Analysis of Subchannel and Rod Bundle PSBT Experiments with CATHARE 3
M. Valette
2012-01-01
Full Text Available This paper presents the assessment of CATHARE 3 against PWR subchannel and rod bundle tests of the PSBT benchmark. Noticeable measurements were the following: void fraction in single subchannel and rod bundle, multiple liquid temperatures at subchannel exit in rod bundle, and DNB power and location in rod bundle. All these results were obtained both in steady and transient conditions. Void fraction values are satisfactory predicted by CATHARE 3 in single subchannels with the pipe module. More dispersed predictions of void values are obtained in rod bundles with the CATHARE 3 3D module at subchannel scale. Single-phase liquid mixing tests and DNB tests in rod bundle are also analyzed. After calibrating the mixing in liquid single phase with specific tests, DNB tests using void mixing give mitigated results, perhaps linked to inappropriate use of CHF lookup tables in such rod bundles with many spacers.
Subchannel thermal-hydraulic modeling of an APT tungsten target rod bundle
Hamm, L.L.; Shadday, M.A. Jr.
1997-09-01
The planned target for the Accelerator Production of Tritium (APT) neutron source consists of an array of tungsten rod bundles through which D{sub 2}O coolant flows axially. Here, a scoping analysis of flow through an APT target rod bundle was conducted to demonstrate that lateral cross-flows are important, and therefore subchannel modeling is necessary to accurately predict thermal-hydraulic behavior under boiling conditions. A local reactor assembly code, FLOWTRAN, was modified to model axial flow along the rod bundle as flow through three concentric heated annular passages.
Kim, Seok; Jeon, Byong-Guk; Youn, Young-Jung; Choi, Hae-Seob; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
Flow inside rod bundles has a similarity with flow in porous media. To ensure thermal performance of a nuclear reactor, detailed information of the heat transfer and turbulent mixing flow phenomena taking place within the subchannels is required. The subchannel analysis is one of the key thermal-hydraulic calculations in the safety analysis of the nuclear reactor core. At present, subchannel computer codes are employed to simulate fuel elements of nuclear reactor cores and predict the performance of cores under normal operating and hypothetical accident conditions. The ability of these subchannels codes to predict both the flow and enthalpy distribution in fuel assemblies is very important in the design of nuclear reactors. Recently, according to the modern tend of the safety analysis for the nuclear reactor, a new component scale analysis code, named CUPID, and has been developed in KAERI. The CUPID code is based on a two-fluid and three-field model, and both the open and porous media approaches are incorporated. The PRIUS experiment has addressed many key topics related to flow behaviour in a rod bundle. These issues are related to the flow conditions inside a nuclear fuel element during normal operation of the plant or in accident scenarios. From the second half of 2016, flow visualization will be performed by using a high speed camera and image analysis technique, from which detailed information for the two-dimensional movement of single phase flow is quantified.
Riley, M.P.; Mohanta, L.; Miller, D.J.; Cheung, F.B. [Pennsylvania State Univ., University Park, PA (United States); Bajorek, S.M.; Tien, K.; Hoxie, C.L. [U.S. Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research
2016-07-15
A subchannel analysis of the steam cooling data obtained in the Rod Bundle Heat Transfer (RBHT) test facility has been performed in this study to capture the effect of spacer grids on heat transfer. The RBHT test facility has a 7 x 7 rod bundle with heater rods and with seven spacer grids equally spaced along the length of the rods. A method based on the concept of momentum and heat transport analogy has been developed for calculating the subchannel bulk mean temperature from the measured steam temperatures. Over the range of inlet Reynolds number, the local Nusselt number was found to exhibit a minimum value between the upstream and downstream spacer grids. The presence of a spacer grid not only affects the local Nusselt number downstream of the grid but also affects the local Nusselt number upstream of the next grid. A new correlation capturing the effect of Reynolds number on the local flow restructuring downstream as well as upstream of the spacer grids was proposed for the minimum Nusselt number. In addition, a new enhancement factor accounting for the effects of the upstream as well as downstream spacer grids was developed from the RBHT data. The new enhancement factor was found to compare well with the data from the ACHILLLES test facility.
Lee, Dong Won; Kim, Hyungmo; Ko, Yung Joo; Choi, Hae Seob; Euh, Dong-Jin; Jeong, Ji-Young; Lee, Hyeong-Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-05-15
For a safety analysis in a core thermal design of a sodium-cooled fast reactor (SFR), flow mixing characteristics at subchannels in a wire-wrapped rod bundle are crucial factor for the design code verification and validation. Wrapped wires make a cross flow in a circumference of the fuel rod, and this effect lets flow be mixed. Therefore the sub-channel analysis method is commonly used for thermal hydraulic analysis of a SFR, a wire wrapped sub-channel type. To measure flow mixing characteristics, a wire mesh sensing technique can be useful method. A wire mesh sensor has been traditionally used to measure the void fraction of a two-phase flow field, i.e. gas and liquid. However, the recent reports that the wire mesh sensor can be used successfully to recognize the flow field in liquid phase by injecting a tracing liquid with a different level of electric conductivity. The subchannel flow characteristics analysis method is commonly used for the thermal hydraulic analysis of a SFR, a wire wrapped subchannel type. In this study, mixing experiments were conducted successfully at a hexagonally arrayed 61-pin wire-wrapped fuel rod bundle test section. Wire mesh sensor was used to measure flow mixing characteristics. The developed post-processing method has its own merits, and flow mixing results were reasonable.
A Validation of Subchannel Based CHF Prediction Model for Rod Bundles
Hwang, Dae-Hyun; Kim, Seong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-10-15
A large number of CHF data base were procured from various sources which included square and non-square lattice test bundles. CHF prediction accuracy was evaluated for various models including CHF lookup table method, empirical correlations, and phenomenological DNB models. The parametric effect of the mass velocity and unheated wall has been investigated from the experimental result, and incorporated into the development of local parameter CHF correlation applicable to APWR conditions. According to the CHF design criterion, the CHF should not occur at the hottest rod in the reactor core during normal operation and anticipated operational occurrences with at least a 95% probability at a 95% confidence level. This is accomplished by assuring that the minimum DNBR (Departure from Nucleate Boiling Ratio) in the reactor core is greater than the limit DNBR which accounts for the accuracy of CHF prediction model. The limit DNBR can be determined from the inverse of the lower tolerance limit of M/P that is evaluated from the measured-to-predicted CHF ratios for the relevant CHF data base. It is important to evaluate an adequacy of the CHF prediction model for application to the actual reactor core conditions. Validation of CHF prediction model provides the degree of accuracy inferred from the comparison of solution and data. To achieve a required accuracy for the CHF prediction model, it may be necessary to calibrate the model parameters by employing the validation results. If the accuracy of the model is acceptable, then it is applied to the real complex system with the inferred accuracy of the model. In a conventional approach, the accuracy of CHF prediction model was evaluated from the M/P statistics for relevant CHF data base, which was evaluated by comparing the nominal values of the predicted and measured CHFs. The experimental uncertainty for the CHF data was not considered in this approach to determine the limit DNBR. When a subchannel based CHF prediction model
Kim, HYungmo; Chang, Seokkyu; Lee, Dong Won; Choi, Hae Seob; Euh, Dongjin; Lee, Hyeongyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In this SFR type of fuel rod, core subchannels are classified with interior, edge, and corner subchannels. Flow distribution of each subchannel is a crucial factor for the core thermal design, and experimental tests for the design code verification and validation in a temperature limitation analysis were conducted. To verify and validate computer codes for the SFR core thermal design, a hexagonally arrayed 37-pin wire-wrapped fuel rod bundle test section was fabricated. The measurement experiments were conducted using a well- designed test loop and iso-kinetic sampling probe. The developed iso-kinetic sampling method in the present study has its own merits, and flow rate results by sampling showed in good agreement with the preliminary CFD analysis results. In addition, the estimated mass balance error was only about 3% in the experiments. Therefore, the present methodology and results can be used in future experiments for design code verification and validation.
Chang, Seok Kyu; Euh, Dong Jin; Choi, Hae Seob; Kim, Hyung Mo; Choi, Sun Rock; Lee, Hyeong Yeon [Thermal-Hydraulic Safety Research Department, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-04-15
A hexagonally arrayed 37-pin wire-wrapped rod bundle has been chosen to provide the experimental data of the pressure loss and flow rate in subchannels for validating subchannel analysis codes for the sodium-cooled fast reactor core thermal/hydraulic design. The iso-kinetic sampling method has been adopted to measure the flow rate at subchannels, and newly designed sampling probes which preserve the flow area of subchannels have been devised. Experimental tests have been performed at 20-115% of the nominal flow rate and 60 degrees C (equivalent to Re ∼ 37,100) at the inlet of the test rig. The pressure loss data in three measured subchannels were almost identical regardless of the subchannel locations. The flow rate at each type of subchannel was identified and the flow split factors were evaluated from the measured data. The predicted correlations and the computational fluid dynamics results agreed reasonably with the experimental data.
Shamim, Jubair Ahmed; Bhowmik, Palash Kumar; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)
2014-05-15
Most of the traditional ways available in the literature to enhance heat transfer are mainly based on variation of structures like addition of heat surface area such as fins, vibration of heated surface, injection or suction of fluids, applying electrical or magnetic fields, and so forth. Application of these mechanical techniques to a fuel rod bundle will involve not only designing complex geometries but also using many additional mechanisms inside a nuclear reactor core which in turn will certainly increase the manufacturing cost as well as may hamper various safety features essential for sound and uninterrupted operation of a nuclear power reactor. On the other hand, traditional heat transfer fluids such as water, ethylene glycol and oils have inherently low thermal conductivity relative to metals and even metal oxides. In this study the coolant with suspended nano-sized particles in the base fluid is proposed as an alternative to increase heat transfer but minimize flow resistance inside a nuclear reactor core. Due to technical complexities most of the previous studies carried out on heat transfer of suspension of metal oxides in fluids were limited to suspensions with millimeter or micron-sized particles. Such outsized particles may lead to severe problems in heat transfer equipment including increased pressure drop and corrosion and erosion of components and pipe lines. Dramatic advancement in modern science has made it possible to produce ultrafine metallic or nonmetallic particles of nanometer dimension, which has brought a revolutionary change in the research of heat transfer enhancement methods. Due to very tiny particle size and their small volume fraction, problems such as clogging and increased pressure drop are insignificant for nanofluids. Moreover, the relatively large surface area of nanoparticles augments the stability of nanofluid solution and prevents the sedimentation of nanoparticles. Xuan and Roetzel considered two approaches to illustrate
Subchannel void-fraction measurements in a 6 by 6 rod tube bundle
Kok, H.V.; van der Hagen, T.H.J.J.; Adams, B.T. [Interfaculty Reactor Inst., Delf Univ. of Technology, Delft (Netherlands); Mudde, R.F.
1997-12-31
Using gamma-absorption and tomographic reconstruction techniques the void-fraction in each subchannel of a 6 by 6 scaled BWR fuel assembly could be measured at different axial positions along the assembly. The measurements were performed on the DESIRE facility at the Interfaculty Reactor Institute, Delft. The DESIRE facility is a scaled natural circulation loop that uses Freon-12 as a coolant. The fuel assembly is scaled for correct representation of the void-fraction and flow patterns, except at the bubbly flow regime. The scaling has been verified using the MONA code. A clear transition from bubbly to annular flow was observed in the experiments. Experiments using a tilted power profile show that there is no significant lateral transport of vapour across subchannels. (author)
Park, Jong Hark; Chae, Hee Taek; Park, Cheol; Kim, Heon Il
2008-09-15
Since the heat flux of the rod type fuel used in the HANARO, a research reactor being operated in the KAERI, is substantially higher than the heat flux of power reactors, the HANARO fuel has 8 longitudinal fins for enhancing the heat release from the fuel rod surface. This unique shape of a nuclear fuel led us to study the flows and thermal hydraulic characteristics of it. Especially because the flows through the narrow channels built up by these finned rod fuels would be different from the flow characteristics in the coolant channels formed by bare rod fuels, some experimental studies to investigate the flow behaviors and structures in a finned rod bundle were done by other researchers. But because of the very complex geometries of the flow channels in the finned rod bundle only allowed us to obtain limited information about the flow characteristics, a numerical study by a computational fluid dynamics technique has been adopted to elucidate more about such a complicated flow in a finned rod bundle. In this study, for the development of an adequate computational model to simulate such a complex geometry, a mesh sensitivity study and the effects of various turbulence models were examined. The CFD analysis results were compared with the experimental results. Some of them have a good agreement with the experimental results. All linear eddy viscosity turbulence models could hardly predict the secondary flows near the fuel surfaces and in the sub-channel, but the RSM (Reynolds Stress Model) revealed very different results from the eddy viscosity turbulence models. In the transient analysis all turbulence model predicted flow pulsation at the center of a subchannel as well as at the gap between rods in spite of large P/D. The flow pulsation showed different results with turbulence models and the location in the sub-channels.
Meyer, Leonhard, E-mail: leonhard.meyer@kit.ed [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies, Postfach 3640, 76021 Karlsruhe (Germany)
2010-06-15
The mixing of cooling fluid in rod bundles from one subchannel to another through the gaps between the rods reduces the temperature differences in the coolant as well as along the perimeter of the rods. The phenomenon of natural mixing was first intensively investigated in the 1960s and remains a topic of research up to the present time. The paper describes the main stations on the way to understand the nature of the flow in rod bundles and generally in compound channels with the focus on work performed at Research Center Karlsruhe (FZK). Earlier, it was noticed that the mixing rates where higher than could be accounted for by turbulent diffusion alone. For more than 20 years attempts were made to prove experimentally and by code application that secondary flows could account for the measured mixing rates, although the measured secondary flow velocities were much too low. Measurements of the turbulence structure by hot wire anemometry confirmed the existence of cyclic flow pulsations, which had been postulated earlier on the basis of thermocouple measurements. More sophisticated hot wire measurements revealed the nature of these pulsations as periodic, coupled to gap width and Reynolds number. Finally, the extension of the investigation to other compound channel types and flow visualization revealed the true nature of the mixing process as a vortex train moving along the gap between rods or in the narrow part of a compound channel. These findings have been confirmed by LES calculations. Based on these results CFD codes with improved turbulence models calculated successfully the flow in rod bundles including the macroscopic oscillations.
Todreas, N.E.; Golay, M.W.; Wolf, L.
1981-02-01
Four tasks are reported: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles. (DLC)
Hisashi, Ninokata [Tokyo Inst. of Tech. (Japan)
2006-07-01
In order to practice a design-by-analysis of thermohydraulics design of BWR fuel rod bundles, the subchannel analysis would play a major role. There, the immediate concern is improvement in its predictive capability of CHF due in particular to the film dryout (boiling transition phenomena: BT) on the fuel rod surface. Constitutive equations in the subchannel analysis formulation are responsible for the quality of calculated results. The constitutive equations are a result of integration of the local and instantaneous description of two-phase flows over the subchannel control volume. In general, they are expressed in terms of subchannel-control-volume- as well as area-averaged two-phase flow state variables. In principle the information on local and instantaneous physical phenomena taking place inside subchannels must be counted for in the algebraic form of the equations on the basis of a more mechanistic modeling approach. They should include also influences of the multi-dimensional subchannel geometry and fluid material properties. Thermohydraulics phenomena of interests in this deed are: 1) vapor-liquid re-distribution by inter-subchannel exchanges due to the diversion cross flow, turbulent mixing and void drift, 2) liquid film behaviors, 3) transition of two-phase flow regimes, 4) droplet entrainment and deposition and 5) spacer-droplet interactions. These are considered to be five key factors in understanding the BT in BWR fuel rod bundles. In Japan, a university-industry consortium has been formed under the sponsorship of the Ministry of Economics, Trade and Industry. This paper describes an outline of the on-going project and, first, an outline of the current efforts is presented in developing a new two-fluid three field subchannel code NASCA being aimed at predicting onset of BT, and post BT phenomena in advanced BWR fuel rod bundles including those of the tight lattice configuration for a higher conversion. Then the current methodology adopted to improve
Input modelling for subchannel analysis of CANFLEX fuel bundle
Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea)
1998-06-01
This report describs the input modelling for subchannel analysis of CANFLEX fuel bundle using CASS(Candu thermalhydraulic Analysis by Subchannel approacheS) code which has been developed for subchannel analysis of CANDU fuel channel. CASS code can give the different calculation results according to users' input modelling. Hence, the objective of this report provide the background information of input modelling, the accuracy of input data and gives the confidence of calculation results. (author). 11 refs., 3 figs., 4 tabs.
Todreas, N.E.; Golay, M.W.; Wolf, L.
1976-01-01
Progress is summarized in the following areas: wrapped and bare rod bundle geometry, bare rod subchannel geometry, outlet plenum flow mixing, and theoretical determination of local temperature fields in rod bundles. (DG)
Thermal hydraulics of rod bundles: The effect of eccentricity
Chauhan, Amit K., E-mail: amit_fmlab@yahoo.co.in [Fluid Mechanics Laboratory, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India); Prasad, B.V.S.S.S., E-mail: prasad@iitm.ac.in [Thermal Turbomachines Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Patnaik, B.S.V., E-mail: bsvp@iitm.ac.in [Fluid Mechanics Laboratory, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India)
2013-10-15
Highlights: • Present CFD investigation explores, whole bundle eccentricity for the first time. • Fluid flow and thermal characteristics in various subchannels are analyzed. • Mass flux distribution is particularly analyzed to study eccentricity effect. • Higher eccentricity resulted in a shoot up in rod surface temperature distribution. • Both tangential and radial flow in rod bundles has resulted due to eccentricity. -- Abstract: The effect of eccentricity on the fluid flow and heat transfer through a 19-rod bundle is numerically carried out. When the whole bundle shifts downwards with respect to the outer (pressure) tube, flow redistribution happens. This in turn is responsible for changes in mass flux, pressure and differential flow development in various subchannels. The heat flux imposed on the surface of the fuel rods and the mass flux through the subchannels determines the coolant outlet temperatures. The simulations are performed for a coolant flow Reynolds number of 4 × 10{sup 5}. For an eccentricity value of 0.7, the mass flux in the bottom most subchannel (l) was found to decrease by 10%, while the surface temperature of the fuel rod in the vicinity of this subchannel increased by 250% at the outlet section. Parameters of engineering interest including skin friction coefficient, Nusselt number, etc., have been systematically explored to study the effect of eccentricity on the rod bundle.
Enthalpy and void distributions in subchannels of PHWR fuel bundles
Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)
Hydrodynamic Experiments for a Flow Distribution of a 61-pin Wire-wrapped Rod Bundle
Chang, S. K.; Euh, D. J.; Choi, H. S.; Kim, H. M.; Ko, Y. J.; Lee, D. W.; Lee, H. Y.; Choi, S. R. [KAERI, Daejeon (Korea, Republic of)
2015-05-15
Fuel assembly of the SFR (Sodium-cooled Fast breeder Reactor) type reactor generally has wire spacers which are wrapped around each fuel pin helically in axial direction. The configuration of a helical wire spacer guarantees the fuel rods integrity by providing the bundle rigidity, proper spacing between rods and promoting coolant mixing between subchannels. It is important to understand the flow characteristics in such a triangular array wire wrapped rod bundle in a hexagonal duct. The experimental work has been undertaken to quantify the friction and mixing parameters which characterize the flow distribution in subchannels for the KAERI's own bundle geometric configuration. This work presents the hydrodynamic experimental results for the flow distribution and the pressure drop in subchannels of a 61-pin wire wrapped rod bundle which has been fabricated considering the hydraulic similarity of the reference reactor. Hydrodynamic experiments for a 61-pin wire wrapped test assembly has been performed to provide the data of a flow distribution and pressure losses in subchannels for verifying the analysis capability of subchannel analysis codes for a KAERI's own prototype SFR reactor. Three type of sampling probes have been specially designed to conserve the shape of the flow area for each type of subchannels. All 126 subchannels have been measured to identify the characteristics of the flow distribution in a 37-pin rod assembly. Pressure drops at the interior and the edge subchannels have been also measured to recognize the friction losses of each type of subchannels.
Todreas, N.E.; Golay, M.W.; Wolf, L.
1976-01-01
Progress is reported for the following tasks: bundle geometry studies; subchannel geometry studies; outlet plenum flow mixing studies; and the theoretical determination of local temperature fields in rod bundles.
Rehme, K.
1987-03-01
The velocity, turbulence, and temperature distributions in nuclear fuel element bundles of nuclear reactors were investigated. The mean velocity, the wall shear stresses, and the turbulence were measured in two wall subchannels of a rod bundle of four parallel rods, arranged in a rectangular channel, for three axial planes. A spacer grid was inserted in the rod bundle, for ratios between the distance spacer grid/measuring plane and the hydraulic diameter (LIDh) of 40.4, 32.8 and 16.9. The Reynolds number was 145,000. The results show that the distributions of the velocity and the turbulence are affected by the spacer grid, already for LIDh = 40.4. The effects of the spacer grid increase with decreasing distance to the spacer grid.
Subchannel and Computational Fluid Dynamic Analyses of a Model Pin Bundle
Gairola, A.; Arif, M.; Suh, K. Y. [Seoul National Univ., Seoul (Korea, Republic of)
2014-05-15
The current study showed that the simplistic approach of subchannel analysis code MATRA was not good in capturing the physical behavior of the coolant inside the rod bundle. With the incorporation of more detailed geometry of the grid spacer in the CFX code it was possible to approach the experimental values. However, it is vital to incorporate more advanced turbulence mixing models to more realistically simulate behavior of the liquid metal coolant inside the model pin bundle in parallel with the incorporation of the bottom and top grid structures. In the framework of the 11{sup th} international meeting of International Association for Hydraulic Research and Engineering (IAHR) working group on the advanced reactor thermal hydraulics a standard problem was conducted. The quintessence of the problem was to check on the hydraulics and heat transfer in a novel pin bundle with different pitch to rod diameter ratio and heat flux cooled by liquid metal. The standard problem stems from the field of nuclear safety research with the idea of validating and checking the performances of computer codes against the experimental results. Comprehensive checks between the two will succor in improving the dependability and exactness of the codes used for accident simulations.
Large-scale Flow Pulsation in Tight Square Arrayed Rod Bundles of Nuclear Reactor
Kim, Tae Hwan; Kim, Kyung Min; Cho, Hyung Hee [Yonsei University, Seoul (Korea, Republic of); Shin, Chang Hwan; In, Wang Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2011-05-15
As a major component of modern nuclear reactor, the nuclear fuel rod bundles with liquid coolant have been studied by a lot of researchers to understand the flow structure between the fuel rods. Recently, rod arrays with much small pitch-to-diameter ratio have been being tried to increase performance of the nuclear reactor. The liquid coolant flowing axially through these small spaces between the rods is known to show some peculiar phenomena including large-scale, quasi-periodic flow pulsation. These flow pulsation phenomena dominate mixing process in the subchannels. Thus, precise understating of the flow structure is essential to predict thermal-hydraulic phenomena in nuclear rod bundles. In this present paper, the turbulent flow in tight square arrayed rod bundles is investigated with Hot-wire anemometry. Then, the measured velocity data are analyzed by using Fast Fourier Transform analysis to find characteristic frequency of the pulsation
Analysis of dynamical flow structure in a square arrayed rod bundle
Ikeno, Tsutomu, E-mail: t-ikeno@nfi.co.j [Nuclear Fuel Industries, Ltd., 950, Asashiro Nishi 1-Chome, Kumatori-Cho, Sennan-Gun, Osaka 590-0481 (Japan); Kajishima, Takeo, E-mail: kajisima@mech.eng.osaka-u.ac.j [Department of Mechanical Engineering, Osaka University (Japan)
2010-02-15
Large eddy simulation (LES) of turbulent flow in a bare rod bundle was performed, and a new concept about the flow structure that enhances heat transport between subchannels was proposed. To investigate the geometrical effect, the LES was performed for three different values of rod diameter over pitch ratio (D/P = 0.7, 0.8, 0.9). The computational domain containing 4 subchannels was large enough to capture large-scale structures wide across subchannels. Lateral flow obtained was unconfined in a subchannel, and some flows indicated a pulsation through the rod gap between subchannels. The gap flow became strong as D/P increased, as existing experimental studies had reported. Turbulence intensity profile in the rod gap suggested that the pulsation was caused by the turbulence energy transferred from the main flow to the wall-tangential direction. This implied that the flow pulsation was an unsteady mode of the secondary flow and arose from the same geometrical effect of turbulence. This implication was supported by the analysis results: two-points correlation functions of fluctuating velocities indicated two length-scales, P-D and D, respectively of cross-sectional and longitudinal motions; turbulence stress in the cross-sectional mean flow contained a non-potential component, which represented energy injection through the unsteady longitudinal fluid motion.
ASSERT-PV 3.2: Advanced subchannel thermalhydraulics code for CANDU fuel bundles
Rao, Y.F., E-mail: raoy@aecl.ca; Cheng, Z., E-mail: chengz@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca; Nava-Dominguez, A., E-mail: navadoma@aecl.ca
2014-08-15
Highlights: • Introduction to a new version of the Canadian subchannel code, ASSERT-PV 3.2. • Enhanced models for flow-distribution, CHF and post-dryout heat transfer prediction. • Model changes focused on unique features of horizontal CANDU bundles. • Detailed description of model changes for all major thermalhydraulics models. • Discussion on rationale and limitation of the model changes. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The most recent release version, ASSERT-PV 3.2 has enhanced phenomenon models for improved predictions of flow distribution, dryout power and CHF location, and post-dryout (PDO) sheath temperature in horizontal CANDU fuel bundles. The focus of the improvements is mainly on modeling considerations for the unique features of CANDU bundles such as horizontal flows, small pitch to diameter ratios, high mass fluxes, and mixed and irregular subchannel geometries, compared to PWR/BWR fuel assemblies. This paper provides a general introduction to ASSERT-PV 3.2, and describes the model changes or additions in the new version to improve predictions of flow distribution, dryout power and CHF location, and PDO sheath temperatures in CANDU fuel bundles.
Turbulet flow in a model nuclear fuel rod bundle containing partial flow blockages
Creer, J.M.; Rowe, D.S.; Bates, J.M.; Sutey, A.M.
1977-03-01
Local velocity and turbulence intensity measurements were obtained with a laser Doppler anemometer near flow blockages in an unheated 7 x 7 rod bundle. Sleeve blockages were positioned on the center nine rods to create area reductions of 70 and 90 percent in the center four subchannels of the bundle. Experimental results indicated that severe flow disturbances existed downstream from the blockage clusters and showed that only minor disturbances can be expected upstream from the blockages. Recirculation zones for both 70 and 90 percent blockages were detected downstream from the blockage clusters and persisted for approximately three to five subchannel hydraulic diameters depending on blockage severity. The experimental velocity results obtained with blockage clusters located midway between grid spacers were successfully predicted using the COBRA computer program.
Hydrodynamic behavior of a bare rod bundle. [LMFBR
Bartzis, J.G.; Todreas, N.E.
1977-06-01
The temperature distribution within the rod bundle of a nuclear reactor is of major importance in nuclear reactor design. However temperature information presupposes knowledge of the hydrodynamic behavior of the coolant which is the most difficult part of the problem due to complexity of the turbulence phenomena. In the present work a 2-equation turbulence model--a strong candidate for analyzing actual three dimensional turbulent flows--has been used to predict fully developed flow of infinite bare rod bundle of various aspect ratios (P/D). The model has been modified to take into account anisotropic effects of eddy viscosity. Secondary flow calculations have been also performed although the model seems to be too rough to predict the secondary flow correctly. Heat transfer calculations have been performed to confirm the importance of anisotropic viscosity in temperature predictions. All numerical calculations for flow and heat have been performed by two computer codes based on the TEACH code. Experimental measurements of the distribution of axial velocity, turbulent axial velocity, turbulent kinetic energy and radial Reynolds stresses were performed in the developing and fully developed regions. A 2-channel Laser Doppler Anemometer working on the Reference mode with forward scattering was used to perform the measurements in a simulated interior subchannel of a triangular rod array with P/D = 1.124. Comparisons between the analytical results and the results of this experiment as well as other experimental data in rod bundle array available in literature are presented. The predictions are in good agreement with the results for the high Reynolds numbers.
Experimental investigation on anisotropic turbulent flow in a 6 × 6 rod bundle with LDV
Xiong, Jinbiao, E-mail: xiongjinbiao@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); Yu, Nan [State Nuclear Power Software Development Center (China); Yu, Yang [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); Fu, Xiaoliang [State Nuclear Power Software Development Center (China); Cheng, Xu [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); Yang, Yanhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University (China); State Nuclear Power Software Development Center (China)
2014-10-15
Highlights: • Five-beam three-component LDV is applied to measure flow in a 6 × 6 rod bundle. • Three-dimension flow field is obtained at the outlet. • The effects of spacer and Reynolds number on flow are investigated. • Three components of mean velocity scale with the bulk velocity. • The Reynolds stresses scale with the square of average bulk velocity. - Abstract: The five-beam three-component laser Doppler velocimetry (LDV) is applied to investigate the turbulent flow in a 6 × 6 rod bundle installed with simple grid spacers. LDV measurement has been conducted at four cross sections downstream a grid spacer at five Reynolds numbers ranging from 6600 to 70,300. The flow evolution downstream of the grid spacer is demonstrated through the comparison of the axial mean velocity and Root Mean Square (RMS) velocity at the three cross sections downstream of the grid spacer. All the three components of the flow velocity are measured in the selected subchannels at the outlet cross section of the rod bundle which is dedicated to provide more information on the turbulence statistics in the rod bundle flow. Remarkably high ratio of axial normal stress to the turbulent kinetic energy, vv{sup ¯}/k, is observed even in the subchannel center, which indicates that the turbulence in the rod bundle is anisotropic. Comparing experiment results at the five Reynolds numbers, the low Reynolds number effect is found in the case with Re = 6.6 × 10{sup 3}. The experiment results also imply that the Reynolds number effect in the tight-lattice bundle is weak compare to that in the loose one.
Moon, Kang Hoon; Oezdemir, Erdal; Oh, Seung Jong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)
2014-10-15
The subchannel code is used to assess the safety of a reactor core at the steady-state and transient conditions. KEPCO Nuclear Fuel (KNF) has been developed new subchannel code, THALES, for PWR core design application. In this study, we are comparing the THALES result with VIPRE-01 code result utilizing bundle test data. VIPRE-01 was developed under EPRI sponsorship and has been used by U.S. PWR commercial nuclear utilities, historically. THALES and VIPRE-01 codes were benchmarked to two kind of bundle test data which were at the steady-state and transient conditions. THALES predicted fluid velocity and temperature profile of bundle test data well and the error rate between THALES and VIPRE-01 was very small.
Experimental investigation of heat transfer from a 2 × 2 rod bundle to supercritical pressure water
Wang, Han [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Bi, Qincheng, E-mail: qcbi@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Linchuan; Lv, Haicai [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Leung, Laurence K.H. [Atomic Energy of Canada Limited, Chalk River, Ont., Canada K0J 1J0 (Canada)
2014-08-15
Highlights: • Heat transfer of supercritical water through a 2 × 2 rod bundles is investigated. • Circumferential wall temperature distribution is obtained. • Effects of system parameters on heat transfer characteristics are analyzed. • Heat transfer correlations are compared against the rod bundle test data. - Abstract: Heat transfer experiments with supercritical pressure water flowing vertically upward through a 2 × 2 rod bundle have been performed at Xi’an Jiaotong University. A fuel-assembly simulator with four heated rods was installed inside a square channel with rounded corner. The outer diameter of each heated rod is 8 mm with an effective heated length of 600 mm. The experiments covered the pressure range of 23–28 MPa, mass-flux range of 350–1000 kg/(m{sup 2} s) and heat-flux range on the rod surface of 200–1000 kW/m{sup 2}. Heat transfer characteristics of supercritical pressure water through the bundle were examined with respect to variations of heat flux, system pressure, and mass flux. These characteristics were shown to be similar to those previously observed in tubes or annuli. The experimental data indicate a non-uniform circumferential wall-temperature distribution around the heated rod. A maximum wall temperature was observed at the surface facing the corner gap between the heated rod and the ceramic tube, while the minimum wall temperature was observed at the surface facing the center subchannel. The difference between maximum and minimum wall temperatures varies with heat flux and/or mass flux. Eight heat transfer correlations developed for supercritical water were assessed against the current set of test data. Prediction of the Jackson correlation agrees closely with the experimental Nusselt number. A new correlation has been derived based on Jackson correlation to improve the prediction accuracy of supercritical heat transfer coefficient in a 2 × 2 rod bundle.
Characteristics of turbulent velocity and temperature in a wall channel of a heated rod bundle
Krauss, T.; Meyer, L. [Forschungszentrum Karlsruhe (Germany)
1995-09-01
Turbulent air flow in a wall sub-channel of a heated 37-rod bundle (P/D = 1.12, W/D = 1.06) was investigated. measurements were performed with hot-wire probe with X-wires and a temperature wire. The mean velocity, the mean fluid temperature, the wall shear stress and wall temperature, the turbulent quantities such as the turbulent kinetic energy, the Reynolds-stresses and the turbulent heat fluxes were measured and are discussed with respect to data from isothermal flow in a wall channel and heated flow in a central channel of the same rod bundle. Also, data on the power spectral densities of the velocity and temperature fluctuations are presented. These data show the existence of large scale periodic fluctuations are responsible for the high intersubchannel heat and momentum exchange.
Laboratory manual for static pressure drop experiments in LMFBR wire wrapped rod bundles
Burns, K.J.; Todreas, N.E.
1980-07-01
Purpose of this experiment is to determine both interior and edge subchannel axial pressure drops for a range of Reynolds numbers. The subchannel static pressure drop is used to calculate subchannel and bundle average friction factors, which can be used to verify existing friction factor correlations. The correlations for subchannel friction factors are used as input to computer codes which solve the coupled energy, continuity, and momentum equations, and are also used to develop flow split correlations which are needed as input to codes which solve only the energy equation. The bundle average friction factor is used to calculate the overall bundle pressure drop, which determines the required pumping power.
Two-phase flow interfacial structures in a rod bundle geometry
Paranjape, Sidharth S.
