sloe kernels, was studied in deciduous forests of two size classes: small woodlots (<1 ha and large woods (at least 25 ha in southern Sweden. Seeds used for the study were artificially distributed on the forest ground and seed predation measured as seed removal. Predation rate was similar in both types of woods. However, rodent density was higher in small woodlots and a correction for differences in rodent density showed that predation rate per individual rodent was higher in the large woods. This suggests that the small woodlots (including the border zone and their adjacent fields have more rodent food per area unit. A small woodlot cannot be considered a representative sample of a large continuous forest, even if the habitats appear similar. There was a strong effect of rodent density on seed predation rate. This suggests that rodents are major seed predators in this habitat.

  2. Rodent Species Distribution and Hantavirus Seroprevalence in Residential and Forested areas of Sarawak, Malaysia.

    Science.gov (United States)

    Hamdan, Nur Elfieyra Syazana; Ng, Yee Ling; Lee, Wei Bin; Tan, Cheng Siang; Khan, Faisal Ali Anwarali; Chong, Yee Ling

    2017-01-01

    Rodents belong to the order Rodentia, which consists of three families in Borneo (i.e., Muridae, Sciuridae and Hystricidae). These include rats, mice, squirrels, and porcupines. They are widespread throughout the world and considered pests that harm humans and livestock. Some rodent species are natural reservoirs of hantaviruses (Family: Bunyaviridae) that can cause zoonotic diseases in humans. Although hantavirus seropositive human sera were reported in Peninsular Malaysia in the early 1980s, information on their infection in rodent species in Malaysia is still lacking. The rodent populations in residential and forested areas in Sarawak were sampled. A total of 108 individuals from 15 species of rodents were collected in residential ( n = 44) and forested ( n = 64) areas. The species diversity of rodents in forested areas was significantly higher (H = 2.2342) compared to rodents in residential areas (H = 0.64715) ( p Sarawak, East Malaysia. The results suggested that hantavirus was not circulating in the studied rodent populations in Sarawak, or it was otherwise at a low prevalence that is below the detection threshold. It is important to remain vigilant because of the zoonotic potential of this virus and its severe disease outcome. Further studies, such as molecular detection of viral genetic materials, are needed to fully assess the risk of hantavirus infection in rodents and humans in this region of Malaysia.

  3. Nutritional Evaluation of NASA's Rodent Food Bar Diet

    Science.gov (United States)

    Barrett, Joyce E.; Yu, Diane S.; Dalton, Bonnie P.

    2000-01-01

    Tests are being conducted on NASA's rodent Food Bar in preparation for long-term use as the rat and mouse diet aboard the International Space Station. Nutritional analyses are performed after the bars are manufactured and then repeated periodically to determine nutritional stability. The primary factors analyzed are protein, ash, fat, fiber, moisture, amino acids, fatty acids, and minerals. Nutrient levels are compared to values published in the National Research Council's dietary requirements for rodents, and also to those contained in several commonly used commercial rodent lab diets. The Food Bar is manufactured from a powdered diet to which moisture is added as it is processed through an extruder. The bars are dipped into potassium sorbate, vacuum-sealed, and irradiated. In order to determine nutrient changes during extrusion and irradiation, the powdered diet, the non-irradiated bars, and the irradiated bars are all analyzed. We have observed lower values for some nutrients (iodine, vitamin K, and iron) in the Food Bars compared with NRC requirements. Many nutrients in the Food Bars are contained at a higher level than levels in the NRC requirements. An additional factor we are investigating is the 26% moisture level in the Food Bars, which drops to about 15% within a week, compared to a stable 10% moisture in many standard lab chow diets. In addition to the nutritional analyses, the food bar is being fed to several strains of rats and mice, and feeding study and necropsy results are being observed (Barrett et al, unpublished data). Information from the nutritional analyses and from the rodent studies will enable us to recommend the formulation that will most adequately meet the rodent Food Bar requirements for long-term use aboard the Space Station.

  4. The hip adductor muscle group in caviomorph rodents: anatomy and homology.

    Science.gov (United States)

    García-Esponda, César M; Candela, Adriana M

    2015-06-01

    Anatomical comparative studies including myological data of caviomorph rodents are relatively scarce, leading to a lack of use of muscular features in cladistic and morphofunctional analyses. In rodents, the hip adductor muscles constitute an important group of the hindlimb musculature, having an important function during the beginning of the stance phase. These muscles are subdivided in several distinct ways in the different clades of rodents, making the identification of their homologies hard to establish. In this contribution we provide a detailed description of the anatomical variation of the hip adductor muscle group of different genera of caviomorph rodents and identify the homologies of these muscles in the context of Rodentia. On this basis, we identify the characteristic pattern of the hip adductor muscles in Caviomorpha. Our results indicate that caviomorphs present a singular pattern of the hip adductor musculature that distinguishes them from other groups of rodents. They are characterized by having a single m. adductor brevis that includes solely its genicular part. This muscle, together with the m. gracilis, composes a muscular sheet that is medial to all other muscles of the hip adductor group. Both muscles probably have a synergistic action during locomotion, where the m. adductor brevis reinforces the multiple functions of the m. gracilis in caviomorphs. Mapping of analyzed myological characters in the context of Rodentia indicates that several features are recovered as potential synapomorphies of caviomorphs. Thus, analysis of the myological data described here adds to the current knowledge of caviomorph rodents from anatomical and functional points of view, indicating that this group has features that clearly differentiate them from other rodents. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Helminth Infections of Rodents and Their Zoonotic Importance in Boyer-Ahmad District, Southwestern Iran.

    Science.gov (United States)

    Ranjbar, Mohammad Javad; Sarkari, Bahador; Mowlavi, Gholam Reza; Seifollahi, Zeinab; Moshfe, Abdolali; Abdolahi Khabisi, Samaneh; Mobedi, Iraj

    2017-01-01

    Rodents are considered as reservoirs of various zoonotic diseases including helminthic infections. The current study aimed to evaluate the prevalence of helminth infections in rodents, in Boyer-Ahmad district, Southwestern Iran. Overall, 52 rodents were captured from various areas of the district by Sherman live traps. The animals were then euthanized and dissected. During necropsy, each organ was examined macroscopically for presence of any cyst or visible parasite. The gastrointestinal tract was removed and their contents were evaluated for larva or adult worms. Trichinella larvae in the rodents' muscles were investigated by both digestion and pathological methods. Twenty-eight (53.8%) of the trapped rodents were male. The rodents were including 25 (48.1%) Meriones persicus , 1(1.9%) Calomyscus bailwardi , 1 (1.9%) Arvicola terresterris , 7 (13.5%) Rattus rattus , 8 (15.4%) R. norvegicus , and 10 (19.2%) Apodemus sylvaticus . Of them, 38 (73.0%) were infected with at least one helminth. Collected rodents were infected with Hymenolepis diminuta (50%), Hymenolepis nana fraterna (28.8%), Skrjabinotaenia sp. (15.4%), Anoplocephalidae sp. (15.4%), Cysticercus fasciolaris (5.8%), Trichuris muris (36.5%), Aspiculuris tetraptera (15.4%), Syphacia sp. (5.7%), Rictularia sp. (15.4%), Trichostrongylus sp. (3.8%), and Gongylonema sp. (3.8%). M. persicus was the most (84%) infected rodent, yet the differences between rodent genus and helminth infectivity were not statistically significant ( P >0.05). The rodents in Boyer-Ahmad district are infected with different helminths infections that some of them are recognized as threat to human health.

  6. Optimal solutions for the evolution of a social obesity epidemic model

    Science.gov (United States)

    Sikander, Waseem; Khan, Umar; Mohyud-Din, Syed Tauseef

    2017-06-01

    In this work, a novel modification in the traditional homotopy perturbation method (HPM) is proposed by embedding an auxiliary parameter in the boundary condition. The scheme is used to carry out a mathematical evaluation of the social obesity epidemic model. The incidence of excess weight and obesity in adulthood population and prediction of its behavior in the coming years is analyzed by using a modified algorithm. The proposed method increases the convergence of the approximate analytical solution over the domain of the problem. Furthermore, a convenient way is considered for choosing an optimal value of auxiliary parameters via minimizing the total residual error. The graphical comparison of the obtained results with the standard HPM explicitly reveals the accuracy and efficiency of the developed scheme.

  7. A cross-sectional model of eating disorders in Argentinean overweight and obese children.

    Science.gov (United States)

    Elizathe, Luciana Soledad; Arana, Fernán Guido; Rutsztein, Guillermina

    2018-02-01

    Despite the fact that past research identified childhood obesity as an antecedent of eating disorders, not all obese children further develop this pathology. With this regard, our first purpose was to isolate which characteristics differentiate overweight children who have an eating disorder from those who have not. Second, considering that there is little evidence collected in Latin American countries, we provided overweight children data from an Argentinean sample. Specifically, we investigated if weight-teasing, perfectionism, disturbed eating attitudes and behaviors, and body image dissatisfaction are related to the occurrence of an eating disorder in 100 school-aged overweight/obese children (37 girls and 63 boys; mean age 10.85, SD 0.88). Participants completed self-report instruments and were interviewed between 1 and 2 months later to confirm the presence of eating disorders. Seventeen percent participants confirmed to have an eating disorder. Further, the multivariate logistic analysis revealed that perfectionism (Exp β = 1.19) and disturbed eating attitudes and behaviors (Exp β = 4.78) were jointly associated with the presence of an eating disorder. These results were maintained even when the overall model was adjusted for covariates such as age, gender, body mass index, and school type. Weight-teasing and body image dissatisfaction did not contribute to the multivariate model. Prevalence rates of ED and model findings were discussed.

  8. A model for obesity and gigantism due to disruption of the Ankrd26 gene.

    Science.gov (United States)

    Bera, Tapan K; Liu, Xiu-Fen; Yamada, Masanori; Gavrilova, Oksana; Mezey, Eva; Tessarollo, Lino; Anver, Miriam; Hahn, Yoonsoo; Lee, Byungkook; Pastan, Ira

    2008-01-08

    Obesity is a major health hazard that is caused by a combination of genetic and behavioral factors. Several models of obesity have been described in mice that have defects in the production of peptide hormones, in the function of cell membrane receptors, or in a transcription factor required for neuronal cell development. We have been investigating the function of a family of genes (POTE and ANKRD26) that encode proteins that are associated with the inner aspect of the cell membrane and that contain both ankyrin repeats and spectrin helices, motifs known to interact with signaling proteins in the cell. To assess the function of ANKRD26, we prepared a mutant mouse with partial inactivation of the Ankrd26 gene. We find that the homozygous mutant mice develop extreme obesity, insulin resistance, and an increase in body size. The obesity is associated with hyperphagia with no reduction in energy expenditure and activity. The Ankrd26 protein is expressed in the arcuate and ventromedial nuclei within the hypothalamus and in the ependyma and the circumventricular organs that act as an interface between the peripheral circulation and the brain. In the enlarged hearts of the mutant mice, the levels of both phospho-Akt and mTOR were elevated. These results show that alterations in an unidentified gene can lead to obesity and identify a molecular target for the treatment of obesity.

  9. First Isolates of Leptospira spp., from Rodents Captured in Angola.

    Science.gov (United States)

    Fortes-Gabriel, Elsa; Carreira, Teresa; Vieira, Maria Luísa

    2016-05-04

    Rodents play an important role in the transmission of pathogenic Leptospira spp. However, in Angola, neither the natural reservoirs of these spirochetes nor leptospirosis diagnosis has been considered. Regarding this gap, we captured rodents in Luanda and Huambo provinces to identify circulating Leptospira spp. Rodent kidney tissue was cultured and DNA amplified and sequenced. Culture isolates were evaluated for pathogenic status and typing with rabbit antisera; polymerase chain reaction (PCR) and sequencing were also performed. A total of 37 rodents were captured: Rattus rattus (15, 40.5%), Rattus norvegicus (9, 24.3%), and Mus musculus (13, 35.2%). Leptospiral DNA was amplified in eight (21.6%) kidney samples. From the cultures, we obtained four (10.8%) Leptospira isolates belonging to the Icterohaemorrhagiae and Ballum serogroups of Leptospira interrogans and Leptospira borgpetersenii genospecies, respectively. This study provides information about circulating leptospires spread by rats and mice in Angola. © The American Society of Tropical Medicine and Hygiene.

  10. Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain.

    Science.gov (United States)

    Damasceno, Marina B M V; de Melo Júnior, José de Maria A; Santos, Sacha Aubrey A R; Melo, Luana T M; Leite, Laura Hévila I; Vieira-Neto, Antonio E; Moreira, Renato de A; Monteiro-Moreira, Ana Cristina de O; Campos, Adriana R

    2016-08-25

    Orofacial pain is a highly prevalent clinical condition, yet difficult to control effectively with available drugs. Much attention is currently focused on the anti-inflammatory and antinociceptive properties of lectins. The purpose of this study was to evaluate the antinociceptive effect of frutalin (FTL) using rodent models of inflammatory and neuropathic orofacial pain. Acute pain was induced by formalin, glutamate or capsaicin (orofacial model) and hypertonic saline (corneal model). In one experiment, animals were pretreated with l-NAME and naloxone to investigate the mechanism of antinociception. The involvement of the lectin domain in the antinociceptive effect of FTL was verified by allowing the lectin to bind to its specific ligand. In another experiment, animals pretreated with FTL or saline were submitted to the temporomandibular joint formalin test. In yet another, animals were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of thermal hypersensitivity using acetone. Motor activity was evaluated with the rotarod test. A molecular docking was performed using the TRPV1 channel. Pretreatment with FTL significantly reduced nociceptive behaviour associated with acute and neuropathic pain, especially at 0.5 mg/kg. Antinociception was effectively inhibited by l-NAME and d-galactose. In line with in vivo experiments, docking studies indicated that FTL may interact with TRPV1. Our results confirm the potential pharmacological relevance of FTL as an inhibitor of orofacial nociception in acute and chronic pain mediated by TRPA1, TRPV1 and TRPM8 receptor. Copyright © 2016. Published by Elsevier Ireland Ltd.

  11. Rodent Research on the International Space Station - A Look Forward

    Science.gov (United States)

    Kapusta, A. B.; Smithwick, M.; Wigley, C. L.

    2014-01-01

    Rodent Research on the International Space Station (ISS) is one of the highest priority science activities being supported by NASA and is planned for up to two flights per year. The first Rodent Research flight, Rodent Research-1 (RR-1) validates the hardware and basic science operations (dissections and tissue preservation). Subsequent flights will add new capabilities to support rodent research on the ISS. RR-1 will validate the following capabilities: animal husbandry for up to 30 days, video downlink to support animal health checks and scientific analysis, on-orbit dissections, sample preservation in RNA. Later and formalin, sample transfer from formalin to ethanol (hindlimbs), rapid cool-down and subsequent freezing at -80 of tissues and carcasses, sample return and recovery. RR-2, scheduled for SpX-6 (Winter 20142015) will add the following capabilities: animal husbandry for up to 60 days, RFID chip reader for individual animal identification, water refill and food replenishment, anesthesia and recovery, bone densitometry, blood collection (via cardiac puncture), blood separation via centrifugation, soft tissue fixation in formalin with transfer to ethanol, and delivery of injectable drugs that require frozen storage prior to use. Additional capabilities are also planned for future flights and these include but are not limited to male mice, live animal return, and the development of experiment unique equipment to support science requirements for principal investigators that are selected for flight. In addition to the hardware capabilities to support rodent research the Crew Office has implemented a training program in generic rodent skills for all USOS crew members during their pre-assignment training rotation. This class includes training in general animal handling, euthanasia, injections, and dissections. The dissection portion of this training focuses on the dissection of the spleen, liver, kidney with adrenals, brain, eyes, and hindlimbs. By achieving and

  12. Swim stress exaggerates the hyperactive mesocortical dopamine system in a rodent model of autism.

    Science.gov (United States)

    Nakasato, Akane; Nakatani, Yasushi; Seki, Yoshinari; Tsujino, Naohisa; Umino, Masahiro; Arita, Hideho

    2008-02-08

    Several clinical reports have suggested that there is a hyperactivation of the dopaminergic system in people with autism. Using rats exposed prenatally to valproic acid (VPA) as an animal model of autism, we measured dopamine (DA) levels in samples collected from the frontal cortex (FC) using in vivo microdialysis and HPLC. The basal DA level in FC was significantly higher in VPA-exposed rats relative to controls. Since the mesocortical DA system is known to be sensitive to physical and psychological stressors, we measured DA levels in FC before, during, and after a 60-min forced swim test (FST). There were further gradual increases in FC DA levels during the FST in the VPA-exposed rats, but not in the control rats. Behavioral analysis during the last 10 min of the FST revealed a significant decrease in active, escape-oriented behavior and an increase in immobility, which is thought to reflect the development of depressive behavior that disengages the animal from active forms of coping with stressful stimuli. These results suggest that this rodent model of autism exhibits a hyperactive mesocortical DA system, which is exaggerated by swim stress. This abnormality may be responsible for depressive and withdrawal behavior observed in autism.

  13. Determinants of Perceived Stress in Individuals with Obesity: Exploring the Relationship of Potentially Obesity-Related Factors and Perceived Stress.

    Science.gov (United States)

    Junne, Florian; Ziser, Katrin; Giel, Katrin Elisabeth; Schag, Kathrin; Skoda, Eva; Mack, Isabelle; Niess, Andreas; Zipfel, Stephan; Teufel, Martin

    2017-01-01

    Associations of specific types of stress with increased food intake and subsequent weight gain have been demonstrated in animal models as well as in experimental and epidemiological studies on humans. This study explores the research question of to what extent potentially obesity-related factors determine perceived stress in individuals with obesity. N = 547 individuals with obesity participated in a cross-sectional study assessing perceived stress as the outcome variable and potential determinants of stress related to obesity. Based on the available evidence, a five factorial model of 'obesity-related obesogenic stressors' was hypothesized, including the dimensions, 'drive for thinness', 'impulse regulation', 'ineffectiveness', 'social insecurity', and 'body dissatisfaction'. The model was tested using multiple linear regression analyses. The five factorial model of 'potentially obesity-related stressors' resulted in a total variance explanation of adjusted R² = 0.616 for males and adjusted R² = 0.595 for females for perceived stress. The relative variance contribution of the five included factors differed substantially for the two sexes. The findings of this cross-sectional study support the hypothesized, potentially obesity-related factors: 'drive for thinness', 'impulse regulation', 'ineffectiveness', 'social insecurity', and 'body dissatisfaction' as relevant determinants of perceived stress in individuals with obesity. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  14. Spatial memory: Theoretical basis and comparative review on experimental methods in rodents.

    Science.gov (United States)

    Paul, Carrillo-Mora; Magda, Giordano; Abel, Santamaría

    2009-11-05

    The assessment of learning and memory in animal models has been widely employed in scientific research for a long time. Among these models, those representing diseases with primary processes of affected memory - such as amnesia, dementia, brain aging, etc. - studies dealing with the toxic effects of specific drugs, and other exploring neurodevelopment, trauma, epilepsy and neuropsychiatric disorders, are often called on to employ these tools. There is a diversity of experimental methods assessing animal learning and memory skills. Overall, mazes are the devices mostly used today to test memory in rodents; there are several types of them, but their real usefulness, advantages and applications remain to be fully established and depend on the particular variant selected by the experimenter. The aims of the present article are first, to briefly review the accumulated knowledge in regard to spatial memory tasks; second, to bring the reader information on the different types of rodent mazes available to test spatial memory; and third, to elucidate the usefulness and limitations of each of these devices.

  15. Family Environment and Childhood Obesity: A New Framework with Structural Equation Modeling

    OpenAIRE

    Huang, Hui; Wan Mohamed Radzi, Che Wan Jasimah bt; Salarzadeh Jenatabadi, Hashem

    2017-01-01

    The main purpose of the current article is to introduce a framework of the complexity of childhood obesity based on the family environment. A conceptual model that quantifies the relationships and interactions among parental socioeconomic status, family food security level, child’s food intake and certain aspects of parental feeding behaviour is presented using the structural equation modeling (SEM) concept. Structural models are analysed in terms of the direct and indirect connections among ...

  16. Glycoprotein 130 receptor signaling mediates α-cell dysfunction in a rodent model of type 2 diabetes

    DEFF Research Database (Denmark)

    Chow, Samuel Z; Speck, Madeleine; Yoganathan, Piriya

    2014-01-01

    Dysregulated glucagon secretion accompanies islet inflammation in type 2 diabetes. We recently discovered that interleukin (IL)-6 stimulates glucagon secretion from human and rodent islets. IL-6 family cytokines require the glycoprotein 130 (gp130) receptor to signal. In this study, we elucidated...

  17. Public health implications of changing rodent importation patterns— United States, 1999–2013

    Science.gov (United States)

    Lankau, Emily W.; Sinclair, Julie R.; Schroeder, Betsy A.; Galland, G. Gale; Marano, Nina

    2015-01-01

    Summary The United States imports a large volume of live wild and domestic animal species; these animals pose a demonstrated risk for introduction of zoonotic diseases. Rodents are imported for multiple purposes, including scientific research, zoo exhibits, and the pet trade. Current U.S. public health regulatory restrictions specific to rodent importation pertain only to those of African origin. To understand the impacts of these regulations and the potential public health risks of international rodent trade to the United States, we evaluated live rodent import records during 1999 –2013 by shipment volume and geographic origin, source (e.g., wild -caught versus captive-or commercially bred), intended purpose, and rodent taxonomy. Live rodent imports increased from 2,737 animals during 1999 to 173,761 animals during 2013. Increases in both the number and size of shipments contributed to this trend. The proportion of wild-captured imports declined from 75% during 1999 to guinea pigs, and hamsters arriving from other countries in North America were predominant taxa underlying this trend . After 2003, African-origin imports became sporadic events under the federal permit process. These patterns suggest development of large -scale captive rodent breeding markets abroad for commercial sale in the United States. While the shift from wild-captured imports alleviates many conservation concerns and risks for novel disease emergence, such consolidated sourcing might elevate exposure risks for zoonotic diseases associated with high-density rodent breeding(e.g. , lymphocytic choriomeningitis or salmonellosis). A responsive border health system must periodically re-evaluate importation regulations in conjunction with key stakeholders to ensure a balance between the economic benefits of rodent trade against the potential public health risks. PMID:26245515

  18. Tissue expander stimulated lengthening of arteries (TESLA) induces early endothelial cell proliferation in a novel rodent model.

    Science.gov (United States)

    Potanos, Kristina; Fullington, Nora; Cauley, Ryan; Purcell, Patricia; Zurakowski, David; Fishman, Steven; Vakili, Khashayar; Kim, Heung Bae

    2016-04-01

    We examine the mechanism of aortic lengthening in a novel rodent model of tissue expander stimulated lengthening of arteries (TESLA). A rat model of TESLA was examined with a single stretch stimulus applied at the time of tissue expander insertion with evaluation of the aorta at 2, 4 and 7day time points. Measurements as well as histology and proliferation assays were performed and compared to sham controls. The aortic length was increased at all time points without histologic signs of tissue injury. Nuclear density remained unchanged despite the increase in length suggesting cellular hyperplasia. Cellular proliferation was confirmed in endothelial cell layer by Ki-67 stain. Aortic lengthening may be achieved using TESLA. The increase in aortic length can be achieved without tissue injury and results at least partially from cellular hyperplasia. Further studies are required to define the mechanisms involved in the growth of arteries under increased longitudinal stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Harvesting behaviour of three central European rodents: Identifying the rodent pest in cereals

    Czech Academy of Sciences Publication Activity Database

    Heroldová, Marta; Tkadlec, Emil

    2011-01-01

    Roč. 30, č. 1 (2011), s. 82-84 ISSN 0261-2194 R&D Projects: GA MZe QH72075 Institutional research plan: CEZ:AV0Z60930519 Keywords : Apodemus sylvaticus * Apodemus uralensis * feeding behaviour * lab experiments * Microtus arvalis * rodent pest control Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 1.402, year: 2011

  20. Experimental sleep deprivation as a tool to test memory deficits in rodents

    Directory of Open Access Journals (Sweden)

    VALERIA eCOLAVITO

    2013-12-01

    Full Text Available Paradigms of sleep deprivation (SD and memory testing in rodents (laboratory rats and mice are here reviewed. The vast majority of these studies have been aimed at understanding the contribution of sleep to cognition, and in particular to memory. Relatively little attention, instead, has been devoted to SD as a challenge to induce a transient memory impairment, and therefore as a tool to test cognitive enhancers in drug discovery. The purpose of this article is to provide an overview of the studies that have accurately described methodological aspects of the SD protocol and behavioral paradigm in order to critically assess them and propose SD protocols that could be employed as cognitive challenge. Total SD, partial or state-selective SD (rapid eye movement SD procedures are first reviewed, followed by procedures to investigate SD-induced impairment of learning and memory consolidation. Thus, a platform of knowledge is here provided for laboratory protocols that could be used to assess the efficacy of drugs designed to improve memory performance in rodents, including rodent models of neurodegenerative diseases that cause cognitive deficits, and Alzheimer’s disease in particular. Issues in the interpretation of such preclinical data and their predictive value for clinical translation are also discussed.

  1. Conceptual Model of Weight Management in Overweight and Obese African-American Females.

    Science.gov (United States)

    Sutton, Suzanne M; Magwood, Gayenell S; Nemeth, Lynne S; Jenkins, Carolyn M

    2017-04-01

    Weight management of overweight and obese (OWO) African-American females (AAFs) is a poorly defined concept, leading to ineffective treatment of overweight and obesity, prevention of health sequelae, and risk reduction. A conceptual model of the phenomenon of weight management in OWO AAFs was developed through dimensional analysis of the literature. Constructs were identified and sorted into the dimensions of perspective, context, conditions, process, and consequences and integrated into an explanatory matrix. Through dimensional analysis, weight management in OWO AAFs was characterized as a multidimensional concept, defined from the perspective of weight loss in community-dwelling AAFs. Behaviors associated with weight management are strongly influenced by intrinsic factors and extrinsic conditions, which influence engagement in the processes and consequences of weight management. The resulting conceptual model of weight management in OWO AAFs provides a framework for research interventions applicable in a variety of settings. © 2016 Wiley Periodicals, Inc.

  2. The response of human and rodent cells to hyperthermia

    International Nuclear Information System (INIS)

    Roizin-Towle, L.; Pirro, J.P.

    1991-01-01

    Inherent cellular radiosensitivity in vitro has been shown to be a good predictor of human tumor response in vivo. In contrast, the importance of the intrinsic thermosensitivity of normal and neoplastic human cells as a factor in the responsiveness of human tumors to adjuvant hyperthermia has never been analyzed systematically. A comparison of thermal sensitivity and thermo-radiosensitization in four rodent and eight human-derived cell lines was made in vitro. Arrhenius plots indicated that the rodent cells were more sensitive to heat killing than the human, and the break-point was 0.5 degrees C higher for the human than rodent cells. The relationship between thermal sensitivity and the interaction of heat with X rays at low doses was documented by thermal enhancement ratios (TER's). Cells received either a 1 hr exposure to 43 degrees C or a 20 minute treatment at 45 degrees C before exposure to 300 kVp X rays. Thermal enhancement ratios ranged from 1.0 to 2.7 for human cells heated at 43 degrees C and from 2.1 to 5.3 for heat exposures at 45 degrees C. Thermal enhancement ratios for rodent cells were generally 2 to 3 times higher than for human cells, because of the fact that the greater thermosensitivity of rodent cells results in a greater enhancement of radiation damage. Intrinsic thermosensitivity of human cells has relevance to the concept of thermal dose; intrinsic thermo-radiosensitization of a range of different tumor cells is useful in documenting the interactive effects of radiation combined with heat

  3. Prebiotic Fibre Supplementation In Combination With Metformin Modifies Appetite, Energy Metabolism, And Gut Satiety Hormones In Obese Rats

    Science.gov (United States)

    Pyra, Kim Alicia

    The prebiotic fibre, oligofructose (OFS), reduces energy intake and improves glycemic control in rodents and man. Metformin (MT) is a commonly used insulin-sensitizing agent that may limit weight gain in individuals with type 2 diabetes. Our objective was to determine if using OFS as an adjunct to MT therapy (AD) modifies satiety hormone production and metabolism in obese rats. Independently, OFS and MT decreased energy intake, body fat, hepatic triglyceride content, plasma leptin and glucose-dependent insulinotropic peptide (GIP) levels. OFS and AD but not MT rats showed superior glycemic control during an oral glucose tolerance test (OGTT) compared to C. Area under the curve for GIP was lowest in ADThe prebiotic fibre, oligofructose (OFS), reduces energy intake and improves glycemic control in rodents and man. Metformin (MT) is a commonly used insulin-sensitizing agent that may limit weight gain in individuals with type 2 diabetes. Our objective was to determine if using OFS as an adjunct to MT therapy (AD) modifies satiety hormone production and metabolism in obese rats. Independently, OFS and MT decreased energy intake, body fat, hepatic triglyceride content, plasma leptin and glucose-dependent insulinotropic peptide (GIP) levels. OFS and AD but not MT rats showed superior glycemic control during an oral glucose tolerance test (OGTT) compared to C. Area under the curve for GIP was lowest in AD

  4. Beneficial effects of chronic oxytocin administration and social co-housing in a rodent model of post-traumatic stress disorder.

    Science.gov (United States)

    Janezic, Eric M; Uppalapati, Swetha; Nagl, Stephanie; Contreras, Marco; French, Edward D; Fellous, Jean-Marc

    2016-12-01

    Post-traumatic stress disorder (PTSD) is in part due to a deficit in memory consolidation and extinction. Oxytocin (OXT) has anxiolytic effects and promotes prosocial behaviors in both rodents and humans, and evidence suggests that it plays a role in memory consolidation. We studied the effects of administered OXT and social co-housing in a rodent model of PTSD. Acute OXT yielded a short-term increase in the recall of the traumatic memory if administered immediately after trauma. Low doses of OXT delivered chronically had a cumulating anxiolytic effect that became apparent after 4 days and persisted. Repeated injections of OXT after short re-exposures to the trauma apparatus yielded a long-term reduction in anxiety. Co-housing with naive nonshocked animals decreased the memory of the traumatic context compared with single-housed animals. In the long term, these animals showed less thigmotaxis and increased interest in novel objects, and a low OXT plasma level. Co-housed PTSD animals showed an increase in risk-taking behavior. These results suggest beneficial effects of OXT if administered chronically through increases in memory consolidation after re-exposure to a safe trauma context. We also show differences between the benefits of social co-housing with naive rats and co-housing with other shocked animals on trauma-induced long-term anxiety.

  5. Visual Landmarks Facilitate Rodent Spatial Navigation in Virtual Reality Environments

    Science.gov (United States)

    Youngstrom, Isaac A.; Strowbridge, Ben W.

    2012-01-01

    Because many different sensory modalities contribute to spatial learning in rodents, it has been difficult to determine whether spatial navigation can be guided solely by visual cues. Rodents moving within physical environments with visual cues engage a variety of nonvisual sensory systems that cannot be easily inhibited without lesioning brain…

  6. Novel insights into obesity and diabetes through genome-scale metabolic modeling

    Directory of Open Access Journals (Sweden)

    Leif eVäremo

    2013-04-01

    Full Text Available The growing prevalence of metabolic diseases, such as obesity and diabetes, are putting a high strain on global healthcare systems as well as increasing the demand for efficient treatment strategies. More than 360 million people worldwide are suffering from type 2 diabetes and, with the current trends, the projection is that 10% of the global adult population will be affected by 2030. In light of the systemic properties of metabolic diseases as well as the interconnected nature of metabolism, it is necessary to begin taking a holistic approach to study these diseases. Human genome-scale metabolic models (GEMs are topological and mathematical representations of cell metabolism and have proven to be valuable tools in the area of systems biology. Successful applications of GEMs include the process of gaining further biological and mechanistic understanding of diseases, finding potential biomarkers and identifying new drug targets. This review will focus on the modeling of human metabolism in the field of obesity and diabetes, showing its vast range of applications of clinical importance as well as point out future challenges.

  7. Genetic basis, nutritional challenges and adaptive responses in the prenatal origin of obesity and type-2 diabetes.

    Science.gov (United States)

    Gonzalez-Bulnes, Antonio; Ovilo, Cristina

    2012-03-01

    Obesity and type-2 diabetes are currently considered global pandemics. A large set of epidemiological evidences are addressing both the importance of a genetic predisposition -starting with the thrifty genotype hypothesis- and the determinant role of the maternal nutrition during pregnancy -starting with longitudinal studies of individuals born during the Dutch famine- on the adult onset of the disease. Compelling evidences suggest that both over- and undernutrition may modify the intrauterine environment of the conceptus and may alter the expression of its genome, predisposing to disease in the adult life. However, the most recent data indicate that the consequences of this phenomenon, termed as prenatal programming, are influenced both by timing, degree and duration of the challenge and by the adaptive response of the mother and the conceptus; thus, the information acquired by interventional studies modifying these parameters is becoming increasingly important. Obviously, interventional research in human beings is limited by ethical issues; hence, investigations need to be conducted on animal models, either rodents or large animals. This review summarizes the results of epidemiological human studies and translational animal research in unraveling the interaction between genome, nutritional status and adaptive response on the establishment of postnatal obesity, insulin resistance and type-2 diabetes. © 2012 Bentham Science Publishers

  8. The Ethics of Rodent Control

    NARCIS (Netherlands)

    Meerburg, B.G.; Brom, F.W.A.; Kijlstra, A.

    2008-01-01

    Because western societies generally see animals as objects of moral concern, demands have been made on the way they are treated, e.g. during animal experimentation. In the case of rodent pests, however, inhumane control methods are often applied. This inconsistency in the human-animal relationship

  9. Diet-induced obesity reduces core body temperature across the estrous cycle and pregnancy in the rat.

    Science.gov (United States)

    Crew, Rachael C; Waddell, Brendan J; Maloney, Shane K; Mark, Peter J

    2018-04-16

    Obesity during pregnancy causes adverse maternal and fetal health outcomes and programs offspring for adult-onset diseases, including cardiovascular disease. Obesity also disrupts core body temperature (T c ) regulation in nonpregnant rodents; however, it is unknown whether obesity alters normal maternal T c adaptations to pregnancy. Since T c is influenced by the circadian system, and both obesity and pregnancy alter circadian biology, it was hypothesized that obesity disrupts the normal rhythmic patterns of T c before and during gestation. Obesity was induced by cafeteria (CAF) feeding in female Wistar rats for 8 weeks prior to and during gestation, whereas control (CON) animals had free access to chow. Intraperitoneal temperature loggers measured daily T c profiles throughout the study, while maternal body composition and leptin levels were assessed near term. Daily temperature profiles were examined for rhythmic features (mesor, amplitude and acrophase) by cosine regression analysis. CAF animals exhibited increased fat mass (93%) and associated hyperleptinemia (3.2-fold increase) compared to CON animals. CAF consumption reduced the average T c (by up to 0.29°C) across the estrous cycle and most of pregnancy; however, T c for CAF and CON animals converged toward the end of gestation. Obesity reduced the amplitude of T c rhythms at estrus and proestrus and on day 8 of pregnancy, but increased the amplitude at day 20 of pregnancy. Photoperiod analysis revealed that obesity reduced T c exclusively in the light period during pre-pregnancy but only during the dark period in late gestation. In conclusion, obesity alters rhythmic T c profiles and reduces the magnitude of the T c decline late in rat gestation, which may have implications for maternal health and fetal development.

  10. Modeling social transmission dynamics of unhealthy behaviors for evaluating prevention and treatment interventions on childhood obesity.

    Science.gov (United States)

    Frerichs, Leah M; Araz, Ozgur M; Huang, Terry T-K

    2013-01-01

    Research evidence indicates that obesity has spread through social networks, but lever points for interventions based on overlapping networks are not well studied. The objective of our research was to construct and parameterize a system dynamics model of the social transmission of behaviors through adult and youth influence in order to explore hypotheses and identify plausible lever points for future childhood obesity intervention research. Our objectives were: (1) to assess the sensitivity of childhood overweight and obesity prevalence to peer and adult social transmission rates, and (2) to test the effect of combinations of prevention and treatment interventions on the prevalence of childhood overweight and obesity. To address the first objective, we conducted two-way sensitivity analyses of adult-to-child and child-to-child social transmission in relation to childhood overweight and obesity prevalence. For the second objective, alternative combinations of prevention and treatment interventions were tested by varying model parameters of social transmission and weight loss behavior rates. Our results indicated child overweight and obesity prevalence might be slightly more sensitive to the same relative change in the adult-to-child compared to the child-to-child social transmission rate. In our simulations, alternatives with treatment alone, compared to prevention alone, reduced the prevalence of childhood overweight and obesity more after 10 years (1.2-1.8% and 0.2-1.0% greater reduction when targeted at children and adults respectively). Also, as the impact of adult interventions on children was increased, the rank of six alternatives that included adults became better (i.e., resulting in lower 10 year childhood overweight and obesity prevalence) than alternatives that only involved children. The findings imply that social transmission dynamics should be considered when designing both prevention and treatment intervention approaches. Finally, targeting adults may

  11. Modeling social transmission dynamics of unhealthy behaviors for evaluating prevention and treatment interventions on childhood obesity.

    Directory of Open Access Journals (Sweden)

    Leah M Frerichs

    Full Text Available Research evidence indicates that obesity has spread through social networks, but lever points for interventions based on overlapping networks are not well studied. The objective of our research was to construct and parameterize a system dynamics model of the social transmission of behaviors through adult and youth influence in order to explore hypotheses and identify plausible lever points for future childhood obesity intervention research. Our objectives were: (1 to assess the sensitivity of childhood overweight and obesity prevalence to peer and adult social transmission rates, and (2 to test the effect of combinations of prevention and treatment interventions on the prevalence of childhood overweight and obesity. To address the first objective, we conducted two-way sensitivity analyses of adult-to-child and child-to-child social transmission in relation to childhood overweight and obesity prevalence. For the second objective, alternative combinations of prevention and treatment interventions were tested by varying model parameters of social transmission and weight loss behavior rates. Our results indicated child overweight and obesity prevalence might be slightly more sensitive to the same relative change in the adult-to-child compared to the child-to-child social transmission rate. In our simulations, alternatives with treatment alone, compared to prevention alone, reduced the prevalence of childhood overweight and obesity more after 10 years (1.2-1.8% and 0.2-1.0% greater reduction when targeted at children and adults respectively. Also, as the impact of adult interventions on children was increased, the rank of six alternatives that included adults became better (i.e., resulting in lower 10 year childhood overweight and obesity prevalence than alternatives that only involved children. The findings imply that social transmission dynamics should be considered when designing both prevention and treatment intervention approaches. Finally

  12. Obesity and craniopharyngioma

    Science.gov (United States)

    2011-01-01

    An epidemic of pediatric obesity has occurred across the world in recent years. There are subgroups within the population at high-risk of becoming obese and especially of having experience of precocious cardiovascular and metabolic co-morbidities of obesity. One of these subgroups comprises patients treated for childhood cancers and namely survivors of craniopharyngioma. The high incidence of obesity in this group makes these patients an important disease model to better understand the metabolic disturbances and the mechanisms of weight gain among cancer survivors. The hypothalamic-pituitary axis damage secondary to cancer therapies or to primary tumor location affect long-term outcomes. Nevertheless, the aetiology of obesity in craniopharyngioma is not yet fully understood. The present review has the aim of summarizing the published data and examining the most accepted mechanisms and main predisposing factors related to weight gain in this particular population. PMID:21846381

  13. Obesity and craniopharyngioma

    Directory of Open Access Journals (Sweden)

    Bruzzi Patrizia

    2011-08-01

    Full Text Available Abstract An epidemic of pediatric obesity has occurred across the world in recent years. There are subgroups within the population at high-risk of becoming obese and especially of having experience of precocious cardiovascular and metabolic co-morbidities of obesity. One of these subgroups comprises patients treated for childhood cancers and namely survivors of craniopharyngioma. The high incidence of obesity in this group makes these patients an important disease model to better understand the metabolic disturbances and the mechanisms of weight gain among cancer survivors. The hypothalamic-pituitary axis damage secondary to cancer therapies or to primary tumor location affect long-term outcomes. Nevertheless, the aetiology of obesity in craniopharyngioma is not yet fully understood. The present review has the aim of summarizing the published data and examining the most accepted mechanisms and main predisposing factors related to weight gain in this particular population.