Interfacial structure of air-water two-phase flow in a scaled nuclear reactor rod bundle geometry was studied in this research. Global and local flow regimes were obtained for the rod bundle geometry. Local two-phase flow parameters were measured at various axial locations in order to understand the transport of interfacial structures. A one-dimensional two-group interfacial area transport model was evaluated using the local parameter database. Air-water two-phase flow experiments were performed in an 8 X 8 rod bundle test section to obtain flow regime maps at various axial locations. Area averaged void fraction was measured using parallel plate type impedance void meters. The cumulative probability distribution functions of the signals from the impedance void meters were used along with a self organizing neural network to identify flow regimes. Local flow regime maps revealed the cross-sectional distribution of flow regimes in the bundle. Local parameters that characterize interfacial structure, that is, void fraction alpha, interfacial area concentration, ai, bubble Sauter mean diameter, DSm and bubble velocity, vg were measured using four sensor conductivity probe technique. The local data revealed the distribution of the interfacial structure in the radial direction, as well as its development in the axial direction. In addition to this, the effect of spacer grid on the flow structure at different gas and liquid velocities was revealed by local parameter measurements across the spacer grids. A two-group interfacial area transport equation (IATE) specific to rod bundle geometry was derived. The derivation of two-group IATE required certain assumption on the bubble shapes in the subchannels and the bubbles spanning more than a subchannel. It was found that the geometrical relationship between the volume and the area of a cap bubble distorted by rods was similar to the one derived for a confined channel under a specific geometrical transformation. The one
Turbulent mixing in a rod bundle with vaned spacer grids: OECD/NEA–KAERI CFD benchmark exercise test
Chang, Seok-Kyu; Kim, Seok; Song, Chul-Hwa, E-mail: chsong@kaeri.re.kr
2014-11-15
Highlights: • Detailed velocity profiles have been examined in a rod bundle with mixing spacer grids. • Mixing characteristics strongly depend on the type of the mixing vane on a spacer grid. • The swirl in subchannels is elliptic and the cross-flow in gaps is vigorous in the split-type. • Swirl-type vanes generate a circular swirl in a subchannel and a weak cross-flow in gaps. • Mixing performance is superior in the case of the split-type compared to the swirl-type. - Abstract: An experimental study titled the 2nd International Benchmark Exercise (IBE-2) has been conducted to provide high-precision data of detailed turbulent flow mixing in a rod bundle for validating the CFD codes being used widely in the nuclear power industry. A 5 × 5 rod bundle having mixing spacer grids was adopted as a test rig, and was contained in a square flow housing with a 170 mm side length and 4670 mm length. The 25 rods in a bundle have dimensions of 25.4 mm in outer diameter and a 3863 mm length. The benchmark experiments have been performed at the MATiS-H water loop facility in KAERI. The axial bulk velocity in a rod bundle was maintained at about 1.50 m/s (equivalent to Re ∼50,000) with loop conditions of 35 °C and 1.57 bar measured upstream of the spacer during the experiments. Detailed measurements of the turbulent flow in the subchannels were accomplished using 2-D LDA at four different distances (0.5, 1, 4 and 10 D{sub H}) from the downstream of the mixing spacer grid. The upstream flow profiles also have been measured at the inlet of the mixing spacer grid for the inlet boundary condition. Precise measurements of the lateral and axial velocities in the subchannels are presented at four downstream distances, as well as the inlet from the mixing spacer grid of two types. Turbulence intensities and vorticities in the subchannels are also evaluated from the velocity measurements.
Effect of Flow Blockage on the Coolability during Reflood in a 2 × 2 Rod Bundle
Kihwan Kim
2014-01-01
Full Text Available During the reflood phase of a large-break loss-of-coolant accident (LBLOCA in a pressurized-water reactor (PWR, the fuel rods can be ballooned or rearranged owing to an increase in the temperature and internal pressure of the fuel rods. In this study, an experimental study was performed to understand the thermal behavior and effect of the ballooned region on the coolability using a 2 × 2 rod bundle test facility. The electrically heated rod bundle was used and the ballooning shape of the rods was simulated by superimposing hollow sleeves, which have a 90% blockage ratio. Forced reflood tests were performed to examine the transient two-phase heat transfer behavior for different reflood rates and rod powers. The droplet behaviors were also investigated by measuring the velocity and size of droplets near the blockage region. The results showed that the heat transfer was enhanced in the downstream of the blockage region, owing to the reduced flow area of the subchannel, intensification of turbulence, and deposition of the droplet.
CFD Verification of 5x5 Rod Bundle with Mixing Vane Spacer Grids
Park, Sungkew; Jang, Hyungwook; Lim, Jongseon; Park, Eungjun; Nahm, Keeyil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
Results of the CHF test are used for determining the CHF correlation, which is used to evaluate the thermal margin in the reactor core. Computational fluid dynamics (CFD) has been used to save the time and cost for experimental tests, components design and complicated phenomena in all industries including the reactor coolant system. L. D. Smith et al. applied the CFD methodology in a 5x5 rod bundle with the mixing vane spacer grid using the renormalization group (RNG) k-epsilon model. This CFD model agreed reasonably well with the test data. M. E. Conner et al. conducted experiments to validate the CFD methodology for the single-phase flow conditions in PWR fuel assemblies. In this validation case, the CFD code predicted very similar flow field structures as the test data. In this study, a CFD simulation under single-phase flow condition was conducted for one specific condition in a thermal mixing flow test of 5x5 rod bundle with some mixing vane spacer grids. In this study, a CFD simulation under a single-phase flow condition was conducted for one specific condition in a thermal mixing flow test of 5x5 rod bundle with the mixing vane spacer grids to verify the applicability of the CFD model for predicting the outlet temperature distribution. FLUENT 14.5 Version was used in this CFD analysis. For the successful prediction of the wall bounded turbulent flows, the y+ with 3 prism layers was determined within 5. At this time, k-epsilon standard turbulence model was used. The temperature distribution of CFD for each sub-channel at the outlet region of test bundle showed the difference approximately within 1.1% and 0.2% while comparing to that of test and sub-channel analysis code, respectively.
CFD analyses of flow structures in air-ingress and rod bundle problems
Wei, Hong-Chan
Two topics from nuclear engineering field are included in this dissertation. One study is the air-ingress phenomenon during a loss of coolant accident (LOCA) scenario, and the other is a 5-by-5 bundle assembly with a PWR design. The objectives were to investigate the Kelvin-Helmholtz instability of the gravity-driven stratified flows inside a coaxial pipe and the effects caused by two types of spacers at the downstream of the rod bundle. Richardson extrapolation was used for the grid independent study. The simulation results show good agreements with the experiments. Wavelet analysis and Proper Orthogonal Decomposition (POD) were used to study the flow behaviors and flow patterns. For the air-ingress phenomenon, Brunt-Vaisala frequency, or buoyancy frequency, predicts a frequency of 2.34 Hz; this is confirmed by the dominant frequency of 2.4 Hz obtained from the wavelet analysis between times 1.2 s and 1.85 s. For the rod bundle study, the dominant frequency at the center of the subchannel was determined to be 2.4 Hz with a secondary dominant frequency of 4 Hz and a much minor frequency of 6 Hz. Generally, wavelet analysis has much better performance than POD, in the air-ingress phenomenon, for a strongly transient scenario; they are both appropriate for the rod bundle study. Based on this study, when the fluid pair in a real condition is used, the time which air intrudes into the reactor is predictable.
Numerical Simulation for Frictional Loss and Local Loss of a 5*5 SMART Rod Bundle
Park, Jong-Pil; Kim, Seong Jin; Kwon, Hyuk; Seo, Kyong-Won; Hwang, Dae-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
The results showed good agreement with experimental data and/or reasonable values. However, these results were dependent on computational meshes and turbulence models and it still remains important issues in CFD analysis. The aim of present work is to assess the pressure drop in a 5*5 SMART rod bundle using 3D CFD code with various computational meshes and turbulence models. In the present work, 3D CFD code was utilized to investigate pressure drop in a SMART 5*5 rod bundle. The predicted pressure drop was strongly dependent with computational meshes and turbulence models. Based on CFD results in this study, least five of six meshes within the subchannel gap are required to get reliable result which is insensitive to the number of meshes. The friction factor predicted by k - ε model is good agreement with McAdams's correlation while SST model overestimate McAdams's correlation. However, it is difficult to judge performance of turbulence model because of lock of experimental data for a 5*5 SMART bare rod bundle. For nominal condition (Re-194,000) of SMART, SST model predict k-factor of MV and IFM grid as 1.304 and 0.748, respectively. This value is reasonable as compared with designed k-factor, 1.320 and 0.78.
Overview and Discussion of the OECD/NRC Benchmark Based on NUPEC PWR Subchannel and Bundle Tests
M. Avramova
2013-01-01
Full Text Available The Pennsylvania State University (PSU under the sponsorship of the US Nuclear Regulatory Commission (NRC has prepared, organized, conducted, and summarized the Organisation for Economic Co-operation and Development/US Nuclear Regulatory Commission (OECD/NRC benchmark based on the Nuclear Power Engineering Corporation (NUPEC pressurized water reactor (PWR subchannel and bundle tests (PSBTs. The international benchmark activities have been conducted in cooperation with the Nuclear Energy Agency (NEA of OECD and the Japan Nuclear Energy Safety Organization (JNES, Japan. The OECD/NRC PSBT benchmark was organized to provide a test bed for assessing the capabilities of various thermal-hydraulic subchannel, system, and computational fluid dynamics (CFDs codes. The benchmark was designed to systematically assess and compare the participants’ numerical models for prediction of detailed subchannel void distribution and department from nucleate boiling (DNB, under steady-state and transient conditions, to full-scale experimental data. This paper provides an overview of the objectives of the benchmark along with a definition of the benchmark phases and exercises. The NUPEC PWR PSBT facility and the specific methods used in the void distribution measurements are discussed followed by a summary of comparative analyses of submitted final results for the exercises of the two benchmark phases.
Wheeler, C.L.; Stewart, C.W.; Cena, R.J.; Rowe, D.S.; Sutey, A.M.
1976-03-01
The COBRA-IV-I computer code uses the subchannel analysis approach to determine the enthalpy and flow distribution in rod bundles for both steady-state and transient conditions. The steady-state and transient solution schemes used in COBRA-IIIC are still available in COBRA-IV-I as the implicit solution scheme option. In addition to these techniques, a new explicit solution scheme is now available which allows the calculation of severe transients involving flow reversals, recirculations, expulsion and reentry flows, with a pressure or flow boundary condition specified. Significant storage compaction and reduced running times have been achieved to allow the calculation of problems involving hundreds of subchannels.
Fakori-Monazah, M.R.; Todreas, N.E.
1977-08-01
A simulated model of triangular array rods with pitch to diameter ratio of 1.10 (as a test section) and air as the fluid flow was used to study the LMFBR hydraulic parameters. The wall shear stress distribution around the rod periphery, friction factors, static pressure distributions and turbulence intensity corresponding to various Reynolds numbers ranging from 4140 to 36170 in the central subchannel were measured. Various approaches for measurement of wall shear stress were compared. The measurement was performed using the Preston tube technique with the probe outside diameter equal to 0.014 in.
Acoustic loading effects on oscillating rod bundles
Lin, W.H.
1980-01-01
An analytical study of the interaction between an infinite acoustic medium and a cluster of circular rods is described. The acoustic field due to oscillating rods and the acoustic loading on the rods are first solved in a closed form. The acoustic loading is then used as a forcing function for rod responses, and the acousto-elastic couplings are solved simultaneously. Numerical examples are presented for several cases to illustrate the effects of various system parameters on the acoustic reaction force coefficients. The effect of the acoustic loading on the coupled eigenfrequencies are discussed.
CFD study of isothermal water flow in rod bundle with split-type spacer grid
Batta, A.; Class, A. G.
2014-06-01
The design of rod bundles in nuclear application nowadays is assessed by CFD (computational fluid dynamics). The accuracy of CFD models need validation. Within the OECD/NEA benchmark MATiS-H (Measurement and Analysis of Turbulent Mixing in Sub-channels - Horizontal) a single-phase water flow in a 5x5 rod bundle is studied. In the benchmark, two types of spacer grids are tested, the swirl type and the split type, where the current study focuses on the split type spacer grid. Comparison of CFD results obtained at Karlsruhe Institut of Technology (KIT) with experimental results of KAERI (Korea Atomic Energy Research Institute) are presented. In the benchmark velocities components along selected lines downstream of the spacer grid are measured and compared to CFD results. The CFD code STAR CCM+ with the Realized k-ɛ model is used. Comparisons with experimental results show quantitative and qualitative agreement for the averaged values of velocity components. Comparisons of results to other benchmark partners using different modeling show that the selected mesh size and models for the analysis of the current case gives relatively accurate results. However, the used turbulent model (Realized k-ɛ does not capture the turbulent intensity correctly. Computation shows that the flow has very high mixing due to the spacer grid, which does not decay within the measurements domain (z/ DH =0-10 downstream of spacer grid). The same conclusion can be drawn from experimental data.
Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients
Todreas, N. E.; Cheng, S. K.; Basehore, K.
1984-08-01
The thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration was investigated. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions are emphasized. Outlet plenum behavior is also investigated.
Taewan Kim
2012-01-01
Full Text Available In order to assess the accuracy and validity of subchannel, system, and computational fluid dynamics codes, the Paul Scherrer Institut has participated in the OECD/NRC PSBT benchmark with the thermal-hydraulic system code TRACE5.0 developed by US NRC, the subchannel code FLICA4 developed by CEA, and the computational fluid dynamic code STAR-CD developed by CD-adapco. The PSBT benchmark consists of a series of void distribution exercises and departure from nucleate boiling exercises. The results reveal that the prediction by the subchannel code FLICA4 agrees with the experimental data reasonably well in both steady-state and transient conditions. The analyses of single-subchannel experiments by means of the computational fluid dynamic code STAR-CD with the CD-adapco boiling model indicate that the prediction of the void fraction has no significant discrepancy from the experiments. The analyses with TRACE point out the necessity to perform additional assessment of the subcooled boiling model and bulk condensation model of TRACE.
Navarro, Moyses A. [Brazilian Nuclear Energy Commission (CNEN), Belo Horizonte, MG (Brazil)], e-mail: navarro@cdtn.br; Santos, Andre A.C. [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Mechanical Engineering Department], e-mail: acampagnole@yahoo.com.br
2009-07-01
The fuel assemblies of the Pressurized Water Reactors (PWR) are constituted of rod bundles arranged in a regular square configuration by spacer grids placed along its length. The presence of the spacer grids promote two antagonist effects on the core: a desirable increase of the local heat transfer downstream the grids and an adverse increase of the pressure drop due the constriction on the coolant flow area. Most spacer grids are designed with mixing vanes which cause a cross and swirl flow between and within the subchannels, enhancing even more the heat transfer performance in the grid vicinity. The improvement of the heat transfer increases the departure from the nucleate boiling ratio, allowing higher operating power in the reactor. Due to these important thermal and fluid dynamic features, experimental and theoretical investigations have been carried out in the past years for the development of spacer grid design. More recently, the Computational Fluid Dynamics (CFD) using three dimensional Reynolds Averaged Navier Stokes (RANS) analysis has been used efficiently for this purpose. Many computational works have been performed, but the appropriate numerical procedure for the flow in rod bundle simulations is not yet a consensus. This work presents results of flow simulations performed with the commercial code CFX 11.0 in a PWR 5x5 rod bundle segment with a split vane spacer grid. The geometrical configuration and flow conditions used in the experimental studies performed by Karoutas et al. were assumed in the simulations. To make the simulation possible with a limited computational capacity and acceptable mesh refinement, the computational domain was divided in 7 subdomains. The subdomains were simulated sequentially applying the outlet results of a previous subdomain as inlet condition for the next. In this study the {kappa}-{epsilon} turbulence model was used. The simulations were also compared with those performed by Karoutas et al. in half a subchannel and
Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report
Todreas, N.E.; Cheng, S.K.; Basehore, K.
1984-08-01
This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.
Navarro, Moyses A. [Brazilian Nuclear Energy Commission (CNEN), Belo Horizonte, MG (Brazil)], e-mail: navarro@cdtn.br; Santos, Andre A.C. [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Mechanical Engineering Department], e-mail: acampagnole@yahoo.com.br
2009-07-01
Spacer grids along the fuel assembly of Pressurized Water Reactors (PWR) maintain rod bundles arranged in a regular square configuration. The mixing vanes present in the spacer grids promote cross and swirl flow between and within the subchannels, enhancing the heat transfer performance in the grid vicinity, but also causing an adverse increase of the pressure drop in the rod bundle due the constriction on the coolant flow area. Therefore, the thermal hydraulic design of the grid must allow for both low pressure loss and high coolant mixing, which means it is important to optimize the design of the grid in relation to the mixing vane. More recently, Computational Fluid Dynamics (CFD) using three dimensional Reynolds Averaged Navier Stokes (RANS) analysis has been used efficiently as an auxiliary tool in the development of spacer grids. The influence of some geometric characteristics of spacer grids on the flow through a rod bundle have been numerically evaluated and are still a subject of discussion. This work analyses the influence of the vanes arrangement in the spacer grid on the flow through a PWR 5 x 5 rod bundle segment. The Numerical simulations were performed with the commercial code CFX 11.0. To make the simulation possible with a limited computational capacity and acceptable mesh refinement, the computational domain was divided in 7 subdomains. The subdomains were simulated sequentially applying the outlet results of a previous subdomain as inlet condition for the next. In this study the k- turbulence model with scalable wall function was used. Five different vane arrangements were simulated at reactor level power and flow characteristics. The same grid and vane geometry were used in all simulations. The results of this study were divided in two parts. In the first part the presence of peripheral vanes on 5 x 5 rod bundle spacer grid tests were evaluated. The results showed that peripheral vanes should be avoided in experiments and simulations in order to
Uniform versus Nonuniform Axial Power Distribution in Rod Bundle CHF Experiments
Baowen Yang
2014-01-01
Full Text Available Rod bundle experiments with axially uniform and nonuniform heat fluxes are examined to explore the potential limitations of using uniform rod bundle CHF data for CHF correlation development of light water reactors with nonuniform axial power distribution (APD. The case of upstream burnout is presented as an example of unique phenomena associated with nonuniform rod bundle CHF experiments. It is a result from combined effect of axial nonuniform power shape and different interchannel mixing mechanisms. In addition, several key parameters are investigated with respect to their potential impacts on the thermal-hydraulic behaviors between rod bundles with uniform and nonuniform APDs. This type of misrepresentation cannot be amended or compensated through the use of correction factors due to the lack of critical information in the uniform rod bundle CHF testing as well as the fundamental difference in the underlining driving mechanisms. Other potential issues involved with the use of uniform rod bundle CHF data for nonuniform APD system applications also present strong evidence concerning the limitations and inadequacy of using uniform rod bundle CHF data for the correlation, prediction, and design limit calculation for safety analysis.
Turbulent interchange in triangular array bare rod bundles
Kelly, J.M.; Todreas, N.
1977-07-01
Bulk mixing coefficients were measured for single plane water flow in a simulated rod bundle with a pitch to diameter ratio of 1.10. A tracer technique employing Rhodamine B as the tracer and measuring fluorescence was used. Isokinetic sampling was achieved by using a pressure balance method. The results were corrected for both entrance effects and diversion crossflows. The results showed a change in Reynolds number behavior as the laminar sublayer began to ''choke'' the turbulent mixing. This, and a review of other mixing experiments, suggested that secondary flows do not compensate for laminarization and that turbulent mixing decreases as the pitch to diameter ratio decreases for values of P/D less than 1.05 in a manner similar to that predicted by Ramm et al. Concentration profiles were measured through the clearance gap and the values of the gradient were used to calculate the gap averaged circumferential eddy diffusivity for mass. A discussion of the eddy diffusivity concept and its applicability to turbulent mixing is presented.
Kureta, Masatoshi; Tamai, Hidesada; Yoshida, Hiroyuki; Ohnuki, Akira; Akimoto, Hajime
An estimation of the void fraction in a tight-lattice rod bundle was needed for the R&D of the Innovative Water Reactor for Flexible Fuel Cycle (FLWR). For this purpose, we measured the void fraction and studied the behaviors of boiling flow. The void fraction was measured by a neutron radiography, a quick-shut-valve technique, and an electro void fraction meter. The data were taken using the 7-, 14-, 19- and 37-rod bundle test sections with the rod gap of 1.0 or 1.3 mm under from atmospheric pressure to 7.2 MPa conditions. A spacer effect test was also carried out. The following estimations were conducted: (1) a similarity of the advanced analysis codes with the 3D void fraction data, (2) the comparisons of the TRAC-BF1 code and a drift-flux model with the 1D data. Followings were made clear: (a) The void fraction becomes lower at the peripheral and higher at the rod gap part of the lower core and at the center of the subchannel of the upper core, (b) the codes calculates the similar distribution to the data, and (c) the TRAC-BF1 and the drift-flux model tends to overestimate the void fraction at the lower quality region, on the other hand at the higher quality, those methods tend to same characteristics to the data. It was confirmed that several special features were existed in the tight-lattice rod bundle but the codes were applicable.
Kang, Shin K., E-mail: paengki1@tamu.edu; Hassan, Yassin A.
2016-05-15
Highlights: • The capabilities of steady RANS models were directly assessed for full axial scale experiment. • The importance of mesh and conjugate heat transfer was reaffirmed. • The rod inner-surface temperature was directly compared. • The steady RANS calculations showed a limitation in the prediction of circumferential distribution of the rod surface temperature. - Abstract: This study examined the capabilities and limitations of steady Reynolds-Averaged Navier–Stokes (RANS) approach for pressurized water reactor (PWR) rod bundle problems, based on the round robin benchmark of computational fluid dynamics (CFD) codes against the NESTOR experiment for a 5 × 5 rod bundle with typical split-type mixing vane grids (MVGs). The round robin exercise against the high-fidelity, broad-range (covering multi-spans and entire lateral domain) NESTOR experimental data for both the flow field and the rod temperatures enabled us to obtain important insights into CFD prediction and validation for the split-type MVG PWR rod bundle problem. It was found that the steady RANS turbulence models with wall function could reasonably predict two key variables for a rod bundle problem – grid span pressure loss and the rod surface temperature – once mesh (type, resolution, and configuration) was suitable and conjugate heat transfer was properly considered. However, they over-predicted the magnitude of the circumferential variation of the rod surface temperature and could not capture its peak azimuthal locations for a central rod in the wake of the MVG. These discrepancies in the rod surface temperature were probably because the steady RANS approach could not capture unsteady, large-scale cross-flow fluctuations and qualitative cross-flow pattern change due to the laterally confined test section. Based on this benchmarking study, lessons and recommendations about experimental methods as well as CFD methods were also provided for the future research.
Effects of fuel relocation on reflood in a partially-blocked rod bundle
Kim, Byoung Jae [School of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Kim, Jongrok; Kim, Kihwan; Bae, Sung Won [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Division, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Moon, Sang-Ki, E-mail: skmoon@kaeri.re.kr [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Division, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of)
2017-02-15
Ballooning of the fuel rods has been an important issue, since it can influence the coolability of the rod bundle in a large-break loss-of-coolant accident (LBLOCA). Numerous past studies have investigated the effect of blockage geometry on the heat transfer in a partially blocked rod bundle. However, they did not consider the occurrence of fuel relocation and the corresponding effect on two-phase heat transfer. Some fragmented fuel particles located above the ballooned region may drop into the enlarged volume of the balloon. Accordingly, the fuel relocation brings in a local power increase in the ballooned region. The present study’s objective is to investigate the effect of the fuel relocation on the reflood under a LBLOCA condition. Toward this end, experiments were performed in a 5 × 5 partially-blocked rod bundle. Two power profiles were tested: one is a typical cosine shape and the other is the modified shape considering the effect of the fuel relocation. For a typical power shape, the peak temperature in the ballooned rods was lower than that in the intact rods. On the other hand, for the modified power shape, the peak temperature in the ballooned rods was higher than that in the intact rods. Numerical simulations were also performed using the MARS code. The tendencies of the peak clad temperatures were well predicted.
Buddly, slug, and annular two-phase flow in tight-lattice subchannels
Prasser, Horst-Michael; Bolesch, Charistian; Cramer, Kerstin; Papadopoulos, Petros; Saxena, Abhishek; Zboray, Robert [ETH Zurich, Dept. of Mechanical and Process Engineering (D-MAVT), Zurich (Switzerland); Ito, Daisuke [Kyoto University, Research Reactor Institute, Osaka (Japan)
2016-08-15
An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring subchannels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of 16 × 64 measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.
Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels
Horst-Michael Prasser
2016-08-01
Full Text Available An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI, Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1 a vertical channel modeling a pair of neighboring subchannels; and (2 an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of 16 × 64 measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.
Numerical study of two equation turbulence models for subchannel thermal hydraulics
Nazififard, Mohammad; Suha, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)
2012-10-15
The need for more accurate computational methods for the analysis of nuclear reactor systems has generated rising interests for computational fluid dynamics (CFD) and growing range of applications of commercial CFD software. This study presents results of the sensitivity analysis using the two equation turbulence models for several grid configurations. The Turbulence Enhanced Mixing Analysis (TEMA) result contributes further to turbulent convective heat transfer mechanisms in a subchannel of a square array rod bundle.
Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis
Mao, H.; Yang, B.W.; Han, B. [Xi' an Jiaotong Univ., Shaanxi (China). Science and Technology Center for Advanced Nuclear Fuel Research
2016-07-15
Mixing vane grids (MVG) have great influence on coolant temperature field in the rod bundle. The MVG could enhance convective heat transfer between the fuel rod wall and the coolant, and promote inter-subchannel mixing at the same time. For the influence of the MVG on convective heat transfer enhancement, many experiments have been done and several correlations have been developed based on the experimental data. However, inter-subchannel mixing promotion caused by the MVG is not well estimated in subchannel analysis because the information of mixing vanes is totally missing in most subchannel codes. This paper analyzes the influence of mixing vanes on coolant temperature distribution using the improved MVG model in subchannel analysis. The coolant temperature distributions with the MVG are analyzed, and the results show that mixing vanes lead to a more uniform temperature distribution. The performances of split vane grids under different power conditions are evaluated. The results are compared with those of spacer grids without mixing vanes and some conclusions are obtained.
Hydraulic characteristics of HANARO fuel bundles
Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)
A burnout correlation for flow of boiling water in vertical rod bundles
Becker, Kurt M.
1967-04-15
The rod bundle burnout correlation described in the present report is a development from our earlier published rod bundle correlation for low pressures. The correlation is based on the Becker round duct correlation and is written on the form x{sub BO} = 0.68*{eta}*{eta}{sub L}*X{sub RD} where x{sub RD} is the burnout steam quality in a round duc at corresponding flow conditions, {eta} is the ratio of heated to total perimeter and {eta}{sub l} is a correction factor, which is a function of q/A only. It is demonstrated that this equation combined with the heat balance equation q/A = G/(4L/D{sub H})*({delta}h{sub SUB} + X{sub BO}*H{sub fg}) predicts the burnout heat fluxes for 312 measurements obtained in our laboratory within a scatter of {+-}7. 5 per cent and with an RMS error of 3.8 per cent. The measurements were obtained in the following ranges of variables. Number of rods n 1, 3, 6 and 7; Rod diameter d{sub i} 10.05 - 13.80 mm; Shroud diameter d{sub o} 17. 42 - 71. 0 mm; Rod clearance s 3.7 - 8.8 mm; Heated length L 608 - 4440 mm; Pressure p 20-71 kg/cm{sup 2}, Inlet sub-cooling {delta}t{sub sub} 3 - 240 deg C; Mass velocity G 80-1,500 kg/m{sup 2}; Burnout heat flux q/A 74-314 W/cm{sup 2}; Burnout steam quality x{sub BO} 0. 1 - 0.55. The correlation shows that the burnout conditions in wide ranges of variables are independent of the inlet sub-cooling and the heated length, and that the effects of mass velocity and pressure are the same in rod bundles and in round tubes. It is also demonstrated that the effects of a radial heat flux variation within the rod bundle can be handled by the correlation by modifying the {eta}-value for the bundle. The rod bundle data presented by Janssen and Kervinen, Hench, Obertelli, Matzner, Haslam, Edwards and Obertelli and Hench and Boehm were also analysed in terms of the measured and predicted burnout heat fluxes. These data covered bundles consisting of 3, 4, 6, 7, 9. 19 and 36 rods and it was found that a very good agreement
Kureta, Masatoshi
Three-dimensional (3D) void fraction distributions in a tight-lattice of heated 7- or 14-rod bundles were measured using 3D neutron tomography. The distribution was also studied parametrically from the thermal-hydraulic point of view in order to elucidate boiling phenomena in a fuel assembly of the FLWR which is being developed as an advanced BWR-type reactor. 7-rod tests were carried out to obtain high void fraction data. 14-rod tests were conducted for visualization and discussion of the 3D distribution extending from the vapor generation region to the high void fraction region at one time. Experimental data were obtained under atmospheric pressure with mass velocity, heater power and inlet quality as the test parameters. It was found from the visualization of data that the void fraction at the channel center became higher than that at the periphery, high void fraction spots appeared in narrow regions at the inlet, and a so-called 'vapor chimney' was generated at the center of a subchannel.
Laminar simulation of intersubchannel mixing in a triangular nuclear fuel bundle geometry
Zaretsky, A.; Lightstone, M.F., E-mail: lightsm@mcmaster.ca; Tullis, S.
2015-12-15
Highlights: • Quasi-periodic flow was observed through rod-to-wall gaps. • Triangular subchannel flows were fundamentally irregular. • Cross-gap flow was influenced both by local and adjacent cross-gap intensity. • Phase-linking between gaps induced cross-plane peripheral circulation through rod–wall gaps. • Cross-gap flow structure was dependent on subchannel geometry. - Abstract: Predicting temperature distributions in fuel rod bundles is an important component of nuclear reactor safety analysis. Intersubchannel mixing acts to homogenize coolant temperatures thus reducing the likelihood of localized regions of high fuel temperature. Previous research has shown that intersubchannel mixing in nuclear fuel rod bundles is enhanced by a large-scale quasi-periodic energetic fluid motion, which transports fluid on the cross-plane between the narrow gaps connecting subchannels. This phenomenon has also been observed in laminar flows. Unsteady laminar flow simulations were performed in a simplified bundle of three rods with a pipe. Three similar geometries of varying gap width were examined, and a thermal trace was implemented on the first geometry. Thermal mixing was driven by the advection of energy between subchannels by the cross-plane flow. Flow through the rod-to-wall gaps in the wall subchannels alternated with a dominant frequency, particularly when rod-to-wall gaps were smaller than rod-to-rod gaps. Significant phase-linking between rod-to-wall gaps was also observed such that a peripheral circulation occurred through each gap simultaneously. Cross-plane flow through the rod-to-rod gaps in the triangular subchannel was irregular in each case. This was due to the fundamental irregularity of the triangular subchannel geometry. Vortices were continually broken up by cross-plane flow from other gaps due to the odd number of fluid pathways within the central subchannel. Cross-plane flow in subchannel geometries is highly interconnected between gaps. The
Development of a subchannel analysis code MATRA (Ver. {alpha})
Yoo, Y. J.; Hwang, D. H
1998-04-01
A subchannel analysis code MATRA-{alpha}, an interim version of MATRA, has been developed to be run on an IBM PC or HP WS based on the existing CDC CYBER mainframe version of COBRA-IV-I. This MATRA code is a thermal-hydraulic analysis code based on the subchannel approach for calculating the enthalpy and flow distribution in fuel assemblies and reactor cores for both steady-state and transient conditions. MATRA-{alpha} has been provided with an improved structure, various functions, and models to give the more convenient user environment and to increase the code accuracy, various functions, and models to give the more convenient user environment and to increase the code accuracy. Among them, the pressure drop model has been improved to be applied to non-square-lattice rod arrays, and the lateral transport models between adjacent subchannels have been improved to increase the accuracy in predicting two-phase flow phenomena. Also included in this report are the detailed instructions for input data preparation and for auxiliary pre-processors to serve as a guide to those who want to use MATRA-{alpha}. In addition, we compared the predictions of MATRA-{alpha} with the experimental data on the flow and enthalpy distribution in three sample rod-bundle cases to evaluate the performance of MATRA-{alpha}. All the results revealed that the prediction of MATRA-{alpha} were better than those of COBRA-IV-I. (author). 16 refs., 1 tab., 13 figs.
AgInCd control rod failure in the QUENCH-13 bundle test
Sepold, L. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung, Nuclear Safety Program (NUKLEAR), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)], E-mail: leo.sepold@imf.fzk.de; Lind, T. [Paul Scherrer Institut, Laboratory for Thermalhydralics (LTH), Department of Nuclear Energy and Safety (NES), 5232 Villigen PSI (Switzerland); Csordas, A. Pinter [Fuel Materials Department, HAS KFKI AEKI, 1121 Budapest (Hungary); Stegmaier, U.; Steinbrueck, M.; Stuckert, J. [Forschungszentrum Karlsruhe, Institut fuer Materialforschung, Nuclear Safety Program (NUKLEAR), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2009-09-15
The QUENCH off-pile experiments performed at the Karlsruhe Research Center are to investigate the high-temperature behavior of Light Water Reactor (LWR) core materials under transient conditions and in particular the hydrogen source term resulting from the water injection into an uncovered LWR core. The typical LWR-type QUENCH test bundle, which is electrically heated, consists of 21 fuel rod simulators with a total length of approximately 2.5 m. The Zircaloy-4 rod claddings and the grid spacers are identical to those used in Pressurized Water Reactors (PWR) whereas the fuel is represented by ZrO{sub 2} pellets. In the QUENCH-13 experiment the single unheated fuel rod simulator in the center of the test bundle was replaced by a PWR-type control rod. The QUENCH-13 experiment consisting of pre-oxidation, transient, and quench water injection at the bottom of the test section investigated the effect of an AgInCd/stainless steel/Zircaloy-4 control rod assembly on early-phase bundle degradation and on reflood behavior. Furthermore, in the frame of the EU 6th Framework Network of Excellence SARNET, release and transport of aerosols of a failed absorber rod were to be studied in QUENCH-13, which was accomplished with help of aerosol measurements performed by PSI-Switzerland and AEKI-Hungary. Control rod failure was initiated by eutectic interaction of steel cladding and Zircaloy-4 guide tube and was indicated at about 1415 K by axial peak absorber and bundle temperature responses and additionally by the on-line aerosol monitoring system. Significant releases of aerosols and melt relocation from the control rod were observed at an axial peak bundle temperature of 1650 K. At a maximum bundle temperature of 1820 K reflood from the bottom was initiated with cold water at a flooding rate of 52 g/s. There was no noticeable temperature escalation during quenching. This corresponds to the small amount of about 1 g in hydrogen production during the quench phase (compared to 42 g
Experimental study of laminar mixed convection in a rod bundle with mixing vane spacer grids
Mohanta, Lokanath, E-mail: lxm971@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Cheung, Fan-Bill [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Bajorek, Stephen M.; Tien, Kirk; Hoxie, Chris L. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)
2017-02-15
Highlights: • Investigated the heat transfer during mixed laminar convection in a rod bundle with linearly varying heat flux. • The Nusselt number increases downstream of the inlet with increasing Richardson number. • Developed an enhancement factor to account for the effects of mixed convection over the forced laminar heat transfer. - Abstract: Heat transfer by mixed convection in a rod bundle occurs when convection is affected by both the buoyancy and inertial forces. Mixed convection can be assumed when the Richardson number (Ri = Gr/Re{sup 2}) is on the order of unity, indicating that both forced and natural convection are important contributors to heat transfer. In the present study, data obtained from the Rod Bundle Heat Transfer (RBHT) facility was used to determine the heat transfer coefficient in the mixed convection regime, which was found to be significantly larger than those expected assuming purely forced convection based on the inlet flow rate. The inlet Reynolds (Re) number for the tests ranged from 500 to 1300, while the Grashof (Gr) number varied from 1.5 × 10{sup 5} to 3.8 × 10{sup 6} yielding 0.25 < Ri < 4.3. Using results from RBHT test along with the correlation from the FLECHT-SEASET test program for laminar forced convection, a new correlation is proposed for mixed convection in a rod bundle. The new correlation accounts for the enhancement of heat transfer relative to laminar forced convection.