  14. A systems approach to obesity

    Science.gov (United States)

    Bartsch, Sarah M.; Mui, Yeeli; Haidari, Leila A.; Spiker, Marie L.; Gittelsohn, Joel

    2017-01-01

    Obesity has become a truly global epidemic, affecting all age groups, all populations, and countries of all income levels. To date, existing policies and interventions have not reversed these trends, suggesting that innovative approaches are needed to transform obesity prevention and control. There are a number of indications that the obesity epidemic is a systems problem, as opposed to a simple problem with a linear cause-and-effect relationship. What may be needed to successfully address obesity is an approach that considers the entire system when making any important decision, observation, or change. A systems approach to obesity prevention and control has many benefits, including the potential to further understand indirect effects or to test policies virtually before implementing them in the real world. Discussed here are 5 key efforts to implement a systems approach for obesity prevention: 1) utilize more global approaches; 2) bring new experts from disciplines that do not traditionally work with obesity to share experiences and ideas with obesity experts; 3) utilize systems methods, such as systems mapping and modeling; 4) modify and combine traditional approaches to achieve a stronger systems orientation; and 5) bridge existing gaps between research, education, policy, and action. This article also provides an example of how a systems approach has been used to convene a multidisciplinary team and conduct systems mapping and modeling as part of an obesity prevention program in Baltimore, Maryland. PMID:28049754

  15. Transcriptome and DNA Methylome Analysis in a Mouse Model of Diet-Induced Obesity Predicts Increased Risk of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Ruifang Li

    2018-01-01

    Full Text Available Colorectal cancer (CRC tends to occur at older age; however, CRC incidence rates have been rising sharply among young age groups. The increasing prevalence of obesity is recognized as a major risk, yet the mechanistic underpinnings remain poorly understood. Using a diet-induced obesity mouse model, we identified obesity-associated molecular changes in the colonic epithelium of young and aged mice, and we further investigated whether the changes were reversed after weight loss. Transcriptome analysis indicated that obesity-related colonic cellular metabolic switch favoring long-chain fatty acid oxidation happened in young mice, while obesity-associated downregulation of negative feedback regulators of pro-proliferative signaling pathways occurred in older mice. Strikingly, colonic DNA methylome was pre-programmed by obesity at young age, priming for a tumor-prone gene signature after aging. Furthermore, obesity-related changes were substantially preserved after short-term weight loss, but they were largely reversed after long-term weight loss. We provided mechanistic insights into increased CRC risk in obesity.

  16. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity

    Science.gov (United States)

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Zhang, Nan; Szweda, Luke I.; Griffin, Timothy M.; Barlic-Dicen, Jana

    2014-01-01

    The chemokine receptor CXCR4 is expressed on adipocytes and macrophages in adipose tissue, but its role in this tissue remains unknown. We evaluated whether deficiency in either adipocyte or myeloid leukocyte CXCR4 affects body weight (BW) and adiposity in a mouse model of high-fat-diet (HFD)-induced obesity. We found that ablation of adipocyte, but not myeloid leukocyte, CXCR4 exacerbated obesity. The HFD-fed adipocyte-specific CXCR4-knockout (AdCXCR4ko) mice, compared to wild-type C57BL/6 control mice, had increased BW (average: 52.0 g vs. 35.5 g), adiposity (average: 49.3 vs. 21.0% of total BW), and inflammatory leukocyte content in white adipose tissue (WAT), despite comparable food intake. As previously reported, HFD feeding increased uncoupling protein 1 (UCP1) expression (fold increase: 3.5) in brown adipose tissue (BAT) of the C57BL/6 control mice. However, no HFD-induced increase in UCP1 expression was observed in the AdCXCR4ko mice, which were cold sensitive. Thus, our study suggests that adipocyte CXCR4 limits development of obesity by preventing excessive inflammatory cell recruitment into WAT and by supporting thermogenic activity of BAT. Since CXCR4 is conserved between mouse and human, the newfound role of CXCR4 in mouse adipose tissue may parallel the role of this chemokine receptor in human adipose tissue.—Yao, L., Heuser-Baker, J., Herlea-Pana, O., Zhang, N., Szweda, L. I., Griffin, T. M., Barlic-Dicen, J. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity. PMID:25016030

  17. PAIN IN A PARKINSON`S DISEASE RODENT ANIMAL MODEL INDUCED WITH 6-HYDROXYDOPAMINE

    Directory of Open Access Journals (Sweden)

    Antioch, I

    2017-06-01

    Full Text Available Pain phenomenon, the unpleasant sensory and emotional event, appears to evidently intrude in Parkinson disease (PD, a disease formally considered to be restricted only to motor deficits. Although over a half of persons with PD suffer from pain manifestations, there are very few reports targeting this issue. Considering the cases when motor symptoms of PD are eclipsed by severe pain disclosure, there is an obvious need of clarifying the intricate implications of pain in PD context. Because there are few studies researching the link between pain and PD in clinical context, but as well in animal models we chose to explore the effects of pain stimuli on a rodent model of PD. Materials and methods: We experimentally induced a PD model in Wistar rats (n=12 by injecting in the substantia nigra, a brain area known to be involved in PD occurrence, one dose of a 6-hydroxidopamine (6-OHDA solution (8µm 6-OHDA base and 4µm physiological saline, utilizing neurosurgery, while their control peers received same dose of saline solution. Two weeks after the intervention the animals were subjected to the hot-plate test, a behavioral task for acquiring pain sensitivity. Results: There was noticed a statistical significant (F(1,10 = 5.67, p=0.038 sensibility of the 6-OHDA rats to thermal pain stimuli (8.2 s ± 0.8 s in 6-OHDA group as compared to their peers (13.8 s ± 1.6 s in controls. Conclusions: The involvement of pain in PD animal models is demonstrated raising questions of how it influences PD evolution. Moreover, this result increases awareness of deficient diagnostic methods of pain in PD and as a consequence, poor treatment of pain manifestations.

  18. New Development in NASA's Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

    Science.gov (United States)

    Shirazi-Fard, Y.; Choi, S.; Harris, C.; Gong, C.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. G.

    2017-01-01

    Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research program at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. Throughout phases of these missions, our practices, hardware and operations have evolved from tested to developed standards, and we are able to modify and customize our procedure and operations for mission specific requirements. The Rodent Research Habitat is capable of providing a living environment for animals on ISS according to standard animal welfare requirements. Using the cameras in the Habitat, the Rodent Research team has the ability to perform daily health checks on animals, and further analyze the collected videos for behavioral studies. A recent development of the Rodent Research hardware is inclusion of enrichment, to provide the animals the ability to rest and huddle. The Enrichment Hut is designed carefully for adult mice (up to 35 week old) within animal welfare, engineering, and operations constraints. The Hut is made out of the same stainless steel mesh as the cage interior, it has an ingress and an egress to allow animals move freely, and a hinge door to allow crewmembers remove the

  19. The water economy of South American desert rodents: from integrative to molecular physiological ecology.

    Science.gov (United States)

    Bozinovic, Francisco; Gallardo, Pedro

    2006-01-01

    Rodents from arid and semi-arid habitats live under conditions where the spatial and temporal availability of free water is limited, or scarce, thus forcing these rodents to deal with the problem of water conservation. The response of rodents to unproductive desert environments and water deficits has been intensively investigated in many deserts of the world. However, current understanding of the cellular, systemic and organismal physiology of water economy relies heavily on short-term, laboratory-oriented experiments, which usually focus on responses at isolated levels of biological organization. In addition, studies in small South American mammals are scarce. Indeed xeric habitats have existed in South America for a long time and it is intriguing why present day South American desert rodents do not show the wide array of adaptive traits to desert life observed for rodents on other continents. Several authors have pointed out that South American desert rodents lack physiological and energetic specialization for energy and water conservation, hypothesizing that their success is based more on behavioral and ecological strategies. We review phenotypic flexibility and physiological diversity in water flux rate, urine osmolality, and expression of water channels in South American desert-dwelling rodents. As far as we know, this is the first review of integrative studies at cellular, systemic and organismal levels. Our main conclusion is that South American desert rodents possess structural as well as physiological systems for water conservation, which are as remarkable as those found in "classical" rodents inhabiting other desert areas of the world.

  20. Helminth Infections of Rodents and Their Zoonotic Importance in Boyer-Ahmad District, Southwestern Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Javad RANJBAR

    2017-12-01

    Full Text Available AbstractBackground: Rodents are considered as reservoirs of various zoonotic diseases including helminthic infections. The current study aimed to evaluate the prevalence of helminth infections in rodents, in Boyer-Ahmad district, Southwestern Iran.Methods: Overall, 52 rodents were captured from various areas of the district by Sherman live traps. The animals were then euthanized and dissected. During necropsy, each organ was examined macroscopically for presence of any cyst or visible parasite. The gastrointestinal tract was removed and their contents were evaluated for larva or adult worms. Trichinella larvae in the rodents’ muscles were investigated by both digestion and pathological methods.Results: Twenty-eight (53.8% of the trapped rodents were male. The rodents were including 25 (48.1% Meriones persicus, 1(1.9% Calomyscus bailwardi, 1 (1.9% Arvicola terresterris, 7 (13.5% Rattus rattus, 8 (15.4% R. norvegicus, and 10 (19.2% Apodemus sylvaticus. Of them, 38 (73.0% were infected with at least one helminth. Collected rodents were infected with Hymenolepis diminuta (50%, Hymenolepis nana fraterna (28.8%, Skrjabinotaenia sp. (15.4%, Anoplocephalidae sp. (15.4%, Cysticercus fasciolaris (5.8%, Trichuris muris (36.5%, Aspiculuris tetraptera (15.4%, Syphacia sp. (5.7%, Rictularia sp. (15.4%, Trichostrongylus sp. (3.8%, and Gongylonema sp. (3.8%. M. persicus was the most (84% infected rodent, yet the differences between rodent genus and helminth infectivity were not statistically significant (P>0.05.Conclusion: The rodents in Boyer-Ahmad district are infected with different helminths infections that some of them are recognized as threat to human health.

  1. Rodent Models of Non-classical Progesterone Action Regulating Ovulation

    Directory of Open Access Journals (Sweden)

    Melinda A. Mittelman-Smith

    2017-07-01

    Full Text Available It is becoming clear that steroid hormones act not only by binding to nuclear receptors that associate with specific response elements in the nucleus but also by binding to receptors on the cell membrane. In this newly discovered manner, steroid hormones can initiate intracellular signaling cascades which elicit rapid effects such as release of internal calcium stores and activation of kinases. We have learned much about the translocation and signaling of steroid hormone receptors from investigations into estrogen receptor α, which can be trafficked to, and signal from, the cell membrane. It is now clear that progesterone (P4 can also elicit effects that cannot be exclusively explained by transcriptional changes. Similar to E2 and its receptors, P4 can initiate signaling at the cell membrane, both through progesterone receptor and via a host of newly discovered membrane receptors (e.g., membrane progesterone receptors, progesterone receptor membrane components. This review discusses the parallels between neurotransmitter-like E2 action and the more recently investigated non-classical P4 signaling, in the context of reproductive behaviors in the rodent.

  2. An ICF-Based Model for Implementing and Standardizing Multidisciplinary Obesity Rehabilitation Programs within the Healthcare System

    Directory of Open Access Journals (Sweden)

    Amelia Brunani

    2015-05-01

    Full Text Available Introduction/Objective: In this study, we aimed to design an ICF-based individual rehabilitation project for obese patients with comorbidities (IRPOb integrated into the Rehab-CYCLE to standardize rehabilitative programs. This might facilitate the different health professionals involved in the continuum of care of obese patients to standardize rehabilitation interventions. Methods: After training on the ICF and based on the relevant studies, ICF categories were identified in a formal consensus process by our multidisciplinary team. Thereafter, we defined an individual rehabilitation project based on a structured multi-disciplinary approach to obesity. Results: the proposed IRPOb model identified the specific intervention areas (nutritional, physiotherapy, psychology, nursing, the short-term goals, the intervention modalities, the professionals involved and the assessment of the outcomes. Information was shared with the patient who signed informed consent. Conclusions: The model proposed provides the following advantages: (1 standardizes rehabilitative procedures; (2 facilitates the flow of congruent and updated information from the hospital to outpatient facilities, relatives, and care givers; (3 addresses organizational issues; (4 might serve as a benchmark for professionals who have limited specific expertise in rehabilitation of comorbid obese patients.

  3. Long-term Hyperglycemia Naturally Induces Dental Caries but Not Periodontal Disease in Type 1 and Type 2 Diabetic Rodents.

    Science.gov (United States)

    Nakahara, Yutaka; Ozaki, Kiyokazu; Matsuura, Tetsuro

    2017-11-01

    Periodontal disease (PD) in patients with diabetes is described as the sixth complication of diabetes. We have previously shown that diabetes increases dental caries, and carious inflammation might have a strong effect on the adjacent periodontal tissue in diabetic rodent models. However, the possibility that hyperglycemia may induce PD in diabetic animals could not be completely eliminated. The goal of this study was to confirm the presence of PD in diabetic animal models by preventing carious inflammation with fluoride administration. F344 rats injected with alloxan (type 1 diabetic model) and db/db mice (type 2 diabetic model) were given either tap water alone or tap water containing fluoride. A cariostatic effect of fluoride was evident in the diabetic animals. Meanwhile, fluoride treatment drastically attenuated periodontal inflammation in addition to preventing dental caries. Furthermore, with fluoride treatment, periodontitis was notably nonexistent in the periodontal tissue surrounding the normal molars, whereas the caries-forming process was clearly observed in the teeth that were enveloped with persistent periodontitis, suggesting that enhanced periodontal inflammation might have been derived from the dental caries in the diabetic rodents rather than from the PD. In conclusion, long-term hyperglycemia naturally induces dental caries but not PD in type 1 and type 2 diabetic rodents. © 2017 by the American Diabetes Association.

  4. An ethanolic extract of Artemisia dracunculus L. regulates gene expression of ubiquitin-proteasome system enzymes in skeletal muscle: potential role in the treatment of sarcopenic obesity.

    Science.gov (United States)

    Kirk-Ballard, Heather; Kilroy, Gail; Day, Britton C; Wang, Zhong Q; Ribnicky, David M; Cefalu, William T; Floyd, Z Elizabeth

    2014-01-01

    Obesity is linked to insulin resistance, a primary component of metabolic syndrome and type 2 diabetes. The problem of obesity-related insulin resistance is compounded when age-related skeletal muscle loss, called sarcopenia, occurs with obesity. Skeletal muscle loss results from elevated levels of protein degradation and prevention of obesity-related sarcopenic muscle loss will depend on strategies that target pathways involved in protein degradation. An extract from Artemisia dracunculus, termed PMI 5011, improves insulin signaling and increases skeletal muscle myofiber size in a rodent model of obesity-related insulin resistance. The aim of this study was to examine the effect of PMI 5011 on the ubiquitin-proteasome system, a central regulator of muscle protein degradation. Gastrocnemius and vastus lateralis skeletal muscle was obtained from KK-A(y) obese diabetic mice fed a control or 1% (w/w) PMI 5011-supplemented diet. Regulation of genes encoding enzymes of the ubiquitin-proteasome system was determined using real-time quantitative reverse transcriptase polymerase chain reaction. Although MuRF-1 ubiquitin ligase gene expression is consistently down-regulated in skeletal muscle, atrogin-1, Fbxo40, and Traf6 expression is differentially regulated by PMI 5011. Genes encoding other enzymes of the ubiquitin-proteasome system ranging from ubiquitin to ubiquitin-specific proteases are also regulated by PMI 5011. Additionally, expression of the gene encoding the microtubule-associated protein-1 light chain 3 (LC3), a ubiquitin-like protein pivotal to autophagy-mediated protein degradation, is down-regulated by PMI 5011 in the vastus lateralis. PMI 5011 alters the gene expression of ubiquitin-proteasome system enzymes that are essential regulators of skeletal muscle mass. This suggests that PMI 5011 has therapeutic potential in the treatment of obesity-linked sarcopenia by regulating ubiquitin-proteasome-mediated protein degradation. Copyright © 2014 Elsevier Inc

  5. Cardiac, Metabolic and Molecular Profiles of Sedentary Rats in the Initial Moment of Obesity

    Directory of Open Access Journals (Sweden)

    Bruno Barcellos Jacobsen

    2017-10-01

    Full Text Available Abstract Background: Different types of high-fat and/or high-energy diets have been used to induce obesity in rodents. However, few studies have reported on the effects observed at the initial stage of obesity induced by high-fat feeding on cardiac functional and structural remodelling. Objective: To characterize the initial moment of obesity and investigate both metabolic and cardiac parameters. In addition, the role of Ca2+ handling in short-term exposure to obesity was verified. Methods: Thirty-day-old male Wistar rats were randomized into two groups (n = 19 each: control (C; standard diet and high-fat diet (HF, unsaturated high-fat diet. The initial moment of obesity was defined by weekly measurement of body weight (BW complemented by adiposity index (AI. Cardiac remodelling was assessed by morphological, histological, echocardiographic and papillary muscle analysis. Ca2+ handling proteins were determined by Western Blot. Results: The initial moment of obesity occurred at the 3rd week. Compared with C rats, the HF rats had higher final BW (4%, body fat (20%, AI (14.5%, insulin levels (39.7%, leptin (62.4% and low-density lipoprotein cholesterol (15.5% but did not exhibit alterations in systolic blood pressure. Echocardiographic evaluation did not show alterations in cardiac parameters. In the HF group, muscles were observed to increase their +dT/dt (C: 52.6 ± 9.0 g/mm2/s and HF: 68.0 ± 17.0 g/mm2/s; p < 0.05. In addition, there was no changes in the cardiac expression of Ca2+ handling proteins. Conclusion: The initial moment of obesity promotes alterations to hormonal and lipid profiles without cardiac damage or changes in Ca2+ handling.

  6. Assessing the Diversity of Rodent-Borne Viruses: Exploring of High-Throughput Sequencing and Classical Amplification/Sequencing Approaches.

    Science.gov (United States)

    Drewes, Stephan; Straková, Petra; Drexler, Jan F; Jacob, Jens; Ulrich, Rainer G

    2017-01-01

    Rodents are distributed throughout the world and interact with humans in many ways. They provide vital ecosystem services, some species are useful models in biomedical research and some are held as pet animals. However, many rodent species can have adverse effects such as damage to crops and stored produce, and they are of health concern because of the transmission of pathogens to humans and livestock. The first rodent viruses were discovered by isolation approaches and resulted in break-through knowledge in immunology, molecular and cell biology, and cancer research. In addition to rodent-specific viruses, rodent-borne viruses are causing a large number of zoonotic diseases. Most prominent examples are reemerging outbreaks of human hemorrhagic fever disease cases caused by arena- and hantaviruses. In addition, rodents are reservoirs for vector-borne pathogens, such as tick-borne encephalitis virus and Borrelia spp., and may carry human pathogenic agents, but likely are not involved in their transmission to human. In our days, next-generation sequencing or high-throughput sequencing (HTS) is revolutionizing the speed of the discovery of novel viruses, but other molecular approaches, such as generic RT-PCR/PCR and rolling circle amplification techniques, contribute significantly to the rapidly ongoing process. However, the current knowledge still represents only the tip of the iceberg, when comparing the known human viruses to those known for rodents, the mammalian taxon with the largest species number. The diagnostic potential of HTS-based metagenomic approaches is illustrated by their use in the discovery and complete genome determination of novel borna- and adenoviruses as causative disease agents in squirrels. In conclusion, HTS, in combination with conventional RT-PCR/PCR-based approaches, resulted in a drastically increased knowledge of the diversity of rodent viruses. Future improvements of the used workflows, including bioinformatics analysis, will further

  7. Stress, social behavior, and resilience: Insights from rodents

    Science.gov (United States)

    Beery, Annaliese K.; Kaufer, Daniela

    2014-01-01

    The neurobiology of stress and the neurobiology of social behavior are deeply intertwined. The social environment interacts with stress on almost every front: social interactions can be potent stressors; they can buffer the response to an external stressor; and social behavior often changes in response to stressful life experience. This review explores mechanistic and behavioral links between stress, anxiety, resilience, and social behavior in rodents, with particular attention to different social contexts. We consider variation between several different rodent species and make connections to research on humans and non-human primates. PMID:25562050

  8. Contrasting Patterns in Mammal–Bacteria Coevolution: Bartonella and Leptospira in Bats and Rodents

    Science.gov (United States)

    Lei, Bonnie R.; Olival, Kevin J.

    2014-01-01

    Background Emerging bacterial zoonoses in bats and rodents remain relatively understudied. We conduct the first comparative host–pathogen coevolutionary analyses of bacterial pathogens in these hosts, using Bartonella spp. and Leptospira spp. as a model. Methodology/Principal Findings We used published genetic data for 51 Bartonella genotypes from 24 bat species, 129 Bartonella from 38 rodents, and 26 Leptospira from 20 bats. We generated maximum likelihood and Bayesian phylogenies for hosts and bacteria, and tested for coevoutionary congruence using programs ParaFit, PACO, and Jane. Bartonella spp. and their bat hosts had a significant coevolutionary fit (ParaFitGlobal = 1.9703, P≤0.001; m2 global value = 7.3320, P≤0.0001). Bartonella spp. and rodent hosts also indicated strong overall patterns of cospeciation (ParaFitGlobal = 102.4409, P≤0.001; m2 global value = 86.532, P≤0.0001). In contrast, we were unable to reject independence of speciation events in Leptospira and bats (ParaFitGlobal = 0.0042, P = 0.84; m2 global value = 4.6310, P = 0.5629). Separate analyses of New World and Old World data subsets yielded results congruent with analysis from entire datasets. We also conducted event-based cophylogeny analyses to reconstruct likely evolutionary histories for each group of pathogens and hosts. Leptospira and bats had the greatest number of host switches per parasite (0.731), while Bartonella and rodents had the fewest (0.264). Conclusions/Significance In both bat and rodent hosts, Bartonella exhibits significant coevolution with minimal host switching, while Leptospira in bats lacks evolutionary congruence with its host and has high number of host switches. Reasons underlying these variable coevolutionary patterns in host range are likely due to differences in disease-specific transmission and host ecology. Understanding the coevolutionary patterns and frequency of host-switching events between bacterial pathogens and

  9. Research Note. Occurrence of gastrointestinal helminths in commensal rodents from Tabasco, Mexico

    OpenAIRE

    Cigarroa-Toledo N.; Santos-Martinez Y. De Los; Zaragoza-Vera C. V.; Garcia-Rodriguez M. M.; Baak-Baak C. M.; Machain-Williams C.; Garcia-Rejon J. E.; Panti-May J. A.; Torres-Chable O. M.

    2017-01-01

    The aim of this study was to determine the prevalence and species composition of helminths in commensal rodents captured inside private residences in the city of Villahermosa in Tabasco, Mexico. Trapping was performed at each house for three consecutive nights from October to December 2015. Fifty commensal rodents were captured: 23 Rattus norvegicus, 16 Mus musculus and 11 Rattus rattus. Rodents were transported alive to the laboratory and held in cages until they defecated. Feces were analyz...

  10. Obesity prevention: Comparison of techniques and potential solution

    Science.gov (United States)

    Zulkepli, Jafri; Abidin, Norhaslinda Zainal; Zaibidi, Nerda Zura

    2014-12-01

    Over the years, obesity prevention has been a broadly studied subject by both academicians and practitioners. It is one of the most serious public health issue as it can cause numerous chronic health and psychosocial problems. Research is needed to suggest a population-based strategy for obesity prevention. In the academic environment, the importance of obesity prevention has triggered various problem solving approaches. A good obesity prevention model, should comprehend and cater all complex and dynamics issues. Hence, the main purpose of this paper is to discuss the qualitative and quantitative approaches on obesity prevention study and to provide an extensive literature review on various recent modelling techniques for obesity prevention. Based on these literatures, the comparison of both quantitative and qualitative approahes are highlighted and the justification on the used of system dynamics technique to solve the population of obesity is discussed. Lastly, a potential framework solution based on system dynamics modelling is proposed.

  11. Ciliary dysfunction and obesity.

    Science.gov (United States)

    Mok, C A; Héon, E; Zhen, M

    2010-01-01

    Obesity associates with increased health risks such as heart disease, stroke and diabetes. The steady rise in the obese population worldwide poses an increasing burden on health systems. Genetic factors contribute to the development of obesity, and the elucidation of their physiological functions helps to understand the cause, and improve the prevention, diagnosis and treatment for this disorder. Primary cilia are evolutionarily conserved organelles whose dysfunctions lead to human disorders now defined as ciliopathies. Human ciliopathies present pleiotropic and overlapping phenotypes that often include retinal degeneration, cystic renal anomalies and obesity. Increasing evidence implicates an intriguing involvement of cilia in lipid/energy homeostasis. Here we discuss recent studies in support of the key roles of ciliary genes in the development and pathology of obesity in various animal models. Genes affecting ciliary development and function may pose promising candidate underlying genetic factors that contribute to the development of common obesity.

  12. Porcine models for the study of local and systemic regulation of innate immune factors in obesity

    DEFF Research Database (Denmark)

    Højbøge, Tina Rødgaard

    state of low-grade inflammation in the adipose tissues, which involves several factors of the innate immune response having a range of systemic effects and which has been implicated in the development of the metabolic syndrome. To investigate the impact of obesity and obesity-related diseases good...... translational animal models are needed, and as such pigs have been proposed as relevant models for human obesity-induced inflammation as pigs share many genetic, anatomical and physiological features with humans. In this project the up- and downregulation of genes and proteins involved in the innate immune...... the number of animals to be used in a trial to obtain statistical power. For the gene regulation analysis, two platforms for quantitative real-time PCR (qPCR) were employed: The Rotor-Gene Q instrument and the microfluidics-based high-throughput Bio-Mark. For the serum protein concentrations analysis several...

  13. Wild rodents (Dipodomys merriami) used as biomonitors in contaminated mining sites.

    Science.gov (United States)

    Espinosa-Reyes, Guillermo; Torres-Dosal, Arturo; Ilizaliturri, Cesar; Gonzalez-Mille, Donaji; Diaz-Barriga, Fernando; Mejia-Saavedra, Jesus

    2010-01-01

    Mining is one of the most important industrial activities globally; however, mining processes have critical environmental impacts, as mining is a major source of metals and metalloids that contribute significantly to the pollution of soil, sediment, water and air. Heavy metals can impact the health of exposed human populations and nonhuman receptors. This study focused on arsenic because its genotoxicity is well-known. Previously, we proposed a methodology to evaluate and integrate risk from a single source affecting different biologic receptors. Here, we propose an alternative approach estimating arsenic exposure in children and kangaroo rats using probabilistic simulation with Monte Carlo modeling. The estimates are then associated to measured DNA damage and compared to both populations of children and rodents living in contaminated and in reference areas. Finally, based on the integrated analysis of the generated information, we evaluate the potential use of wild rodents (Dipodomys merriami) as a biomonitor at mining sites. Results indicate that the variation of genotoxicity in children of the reference site is approximately 2 units when compared to the children of the contaminated site. In the rodents we observed a variation of approximately 4 units between those of the reference site when compared to those living on the contaminated site. We propose that D. merriami can be used as a biomonitor organism in sites with mining activity, and that a non-lethal test can be used to evaluate risk from metal exposure.

  14. Comparison of food hoarding of two sympatric rodent species under interspecific competition.

    Science.gov (United States)

    Zhang, Yi-Feng; Tong, Lei; Ji, Wei-Hong; Lu, Ji-Qi

    2013-01-01

    Competition can greatly affect the food hoarding strategies of rodents and the fate of seeds hoarded. In order to understand the influence of interspecific competition on food caching behavior of sympatric rodents, we investigated food hoarding patterns of two sympatric rodent species, buff-breasted rat (Rattus flavipectus) and Chinese white-bellied rat (Niviventor confucianus), and compared their responses and adjustment in hoarding behavior under interspecific competition. The results showed that: (1) the buff-breasted rat larder hoarded seeds only, while Chinese white-bellied rat hoarded seeds in both larder and scatter forms; (2) two species of rodents both larder hoarded more seeds when competitors were present; and (3) the Chinese white-bellied rats adjusted their seed hoarding from scatter to larder when competitors were introduced, which reduced the seed availability. Therefore, we concluded that rodents would adjust their food hoarding strategy when interspecific competitors were present, and this may produce a different effect on the fate of seeds and the recruitment of plants. This article is part of a Special Issue entitled: insert SI title. Copyright © 2012. Published by Elsevier B.V.

  15. Navigating to new frontiers in behavioral neuroscience: Traditional neuropsychological tests predict human performance on a rodent-inspired radial-arm maze

    Directory of Open Access Journals (Sweden)

    Sarah E. Mennenga

    2014-09-01

    Full Text Available We constructed an 11-arm, walk-through, human radial-arm maze (HRAM as a translational instrument to compare existing methodology in the areas of rodent and human learning and memory research. The HRAM, utilized here, serves as an intermediary test between the classic rat radial-arm maze (RAM and standard human neuropsychological and cognitive tests. We show that the HRAM is a useful instrument to examine working memory ability, explore the relationships between rodent and human memory and cognition models, and evaluate factors that contribute to human navigational ability. One-hundred-and-fifty-seven participants were tested on the HRAM, and scores were compared to performance on a standard cognitive battery focused on episodic memory, working memory capacity, and visuospatial ability. We found that errors on the HRAM increased as working memory demand became elevated, similar to the pattern typically seen in rodents, and that for this task, performance appears similar to Miller’s classic description of human working memory capacity of 7±2 items. Regression analysis revealed that measures of working memory capacity and visuospatial ability accounted for a large proportion of variance in HRAM scores, while measures of episodic memory and general intelligence did not serve as significant predictors of HRAM performance. We present the HRAM as a novel instrument for measuring navigational behavior in humans, as is traditionally done in basic science studies evaluating rodent learning and memory, thus providing a useful tool to help connect and translate between human and rodent models of cognitive functioning.

  16. Persistent influence of maternal obesity on offspring health: Mechanisms from animal models and clinical studies.

    Science.gov (United States)

    Wankhade, Umesh D; Thakali, Keshari M; Shankar, Kartik

    2016-11-05

    The consequences of excessive maternal weight and adiposity at conception for the offspring are now well recognized. Maternal obesity increases the risk of overweight and obesity even in children born with appropriate-for-gestational age (AGA) birth weights. Studies in animal models have employed both caloric excess and manipulation of macronutrients (especially high-fat) to mimic hypercaloric intake present in obesity. Findings from these studies show transmission of susceptibility to obesity, metabolic dysfunction, alterations in glucose homeostasis, hepatic steatosis, skeletal muscle metabolism and neuroendocrine changes in the offspring. This review summarizes the essential literature in this area in both experimental and clinical domains and focuses on the translatable aspects of these experimental studies. Moreover this review highlights emerging mechanisms broadly explaining maternal obesity-associated developmental programming. The roles of early developmental alterations and placental adaptations are also reviewed. Increasing evidence also points to changes in the epigenome and other emerging mechanisms such as alterations in the microbiome that may contribute to persistent changes in the offspring. Finally, we examine potential interventions that have been employed in clinical cohorts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Tick parasites of rodents in Romania: host preferences, community structure and geographical distribution.

    Science.gov (United States)

    Mihalca, Andrei D; Dumitrache, Mirabela O; Sándor, Attila D; Magdaş, Cristian; Oltean, Miruna; Györke, Adriana; Matei, Ioana A; Ionică, Angela; D'Amico, Gianluca; Cozma, Vasile; Gherman, Călin M

    2012-11-21

    Ticks are among the most important vectors of zoonotic diseases in temperate regions of Europe, with widespread distribution and high densities, posing an important medical risk. Most ticks feed on a variety of progressively larger hosts, with a large number of small mammal species typically harbouring primarily the immature stages. However, there are certain Ixodidae that characteristically attack micromammals also during their adult stage. Rodents are widespread hosts of ticks, important vectors and competent reservoirs of tick-borne pathogens. Micromammal-tick associations have been poorly studied in Romania, and our manuscript shows the results of a large scale study on tick infestation epidemiology in rodents from Romania. Rodents were caught using snap-traps in a variety of habitats in Romania, between May 2010 and November 2011. Ticks were individually collected from these rodents and identified to species and development stage. Frequency, mean intensity, prevalence and its 95% confidence intervals were calculated using the EpiInfo 2000 software. A p value of Romania for the presence of ticks. Each collected tick was identified to species level and the following epidemiological parameters were calculated: prevalence, mean intensity and mean abundance. The total number of ticks collected from rodents was 483, with eight species identified: Ixodes ricinus, I. redikorzevi, I. apronophorus, I. trianguliceps, I. laguri, Dermacentor marginatus, Rhipicephalus sanguineus and Haemaphysalis sulcata. The overall prevalence of tick infestation was 29.55%, with a mean intensity of 3.86 and a mean abundance of 1.14. Only two polyspecific infestations were found: I. ricinus + I. redikorzevi and I. ricinus + D. marginatus. Our study showed a relatively high diversity of ticks parasitizing rodents in Romania. The most common tick in rodents was I. ricinus, followed by I. redikorzevi. Certain rodents seem to host a significantly higher number of tick species than others, the

  18. The need to implement the landscape of fear within rodent pest management strategies.

    Science.gov (United States)

    Krijger, Inge M; Belmain, Steven R; Singleton, Grant R; Groot Koerkamp, Peter Wg; Meerburg, Bastiaan G

    2017-12-01

    Current reactive pest management methods have serious drawbacks such as the heavy reliance on chemicals, emerging genetic rodenticide resistance and high secondary exposure risks. Rodent control needs to be based on pest species ecology and ethology to facilitate the development of ecologically based rodent management (EBRM). An important aspect of EBRM is a strong understanding of rodent pest species ecology, behaviour and spatiotemporal factors. Gaining insight into the behaviour of pest species is a key aspect of EBRM. The landscape of fear (LOF) is a mapping of the spatial variation in the foraging cost arising from the risk of predation, and reflects the levels of fear a prey species perceives at different locations within its home range. In practice, the LOF maps habitat use as a result of perceived fear, which shows where bait or traps are most likely to be encountered and used by rodents. Several studies have linked perceived predation risk of foraging animals with quitting-harvest rates or giving-up densities (GUDs). GUDs have been used to reflect foraging behaviour strategies of predator avoidance, but to our knowledge very few papers have directly used GUDs in relation to pest management strategies. An opportunity for rodent control strategies lies in the integration of the LOF of rodents in EBRM methodologies. Rodent management could be more efficient and effective by concentrating on those areas where rodents perceive the least levels of predation risk. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  19. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters.

    Science.gov (United States)

    Smit, Cornelis; De Hoogd, Sjoerd; Brüggemann, Roger J M; Knibbe, Catherijne A J

    2018-03-01

    The rising prevalence of obesity confronts clinicians with dosing problems in the (extreme) overweight population. Obesity has a great impact on key organs that play a role in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs, however the ultimate impact of these changes on how to adapt the dose may not always be known. Areas covered: In this review, physiological changes associated with obesity are discussed. An overview is provided on the alterations in absorption, distribution, drug metabolism and clearance in (morbid) obesity focusing on general principles that can be extracted from pharmacokinetic studies. Also, relevant pharmacodynamic considerations in obesity are discussed. Expert opinion: Over the last two decades, increased knowledge is generated on PK and PD in obesity. Future research should focus on filling in the knowledge gaps that remain, especially in connecting obesity-related physiological changes with changes in PK and/or PD and vice versa. Ultimately, this knowledge can be used to develop physiologically based PK and PD models on the basis of quantitative systems pharmacology principles. Moreover, efforts should focus on thorough prospective evaluation of developed model-based doses with subsequent implementation of these dosing recommendations in clinical practice.

  20. Modelling Gender Differences in the Economic and Social Influences of Obesity in Australian Young People

    OpenAIRE

    Gulay Avsar; Roger Ham; W. Kathy Tannous

    2017-01-01

    In Australia, as in many other developed economies, the prevalence of obesity has risen significantly in all age groups and especially in young males and females over the past decade. Using data from the Household, Income and Labour Dynamics in Australia (HILDA) Survey, this paper investigates the influence of economic, personality and social factor demographics on the incidence of obesity in Australian youths. The study uses two random parameters logit models, including one that allows for g...

  1. Why can't rodents vomit? A comparative behavioral, anatomical, and physiological study.

    Directory of Open Access Journals (Sweden)

    Charles C Horn

    Full Text Available The vomiting (emetic reflex is documented in numerous mammalian species, including primates and carnivores, yet laboratory rats and mice appear to lack this response. It is unclear whether these rodents do not vomit because of anatomical constraints (e.g., a relatively long abdominal esophagus or lack of key neural circuits. Moreover, it is unknown whether laboratory rodents are representative of Rodentia with regards to this reflex. Here we conducted behavioral testing of members of all three major groups of Rodentia; mouse-related (rat, mouse, vole, beaver, Ctenohystrica (guinea pig, nutria, and squirrel-related (mountain beaver species. Prototypical emetic agents, apomorphine (sc, veratrine (sc, and copper sulfate (ig, failed to produce either retching or vomiting in these species (although other behavioral effects, e.g., locomotion, were noted. These rodents also had anatomical constraints, which could limit the efficiency of vomiting should it be attempted, including reduced muscularity of the diaphragm and stomach geometry that is not well structured for moving contents towards the esophagus compared to species that can vomit (cat, ferret, and musk shrew. Lastly, an in situ brainstem preparation was used to make sensitive measures of mouth, esophagus, and shoulder muscular movements, and phrenic nerve activity-key features of emetic episodes. Laboratory mice and rats failed to display any of the common coordinated actions of these indices after typical emetic stimulation (resiniferatoxin and vagal afferent stimulation compared to musk shrews. Overall the results suggest that the inability to vomit is a general property of Rodentia and that an absent brainstem neurological component is the most likely cause. The implications of these findings for the utility of rodents as models in the area of emesis research are discussed.