Reflood experiments in rod bundles with flow blockages due to clad ballooning
Moon, S.K.; Kim, J.; Kim, K.; Kim, B.J.; Park, J.K.; Youn, Y.J.; Choi, H.S.; Song, C.H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-07-15
Clad ballooning and the resulting partial flow blockage are one of the major thermal-hydraulic concerns associated with the coolability of partially blocked cores during a loss-of-coolant accident (LOCA). Several in-pile tests have shown that fuel relocation causes a local power accumulation and a high thermal coupling between the clad and fuel debris in the ballooned regions. However, previous experiments in the 1980s did not take into account the fuel relocation phenomena and resulting local power increase in the ballooned regions. The present paper presents the results of systematic investigations on the coolability of rod bundles with flow blockages. The experiments were mainly performed in 5 x 5 rod bundles, 2 x 2 rod bundles and other test facilities. The experiments include a reflood heat transfer, single-phase convective heat transfer, flow redistributions phenomena, and droplet break-up behavior. The effects of the fuel relocation and resulting local power increase were investigated using a 5 x 5 rod bundle. The fuel relocation phenomena increase the peak cladding temperature.
Debbarma, Ajoy; Pandey, Krishna Murari [National Institute of Technology, Assam (India). Dept. of Mechanical Engineering
2016-03-15
Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.
A thermal-hydraulic code for transient analysis in a channel with a rod bundle
Khodjaev, I.D. [Research & Engineering Centre of Nuclear Plants Safety, Electrogorsk (Russian Federation)
1995-09-01
The paper contains the model of transient vapor-liquid flow in a channel with a rod bundle of core of a nuclear power plant. The computer code has been developed to predict dryout and post-dryout heat transfer in rod bundles of nuclear reactor core under loss-of-coolant accidents. Economizer, bubble, dispersed-annular and dispersed regimes are taken into account. The computer code provides a three-field representation of two-phase flow in the dispersed-annular regime. Continuous vapor, continuous liquid film and entrained liquid drops are three fields. For the description of dispersed flow regime two-temperatures and single-velocity model is used. Relative droplet motion is taken into account for the droplet-to-vapor heat transfer. The conservation equations for each of regimes are solved using an effective numerical technique. This technique makes it possible to determine distribution of the parameters of flows along the perimeter of fuel elements. Comparison of the calculated results with the experimental data shows that the computer code adequately describes complex processes in a channel with a rod bundle during accident.
Agbodemegbe, V.Y., E-mail: vincevalt@gmail.com [Karlsruhe Institute of Technology, Institute of Fusion and Reactor Technique, Kaiserstrasse 12, Karlsruhe (Germany); Cheng, Xu, E-mail: xu.cheng@kit.edu [Karlsruhe Institute of Technology, Institute of Fusion and Reactor Technique, Kaiserstrasse 12, Karlsruhe (Germany); Akaho, E.H.K, E-mail: akahoed@yahoo.com [School of Nuclear and Allied Sciences, University of Ghana, PO Box AE 1, Kwabenya, Accra (Ghana); Allotey, F.K.A, E-mail: fkallotey@gmail.com [Institute of Mathematical Sciences, PO Box LG 197, Legon, Accra (Ghana)
2015-04-15
Highlights: • Investigate spacer grid with split-type mixing vanes. • Extent of predictability of experimental data by STAR-CCM+. • Reliability of two equation turbulence models. • Resistance to cross-flow through gaps. - Abstract: Mass transfer by diversion cross-flow through gaps is an important inter-subchannel interaction in fuel bundle of power reactors. It is normally due to the lateral pressure difference between adjacent sub-channels. This phenomenon is augmented in the presence of flow deflectors and is referred to as, directed cross-flow. Diversion cross-flow carries the momentum and energy of flow and hence affects the velocity and temperature profile in the rod bundle. The resistance to cross-flow in the transverse momentum equations is specified by the cross-flow resistant coefficient which is the subject of concern in the present study. In order to obtain data to correlate cross-flow resistance coefficient, computational fluid dynamic simulation using STAR-CCM+ was performed for flow of water at the bundle Reynolds number of Re1 = 3.4×10{sup 4} through a 5 × 5 rod bundle geometry supported by spacer grid with split mixing vanes for which the rod to rod pitch to diameter ratio was 1.33 and the rod to wall pitch to diameter ratio was 0.74. The two layer k-epsilon turbulence model with an all y+ automatic wall treatment function in STAR-CCM+ were adopted for an isothermal single phase (water) flow through the geometry. The objectives were to primarily investigate the extent of predictability of the experimental data by the computational fluid dynamic (CFD) simulation as a measure of reliability on the CFD code employed and also apply the simulation data to develop correlations for determining resistance coefficient to cross-flow. Validation of simulation results with experimental data showed good correlation of mean flow parameters with experimental data whiles turbulent fluctuations deviated largely from experimental trends. Generally, the
Evaluation of CHF experimental data for non-square lattice 7-rod bundles
Hwang, Dae Hyun; Yoo, Y. J.; Kim, K. K.; Zee, S. Q
2001-01-01
A series of CHF experiments are conducted for 7-rod hexagonal test bundles in order to investigate the CHF characteristics of self-sustained square finned (SSF) rod bundles. The experiments are performed in the freon-loop and water-loop located at IPPE in Russia, and 609 data of freon-12 and 229 data of water are obtained from 7 kinds of test bundles classified by the combination of heated length and axial/radial power distributions. As the result of the evaluation of four representative CHF correlations, the EPRI-1 correlation reveals good prediction capability for SSF test bundles. The inlet parameter CHF correlation suggested by IPPE calculates the mean and the standard deviation of P/M for uniformly heated test bundles as 1.002 and 0.049, respectively. In spite of its excellent accuracy, the correlation has a discontinuity point at the boundary between the low velocity and high velocity conditions. KAERI's inlet parameter correlation eliminates this defect by introducing the complete evaporation model at low velocity condition, and calculates the mean and standard deviation of P/M as 0.095 and 0.062 for uniformly heated 496 data points, respectively. The mean/standard deviation of local parameter CHF correlations suggested by IPPE and KAERI are evaluated as 1.023/0.178 and 1.002/0.158, respectively. The inlet parameter correlation developed from uniformly heated test bundles tends to under-predict CHF about 3% for axially non-uniformly heated test bundles. On the other hand, the local parameter correlation reveals large scattering of P/M, and requires re-optimization of the correlation for non-uniform axial power distributions. As the result of the analysis of experimental data, it reveals that the correction model of axial power shapes suggested by IPPE is applicable to the inlet parameter correlations. For the test bundle of radial non-uniform power distribution, the physically unexpected results are obtained at some experimental conditions. In addition
Webb, B.J.
1988-01-01
COBRA-IV PC is a modified version of COBRA-IV-I, adapted for use with most IBM PC and PC-compatible desktop computers. Like COBRA-IV-I, COBRA-IV PC uses the subchannel analysis approach to determine the enthalpy and flow distribution in rod bundles for both steady-state and transient conditions. The steady-state and transient solution schemes used in COBRA-IIIC are still available in COBRA-IV PC as the implicit solution scheme option. An explicit solution scheme is also available, allowing the calculation of severe transients involving flow reversals, recirculations, expulsions, and reentry flows, with a pressure or flow boundary condition specified. In addition, several modifications have been incorporated into COBRA-IV PC to allow the code to run on the PC. These include a reduction in the array dimensions, the removal of the dump and restart options, and the inclusion of several code modifications by Oregon State University, most notably, a critical heat flux correlation for boiling water reactor fuel and a new solution scheme for cross-flow distribution calculations. 7 refs., 8 figs., 1 tab.
Empirical models for liquid metal heat transfer in the entrance region of tubes and rod bundles
Jaeger, Wadim
2016-10-01
Experiments focusing on liquid metals heat transfer in pipes and rod bundles with thermally and hydraulically developing flow are reviewed. Empirical heat transfer correlations are developed for engineering applications. In the developing regions the heat transfer is in-stationary. The heat transfer at the entrance is around 100 % higher due to the developing process including the lateral exchange of energy and momentum than for developed flow. Developing flow is not physically considered in the framework of system codes, which are used for thermal-hydraulic analysis of power and process plants with a multitude of components like pipes, tanks, valves and heat exchangers. Therefore, the application to liquid metal flows is limited to developed flow, which is independent of the distance from the flow entrance. The heat transfer enhancement in developing flows is important for the optimization of components like heat exchangers and helps to reduce unnecessary conservatism. In this work, empirical models are developed to account for developing flows in pipes and rod bundles. A literature review is performed to collect available experimental data for developing flow in liquid metal heat transfer. The evaluation shows that the length for pure thermally developing pipe flow is much larger (20-30 hydraulic diameters) than for combined thermally and hydraulically developing flow (10-15 hydraulic diameters). In rod bundles, fully combined developed flow is established after 30-40 hydraulic diameters downstream of the entrance. The derived empirical models for the heat transfer enhancement in the developing regions are implemented into a best estimate system code. The validation of these models by means of post-test analyses of 16 experiments shows that they are very well able to represent the heat transfer in developing regions.
Empirical models for liquid metal heat transfer in the entrance region of tubes and rod bundles
Jaeger, Wadim
2017-05-01
Experiments focusing on liquid metals heat transfer in pipes and rod bundles with thermally and hydraulically developing flow are reviewed. Empirical heat transfer correlations are developed for engineering applications. In the developing regions the heat transfer is in-stationary. The heat transfer at the entrance is around 100 % higher due to the developing process including the lateral exchange of energy and momentum than for developed flow. Developing flow is not physically considered in the framework of system codes, which are used for thermal-hydraulic analysis of power and process plants with a multitude of components like pipes, tanks, valves and heat exchangers. Therefore, the application to liquid metal flows is limited to developed flow, which is independent of the distance from the flow entrance. The heat transfer enhancement in developing flows is important for the optimization of components like heat exchangers and helps to reduce unnecessary conservatism. In this work, empirical models are developed to account for developing flows in pipes and rod bundles. A literature review is performed to collect available experimental data for developing flow in liquid metal heat transfer. The evaluation shows that the length for pure thermally developing pipe flow is much larger (20-30 hydraulic diameters) than for combined thermally and hydraulically developing flow (10-15 hydraulic diameters). In rod bundles, fully combined developed flow is established after 30-40 hydraulic diameters downstream of the entrance. The derived empirical models for the heat transfer enhancement in the developing regions are implemented into a best estimate system code. The validation of these models by means of post-test analyses of 16 experiments shows that they are very well able to represent the heat transfer in developing regions.
Validation of a Subchannel Analysis Code MATRA Version 1.0
Hwang, Dae Hyun; Seo, Kyung Won; Kwon, Hyouk
2008-10-15
A subchannel analysis code MATRA has been developed for the thermal hydraulic analysis of SMART core. The governing equations and important models were established, and validation calculations have been performed for subchannel flow and enthalpy distributions in rod bundles under steady-state conditions. The governing equations of the MATRA were on the basis of integral balance equation of the two-phase mixture. The effects of non-homogeneous and non-equilibrium states were considered by employing the subcooled boiling model and the phasic slip model. Solution scheme and main structure of the MATRA code, as well as the difference of MATRA and COBRA-IV-I codes, were summarized. Eight different test data sets were employed for the validation of the MATRA code. The collected data consisted of single-phase subchannel flow and temperature distribution data, single-phase inlet flow maldistribution data, single-phase partial flow blockage data, and two-phase subchannel flow and enthalpy distribution data. The prediction accuracy as well as the limitation of the MATRA code was evaluated from this analysis.
Development of advanced BWR fuel bundle with spectral shift rod - BWR core characteristics with SSR
Hino, T.; Kondo, T.; Chaki, M.; Ohga, Y. [Hitachi-GE Nuclear Energy, Ltd., 1-1, Saiwai-cho, 3-chome, Hitachi-shi, Ibaraki-ken, 317-0073 (Japan); Makigami, T. [Tokyo Electric Power Company Inc., 1-1-3, Uchisaiwai-cho, Chiyoda-ku, Tokyo, 100-0011 (Japan)
2012-07-01
The neutron energy spectrum can be varied during an operation cycle to generate and utilize more plutonium from the non-fissile {sup 238}U by changing the void fraction in the core through control of the core coolant flow rate. This operation method, which is called a spectral shift operation, is practiced in BWRs to save natural uranium. A new component called a spectral shift rod (SSR), which is utilized instead of a conventional water rod, has been introduced to amplify the void fraction change and increase the spectral shift effect. In this study, fuel bundle design with the SSR and core design were carried out for the ABWR and the next generation BWR, HP-ABWR (High-Performance ABWR).The core characteristics with the SSR were evaluated and compared with those when using the conventional water rod. Influences of uncertainty of the water level in the SSR on the safety limit minimum critical power ratio (SLMCPR) were considered for evaluation of the uranium saving effect attained by the SSR. As a result, it was found that the amount of natural uranium needed for an operation cycle could be reduced more than 3% with 20% core coolant flow change and more than 5% with 30% core coolant flow change, in the form of increased discharge exposure by using the SSR compared with the conventional water rod use. (authors)
CFD Validation Benchmark Dataset for Natural Convection in Nuclear Fuel Rod Bundles
Smith, Barton; Jones, Kyle
2016-11-01
The present study provide CFD validation benchmark data for coupled fluid flow/convection heat transfer on the exterior of heated rods arranged in a 2 × 2 array. The rod model incorporates grids with swirling veins to resemble a nuclear fuel bundle. The four heated aluminum rods are suspended in an open-circuit wind tunnel. Boundary conditions (BCs) are measured and uncertainties calculated to provide all quantities necessary to successfully conduct a CFD validation exercise. System response quantities (SRQs) are measured for comparing the simulation output to the experiment. Stereoscopic Particle Image Velocimetry (SPIV) is used to non-intrusively measure 3-component velocity fields. A through-plane measurement is used for the inflow while laser sheet planes aligned with the flow direction at several downstream locations are used for system response quantities. Two constant heat flux rod surface conditions are presented (400 W/m2 and 700 W/m2) achieving a peak Rayleigh number of 1010 . Uncertainty for all measured variables is reported. The boundary conditions, system response, and all material properties are now available online for download. The U.S. Department of Energy Nuclear Engineering University Program provided the funding for these experiments under Grant 00128493.
Najeeb, Umair
This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.
Nano-mechanical characterization of tension-sensitive helix bundles in talin rod.
Maki, Koichiro; Nakao, Nobuhiko; Adachi, Taiji
2017-03-04
Tension-induced exposure of a cryptic signaling binding site is one of the most fundamental mechanisms in molecular mechanotransduction. Helix bundles in rod domains of talin, a tension-sensing protein at focal adhesions, unfurl under tension to expose cryptic vinculin binding sites. Although the difference in their mechanical stabilities would determine which helix bundle is tension-sensitive, their respective mechanical behaviors under tension have not been characterized. In this study, we evaluated the mechanical behaviors of residues 486-654 and 754-889 of talin, which form helix bundles with low and high tension-sensitivity, by employing AFM nano-tensile testing. As a result, residues 754-889 exhibited lower unfolding energy for complete unfolding than residues 486-654. In addition, we found that residues 754-889 transition into intermediate conformations under lower tension than residues 486-654. Furthermore, residues 754-889 showed shorter persistence length in the intermediate conformation than residues 486-654, suggesting that residues 754-889 under tension exhibit separated α-helices, while residues 486-654 assume a compact conformation with inter-helix interactions. Therefore, we suggest that residues 754-889 of talin work as a tension-sensitive domain to recruit vinculin at the early stage of focal adhesion development, while residues 486-654 contribute to rather robust tension-sensitivity by recruiting vinculin under high tension.
Subchannel analysis with flow blockages
Sabotinov, L.
1985-05-01
The steady state single-phase three-dimensional flow in the rod bundle geometry of a nuclear pressurized water reactor was calculated with the PHOENICS 84 program. Flow blockages, which may occur under accident conditions, are simulated. Results show that PHOENICS-84 can be applied to calculation of the three-dimensional fields of velocities in fuel rod bundles containing complete flow blockages in cells. The code can treat recirculation zones.
Turbulent flow simulation in a wire-wrap rod bundle of an LMFBR
Natesan, K. [Thermal Hydraulics Section, Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sundararajan, T. [Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai 600036 (India); Narasimhan, Arunn, E-mail: arunn@iitm.ac.i [Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai 600036 (India); Velusamy, K. [Thermal Hydraulics Section, Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)
2010-05-15
The pressure drop and heat transfer characteristics of wire-wrapped 19-pin rod bundles in a nuclear reactor subassembly of liquid metal cooled fast breeder reactor (LMFBR) have been investigated through three-dimensional turbulent flow simulations. The predicted results of eddy viscosity based turbulence models (k-epsilon, k-omega) and the Reynolds stress model are compared with those of experimental correlations for friction factor and Nusselt number. The Re is varied between 50,000 and 150,000 and the ratio of helical pitch of wire wrap to the rod diameter is varied from 15 to 45. All the three turbulence models considered yield similar results. The friction factor increases with reduction in the wire-wrap pitch while the heat transfer coefficient remains almost unaltered. However, reduction in the wire-wrap pitch also enhances the transverse flow velocity in the cross-sectional plane as well as the local turbulence intensity, thereby improving the thermal mixing of coolant. Consequently, the presence of wire wrap reduces temperature variation within each section of the subassembly. The associated reduction in differential thermal expansion of rods is expected to improve the structural integrity of the fuel subassembly.
TREAT Neutronics Analysis of Water-Loop Concept Accommodating LWR 9-rod Bundle
Hill, Connie M.; Woolstenhulme, Nicolas E.; Parry, James R.; Bess, John D.; Housley, Gregory K.
2016-09-01
TREAT fuel elements to facilitate the experiment will not inhibit the ability to successfully simulate a RIA for the 2-pin or 3-pin bundle. This new water loop design leaves room for accommodating a larger fuel pin bundle than previously analyzed. The 7-pin fuel bundle in a hexagonal array with similar spacing of fuel pins in a SFR fuel assembly was considered the minimum needed for one central fuel pin to encounter the most correct thermal conditions. The 9-rod fuel bundle in a square array similar in spacing to pins in a LWR fuel assembly would be considered the LWR equivalent. MCNP analysis conducted on a preliminary LWR 9-rod bundle design shows that sufficient energy deposition into the central pin can be achieved well within range to investigate fuel and cladding performance in a simulated RIA. This is achieved by surrounding the flow channel with an additional annulus of water. Findings also show that a highly significant increase in TREAT to specimen power coupling factor (PCF) within the central pin can be achieved by surrounding the experiment with one to two rings of TREAT upgrade fuel assemblies. The experiment design holds promise for the performance evaluation of PWR fuel at extremely high burnup under similar reactor environment conditions.
Experimental study on convective heat transfer coefficient around a vertical hexagonal rod bundle
Makhmalbaf, M. H. M.
2012-06-01
Research on convective heat transfer coefficient around a rod bundle has many diverse applications in industry. So far, many studies have been conducted in correlations related to internal and turbulent fully-developed flow. Comparison shows that Dittus-Boelter, Sieder-Tate and Petukhov have so far been the most practical correlations in fully-developed turbulent fluid flow heat transfer. The present study conducts an experimental examination of the validity of these frequently-applied correlations and introduces a manufactured test facility as well. Due to its generalizibility, the unique geometry of this test facility (hexagonal arranged, 7 vertical rods in a hexagonal tube) can fulfil extensive applications. The paper also studies the major deviation sources in data measurements, calibrations and turbulence of fluid flow in this. Finally, regarding to sufficient number of experiments in a vast fluid mean velocity range (3,800 < Re < 40,000), a new curve and correlation are presented and the results are compared with the above mentioned commonly-applied correlations.
Liu, Wei; Tamai, Hidesada; Kureta, Masatoshi; Ohnuki, Akira; Akimoto, Hajime
A thermal-hydraulic feasibility project for an Innovative Water Reactor for Flexible fuel cycle (FLWR) has been performed since 2002. In this R&D project, large-scale thermal-hydraulic tests, several model experiments and development of advanced numerical analysis codes have been carried out. In this paper, we describe the critical power characteristics in a 37-rod tight-lattice bundle with rod bowing under transient states. It is observed that transient Boiling Transition (BT) always occurs axially at exit elevation of upper high-heat-flux region and transversely in the central area of the bundle, which is same as that under steady state. For the postulated power increase and flow decrease cases that may be possibly met in a normal operation of the FLWR, it is confirmed that no BT occurs when Initial Critical Power Ratio (ICPR) is 1.3. Moreover, when the transients are run under severer ICPR that causes BT, the transient critical powers are generally same as the steady ones. The experiments are analyzed with a modified TRAC-BFI code, where Japan Atomic Energy Agency (JAEA) newest critical power correlation is implemented for the BT judgement. The code shows good prediction for the occurrence or the non occurrence of the BT and predicts the BT starting time conservatively. Traditional quasi-steady state prediction of the transient BT is confirmed being applicable for the postulated abnormal transient processes in the tight-lattice bundle with rod bowing.
Reflooding and boil-off experiments in a VVER-440 like rod bundle and analyses with the CATHARE code
Korteniemi, V.; Haapalehto, T. [Lappeenranta Univ. of Technology (Finland); Puustinen, M. [VTT Energy, Lappeenranta (Finland)
1995-09-01
Several experiments were performed with the VEERA facility to simulate reflooding and boil-off phenomena in a VVER-440 like rod bundle. The objective of these experiments was to get experience of a full-scale bundle behavior and to create a database for verification of VVER type core models used with modern thermal-hydraulic codes. The VEERA facility used in the experiments is a scaled-down model of the Russian VVER-440 type pressurized water reactors used in Loviisa, Finland. The test section of the facility consists of one full-scale copy of a VVER-440 reactor rod bundle with 126 full-length electrically heated rod simulators. Bottom and top-down reflooding, different modes of emergency core cooling (ECC) injection and the effect of heating power on the heat-up of the rods was studied. In this paper the results of calculations simulating two reflood and one boil-off experiment with the French CATHARE2 thermal-hydraulic code are also presented. Especially the performance of the recently implemented top-down reflood model of the code was studied.
Nava Dominguez, A
2004-07-01
To facilitate the modeling of a rod fuel bundle, the most common used method consist in dividing the complex cross-sectional area in small subsections called subchannels. To close the system equations, a mixture model is used to represent the intersubchannel interactions. These interactions are as follows: diversion cross-flow, turbulent void diffusion, void drift and buoyancy drift. Amongst these mechanisms, the turbulent void diffusion and void drift are frequently modelled using diffusion coefficients. In this work, a novel approach has been employed where an existing subchannel code coupled to a genetic algorithm code which were used to optimize these coefficients. After several numerical simulations, a new objective function based in the principle of minimum dissipated energy was developed. The use of this function in the genetic algorithm coupled to the subchannel code, gave results in good agreement with the experimental data.
Subchannel Analysis of Wire Wrapped SCWR Assembly
Jianqiang Shan; Henan Wang; Wei Liu; Linxing Song; Xuanxiang Chen; Yang Jiang
2014-01-01
Application of wire wrap spacers in SCWR can reduce pressure drop and obtain better mixing capability. As a consequence, the required coolant pumping power is decreased and the coolant temperature profile inside the fuel bundle is flattened which will obviously decrease the peak cladding temperature. The distributed resistance model for wire wrap was developed and implemented in ATHAS subchannel analysis code. The HPLWR wire wrapped assembly was analyzed. The results show that: (1) the assemb...
Takenaka, N; Fujii, T; Mizubata, M; Yoshii, K
1999-01-01
Three-dimensional void fraction distribution of air-water two-phase flow in a 4x4 rod-bundle near a spacer was visualized by fast neutron radiography using a CT method. One-dimensional cross sectional averaged void fraction distribution was also calculated. The behaviors of low void fraction (thick water) two-phase flow in the rod bundle around the spacer were clearly visualized. It was shown that the void fraction distributions were visualized with a quality similar to those by thermal neutron radiography for low void fraction two-phase flow which is difficult to visualize by thermal neutron radiography. It is concluded that the fast neutron radiography is efficiently applicable to two-phase flow studies.
Loftus, M J; Hochreiter, L E; McGuire, M F; Valkovic, M M
1983-10-01
This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays.
Avramova, Maria
In the past few decades the need for improved nuclear reactor safety analyses has led to a rapid development of advanced methods for multidimensional thermal-hydraulic analyses. These methods have become progressively more complex in order to account for the many physical phenomena anticipated during steady state and transient Light Water Reactor (LWR) conditions. The advanced thermal-hydraulic subchannel code COBRA-TF (Thurgood, M. J. et al., 1983) is used worldwide for best-estimate evaluations of the nuclear reactor safety margins. In the framework of a joint research project between the Pennsylvania State University (PSU) and AREVA NP GmbH, the theoretical models and numerics of COBRA-TF have been improved. Under the name F-COBRA-TF, the code has been subjected to an extensive verification and validation program and has been applied to variety of LWR steady state and transient simulations. To enable F-COBRA-TF for industrial applications, including safety margins evaluations and design analyses, the code spacer grid models were revised and substantially improved. The state-of-the-art in the modeling of the spacer grid effects on the flow thermal-hydraulic performance in rod bundles employs numerical experiments performed by computational fluid dynamics (CFD) calculations. Because of the involved computational cost, the CFD codes cannot be yet used for full bundle predictions, but their capabilities can be utilized for development of more advanced and sophisticated models for subchannel-level analyses. A subchannel code, equipped with improved physical models, can be then a powerful tool for LWR safety and design evaluations. The unique contributions of this PhD research are seen as development, implementation, and qualification of an innovative spacer grid model by utilizing CFD results within a framework of a subchannel analysis code. Usually, the spacer grid models are mostly related to modeling of the entrainment and deposition phenomena and the heat
Parallel CFD simulations of turbulent flows inside a CANDU fuel bundle
Abbasian, F.; Yu, S.D.; Cao, J. [Ryerson Univ., Dept. of Mechanical and Industrial Engineering, Toronto, Ontario (Canada)], E-mail: fabbasia@ryerson.ca
2008-07-01
Large Eddy Simulation (LES) is used to study the turbulent flow inside a 43-rod bundle. The two LES models developed in this paper are of dynamic Smagorinsky type, featuring a satisfactory prediction of anisotropic turbulence intensity and frequency. The first model, by taking advantage of the geometric periodicity, deals with one seventh of a rod bundle; it is developed for studying the axial, lateral turbulence intensities and frequencies in the centers of subchannels and narrow-gap regions. The second model, dealing with the full rod bundle inside a pressure tube with nominal eccentricity, is developed for studying the turbulent fluid forces acting on the bundle. In order to accelerate the solution process for the two large CFD models, the parallelized CFD technique is utilized in connection with 24 processors. The numerical results, obtained for a test case (an eight-rod bundle), are in good agreement with those experimental data available in the literature. Numerical simulations of turbulent flow phenomena within subchannels are advantageous since true flow features are difficult or costly to reveal by experiments. (author)
CFD modelling of supercritical water flow and heat transfer in a 2 × 2 fuel rod bundle
Podila, Krishna, E-mail: krishna.podila@cnl.ca; Rao, Yanfei, E-mail: yanfei.rao@cnl.ca
2016-05-15
Highlights: • Bare and wire wrapped 2 × 2 fuel rod bundles were modelled with CFD. • Sensitivity of predictions to SST k–ω, v{sup 2}–f and turbulent Prandtl number was tested. • CFD predictions were assessed with experimentally reported fuel wall temperatures. - Abstract: In the present assessment of the CFD code, two heat transfer experiments using water at supercritical pressures were selected: a 2 × 2 rod bare bundle; and a 2 × 2 rod wire-wrapped bundle. A systematic 3D CFD study of the fluid flow and heat transfer at supercritical pressures for the rod bundle geometries was performed with the key parameter being the fuel rod wall temperature. The sensitivity of the prediction to the steady RANS turbulence models of SST k–ω, v{sup 2}–f and turbulent Prandtl number (Pr{sub t}) was tested to ensure the reliability of the predicted wall temperature obtained for the current analysis. Using the appropriate turbulence model based on the sensitivity analysis, the mesh refinement, or the grid convergence, was performed for the two geometries. Following the above sensitivity analyses and mesh refinements, the recommended CFD model was then assessed against the measurements from the two experiments. It was found that the CFD model adopted in the current work was able to qualitatively capture the trends reported by the experiments but the degree of temperature rise along the heated length was underpredicted. Moreover, the applicability of turbulence models varied case-by-case and the performance evaluation of the turbulence models was primarily based on its ability to predict the experimentally reported fuel wall temperatures. Of the two turbulence models tested, the SST k–ω was found to be better at capturing the measurements at pseudo-critical and supercritical test conditions, whereas the v{sup 2}–f performed better at sub-critical test conditions. Along with the appropriate turbulence model, CFD results were found to be particularly sensitive to
A Mechanistic Approach for the Prediction of Critical Power in BWR Fuel Bundles
Chandraker, Dinesh Kumar; Vijayan, Pallipattu Krishnan; Sinha, Ratan Kumar; Aritomi, Masanori
The critical power corresponding to the Critical Heat Flux (CHF) or dryout condition is an important design parameter for the evaluation of safety margins in a nuclear fuel bundle. The empirical approaches for the prediction of CHF in a rod bundle are highly geometric specific and proprietary in nature. The critical power experiments are very expensive and technically challenging owing to the stringent simulation requirements for the rod bundle tests involving radial and axial power profiles. In view of this, the mechanistic approach has gained momentum in the thermal hydraulic community. The Liquid Film Dryout (LFD) in an annular flow is the mechanism of CHF under BWR conditions and the dryout modeling has been found to predict the CHF quite accurately for a tubular geometry. The successful extension of the mechanistic model of dryout to the rod bundle application is vital for the evaluation of critical power in the rod bundle. The present work proposes the uniform film flow approach around the rod by analyzing individual film of the subchannel bounded by rods with different heat fluxes resulting in different film flow rates around a rod and subsequently distributing the varying film flow rates of a rod to arrive at the uniform film flow rate as it has been found that the liquid film has a strong tendency to be uniform around the rod. The FIDOM-Rod code developed for the dryout prediction in BWR assemblies provides detailed solution of the multiple liquid films in a subchannel. The approach of uniform film flow rate around the rod simplifies the liquid film cross flow modeling and was found to provide dryout prediction with a good accuracy when compared with the experimental data of 16, 19 and 37 rod bundles under BWR conditions. The critical power has been predicted for a newly designed 54 rod bundle of the Advanced Heavy Water Reactor (AHWR). The selected constitutive models for the droplet entrainment and deposition rates validated for the dryout in tube were
Pham, Son; Kawara, Zensaku; Yokomine, Takehiko; Kunugi, Tomoaki
2012-11-01
Playing important roles in the mass and heat transfer as well as the safety of boiling water reactor, the liquid film flow on nuclear fuel rods has been studied by different measurement techniques such as ultrasonic transmission, conductivity probe, etc. Obtained experimental data of this annular two-phase flow, however, are still not enough to construct the physical model for critical heat flux analysis especially at the micro-scale. Remain problems are mainly caused by complicated geometry of fuel rod bundles, high velocity and very unstable interface behavior of liquid and gas flow. To get over these difficulties, a new approach using a very high speed digital camera system has been introduced in this work. The test section simulating a 3×3 rectangular rod bundle was made of acrylic to allow a full optical observation of the camera. Image data were taken through Cassegrain optical system to maintain the spatiotemporal resolution up to 7 μm and 20 μs. The results included not only the real-time visual information of flow patterns, but also the quantitative data such as liquid film thickness, the droplets' size and speed distributions, and the tilt angle of wavy surfaces. These databases could contribute to the development of a new model for the annular two-phase flow. Partly supported by the Global Center of Excellence (G-COE) program (J-051) of MEXT, Japan.
Kureta, Masatoshi
A neutron radiography three-dimensional computed tomography (NR3DCT) system was developed to visualize the void fraction distribution of boiling flow in tight lattice heated-rod bundles. This paper chiefly reports on the data processing and the error estimation method of NR3DCT. Practical γ-ray noise reduction and image correction techniques were studied to improve the reliability of the experimental data. Using the system and a directly heated 14-rod bundle test section, the behavior of boiling flow in a tight lattice rod bundle was clearly visualized. The effect of each data processing step on the result was also discussed. By this development, the three-dimensional vapor distribution of boiling flow in a heated bundle is made clear, and void fraction databases can be provided for verification of a thermal-hydraulic simulation code.