  2. Zoonotic pathogens in Atlantic Forest wild rodents in Brazil: Bartonella and Coxiella infections.

    Science.gov (United States)

    Rozental, Tatiana; Ferreira, Michelle Santos; Guterres, Alexandro; Mares-Guia, Maria Angélica; Teixeira, Bernardo R; Gonçalves, Jonathan; Bonvicino, Cibele Rodrigues; D'Andrea, Paulo Sergio; de Lemos, Elba Regina Sampaio

    2017-04-01

    Zoonotic pathogens comprise a significant and increasing fraction of all emerging and re-emerging infectious diseases that plague humans. Identifying host species is one of the keys to controlling emerging infectious diseases. From March 2007 until April 2012, we collected a total of 131 wild rodents in eight municipalities of Rio de Janeiro, Brazil. We investigated these rodents for infection with Coxiella burnetii, Bartonella spp. and Rickettsia spp. In total, 22.1% (29/131) of the rodents were infected by at least one pathogen; co-infection was detected in 1.5% (2/131) of rodents. Coxiella burnetii was detected in 4.6% (6/131) of the wild animals, 17.6% of the rodents harbored Bartonella spp. No cases of Rickettsia were identified. Bartonella doshiae and Bartonella vinsonii were the species found on the wild mammals. This report is the first to note C. burnetii, B. doshiae and B. vinsonii natural infections in Atlantic Forest wild rodents in Brazil. Our work highlights the potential risk of transmission to humans, since most of the infected specimens belong to generalist species that live near human dwellings. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. An Examination of the Association of Selected Toxic Metals with Total and Central Obesity Indices: NHANES 99-02

    Directory of Open Access Journals (Sweden)

    Douglas M. Ruden

    2010-08-01

    Full Text Available It is conceivable that toxic metals contribute to obesity by influencing various aspects of metabolism, such as by substituting for essential micronutrients and vital metals, or by inducing oxidative stress. Deficiency of the essential metal zinc decreases adiposity in humans and rodent models, whereas deficiencies of chromium, copper, iron, and magnesium increases adiposity. This study utilized the NHANES 99-02 data to explore the association between waist circumference and body mass index with the body burdens of selected toxic metals (barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, and tungsten. Some of the associations were significant direct relationships (barium and thallium, and some of the associations were significant inverse relationships (cadmium, cobalt, cesium, and lead. Molybdenum, antimony, and tungsten had mostly insignificant associations with waist circumference and body mass index. This is novel result for most of the toxic metals studied, and a surprising result for lead because high stored lead levels have been shown to correlate with higher rates of diabetes, and obesity may be a key risk factor for developing diabetes. These associations suggest the possibility that environmental exposure to metals may contribute to variations in human weight gain/loss. Future research, such as prospective studies rather than the cross-sectional studies presented here, is warranted to confirm these findings.

  4. An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99-02.

    Science.gov (United States)

    Padilla, Miguel A; Elobeid, Mai; Ruden, Douglas M; Allison, David B

    2010-09-01

    It is conceivable that toxic metals contribute to obesity by influencing various aspects of metabolism, such as by substituting for essential micronutrients and vital metals, or by inducing oxidative stress. Deficiency of the essential metal zinc decreases adiposity in humans and rodent models, whereas deficiencies of chromium, copper, iron, and magnesium increases adiposity. This study utilized the NHANES 99-02 data to explore the association between waist circumference and body mass index with the body burdens of selected toxic metals (barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, and tungsten). Some of the associations were significant direct relationships (barium and thallium), and some of the associations were significant inverse relationships (cadmium, cobalt, cesium, and lead). Molybdenum, antimony, and tungsten had mostly insignificant associations with waist circumference and body mass index. This is novel result for most of the toxic metals studied, and a surprising result for lead because high stored lead levels have been shown to correlate with higher rates of diabetes, and obesity may be a key risk factor for developing diabetes. These associations suggest the possibility that environmental exposure to metals may contribute to variations in human weight gain/loss. Future research, such as prospective studies rather than the cross-sectional studies presented here, is warranted to confirm these findings.

  5. Ghrelin influences novelty seeking behavior in rodents and men.

    Science.gov (United States)

    Hansson, Caroline; Shirazi, Rozita H; Näslund, Jakob; Vogel, Heike; Neuber, Corinna; Holm, Göran; Anckarsäter, Henrik; Dickson, Suzanne L; Eriksson, Elias; Skibicka, Karolina P

    2012-01-01

    Recent discoveries indicate an important role for ghrelin in drug and alcohol reward and an ability of ghrelin to regulate mesolimbic dopamine activity. The role of dopamine in novelty seeking, and the association between this trait and drug and alcohol abuse, led us to hypothesize that ghrelin may influence novelty seeking behavior. To test this possibility we applied several complementary rodent models of novelty seeking behavior, i.e. inescapable novelty-induced locomotor activity (NILA), novelty-induced place preference and novel object exploration, in rats subjected to acute ghrelin receptor (growth hormone secretagogue receptor; GHSR) stimulation or blockade. Furthermore we assessed the possible association between polymorphisms in the genes encoding ghrelin and GHSR and novelty seeking behavior in humans. The rodent studies indicate an important role for ghrelin in a wide range of novelty seeking behaviors. Ghrelin-injected rats exhibited a higher preference for a novel environment and increased novel object exploration. Conversely, those with GHSR blockade drastically reduced their preference for a novel environment and displayed decreased NILA. Importantly, the mesolimbic ventral tegmental area selective GHSR blockade was sufficient to reduce the NILA response indicating that the mesolimbic GHSRs might play an important role in the observed novelty responses. Moreover, in untreated animals, a striking positive correlation between NILA and sucrose reward behavior was detected. Two GHSR single nucleotide polymorphisms (SNPs), rs2948694 and rs495225, were significantly associated with the personality trait novelty seeking, as assessed using the Temperament and Character Inventory (TCI), in human subjects. This study provides the first evidence for a role of ghrelin in novelty seeking behavior in animals and humans, and also points to an association between food reward and novelty seeking in rodents.

  6. An in-vitro–in-vivo model for the transdermal delivery of cholecalciferol for the purposes of rodent management

    Science.gov (United States)

    Davies, J.; Ingham, A.

    2015-01-01

    The natural selection of anticoagulant resistant rats has resulted in a need for an alternative to anticoagulant rodenticides which differs in both active ingredient and in the method of dosing. Cholecalciferol toxicity to rodents using the dermal route is demonstrated using a variety of penetration enhancing formulations in two in-vitro models and finally in-vivo. A 1 ml dose of 50/50 (v/v) DMSO/ethanol containing 15% (v/v) PEG 200 and 20% (w/v) cholecalciferol was judged as ‘sufficiently effective’ in line with the European Union’s Biocidal Products Regulation (No. 528/2012) during in-vivo studies. This dose was found to cause 100% mortality in a rat population in 64.4 h (±22 h). PMID:25835266

  7. A New Variational Method for Bias Correction and Its Applications to Rodent Brain Extraction.

    Science.gov (United States)

    Chang, Huibin; Huang, Weimin; Wu, Chunlin; Huang, Su; Guan, Cuntai; Sekar, Sakthivel; Bhakoo, Kishore Kumar; Duan, Yuping

    2017-03-01

    Brain extraction is an important preprocessing step for further analysis of brain MR images. Significant intensity inhomogeneity can be observed in rodent brain images due to the high-field MRI technique. Unlike most existing brain extraction methods that require bias corrected MRI, we present a high-order and L 0 regularized variational model for bias correction and brain extraction. The model is composed of a data fitting term, a piecewise constant regularization and a smooth regularization, which is constructed on a 3-D formulation for medical images with anisotropic voxel sizes. We propose an efficient multi-resolution algorithm for fast computation. At each resolution layer, we solve an alternating direction scheme, all subproblems of which have the closed-form solutions. The method is tested on three T2 weighted acquisition configurations comprising a total of 50 rodent brain volumes, which are with the acquisition field strengths of 4.7 Tesla, 9.4 Tesla and 17.6 Tesla, respectively. On one hand, we compare the results of bias correction with N3 and N4 in terms of the coefficient of variations on 20 different tissues of rodent brain. On the other hand, the results of brain extraction are compared against manually segmented gold standards, BET, BSE and 3-D PCNN based on a number of metrics. With the high accuracy and efficiency, our proposed method can facilitate automatic processing of large-scale brain studies.

  8. Stereotypes Can “Get Under the Skin”: Testing a Self-Stereotyping and Psychological Resource Model of Overweight and Obesity

    Science.gov (United States)

    Rivera, Luis M.; Paredez, Stefanie M.

    2014-01-01

    The authors draw upon social, personality, and health psychology to propose and test a self-stereotyping and psychological resource model of overweight and obesity. The model contends that self-stereotyping depletes psychological resources, namely self-esteem, that help to prevent overweight and obesity. In support of the model, mediation analysis demonstrates that adult Hispanics who highly self-stereotype had lower levels of self-esteem than those who self-stereotype less, which in turn predicted higher levels of body mass index (overweight and obesity levels). Furthermore, the model did not hold for the referent sample, White participants, and an alternative mediation model was not supported. These data are the first to theoretically and empirically link self-stereotyping and self-esteem (a psychological resource) with a strong physiological risk factor for morbidity and short life expectancy in stigmatized individuals. Thus, this research contributes to understanding ethnic-racial health disparities in the United States and beyond. PMID:25221353

  9. Guide to Commensal Rodent Control

    Science.gov (United States)

    1991-12-01

    in many detergents also fluoresce. For positive identification, place the suspect material on Urease Siom lhymol Blue test paper, moisten with water...are applied in a thin layer in protected rat and mouse r’unways, baitboxes, or tubes along walls. The powder is picked up by the rodents on their feet

  10. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats.

    Science.gov (United States)

    Legette, Leecole L; Luna, Arlyn Y Moreno; Reed, Ralph L; Miranda, Cristobal L; Bobe, Gerd; Proteau, Rosita R; Stevens, Jan F

    2013-07-01

    Obesity contributes to increased risk for several chronic diseases including cardiovascular disease and type 2 diabetes. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), was tested for efficacy on biomarkers of metabolic syndrome in 4 week old Zucker fa/fa rats, a rodent model of obesity. Rats received daily oral doses of xanthohumol at 0, 1.86, 5.64, and 16.9 mg/kg BW for 6 weeks. All rats were maintained on a high fat (60% kcal) AIN-93G diet for 3 weeks to induce severe obesity followed by a normal AIN-93G (15% kcal fat) diet for the last 3 weeks of the study. Weekly food intake and body weight were recorded. Plasma cholesterol, glucose, insulin, triglyceride, and monocyte chemoattractant protein-1 (MCP-1) levels were assessed using commercial assay kits. Plasma and liver tissue levels of XN and its metabolites were determined by liquid-chromatography tandem mass spectrometry. Plasma and liver tissue levels of xanthohumol were similar between low and medium dose groups and significantly (peffect on body weight and plasma glucose levels. The highest dose group (n=6) had significantly lower plasma glucose levels compared to the control group (n=6) in male but not female rats. There was also a significant decrease in body weight for male rats in the highest dose group (16.9 mg/kg BW) compared to rats that received no xanthohumol, which was also not seen for female rats. Plasma cholesterol, insulin, triglycerides, and MCP-1 as well as food intake were not affected by treatment. The findings suggest that xanthohumol has beneficial effects on markers of metabolic syndrome. Copyright © 2012. Published by Elsevier Ltd.

  11. Occurrence and distribution of Giardia species in wild rodents in Germany.

    Science.gov (United States)

    Helmy, Yosra A; Spierling, Nastasja G; Schmidt, Sabrina; Rosenfeld, Ulrike M; Reil, Daniela; Imholt, Christian; Jacob, Jens; Ulrich, Rainer G; Aebischer, Toni; Klotz, Christian

    2018-03-27

    Giardiasis is an important gastrointestinal parasitic disease in humans and other mammals caused by the protozoan Giardia duodenalis. This species complex is represented by genetically distinct groups (assemblages A-H) with varying zoonotic potential and host preferences. Wild rodents can harbor potentially zoonotic assemblages A and B, and the rodent-specific assemblage G. Other Giardia spp. found in these animals are Giardia muris and Giardia microti. For the latter, only limited information on genetic typing is available. It has been speculated that wild rodents might represent an important reservoir for parasites causing human giardiasis. The aim of this study was to investigate the occurrence and distribution of Giardia spp. and assemblage types in wild rodents from different study sites in Germany. Screening of 577 wild rodents of the genera Apodemus, Microtus and Myodes, sampled at eleven study sites in Germany, revealed a high overall Giardia prevalence. Giardia species determination at the SSU rDNA gene locus revealed that Apodemus mice, depending on species, were predominantly infected with one of two distinct G. muris sequence types. Giardia microti was the predominant parasite species found in voles of the genera Microtus and Myodes. Only a few animals were positive for potentially zoonotic G. duodenalis. Subtyping at the beta-giardin (bg) and glutamine dehydrogenase (gdh) genes strongly supported the existence of different phylogenetic subgroups of G. microti that are preferentially harbored by distinct host species. The present study highlights the preference of G. muris for Apodemus, and G. microti for Microtus and Myodes hosts and argues for a very low prevalence of zoonotic G. duodenalis assemblages in wild rodents in Germany. It also provides evidence that G. muris and G. microti subdivide into several phylogenetically distinguishable subgroups, each of which appears to be preferentially harbored by species of a particular rodent host genus

  12. Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (NAFLD. Structural equation modeling approach.

    Directory of Open Access Journals (Sweden)

    Maria Elena Romero-Ibarguengoitia

    Full Text Available Structural equation modeling (SEM can help understanding complex functional relationships among obesity, non-alcoholic fatty liver disease (NAFLD, family history of obesity, targeted metabolomics and pro-inflammatory markers. We tested two hypotheses: 1 If obesity precedes an excess of free fatty acids that increase oxidative stress and mitochondrial dysfunction, there would be an increase of serum acylcarnitines, amino acids and cytokines in obese subjects. Acylcarnitines would be related to non-alcoholic fatty disease that will induce insulin resistance. 2 If a positive family history of obesity and type 2 diabetes are the major determinants of the metabolomic profile, there would be higher concentration of amino acids and acylcarnitines in patients with this background that will induce obesity and NAFLD which in turn will induce insulin resistance.137 normoglycemic subjects, mean age (SD of 30.61 (8.6 years divided in three groups: BMI30 with absence of NAFLD (G2, n = 24; and BMI>30 with NAFLD (G3, n = 31. Family history of obesity (any was present in 53%. Both models were adjusted in SEM. Family history of obesity predicted obesity but could not predict acylcarnitines and amino acid concentrations (effect size <0.2, but did predict obesity phenotype.Family history of obesity is the major predictor of obesity, and the metabolic abnormalities on amino acids, acylcarnitines, inflammation, insulin resistance, and NAFLD.

  13. Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (NAFLD). Structural equation modeling approach.

    Science.gov (United States)

    Romero-Ibarguengoitia, Maria Elena; Vadillo-Ortega, Felipe; Caballero, Augusto Enrique; Ibarra-González, Isabel; Herrera-Rosas, Arturo; Serratos-Canales, María Fabiola; León-Hernández, Mireya; González-Chávez, Antonio; Mummidi, Srinivas; Duggirala, Ravindranath; López-Alvarenga, Juan Carlos

    2018-01-01

    Structural equation modeling (SEM) can help understanding complex functional relationships among obesity, non-alcoholic fatty liver disease (NAFLD), family history of obesity, targeted metabolomics and pro-inflammatory markers. We tested two hypotheses: 1) If obesity precedes an excess of free fatty acids that increase oxidative stress and mitochondrial dysfunction, there would be an increase of serum acylcarnitines, amino acids and cytokines in obese subjects. Acylcarnitines would be related to non-alcoholic fatty disease that will induce insulin resistance. 2) If a positive family history of obesity and type 2 diabetes are the major determinants of the metabolomic profile, there would be higher concentration of amino acids and acylcarnitines in patients with this background that will induce obesity and NAFLD which in turn will induce insulin resistance. 137 normoglycemic subjects, mean age (SD) of 30.61 (8.6) years divided in three groups: BMI30 with absence of NAFLD (G2), n = 24; and BMI>30 with NAFLD (G3), n = 31. Family history of obesity (any) was present in 53%. Both models were adjusted in SEM. Family history of obesity predicted obesity but could not predict acylcarnitines and amino acid concentrations (effect size obesity phenotype. Family history of obesity is the major predictor of obesity, and the metabolic abnormalities on amino acids, acylcarnitines, inflammation, insulin resistance, and NAFLD.

  14. Modeling specific phobias and posttraumatic stress disorder in rodents: the challenge to convey both cognitive and emotional features.

    Science.gov (United States)

    Berardi, Andrea; Trezza, Viviana; Campolongo, Campolongo

    2012-01-01

    Aberrant emotional memory processing is a core, disabling feature of both specific phobias and posttraumatic stress disorder (PTSD), two psychiatric diseases of significant prevalence and morbidity whose cognitive symptoms cannot be adequately treated by current psychopharmacological tools. Elucidating the neurobiological mechanisms involved in the etiology of these diseases is of great interest for the identification of new therapeutics that improve not only the symptomatology but also the full recovery from the pathology. To this aim, several animal models have been proposed based on substantial resemblance between the behavioral alterations seen in animals and the human pathology. The purpose of this review is to describe and comment on the most commonly used rodent models of specific phobias and PTSD. A particular focus will be reserved to the cued version of fear conditioning, as the highly specific stimulus-bound conditioned fear response seems to fit well with clinical descriptions of phobic fear.Moreover, animal models of PTSD will be evaluated by referring to three elements that are considered essential ina valid model of this disease: stressor exposure, memory for the stressor, and anxiety-related behaviors. Finally, current therapeutic directions, with a focus on cannabinoid and glucocorticoid compounds, will be briefly outlined.

  15. Sub-processes of motor learning revealed by a robotic manipulandum for rodents.

    Science.gov (United States)

    Lambercy, O; Schubring-Giese, M; Vigaru, B; Gassert, R; Luft, A R; Hosp, J A

    2015-02-01

    Rodent models are widely used to investigate neural changes in response to motor learning. Usually, the behavioral readout of motor learning tasks used for this purpose is restricted to a binary measure of performance (i.e. "successful" movement vs. "failure"). Thus, the assignability of research in rodents to concepts gained in human research - implying diverse internal models that constitute motor learning - is still limited. To solve this problem, we recently introduced a three-degree-of-freedom robotic platform designed for rats (the ETH-Pattus) that combines an accurate behavioral readout (in the form of kinematics) with the possibility to invasively assess learning related changes within the brain (e.g. by performing immunohistochemistry or electrophysiology in acute slice preparations). Here, we validate this platform as a tool to study motor learning by establishing two forelimb-reaching paradigms that differ in degree of skill. Both conditions can be precisely differentiated in terms of their temporal pattern and performance levels. Based on behavioral data, we hypothesize the presence of several sub-processes contributing to motor learning. These share close similarities with concepts gained in humans or primates. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Interleukin-7 Plasma Levels in Human Differentiate Anorexia Nervosa, Constitutional Thinness and Healthy Obesity.

    Science.gov (United States)

    Germain, Natacha; Viltart, Odile; Loyens, Anne; Bruchet, Céline; Nadin, Katia; Wolowczuk, Isabelle; Estour, Bruno; Galusca, Bogdan

    2016-01-01

    Interleukin-7 (IL-7) is a cytokine involved in energy homeostasis as demonstrated in rodents. Anorexia nervosa is characterized by restrained eating behavior despite adaptive orexigenic regulation profile including high ghrelin plasma levels. Constitutional thinness is a physiological condition of resistance to weight gain with physiological anorexigenic profile including high Peptide YY plasma level. Healthy obesity can be considered as a physiological state of resistance to weight loss with opposite appetite regulating profile to constitutional thinness including low Peptide YY plasma level. No studies in IL-7 are yet available in those populations. Therefore we evaluated circadian plasma levels of IL-7 in anorexia nervosa compared to constitutional thinness, healthy obese and control females. 10 restrictive-type anorexia nervosa women, 5 bingeing/purging anorexia nervosa woman, 5 recovered restrictive anorexia nervosa women, 4 bulimic females, 10 constitutional thinness women, 7 healthy obese females, and 10 normal weight women controls were enrolled in this cross-sectional study, performed in endocrinology unit and academic laboratory. Twelve-point circadian profiles of plasma IL-7 levels were measured in each subject. 24h mean IL-7 plasma levels (pg/ml, mean±SEM) were decreased in restrictive-type anorexia nervosa (123.4±14.4, panorexia nervosa (24.2±5.6, panorexia nervosa (64.2±16.1, p = 0.01) and healthy obese patients (51±3.2, panorexia nervosa, confirming its difference with constitutional thinness. Healthy obesity, with low IL-7, is once again in mirror image of constitutional thinness with normal high IL-7.

  17. Domestic cats and dogs create a landscape of fear for pest rodents around rural homesteads.

    Directory of Open Access Journals (Sweden)

    Themb'alilahlwa A M Mahlaba

    Full Text Available Using domestic predators such as cats to control rodent pest problems around farms and homesteads is common across the world. However, practical scientific evidence on the impact of such biological control in agricultural settings is often lacking. We tested whether the presence of domestic cats and/or dogs in rural homesteads would affect the foraging behaviour of pest rodents. We estimated giving up densities (GUDs from established feeding patches and estimated relative rodent activity using tracking tiles at 40 homesteads across four agricultural communities. We found that the presence of cats and dogs at the same homestead significantly reduced activity and increased GUDs (i.e. increased perception of foraging cost of pest rodent species. However, if only cats or dogs alone were present at the homestead there was no observed difference in rodent foraging activity in comparison to homesteads with no cats or dogs. Our results suggest that pest rodent activity can be discouraged through the presence of domestic predators. When different types of predator are present together they likely create a heightened landscape of fear for foraging rodents.

  18. Cerebral markers of the serotonergic system in rat models of obesity and after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Ratner, Cecilia; Ettrup, Anders; Bueter, Marco

    2012-01-01

    Food intake and body weight are regulated by a complex system of neural and hormonal signals, of which the anorexigenic neurotransmitter serotonin (5-hydroxytryptamine or 5-HT) is central. In this study, rat models of obesity and weight loss intervention were compared with regard to several 5-HT......DIO as compared to pgDR rats corresponds to what is reported in overweight humans and suggests that the dysfunctions of the 5-HT system associated with overeating or propensity to become overweight are polygenically determined. Our results support that the obesity-prone rat model has high translational value...... and suggests that susceptibility to develop obesity is associated with changed 5-HT tone in the brain that may also regulate hedonic aspects of feeding....

  19. Protozoan Parasites of Rodents and Their Zoonotic Significance in Boyer-Ahmad District, Southwestern Iran

    Directory of Open Access Journals (Sweden)

    Zeinab Seifollahi

    2016-01-01

    Full Text Available Backgrounds. Wild rodents are reservoirs of various zoonotic diseases, such as toxoplasmosis, babesiosis, and leishmaniasis. The current study aimed to assess the protozoan infection of rodents in Boyer-Ahmad district, southwestern Iran. Materials and Methods. A total of 52 rodents were collected from different parts of Boyer-Ahmad district, in Kohgiluyeh and Boyer-Ahmad province, using Sherman live traps. Each rodent was anesthetized with ether, according to the ethics of working with animals, and was dissected. Samples were taken from various tissues and stool samples were collected from the contents of the colon and small intestines. Moreover, 2 to 5 mL of blood was taken from each of the rodents and the sera were examined for anti-Leishmania antibodies, by ELISA, or anti-T. gondii antibodies, by modified agglutination test (MAT. DNA was extracted from brain tissue samples of each rodent and PCR was used to identify the DNA of T. gondii. Results. Of the 52 stool samples of rodents studied by parasitological methods, intestinal protozoa infection was seen in 28 cases (53.8%. From 52 rodents, 19 (36.5% were infected with Trichomonas, 10 (19.2% with Giardia muris, and 11 (21.2% with Entamoeba spp. Also, 10 cases (19.2% were infected with Blastocystis, 3 (5.8% were infected with Chilomastix, 7 (13.5% were infected with Endolimax, 1 (1.9% was infected with Retortamonas, 3 (5.77% were infected with T. gondii, and 6 (11.54% were infected with Trypanosoma lewisi. Antibodies to T. gondii were detected in the sera of 5 (9.61% cases. Results of the molecular study showed T. gondii infection in 3 (5.77% of the rodents. Findings of this study showed that rodents in Kohgiluyeh and Boyer-Ahmad province, southwestern Iran, are infected with several blood and intestinal parasites; some of them might be potential risks to residents and domestic animals in the region.

  20. Population response of rodents to control with rodenticides

    Directory of Open Access Journals (Sweden)

    A.V. TCHABOVSKY

    2009-04-01

    Full Text Available We summarize theoretical approaches and practice of rodent pest control in Russia and former USSR during last 50 years. We review literature as well as original data to understand mechanisms of rodent populations recovery after chemical control campaigns in urban areas, agricultural lands and natural foci of plague. Laboratory and field experiments indicate that inherent individual variation in behavioural, physiological and life-history traits provides survival of heterogeneous mix of individuals in residual population with increased resistance to poisonous baits and high reproductive potential that leads to fast recovery of a population. In a series of field experiments with various rodent and lagomorph species (Mus musculus, Rattus norvegicus, Meriones unguiculatus, M.meridianus, M.tamariscinus, Ochotona pallasii we have shown that patterns of recolonization of depopulated area and mechanisms of population recovery vary among species and depend on species-specific social organization. After control territorial and group-living species demonstrated an increase in mobility and affiliative and marking behaviour and a decrease in intraspecific aggression. The rate of recolonization of treated areas was high due to redistribution of survived individuals and immigration by neighbors. Population recovered to original level due to increased breeding performance and fecundity of both survived residents and immigrants. In contrast, socially-independent species exhibited minor changes in behaviour. Recolonization was mainly due to better survival and recruitment of youngs, so the rate of recolonization was low. Species-specificity of behavioural compensation mechanisms to control should be considered when developing ecologically based rodent management strategies.

  1. an ecological study on rodents of natural vegetation and farm lands ...

    African Journals Online (AJOL)

    preferred customer

    habitat association of rodents was conducted in Siltie natural vegetation and nearby farmlands ... In each habitat type, one representative grid was selected for live trapping. In addition, rodents were also snap- trapped from these habitats. A total of 562 captures was made .... into seeds, leaves, roots, earthworms and arthro-.

  2. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany.

    Science.gov (United States)

    Krücken, Jürgen; Blümke, Julia; Maaz, Denny; Demeler, Janina; Ramünke, Sabrina; Antolová, Daniela; Schaper, Roland; von Samson-Himmelstjerna, Georg

    2017-01-01

    Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1) and specifically Toxoplasma gondii (repetitive element) in brain and ascarids (ITS-2) in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented) had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8), Toxocara cati (4) and Parascaris sp. (1) were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to estimate the health

  3. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany.

    Directory of Open Access Journals (Sweden)

    Jürgen Krücken

    Full Text Available Rodents are important intermediate and paratenic hosts for carnivore parasites, including the important zoonotic agents Toxoplasma, Echinococcus and Toxocara. Monitoring of such parasites in rodents can be used to detect increasing risks for human and veterinary public health. Rodents were trapped at four sites in Berlin, two near the city center, two at the periphery. PCRs were conducted to detect Coccidia (target ITS-1 and specifically Toxoplasma gondii (repetitive element in brain and ascarids (ITS-2 in muscle or brain tissue. During necropsies, metacestodes were collected and identified using ITS-2 and 12S rRNA PCRs. An ELISA to detect antibodies against Toxocara canis ES antigens was performed. Within the 257 examined rodents, the most frequently observed parasite was Frenkelia glareoli predominantly found in Myodes glareolus. T. gondii was only detected in 12 rodents and Microtus spp. (although strongly underrepresented had a significantly increased chance of being positive. Neither Echinococcus nor typical Taenia parasites of dogs and cats were found but Mesocestoides litteratus and Taenia martis metacestodes were identified which can cause severe peritoneal or ocular cysticercosis in dogs, primates and humans. Using PCR, the ascarids T. canis (n = 8, Toxocara cati (4 and Parascaris sp. (1 were detected predominantly in muscles. Seroprevalence of T. canis was 14.2% and ELISA was thus more sensitive than PCR to detect infection with this parasite. Non-parametric multidimensional scaling and cluster analysis revealed that parasite communities could be grouped into an urban and a peri-urban cluster with high frequency of ascarid-positive rodents in urban and high frequency of F. glareoli in peri-urban sites. Prevalence rates of parasites in rodents with potential impact for human or veterinary public health are considerable and the monitoring of transmission cycles of carnivore parasites in intermediate rodent hosts is recommended to

  4. Effect of the anti-IL-17 antibody on allergic inflammation in an obesity-related asthma model.

    Science.gov (United States)

    Liang, Lin; Hur, Jung; Kang, Ji Young; Rhee, Chin Kook; Kim, Young Kyoon; Lee, Sook Young

    2018-04-19

    The co-occurrence of obesity aggravates asthma symptoms. Diet-induced obesity increases helper T cell (TH) 17 cell differentiation in adipose tissue and the spleen. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor pravastatin can potentially be used to treat asthma in obese patients by inhibiting interleukin 17 (IL-17) expression. This study investigated the combined effects of pravastatin and anti-IL-17 antibody treatment on allergic inflammation in a mouse model of obesity-related asthma. High-fat diet (HFD)-induced obesity was induced in C57BL/6 mice with or without ovalbumin (OVA) sensitization and challenge. Mice were administered the anti-IL-17 antibody, pravastatin, or both, and pathophysiological and immunological responses were analyzed. HFD exacerbated allergic airway inflammation in the bronchoalveolar lavage fluid of HFD-OVA mice as compared to OVA mice. Blockading of the IL-17 in the HFD-OVA mice decreased airway hyper-responsiveness (AHR) and airway inflammation compared to the HFD-OVA mice. Moreover, the administration of the anti-IL-17 antibody decreased the leptin/adiponectin ratio in the HFD-OVA but not the OVA mice. Co-administration of pravastatin and anti-IL-17 inhibited airway inflammation and AHR, decreased goblet cell numbers, and increased adipokine levels in obese asthmatic mice. These results suggest that the IL-17-leptin/adiponectin axis plays a key role in airway inflammation in obesity-related asthma. Our findings suggest a potential new treatment for IL-17 as a target that may benefit obesity-related asthma patients who respond poorly to typical asthma medications.

  5. Prevalence and genetic diversity of Bartonella strains in rodents from northwestern Mexico.

    Science.gov (United States)

    Rubio, André V; Ávila-Flores, Rafael; Osikowicz, Lynn M; Bai, Ying; Suzán, Gerardo; Kosoy, Michael Y

    2014-12-01

    Bartonella infections were investigated in wild rodents from northwestern Chihuahua, Mexico. A total of 489 rodents belonging to 14 species were surveyed in four areas. Bartonella bacteria were cultured from 50.1% of rodent samples (245/489). Infection rates ranged from 0% to 83.3% per rodent species, with no significant difference between sites except for Cynomys ludovicianus. Phylogenetic analyses of the citrate synthase gene (gltA) of the Bartonella isolates revealed 23 genetic variants (15 novel and 8 previously described), clustering into five phylogroups. Three phylogroups were associated with Bartonella vinsonii subsp. vinsonii, B. vinsonii subsp. arupensis, and B. washoensis, respectively. The other two phylogroups were not genetically related to any known Bartonella species. The genetic variants and phylogenetic groups exhibited a high degree of host specificity, mainly at the genus and family levels. This is the first study that describes the genetic diversity of Bartonella strains in wild rodents from Mexico. Considering that some variants found in this study are associated with Bartonella species that have been reported as zoonotic, more investigations are needed to further understand the ecology of Bartonella species in Mexican wildlife and their implications for human health.

  6. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    Science.gov (United States)

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  7. Substitution Models of Water for Other Beverages, and the Incidence of Obesity and Weight Gain in the SUN Cohort

    Directory of Open Access Journals (Sweden)

    Ujué Fresán

    2016-10-01

    Full Text Available Obesity is a major epidemic for developed countries in the 21st century. The main cause of obesity is energy imbalance, of which contributing factors include a sedentary lifestyle, epigenetic factors and excessive caloric intake through food and beverages. A high consumption of caloric beverages, such as alcoholic or sweetened drinks, may particularly contribute to weight gain, and lower satiety has been associated with the intake of liquid instead of solid calories. Our objective was to evaluate the association between the substitution of a serving per day of water for another beverage (or group of them and the incidence of obesity and weight change in a Mediterranean cohort, using mathematical models. We followed 15,765 adults without obesity at baseline. The intake of 17 beverage items was assessed at baseline through a validated food-frequency questionnaire. The outcomes were average change in body weight in a four-year period and new-onset obesity and their association with the substitution of one serving per day of water for one of the other beverages. During the follow-up, 873 incident cases of obesity were identified. In substitution models, the consumption of water instead of beer or sugar-sweetened soda beverages was associated with a lower obesity incidence (the Odds Ratio (OR 0.80 (95% confidence interval (CI 0.68 to 0.94 and OR 0.85 (95% CI 0.75 to 0.97; respectively and, in the case of beer, it was also associated with a higher average weight loss (weight change difference = −328 g; (95% CI −566 to −89. Thus, this study found that replacing one sugar-sweetened soda beverage or beer with one serving of water per day at baseline was related to a lower incidence of obesity and to a higher weight loss over a four-year period time in the case of beer, based on mathematical models.

  8. Transcutaneous measurement of glomerular filtration rate in small rodents: through the skin for the win?

    Science.gov (United States)

    Ellery, Stacey J; Cai, Xiaochu; Walker, David D; Dickinson, Hayley; Kett, Michelle M

    2015-03-01

    Rodent models of renal physiology and pathology are crucial to our understanding of the molecular, histological and functional sequelae that contribute to kidney diseases. One of the most important measures of renal function is glomerular filtration rate (GFR). While the accurate determination of GFR is pivotal to understanding the progression of disease and/or the benefits of treatment strategies, in rodents the conventional methods for assessment of GFR are inconvenient and cumbersome, not the least because they involve stress and often anaesthesia. The legitimacy of assay-based assessment of plasma and urine markers of GFR in mice has also been heavily scrutinized for their insensitivity to minor declines in GFR and inaccurate detection of renal biomarkers. While infusion-based clearance methods of GFR assessment are thus the gold standard in terms of accuracy, they are limited by the fact that they are primarily non-recovery procedures. This presents a dilemma when trying to document the progression of renal disease, as these measures cannot be taken in the same experimental subject. Here we review a technique of transcutaneous measurement of fluorescein isothiocyanate-labelled sinistrin to calculate GFR in small rodents, using a non-invasive clearance device (NIC-Kidney Device). This is a recently validated non-invasive technique for measuring GFR in small rodents that allows for the real-time measurement of GFR in conscious animals, without the need for plasma and urine assays. © 2014 Asian Pacific Society of Nephrology.

  9. Synanthropic rodents as possible reservoirs of shigatoxigenic Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Ximena eBlanco Crivelli

    2012-11-01

    Full Text Available Shigatoxigenic Escherichia coli (STEC strains are worldwide zoonotic pathogen responsible for different cases of human disease including hemolytic uremic syndrome (HUS. Transmission of STEC to humans occurs through the consumption of food and water contaminated by faeces of carriers and by person-to-person contact.The objective of this study was twofold: (a to investigate whether synanthropic rodents are possible reservoirs of STEC in the urban area and (b whether a particular genus out of synanthropic rodent is the principal carrier of STEC.One hundred forty-five rodents were captured in Buenos Aires City. Screening for stx1/stx2 and rfbO157 was done by PCR from the confluence zone. STEC isolates were further characterized with biochemical tests by standard methods. Additional virulence factors (eae, ehxA and saa were also determined by PCR. Forty-one of the rodents were necropsied and sample of kidney and small and large intestine were taken for histopathological diagnosis. The samples sections were stained with hematoxylin-eosin, and observed by light microscopy to evaluate the systemic involvement of these species in natural infections. STEC was isolated from seven out of twenty seven suspect animals at screening. The following genotypes were found in the STEC strains: stx1/stx2/ehxA (1, stx2 (4, stx2/ehxA (1, stx2/ehxA/eae (1. Neither gross nor microscopic lesions compatible with those produced by Shiga toxin were observed in the studied organs of necropsied rodents.The bivariate analysis including the hundred forty-five rodents data showed that the isolation of STEC is associated positively to Rattus genus. This synanthropic species may play a role in the transmissibility of the agent thus being a risk to the susceptible population. Their control should be included specifically in actions to dismiss the contamination of food and water by STEC in the urban area, as additional strategies for epidemiological control.

  10. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training.

    Science.gov (United States)

    Sriwijitkamol, Apiradee; Ivy, John L; Christ-Roberts, Christine; DeFronzo, Ralph A; Mandarino, Lawrence J; Musi, Nicolas

    2006-05-01

    AMPK is a key regulator of fat and carbohydrate metabolism. It has been postulated that defects in AMPK signaling could be responsible for some of the metabolic abnormalities of type 2 diabetes. In this study, we examined whether insulin-resistant obese Zucker rats have abnormalities in the AMPK pathway. We compared AMPK and ACC phosphorylation and the protein content of the upstream AMPK kinase LKB1 and the AMPK-regulated transcriptional coactivator PPARgamma coactivator-1 (PGC-1) in gastrocnemius of sedentary obese Zucker rats and sedentary lean Zucker rats. We also examined whether 7 wk of exercise training on a treadmill reversed abnormalities in the AMPK pathway in obese Zucker rats. In the obese rats, AMPK phosphorylation was reduced by 45% compared with lean rats. Protein expression of the AMPK kinase LKB1 was also reduced in the muscle from obese rats by 43%. In obese rats, phosphorylation of ACC and protein expression of PGC-1alpha, two AMPK-regulated proteins, tended to be reduced by 50 (P = 0.07) and 35% (P = 0.1), respectively. There were no differences in AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 protein content between lean and obese rats. Training caused a 1.5-fold increase in AMPKalpha1 protein content in the obese rats, although there was no effect of training on AMPK phosphorylation and the other AMPK isoforms. Furthermore, training also significantly increased LKB1 and PGC-1alpha protein content 2.8- and 2.5-fold, respectively, in the obese rats. LKB1 protein strongly correlated with hexokinase II activity (r = 0.75, P = 0.001), citrate synthase activity (r = 0.54, P = 0.02), and PGC-1alpha protein content (r = 0.81, P < 0.001). In summary, obese insulin-resistant rodents have abnormalities in the LKB1-AMPK-PGC-1 pathway in muscle, and these abnormalities can be restored by training.

  11. Microvascular anastomosis in rodent model evaluated by Fourier domain Doppler optical coherence tomography

    Science.gov (United States)

    Huang, Yong; Tong, Dedi; Zhu, Shan; Wu, Lehao; Ibrahim, Zuhaib; Lee, WP Andrew; Brandacher, Gerald; Kang, Jin U.

    2014-03-01

    Vascular and microvascular anastomosis are critical components of reconstructive microsurgery, vascular surgery and transplant surgery. Imaging modality that provides immediate, real-time in-depth view and 3D structure and flow information of the surgical site can be a great valuable tool for the surgeon to evaluate surgical outcome following both conventional and innovative anastomosis techniques, thus potentially increase the surgical success rate. Microvascular anastomosis for vessels with outer diameter smaller than 1.0 mm is extremely challenging and effective evaluation of the outcome is very difficult if not impossible using computed tomography (CT) angiograms, magnetic resonance (MR) angiograms and ultrasound Doppler. Optical coherence tomography (OCT) is a non-invasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. Phaseresolved Doppler OCT that explores the phase information of OCT signals has been shown to be capable of characterizing dynamic blood flow clinically. In this work, we explore the capability of Fourier domain Doppler OCT as an evaluation tool to detect commonly encountered post-operative complications that will cause surgical failure and to confirm positive result with surgeon's observation. Both suture and cuff based techniques were evaluated on the femoral artery and vein in the rodent model.