Effect of Entry/Exit Length on Flow Distribution in the Test Bundle
Jang, Byeong Il; Jang, Beom Jun; Kim, Hong Ju; Kim, Kanghoon; Nahm, Kee Yil; Park, Sang Weon [KEPCO Nuclear Fuel, Daejeon (Korea, Republic of)
2014-05-15
In data analysis, the geometric information within the heated section of the rod bundle is important because the CHF occurs in the heated section. To ensure a constant geometry and to prevent adverse flow effects, it is required to extend the same geometry beyond the heated section of rod bundle geometry. Regarding to evaluate the validity of inlet boundary condition of subchannel analysis code, the effect of the entry and exit length on the flow distribution is evaluated under the various inlet flow conditions which could be produced without flow distributor or strainer. To evaluate the validation of the inlet and outlet boundary conditions used in the subchannel analysis code, a study on the effect of the entry and exit length on the flow distribution is conducted. Even though the non-uniform flow is entered inside the test bundle, the flow gets more saturated by the simple supports and frictions. Through the code calculation under various flow conditions, it is concluded that the flow is to be fully developed flow over about 40∼80 inches of the entry length. If the exit length is about 30∼40 inches, the effect of the exit pressure can be negligible. The entry and exit length in this paper is calculated based on only rod bundles and simple supports. By installing the flow distributors or strainer, these lengths can get shorter and the flow difference between the subchannels become smaller. This study could be very useful in order to confirm the validation of the boundary conditions used in the subchannel analysis code.
Deev, V. I.; Kharitonov, V. S.; Churkin, A. N.
2017-02-01
Experimental data on heat transfer to supercritical pressure water presented at ISSCWR-5, 6, and 7 international symposiums—which took place in 2011-2015 in Canada, China, and Finland—and data printed in recent periodical scientific publications were analyzed. Results of experiments with annular channels and three- and four-rod bundles of heating elements positioned in square or triangular grids were examined. Methodology used for round pipes was applied at generalization of experimental data and establishing of correlations suitable for engineering analysis of heat exchange coefficient in conditions of strongly changing water properties in the near-critical pressure region. Empiric formulas describing normal heat transfer to supercritical pressure water mowing in annular channels and rod bundles were obtained. As compared to existing recommendations, suggested correlations are distinguished by specified dependency of heat exchange coefficient on density of heat flux and mass flow velocity of water near pseudo-critical temperature. Differences between computed values of heat exchange coefficient and experimental data usually do not exceed ±25%. Detailed statistical analysis of deviations between computed and experimental results at different states of supercritical pressure water flow was carried out. Peculiarities of deteriorated heat exchange were considered and their existence boundaries were defined. Experimental results obtained for these regimes were generalized using criteria by J.D. Jackson that take the influence of thermal acceleration and Archimedes forces on heat exchange processes into account. Satisfactory agreement between experimental data on heat exchange at flowing of water in annular channels and rod bundles and data for round pipes was shown.
Creer, J.M.; Rowe, D.S.; Bates, J.M.; Sutey, A.M.
1976-01-01
An experimental study is described which was performed to investigate the turbulent flow phenomena near postulated sleeve blockages in a model nuclear fuel rod bundle. The sleeve blockages were characteristic of fuel clad ''swelling'' or ''ballooning'' which could occur during loss-of-coolant accidents (LOCA) in pressurized water reactors. The study was conducted to provide information relative to the flow phenomena near postulated blockages to support detailed safety analyses of LOCAs. The results of the study are especially useful for verification of the hydraulic treatment of reactor core computer programs such as COBRA.
Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.
2012-06-01
This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.
Effects of axial power shapes on CHF locations in a single tube and in rod bundle assemblies
Han, B.; Yang, B.W.; Zhang, H.; Zha, Y.; Zhang, Y. [Xi' an Jiaotong Univ. (China). School of Nuclear Science and Technology
2016-07-15
Currently, the prediction of rod bundle CHF is dependent on CHF correlations derived from CHF data. A simple correction factor, such as F-factor, is often used to account for the axial power shape differences based on a simple accumulated energy concept, which has totally no consideration on the impact of true local condition on CHF mechanism. Subsequently, as expected, large uncertainty is often associated with the CHF value and CHF location predictions. For the purpose of obtaining different power shapes effects on CHF, CFD calculated parameter values were used to predict the possible CHF occurrence location. The possible CHF location prediction method proposed in this paper is calculated void fraction, heat transfer coefficient (HTC), liquid temperature distribution and detailed local parameters. And the uniform and non-uniform CHF were analyzed. The prediction of possible CHF locations in a 5 x 5 rod bundle may provide useful information for the design of a full-length CHF test, enhance the accuracy of CHF and CHF location prediction, and reduce the costs of the experimentation.
Franz, R.; Dominguez-Ontiveiro, E.; Barth, T.; Drapeau-Martin, S.; Hampel, U.
2013-06-01
Overflowed rod bundles can be used as a heat exchanger in many applications. With respect to safety aspects, the transition from nucleate boiling to film boiling at fuel assemblies in light water reactors is to be avoided. Under this aspect, the numerical flow simulation models for the description of boiling phenomenons are developed. In order to validate these models experimentally, a flow channel is constructed in which a vertical rod bundle is overflowed vertically by the refrigerant RC318 (octafluorocyclobutane). The contribution under consideration describes the test facility and measurement methodology, the process of evaluation, relevant results and error analysis.
Multicell slug flow heat transfer analysis of finite LMFBR bundles
Yeung, M.K.; Wolf, L.
1978-12-01
An analytical two-dimensional, multi-region, multi-cell technique has been developed for the thermal analysis of LMFBR rod bundles. Local temperature fields of various unit cells were obtained for 7, 19, and 37-rod bundles of different geometries and power distributions. The validity of the technique has been verified by its excellent agreement with the THTB calculational result. By comparing the calculated fully-developed circumferential clad temperature distribution with those of the experimental measurements, an axial correction factor has been derived to account for the entrance effect for practical considerations. Moreover, the knowledge of the local temperature field of the rod bundle leads to the determination of the effective mixing lengths L/sub ij/ for adjacent subchannels of various geometries. It was shown that the implementation of the accurately determined L/sub ij/ into COBRA-IIIC calculations has fairly significant effects on intersubchannel mixing. In addition, a scheme has been proposed to couple the 2-D distributed and lumped parameter calculation by COBRA-IIIC such that the entrance effect can be implanted into the distributed parameter analysis. The technique has demonstrated its applicability for a 7-rod bundle and the results of calculation were compared to those of three-dimensional analyses and experimental measurements.
Overview of methods to increase dryout power in CANDU fuel bundles
Groeneveld, D.C., E-mail: degroeneveld@gmail.com [Chalk River Laboratories, AECL, Chalk River (Canada); University of Ottawa, Department of Mechanical Engineering, Ottawa (Canada); Leung, L.K.H. [Chalk River Laboratories, AECL, Chalk River (Canada); Park, J.H. [Korean Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-06-15
Highlights: • Small changes in bundle geometry can have noticeable effects on the bundle CHF. • Rod spacing devices can results in increases of over 200% in CHF. • CHF enhancement decays exponentially downstream from spacers. • CHF-enhancing bundle appendages also increase the post-CHF heat transfer. - Abstract: In CANDU reactors some degradation in the CCP (critical channel power, or power corresponding to the first occurrence of CHF in any fuel channel) will occur with time because of ageing effects such as pressure-tube diametral creep, increase in reactor inlet-header temperature, increased hydraulic resistance of feeders. To compensate for the ageing effects, various options for recovering the loss in CCP are described in this paper. They include: (i) increasing the bundle heated perimeter, (ii) optimizing the bundle configuration, (iii) optimizing core flow and flux distribution, (iv) reducing the bundle hydraulic resistance, (v) use of CHF-enhancing bundle appendages, (vi) more precise experimentation, and (vii) redefining CHF. The increase in CHF power has been quantified based on experiments on full-scale bundles and subchannel code predictions. The application of several of these CHF enhancement principles has been used in the development of the 43-rod CANFLEX bundle.
CFD simulation of turbulent flow in a rod bundle with spacer grids (MATIS-H) using STAR-CCM+
Cinosi, N., E-mail: n.cinosi@imperial.ac.uk; Walker, S.P.; Bluck, M.J.; Issa, R.
2014-11-15
Highlights: • CDF simulation of turbulent flow generated by a typical PWR spacer grid. • Benchmarking against the MATIS-H experiments run at KAERI in Daejeon, Korea. • Deployment of various steady RANS models to compute the turbulence. • Sensitivity analysis of hardware components. - Abstract: This paper presents the CFD simulation of the turbulent flow generated by a model PWR spacer grid within a rod bundle. The investigation was part of the MATIS-H benchmark exercise, organized by the OECD-NEA, with measurements performed at the KAERI facilities in Daejeon, Korea. The study employed the CD-Adapco code Star-CCM+. An initial sensitivity study was conducted to attempt to assess the importance to the overall flow of components such as the outlet plenum and the end support grid; these were shown to be able to be safely neglected, but the tapered end portion of the rods was found to be significant, and this was incorporated in the model analyzed. A RANS model using any of K-epsilon, K-omega and Reynolds-stress turbulence models was found to be adequate for the prediction of mean velocity profiles, but they all three underestimate the time-averaged turbulent velocity components. Vorticity seems to be better predicted, although the measured values of vorticity are only presented via colored contour plots, making quantitative comparison rather difficult. Circulation, calculated via an integral for each channel, seems to be well predicted by all three models.
Batta, A., E-mail: batta@kit.edu; Class, A.G., E-mail: class@kit.edu
2017-02-15
Early studies of the flow in rod bundles with spacer grids suggest that the pressure drop can be decomposed in contributions due to flow area variations by spacer grids and frictional losses along the rods. For these shape and frictional losses simple correlations based on theoretical and experimental data have been proposed. In the OECD benchmark study LACANES it was observed that correlations could well describe the flow behavior of the heavy liquid metal loop including a rod bundle with the exception of the core region, where different experts chose different pressure-loss correlations for the losses due to spacer grids. Here, RANS–CFD simulations provided very good data compared to the experimental data. It was observed that the most commonly applied Rehme correlation underestimated the shape losses. The available correlations relate the pressure drop across a grid spacer to the relative plugging of the spacer i.e. solidity e{sub max}. More sophisticated correlations distinct between spacer grids with round or sharp leading edge shape. The purpose of this study is to (i) show that CFD is suitable to predict pressure drop across spacer grids and (ii) to access the generality of pressure drop correlations. By verification and validation of CFD results against experimental data obtained in KALLA we show (i). The generality (ii) is challenged by considering three cases which yield identical pressure drop in the correlations. First we test the effect of surface roughness, a parameter not present in the correlations. Here we compare a simulation assuming a typical surface roughness representing the experimental situation to a perfectly smooth spacer surface. Second we reverse the flow direction for the spacer grid employed in the experiments which is asymmetric. The flow direction reversal is chosen for convenience, since an asymmetric spacer grid with given blockage ratio, may result in different flow situations depending on flow direction. Obviously blockage
Development and Application of Subchannel Analysis Code Technology for Advanced Reactor Systems
Hwang, Dae Hyun; Seo, K. W
2006-01-15
A study has been performed for the development and assessment of a subchannel analysis code which is purposed to be used for the analysis of advanced reactor conditions with various configurations of reactor core and several kinds of reactor coolant fluids. The subchannel analysis code was developed on the basis of MATRA code which is being developed at KAERI. A GUI (Graphic User Interface) system was adopted in order to reduce input error and to enhance user convenience. The subchannel code was complemented in the property calculation modules by including various fluids such as heavy liquid metal, gas, refrigerant,and supercritical water. The subchannel code was applied to calculate the local thermal hydraulic conditions inside the non-square test bundles which was employed for the analysis of CHF. The applicability of the subchannel code was evaluated for a high temperature gas cooled reactor condition and supercritical pressure conditions with water and Freon. A subchannel analysis has been conducted for European ADS(Accelerator-Driven subcritical System) with Pb-Bi coolant through the international cooperation work between KAERI and FZK, Germany. In addition, the prediction capability of the subchannel code was evaluated for the subchannel void distribution data by participating an international code benchmark program which was organized by OECD/NRC.
Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility
Di Piazza, Ivan, E-mail: ivan.dipiazza@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Angelucci, Morena; Marinari, Ranieri [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy); Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Forgione, Nicola [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy)
2016-04-15
Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m{sup 2}. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals
Validation uncertainty of MATRA code for subchannel void distributions
Hwang, Dae-Hyun; Kim, S. J.; Kwon, H.; Seo, K. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
To extend code capability to the whole core subchannel analysis, pre-conditioned Krylov matrix solvers such as BiCGSTAB and GMRES are implemented in MATRA code as well as parallel computing algorithms using MPI and OPENMP. It is coded by fortran 90, and has some user friendly features such as graphic user interface. MATRA code was approved by Korean regulation body for design calculation of integral-type PWR named SMART. The major role subchannel code is to evaluate core thermal margin through the hot channel analysis and uncertainty evaluation for CHF predictions. In addition, it is potentially used for the best estimation of core thermal hydraulic field by incorporating into multiphysics and/or multi-scale code systems. In this study we examined a validation process for the subchannel code MATRA specifically in the prediction of subchannel void distributions. The primary objective of validation is to estimate a range within which the simulation modeling error lies. The experimental data for subchannel void distributions at steady state and transient conditions was provided on the framework of OECD/NEA UAM benchmark program. The validation uncertainty of MATRA code was evaluated for a specific experimental condition by comparing the simulation result and experimental data. A validation process should be preceded by code and solution verification. However, quantification of verification uncertainty was not addressed in this study. The validation uncertainty of the MATRA code for predicting subchannel void distribution was evaluated for a single data point of void fraction measurement at a 5x5 PWR test bundle on the framework of OECD UAM benchmark program. The validation standard uncertainties were evaluated as 4.2%, 3.9%, and 2.8% with the Monte-Carlo approach at the axial levels of 2216 mm, 2669 mm, and 3177 mm, respectively. The sensitivity coefficient approach revealed similar results of uncertainties but did not account for the nonlinear effects on the
棒束燃料组件特征栅元CFD方法研究%CFD Method Research on Characteristic Cells in Rod Bundle Fuel Assembly
陈杰; 陈炳德; 张虹
2011-01-01
Two characteristic cells are in AFA-3G fuel assembly, that is typical cell and control rod guide cell. And there are some rules on the arrangement of mixing vanes. For the two characteristic cells, mixing capability is evaluated axially from the point of the first and second kind of sub-channel with CFD method.Mass mixing and heat mixing are interaction but different with each other. Although the mass mixing in the first kind of sub-channel is stronger, the thermal capability of the two is to some tune from the point of heat transfer. In the experiment research on thermal-hydraulic performance of AFA-3G fuel assembly, the arrangements of mixing vanes should refer to the two spacer grids of characteristic cells.%AFA-3G燃料组件中存在典型栅元和控制棒导向管栅元两种特征栅元,定位格架搅混翼的排列也具有一定的规律性.本文采用计算流体力学(CFD)方法,分别针对两种特征栅元,从第一类子通道和第二类子通道的角度,沿程评价其交混性能.质量交混与热交混紧密联系又相互区别,第一类子通道质量交换较强,但从传热角度,二者性能相当.AFA-3G燃料组件热工水力性能的实验研究中,格架搅混翼的排列方式应分别参照两种特征栅元格架.
Ohnuki, Akira; Kureta, Masatoshi; Yoshida, Hiroyuki; Tamai, Hidesada; Liu, Wei; Misawa, Takeharu; Takase, Kazuyuki; Akimoto, Hajime
R&D project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Innovative Water Reactor for Flexible Fuel Cycle has been progressed at Japan Atomic Energy Agency in collaboration with power utilities, reactor vendors and universities since 2002. In this series-study, we will summarize the R&D achievements using large-scale test facility (37-rod bundle with full-height and full-pressure), model experiments and advanced numerical simulation technology. This first paper described the master plan for the development of design technology and showed an executive summary for this project up to FY2005. The thermal-hydraulic characteristics in the tight-lattice configuration were investigated and the feasibility was confirmed based on the experiments. We have developed the design technology including 3-D numerical simulation one to evaluate the effects of geometry/scale on the thermal-hydraulic behaviors.
Solonin, V. I.; Perevezentsev, V. V.
2012-05-01
Random hydrodynamic loads causing vibration of fuel rod bundles in a turbulent flow of coolant are obtained from the results of pressure pulsation measurements carried out over the perimeter of the external row of fuel rods in the bundle of a full-scale mockup of a fuel assembly used in a second-generation VVER-440 reactor. It is shown that the turbulent flow structure is a factor determining the parameters of random hydrodynamic loads and the vibration of fuel rod bundles excited by these loads. The results from a calculation of random hydrodynamic loads are used for estimating the vibration levels of fuel rod bundles used in prospective designs of fuel assemblies for VVER reactors.
Rahimi, Masoud; Beigzadeh, Reza; Parvizi, Mehdi; Eiamsa-ard, Smith
2016-08-01
The group method of data handling (GMDH) technique was used to predict heat transfer and friction characteristics in heat exchanger tubes equipped with wire-rod bundles. Nusselt number and friction factor were determined as functions of wire-rod bundle geometric parameters and Reynolds number. The performance of the developed GMDH-type neural networks was found to be superior in comparison with the proposed empirical correlations. For optimization, the genetic algorithm-based multi-objective optimization was applied.
Eter, Ahmad, E-mail: eng.eter@yahoo.com; Groeneveld, Dé, E-mail: degroeneveld@gmail.com; Tavoularis, Stavros, E-mail: stavros.tavoularis@uottawa.ca
2016-07-15
Highlights: • Heat transfer at supercritical pressures was studied experimentally in a three-rod bundle equipped with wire-wrap spacers or grid spacers. • Heat transfer deterioration occurred near the heated inlet under certain conditions. • Normal heat transfer was generally comparable to that in a tube and the predictions of a correlation. - Abstract: Heat transfer measurements in a three-rod bundle equipped with wire-wrap and grid spacers were obtained at supercritical pressures in the Supercritical University of Ottawa Loop (SCUOL). The tests were performed using carbon dioxide, as a surrogate fluid for water, flowing upwards for wide ranges of conditions, including conditions equivalent to the nominal and near-normal operating conditions of the proposed Canadian Super-Critical Water-Cooled Reactor. The test section contained three heated rods and three unheated rod segments with an outer diameter of 10 mm and a pitch-to-diameter ratio of 1.14; the heated length was 1500 mm. Detailed surface temperature measurements along and around the three heated rods were collected using internally traversed thermocouples. The following ranges of test conditions were covered, with equivalent water conditions given inside parentheses: pressure from 6.6 to 8.36 MPa (19.7–25 MPa); inlet temperature from 11 to 30 °C (330–371 °C); mass flux from 200 to 1175 kg m{sup −2} s{sup −1} (340–1822 kg m{sup −2} s{sup −1}); and wall heat flux from 1 to 175 kW m{sup −2} (11–1847 kW m{sup −2}). For one set of tests, the heated rods were fitted with a 1.3 mm OD wire wrap, having an axial pitch of 200 mm along the entire heated length; for a second set, the heated rods were fitted with grid spacers having a 5.3% flow blockage and located at 500 mm axial intervals. The effects of spacer configuration on heat transfer at supercritical pressures were documented and analyzed. The observed experimental trends were compared to those obtained in a experiment in a heated
Mukhopadhyay, D.; Behera, G.H.; Bandopadhyay, S.K.; Gupta, S.K. [Bhabha Atomic Research Centre, Div. Reactor Safety, Bombay (India)
2001-07-01
Effect of fuel pin ballooning on the subchannel thermal-hydraulics during a small break (0.25%) located at the Reactor Inlet Feeder (RIF) has been studied for Indian PHWRs. The break leads to a low flow situation in the affected reactor channel along with delayed reactor trip. Higher power to flow ratio in the inner subchannels in comparison to outer subchannel of a 19 pin fuel bundle causes early 2-phase condition causing the flow to by pass from the inner ones to outer ones. This causes the fuel pins to experience different temperatures. Fuel pin ballooning causes reduction in the subchannel areas and further flow redistribution takes place. The transient subchannel thermal-hydraulic conditions along the reactor channel are very much different due to the power distribution and pressure drop. (authors)
CHF Enhancement of Advanced 37-Element Fuel Bundles
Joo Hwan Park
2015-01-01
Full Text Available A standard 37-element fuel bundle (37S fuel bundle has been used in commercial CANDU reactors for over 40 years as a reference fuel bundle. Most CHF of a 37S fuel bundle have occurred at the elements arranged in the inner pitch circle for high flows and at the elements arranged in the outer pitch circle for low flows. It should be noted that a 37S fuel bundle has a relatively small flow area and high flow resistance at the peripheral subchannels of its center element compared to the other subchannels. The configuration of a fuel bundle is one of the important factors affecting the local CHF occurrence. Considering the CHF characteristics of a 37S fuel bundle in terms of CHF enhancement, there can be two approaches to enlarge the flow areas of the peripheral subchannels of a center element in order to enhance CHF of a 37S fuel bundle. To increase the center subchannel areas, one approach is the reduction of the diameter of a center element, and the other is an increase of the inner pitch circle. The former can increase the total flow area of a fuel bundle and redistributes the power density of all fuel elements as well as the CHF. On the other hand, the latter can reduce the gap between the elements located in the middle and inner pitch circles owing to the increasing inner pitch circle. This can also affect the enthalpy redistribution of the fuel bundle and finally enhance CHF or dry-out power. In this study, the above two approaches, which are proposed to enlarge the flow areas of the center subchannels, were considered to investigate the impact of the flow area changes of the center subchannels on the CHF enhancement as well as the thermal characteristics by applying a subchannel analysis method.
Subchannel Analysis of Wire Wrapped SCWR Assembly
Jianqiang Shan
2014-01-01
Full Text Available Application of wire wrap spacers in SCWR can reduce pressure drop and obtain better mixing capability. As a consequence, the required coolant pumping power is decreased and the coolant temperature profile inside the fuel bundle is flattened which will obviously decrease the peak cladding temperature. The distributed resistance model for wire wrap was developed and implemented in ATHAS subchannel analysis code. The HPLWR wire wrapped assembly was analyzed. The results show that: (1 the assembly with wire wrap can obtain a more uniform coolant temperature profile than the grid spaced assembly, which will result in a lower peak cladding temperature; (2 the pressure drop in a wire wrapped assembly is less than that in a grid spaced assembly, which can reduce the operating power of pump effectively; (3 the wire wrap pitch has significant effect on the flow in the assembly. Smaller Hwire/Drod will result in stronger cross flow a more uniform coolant temperature profile, and also a higher pressure drop.
Ozdemir, Ozkan Emre, E-mail: ozdemir@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Avramova, Maria N., E-mail: mna109@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Sato, Kenya, E-mail: kenya_sato@mhi.co.jp [Mitsubishi Heavy Industries (MHI), Kobe (Japan)
2014-10-15
Highlights: ► Implementation of multidimensional boron transport model in a subchannel approach. ► Studies on cross flow mechanism, heat transfer and lateral pressure drop effects. ► Verification of the implemented model via code-to-code comparison with CFD code. - Abstract: The risk of reflux condensation especially during a Small Break Loss Of Coolant Accident (SB-LOCA) and the complications of tracking the boron concentration experimentally inside the primary coolant system have stimulated and subsequently have been a focus of many computational studies on boron tracking simulations in nuclear reactors. This paper presents the development and implementation of a multidimensional boron transport model with Modified Godunov Scheme within a thermal-hydraulic code based on a subchannel approach. The cross flow mechanism in multiple-subchannel rod bundle geometry as well as the heat transfer and lateral pressure drop effects are considered in the performed studies on simulations of deboration and boration cases. The Pennsylvania State University (PSU) version of the COBRA-TF (CTF) code was chosen for the implementation of three different boron tracking models: First Order Accurate Upwind Difference Scheme, Second Order Accurate Godunov Scheme, and Modified Godunov Scheme. Based on the performed nodalization sensitivity studies, the Modified Godunov Scheme approach with a physical diffusion term was determined to provide the best solution in terms of precision and accuracy. As a part of the verification and validation activities, a code-to-code comparison was carried out with the STAR-CD computational fluid dynamics (CFD) code and presented here. The objective of this study was two-fold: (1) to verify the accuracy of the newly developed CTF boron tracking model against CFD calculations; and (2) to investigate its numerical advantages as compared to other thermal-hydraulics codes.
Accuracy and Uncertainty Analysis of PSBT Benchmark Exercises Using a Subchannel Code MATRA
Dae-Hyun Hwang
2012-01-01
Full Text Available In the framework of the OECD/NRC PSBT benchmark, the subchannel grade void distribution data and DNB data were assessed by a subchannel code, MATRA. The prediction accuracy and uncertainty of the zone-averaged void fraction at the central region of the 5 × 5 test bundle were evaluated for the steady-state and transient benchmark data. Optimum values of the turbulent mixing parameter were evaluated for the subchannel exit temperature distribution benchmark. The influence of the mixing vanes on the subchannel flow distribution was investigated through a CFD analysis. In addition, a regionwise turbulent mixing model was examined to account for the nonhomogeneous mixing characteristics caused by the vane effect. The steady-state DNB benchmark data with uniform and nonuniform axial power shapes were evaluated by employing various DNB prediction models: EPRI bundle CHF correlation, AECL-IPPE 1995 CHF lookup table, and representative mechanistic DNB models such as a sublayer dryout model and a bubble crowding model. The DNBR prediction uncertainties for various DNB models were evaluated from a Monte-Carlo simulation for a selected steady-state condition.
Benchmark of Subchannel Code VIPRE-W with PSBT Void and Temperature Test Data
Y. Sung
2012-01-01
Full Text Available This paper summarizes comparisons of VIPRE-W thermal-hydraulic subchannel code predictions with measurements of fluid temperature and void from pressurized water reactor subchannel and bundle tests. Using an existing turbulent mixing model, the empirical coefficient derived from code predictions in comparison to the fluid temperature measurement is similar to those from previous mixing tests of similar bundle configurations. The predicted steady-state axial void distributions and time-dependent void profiles based on the Lellouche and Zolotar model generally agree well with the test data. The void model tends to predict lower void at the upper elevation under bulk boiling. The void predictions are in closer agreement with the measurements from the power increase, temperature increase, and flow reduction transients than the depressurization transient. Additional model sensitivity studies showed no significant improvement in the code predictions as compared to the published test data.
RELAP5 investigation on subchannel flow instability
Wang, S.; Yang, B.W.; Liu, A.; Liu, X. [Xi' an Jiaotong Univ., Shaanxi (China). Science and Technology Center for Advanced Nuclear Fuel Research
2016-07-15
Two-phase flow instability is a vitally important area of study for a large number of industrial systems. Density Wave Oscillation (DWO) is the most common type of flow instability caused by the change in flow rate or power in boiling systems. The code RELAP5 is used to simulate single channel, 2 x 2 subchannels, and 3 x 3 subchannels with typical BWR subchannel geometry. The onset of flow instability determinating criterion and the results of simulations are utilized to create a stable boundary. The stable boundary of a single channel is compared with those from results of other researchers. Some conclusions are made as follows. 3 x 3 subchannels are more stable than single channel and 2 x 2 subchannels. Open subchannels possess a larger stable region than close channels. The heating model is analyzed determining that asymmetrical heating has negative effect on stability as compared to symmetric heating. With the analysis of transit time, period and subcooling number, there is a positive linear relationship between the subcooling number and oscillation period.
Development of burnup dependent fuel rod model in COBRA-TF
Yilmaz, Mine Ozdemir
The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN
Validation of the Subchannel Code SUBCHANFLOW Using the NUPEC PWR Tests (PSBT
Uwe Imke
2012-01-01
Full Text Available SUBCHANFLOW is a computer code to analyze thermal-hydraulic phenomena in the core of pressurized water reactors, boiling water reactors, and innovative reactors operated with gas or liquid metal as coolant. As part of the ongoing assessment efforts, the code has been validated by using experimental data from the NUPEC PWR Subchannel and Bundle Tests (PSBT. The database includes single-phase flow bundle outlet temperature distributions, steady state and transient void distributions and critical power measurements. The performed validation work has demonstrated that the two-phase flow empirical knowledge base implemented in SUBCHANFLOW is appropriate to describe key mechanisms of the experimental investigations with acceptable accuracy.
Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.; Schwinkendorf, K.N.
1982-05-18
Thermal-Hydraulic Test Facility (THTF) Test 3.05.5B was conducted by members of the ORNL PWR Blowdown Heat Transfer Separate-Effects Program on July 3, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.05.5B was designed to provide transient thermal-hydraulics data in rod bundle geometry under reactor accident-type conditions. Reduced instrument responses are presented. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.
Manservisi, Sandro, E-mail: sandro.manservisi@unibo.it; Menghini, Filippo, E-mail: filippo.menghini3@unibo.it
2015-12-15
Highlights: • Turbulent heat transfer with a κ–ϵ–κ{sub θ}–ϵ{sub θ} turbulence model is investigated. • Numerical simulations with different pitch-to-diameter ratios are performed. • The results are compared with SED model and a few available experimental correlations. - Abstract: The study of heat transfer in heavy liquid metals has gained more attention in the last several years due to their applications in new advanced nuclear reactors. These fluids are characterized by low Prandtl numbers and a peculiar heat transfer that cannot be accurately reproduced with standard turbulence approximations, such as the Simple Eddy Diffusivity model (SED), commonly used in commercial codes. In this paper we report the results obtained for the SED and a more advanced κ–ϵ–κ{sub θ}–ϵ{sub θ} four parameter turbulence model for simulations in square lattice bare rod bundle geometries with different pitch-to-diameter ratios. We compare these numerical results with the available experimental data and correlations for the prediction of the Nusselt number.
Numerical Simulation of Water-Based Alumina Nanofluid in Subchannel Geometry
Mohammad Nazififard
2012-01-01
Full Text Available Turbulent forced convection flow of Al2O3/water nanofluid in a single-bare subchannel of a typical pressurized water reactor is numerically analyzed. The single-phase model is adopted to simulate the nanofluid convection of 1% and 4% by volume concentration. The renormalization group k-ε model is used to simulate turbulence in ANSYS FLUENT 12.1. Results show that the heat transfer increases with nanoparticle volume concentrations in the subchannel geometry. The highest heat transfer rates are detected, for each concentration, corresponding to the highest Reynolds number Re. The maximum heat transfer enhancement at the center of a subchannel formed by heated rods is ~15% for the particle volume concentration of 4% corresponding to Re = 80,000. The friction factor shows a reasonable agreement with the classical correlation used for such normal fluid as the Blasius formula. The result reveals that the Al2O3/water pressure drop along the subchannel increases by about 14% and 98% for volume concentrations of 1% and 4%, respectively, given Re compared to the base fluid. Coupled thermohydrodynamic and neutronic investigations are further needed to streamline the nanoparticles and to optimize their concentration.
Assessment of subchannel code ASSERT-PV for flow-distribution predictions
Nava-Dominguez, A., E-mail: navadoma@aecl.ca; Rao, Y.F., E-mail: raoy@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca
2014-08-15
Highlights: • Assessment of the subchannel code ASSERT-PV 3.2 for the prediction of flow distribution. • Open literature and in-house experimental data to quantify ASSERT-PV predictions. • Model changes assessed against vertical and horizontal flow experiments. • Improvement of flow-distribution predictions under CANDU-relevant conditions. - Abstract: This paper reports an assessment of the recently released subchannel code ASSERT-PV 3.2 for the prediction of flow-distribution in fuel bundles, including subchannel void fraction, quality and mass fluxes. Experimental data from open literature and from in-house tests are used to assess the flow-distribution models in ASSERT-PV 3.2. The prediction statistics using the recommended model set of ASSERT-PV 3.2 are compared to those from previous code versions. Separate-effects sensitivity studies are performed to quantify the contribution of each flow-distribution model change or enhancement to the improvement in flow-distribution prediction. The assessment demonstrates significant improvement in the prediction of flow-distribution in horizontal fuel channels containing CANDU bundles.
Moon, Sang Ki; Cho, Seok; Chun, Se Young; Park, Jong Kuk; Kim, Bok Deuk; Youn, Young Jung; Baek, Won Pil
2004-05-01
An experimental study of the Critical Heat Flux (CHF) has been performed for a water flow in a non-uniformly heated vertical 3x3 rod bundle under low flow and a wide range of pressure conditions. Since most of experimental studies on the low flow CHF have been performed under low pressure conditions, present study has investigated the effects of various parameters on the CHF under low flow and a wide range of pressure conditions. Especially, these experiments are focused on the CHF under Return-To-Power (RTP) conditions that are expected to occur in a main steam line break accident of Pressurized Water Reactors (PWRs). Using present CHF data, the applicability of conventional CHF correlations are investigated in a return-to-power condition. The CHF data have been collected for system pressures ranging from 0.47 to 15.06 MPa, mass flux from 49.66 to 654.44 kg/m{sup 2}s, inlet subcooling from 67.90 to 722.70 kJ/kg and exit quality from 0.36 to 1.29. In this study, the return-to-power conditions are defined as conditions with low mass flux less than 250 kg/m{sup 2}s, intermediated pressure between 6.0 MPa and 12.0 MPa, and high inlet subcooling greater than 200 kJ/kg. Total 299 CHF data including 93 CHF data in return-to-power conditions are obtained. The effects of various parameters on the CHF are consistent with previous understandings on the round tube CHF. Conventional CHF correlations predict the present return-to-power CHF data with reasonable accuracies. However, the prediction capabilities become worse in a very low mass flux below than about 100 kg/m{sup 2}s.
Assessment of CUPID1.7 Code with PSBT Subchannel Test
Cho, Y. J.; Yoon, H. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
CUPID(Component Unstructured Program for Interfacial Dynamics 1.7) code has been developed, various verification and validation (V and V) problems were solved to confirm not only the numerical stability, robustness and accuracy, but also the adequacy of physical models in CUPID code. Recently, as boiling models was improved, an additional V and V problem was required to validate newly implemented models. A PWR Sub-channel and Bundle Test (PSBT) is the international benchmark problem which is proper to validate the boiling models under the conditions of high pressure and high heat flux. In this paper, a single sub-channel test in PSBT was simulated. By using the calculation results, qualitative analysis was performed as well as quantitative comparison with the test data were performed. The PSBT subchannel test was simulated in order to assess the wall heat partitioning model and non-drag force models in CUPID1.7. The simulation results showed that CUPID1.7 properly predicts the sub-cooled boiling near a wall and behavior of the void fraction distribution. However, CUPID1.7 overestimated the area-averaged void fraction compared to the test data, especially for the case with very low void fraction. This result indicates that an improvement and validation of the boiling model or interfacial area transport model are required. In addition, the turbulence model should be validated simultaneously with the boiling model since the turbulence behavior affects the temperature and velocity profile near a wall.
Seiler, J. M.; Rameau, B.
Bundle sodium boiling in nominal geometry for different accident conditions is reviewed. Voiding of a subassembly is controlled by not only hydrodynamic effects but mainly by thermal effects. There is a strong influence of the thermal inertia of the bundle material compared to the sodium thermal inertia. Flow instability, during a slow transient, can be analyzed with numerical tools and estimated using simplified approximations. Stable boiling operational conditions under bundle mixed convection (natural convection in the reactor) can be predicted. Voiding during a fast transient can be approximated from single channel calculations. The phenomenology of boiling behavior for a subassembly with inlet completely blocked, submitted to decay heat and lateral cooling; two-phase sodium flow pressure drop in a tube of large hydraulic diameter under adiabatic conditions; critical flow phenomena and voiding rate under high power, slow transient conditions; and onset of dry out under local boiling remains problematical.
Shirvan, Koroush, E-mail: kshirvan@mit.edu; Kazimi, Mujid S.
2014-04-01
Highlights: • We benchmarked the 4 × 4 helical cruciform fuel (HCF) bundle pressure drop experimental data with CFD. • We also benchmarked the 4 × 4 HCF mixing experimental data with CFD. • We derived new friction factors for PWR and BWR designs at PWR and BWR operating conditions from CFD. • We showed the importance of modeling the 3D conduction in HCF in steady state and transient conditions. - Abstract: In order to increase the power density of current and new light water reactor designs, the helical cruciform fuel (HCF) rods have been proposed. The HCF rod is equivalent to a thin cylindrical rod, with 4 fuel containing vanes, wrapped around it. The HCF rods increase the surface area to volume ratio of the fuel and enhance the inter-subchannel mixing due to their helical shape. The rods do not need supporting grids, as they are packed to periodically contact their neighbors along the flow direction, enabling a higher power density in the core. The HCF rods were reported to have the potential to uprate existing PWRs by 45% and BWRs by 20%. In order to quantify the mixing behavior of the HCF rods based on their twist pitch, experiments were previously performed at atmospheric pressures with single phase water in a 4 by 4 HCF and cylindrical rod bundles. In this paper, the experimental results on pressure drop and mixing are benchmarked with computational fluid dynamic (CFD) using steady state the Reynolds average Navier–Stokes (RANS) turbulence model. The sensitivity of the CFD approach to computational domain, mesh size, mesh shape and RANS turbulence models are examined against the experimental conditions. Due to the refined radial velocity profile from the HCF rods twist, the turbulence models showed little sensitivity to the domain. Based on the CFD simulations, the total pressure drops under the PWR and BWR conditions are expected to be about 10% higher than the values previously reported solely from an empirical correlation based on the
Cox, J.H.
1964-09-14
The loss of flow is considered as far as the flow to the inlet hydraulic connector, inlet plugging and water shutoff time. A mockup revealed no vibration of the fuel element bundles and at the low temperatures present there should be no problem of corrosion. Efforts to assure safety with plutonium in the fuel elements are noted. (GHH)
ANTEO+: A subchannel code for thermal-hydraulic analysis of liquid metal cooled systems
Lodi, F., E-mail: francesco.lodi5@unibo.it [DIN – Laboratory of Montecuccolino, University of Bologna, Via dei Colli 16, 40136 Bologna (Italy); Grasso, G., E-mail: giacomo.grasso@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Mattioli, D., E-mail: davide.mattioli@enea.it [ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), via Martiri di Monte Sole, 4, 40129 Bologna (Italy); Sumini, M., E-mail: marco.sumini@unibo.it [DIN – Laboratory of Montecuccolino, University of Bologna, Via dei Colli 16, 40136 Bologna (Italy)
2016-05-15
Highlights: • The code structure is presented in detail. • The performed validation is outlined. • Results are critically discussed assessing code accuracy. • Conclusions are drawn and ground for future work identified. - Abstract: Liquid metal cooled fast reactors are promising options for achieving the high degrees of safety and sustainability demanded by the Generation IV paradigm. Among the critical aspects to be addressed in the design process, thermal-hydraulics is one of the most challenging; in order to embed safety in the core conceptualization, these aspects are to be considered at the very beginning of the design process, and translated in a design perspective. For achieving these objectives the subchannel code ANTEO+ has been conceived, able to simulate pin bundle arrangements cooled by liquid metals. The main purposes of ANTEO+ are simplifying the problem description maintaining the required accuracy, enabling a more transparent interface with the user, and having a clear and identifiable application domain, in order to help the user interpreting the results and, mostly, defining their confidence. Since ANTEO+ relies on empirical correlations, the validation phase is of paramount importance along with a clear discussion on the simplifications adopted in modeling the conservation equations. In the present work a detailed description of ANTEO+ structure is given along with a thorough validation of the main models implemented for flow split, pressure drops and subchannel temperatures. The analysis confirmed the ability of ANTEO+ in reproducing experimental data in its anticipated validity domain, with a relatively high degree of accuracy when compared to other classical subchannel tools like ENERGY-II, COBRA-IV-I-MIT and BRS-TVS.
Subchannel analysis with turbulent mixing rate of supercritical pressure fluid
Wu, Jianhui, E-mail: wjianhui1985@gmail.com [Department of Applied Physics, Waseda University, Tokyo 169-8555 (Japan); Oka, Yoshiaki [Emeritus Professor the University of Tokyo, Tokyo (Japan)
2015-06-15
Highlights: • Subchannel analysis with turbulent mixing rate law of supercritical pressure fluid (SPF) is carried out. • Turbulent mixing rate is enhanced, compared with that calculated by the law of pressurized water reactor (PWR). • Increase in maximum cladding surface temperature (MCST) is smaller comparing with PWR model. • The sensitivities of MCST on non-uniformity of subchannel area and power peaking are reduced by using SPF model. - Abstract: The subchannel analysis with turbulent mixing rate law of supercritical pressure fluid (SPF) is carried out for supercritical-pressurized light water cooled and moderated reactor (Super LWR). It is different from the turbulent mixing rate law of pressurized water reactor (PWR), which is widely adopted in Super LWR subchannel analysis study, the density difference between adjacent subchannels is taken into account for turbulent mixing rate law of SPF. MCSTs are evaluated on three kinds of fuel assemblies with different pin power distribution patterns, gap spacings and mass flow rates. Compared with that calculated by employing turbulent mixing rate law of PWR, the increase in MCST is smaller even when peaking factor is large and gap spacing is uneven. The sensitivities of MCST on non-uniformity of the subchannel area and power peaking are reduced.
Parallelization of Subchannel Analysis Code MATRA
Kim, Seongjin; Hwang, Daehyun; Kwon, Hyouk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
A stand-alone calculation of MATRA code used up pertinent computing time for the thermal margin calculations while a relatively considerable time is needed to solve the whole core pin-by-pin problems. In addition, it is strongly required to improve the computation speed of the MATRA code to satisfy the overall performance of the multi-physics coupling calculations. Therefore, a parallel approach to improve and optimize the computability of the MATRA code is proposed and verified in this study. The parallel algorithm is embodied in the MATRA code using the MPI communication method and the modification of the previous code structure was minimized. An improvement is confirmed by comparing the results between the single and multiple processor algorithms. The speedup and efficiency are also evaluated when increasing the number of processors. The parallel algorithm was implemented to the subchannel code MATRA using the MPI. The performance of the parallel algorithm was verified by comparing the results with those from the MATRA with the single processor. It is also noticed that the performance of the MATRA code was greatly improved by implementing the parallel algorithm for the 1/8 core and whole core problems.
Numerical method improvement for a subchannel code
Ding, W.J.; Gou, J.L.; Shan, J.Q. [Xi' an Jiaotong Univ., Shaanxi (China). School of Nuclear Science and Technology
2016-07-15
Previous studies showed that the subchannel codes need most CPU time to solve the matrix formed by the conservation equations. Traditional matrix solving method such as Gaussian elimination method and Gaussian-Seidel iteration method cannot meet the requirement of the computational efficiency. Therefore, a new algorithm for solving the block penta-diagonal matrix is designed based on Stone's incomplete LU (ILU) decomposition method. In the new algorithm, the original block penta-diagonal matrix will be decomposed into a block upper triangular matrix and a lower block triangular matrix as well as a nonzero small matrix. After that, the LU algorithm is applied to solve the matrix until the convergence. In order to compare the computational efficiency, the new designed algorithm is applied to the ATHAS code in this paper. The calculation results show that more than 80 % of the total CPU time can be saved with the new designed ILU algorithm for a 324-channel PWR assembly problem, compared with the original ATHAS code.
Analysis of Frictional Resistance of Two-phase Flow in Rod Bundle Channel%棒束通道内两相流动摩擦阻力特性分析
田齐伟; 阎昌琪; 孙立成; 闫超星
2015-01-01
The experimental investigation of air‐water two‐phase flow resistance charac‐teristics in a vertical channel with a 3 × 3 rod bundle was carried out under atmospheric and room temperature conditions . Eight classical correlations for predicting frictional pressure drop of two‐phase flow were evaluated against the experimental data . The experimental results show that the homogeneous model can predict the experimental data well at high flow rates ,but with relatively large deviations at low flow rates .Both the Friedel model and the Lombodi‐Pedrocchi model are not suitable any longer for the present case . The Chisholm C model , the Zhang‐Mishima model , the Chisholm B model ,the Mishima‐Hibiki model and the L .Sun model can well predict the experimen‐tal data with mean relative errors in the range of 20%‐30% . The C factor in the Chisholm C model was modified for giving a new correlation to predict the frictional pressure drop of two‐phase flow through rod bundles ,showing a good agreement with the experimental data .%常温常压下，对竖直3×3棒束通道内气液两相流动阻力特性进行了实验研究。利用所获得的实验数据，对8种典型的两相流动摩擦压降计算模型进行了评价。结果表明，均相模型在两相流速较高时精度较高，在两相流速较低时则偏差较大。分相模型中，Friedel模型和Lombodi‐Pedrocchi模型不适用于本实验条件下棒束通道内气液两相流动摩擦压降的计算。Chisholm C模型、Zhang‐M ishima模型、Chisholm B模型、Mishima‐Hibiki模型及L ．Sun模型的预测值与实验值的平均相对误差介于20％～30％之间。基于实验数据，通过修正Chisholm C模型的C系数，给出一个新的修正模型，其计算值与实验值符合良好。
Thermalhydraulics of advanced 37-element fuel bundle in crept pressure tubes
Park Joo Hwan
2016-01-01
Full Text Available A CANDU-6 reactor, which has 380 fuel channels of a pressure tube type, is suffering from aging or creep of the pressure tubes. Most of the aging effects for the CANDU primary heat transport system were originated from the horizontal crept pressure tubes. As the operating years of a CANDU reactor proceed, a pressure tube experiences high neutron irradiation damage under high temperature and pressure. The crept pressure tube can deteriorate the Critical Heat Flux (CHF of a fuel channel and finally worsen the reactor operating performance and thermal margin. Recently, the modification of the central subchannel area with increasing inner pitch length of a standard 37-element fuel bundle was proposed and studied in terms of the dryout power enhancement for the uncrept pressure tube since a standard 37-element fuel bundle has a relatively small flow area and high flow resistance at the central region. This study introduced a subchannel analysis for the crept pressure tubes loaded with the inner pitch length modification of a standard 37-element fuel bundle. In addition, the subchannel characteristics were investigated according to the flow area change of the center subchannels for the crept pressure tubes. Also, it was discussed how much the crept pressure tubes affected the thermalhydraulic characteristics of the fuel channel as well as the dryout power for the modification of a standard 37-element fuel bundle.
Dimensional Measurements of Fresh CANDU Fuel Bundle
Jun, Ji Su; Jo, Chang Keun; Jung, Jong Yeob; Koo, Dae Seo; Cho, Moon Sung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2005-07-01
This paper intends to provide the dimensional measurements of fresh CANDU fuel (37-element) bundle for the estimation of deformation of post-irradiated (PI) bundle. It is expensive and difficult to measure the fretting wear of bearing pad, the element bowing and the waviness of endplate at the two-phase high flow condition (above 24 kg/s) of out-of-reactor test. So, it is recommended to compare the geometry of fresh bundle with that of PI bundle to estimate the integrity of fuel bundle in the CANDU-6 fuel channel with two-phase flow condition. The measurement system has been developed to provide the visual inspection and the dimensional measurements within the accuracy of 10 {mu}m. It is applicable in-air and underwater to the CANDU bundle as well as the CANFLEX bundle. The in-air measurements of the 36 fresh CANDU bundles (S/N: B400892 {approx} B400927) are done by this system from February 2004 to March 2004 in the PHWR fresh fuel storage building of KNFC. These bundles are produced by KNFC manufacturing procedure and are waiting for the delivery to the Wolsong-3 plant, and are planned to load into the proposed test channels. The detail measurements contain the outer rod profile (including the bearing pad), the diameter of bundle, the bowing of bundle, the rod length and the surface profile of end plate (waviness)
Thermal Hydraulic Performance of Tight Lattice Bundle
Yamamoto, Yasushi; Akiba, Miyuki; Morooka, Shinichi; Shirakawa, Kenetsu; Abe, Nobuaki
Recently, the reduced moderation spectrum BWR has been studied. The fast neutron spectrum is obtained through triangular tight lattice fuel. However, there are few thermal hydraulic test data and thermal hydraulic correlation applicable to critical power prediction in such a tight lattice bundle. This study aims to enhance the database of the thermal hydraulic performance of the tight lattice bundle whose rod gap is about 1mm. Therefore, thermal hydraulic performance measurement tests of tight lattice bundles for the critical power, the pressure drop and the counter current flow limiting were performed. Moreover, the correlations to evaluate the thermal-hydraulic performance of the tight lattice bundle were developed.
Coolability of ballooned VVER bundles with pellet relocation
Hozer, Z.; Nagy, I.; Windberg, P.; Vimi, A. [AEKI, P.O.box 49, Budapest, H-1525 (Hungary)
2009-06-15
During a LOCA incident the high pressure in the fuel rods can lead to clad ballooning and the debris of fuel pellets can fill the enlarged volume. The evaluation of the role of these two effects on the coolability of VVER type fuel bundles was the main objective of the experimental series. The tests were carried out in the modified configuration of the CODEX facility. 19-rod electrically heated VVER type bundle was used. The test section was heated up to 600 deg. C in steam atmosphere and the bundle was quenched from the bottom by cold water. Three series of tests were performed: 1. Reference bundle with fuel rods without ballooning, with uniform power profile. 2. Bundle with 86% blockage rate and with uniform power profile. The blockage rate was reached by superimposing hollow sleeves on all 19 fuel rods. 3. Bundle with 86% blockage rate and with local power peak in the ballooned area. The local power peak was produced by the local reduction the cross section of the internal heater bar inside of the fuel rods. In all three bundle configurations three different cooling water flow-rates were applied. The experimental results confirmed that a VVER bundle with even 86% blockage rate remains coolable after a LOCA event. The ballooned section creates some obstacles for the cooling water during reflood of the bundle, but this effect causes only a short delay in the cooling down of the hot fuel rods. Earlier tests on the coolability of ballooned bundles were performed only with Western type bundles with square fuel lattice. The present test series was the first confirmation of the coolability of VVER type bundles with triangular lattice. The accumulation of fuel pellet debris in the ballooned volume results in a local power peak, which leads to further slowing down of quench front. The first tests indicated that the effect of local power peak was less significant on the delay of cooling down than the effect of ballooning. (authors)
C. Baudry
2012-01-01
Full Text Available The multifield computational fluid dynamics (CFD code NEPTUNE_CFD is applied to carry out a numerical study of the steady-state subchannel test-case of the OECD/NRC NUPEC PWR subchannel and bundle tests (PSBTs international benchmark, focusing on the simulation of a subset of five selected experimental runs of the centered subchannel configuration. First, using a standard choice for the physical models and a constant, predetermined bubble diameter, the calculated void fraction is compared to experimental data. Besides, the mesh sensitivity of the calculated void fraction is investigated by performing simulations of three grid levels, and the propagation of the experimental uncertainties on the input parameters of the simulations is also studied. Last, calculation results with devoted models for the bubble-size distribution are analyzed. Their impact is visible on the subcooled run, giving void fraction closer to experiments than those obtained with a fixed bubble-size. Void-fraction distribution with bubble-size models is also shown to come closer to experiment for another run with a higher equilibrium quality.
Entrainment and deposition modeling of liquid films with applications for BWR fuel rod dryout
Ratnayake, Ruwan Kumara
While best estimate computer codes provide the licensing basis for nuclear power facilities, they also serve as analytical tools in overall plant and component design procedures. An ideal best estimate code would comprise of universally applicable mechanistic models for all its components. However, due to the limited understanding in these specific areas, many of the models and correlations used in these codes reflect high levels of empiricism. As a result, the use of such models is strictly limited to the range of parameters within which the experiments have been conducted. Disagreements between best estimate code predictions and experimental results are often explained by the mechanistic inadequacies of embedded models. Significant mismatches between calculated and experimental critical power values are common observations in the analyses of Boiling Water Reactors (BWR). Based on experimental observations and calculations, these mismatches are attributed to the additional entrainment and deposition caused by spacer grids in BWR fuel assemblies. In COBRA-TF (Coolant Boiling in Rod Arrays-Two Fluid); a state of the art industrial best estimate code, these disagreements are hypothesized to occur due the absence of an appropriate spacer grid model. In this thesis, development of a suitably detailed spacer grid model and integrating it to COBRA-TF is documented. The new spacer grid model is highly mechanistic so that the applicability of it is not seriously affected by geometric variations in different spacer grid designs. COBRA-TF (original version) simulations performed on single tube tests and BWR rod bundles with spacer grids showed that single tube predictions were more accurate than those of the rod bundles. This observation is understood to arise from the non-availability of a suitable spacer grid model in COBRA-TF. Air water entrainment experiments were conducted in a test section simulating two adjacent BWR sub channels to visualize the flow behavior at
Kun Jiang
2015-06-01
Full Text Available The effect of sub-channel delay on bandwidth synthesis is investigated to eliminate the “phase step” phenomenon in bandwidth synthesis during the test of CDBE (Chinese Digital Backend. Through formula derivation, we realize that sub-channel delay may cause phase discontinuity between different sub-channels. Theoretical analysis shows that sub-channel delay can induce bandwidth synthesis error in group delay measurement of the linear system. Furthermore, in the differential delay measurement between two stations, bandwidth synthesis error may occur when the LO (Local Oscillator frequency differences of corresponding sub-channels are not identical. Error-free conditions are discussed under different applications. The phase errors among different sub-channels can be removed manually. However, the most effective way is the compensation of sub-channel delay. A sub-channel delay calculation method based on Modelsim is proposed. The compensation method is detailed. Simulation and field experiments are presented to verify our approach.
Sub-channel shared resource allocation for multi-user distributed MIMO-OFDM systems
Na-e ZHENG; You ZHOU; Han-ying HU; Sheng WANG
2014-01-01
Well-controlled resource allocation is crucial for promoting the performance of multiple input multiple output or-thogonal frequency division multiplexing (MIMO-OFDM) systems. Recent studies have focused primarily on traditional cen-tralized systems or distributed antenna systems (DASs), and usually assumed that one sub-carrier or sub-channel is exclusively occupied by one user. To promote system performance, we propose a sub-channel shared resource allocation algorithm for multi- user distributed MIMO-OFDM systems. Each sub-channel can be shared by multiple users in the algorithm, which is different from previous algorithms. The algorithm assumes that each user communicates with only two best ports in the system. On each sub-carrier, it allocates a sub-channel in descending order, which means one sub-channel that can minimize signal to leakage plus noise ratio (SLNR) loss is deleted until the number of remaining sub-channels is equal to that of receiving antennas. If there are still sub-channels after all users are processed, these sub-channels will be allocated to users who can maximize the SLNR gain. Simulations show that compared to other algorithms, our proposed algorithm has better capacity performance and enables the system to provide service to more users under the same capacity constraints.
Subchannel analysis of a small ultra-long cycle fast reactor core
Seo, Han; Kim, Ji Hyun; Bang, In Cheol, E-mail: icbang@unist.ac.kr
2014-04-01
Highlights: • The UCFR-100 is small-sized one of 60 years long-life nuclear reactors without refueling. • The design safety limits of the UCFR-100 are evaluated using MATRA-LMR. • The subchannel results are below the safety limits of general SFR design criteria. - Abstract: Thermal-hydraulic evaluation of a small ultra-long cycle fast reactor (UCFR) core is performed based on existing safety regulations. The UCFR is an innovative reactor newly designed with long-life core based on the breed-and-burn strategy and has a target electric power of 100 MWe (UCFR-100). Low enriched uranium (LEU) located at the bottom region of the core play the role of igniter to operate the UCFR for 60 years without refueling. A metallic form is selected as a burning fuel region material after the LEU location. HT-9 and sodium are used as cladding and coolant materials, respectively. In the present study, MATRA-LMR, subchannel analysis code, is used for evaluating the safety design limit of the UCFR-100 in terms of fuel, cladding, and coolant temperature distributions in the core as design criteria of a general fast reactor. The start-up period (0 year of operation), the middle of operating period (30 years of operation), and the end of operating cycle (60 years of operation) are analyzed and evaluated. The maximum cladding surface temperature (MCST) at the BOC (beginning of core life) is 498 °C on average and 551 °C when considering peaking factor, while the MCST at the MOC (middle of core life) is 498 °C on average and 548 °C in the hot channel, respectively, and the MCST at the EOC (end of core life) is 499 °C on average and 538 °C in the hot channel, respectively. The maximum cladding surface temperature over the long cycle is found at the BOC due to its high peaking factor. It is found that all results including fuel rods, cladding, and coolant exit temperature are below the safety limit of general SFR design criteria.
Yang, L.X.; Zhou, M.J.; Chao, Y.M. [Beijing Jiaotong Univ. (China). School of Mechanical Electronic and Control Engineering
2016-07-15
We evaluated the performance of various turbulence models, including eddy viscosity models and Reynolds stress models, when analyzing rod bundles in fuel assemblies using the Computational Fluid Dynamics (CFD) method. The models were assessed by calculating the pressure drop and Nusselt numbers in 5 x 5 rod bundles using the CFD software ANSYS CFX. Comparisons between the numerical and experimental results, as well as the swirl factor, cross-flow factor, and turbulence intensity utilized to evaluate the swirling and cross-flow, were used to analyze the inner relationship between the flow field and heat transfer. These comparisons allow the selection of the most appropriate turbulence model for modeling flow features and heat transfer in rod bundles.
Analyses of bundle experiment data using MATRA-h
Lim, In Cheol; Chea, Hee Taek [Korea Atomic Energy Research Institute, Taejon (Korea)
1998-06-01
When the construction and operation license for HANARO was renewed in 1995, 25% of CHF penalty was imposed. The reason for this was that the validation work related to the CHF design calculation was not enough for the assurance of CHF margin. As a part of the works to recover this CHF penalty, MATRA-h was developed by implementing the new correlations for the heat transfer, CHF prediction, subcooled void to the MATRA-a, which is the modified version of COBRA-IV-I done by KAERI. Using MATRA-h, the subchannel analyses for the bundle experiment data were performed. The comparison of the code predictions with the experimental results, it was found that the code would give the conservative predictions as far as the CHF in the bundle geometry is concerned. (author). 12 refs., 25 figs., 16 tabs.
Assessment of ASSERT-PV for prediction of post-dryout heat transfer in CANDU bundles
Cheng, Z., E-mail: chengz@aecl.ca; Rao, Y.F., E-mail: raoy@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca
2014-10-15
Highlights: • Assessment of the new Canadian subchannel code ASSERT-PV 3.2 for PDO sheath temperature prediction. • CANDU 28-, 37- and 43-element bundle PDO experiments. • Prediction improvement of ASSERT-PV 3.2 over previous code versions. • Sensitivity study of the effect of PDO model options. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The recently released ASSERT-PV 3.2 provides enhanced models for improved predictions of subchannel flow distribution, critical heat flux (CHF), and post-dryout (PDO) heat transfer in horizontal CANDU fuel channels. This paper presents results of an assessment of the new code version against PDO tests performed during five full-size CANDU bundle experiments conducted between 1992 and 2009 by Stern Laboratories (SL), using 28-, 37- and 43-element bundles. A total of 10 PDO test series with varying pressure-tube creep and/or bearing-pad height were analyzed. The SL experiments encompassed the bundle geometries and range of flow conditions for the intended ASSERT-PV applications for existing CANDU reactors. Code predictions of maximum PDO fuel-sheath temperature were compared against measurements from the SL PDO tests to quantify the code's prediction accuracy. The prediction statistics using the recommended model set of ASSERT-PV 3.2 were compared to those from previous code versions. Furthermore, separate-effects sensitivity studies quantified the contribution of each PDO model change or enhancement to the improvement in PDO heat transfer prediction. Overall, the assessment demonstrated significant improvement in prediction of PDO sheath temperature in horizontal fuel channels containing CANDU bundles.
Zhuo CHEN; Zhang Ju LIU; Yun He SHENG
2014-01-01
In this paper, we construct a category of short exact sequences of vector bundles and prove that it is equivalent to the category of double vector bundles. Moreover, operations on double vector bundles can be transferred to operations on the corresponding short exact sequences. In particular, we study the duality theory of double vector bundles in term of the corresponding short exact sequences. Examples including the jet bundle and the Atiyah algebroid are discussed.
Chen, Zhuo; Liu, Zhangju; Sheng, Yunhe
2011-01-01
In this paper, we construct a category of short exact sequences of vector bundles and prove that it is equivalent to the category of double vector bundles. Moreover, operations on double vector bundles can be transferred to operations on the corresponding short exact sequences. In particular, we study the duality theory of double vector bundles in term of the corresponding short exact sequences. Examples including the jet bundle and the Atiyah algebroid are discussed.
Sub-channel interference cancellation in SVD-based MIMO system
无
2007-01-01
For singular value decomposition (SVD)-based multiple input multiple output (MIMO) systems, implicit channel state information (CSI) incurs interferences amongst sub-channels if the CSI at the transmitter is not explicit.An improved SVD-based MIMO which can fully cancel the inter sub-channel interferences by reconstructing the transmitter- receiver system matrix on interferences analysis is provided.Simulation results indicate that the proposed algorithm outperforms the traditional SVD-based MIMO in a large degree.
Cheng, J.; Rao, Y.F., E-mail: zhong.cheng@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)
2015-06-15
In the framework of developing next generation safety analysis tools, Canadian Nuclear Laboratories (CNL) has planned to incorporate subchannel analysis capability into its advanced system thermalhydraulic code CATHENA 4. This paper provides a literature review and an assessment of current subchannel codes. It also evaluates three code-development methods: (i) static coupling of CATHENA 4 with the subchannel code ASSERT-PV, (ii) dynamic coupling of the two codes, and (iii) fully implicit implementation for a new, standalone CATHENA 4 version with subchannel capability. Results of the review and assessment suggest that the current ASSERT-PV modules can be used as the base for the fully implicit implementation of subchannel capability in CATHENA 4, and that this option may be the most cost-effective in the long run, resulting in savings in user application and maintenance costs. In addition, improved versatility of the tool could be accomplished by the addition of new features that could be added as part of its development. The new features would improve the capabilities of the existing subchannel code in handling low, reverse, and stagnant flows often encountered in system thermalhydraulic analysis. Therefore, the method of fully implicit implementation is preliminarily recommended for further exploration. A feasibility study will be performed in an attempt to extend the present work into a preliminary development plan. (author)
LWR nuclear fuel bundle data for use in fuel bundle handling
Weihermiller, W.B.; Allison, G.S.
1979-09-01
Although increasing numbers of spent light water reactor (LWR) fuel bundles are moved into storage, no handling equipment is set up to manipulate all of the various types of fuel bundles. This report summarizes fuel bundle information of interest to the designer of such handling equipment. Dimensional descriptions are included with discussions of assembly procedure and manufacturer provisions for handling equipment. No attempt is made to make a complete compilation of dimensional information; the number of fuel bundle designs and design revisions makes it impractical. Because the fuel bundle designs are so varied, any equipment intended for handling all types of bundles will have to be designed with flexibility in mind. Besides the ability to manipulate fuel bundles in space, handling equipment may be required to locate an external surface or to position a cutting operation to avoid breaking a fuel rod pressure boundary. Even with the most sophisticated and flexible handling equipment, some situations will require use of the manufacturers' as-built descriptions of individual fuel bundles.
Principal noncommutative torus bundles
Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve
2008-01-01
In this paper we study continuous bundles of C*-algebras which are non-commutative analogues of principal torus bundles. We show that all such bundles, although in general being very far away from being locally trivial bundles, are at least locally trivial with respect to a suitable bundle version...... of bivariant K-theory (denoted RKK-theory) due to Kasparov. Using earlier results of Echterhoff and Williams, we shall give a complete classification of principal non-commutative torus bundles up to equivariant Morita equivalence. We then study these bundles as topological fibrations (forgetting the group...... action) and give necessary and sufficient conditions for any non-commutative principal torus bundle being RKK-equivalent to a commutative one. As an application of our methods we shall also give a K-theoretic characterization of those principal torus-bundles with H-flux, as studied by Mathai...
Tiero, Alessandro
2014-01-01
We propose a mechanical theory describing elastic rods which, like plant organs, can grow and can change their intrinsic curvature and torsion. The equations ruling accretion and remodeling are obtained by combining balance laws involving non-standard forces with constitutive prescriptions filtered by a dissipation principle that takes into account both standard and non-standard working.
Experimental investigation of the coolability of blocked hexagonal bundles
Hózer, Zoltán, E-mail: zoltan.hozer@energia.mta.hu; Nagy, Imre; Kunstár, Mihály; Szabó, Péter; Vér, Nóra; Farkas, Róbert; Trosztel, István; Vimi, András
2017-06-15
Highlights: • Experiments were performed with electrically heated hexagonal fuel bundles. • Coolability of ballooned VVER-440 type bundle was confirmed up to high blockage rate. • Pellet relocation effect causes delay in the cool-down of the bundle. • The bypass line does not prevent the reflood of ballooned fuel rods. - Abstract: The CODEX-COOL experimental series was carried out in order to evaluate the effect of ballooning and pellet relocation in hexagonal bundles on the coolability of fuel rods after a LOCA event. The effects of blockage geometry, coolant flowrate, initial temperature and axial profile were investigated. The experimental results confirmed that a VVER bundle up to 80% blockage rate remains coolable after a LOCA event under design basis conditions. The ballooned section creates some obstacles for the cooling water during reflood of the bundle, but this effect causes only a short delay in the cooling down of the hot fuel rods. The accumulation of fuel pellet debris in the ballooned volume results in a local power peak, which leads to further slowing down of quench front.
Performance of Adaptive Subchannel Assignment-Based MIMO/OFDM Systems over Multipath Fading Channels
无
2006-01-01
Adaptive antenna arrays at both the base and mobile stations can further increase system capacity and improve the quality of service of conventional orthogonal frequency division multiplexing (OFDM) systems. Conventional adaptive antenna array-based multiple-input multiple-output (MIMO)/OFDM systems use the sub-carriers characterized by the largest eigenvalue to transmit the OFDM symbols. This paper describes the performance of adaptive subchannel assignment-based MIMO/OFDM systems over multipath fading channels. The system adaptively selects the eigenvectors associated with the relatively large subchannel eigenvalues to generate the antenna array weights at the base and mobile stations and then adaptively assigns the corresponding best subchannels to transmit the OFDM symbols. Simulation results show that the proposed system can achieve better performance than the conventional adaptive antenna array-based MIMO/OFDM system over multipath fading channels.
Zinn, W.H.; Ross, H.V.
1958-11-18
A control rod is described for a nuclear reactor. In certaln reactor designs it becomes desirable to use a control rod having great width but relatively llttle thickness. This patent is addressed to such a need. The neutron absorbing material is inserted in a triangular tube, leaving volds between the circular insert and the corners of the triangular tube. The material is positioned within the tube by the use of dummy spacers to achleve the desired absorption pattern, then the ends of the tubes are sealed with suitable plugs. The tubes may be welded or soldered together to form two flat surfaces of any desired width, and covered with sheetmetal to protect the tubes from damage. This design provides a control member that will not distort under the action of outside forces or be ruptured by gases generated within the jacketed control member.
刘洋; 喻宏; 刘一哲
2014-01-01
利用三维计算流体力学软件CFX 12.0对由7根带螺旋状定位绕丝的燃料棒组成的快堆燃料组件典型棒束通道内的流动和传热现象进行了数值模拟。模拟得到不同 Re下的压降系数曲线与 N u曲线，并将计算结果与经验公式的计算结果进行了比较，两者符合较好。研究了组件内3类典型子通道的横向流交混效应，分析了3类典型子通道的横向流分布特点，发现角子通道横向流交混强度沿轴向波动较大，而3类子通道的横向流交混强度均存在周期性。研究了中心燃料棒壁面上3个截面的局部换热效应，发现在燃料棒与绕丝接触处传热效果最差，在事故分析时应重点关注。%Commercial CFD code CFX 12.0 was used as an approach to investigate the flow and convective heat transfer phenomena of a typical 7-pin fuel bundle with wrapped-wire .The pressure drop coefficient and Nusselt number under different Re were obtained , and the simulation results are in good agreement with empirical correlations .The transverse flow effects in three kinds of typical subchannels were investigated ,and its features were analyzed .The results show that the corner channel’s transverse flow intensity varies heavily along the axial direction ,and the transverse flow intensities in three typical subchannels show periodic feature .The local Nusselt number distribution on three cross sections of the central rod surface was also analyzed .The results show that the minimum local Nusselt number occurs close to the contact location of wire and rod ,which means that the convective heat transfer condition is the worst in such area ,and the special attention in accident analysis is deserved .