  12. Anti-Obesity Agents and the US Food and Drug Administration.

    Science.gov (United States)

    Casey, Martin F; Mechanick, Jeffrey I

    2014-09-01

    Despite the growing market for obesity care, the US Food and Drug Administration (FDA) has approved only two new pharmaceutical agents-lorcaserin and combination phentermine/topiramate-for weight reduction since 2000, while removing three agents from the market in the same time period. This article explores the FDA's history and role in the approval of anti-obesity medications within the context of a public health model of obesity. Through the review of obesity literature and FDA approval documents, we identified two major barriers preventing fair evaluation of anti-obesity agents including: (1) methodological pitfalls in clinical trials and (2) misaligned values in the assessment of anti-obesity agents. Specific recommendations include the use of adaptive (Bayesian) design protocols, value-based analyses of risks and benefits, and regulatory guidance based on a comprehensive, multi-platform obesity disease model. Positively addressing barriers in the FDA approval process of anti-obesity agents may have many beneficial effects within an obesity disease model.

  13. BEHAVIOURAL STUDIES ON SOME RHODESIAN RODENTS

    African Journals Online (AJOL)

    behaviour, . courtship, parental and juvenile behaviour and activity patterns. ... behavioural observations were facilitated by the development of a glass-fronted ~'double-storey" cage which ..... Adolescent siblings in both single sex and mixed groups ..... Wild rodents as Laboratory Animals and their contribution to medical.

  14. A test of five mechanisms of species coexistence between rodents in ...

    African Journals Online (AJOL)

    A test of five mechanisms of species coexistence between rodents in a southern African savanna. M.R. Perrin, B.P. Kotler. Abstract. The operation of five different mechanisms of species coexistence in a community of rodents was examined in a semi-arid Kalahari savanna in southern Africa. The two most common species ...

  15. The G protein-coupled receptor subset of the dog genome is more similar to that in humans than rodents.

    Science.gov (United States)

    Haitina, Tatjana; Fredriksson, Robert; Foord, Steven M; Schiöth, Helgi B; Gloriam, David E

    2009-01-15

    The dog is an important model organism and it is considered to be closer to humans than rodents regarding metabolism and responses to drugs. The close relationship between humans and dogs over many centuries has lead to the diversity of the canine species, important genetic discoveries and an appreciation of the effects of old age in another species. The superfamily of G protein-coupled receptors (GPCRs) is one of the largest gene families in most mammals and the most exploited in terms of drug discovery. An accurate comparison of the GPCR repertoires in dog and human is valuable for the prediction of functional similarities and differences between the species. We searched the dog genome for non-olfactory GPCRs and obtained 353 full-length GPCR gene sequences, 18 incomplete sequences and 13 pseudogenes. We established relationships between human, dog, rat and mouse GPCRs resolving orthologous pairs and species-specific duplicates. We found that 12 dog GPCR genes are missing in humans while 24 human GPCR genes are not part of the dog GPCR repertoire. There is a higher number of orthologous pairs between dog and human that are conserved as compared with either mouse or rat. In almost all cases the differences observed between the dog and human genomes coincide with other variations in the rodent species. Several GPCR gene expansions characteristic for rodents are not found in dog. The repertoire of dog non-olfactory GPCRs is more similar to the repertoire in humans as compared with the one in rodents. The comparison of the dog, human and rodent repertoires revealed several examples of species-specific gene duplications and deletions. This information is useful in the selection of model organisms for pharmacological experiments.

  16. The G protein-coupled receptor subset of the dog genome is more similar to that in humans than rodents

    Directory of Open Access Journals (Sweden)

    Schiöth Helgi B

    2009-01-01

    Full Text Available Abstract Background The dog is an important model organism and it is considered to be closer to humans than rodents regarding metabolism and responses to drugs. The close relationship between humans and dogs over many centuries has lead to the diversity of the canine species, important genetic discoveries and an appreciation of the effects of old age in another species. The superfamily of G protein-coupled receptors (GPCRs is one of the largest gene families in most mammals and the most exploited in terms of drug discovery. An accurate comparison of the GPCR repertoires in dog and human is valuable for the prediction of functional similarities and differences between the species. Results We searched the dog genome for non-olfactory GPCRs and obtained 353 full-length GPCR gene sequences, 18 incomplete sequences and 13 pseudogenes. We established relationships between human, dog, rat and mouse GPCRs resolving orthologous pairs and species-specific duplicates. We found that 12 dog GPCR genes are missing in humans while 24 human GPCR genes are not part of the dog GPCR repertoire. There is a higher number of orthologous pairs between dog and human that are conserved as compared with either mouse or rat. In almost all cases the differences observed between the dog and human genomes coincide with other variations in the rodent species. Several GPCR gene expansions characteristic for rodents are not found in dog. Conclusion The repertoire of dog non-olfactory GPCRs is more similar to the repertoire in humans as compared with the one in rodents. The comparison of the dog, human and rodent repertoires revealed several examples of species-specific gene duplications and deletions. This information is useful in the selection of model organisms for pharmacological experiments.

  17. Caloric Restriction in Lean and Obese Strains of Laboratory ...

    Science.gov (United States)

    NEW FINDINGS: What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improved longevity with caloric restriction (CR) in rodents. Little is known regarding effects of CR in genetically lean versus obese strains. Long-Evans (LE) and Brown Norway (BN) rats make an ideal comparison for a CR study because the percentage body fat of young adult LE rats is double that of BN rats. Male LE and BN rats were either fed ad libitum (AL) or were caloricallyrestricted to 80 or 90% of their AL weight. The percentages of fat, lean and fluid mass were measured non-invasively at 2- to 4-week intervals. Metabolic rate and respiratory quotient were measured after 3, 6, 9 and 12 months of CR. Overall health was scored monthly. The percentage of fat of the LE strain decreased with CR, whereas the percentage of fat of the BN strain remained above the AL group for several months. The percentage of lean mass increased above the AL for both strains subjected to CR. The percentage offluid was unaffected by CR. The average metabolic rate over 22 h of the BN rats subjected to CR was reduced, whereas that of LE rats was increased slightly above the AL group. The respiratory quotient of BN rats wasdecreased with CR. Overall health of the CR LE group was significantly improved compared with t

  18. Long-term Potentiation Decay and Poor Long-lasting Memory Process in the Wild Rodents Proechimys from Brazil's Amazon Rainforest.

    Science.gov (United States)

    Guimarães Marques, Marcia J; Reyes-Garcia, Selvin Z; Marques-Carneiro, José E; Lopes-Silva, Leonardo B; Andersen, Monica L; Cavalheiro, Esper A; Scorza, Fulvio A; Scorza, Carla A

    2018-01-01

    Proechimys are small terrestrial rodents from Amazon rainforest. Each animal species is adapted to a specific environment in which the animal evolved therefore without comparative approaches unique characteristics of distinct species cannot be fully recognized. Laboratory rodents are exceedingly inbred strains dissociated from their native habitats and their fundamental ecological aspects are abstracted. Thus, the employment of exotic non-model species can be informative and complement conventional animal models. With the aim of promoting comparative studies between the exotic wildlife populations in the laboratory and traditional rodent model, we surveyed a type of synaptic plasticity intimately related to memory encoding in animals. Using theta-burst paradigm, in vitro long-term potentiation (LTP) in the CA1 subfield of hippocampal slices was assessed in the Amazon rodents Proechimys and Wistar rats. Memory, learning and anxiety were investigated through the plus-maze discriminative avoidance task (PM-DAT) and object recognition test. In PM-DAT, both animal species were submitted to two test sessions (3-h and 24-h) after the conditioning training. Proechimys exhibited higher anxiety-like behavior in the training session but during test sessions both species exhibited similar patterns of anxiety-related behavior. After 3-h of the training, Proechimys and Wistar spent significantly less time in the aversive enclosed arm than in the non-aversive arm. But, at 24-h after training, Wistar rats remained less time in the aversive closed arm in comparison with the non-aversive one, while Proechimys rodents spent the same amount of time in both enclosed arms. In the object recognition test, both species were evaluated at 24-h after the acquisition session and similar findings than those of the PM-DAT (24-h) were obtained, suggesting that long-term memory duration did not persist for 24-h in the Amazon rodent. Field excitatory post-synaptic potentials recordings revealed

  19. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats

    Science.gov (United States)

    Kim, Ji Hye; Kim, Ok-Kyung; Yoon, Ho-Geun; Park, Jeongjin; You, Yanghee; Kim, Kyungmi; Lee, Yoo-Hyun; Choi, Kyung-Chul; Lee, Jeongmin; Jun, Woojin

    2016-01-01

    Background Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food. Objective The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis. Design Rats were divided into four groups (n=6 per group) after 1 week of acclimatization: a normal diet group comprised rats fed the AIN76A rodent diet; a high-fat diet-induced obese group with rats fed a 60% high-fat diet; a Garcinia cambogia treated group (positive control) with rats fed a 60% high-fat diet with G. cambogia 500 g/kg body weight (b.w.)/day; and an fermented C. longa L. 50% ethanolic extract treated group (FCE50) with rats fed a 60% high-fat diet with FCE50 500 g/kg b.w./day. Each group received the appropriate vehicle or sample daily by gastric intubation for 12 weeks. Results We found that FCE50 administration suppressed b.w. gain and reduced white adipose tissue weight, serum triglyceride (TG), and cholesterol in high-fat diet-induced obese rats. These results can be associated with the suppression of adipocyte differentiation and lipogenesis with a decrease in the mRNA expressions of fatty acid synthase, acetyl-CoA carboxylase, adipocyte protein 2, and lipoprotein lipase induced by FCE50 administration. In addition, FCE50 increased lipolysis and β-oxidation by up-regulating the expression of lipases such as adipose triglyceride lipase, hormone-sensitive lipase, adiponectin, and AMP-activated protein kinase. Conclusions These results suggest that FCE50 can be a candidate for the prevention of obesity via suppressing adipogenesis and promoting lipolysis. PMID:26822962

  20. An in-vitro-in-vivo model for the transdermal delivery of cholecalciferol for the purposes of rodent management.

    Science.gov (United States)

    Davies, J; Ingham, A

    2015-06-20

    The natural selection of anticoagulant resistant rats has resulted in a need for an alternative to anticoagulant rodenticides which differs in both active ingredient and in the method of dosing. Cholecalciferol toxicity to rodents using the dermal route is demonstrated using a variety of penetration enhancing formulations in two in-vitro models and finally in-vivo. A 1 ml dose of 50/50 (v/v) DMSO/ethanol containing 15% (v/v) PEG 200 and 20% (w/v) cholecalciferol was judged as 'sufficiently effective' in line with the European Union's Biocidal Products Regulation (No. 528/2012) during in-vivo studies. This dose was found to cause 100% mortality in a rat population in 64.4h (± 22h). Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Treating Diet-Induced Diabetes and Obesity with Human Embryonic Stem Cell-Derived Pancreatic Progenitor Cells and Antidiabetic Drugs

    Directory of Open Access Journals (Sweden)

    Jennifer E. Bruin

    2015-04-01

    Full Text Available Human embryonic stem cell (hESC-derived pancreatic progenitor cells effectively reverse hyperglycemia in rodent models of type 1 diabetes, but their capacity to treat type 2 diabetes has not been reported. An immunodeficient model of type 2 diabetes was generated by high-fat diet (HFD feeding in SCID-beige mice. Exposure to HFDs did not impact the maturation of macroencapsulated pancreatic progenitor cells into glucose-responsive insulin-secreting cells following transplantation, and the cell therapy improved glucose tolerance in HFD-fed transplant recipients after 24 weeks. However, since diet-induced hyperglycemia and obesity were not fully ameliorated by transplantation alone, a second cohort of HFD-fed mice was treated with pancreatic progenitor cells combined with one of three antidiabetic drugs. All combination therapies rapidly improved body weight and co-treatment with either sitagliptin or metformin improved hyperglycemia after only 12 weeks. Therefore, a stem cell-based therapy may be effective for treating type 2 diabetes, particularly in combination with antidiabetic drugs.

  2. Plasma endocannabinoid levels in lean, overweight and obese humans: relationships with intestinal permeability markers, inflammation and incretin secretion.

    Science.gov (United States)

    Little, Tanya J; Cvijanovic, Nada; DiPatrizio, Nicholas V; Argueta, Donovan A; Rayner, Christopher K; Feinle-Bisset, Christine; Young, Richard L

    2018-02-13

    Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation, however little is known of these effects in humans. This study aimed to: (i) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl-sn-glycerol (2-AG) and OEA in humans, and (ii) examine relationships with intestinal permeability, inflammation markers and incretin hormone secretion. 20 lean, 18 overweight and 19 obese participants underwent intraduodenal Intralipid® infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumour necrosis factor-α (TNF-α), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and toll-like receptor-4 (TLR4) (RT-PCR), were assessed. Fasting plasma AEA was increased in obese, compared with lean and overweight (Plean (Plean and overweight. The relationships between plasma AEA with duodenal ZO-1 and IAP, and GIP, suggest that altered endocannabinoid signalling may contribute to changes in intestinal permeability, inflammation and incretin release in human obesity.

  3. miRNA Signatures of Insulin Resistance in Obesity.

    Science.gov (United States)

    Jones, Angela; Danielson, Kirsty M; Benton, Miles C; Ziegler, Olivia; Shah, Ravi; Stubbs, Richard S; Das, Saumya; Macartney-Coxson, Donia

    2017-10-01

    Extracellular microRNAs (miRNAs) represent functional biomarkers for obesity and related disorders; this study investigated plasma miRNAs in insulin resistance phenotypes in obesity. One hundred seventy-five miRNAs were analyzed in females with obesity (insulin sensitivity, n = 11; insulin resistance, n = 19; type 2 diabetes, n = 15) and without obesity (n = 12). Correlations between miRNA level and clinical parameters and levels of 15 miRNAs in a murine obesity model were investigated. One hundred six miRNAs were significantly (adjusted P ≤ 0.05) different between controls and at least one obesity phenotype, including miRNAs with the following attributes: previously reported roles in obesity and altered circulating levels (e.g., miR-122, miR-192); known roles in obesity but no reported changes in circulating levels (e.g., miR-378a); and no current reported role in, or association with, obesity (e.g., miR-28-5p, miR-374b, miR-32). The miRNAs in the latter group were found to be associated with extracellular vesicles. Forty-eight miRNAs showed significant correlations with clinical parameters; stepwise regression retained let-7b, miR-144-5p, miR-34a, and miR-532-5p in a model predictive of insulin resistance (R 2  = 0.57, P = 7.5 × 10 -8 ). Both miR-378a and miR-122 were perturbed in metabolically relevant tissues in a murine model of obesity. This study expands on the role of extracellular miRNAs in insulin-resistant phenotypes of obesity and identifies candidate miRNAs not previously associated with obesity. © 2017 The Obesity Society.

  4. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation.

    Science.gov (United States)

    Bray, G A; Kim, K K; Wilding, J P H

    2017-07-01

    This paper considers the argument for obesity as a chronic relapsing disease process. Obesity is viewed from an epidemiological model, with an agent affecting the host and producing disease. Food is the primary agent, particularly foods that are high in energy density such as fat, or in sugar-sweetened beverages. An abundance of food, low physical activity and several other environmental factors interact with the genetic susceptibility of the host to produce positive energy balance. The majority of this excess energy is stored as fat in enlarged, and often more numerous fat cells, but some lipid may infiltrate other organs such as the liver (ectopic fat). The enlarged fat cells and ectopic fat produce and secrete a variety of metabolic, hormonal and inflammatory products that produce damage in organs such as the arteries, heart, liver, muscle and pancreas. The magnitude of the obesity and its adverse effects in individuals may relate to the virulence or toxicity of the environment and its interaction with the host. Thus, obesity fits the epidemiological model of a disease process except that the toxic or pathological agent is food rather than a microbe. Reversing obesity will prevent most of its detrimental effects. © 2017 World Obesity Federation.

  5. Transtheoretical Model Based Exercise Counseling Combined with Music Skipping Rope Exercise on Childhood Obesity.

    Science.gov (United States)

    Ham, Ok Kyung; Sung, Kyung Mi; Lee, Bo Gyeong; Choi, Hee Won; Im, Eun-Ok

    2016-06-01

    The purpose was to evaluate the effects of a transtheoretical model (TTM) based exercise counseling offered with music skipping rope exercise on components of the TTM (stages of change, decisional balance, and self-efficacy), body mass index, glucose, and lipid profile of overweight/obese children in Korea. This study used a nonequivalent pretest and posttest experimental study design. A total of 75 overweight/obese children participated in the study. Eight sessions of exercise counseling combined with music skipping rope exercise for 12 weeks were offered for children in the experimental group, while one session of exercise counseling with music skipping rope exercise for 12 weeks was offered for children in the control group. Outcomes were measured at baseline, and 6 months after the intervention. After the intervention, self-efficacy significantly improved among children in the experimental group (p = .049), while these children maintained their baseline BMI at 6-month follow-up (p > .05). Among children in the control group, BMI significantly increased (p effective in maintaining BMI and improving self-efficacy of overweight/obese children. The TTM-based counseling combined with exercise classes has potential to control weight among overweight/obese children, while involvement of parents and children in the development of the theory-based intervention may generate further benefits regarding health and well-being of overweight/obese children. Copyright © 2016. Published by Elsevier B.V.

  6. Correlates of Recent Declines of Rodents in Northern and Southern Australia: Habitat Structure Is Critical.

    Directory of Open Access Journals (Sweden)

    Michael J Lawes

    Full Text Available Australia has experienced dramatic declines and extinctions of its native rodent species over the last 200 years, particularly in southern Australia. In the tropical savanna of northern Australia significant declines have occurred only in recent decades. The later onset of these declines suggests that the causes may differ from earlier declines in the south. We examine potential regional effects (northern versus southern Australia on biological and ecological correlates of range decline in Australian rodents. We demonstrate that rodent declines have been greater in the south than in the tropical north, are strongly influenced by phylogeny, and are consistently greater for species inhabiting relatively open or sparsely vegetated habitat. Unlike in marsupials, where some species have much larger body size than rodents, body mass was not an important predictor of decline in rodents. All Australian rodent species are within the prey-size range of cats (throughout the continent and red foxes (in the south. Contrary to the hypothesis that mammal declines are related directly to ecosystem productivity (annual rainfall, our results are consistent with the hypothesis that disturbances such as fire and grazing, which occur in non-rainforest habitats and remove cover used by rodents for shelter, nesting and foraging, increase predation risk. We agree with calls to introduce conservation management that limits the size and intensity of fires, increases fire patchiness and reduces grazing impacts at ecological scales appropriate for rodents. Controlling feral predators, even creating predator-free reserves in relatively sparsely-vegetated habitats, is urgently required to ensure the survival of rodent species, particularly in northern Australia where declines are not yet as severe as those in the south.

  7. Intestinal Helminths in Different Species of Rodents in North Khorasan Province, Northeast of Iran

    Directory of Open Access Journals (Sweden)

    Kourosh ARZAMANI

    2017-06-01

    Full Text Available Background: Rodents are an important source of zoonotic diseases for human. The aim of this study was to determine the infectivity of rodents with intestinal helminths in North Khorasan Province, Iran.Methods: One hundred and thirteen rodents were collected using different collection methods such as kill and live traps, digging of their burrow, filling of their hiding places with water and hand net during 2011-2013. Their alimentary canals were removed in the laboratory and helminths were determined in the department of parasitology, Tehran University of Medical Sciences.Results: Thirteen species of helminths parasites were found in 13 species of rodents, including Aspiculuris tetraptera, Hymenolepis diminuta, Nippostrongylus brasiliensis, Protospirura Seurat, Rictolaria ratti, Skrjabinitaenia lobata, Streptopharagus kuntzi, Syphacia obvelata, Taenia taeniaeformis, Trichuris muris, Cysticercus fasciolaris, Acanthocephal. spp and Trichuris spp. Some of them were reported for the first time in new host in Iran. S. obvelata and A. tetraptera were the most frequent parasites and P. Seurat, R. ratti and C. fasciolaris were found only in one rodent.Conclusion: This is the first study to investigate the intestinal parasites in rodents in this area. Among different species identified, some of helminths were reported in new host.

  8. Intestinal Helminths in Different Species of Rodents in North Khorasan Province, Northeast of Iran.

    Science.gov (United States)

    Arzamani, Kourosh; Salehi, Mitra; Mobedi, Iraj; Adinezade, Amir; Hasanpour, Hamid; Alavinia, Mohammad; Darvish, Jamshid; Shirzadi, Mohammad Reza; Mohammadi, Zeinolabedin

    2017-01-01

    Rodents are an important source of zoonotic diseases for human. The aim of this study was to determine the infectivity of rodents with intestinal helminths in North Khorasan Province, Iran. One hundred and thirteen rodents were collected using different collection methods such as kill and live traps, digging of their burrow, filling of their hiding places with water and hand net during 2011-2013. Their alimentary canals were removed in the laboratory and helminths were determined in the department of parasitology, Tehran University of Medical Sciences. Thirteen species of helminths parasites were found in 13 species of rodents, including Aspiculuris tetraptera, Hymenolepis diminuta, Nippostrongylus brasiliensis, Protospirura Seurat, Rictolaria ratti, Skrjabinitaenia lobata, Streptopharagus kuntzi, Syphacia obvelata, Taenia taeniaeformis, Trichuris muris, Cysticercus fasciolaris, Acanthocephal. spp and Trichuris spp . Some of them were reported for the first time in new host in Iran. S. obvelata and A. tetraptera were the most frequent parasites and P. Seurat, R. ratti and C. fasciolaris were found only in one rodent. This is the first study to investigate the intestinal parasites in rodents in this area. Among different species identified, some of helminths were reported in new host.

  9. A Geographic Information Systems (GIS)-based analysis of modern South African rodent distributions, habitat use, and environmental tolerances.

    Science.gov (United States)

    Campbell, Timothy L; Lewis, Patrick J; Thies, Monte L; Williams, Justin K

    2012-11-01

    GOALS OF THIS STUDY WERE TO: (1) develop distributional maps of modern rodent genera throughout the countries of South Africa, Lesotho, and Swaziland by georeferencing museum specimens; (2) assess habitat preferences for genera by cross-referencing locality position with South African vegetation; and (3) identify mean annual precipitation and temperature range where the genera are located. Conterminous South Africa including the countries of Lesotho and Swaziland Digital databases of rodent museum specimens housed in the Ditsong National Museum of Natural History, South Africa (DM), and the Division of Mammals, National Museum of Natural History, Smithsonian Institution, United States (NMNH), were acquired and then sorted into a subset of specimens with associated coordinate data. The coordinate data were then used to develop distributional maps for the rodent genera present within the study area. Percent habitat occupation and descriptive statistics for six climatic variables were then determined for each genus by cross-referencing locality positions with vegetation and climatic maps. This report presents a series of maps illustrating the distribution of 35 rodent genera based on 19,471 geo-referenced specimens obtained from two major collections. Inferred habitat use by taxon is provided for both locality and specimen percent occurrence at three hierarchical habitat levels: biome, bioregion, and vegetation unit. Descriptive statistics for six climatic variables are also provided for each genus based on locality and specimen percent incidence. As rodent faunas are commonly used in paleoenvironmental reconstructions, an accurate assessment of rodent environmental tolerance ranges is necessary before confidence can be placed in an actualistic model. While the data presented here represent only a subset of the modern geographic distributions for many of the taxa examined, a wide range of environmental regimes are observed, suggesting that more research is necessary

  10. A Geographic Information Systems (GIS)-based analysis of modern South African rodent distributions, habitat use, and environmental tolerances

    Science.gov (United States)

    Campbell, Timothy L; Lewis, Patrick J; Thies, Monte L; Williams, Justin K

    2012-01-01

    Goals of this study were to: (1) develop distributional maps of modern rodent genera throughout the countries of South Africa, Lesotho, and Swaziland by georeferencing museum specimens; (2) assess habitat preferences for genera by cross-referencing locality position with South African vegetation; and (3) identify mean annual precipitation and temperature range where the genera are located. Conterminous South Africa including the countries of Lesotho and Swaziland Digital databases of rodent museum specimens housed in the Ditsong National Museum of Natural History, South Africa (DM), and the Division of Mammals, National Museum of Natural History, Smithsonian Institution, United States (NMNH), were acquired and then sorted into a subset of specimens with associated coordinate data. The coordinate data were then used to develop distributional maps for the rodent genera present within the study area. Percent habitat occupation and descriptive statistics for six climatic variables were then determined for each genus by cross-referencing locality positions with vegetation and climatic maps. This report presents a series of maps illustrating the distribution of 35 rodent genera based on 19,471 geo-referenced specimens obtained from two major collections. Inferred habitat use by taxon is provided for both locality and specimen percent occurrence at three hierarchical habitat levels: biome, bioregion, and vegetation unit. Descriptive statistics for six climatic variables are also provided for each genus based on locality and specimen percent incidence. As rodent faunas are commonly used in paleoenvironmental reconstructions, an accurate assessment of rodent environmental tolerance ranges is necessary before confidence can be placed in an actualistic model. While the data presented here represent only a subset of the modern geographic distributions for many of the taxa examined, a wide range of environmental regimes are observed, suggesting that more research is necessary

  11. Surfaces and spaces: troubleshooting the study of dietary niche space overlap between North American stem primates and rodents

    Science.gov (United States)

    Prufrock, Kristen A.; López-Torres, Sergi; Silcox, Mary T.; Boyer, Doug M.

    2016-06-01

    Dental topographic metrics provide quantitative, biologically meaningful data on the three-dimensional (3D) form of teeth. In this study, three dental topographic metrics (Dirichlet normal energy (DNE), relief index (RFI), and orientation patch count rotated (OPCR)) are used to evaluate the presence of dietary niche overlap between North American plesiadapoid primates (Plesiadapidae, Carpolestidae, and Saxonellidae) and early rodents. Calculation of these metrics requires researchers to modify the 3D surface models of the teeth by cropping them to a region of interest and/or orienting them. The current study therefore also examines the error introduced by cropping and orientation, and evaluates the contribution of these metrics to the niche overlap hypothesis. Our results indicate that cropping creates significantly more variation in RFI than DNE. Furthermore, orientation is an even larger source of variation in the calculation of RFI than cropping. Orientation does not strongly influence OPCR values. However, none of these sources of error are significant enough to undermine the extent to which these metrics can speak to the niche overlap hypothesis. The DNE and RFI results suggest that carpolestids and saxonellids had very different molar morphologies from early rodents, and thus these groups were not adapted to consume the same resources. Some plesiadapids show similar levels of occlusal curvature, relief, and complexity to early rodents. The plesiadapid Chiromyoides, which has distinctively low cusps and weak shearing crest development, has molars that are the most rodent-like of all taxa compared. This suggests that Chiromyoides had a dietary niche that overlapped with early rodents and would have been the most likely to be competing over food resources. Results from the plesiadapoid-rodent dental topographic analysis highlight the utility of DNE for detecting more fine-scaled differences in occlusal surface morphology than OPCR, whereas RFI provided valuable

  12. Brain Stimulation Reward Supports More Consistent and Accurate Rodent Decision-Making than Food Reward.

    Science.gov (United States)

    McMurray, Matthew S; Conway, Sineadh M; Roitman, Jamie D

    2017-01-01

    Animal models of decision-making rely on an animal's motivation to decide and its ability to detect differences among various alternatives. Food reinforcement, although commonly used, is associated with problematic confounds, especially satiety. Here, we examined the use of brain stimulation reward (BSR) as an alternative reinforcer in rodent models of decision-making and compared it with the effectiveness of sugar pellets. The discriminability of various BSR frequencies was compared to differing numbers of sugar pellets in separate free-choice tasks. We found that BSR was more discriminable and motivated greater task engagement and more consistent preference for the larger reward. We then investigated whether rats prefer BSR of varying frequencies over sugar pellets. We found that animals showed either a clear preference for sugar reward or no preference between reward modalities, depending on the frequency of the BSR alternative and the size of the sugar reward. Overall, these results suggest that BSR is an effective reinforcer in rodent decision-making tasks, removing food-related confounds and resulting in more accurate, consistent, and reliable metrics of choice.

  13. Anatomy and Histology of Rodent and Human Major Salivary Glands

    Science.gov (United States)

    Amano, Osamu; Mizobe, Kenichi; Bando, Yasuhiko; Sakiyama, Koji

    2012-01-01

    Major salivary glands of both humans and rodents consist of three pairs of macroscopic glands: parotid, submandibular, and sublingual. These glands secrete serous, mucous or mixed saliva via the proper main excretory ducts connecting the glandular bodies with the oral cavity. A series of discoveries about the salivary ducts in the 17th century by Niels Stensen (1638–1686), Thomas Wharton (1614–1673), and Caspar Bartholin (1655–1738) established the concept of exocrine secretion as well as salivary glands. Recent investigations have revealed the endocrine functions of parotin and a variety of cell growth factors produced by salivary glands. The present review aims to describe macroscopic findings on the major salivary glands of rodents and the microscopic differences between those of humans and rodents, which review should be of interest to those researchers studying salivary glands. PMID:23209333

  14. Occurrence of ectoparasitic arthropods associated with rodents in Hail region northern Saudi Arabia.

    Science.gov (United States)

    Asiry, Khalid A; Fetoh, Badr El-Sabah A

    2014-09-01

    Ectoparasitic arthropods are a diverse element of the Saudi fauna. Due to this, a survey of ectoparasites associated with rodents was conducted as a preliminary study in five districts of Hail region of northern Saudi Arabia for the first time. Ectoparasites extracted from 750 rodents were sampled and identified by recording their frequency of appearance. Results revealed that 1,287 ectoparasites infested 316 of the captured rodent hosts. These ectoparasites parasitized on four species of rodents including three species of rats Rattus rattus rattus, Rattus rattus frugivorus, and Rattus rattus alexandrinus and one species of mouse Acomys dimidiatus (Rodentia: Muridae). The ectoparasites belong to four different groups: ticks, fleas, lice, and mites. Ticks were the highest in the number, while fleas were the lowest among all the extracted ectoparasite groups. The collected ectoparasitic arthropods consisted of seven species. Ticks were of two species: Rhipicephalus turanicus and Rhipicephalus sanguineus (Acari: Ixodidae), fleas were of two species: Xenopsylla cheopis and Xenopsyllus conformis mycerini (Siphonaptera: Pulicidae), lice was a single species: Polyplax serrata (Anoplura: Hoplopleuridae), and mites were of two species: Laelaps nuttali and Laelaps echidninus (Mesostigmata: Laelapidae). The findings of the study showed that the intensity of infestation was varied between rodent host sexes, wherein females had the highest rate of parasitic infestation, and the parasitic index of appearance was very high for one group of parasites (i.e., ticks). The parasitic prevalence was 42.13 % on rodents, and mites were the most prevalent parasite species. Overall, this study was carried out to establish baseline data for ectoparasite-infested rodents in Hail region, Saudi Arabia, and may help for appropriate planning to control zoonotic diseases in this area.

  15. Modern Methods for Modeling Change in Obesity Research in Nursing.

    Science.gov (United States)

    Sereika, Susan M; Zheng, Yaguang; Hu, Lu; Burke, Lora E

    2017-08-01

    Persons receiving treatment for weight loss often demonstrate heterogeneity in lifestyle behaviors and health outcomes over time. Traditional repeated measures approaches focus on the estimation and testing of an average temporal pattern, ignoring the interindividual variability about the trajectory. An alternate person-centered approach, group-based trajectory modeling, can be used to identify distinct latent classes of individuals following similar trajectories of behavior or outcome change as a function of age or time and can be expanded to include time-invariant and time-dependent covariates and outcomes. Another latent class method, growth mixture modeling, builds on group-based trajectory modeling to investigate heterogeneity within the distinct trajectory classes. In this applied methodologic study, group-based trajectory modeling for analyzing changes in behaviors or outcomes is described and contrasted with growth mixture modeling. An illustration of group-based trajectory modeling is provided using calorie intake data from a single-group, single-center prospective study for weight loss in adults who are either overweight or obese.

  16. A modified beam-walking apparatus for assessment of anxiety in a rodent model of blast traumatic brain injury.

    Science.gov (United States)

    Sweis, Brian M; Bachour, Salam P; Brekke, Julia A; Gewirtz, Jonathan C; Sadeghi-Bazargani, Homayoun; Hevesi, Mario; Divani, Afshin A

    2016-01-01

    The elevated plus maze (EPM) is used to assess anxiety in rodents. Beam-walking tasks are used to assess vestibulomotor function. Brain injury in rodents can disrupt performance on both of these tasks. Developing novel paradigms that integrate tasks like these can reduce the need for multiple tests when attempting to assess multiple behaviors in the same animal. Using adult male rats, we evaluated the use of a modified beam-walking (MBW) apparatus as a surrogate indicator for anxiety. We used a model of blast-induced traumatic brain injury (bTBI). A total of 39 rats were assessed before and at 3, 6, 24, 72, and 168h either post- bTBI (n=33) or no-injury (n=6) using both EPM and MBW. A novel anxiety index was calculated that encompassed peeks and re-emergences on MBW. The proposed MBW anxiety index was compared with the standard anxiety index calculated from exploration into different sections of EPM. Post- bTBI, rats had an increased anxiety index when measured using EPM. Similarly, they peeked or fully emerged less out of the safe box on MBW. It was found that this novel MBW anxiety index captured similar aspects of behavior when compared to the standard anxiety index obtained from EPM. Further, these effects were dissociated from the effects of bTBI on motor function simultaneously measured on MBW. Over the course of 168h post-bTBI, rats gradually recovered on both EPM and MBW. The MBW apparatus succeeded at capturing and dissociating two separate facets of rat behavior, motor function and anxiety, simultaneously. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Assessing and counseling the obese patient: Improving resident obesity counseling competence.

    Science.gov (United States)

    Iyer, Shwetha; Jay, Melanie; Southern, William; Schlair, Sheira

    To evaluate obesity counseling competence among residents in a primary care training program METHODS: We delivered a 3h obesity curriculum to 28 Primary Care residents and administered a pre-curriculum and post curriculum survey looking specifically at self-assessed obesity counseling competence. Nineteen residents completed both the pre curriculum survey and the post curriculum survey. The curriculum had a positive impact on residents' ability to ascertain patient's stage of change, use different methods to obtain diet history (including 24h recall, food record or food frequency questionnaire), respond to patient's questions regarding treatment options, assist patients in setting realistic goals for weight loss based on making permanent lifestyle changes, and use of motivational interviewing to change behavior. When looking at the 5As domains, there was a significant improvement in the domains of Assess, Advise, and Assist. The proportion of residents with a lower level of self-assessed obesity counseling competence reduced from 75% before the curriculum to 37.5% (p=0.04) after the curriculum. Our curriculum addressing weight loss counseling using the 5As model increased obesity counseling competence among residents in a primary care internal medicine residency program. Copyright © 2018 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  18. Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (NAFLD). Structural equation modeling approach

    OpenAIRE

    Romero-Ibarguengoitia, Maria Elena; Vadillo-Ortega, Felipe; Caballero, Augusto Enrique; Ibarra-González, Isabel; Herrera-Rosas, Arturo; Serratos-Canales, María Fabiola; León-Hernández, Mireya; González-Chávez, Antonio; Mummidi, Srinivas; Duggirala, Ravindranath; López-Alvarenga, Juan Carlos

    2018-01-01

    Background: Structural equation modeling (SEM) can help understanding complex functional relationships among obesity, non-alcoholic fatty liver disease (NAFLD), family history of obesity, targeted metabolomics and pro-inflammatory markers. We tested two hypotheses: 1) If obesity precedes an excess of free fatty acids that increase oxidative stress and mitochondrial dysfunction, there would be an increase of serum acylcarnitines, amino acids and cytokines in obese subjects. Acylcarnitines woul...

  19. Transformation of the rodent malaria parasite Plasmodium chabaudi and generation of a stable fluorescent line PcGFPCON

    Directory of Open Access Journals (Sweden)

    Reece Sarah E

    2008-09-01

    Full Text Available Abstract Background The rodent malaria parasite Plasmodium chabaudi has proven of great value in the analysis of fundamental aspects of host-parasite-vector interactions implicated in disease pathology and parasite evolutionary ecology. However, the lack of gene modification technologies for this model has precluded more direct functional studies. Methods The development of in vitro culture methods to yield P. chabaudi schizonts for transfection and conditions for genetic modification of this rodent malaria model are reported. Results Independent P. chabaudi gene-integrant lines that constitutively express high levels of green fluorescent protein throughout their life cycle have been generated. Conclusion Genetic modification of P. chabaudi is now possible. The production of genetically distinct reference lines offers substantial advances to our understanding of malaria parasite biology, especially interactions with the immune system during chronic infection.

  20. Sorafenib prevents liver fibrosis in a non-alcoholic steatohepatitis (NASH) rodent model

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.T.; Pereira, I.V.A.; Torres, M.M.; Bida, P.M. [Disciplina de Gastroenterologia Clínica (LIM-07), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Coelho, A.M.M. [Disciplina de Transplante de Órgãos do Aparelho Digestivo (LIM-37), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Xerfan, M.P. [Disciplina de Gastroenterologia Clínica (LIM-07), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Cogliati, B. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil); Barbeiro, D.F. [Disciplina de Emergências Clínicas (LIM-51), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Mazo, D.F.C. [Disciplina de Gastroenterologia Clínica (LIM-07), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Kubrusly, M.S.; D' Albuquerque, L.A.C. [Disciplina de Transplante de Órgãos do Aparelho Digestivo (LIM-37), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Souza, H.P. [Disciplina de Emergências Clínicas (LIM-51), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Carrilho, F.J.; Oliveira, C.P. [Disciplina de Gastroenterologia Clínica (LIM-07), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-02-24

    Liver fibrosis occurring as an outcome of non-alcoholic steatohepatitis (NASH) can precede the development of cirrhosis. We investigated the effects of sorafenib in preventing liver fibrosis in a rodent model of NASH. Adult Sprague-Dawley rats were fed a choline-deficient high-fat diet and exposed to diethylnitrosamine for 6 weeks. The NASH group (n=10) received vehicle and the sorafenib group (n=10) received 2.5 mg·kg{sup -1}·day{sup -1} by gavage. A control group (n=4) received only standard diet and vehicle. Following treatment, animals were sacrificed and liver tissue was collected for histologic examination, mRNA isolation, and analysis of mitochondrial function. Genes related to fibrosis (MMP9, TIMP1, TIMP2), oxidative stress (HSP60, HSP90, GST), and mitochondrial biogenesis (PGC1α) were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Liver mitochondrial oxidation activity was measured by a polarographic method, and cytokines by enzyme-linked immunosorbent assay (ELISA). Sorafenib treatment restored mitochondrial function and reduced collagen deposition by nearly 63% compared to the NASH group. Sorafenib upregulated PGC1α and MMP9 and reduced TIMP1 and TIMP2 mRNA and IL-6 and IL-10 protein expression. There were no differences in HSP60, HSP90 and GST expression. Sorafenib modulated PGC1α expression, improved mitochondrial respiration and prevented collagen deposition. It may, therefore, be useful in the treatment of liver fibrosis in NASH.