HLM fuel pin bundle experiments in the CIRCE pool facility
Martelli, Daniele, E-mail: daniele.martelli@ing.unipi.it [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Forgione, Nicola [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Di Piazza, Ivan; Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy)
2015-10-15
Highlights: • The experimental results represent the first set of values for LBE pool facility. • Heat transfer is investigated for a 37-pin electrical bundle cooled by LBE. • Experimental data are presented together with a detailed error analysis. • Nu is computed as a function of the Pe and compared with correlations. • Experimental Nu is about 25% lower than Nu derived from correlations. - Abstract: Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of GEN IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to HLM nuclear reactors. In this frame the Integral Circulation Experiment (ICE) test section has been installed into the CIRCE pool facility and suitable experiments have been carried out aiming to fully investigate the heat transfer phenomena in grid spaced fuel pin bundles providing experimental data in support of European fast reactor development. In particular, the fuel pin bundle simulator (FPS) cooled by lead bismuth eutectic (LBE), has been conceived with a thermal power of about 1 MW and a uniform linear power up to 25 kW/m, relevant values for a LFR. It consists of 37 fuel pins (electrically simulated) placed on a hexagonal lattice with a pitch to diameter ratio of 1.8. The FPS was deeply instrumented by several thermocouples. In particular, two sections of the FPS were instrumented in order to evaluate the heat transfer coefficient along the bundle as well as the cladding temperature in different ranks of sub-channels. Nusselt number in the central sub-channel was therefore calculated as a function of the Peclet number and the obtained results were compared to Nusselt numbers obtained from convective heat transfer correlations available in literature on Heavy Liquid Metals (HLM). Results reported in the present work, represent the first set of experimental data concerning fuel pin bundle behaviour in a heavy liquid metal pool, both in forced and
Biswas, Indranil
2011-01-01
We construct projectivization of a parabolic vector bundle and a tautological line bundle over it. It is shown that a parabolic vector bundle is ample if and only if the tautological line bundle is ample. This allows us to generalize the notion of a k-ample bundle, introduced by Sommese, to the context of parabolic bundles. A parabolic vector bundle $E_*$ is defined to be k-ample if the tautological line bundle ${\\mathcal O}_{{\\mathbb P}(E_*)}(1)$ is $k$--ample. We establish some properties of parabolic k-ample bundles.
A. Del Nevo
2012-01-01
Full Text Available Accurate prediction of steam volume fraction and of the boiling crisis (either DNB or dryout occurrence is a key safety-relevant issue. Decades of experience have been built up both in experimental investigation and code development and qualification; however, there is still a large margin to improve and refine the modelling approaches. The qualification of the traditional methods (system codes can be further enhanced by validation against high-quality experimental data (e.g., including measurement of local parameters. One of these databases, related to the void fraction measurements, is the pressurized water reactor subchannel and bundle tests (PSBT conducted by the Nuclear Power Engineering Corporation (NUPEC in Japan. Selected experiments belonging to this database are used for the OECD/NRC PSBT benchmark. The activity presented in the paper is connected with the improvement of current approaches by comparing system code predictions with measured data on void production in PWR-type fuel bundles. It is aimed at contributing to the validation of the numerical models of CATHARE 2 code, particularly for the prediction of void fraction distribution both at subchannel and bundle scale, for different test bundle configurations and thermal-hydraulic conditions, both in steady-state and transient conditions.
Assessment of ASSERT-PV for prediction of critical heat flux in CANDU bundles
Rao, Y.F., E-mail: raoy@aecl.ca; Cheng, Z., E-mail: chengz@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca
2014-09-15
Highlights: • Assessment of the new Canadian subchannel code ASSERT-PV 3.2 for CHF prediction. • CANDU 28-, 37- and 43-element bundle CHF experiments. • Prediction improvement of ASSERT-PV 3.2 over previous code versions. • Sensitivity study of the effect of CHF model options. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The recently released ASSERT-PV 3.2 provides enhanced models for improved predictions of flow distribution, critical heat flux (CHF), and post-dryout (PDO) heat transfer in horizontal CANDU fuel channels. This paper presents results of an assessment of the new code version against five full-scale CANDU bundle experiments conducted in 1990s and in 2009 by Stern Laboratories (SL), using 28-, 37- and 43-element (CANFLEX) bundles. A total of 15 CHF test series with varying pressure-tube creep and/or bearing-pad height were analyzed. The SL experiments encompassed the bundle geometries and range of flow conditions for the intended ASSERT-PV applications for CANDU reactors. Code predictions of channel dryout power and axial and radial CHF locations were compared against measurements from the SL CHF tests to quantify the code prediction accuracy. The prediction statistics using the recommended model set of ASSERT-PV 3.2 were compared to those from previous code versions. Furthermore, the sensitivity studies evaluated the contribution of each CHF model change or enhancement to the improvement in CHF prediction. Overall, the assessment demonstrated significant improvement in prediction of channel dryout power and axial and radial CHF locations in horizontal fuel channels containing CANDU bundles.
Local Fuel Rod Crud Prediction Tool Applications
Krammen, Michael A.; Karoutas, Zeses E.; Wang, Guoqiang; Young, Michael Y
2009-06-15
response to two CILC fuel failures observed in a reactor plant where fuel rod crudding was not initially of concern due to negligible predicted fuel rod steaming on a fuel assembly sub-channel scale. The fuel rod crud observed in the reactor cycle with the fuel rod CILC failures was very localized, but was heaviest on those fuel rods with relatively higher fuel rod duty. These indications led to development of the more locally detailed predictive capability. And, based on the observed behavior, guideline limits have been established by benchmarking the methodology to the fuel rod crud induced fuel failures. The guideline limits are used in designing fuel managements. Application of these tools in subsequent fuel management design for later reactor cycles in both the plant where the CILC fuel failures occurred and in its sister plant with similar operating characteristics have avoided a recurrence of the CILC fuel failure. These tools were also used when a new fuel design with mixing vane grids was introduced in two plants previously fueled with non-mixing vane grids. The predictive tools account for the thermal hydraulic transition core effects. Interestingly, the plant with the generally higher fuel duty, a plant that had experienced Crud Induced Power Shift (CIPS) in earlier cycles, is predicted to easily meet the CIPS and CILC guidelines for the transition and following cycle. While the other plant, which has not experienced CIPS in earlier cycles, is predicted to be operating close to the CILC guideline limits in the transition cycle. The higher duty plant is predicted to have appreciable fuel rod surface area that is steaming over the reactor cycle, while the lower duty plant is predicted to have relatively little fuel rod surface area in steaming. The interpretation is that with a relatively similar crud source in the coolant, a smaller steaming surface area may act as a stronger sink for the available crud, resulting in locally thicker crud. This is a similar
The ABCDEF Implementation Bundle
Annachiara Marra
2016-08-01
Full Text Available Long-term morbidity, long-term cognitive impairment and hospitalization-associated disability are common occurrence in the survivors of critical illness, with significant consequences for patients and for the caregivers. The ABCDEF bundle represents an evidence-based guide for clinicians to approach the organizational changes needed for optimizing ICU patient recovery and outcomes. The ABCDEF bundle includes: Assess, Prevent, and Manage Pain, Both Spontaneous Awakening Trials (SAT and Spontaneous Breathing Trials (SBT, Choice of analgesia and sedation, Delirium: Assess, Prevent, and Manage, Early mobility and Exercise, and Family engagement. The purpose of this review is to describe the core features of the ABCDEF bundle.
Design requirement on KALIMER control rod assembly duct
Hwang, W.; Kang, H. Y.; Nam, C.; Kim, J. O.; Kim, Y. J
1998-03-01
This document establishes the design guidelines which are needs for designing the control rod assembly duct of the KALIMER as design requirements. it describes control rod assembly duct of the KALIMER and its requirements that includes functional requirements, performance requirements, interfacing systems, design limits and strength requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. The control rod system consists of three parts, which are drive mechanism, drive-line, and absorber bundle. This report deals with the absorber bundle and its outer duct only because the others are beyond the scope of fuel system design. The guidelines for design requirements intend to be used for an improved design of the control rod assembly duct of the KALIMER. (author). 19 refs.
Abbasian, F.; Cao, J.; Yu, S.D. [Ryerson Univ., Dept. of Mechanical and Industrial Engineering, Toronto, Ontario (Canada)
2008-07-01
A test apparatus was set up to investigate the turbulent flows and flow induced vibrations in a fluid-conveying pipe containing a CANDU 43-element simulation fuel bundle. The fuel bundle is immersed in test pipe of 4-inch in diameter. A centrifugal pump circulates fresh water with a maximum velocity of 9 m/s at full pump power. The pressure fluctuation near the inner surface of the flow channel was measured at various locations using a pressure transducer and a data acquisition system. It was found that the turbulence away from the test section containing the simulation fuel bundle is largely caused by the pipe flow of high Reynolds number; the turbulence near and inside the bundle structures is the result of pipe flow and fluid-solid interactions. The measurements of pressures near the fuel bundle structure showed that the power spectral density (PSD) of pressure fluctuation has a frequency range of 1-300 Hz, and a normalized maximum pressure range of 0.04 to 0.05 times dynamic pressure. The effects of bundle angular alignments and subchannels on the pressure spectra, Strouhal number range, and streamwise pressure drop are also investigated in this paper. Results presented in this paper are useful in validating the computational models for flow-induced fluid forces that cause the fuel bundle structure to rock and fret. (author)
刘伟; 朱元兵; 白宁; 单建强; 张博; 苟军利; 厉井钢
2014-01-01
GE3×3 test bundle experiments were simulated with sub-channel analysis code ATHAS.Comparisons of the obtained results by ATHAS code with the experimental measurements and other sub-channel codes show that ATHAS is capable to predict thermal-hydraulic parameters distribution in GE3 ×3 components accurately.All of this demonstrates the reasonable physical models and powerful application functions of ATHAS.The work of this thesis can be taken example by the design and development of thermal-hydraulic program of nuclear power plant in China.%利用具有自主知识产权的子通道程序 ATHAS对 GE3×3组件进行稳态计算，并将 ATHAS的预测值与实验测量值及其他子通道程序的预测值进行了对比分析，结果表明：ATHAS 能够准确预测GE3×3组件内的热工水力参数分布，展示了 ATHAS可靠的物理模型。本文对 ATHAS 进行稳态验证的思路和方法，对我国核电站热工水力软件自主化的设计开发具有借鉴意义。
超临界水冷堆双排燃料组件子通道分析%Analysis of the sub-channel of SCWR two-row fuel assembly
许志红; 杨晓; 傅晟威; 杨燕华
2012-01-01
研究基于Cobra-IV程序,开发了适用于超临界水冷堆燃料组件分析的子通道程序.针对超临界水冷堆慢谱双排组件,进行了稳态计算,获取了相关组件热工水力参数.在此基础上,针对单一通道进行了瞬态计算,分析了燃料棒线功率变化和冷却剂流量变化条件下,超临界水冷堆燃料组件的流动和传热的动态响应,为超临界水冷堆组件的优化设计提供了参考.%Based on the COBRA-IV code, a new sub-channel code system developed for the supercritical water cooled reactor (SCWR) fuel assembly is analyzed. In order to optimize the SCWR fuel assembly design, a sub-channel analysis of two rows SCWR fuel assembly is performed, including steady-state and transient calculation. For the steady-state calculation, several channel's parameters are selected to evaluate the thermal-hydraulic performance of the fuel assemblies. Based on the steady-state results, two transient calculations (change of fuel rod power and change of coolant flow) are carried out to estimate the dynamic behavior of the fuel assemblies. The results achieved so far indicate a good applicability of the sub-channel code for the SCWR fuel assembly analysis, which is good for the future optimization of SCWR fuel assembly design.
Safety Analysis for Sub-channel Blockage in the PGSFR
Yoo, Jin; Chang, Wonpyo; Ha, Kisuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
The flow perturbation caused by the blockage could raise the local coolant temperature in the incident and it might eventually lead to the degradation of the fuel rods. Therefore, a partial flow blockage accident must be a safety concern in the SFR design. In this regard, analyses were performed for the flow blockage accident postulated in a conceptual design of a 150MWe Proto-type SFR using the MATRA-LMR/FB and analysis result was compared to the safety acceptance criterion shown in Table 1 developed by KAERI. The maximum coolant temperatures for 6, 24 channels blockage occurred at the end of the fuel slug and both of them satisfied the safety limits. However, for the 54 channels blockage, the maximum coolant temperature was found in the downstream of the blockage and it could not meet the safety limits. It was caused by the recirculation region in the downstream of the blockage. In conclusion, satisfactory margins were obtained for 6, 24 channel blockage cases.
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
Blyth, Taylor S. [Pennsylvania State Univ., University Park, PA (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States)
2017-04-01
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.
Subtleties Concerning Conformal Tractor Bundles
Graham, C Robin
2012-01-01
The realization of tractor bundles as associated bundles in conformal geometry is studied. It is shown that different natural choices of principal bundle with normal Cartan connection corresponding to a given conformal manifold can give rise to topologically distinct associated tractor bundles for the same inducing representation. Consequences for homogeneous models and conformal holonomy are described. A careful presentation is made of background material concerning standard tractor bundles and equivalence between parabolic geometries and underlying structures.
ONU discovery using multiple subchannels for seamless service support in long-reach OFDMA-PON.
Bang, Hakjeon; Doo, Kyeong-Hwan; Lee, Jonghyun; Lee, Sangsoo
2014-09-08
In a passive optical network (PON), discovery is a process that detects and registers newly connected optical network units (ONUs). A long-reach PON requires a longer discovery window, e.g., at least 1 ms for 100 km, due to the increased round-trip time between an optical line terminal (OLT) and an ONU. The longer discovery window consumes more network resources and issues longer service-interruption time. From this motivation, for a long-reach orthogonal frequency-division multiple access (OFDMA)-PON, we propose a discovery method using multiple subchannels, where each subchannel consists of one or several subcarrier(s). Compared to discovery using a single channel, the proposed discovery method can increase the number of successfully detected ONUs at the same resources (i.e., for a discovery window) and ensure seamless service support to already registered ONUs, by assigning some subchannels for discovery and the remainder for data transmission. We analyze the discovery efficiency (i.e., the number of successfully detected ONUs in the discovery process) based on a probability and optimize the discovery window size by numerical simulations.
Shen, Yanyan; Wang, Shuqiang; Wei, Zhiming
2014-01-01
Dynamic spectrum sharing has drawn intensive attention in cognitive radio networks. The secondary users are allowed to use the available spectrum to transmit data if the interference to the primary users is maintained at a low level. Cooperative transmission for secondary users can reduce the transmission power and thus improve the performance further. We study the joint subchannel pairing and power allocation problem in relay-based cognitive radio networks. The objective is to maximize the sum rate of the secondary user that is helped by an amplify-and-forward relay. The individual power constraints at the source and the relay, the subchannel pairing constraints, and the interference power constraints are considered. The problem under consideration is formulated as a mixed integer programming problem. By the dual decomposition method, a joint optimal subchannel pairing and power allocation algorithm is proposed. To reduce the computational complexity, two suboptimal algorithms are developed. Simulations have been conducted to verify the performance of the proposed algorithms in terms of sum rate and average running time under different conditions. PMID:25045731
G. A. Medina-Acosta
2010-01-01
Full Text Available This paper proposes the establishment of a simultaneous cognitive radio communication based on a subdistribution of power made over unselected subchannels which were discarded by the primary user through an initial optimal power allotment. The aim of this work is to show the possibility of introducing an opportunistic communication into a licensed transmission where the total power constraint is shared. The analysis of the proposed transmission scheme was performed by considering 128 and 2048 independent subchannels affected by Rayleigh fading, over 10,000 channel realizations, and three different signal-to-noise ratios (8 dB, 16 dB, and 24 dB. From the system evaluation it was possible to find the optimal power allotment for the primary user, the subdistribution of power for the secondary user, as well as the attenuation and the capacity per subchannel for every channel realization. Moreover, the PDF and CDF of the total obtained capacities, as well as the generation of empirical capacity regions, were estimated as complementary results.
Natural convection heat transfer in vertical triangular subchannel in Zirconia-water nanofluid
Tandian, N. P.; Alkharboushi, A. A. K.; Kamajaya, K.
2015-09-01
Natural convection heat transfer in vertical triangular sub-channel has important role in cooling mechanism of the APWR and the PHWR nuclear reactors. Unfortunately, natural convection correlation equations for such geometry are scarcely available. Recent studies showed that ZrO2-water nanofluid has a good prospect to be used in the nuclear reactor technology due to its low neutron absorption cross section. Although several papers have reported transport properties of ZrO2-water nanofluids, practically there is no correlation equation for predicting natural convection heat transfer in a vertical triangular sub-channel in ZrO2-water nanofluid. Therefore, a study for finding such heat transfer correlation equation has been done by utilizing Computational Fluid Dynamics software and reported in this paper. In the study, natural convection heat transfer in a vertical triangular sub-channel has been simulated at several values of heat transfer flux within 9.1 to 30.9 kW/m2 range and ZrO2 concentrations of 0 (pure water), 0.27, and 3 volume-% of ZrO2. The study shows that the ZrO2 concentration has no significant influence to the natural convection heat transfer at those concentration levels. The obtained theoretical heat transfer correlation equations were verified through experiment, and they showed very similar results. The correlation equations are reported in this paper.
Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse
2013-01-01
AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included.......5%/2.3% in women, P Right bundle branch block was associated with significantly...... increased all-cause and cardiovascular mortality in both genders with age-adjusted hazard ratios (HR) of 1.31 [95% confidence interval (CI), 1.11-1.54] and 1.87 (95% CI, 1.48-2.36) in the gender pooled analysis with little attenuation after multiple adjustment. Right bundle branch block was associated...
J. W. Kitchen
1994-01-01
Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.
Principal -bundles on Nodal Curves
Usha N Bhosle
2001-08-01
Let be a connected semisimple affine algebraic group defined over . We study the relation between stable, semistable -bundles on a nodal curve and representations of the fundamental group of . This study is done by extending the notion of (generalized) parabolic vector bundles to principal -bundles on the desingularization of and using the correspondence between them and principal -bundles on . We give an isomorphism of the stack of generalized parabolic bundles on with a quotient stack associated to loop groups. We show that if is simple and simply connected then the Picard group of the stack of principal -bundles on is isomorphic to ⊕ , being the number of components of .
On projective space bundle with nef normalized tautological line bundle
Yasutake, Kazunori
2011-01-01
In this paper, we study the structure of projective space bundles whose relative anti-canonical line bundle is nef. As an application, we get a characterization of abelian varieties up to finite etale covering.
Sommer, Stefan Horst; Lauze, Francois Bernard; Nielsen, Mads
2011-01-01
In the LDDMM framework, optimal warps for image registration are found as end-points of critical paths for an energy functional, and the EPDiff equations describe the evolution along such paths. The Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM) extension of LDDMM allows scale space...
Sepe, D.
2013-01-01
The obstruction to construct a Lagrangian bundle over a fixed integral affine manifold was constructed by Dazord and Delzant (J Differ Geom 26:223–251, 1987) and shown to be given by ‘twisted’ cup products in Sepe (Differ GeomAppl 29(6): 787–800, 2011). This paper uses the topology of universal Lagr
Iosif DUMITRESCU
2015-05-01
Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.
Advanced CFD simulations of turbulent flows around appendages in CANDU fuel bundles
Abbasian, F.; Hadaller, G.I.; Fortman, R.A., E-mail: fabbasian@sternlab.com [Stern Laboratories Inc., Hamilton, Ontario (Canada)
2013-07-01
Computational Fluid Dynamics (CFD) was used to simulate the coolant flow in a modified 37-element CANDU fuel bundle, in order to investigate the effects of the appendages on the flow field. First, a subchannel model was created to qualitatively analyze the capabilities of different turbulence models such as k.ε, Reynolds Normalization Group (RNG), Shear Stress Transport (SST) and Large Eddy Simulation (LES). Then, the turbulence model with the acceptable quality was used to investigate the effects of positioning appendages, normally used in CANDU 37-element Critical Heat Flux (CHF) experiments, on the flow field. It was concluded that the RNG and SST models both show improvements over the k.ε method by predicting cross flow rates closer to those predicted by the LES model. Also the turbulence effects in the k.ε model dissipate quickly downstream of the appendages, while in the RNG and SST models appear at longer distances similar to the LES model. The RNG method simulation time was relatively feasible and as a result was chosen for the bundle model simulations. In the bundle model simulations it was shown that the tunnel spacers and leaf springs, used to position the bundles inside the pressure tubes in the experiments, have no measureable dominant effects on the flow field. The flow disturbances are localized and disappear at relatively short streamwise distances. (author)
B. LEVESY
2002-01-01
The superconducting coil is inserted in the outer vaccum tank and supported by a set of tie rods. These tie rods are made of titanium alloy. This test reproduce the final insertion of the tie rods inside the outer vacuum tank.
Simulation of bundle test Quench-12 with integral code MELCOR
Duspiva, J. [Nuclear Research Inst., Rez plc (Czech Republic)
2011-07-01
The past NRI analyses cover the Quench-01, Quench-03 and Quench-06 with version MELCOR 1.8.5 (including reflood model), and Quench-01 and Quench-11 tests with the latest version MELCOR 1.8.6. The Quench-12 test is specific, because it has different bundle configuration related to the VVER bundle configuration with hexagonal grid of pins and also used E110 cladding material. Specificity of Quench-12 test is also in the used material of fuel rod cladding - E110. The test specificities are a reason for the highest concern, because the VVER reactors are operated in the Czech Republic. The new input model was developed with the taking into account all experience from previous simulations of the Quench bundle tests. The recent version MELCOR 1.8.6 YU{sub 2}911 was used for the simulation with slightly modified ELHEAT package. Sensitivity studies on input parameters and oxidation kinetics were performed. (author)
Cumulative Damage Fraction Evaluation for the Sub-channel Blockage Accident in PGSFR
Yoo, Jin; Chang, Won-Pyo; Ha, Ki-Suk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
In determining a safety concern of sub-assembly, the CDF or life fraction, is very useful for predicting pins failure within sub-assembly that are subjected to creep damage at elevated temperatures and has been accepted as a means for predicting fuel pin failure in SFR. In particular, the sub-channels inside a fuel assembly in Sodium cooled Fast Reactor (SFR) may partially be blocked by an ingression of damaged fuel debris or foreign obstacles into fuel assembly due to the geometrically compact design of the core fuel pin arrangement. When the partial blockage occurs, sodium coolant flow would be disturbed in the vicinity of the blockage, and the affected flow could lead to a high local coolant temperature. The cladding breaching is assumed to occur when the CDF exceeds 1.0 and it is required that the CDF be below 1.0 to avoid the creep rupture of the cladding tube in fuel pin design. It is, therefore, important to evaluate the CDF of the fuel pins in an assembly of the 150MWe Prototype SFR. The objective of this paper is to predict the CDF of fuel pin within the hottest assembly which is designed in KAERI when the sub-channel blockage accident occurs. For the preliminary analysis, the CDF was calculated in the nominal condition without the hot channel factor. The evaluation of cumulative damage fraction was carried out for 6 sub-channel blockages in 150MWe Prototype Sodium cooled Fast Reactor (PGSFR) using the MATRA-LMR-FB code. The fuel peak temperature of the hottest pin was about 605 .deg. C and the CDF value obtained from the hottest pin during 1160 effective full power days (EFPDs) is 0.006, which means that fuel pins have large safety margins against breaching.
Deformation quantization of principal bundles
Aschieri, Paolo
2016-01-01
We outline how Drinfeld twist deformation techniques can be applied to the deformation quantization of principal bundles into noncommutative principal bundles, and more in general to the deformation of Hopf-Galois extensions. First we twist deform the structure group in a quantum group, and this leads to a deformation of the fibers of the principal bundle. Next we twist deform a subgroup of the group of authomorphisms of the principal bundle, and this leads to a noncommutative base space. Considering both deformations we obtain noncommutative principal bundles with noncommutative fiber and base space as well.
Rudakov, A N
1990-01-01
This volume is devoted to the use of helices as a method for studying exceptional vector bundles, an important and natural concept in algebraic geometry. The work arises out of a series of seminars organised in Moscow by A. N. Rudakov. The first article sets up the general machinery, and later ones explore its use in various contexts. As to be expected, the approach is concrete; the theory is considered for quadrics, ruled surfaces, K3 surfaces and P3(C).
Bundling harvester; Nippukorjausharvesteri
Koponen, K. [Eko-Log Oy, Kuopio (Finland)
1996-12-31
The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy
Motor-free actin bundle contractility driven by molecular crowding
Schnauß, Jörg; Schuldt, Carsten; Schmidt, B U Sebastian; Glaser, Martin; Strehle, Dan; Heussinger, Claus; Käs, Josef A
2015-01-01
Modeling approaches of suspended, rod-like particles and recent experimental data have shown that depletion forces display different signatures depending on the orientation of these particles. It has been shown that axial attraction of two rods yields contractile forces of 0.1pN that are independent of the relative axial shift of the two rods. Here, we measured depletion-caused interactions of actin bundles extending the phase space of single pairs of rods to a multi-particle system. In contrast to a filament pair, we found forces up to 3pN . Upon bundle relaxation forces decayed exponentially with a mean decay time of 3.4s . These different dynamics are explained within the frame of a mathematical model by taking pairwise interactions to a multi-filament scale. The macromolecular content employed for our experiments is well below the crowding of cells. Thus, we propose that arising forces can contribute to biological force generation without the need to convert chemical energy into mechanical work.
A genetically encoded reporter for real-time imaging of cofilin-actin rods in living neurons.
Jianjie Mi
Full Text Available Filament bundles (rods of cofilin and actin (1:1 form in neurites of stressed neurons where they inhibit synaptic function. Live-cell imaging of rod formation is hampered by the fact that overexpression of a chimera of wild type cofilin with a fluorescent protein causes formation of spontaneous and persistent rods, which is exacerbated by the photostress of imaging. The study of rod induction in living cells calls for a rod reporter that does not cause spontaneous rods. From a study in which single cofilin surface residues were mutated, we identified a mutant, cofilinR21Q, which when fused with monomeric Red Fluorescent Protein (mRFP and expressed several fold above endogenous cofilin, does not induce spontaneous rods even during the photostress of imaging. CofilinR21Q-mRFP only incorporates into rods when they form from endogenous proteins in stressed cells. In neurons, cofilinR21Q-mRFP reports on rods formed from endogenous cofilin and induced by all modes tested thus far. Rods have a half-life of 30-60 min upon removal of the inducer. Vesicle transport in neurites is arrested upon treatments that form rods and recovers as rods disappear. CofilinR21Q-mRFP is a genetically encoded rod reporter that is useful in live cell imaging studies of induced rod formation, including rod dynamics, and kinetics of rod elimination.
Kagan, I.L.; Berezov, S.I.; Gavrilov, G.A.; Goykhman, Ya.A.; Makushkin, D.O.; Rachev, M.P.; Voynich, L.K.
1981-09-07
The telescopic drilling rod includes an inner section of the rod, in whose center cable has been passed and is attached a bearing assembly connecting it to the winch, outer section of rod along which there is pipeline connecting the working cavity formed by the inner section of rod and the housing, installed on the lower end of the outer section of rod, with cavity formed by framework of the guide swivel and end piece and connected to the hydraulic system of the machine by pipeline, as well as clamping elements. In order to drill wells to a depth greater than the length of the outer sectrion of the rod, the latter jointly with the inner section of rod is lowered into the extreme lower position until swivel rests on the feed mechanism. With further slipping of cable and the absence of pressure in the hydraulic system, clamping elements do not have an effect on the inner section of rod. It has the opportunity to freely move along the outer section of rod downwards to the face. When pressure is supplied on pipeline into cavity and further through pipeline into working cavity, the inner section of rod is clamped with feed of the outer section in the process of drilling, both sections move jointly. Because of the link between working cavity of sleeve installed on the lower end of the outer section of rod, and the hydraulic system of the machine through the swivel cavity, it is possible to fix the drilling rod in any mutual axial position of the section.
Full scale stability and void fraction measurements for the ATRIUM trademark 10XM BWR fuel bundle
Wehle, Franz; Velten, Roger; Kronenberg, Juris; Beisiegel, Achim [AREVA NP GmbH, Erlangen (Germany); Pruitt, D.W.; Greene, K.R. [AREVA NP Inc., Lynchburg, VA (United States); Farawila, Y.M. [Farawila et al., Inc., Richland, WA (United States)
2011-07-01
This paper describes recent advances in BWR fuel testing at AREVA NP's KATHY loop including stability and void fraction measurements. The stability tests for the ATRIUM trademark 10XM bundle with corner PLFR's were expanded in scope compared with previous campaigns to include simulated reactivity and power feedback essentially reproducing BWR operational environment. The oscillation magnitude was allowed to grow to explore inlet flow reversal and cyclical dryout and rewetting. The void fraction measurements employed a gamma ray computed tomography technique that reveals not only the average but the detailed sub-channel void distribution, and the range of measured void fraction has been expanded to higher values than was previously attained. With the completion of the required licensing tests and stability performance demonstration, the ATRIUM trademark 10XM is available and fully qualified for reload supply. (orig.)
Draper, Andrew
2011-04-01
Results of Medicare's ACE demonstration project and Geisinger Health System's ProvenCare initiative provide insight into the challenges hospitals will face as bundled payment proliferates. An early analysis of these results suggests that hospitals would benefit from bringing full automation using clinical IT tools to bear in their efforts to meet these challenges. Other important factors contributing to success include board and physician leadership, organizational structure, pricing methodology for bidding, evidence-based medical practice guidelines, supply cost management, process efficiency management, proactive and aggressive case management, business development and marketing strategy, and the financial management system.
Differential calculi on noncommutative bundles
Pflaum, Markus J.; Schauenburg, Peter
1996-01-01
We introduce a category of noncommutative bundles. To establish geometry in this category we construct suitable noncommutative differential calculi on these bundles and study their basic properties. Furthermore we define the notion of a connection with respect to a differential calculus and consider questions of existence and uniqueness. At the end these constructions are applied to basic examples of noncommutative bundles over a coquasitriangular Hopf algebra.
Wang, Yulin; Yue, Like; Wang, Shixue
2017-03-01
The cathode flow-field design of polymer electrolyte membrane (PEM) fuel cells determines the distribution of reactant gases and the removal of liquid water. A suitable design can result in perfect water management and thus high cell performance. In this paper, a new design for a cathode flow-field with a sub-channel was proposed and had been experimentally analyzed in a parallel flow-field PEM fuel cell. Three sub-channel inlets were placed along the cathode channel. The main-channel inlet was fed with moist air to humidify the membrane and maintain high proton conductivity, whereas, the sub-channel inlet was fed with dry air to enhance water removal in the flow channel. The experimental results indicated that the sub-channel design can decrease the pressure drop in the flow channel, and the sub-channels inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) and flow rates (SFR, percentage of air from the sub-channel inlet in the total cathode flow rate) had a considerable impact on water removal and cell performance. A proposed design that combines the SIP and SFR can effectively eliminate water from the fuel cell, increasing the maximum power density by more than 13.2% compared to the conventional design.
Nefness of adjoint bundles for ample vector bundles
Hidetoshi Maeda
1995-11-01
Full Text Available Let E be an ample vector bundle of rank >1 on a smooth complex projective variety X of dimension n. This paper gives a classification of pairs (X,E whose adjoint bundles K_X+det E are not nef in the case when r=n-2.
Raj, M.Naveen; Velusamy, K., E-mail: kvelu@igcar.gov.in; Maity, Ram Kumar
2016-07-15
Highlights: • We simulate flow and temperature fields in FBR fuel bundle with porous blockage. • We perform RANS-based CFD simulation for 217 pin bundle of 7 axial pitch lengths. • Flow reduction in fuel bundle due to porous internal blockage is estimated. • Monitoring bulk sodium outlet temperature does not guarantee blockage detection. • Admissible blockage length to avoid sodium boiling is determined. - Abstract: Thermal hydraulic characteristics of sodium flow in a prototype fuel subassembly with porous internal blockage have been investigated by computational fluid dynamics (CFD) simulations. CFD solutions for a subassembly having 217 pin bundle with seven helical pitch length were obtained by parallel processing. The CFD model has been validated against benchmark blockage experiment reported in literature. Wide parametric ranges for blockage radius, porosity, mean particle diameter and location of blockage have been considered. Critical length of blockage that would result in local sodium boiling as a function of aforementioned blockage parameters has been estimated and the parametric zone posing risk of sodium boiling has been identified. Attention has been paid to coolant mixing and flow and temperature fields downstream of the blockage zone. It is seen that for a prototype subassembly with various sections contributing to pressure loss, the total flow reduction is <2.5% for all blockages that can lead to local sodium boiling. This suggests, that global bulk sodium temperature monitoring at subassembly outlet is unlikely to detect slowly growing blockages. Comparing the sodium flow and temperature fields in unblocked and blocked bundles, it is found that the wake-induced temperature non-uniformity persist even upto 3 helical pitch length, highlighting that the sodium temperature non-uniformity at the bundle exit can serve as an efficient blockage indicator, provided that the cross-section temperature is mapped by a proper instrumentation. The peak
Single-Phase Crossflow Mixing in a Vertical Tube Bundle Geometry: An Experimental Study
Mahmood, A.
2011-01-01
The vertical rod/tube bundle geometry has a wide variety of industrial applications. Typical examples are the core of light water nuclear reactors (LWR) and vertical tube steam generators. In the core of a LWR, primarily coolant flows upward but their also exist a flow in lateral direction, called c
Studies on supercritical water reactor fuel assemblies using the sub-channel code COBRA-EN
Ammirabile, Luca, E-mail: luca.ammirabile@ec.europa.e [European Commission, JRC, Institute for Energy, Westerduinweg 3, 1755 LE Petten (Netherlands)
2010-10-15
In the Generation IV International Forum (GIF) program, the supercritical water reactor (SCWR) concept is among the six innovative reactor types selected for development in the near future. In principle the higher efficiency and better economics make the SCWR concept competitive with the current reactor design. Due to different technical challenges that, however exist, fuel assembly design represents a crucial aspect for the success of this concept. In particular large density variations, low moderation, heat transfer enhancement and deterioration have a strong effect on the core design parameters. Only a few computational tools are currently able to perform sub-channel thermal-hydraulic analysis under supercritical water conditions. At JRC-IE the existing sub-channel code COBRA-EN has been improved to work above the critical pressure of water. The water properties package of the IAPWS Industrial Formulation 1997 was integrated in COBRA-EN to compute the Thermodynamic Properties of Water and Steam. New heat transfer and pressure drop correlations more indicated for the supercritical region of water have also been incorporated in the code. As part of the efforts to appraise the new code capabilities, a code assessment was carried out on the hexagonal fuel assembly of a fast supercritical water reactor. COBRA-EN was also applied in combination with the neutronic code MCNP to investigate on the use of hydride fuel in the HPLWR supercritical water fuel assembly. The results showed that COBRA-EN was able to reproduce the results of similar studies with acceptable accuracy. Future activities will focus on the validation of the code against experimental data and the implementation of new features (counter-current moderator channel, wall, and wire-wrap models).
Bundle Security Protocol for ION
Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher
2011-01-01
This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.
Friedman, R; Witten, Edward
1997-01-01
To understand in detail duality between heterotic string and F theory compactifications, it is important to understand the construction of holomorphic G bundles over elliptic Calabi-Yau manifolds, for various groups G. In this paper, we develop techniques to describe these bundles, and make several detailed comparisons between the heterotic string and F theory.
Friedman, Robert; Morgan, John; Witten, Edward
1997-01-01
To understand in detail duality between heterotic string and F theory compactifications, it is important to understand the construction of holomorphic G bundles over elliptic Calabi-Yau manifolds, for various groups G. In this paper, we develop techniques to describe the bundles, and make several detailed comparisons between the heterotic string and F theory.
Bundle Formation in Biomimetic Hydrogels
Jaspers, Maarten; Pape, A C H; Voets, Ilja K; Rowan, Alan E; Portale, Giuseppe; Kouwer, Paul H J
2016-01-01
Bundling of single polymer chains is a crucial process in the formation of biopolymer network gels that make up the extracellular matrix and the cytoskeleton. This bundled architecture leads to gels with distinctive properties, including a large-pore-size gel formation at very low concentrations and
Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors
Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Karoutas, Zeses; Berndt, Markus
2016-10-01
Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuel rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid-structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.
Fiber bundle phase conjugate mirror
Ward, Benjamin G.
2012-05-01
An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.
Twisted Vector Bundles on Pointed Nodal Curves
Ivan Kausz
2005-05-01
Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich’s and Vistoli’s twisted bundles and Gieseker vector bundles.
Actin-Interacting Protein 1 Contributes to Intranuclear Rod Assembly in Dictyostelium discoideum
Ishikawa-Ankerhold, Hellen C.; Daszkiewicz, Wioleta; Schleicher, Michael; Müller-Taubenberger, Annette
2017-01-01
Intranuclear rods are aggregates consisting of actin and cofilin that are formed in the nucleus in consequence of chemical or mechanical stress conditions. The formation of rods is implicated in a variety of pathological conditions, such as certain myopathies and some neurological disorders. It is still not well understood what exactly triggers the formation of intranuclear rods, whether other proteins are involved, and what the underlying mechanisms of rod assembly or disassembly are. In this study, Dictyostelium discoideum was used to examine appearance, stages of assembly, composition, stability, and dismantling of rods. Our data show that intranuclear rods, in addition to actin and cofilin, are composed of a distinct set of other proteins comprising actin-interacting protein 1 (Aip1), coronin (CorA), filactin (Fia), and the 34 kDa actin-bundling protein B (AbpB). A finely tuned spatio-temporal pattern of protein recruitment was found during formation of rods. Aip1 is important for the final state of rod compaction indicating that Aip1 plays a major role in shaping the intranuclear rods. In the absence of both Aip1 and CorA, rods are not formed in the nucleus, suggesting that a sufficient supply of monomeric actin is a prerequisite for rod formation. PMID:28074884
Lee, Dong-Won; Kim, Hyungmo; Ko, Yung-Joo; Chang, Seok-Kyu; Choi, Hae Seob; Euh, Dong-kin; Lee, Hyeong-Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
Securing the structural integrity of a fuel assembly during reactor operation is of utmost importance in order to prevent reactor severe accident like the Fukushima nuclear power plant through a flow characteristics tests with test assembly scaled down from a prototype reactor of a sodium-cooled fast reactor (SFR). To evaluate uncertainty is very important to ensure reliability at the results of the fuel assembly. Therefore the sub-channel analysis method is commonly used for the thermal hydraulic analysis of a SFR, a wire wrapped sub-channel type. In KAERI, two sub-channel analysis codes (SLTHEN, MATRA-LMR) are considered to utilize for the design of the prototype reactor. In this study, design improvement of iso-Kinetic flow sampling device at sub-channel in a wire-wrapped 37-pin fuel assembly for a sodium cooled fast reactor is conducted for decreasing misalignment sensitivity. The subchannel flow characteristics analysis method is commonly used for the thermal hydraulic analysis of a SFR, a wire wrapped subchannel type. In KAERI, two subchannel analysis codes are considered to be utilized for the design of the prototype reactor. In this study, the X-axis probe misalignment error is 2.5%, the Y-axis probe misalignment error is 0.9% and flowmeter and DA equipment error is 0.2%. As shown in above results, the misalignment error was the highest factor in uncertainty analysis. To solve the problem, design improvement of iso-kinetic flow sampling device at subchannel in a wire-wrapped 37-pin fuel assembly is practiced for decreasing misalignment sensitivity error.
Semiflexible Biopolymers in Bundled Arrangements
Jörg Schnauß
2016-07-01
Full Text Available Bundles and networks of semiflexible biopolymers are key elements in cells, lending them mechanical integrity while also enabling dynamic functions. Networks have been the subject of many studies, revealing a variety of fundamental characteristics often determined via bulk measurements. Although bundles are equally important in biological systems, they have garnered much less scientific attention since they have to be probed on the mesoscopic scale. Here, we review theoretical as well as experimental approaches, which mainly employ the naturally occurring biopolymer actin, to highlight the principles behind these structures on the single bundle level.
Evaluating big deal journal bundles.
Bergstrom, Theodore C; Courant, Paul N; McAfee, R Preston; Williams, Michael A
2014-07-01
Large commercial publishers sell bundled online subscriptions to their entire list of academic journals at prices significantly lower than the sum of their á la carte prices. Bundle prices differ drastically between institutions, but they are not publicly posted. The data that we have collected enable us to compare the bundle prices charged by commercial publishers with those of nonprofit societies and to examine the types of price discrimination practiced by commercial and nonprofit journal publishers. This information is of interest to economists who study monopolist pricing, librarians interested in making efficient use of library budgets, and scholars who are interested in the availability of the work that they publish.
Stable extensions by line bundles
Teixidor-i-Bigas, M
1997-01-01
Let C be an algebraic curve of genus g. Consider extensions E of a vector bundle F'' of rank n'' by a vector bundle F' of rank n'. The following statement was conjectured by Lange: If 0
The Atiyah Bundle and Connections on a Principal Bundle
Indranil Biswas
2010-06-01
Let be a ∞ manifold and a Lie a group. Let $E_G$ be a ∞ principal -bundle over . There is a fiber bundle $\\mathcal{C}(E_G)$ over whose smooth sections correspond to the connections on $E_G$. The pull back of $E_G$ to $\\mathcal{C}(E_G)$ has a tautological connection. We investigate the curvature of this tautological connection.
Seiler, N.; Ruyer, P.; Biton, B., E-mail: nathalie.seiler@irsn.fr, E-mail: pierre.ruyer@irsn.fr [IRSN/DPAM/SEMCA/LEMAR, CE Cadarache, Saint Paul lez Durance (France)
2011-07-01
This study focuses on thermal-hydraulic simulations, at sub-channel scale, of a damaged PWR reactor core during a Loss Of Coolant Accident (LOCA). The aim of this study is to accurately simulate the thermal-hydraulics to provide the thermal-mechanical code DRACCAR with an accurate wall heat transfer law. This latter code is developed by the French Safety Institute “Institut de Radioprotection et de Surete Nucleaire” (IRSN) to evaluate the thermics and deformations of fuel assemblies within the core. The present paper first describes the methodology considered to evaluate the capabilities of existing codes CATHARE-3 and CESAR to simulate dispersed droplet flows at a sub-channel scale and then provides some first evaluations of them. (author)
L3.PHI.CTF.P10.02-rev2 Coupling of Subchannel T/H (CTF) and CRUD Chemistry (MAMBA1D)
Salko, Robert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Palmtag, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kendrick, Brian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Seker, Jeffrey [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)
2015-05-15
The purpose of this milestone is to create a preliminary capability for modeling light water reactor (LWR) thermal-hydraulic (T/H) and CRUD growth using the CTF subchannel code and the subgrid version of the MAMBA CRUD chemistry code, MAMBA1D. In part, this is a follow-on to Milestone L3.PHI.VCS.P9.01, which is documented in Report CASL-U-2014-0188-000, titled "Development of CTF Capability for Modeling Reactor Operating Cycles with Crud Growth". As the title suggests, the previous milestone set up a framework for modeling reactor operation cycles with CTF. The framework also facilitated coupling to a CRUD chemistry capability for modeling CRUD growth throughout the reactor operating cycle. To demonstrate the capability, a simple CRUD \\surrogate" tool was developed and coupled to CTF; however, it was noted that CRUD growth predictions by the surrogate were not considered realistic. This milestone builds on L3.PHI.VCS.P9.01 by replacing this simple surrogate tool with the more advanced MAMBA1D CRUD chemistry code. Completing this task involves addressing unresolved tasks from Milestone L3.PHI.VCS.P9.01, setting up an interface to MAMBA1D, and extracting new T/H information from CTF that was not previously required in the simple surrogate tool. Speci c challenges encountered during this milestone include (1) treatment of the CRUD erosion model, which requires local turbulent kinetic energy (TKE) (a value that CTF does not calculate) and (2) treatment of the MAMBA1D CRUD chimney boiling model in the CTF rod heat transfer solution. To demonstrate this new T/H, CRUD modeling capability, two sets of simulations were performed: (1) an 18 month cycle simulation of a quarter symmetry model of Watts Bar and (2) a simulation of Assemblies G69 and G70 from Seabrook Cycle 5. The Watts Bar simulation is merely a demonstration of the capability. The simulation of the Seabrook cycle, which had experienced CRUD-related fuel rod failures, had actual CRUD-scrape data to compare with
Khanh Nguyen Quang
2013-01-01
Full Text Available The paper presents a dynamic subchannel assignment algorithm based on orthogonal frequency division multiple access technology operating in the time division duplexing and a new cross-layer design based on a proposed routing protocol jointed with the MAC protocol. The proposed dynamic sub-channel assignment algorithm provides a new interference avoidance mechanism which solves several drawbacks of existing radio resource allocation techniques in wireless networks using OFDMA/TDD, such as the hidden node and exposed node problems, mobility, and cochannels interference in frequency (CCI. Besides, in wireless networks, when a route is established, the radio resource allocation problems may decrease the end to end performance proportionally with the length of each route. The contention at MAC layer may cause the routing protocol at network layer to respond by finding new routes and routing table updates. The proposed routing protocol is jointed with the MAC protocol based on dynamic sub-channel assignment to ensure that the quality of service in multihop ad hoc networks is significantly improved.
Risum, Niels; Strauss, David; Sogaard, Peter
2013-01-01
The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...
Bundling ecosystem services in Denmark
Turner, Katrine Grace; Odgaard, Mette Vestergaard; Bøcher, Peder Klith;
2014-01-01
We made a spatial analysis of 11 ecosystem services at a 10 km × 10 km grid scale covering most of Denmark. Our objective was to describe their spatial distribution and interactions and also to analyze whether they formed specific bundle types on a regional scale in the Danish cultural landscape....... We found clustered distribution patterns of ecosystem services across the country. There was a significant tendency for trade-offs between on the one hand cultural and regulating services and on the other provisioning services, and we also found the potential of regulating and cultural services...... to form synergies. We identified six distinct ecosystem service bundle types, indicating multiple interactions at a landscape level. The bundle types showed specialized areas of agricultural production, high provision of cultural services at the coasts, multifunctional mixed-use bundle types around urban...
Risum, Niels; Strauss, David; Sogaard, Peter;
2013-01-01
The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...
Vector bundles on toric varieties
Gharib, Saman
2011-01-01
Following Sam Payne's work, we study the existence problem of nontrivial vector bundles on toric varieties. The first result we prove is that every complete fan admits a nontrivial conewise linear multivalued function. Such functions could potentially be the Chern classes of toric vector bundles. Then we use the results of Corti\\~nas, Haesemeyer, Walker and Weibel to show that the (non-equivariant) Grothendieck group of the toric 3-fold studied by Payne is large, so the variety has a nontrivial vector bundle. Using the same computation, we show that every toric 3-fold X either has a nontrivial line bundle, or there is a finite surjective toric morphism from Y to X, such that Y has a large Grothendieck group.
Fabrication of electrospun nanofibers bundles
Ye, Junjun; Sun, Daoheng
2007-12-01
Aligned nanofibers, filament bundle composed of large number of nanofibers have potential applications such as bio-material, composite material etc. A series of electrospinning experiments have been conducted to investigate the electrospinning process,in which some parameters such as polymer solution concentration, bias voltage, distance between spinneret and collector, solution flow rate etc have been setup to do the experiment of nanofibers bundles construction. This work firstly reports electrospun nanofiber bundle through non-uniform electrical field, and nanofibers distributed in different density on electrodes from that between them. Thinner nanofibers bundle with a few numbers of nanofiber is collected for 3 seconds; therefore it's also possible that the addressable single nanofiber could be collected to bridge two electrodes.
Reconnection of superfluid vortex bundles.
Alamri, Sultan Z; Youd, Anthony J; Barenghi, Carlo F
2008-11-21
Using the vortex filament model and the Gross-Pitaevskii nonlinear Schroedinger equation, we show that bundles of quantized vortex lines in He II are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence and show that, during the bundle reconnection process, kelvin waves of large amplitude are generated, in agreement with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows.
Benedetti, R. L.; Lords, L. V.; Kiser, D. M.
1978-02-01
The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.
Coupled neutronic core and subchannel analysis of nanofluids in VVER-1000 type reactor
Zarifi, Ehsan; Sepanloo, Kamran [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor and Nuclear Safety School; Jahanfarnia, Golamreza [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch
2017-05-15
This study is aimed to perform the coupled thermal-hydraulic/neutronic analysis of nanofluids as the coolant in the hot fuel assembly of VVER-1000 reactor core. Water-based nanofluid containing various volume fractions of Al{sub 2}O{sub 3} nanoparticle is analyzed. WIMS and CITATION codes are used for neutronic simulation of the reactor core, calculating neutron flux and thermal power distribution. In the thermal-hydraulic modeling, the porous media approach is used to analyze the thermal behavior of the reactor core and the subchannel analysis is used to calculate the hottest fuel assembly thermal-hydraulic parameters. The derived conservation equations for coolant and conduction heat transfer equation for fuel and clad are discretized by Finite volume method and solved numerically using visual FORTRAN program. Finally the analysis results for nanofluids and pure water are compared together. The achieved results show that at low concentration (0.1 percent volume fraction) alumina is the optimum nanoparticles for normal reactor operation.
Fluid structure interaction between rods and a cross flow - Numerical approach
Simoneau, Jan-patrice, E-mail: jan-patrice.simoneau@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Sageaux, Thomas, E-mail: thomas.sageaux@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Moussallam, Nadim, E-mail: nadim.moussallam@areva.com [Areva, 10, Rue J. Recamier, F 69456 Cedex 06, Lyon (France); Bernard, Olivier, E-mail: olivier.bernard1@areva.com [Areva, 1, Place J. Millet, F 92084 Paris la Defense (France)
2011-11-15
This paper presents a full coupled approach between fluid dynamics and structure analysis. It is conducted in order to further improve the assessment of fluid structure interaction problems, occurring in the nuclear field such as the behavior of PWR fuel rods, steam generators and other heat exchangers tubes, fast breeder fuel assemblies. The coupling is obtained by implementing a beam mechanical model in user routines of the CFD code Star-CD, and thanks to a moving grid procedure. The configurations considered are rods in a cross flow. The model is first validated on a single rod case. The lock-in effect is pointed out and both amplitude and frequency responses of the single rod are positively compared to experimental data. Secondly, the mutual influence of two rods, either in-line or parallely set, is investigated. Different behaviors, bounded by critical distances between the rods are highlighted. Finally, the stability of a 3 Multiplication-Sign 3 bundle is calculated for different impinging velocities. Stable and unstable areas are found when varying the impinging velocity. Above a limit, the vibrations amplify up to a contact between rods, this bound is found slightly greater than literature values for close configurations. It is therefore expected that further calculations, with model refinements, will bring valuable informations about bundle stability.
Bundle Formation in Biomimetic Hydrogels.
Jaspers, Maarten; Pape, A C H; Voets, Ilja K; Rowan, Alan E; Portale, Giuseppe; Kouwer, Paul H J
2016-08-08
Bundling of single polymer chains is a crucial process in the formation of biopolymer network gels that make up the extracellular matrix and the cytoskeleton. This bundled architecture leads to gels with distinctive properties, including a large-pore-size gel formation at very low concentrations and mechanical responsiveness through nonlinear mechanics, properties that are rarely observed in synthetic hydrogels. Using small-angle X-ray scattering (SAXS), we study the bundle formation and hydrogelation process of polyisocyanide gels, a synthetic material that uniquely mimics the structure and mechanics of biogels. We show how the structure of the material changes at the (thermally induced) gelation point and how factors such as concentration and polymer length determine the architecture, and with that, the mechanical properties. The correlation of the gel mechanics and the structural parameters obtained from SAXS experiments is essential in the design of future (synthetic) mimics of biopolymer networks.
Extensional bundle waveguide techniques for measuring flow of hot fluids.
Lynnworth, Lawrence C; Liu, Yi; Umina, John A
2005-04-01
A bundle of acoustically slender metal rods, each thin compared to wavelength, tightly packed within a sheath, and welded closed at each end, provides a dispersion-free waveguide assembly that acts as a thermal buffer between a transducer and the hot fluid medium the flow of which is to be measured. Gas and steam flow applications have ranged up to 600 degrees C. Liquid applications have ranged from cryogenic (-160 degrees C) to 500 degrees C and include intermittent two-phase flows. The individual rods comprising the bundle usually are approximately one millimeter in diameter. The sheath, made of a pipe or tube, typically has an outside diameter of 12.7 to about 33 mm and usually is about 300 mm long. Materials for the sheath and bundle are selected to satisfy requirements of compatibility with the fluid as well as for acoustic properties. Corrosion-resistant alloys such as 316SS and titanium are commonly used. The buffers are used with transducers that are metal-encapsulated and certified for use in hazardous areas. They operate at a frequency in the range of 0.1 to 1 MHz. The radiating end of the buffer is usually flat and perpendicular to the buffer's main axis. In some cases the end of the buffer is stepped or angled. Angling the radiating faces at approximately 2 degrees to overcome beam drift at Mach 0.1 recently contributed to solving a high-temperature high-velocity flow measurement problem. The temperature in this situation was 300 degrees C, and the gas molecular weight was about 95, with pressure 0.9 to 1.1 bar.
Principal bundles the classical case
Sontz, Stephen Bruce
2015-01-01
This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.
2D model for melt progression through rods and debris
Fichot, F. [IPSN/DRS, CEA Cadarache, St. Paul-lez-Durance (France)
2001-07-01
During the degradation of a nuclear core in a severe accident scenario, the high temperatures reached lead to the melting of materials. The formation of liquid mixtures at various elevations is followed by the flow of molten materials through the core. Liquid mixture may flow under several configurations: axial relocation along the rods, horizontal motion over a plane surface such as the core support plate or a blockage of material, 2D relocation through a debris bed, etc.. The two-dimensional relocation of molten material through a porous debris bed, implemented for the simulation of late degradation phases, has opened a new way to the elaboration of the relocation model for the flow of liquid mixture along the rods. It is based on a volume averaging method, where wall friction and capillary effects are taken into account by introducing effective coefficients to characterize the solid matrix (rods, grids, debris, etc.). A local description of the liquid flow is necessary to derive the effective coefficients. Heat transfers are modelled in a similar way. The derivation of the conservation equations for the liquid mixture falling flow (momentum) in two directions (axial and radial-horizontal) and for the heat exchanges (energy) are the main points of this new model for simulating melt progression. In this presentation, the full model for the relocation and solidification of liquid materials through a rod bundle or a debris bed is described. It is implemented in the ICARE/CATHARE code, developed by IPSN in Cadarache. The main improvements and advantages of the new model are: A single formulation for liquid mixture relocation, in 2D, either through a rod bundle or a porous debris bed, Extensions to complex structures (grids, by-pass, etc..), The modeling of relocation of a liquid mixture over plane surfaces. (author)
向文元; 吕永红; 赵桂生
2012-01-01
Tube-bundle channels have been widely used in condenser-evaporator and other industrial heat-exchange equipments. The characteristics of two-phase flow patterns and their transitions for refrigerant R-113 through a vertical tube-bundle channel are experimentally investigated using high-speed camera. Experiments show that there are four main flow patterns in the tube-bundle channel, which are bubbly flow, bubbly-churn flow,churn flow and annular flow. And in the same cross-section of tube-bundle channels,it is shown that there might be different flow patterns in different subchannels. The flow pattern transitions exhibit unsynchronized in different subchannels. On the basis of experimental research, the flow pattern map is drawn and analyses are made on the comparison of differences between boiling flow patterns in a circular tube and those in a tube-bundle channel.%以R113为工质,采用高速动态分析仪对垂直管束通道内的沸腾两相流型及其转变特性进行了实验研究.对管束狭窄通道内沸腾两相流型进行划分,并与圆管内的两相流型进行比较,在此基础上对通道几何形状及物理参数对管束通道内沸腾两相流型及其转变特性的影响进行分析,为进一步对管束通道内流型判定、沸腾换热及阻力压降的研究奠定了基础.
Morphoelastic rods. Part I: A single growing elastic rod
Moulton, D.E.
2013-02-01
A theory for the dynamics and statics of growing elastic rods is presented. First, a single growing rod is considered and the formalism of three-dimensional multiplicative decomposition of morphoelasticity is used to describe the bulk growth of Kirchhoff elastic rods. Possible constitutive laws for growth are discussed and analysed. Second, a rod constrained or glued to a rigid substrate is considered, with the mismatch between the attachment site and the growing rod inducing stress. This stress can eventually lead to instability, bifurcation, and buckling. © 2012 Elsevier Ltd. All rights reserved.
Learning with Rods: One Account.
Cherry, Donald Esha
This paper discusses one English as a Second Language (ESL) teacher's attempts to use cuisenaire rods as a language learning tool. Cuisenaire rods (sometimes called algebricks) vary in size from 1 x 1 x 10 centimeter sticks to 1 x 1 x 1 centimeter cubes, with each of the 10 sizes a different color. Although such rods have been used to teach…
Sensitivity studies for 3-D rod ejection analyses on axial power shape
Park, Min-Ho; Park, Jin-Woo; Park, Guen-Tae; Ryu, Seok-Hee; Um, Kil-Sup; Lee, Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)
2015-10-15
The current safety analysis methodology using the point kinetics model combined with numerous conservative assumptions result in unrealistic prediction of the transient behavior wasting huge margin for safety analyses while the safety regulation criteria for the reactivity initiated accident are going strict. To deal with this, KNF is developing a 3-D rod ejection analysis methodology using the multi-dimensional code coupling system CHASER. The CHASER system couples three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST using message passing interface (MPI). A sensitivity study for 3-D rod ejection analysis on axial power shape (APS) is carried out to survey the tendency of safety parameters by power distributions and to build up a realistic safety analysis methodology while maintaining conservatism. The currently developing 3-D rod ejection analysis methodology using the multi-dimensional core transient analysis code system, CHASER was shown to reasonably reflect the conservative assumptions by tuning up kinetic parameters.
Oezdemir, Erdal; Moon, Kang Hoon; Oh, Seung Jong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of); Kim, Yongdeog [KHNP-CRI, Daejeon (Korea, Republic of)
2014-10-15
Subchannel analysis plays important role to evaluate safety critical parameters like minimum departure from nucleate boiling ratio (MDNBR), peak clad temperature and fuel centerline temperature. In this study, two different subchannel codes, VIPRE-01 (Versatile Internals and Component Program for Reactors: EPRI) and THALES (Thermal Hydraulic AnaLyzer for Enhanced Simulation of core) are examined. In this study, two different transient cases for which MDNBR result play important role are selected to conduct analysis with THALES and VIPRE-01 subchannel codes. In order to get comparable results same core geometry, fuel parameters, correlations and models are selected for each code. MDNBR results from simulations by both code are agree with each other with negligible difference. Whereas, simulations conducted by enabling conduction model in VIPRE-01 shows significant difference from the results of THALES.
Creep rupture of fiber bundles
Linga, G.; Ballone, P.; Hansen, Alex
2015-01-01
The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40000 particles arranged on Nc=4...
Line bundles and flat connections
INDRANIL BISWAS; GEORG SCHUMACHER
2017-06-01
We prove that there are cocompact lattices $\\Gamma$ in $\\rm SL(2,\\mathbb C)$ with the property that there are holomorphic line bundles $L$ on $\\rm SL(2,\\mathbb C)/ \\Gamma$ with $c_{1}(L) = 0$ such that $L$ does not admit any unitary flat connection.
Vector Bundles over Elliptic Fibrations
Friedman, R; Witten, Edward; Friedman, Robert; Morgan, John W.; Witten, Edward
1997-01-01
This paper gives various methods for constructing vector bundles over elliptic curves and more generally over families of elliptic curves. We construct universal families over generalized elliptic curves via spectral cover methods and also by extensions, and then give a relative version of the construction in families. We give various examples and make Chern class computations.
Beaud, F. [Electricite de France (EDF), 78 - Chatou (France)
1997-12-31
A model predicting the fluid-elastic forces in a bundle of circular cylinders subjected to axial flow is presented in this paper. Whereas previously published models were limited to circular flow channel, the present one allows to take a rectangular flow external boundary into account. For that purpose, an original approach is derived from the standard method of images. This model will eventually be used to predict the fluid-structure coupling between the flow of primary coolant and a fuel assemblies in PWR nuclear reactors. It is indeed of major importance since the flow is shown to induce quite high damping and could therefore mitigate the incidence of an external load like a seismic excitation on the dynamics of the assemblies. The proposed model is validated on two cases from the literature but still needs further comparisons with the experiments being currently carried out on the EDF set-up. The flow has been shown to induce an approximate 12% damping on a PWR fuel assembly, at nominal reactor conditions. The possible grid effect on the fluid-structure coupling has been neglected so far but will soon be investigated at EDF. (author). 16 refs.
Leader, D.R.
1992-02-01
During an attempt to raise control rods from the 100 K reactor in December, one rod could not be withdrawn. Subsequent investigation revealed that a small button'' in the latch mechanism had broken off of the lock plunger'' and was wedged in a position that prevented rod withdrawal. Concern that this failure may have resulted from corrosion or some other metallurgical problem resulted in a request that SRL examine six typical latch mechanisms from the 100 L reactor by use of radiography and metallography. During the examination of the L-Area latches, a failed latch mechanism from the 100 K reactor was added to the investigation. Fourteen latches that had a history of problems were removed from K-Area and sent to SRL for inclusion in this study the week after the original seven assemblies were examined, bringing the total of latch assemblies discussed in this report to twenty one. Results of the examination of the K-Area latch that initiated this study is not included in this report.
Leader, D.R.
1992-02-01
During an attempt to raise control rods from the 100 K reactor in December, one rod could not be withdrawn. Subsequent investigation revealed that a small ``button`` in the latch mechanism had broken off of the ``lock plunger`` and was wedged in a position that prevented rod withdrawal. Concern that this failure may have resulted from corrosion or some other metallurgical problem resulted in a request that SRL examine six typical latch mechanisms from the 100 L reactor by use of radiography and metallography. During the examination of the L-Area latches, a failed latch mechanism from the 100 K reactor was added to the investigation. Fourteen latches that had a history of problems were removed from K-Area and sent to SRL for inclusion in this study the week after the original seven assemblies were examined, bringing the total of latch assemblies discussed in this report to twenty one. Results of the examination of the K-Area latch that initiated this study is not included in this report.
Quantum principal bundles and corresponding gauge theories
Durdevic, M
1995-01-01
A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.
Strategic and welfare implications of bundling
Martin, Stephen
1999-01-01
A standard oligopoly model of bundling shows that bundling by a firm with a monopoly over one product has a strategic effect because it changes the substitution relationships between the goods among which consumers choose. Bundling in appropriate proportions is privately profitable, reduces rival......' profits and overall welfare, and may drive rivals from the market...
CFD analysis of transverse flow in a wire-wrapped hexagonal seven-pin bundle
Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Liu, Jiaming; Ge, Zhihao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Wang, Xi; Cheng, Xu [Karlsruhe Institute of Technology, Institute of Fusion and Reactor Technologies, Kaiserstrasse 12, Karlsruhe (Germany)
2017-06-15
Highlights: • Transverse flow in a wire-wrapped hexagonal seven-pin bundle are simulated. • Four kinds of subchannels are taken as the object. • Effects of wire number and position on transverse velocities are studied. • Parameter studies reveal P/D and H/D have a great influence than Re. • Present transverse velocity correlations need to be modified. - Abstract: Transverse flow induced by helical spacer wires has important effects on the flow and heat transfer behavior of reactor core. In this paper, transverse flow in a wire-wrapped hexagonal seven-pin bundle was simulated by the open source code, OpenFOAM, based on computational fluid dynamic (CFD) method. The Shear Stress Transport (SST) k-ω model and Spalding wall function were used to resolve the momentum field. Hexahedral dominated meshes were generated to achieve high grid quality. Periodic boundary condition and parallel processing were adopted to save the computational cost. Transverse velocity distributions in four different kinds of subchannel gaps were analyzed. The results show that the influence of wire number and position on the transverse velocity distribution is obvious. For an interior gap, transverse flow seems to be dominated by wires near the gap, and its direction changes periodically in one helical pitch. However, for a peripheral gap, transverse velocity is affected by more wires and its direction is decided by the direction of wire rotation. Parameter studies reveal that the Reynolds number (Re, at the range of 6000–100,000) has little effect on the normalized transverse flow, while the pitch to pin diameter ratio (P/D, at the range of 1.11–1.22) and the helical pitch to pin diameter ratio (H/D, at the range of 12–24) have a great influence on it, especially the P/D. Large discrepancies between our simulation results and some existing correlations were observed. This indicates that new correlations comprehensively considering both P/D and H/D effects need to be developed
Sperm bundle and reproductive organs of carabid beetles tribe Pterostichini (Coleoptera: Carabidae)
Sasakawa, Kôji
2007-05-01
The morphological characteristics of sperm and reproductive organs may offer clues as to how reproductive systems have evolved. In this paper, the morphologies of the sperm and male reproductive organs of carabid beetles in the tribe Pterostichini (Coleoptera: Carabidae) are described, and the morphological associations among characters are examined. All species form sperm bundles in which the head of the sperm was embedded in a rod-shaped structure, i.e., spermatodesm. The spermatodesm shape (left-handed spiral, right-handed spiral, or without conspicuous spiral structure) and the condition of the sperm on the spermatodesm surface (with the tail free-moving or forming a thin, sheetlike structure) vary among species. In all species, the spiral directions of the convoluted seminal vesicles and vasa deferentia are the same on both sides of the body; that is, they show an asymmetric structure. The species in which the sperm bundle and the seminal vesicles both have a spiral structure could be classified into two types, with significant differences in sperm-bundle length between the two types. The species with a sperm-bundle spiral and seminal-vesicle spiral of almost the same diameter have longer sperm bundles than the species with a sperm-bundle spiral and seminal-vesicle tube of almost the same diameter. In the former type, the spiral directions of the sperm bundles and seminal vesicles are inevitably the same, whereas they differ in some species with the later type. Therefore, increased sperm bundle length appears to have been facilitated by the concordance of the sperm bundle’s coiling direction with the coiling direction of the seminal vesicle.
Kickhofel, J. L.; Zboray, R.; Damsohn, M.; Kaestner, A.; Lehmann, E. H.; Prasser, H.-M.
2011-09-01
Dryout of the liquid coolant film on fuel pins at the top of boiling water reactor (BWR) cores constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is a limiting factor in the thermal power, and therefore the economy, of BWRs. Ongoing research on multiphase annular flow, specifically the liquid film thickness, is fundamental not only to nuclear reactor safety and operation but also to that of evaporators, condensers, and pipelines in a general industrial context. We have performed cold neutron tomography of adiabatic air water annular flow in a scaled up model of the subchannel geometry found in BWR fuel assemblies today. All imaging has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institut in Switzerland. Neutron tomography is shown to excel in investigating the interactions of air water two phase flows with spacer vanes of different geometry. The high resolution, high contrast measurements provide spatial distributions of the coolant on top of the surfaces of the spacer, including the vanes, and in the subchannel downstream of the spacers.
Higher order jet prolongations type gauge natural bundles over vector bundles
Jan Kurek
2004-05-01
Full Text Available Let $rgeq 3$ and $mgeq 2$ be natural numbers and $E$ be a vector bundle with $m$-dimensional basis. We find all gauge natural bundles ``similar" to the $r$-jet prolongation bundle $J^rE$ of $E$. We also find all gauge natural bundles ``similar" to the vector $r$-tangent bundle $(J^r_{fl}(E,R_0^*$ of $E$.
Multipath packet switch using packet bundling
Berger, Michael Stubert
2002-01-01
The basic concept of packet bundling is to group smaller packets into larger packets based on, e.g., quality of service or destination within the packet switch. This paper presents novel applications of bundling in packet switching. The larger packets created by bundling are utilized to extend...... switching capacity by use of parallel switch planes. During the bundling operation, packets will experience a delay that depends on the actual implementation of the bundling and scheduling scheme. Analytical results for delay bounds and buffer size requirements are presented for a specific scheduling...
Mathematical modelling for nanotube bundle oscillators
Thamwattana, Ngamta; Cox, Barry J.; Hill, James M.
2009-07-01
This paper investigates the mechanics of a gigahertz oscillator comprising a nanotube oscillating within the centre of a uniform concentric ring or bundle of nanotubes. The study is also extended to the oscillation of a fullerene inside a nanotube bundle. In particular, certain fullerene-nanotube bundle oscillators are studied, namely C60-carbon nanotube bundle, C60-boron nitride nanotube bundle, B36N36-carbon nanotube bundle and B36N36-boron nitride nanotube bundle. Using the Lennard-Jones potential and the continuum approach, we obtain a relation between the bundle radius and the radii of the nanotubes forming the bundle, as well as the optimum bundle size which gives rise to the maximum oscillatory frequency for both the fullerene and the nanotube bundle oscillators. While previous studies in this area have been undertaken through molecular dynamics simulations, this paper emphasizes the use of applied mathematical modelling techniques which provides considerable insight into the underlying mechanisms. The paper presents a synopsis of the major results derived in detail by the present authors in [1, 2].
Photonic bandgap fiber bundle spectrometer
Hang, Qu; Syed, Imran; Guo, Ning; Skorobogatiy, Maksim
2010-01-01
We experimentally demonstrate an all-fiber spectrometer consisting of a photonic bandgap fiber bundle and a black and white CCD camera. Photonic crystal fibers used in this work are the large solid core all-plastic Bragg fibers designed for operation in the visible spectral range and featuring bandgaps of 60nm - 180nm-wide. 100 Bragg fibers were chosen to have complimentary and partially overlapping bandgaps covering a 400nm-840nm spectral range. The fiber bundle used in our work is equivalent in its function to a set of 100 optical filters densely packed in the area of ~1cm2. Black and white CCD camera is then used to capture spectrally "binned" image of the incoming light at the output facet of a fiber bundle. To reconstruct the test spectrum from a single CCD image we developed an algorithm based on pseudo-inversion of the spectrometer transmission matrix. We then study resolution limit of this spectroscopic system by testing its performance using spectrally narrow test peaks (FWHM 5nm-25nm) centered at va...
Hamel Christian P
2007-02-01
Full Text Available Abstract Cone rod dystrophies (CRDs (prevalence 1/40,000 are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP, also called the rod cone dystrophies (RCDs resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7. Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far. The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs, CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs, and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs. It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is
Results of Post Irradiation Examinations of VVER Leaky Rods
Markov, D.; Perepelkin, S.; Polenok, V.; Zhitelev, V.; Mayorshina, G. [Head of Fuel Research Department, JSC ' SSC RIAR' , 433510, Dimitrovgrad-10, Ulyanovsk region (Russian Federation)
2009-06-15
Cs yield from the rod meat goes beyond the cladding. Thus, the reduction of fission yield from the failed rod into the coolant may be reached by the decrease of its power. To reduce the number of fuel rod leakages under operation it is necessary to: - mount special filters on the fuel assemblies preventing penetration of foreign particles in the rod bundle; - optimize the fuel assembly design, in order to reduce vibration of the fuel assembly components; - optimize the fabrication process and fuel rod quality control. (authors)
Peruani, Fernando
2016-11-01
Bacteria, chemically-driven rods, and motility assays are examples of active (i.e. self-propelled) Brownian rods (ABR). The physics of ABR, despite their ubiquity in experimental systems, remains still poorly understood. Here, we review the large-scale properties of collections of ABR moving in a dissipative medium. We address the problem by presenting three different models, of decreasing complexity, which we refer to as model I, II, and III, respectively. Comparing model I, II, and III, we disentangle the role of activity and interactions. In particular, we learn that in two dimensions by ignoring steric or volume exclusion effects, large-scale nematic order seems to be possible, while steric interactions prevent the formation of orientational order at large scales. The macroscopic behavior of ABR results from the interplay between active stresses and local alignment. ABR exhibit, depending on where we locate ourselves in parameter space, a zoology of macroscopic patterns that ranges from polar and nematic bands to dynamic aggregates.
Home, D., E-mail: deep_aeros@yahoo.co.in; Lightstone, M.F.
2014-04-01
Highlights: • Dynamics of the subchannel gap vortex street was captured using the DES-SST model. • Gap vortical structures were qualified as eddy zones with low pressure cores. • Gap vortex formation is due to interaction between the low and high speed fluids. • Quasi-periodic gap flow was associated with an inflectional velocity profile. - Abstract: The hybrid Unsteady Reynolds-Averaged Navier–Stokes (URANS)/Large Eddy Simulation (LES) methodology was used to investigate the flow dynamics and associated gap vortex structure in compound rectangular channels for isothermal flows. The specific form of the hybrid URANS/LES approach that was used is the Strelets (2001) version of the Shear Stress Transport (SST) based Detached Eddy Simulation (DES). The DES-SST model was used to study quasi-periodic flow across a gap connecting two rectangular sub-channels on which extensive experiments were conducted by Meyer and Rehme (1994). It was found that the DES-SST model was successful in predicting the characteristics of the flow field in the vicinity of the gap region. The span-wise velocity contours, velocity vector plots, and time traces of the velocity components showed the expected cross flow mixing between the sub-channels through the gap. The dynamics of the flow field were quantitatively described through temporal auto-correlations, spatial cross-correlations and power spectral functions. The numerical predictions were in general agreement with the experiments. Predictions from the model were used to identify different flow mixing patterns. As expected, the simulation predicted the formation of a gap vortex street which results in a quasi-periodic flow through the gap. Coherent structures were identified in the flow field to be comprised of eddies, shear zones and streams. Eddy structures with high vorticity and low pressure cores were found to exist near the vicinity of the gap edge region. A three dimensional vorticity field was identified and found to
Aerosol behavior during SIC control rod failure in QUENCH-13 test
Lind, Terttaliisa, E-mail: terttaliisa.lind@psi.c [Paul Scherrer Institut, Villigen (Switzerland); Csordas, Anna Pinter; Nagy, Imre [HAS KFKI Atomic Energy Research Institute, Budapest (Hungary); Stuckert, Juri [Forschungszentrum Karlsruhe, Karlsruhe (Germany)
2010-02-15
In a nuclear reactor severe accident, radioactive fission products as well as structural materials are released from the core by evaporation, and the released gases form particles by nucleation and condensation. In addition, aerosol particles may be generated by droplet formation and fragmentation of the core. In pressurized water reactors (PWR), a commonly used control rod material is silver-indium-cadmium (SIC) covered with stainless steel cladding. The control rod elements, Cd, In and Ag, have relatively low melting temperatures, and especially Cd has also a very low boiling point. Control rods are likely to fail early on in the accident due to melting of the stainless steel cladding which can be accelerated by eutectic interaction between stainless steel and the surrounding Zircaloy guide tube. The release of the control rod materials would follow the cladding failure thus affecting aerosol source term as well as fuel rod degradation. The QUENCH experimental program at Forschungszentrum Karlsruhe investigates phenomena associated with reflood of a degrading core under postulated severe accident conditions. QUENCH-13 test was the first in this program to include a silver-indium-cadmium control rod of prototypic PWR design. To characterize the extent of aerosol release during the control rod failure, aerosol particle size distribution and concentration measurements in the off-gas pipe of the QUENCH facility were carried out. For the first time, it was possible to determine on-line the aerosol concentration and size distribution released from the core. These results are of prime importance for model development for the proper calculation of the source term resulting from control rod failure. The on-line measurement showed that the main aerosol release started at the bundle temperature maximum of T approx 1570 K at hottest bundle elevation. A very large burst of aerosols was detected 660 s later at the bundle temperature maximum of T approx 1650 K, followed by a
Aerosol behavior during SIC control rod failure in QUENCH-13 test
Lind, Terttaliisa; Csordás, Anna Pintér; Nagy, Imre; Stuckert, Juri
2010-02-01
In a nuclear reactor severe accident, radioactive fission products as well as structural materials are released from the core by evaporation, and the released gases form particles by nucleation and condensation. In addition, aerosol particles may be generated by droplet formation and fragmentation of the core. In pressurized water reactors (PWR), a commonly used control rod material is silver-indium-cadmium (SIC) covered with stainless steel cladding. The control rod elements, Cd, In and Ag, have relatively low melting temperatures, and especially Cd has also a very low boiling point. Control rods are likely to fail early on in the accident due to melting of the stainless steel cladding which can be accelerated by eutectic interaction between stainless steel and the surrounding Zircaloy guide tube. The release of the control rod materials would follow the cladding failure thus affecting aerosol source term as well as fuel rod degradation. The QUENCH experimental program at Forschungszentrum Karlsruhe investigates phenomena associated with reflood of a degrading core under postulated severe accident conditions. QUENCH-13 test was the first in this program to include a silver-indium-cadmium control rod of prototypic PWR design. To characterize the extent of aerosol release during the control rod failure, aerosol particle size distribution and concentration measurements in the off-gas pipe of the QUENCH facility were carried out. For the first time, it was possible to determine on-line the aerosol concentration and size distribution released from the core. These results are of prime importance for model development for the proper calculation of the source term resulting from control rod failure. The on-line measurement showed that the main aerosol release started at the bundle temperature maximum of T ˜ 1570 K at hottest bundle elevation. A very large burst of aerosols was detected 660 s later at the bundle temperature maximum of T ˜ 1650 K, followed by a relatively
Control of Rod-Rod Interactions in Poly(3-alkylthiophenes)
Ho, Victor; Boudouris, Bryan W.; Segalman, Rachel A.
2010-03-01
Poly(3-hexylthiophene) is a commonly used semiconducting polymer because of its relatively high charge transport ability, low band gap, and solution processiblity. Strong intermolecular interactions lead to the formation of nanofibers during crystallization, which prevents long-range microstructural ordering. We show rod-rod interactions, parameterized by the Maier-Saupe parameter, can be controlled by rational polythiophene side chain design. Effects of side chain passivation are evidenced by a depressed melting temperature and the presence of a liquid crystalline region. Additionally, the Maier-Saupe parameters are estimated for poly(3-dodecylthiophene) and poly(3-ethylhexylthiophene); the relative magnitudes of each are related to the interchain spacings obtained by x-ray diffraction experiments. The systematic tuning of the rod-rod interactions in polythiophenes allows for manipulation of the ratio of Maier-Saupe to the Flory-Huggins parameter, a crucial value in obtaining long-range order in rod-coil block copolymer morphologies.
无
2009-01-01
The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.
Cuisenaire Rods Go to College.
Chinn, Phyllis; And Others
1992-01-01
Presents examples of questions and answers arising from a hands-on and exploratory approach to discrete mathematics using cuisenaire rods. Combinatorial questions about trains formed of cuisenaire rods provide the setting for discovering numerical patterns by experimentation and organizing the results using induction and successive differences.…
Subchannel analysis of Al{sub 2}O{sub 3} nanofluid as a coolant in VMHWR
Zarifi, Ehsan; Tashakor, Saman [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor Research School
2015-11-15
The main objective of this study is to predict the thermal hydraulic behavior of nanofluids as the coolant in the fuel assembly of variable moderation high performance light water reactor (VMHWR). VMHWR is the new version of high performance light water reactor (HPLWR) conceptual design. Light water reactors at supercritical pressure (VMHWR, HPLWR), being currently under design, are the new generation of nuclear reactors. Water-based nanofluids containing various volume fractions of Al{sub 2}O{sub 3} nanoparticles are analyzed. The conservation equations and conduction heat transfer equation for fuel and clad have been derived and discretized by the finite volume method. The transfer of mass, momentum and energy between adjacent subchannels are split into diversion crossflow and turbulent mixing components. The governed non linear algebraic equations are solved by using analytical iteration methods. Finally the nanofluid analysis results are compared with the pure water results.
General frame structures on quantum principal bundles
Durdevic, M
1996-01-01
A noncommutative-geometric generalization of the classical formalism of frame bundles is developed, incorporating into the theory of quantum principal bundles the concept of the Levi-Civita connection. The construction of a natural differential calculus on quantum principal frame bundles is presented, including the construction of the associated differential calculus on the structure group. General torsion operators are defined and analyzed. Illustrative examples are presented.
ACM Bundles on Del Pezzo surfaces
Joan Pons-Llopis
2009-11-01
Full Text Available ACM rank 1 bundles on del Pezzo surfaces are classified in terms of the rational normal curves that they contain. A complete list of ACM line bundles is provided. Moreover, for any del Pezzo surface X of degree less or equal than six and for any n ≥ 2 we construct a family of dimension ≥ n − 1 of non-isomorphic simple ACM bundles of rank n on X.
High Temperature Stress Analysis on 61-pin Test Assembly for Reactor Core Sub-channel Flow Test
Lee, Dongwon; Kim, Hyungmo; Lee, Hyeongyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In this study, a high temperature heat transfer and stress analysis of a 61-pin test fuel assembly scaled down from the full scale 217-pin sub-assembly was conducted. The reactor core subchannel flow characteristic test will be conducted to evaluate uncertainties in computer codes used for reactor core thermal hydraulic design. Stress analysis for a 61-pin fuel assembly scaled down from Prototype Generation IV Sodium-cooled Fast Reactor was conducted and structural integrity in terms of load controlled stress limits was conducted. In this study, The evaluations on load-controlled stress limits for a 61-pin test fuel assembly to be used for reactor core subchannel flow distribution tests were conducted assuming that the test assembly is installed in a Prototype Generation IV Sodium-cooled fast reactor core. The 61-pin test assembly has the geometric similarity on P/D and H/D with PGSFR and material of fuel assembly is austenitic stainless steel 316L. The stress analysis results showed that 4.05MPa under primary load occurred at mid part of the test assembly and it was shown that the value of 4.05Mpa was far smaller than the code allowable of 127MPa. , it was shown that the stress intensity due to due to primary load is very small. The stress analysis results under primary and secondary loads showed that maximum stress intensity of 84.08MPa occurred at upper flange tangent to outer casing and the value was well within the code allowable of 268.8MPa. Integrity evaluations based on strain limits and creep-fatigue damage are underway according to the elevated design codes.
Entropy for frame bundle systems and Grassmann bundle systems induced by a diffeomorphism
SUN; Weniang(孙文祥)
2002-01-01
ALiao hyperbolic diffeomorphism has equal measure entropy and topological entropy to that ofits induced systems on frame bundles and Grassmann bundles. This solves a problem Liao posed in 1996 forLiao hyperbolic diffeomorphisms.
Principal $G$-bundles over elliptic curves
Friedman, R; Witten, Edward; Friedman, Robert; Morgan, John W.; Witten, Edward
1997-01-01
Let $G$ be a simple and simply connected complex Lie group. We discuss the moduli space of holomorphic semistable principal $G$-bundles over an elliptic curve $E$. In particular, we give a new proof of a theorem of Looijenga and Bernshtein-Shvartsman, that the moduli space is a weighted projective space. The method of proof is to study the deformations of certain unstable bundles coming from special maximal parabolic subgroups of $G$. We also discuss the associated automorphism sheaves and universal bundles, as well as the relation between various universal bundles and spectral covers.
Statistical Constitutive Equation of Aramid Fiber Bundles
熊杰; 顾伯洪; 王善元
2003-01-01
Tensile impact tests of aramid (Twaron) fiber bundles were carried om under high strain rates with a wide range of 0. 01/s～1000/s by using MTS and bar-bar tensile impact apparatus. Based on the statistical constitutive model of fiber bundles, statistical constitutive equations of aramid fiber bundles are derived from statistical analysis of test data at different strain rates. Comparison between the theoretical predictions and experimental data indicates statistical constitutive equations fit well with the experimental data, and statistical constitutive equations of fiber bundles at different strain rates are valid.
韦宏洋; 田文喜; 丛腾龙; 黄灏; 苏光辉; 秋穗正
2013-01-01
以泰拉能源公司提出的钠冷行波堆 TP-1为研究对象，通过钠冷行波堆瞬态安全分析程序TAST得到堆芯各组件内冷却剂、包壳和燃料棒的平均温度分布。用子通道分析程序 SACOS-Na对TAST计算得到的最热组件进行详细分析计算，得到该组件内冷却剂的温度、压力和流速分布，并得到燃料棒和包壳的温度场。结果表明：单通道与子通道的结合使用能有效提高计算效率，提高反应堆设计的安全性。%The average temperatures of coolant , cladding , and fuel rod of each subassembly of TP-1 sodium cooled traveling wave reactor (TWR) which was designed by TerraPower Co . were obtained by a single channel code TAST . The hottest subassembly was also identified by TAST . Temperature , velocity and pressure distributions in the hottest subassembly were calculated by the subchannel analysis code SACOS-Na .The results indicate that coupling the single channel analysis code TAST with the subchannel analysis code SACOS-Na can effectively improve the computational efficiency and enhance the safety of reactor design .
Jacobi Structures on Affine Bundles
J. GRABOWSKI; D. IGLESIAS; J. C. MARRERO; E. PADR(O)N; P. URBA(N)SKI
2007-01-01
We study affine Jacobi structures (brackets) on an affine bundle π: A→M, i.e. Jacobi brackets that close on affine functions. We prove that if the rank of A is non-zero, there is a one-to- one correspondence between affine Jacobi structures on A and Lie algebroid structures on the vector bundle A+=∪p∈M Aff(Ap, R) of affine functionals. In the case rank A = 0, it is shown that there is a one-to-one correspondence between affins Jacobi structures on A and local Lie algebras on A+. Some examples and applications, also for the linear case, are discussed. For a special type of affine Jacobi structures which are canonically exhibited (strongly-affine or affine-homogeneous Jacobi structures) over a real vector space of finite dimension, we describe the leaves of its characteristic foliation as the orbits of an affine representation. These afline Jacobi structures can be viewed as an analog of the Kostant-Arnold-LiouviUe linear Poisson structure on the dual space of a real finite-dimensional Lie algebra.
Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976
Sample, C R [comp.
1977-02-01
A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.
Eulerian formulation of elastic rods
Huynen, Alexandre; Detournay, Emmanuel; Denoël, Vincent
2016-06-01
In numerous biological, medical and engineering applications, elastic rods are constrained to deform inside or around tube-like surfaces. To solve efficiently this class of problems, the equations governing the deflection of elastic rods are reformulated within the Eulerian framework of this generic tubular constraint defined as a perfectly stiff normal ringed surface. This reformulation hinges on describing the rod-deformed configuration by means of its relative position with respect to a reference curve, defined as the axis or spine curve of the constraint, and on restating the rod local equilibrium in terms of the curvilinear coordinate parametrizing this curve. Associated with a segmentation strategy, which partitions the global problem into a sequence of rod segments either in continuous contact with the constraint or free of contact (except for their extremities), this re-parametrization not only trivializes the detection of new contacts but also transforms these free boundary problems into classic two-points boundary-value problems and suppresses the isoperimetric constraints resulting from the imposition of the rod position at the extremities of each rod segment.
Status of rod consolidation, 1988
Bailey, W.J.
1989-01-01
It is estimated that the spent fuel storage pools at some domestic light-water reactors will run out of space before 2003, the year that the US Department of Energy currently predicts it will have a repository available. Of the methods being studied to alleviate the problem, rod consolidation is one of the leading candidates for achieving more efficient use of existing space in spent fuel storage pools. Rod consolidation involves mechanically removing all the fuel rods from the fuel assembly hardware (i.e., the structural components) and placing the fuel rods in a close-packed array in a canister without space grids. A typical goal of rod consolidation systems is to insert the fuel rods from two fuel assemblies into a canister that has the same exterior dimensions as one standard fuel assembly (i.e., to achieve a consolidation or compaction ratio of 2:1) and to compact the nonfuel-bearing structural components from those two fuel assemblies by a factor of 10 to 20. This report provides an overview of the current status of rod consolidation in the United States and a small amount of information on related activities in other countries. 85 refs., 36 figs., 5 tabs.
Principal Bundles on the Projective Line
V B Mehta; S Subramanian
2002-08-01
We classify principal -bundles on the projective line over an arbitrary field of characteristic ≠ 2 or 3, where is a reductive group. If such a bundle is trivial at a -rational point, then the structure group can be reduced to a maximal torus.
Anatomic Double-bundle ACL Reconstruction
V.M. Schreiber; C.F. van Eck; F.H. Fu
2010-01-01
Rupture of the anterior cruciate ligament (ACL) is one of the most frequent forms of knee trauma. The traditional surgical treatment for ACL rupture is single-bundle reconstruction. However, during the past few years there has been a shift in interest toward double-bundle reconstruction to closely r
The Verlinde formula for Higgs bundles
Andersen, Jørgen Ellegaard; Pei, Du
2016-01-01
We propose and prove the Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. This generalizes the equivariant Verlinde formula for the case of $SU(n)$ proposed previously by the second and third author. We further establish a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks.
Line bundle embeddings for heterotic theories
Groot Nibbelink, Stefan [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Ruehle, Fabian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2016-03-15
In heterotic string theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E{sub 8} x E{sub 8} or SO(32) for the supersymmetric heterotic string theories and SO(16) x SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.
Requirements for disordered actomyosin bundle contractility
Lenz, Martin
2011-01-01
Actomyosin contractility is essential for biological force generation, and is well understood in highly ordered structures such as striated muscle. In vitro experiments have shown that non-sarcomeric bundles comprised only of F-actin and myosin thick filaments can also display contractile behavior, which cannot be described by standard muscle models. Here we investigate the microscopic symmetries underlying this process in large non-sarcomeric bundles with long actin filaments. We prove that contractile behavior requires non-identical motors that generate large enough forces to probe the nonlinear elastic behavior of F-actin. A simple disordered bundle model demonstrates a contraction mechanism based on these assumptions and predicts realistic bundle deformations. Recent experimental observations of F-actin buckling in in vitro contractile bundles support our model.
Line bundle embeddings for heterotic theories
Nibbelink, Stefan Groot
2016-01-01
In heterotic theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E_8 x E_8 or SO(32) for the supersymmetric heterotic theories and SO(16) x SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.
Line bundle embeddings for heterotic theories
Nibbelin, Stefan Groot; Ruehle, Fabian
2016-04-01
In heterotic string theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E8 × E8 or SO(32) for the supersymmetric heterotic string theories and SO(16) × SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.
Composite spinor bundles in gravitation theory
Sardanashvily, G
1995-01-01
In gravitation theory, the realistic fermion matter is described by spinor bundles associated with the cotangent bundle of a world manifold X. In this case, the Dirac operator can be introduced. There is the 1:1 correspondence between these spinor bundles and the tetrad gravitational fields represented by sections of the quotient \\Si of the linear frame bundle over X by the Lorentz group. The key point lies in the fact that different tetrad fields imply nonequivalent representations of cotangent vectors to X by the Dirac's matrices. It follows that a fermion field must be regarded only in a pair with a certain tetrad field. These pairs can be represented by sections of the composite spinor bundle S\\to\\Si\\to X where values of tetrad fields play the role of parameter coordinates, besides the familiar world coordinates.
Double Fell bundles and Spectral triples
Martins, Rachel A D
2007-01-01
As a natural and canonical extension of Kumjian's Fell bundles over groupoids \\cite{fbg}, we give a definition for a double Fell bundle (a double category) over a double groupoid. We show that finite dimensional double category Fell line bundles tensored with their dual with $S^o$-reality satisfy the finite real spectral triples axioms but not necessarily orientability. This means that these product bundles with noncommutative algebras can be regarded as noncommutative compact manifolds more general than real spectral triples as they are not necessarily orientable. By construction, they unify the noncommutative geometry axioms and hence provide an algebraic enveloping structure for finite spectral triples to give the Dirac operator $D$ new algebraic and geometric structures that are otherwise missing in the transition from Fredholm operator to Dirac operator. The Dirac operator in physical applications as a result becomes less ad hoc. The new noncommutative space we present is a complex line bundle over a dou...
On Harder–Narasimhan Reductions for Higgs Principal Bundles
Arijit Dey; R Parthasarathi
2005-05-01
The existence and uniqueness of – reduction for the Higgs principal bundles over nonsingular projective variety is shown. We also extend the notion of – reduction for (, )-bundles and ramified -bundles over a smooth curve.
Functional bundles of the medial patellofemoral ligament.
Kang, Hui Jun; Wang, Fei; Chen, Bai Cheng; Su, Yan Ling; Zhang, Zhan Chi; Yan, Chang Bao
2010-11-01
The purpose of this study was to explore the anatomy and evaluate the function of the medial patellofemoral ligament (MPFL). Anatomical dissection was performed on 12 fresh-frozen knee specimens. The MPFL is a condensation of capsular fibers, which originates at the medial femoral condyle. It runs transversely and inserts to the medial edge of the patella. With the landmark of the medial femur epicondyle (MFE), the femoral origination was located: just 8.90 ± 3.27 mm proximally and 13.47 ± 3.68 mm posteriorly to the MFE. The most interesting finding in present study was functional bundles of its patellar insertion. Approximately from the femoral origination point, fibers of the MPFL form two relatively concentrated fiber bundles: the inferior-straight bundle and the superior-oblique bundle. The whole length of each was 71.78 ± 5.51 and 73.67 ± 5.40 mm, respectively. The included angle between bundles was 15.1° ± 2.1°. Although the superior-oblique bundle and the inferior-straight bundle run on the patellar MPFL inferiorly and superiorly, respectively, as their name indicates, the two bundles are not entirely separated, which make MPFL one intact structure. The inferior-straight bundle is the main static soft tissue restraints where the superior-oblique bundle associated with vastus medialis obliquus (VMO) is to serve as the main dynamic soft tissue restraints. So this finding may provide the theoretical foundation for the anatomical reconstruction of the MPFL and shed lights on the future researchers.
Topological mixing with ghost rods
Gouillart, Emmanuelle; Thiffeault, Jean-Luc; Finn, Matthew D.
2006-03-01
Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing. Boyland, Aref, and Stremler [J. Fluid Mech. 403, 277 (2000)] have studied a specific periodic motion of rods that exhibits topological chaos in a viscous fluid. We show that it is possible to extend their work to cases where the motion of the stirring rods is topologically trivial by considering the dynamics of special periodic points that we call “ghost rods”, because they play a similar role to stirring rods. The ghost rods framework provides a new technique for quantifying chaos and gives insight into the mechanisms that produce chaos and mixing. Numerical simulations for Stokes flow support our results.
Subchannel Model of Analysis Code ATHAS-LMR for LMFBR%钠冷快堆分析程序ATHAS-LMR的子通道模型
陈选相; 吴攀; 单建强
2012-01-01
Based on the subchannel model and the wire wrap distributed resistance model, the subchannel code ATHAS-LMR was developed to analyze the thermal hydraulic performance of the LMFBR (liquid metal cooled fast breeder reactor) fuel assemblies. Comparing the results of ATHAS-LMR with those of some foreign experiments and similar subchannel codes, the results show that ATHAS-LMR can predict the experiments very well and is able to analyze the thermal hydraulic performance of the LMFBR fuel assemblies under different conditions, such as normal operation, flow blockage accident.%以子通道模型和绕丝分布式阻力模型为基础,研发了液态金属快中子增殖堆热工水力子通道分析程序ATHAS-LMR,以对液态金属快中子增殖堆燃料组件中的热工水力现象进行分析.与国外知名实验和类似子通道分析程序比较,结果表明:ATHAS-LMR与实验结果及其他子通道分析程序的结果相近,能够完成包括堵流工况的各种工况下液态金属快中子增殖堆组件的热工水力性能分析.
New Catalytic Proportions for Syntheses of SWNT Bundles (Ropes) and Its Characterization
DAI Tong; DAI Jian-feng
2006-01-01
The single-walled carbon nanotube(SWNT) bundles and ropes have been prepared by using the anode arc discharge plasma to evaporate the graphite rods which contain Fe,Co and Ni powders as catalyst in He atmosphere. Many purifying methods are used for the products. It indicates that the synthesis of SWNTs has been greatly affected by the preparation parameters of catalyzer,the buffer gas and its pressure,the arc current intensity,etc. The optimal condition for preparing SWNTs in our case has been proposed. The forming mechanism of the SWNTs bundles and ropes is also studied qualitatively. The evaporated single graphite sheet tends to reduce its active energy.
Higgs bundles and the real symplectic group
Gothen, Peter B
2011-01-01
We give an overview of the work of Corlette, Donaldson, Hitchin and Simpson leading to the non-abelian Hodge theory correspondence between representations of the fundamental group of a surface and the moduli space of Higgs bundles. We then explain how this can be generalized to a correspondence between character varieties for representations of surface groups in real Lie groups G and the moduli space of G-Higgs bundles. Finally we survey recent joint work with Bradlow, Garc\\'ia-Prada and Mundet i Riera on the moduli space of maximal Sp(2n,R)-Higgs bundles.
Poggioli, L.
A new-style Workshop After two successful ATLAS ROD Workshops dedicated to the ROD hardware and held at the Geneva University in 1998 and in 2000, a new style Workshop took place at LAPP in Annecy on November 14-15, 2002. This time the Workshop was fully dedicated to the ROD-TDAQ integration and software in view of the near future integration activities of the final RODs for the detector assembly and commissioning. More precisely, the aim of this workshop was to get from the sub-detectors the parameters needed for T-DAQ, as well as status and plans from ROD builders. On the other hand, what was decided and assumed had to be stated (like EB decisions and URDs), and also support plans. The Workshop gathered about 70 participants from all ATLAS sub-detectors and the T-DAQ community. The quite dense agenda allowed nevertheless for many lively discussions, and for a dinner in the old town of Annecy. The Sessions The Workshop was organized in five main sessions: Assumptions and recommendations Sub-de...
Mobility of Taxol in Microtubule Bundles
Ross, J.
2003-06-01
Mobility of taxol inside microtubules was investigated using fluorescence recovery after photobleaching (FRAP) on flow-aligned bundles. Bundles were made of microtubules with either GMPCPP or GTP at the exchangeable site on the tubulin dimer. Recovery times were sensitive to bundle thickness and packing, indicating that taxol molecules are able to move laterally through the bundle. The density of open binding sites along a microtubule was varied by controlling the concentration of taxol in solution for GMPCPP samples. With > 63% sites occupied, recovery times were independent of taxol concentration and, therefore, inversely proportional to the microscopic dissociation rate, k_{off}. It was found that 10*k_{off} (GMPCPP) ~ k_{off} (GTP), consistent with, but not fully accounting for, the difference in equilibrium constants for taxol on GMPCPP and GTP microtubules. With taxol along the microtubule interior is hindered by rebinding events when open sites are within ~7 nm of each other.
Noncommutative principal bundles through twist deformation
Aschieri, Paolo; Pagani, Chiara; Schenkel, Alexander
2016-01-01
We construct noncommutative principal bundles deforming principal bundles with a Drinfeld twist (2-cocycle). If the twist is associated with the structure group then we have a deformation of the fibers. If the twist is associated with the automorphism group of the principal bundle, then we obtain noncommutative deformations of the base space as well. Combining the two twist deformations we obtain noncommutative principal bundles with both noncommutative fibers and base space. More in general, the natural isomorphisms proving the equivalence of a closed monoidal category of modules and its twist related one are used to obtain new Hopf-Galois extensions as twists of Hopf-Galois extensions. A sheaf approach is also considered, and examples presented.
Design requirements of ACR-1000 fuel bundle
Gossain, D.; Reid, P. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)
2008-07-01
The design process for ACR-1000 fuel bundle is being undertaken in accordance with the CSA standard N286.2. As an element of the process, the design requirements were established early in the design phase and compiled in the ACR-1000 Fuel Design Requirements (DR) document. The ACR-1000 fuel bundle design is being developed to meet these requirements. This paper discusses the sources for the requirements such as the ACR project requirements, the plant specifications and regulatory requirements. It also discusses considerations of reactor design decisions and operational decisions in establishing functional, performance, safety and other design requirements for the fuel bundle. The design requirements for the ACR-1000 fuel bundle are summarized and the relationship of the requirements to the plant states of Normal Operation, Anticipated Operational Occurrences (AOOs) and Design Basis Accidents (DBAs) are discussed. Structure of the document to capture all the requirements in addition to functional, performance and safety requirements is presented. (author)
Bundled Hybrid Offset Riser Global Strength Analysis
William C.Webster; Zhuang Kang; Wenzhou Liang; Youwei Kang; Liping Sun
2011-01-01
Bundled hybrid offset riser(BHOR)global strength analysis,which is more complex than single line offset riser global strength analysis,was carried out in this paper.At first,the equivalent theory is used to deal with BHOR,and then its global strength in manifold cases was analyzed,along with the use of a three-dimensional nonlinear time domain finite element program.So the max bending stress,max circumferential stress,and max axial stress in the BHOR bundle main section(BMS)were obtained,and the values of these three stresses in each riser were obtained through the "stress distribution method".Finally,the Max Von Mises stress in each riser was given and a check was made whether or not they met the demand.This paper provides a reference for strength analysis of the bundled hybrid offset riser and some other bundled pipelines.
Liquid Flow in Shaped Fiber Bundle
ZHANG Yan; WANG Hua-ping; CHEN Yue-hua
2006-01-01
By computation and comparison of the critical spreading coefficient parameter, it was found that shaped fiber bundle is better for wetting. Liquid-air interface tension of liquid arising the shaped fiber bundle body is considered as one critical factor besides liquid viscosity, inertia force and liquid-fiber interface tension. Experimental result simulation demonstrated that the liquid-air interface tension is correlated with the geometric size of the liquid arising in body, φ0 (x) and which is affected by the cross sectional shape of fiber and the radius of single fiber. The shaped fiber bundle model is introduced to investigate liquid flow in fiber assembly. The model is generated based on a random function for stochastic forming of fibers in bundle and it is necessary to combine this fundamental model with physical explanation for investigation of liquid flow in fiber assembly.
Dynamic bi-product bundle pricing problem
Rafiei Hamed
2014-01-01
Full Text Available This paper addresses bundle pricing problem of two products in a stochastic environment so as to maximize net profit of a retailer. In the considered problem, it is assumed that customers are received upon a Poisson distribution and their demands follow a bi-variant distribution function. Also, it is assumed that products are sold individually or in the form of a bundle, which are offered from an initial stock of the products. To tackle the problem, a stochastic dynamic program is developed in which optimum values of the initial stock and order quantities of every planning period are determined. Moreover, prices of the individual products and their bundle are optimized. Also, the proposed dynamic program tackles bundling/ unbundling decisions taken in every planning period. A numerical example of a two planning period horizon is considered to validate the proposed model.
YU Wei-dong; YAN Hao-jing; Ron Postle; Yang Shouren
2002-01-01
Due to the effects of samples and testing conditions on fibre-bundle tensile behaviour, it is necessary to investigate the relationships between experimental factors and tensile properties for the fibre-bumdle tensile tester (TENSOR). The effects of bundle sample preparation, fibre bundle mass and fibre alignment have been tested. The experimental results indicated that (1) the low damage in combing and no free-end fibres in the cut bundle are most important for the sample preparation; (2) the reasonable bundle mass is 400- 700tex, but the tensile properties measured should bemodified with the bundle mass because a small amount of bundle mass causes the scatter results, while the larger is the bundle mass, the more difficult to comb fibres parallel and to clamp fibre evenly; and (3) the fibre irregular arrangement forms a slack bundle resulting in interaction between fibres, which will affect the reproducibility and accuracy of the tensile testing.
Keifer P Walsh
Full Text Available Neurites of neurons under acute or chronic stress form bundles of filaments (rods containing 1∶1 cofilin∶actin, which impair transport and synaptic function. Rods contain disulfide cross-linked cofilin and are induced by treatments resulting in oxidative stress. Rods form rapidly (5-30 min in >80% of cultured hippocampal or cortical neurons treated with excitotoxic levels of glutamate or energy depleted (hypoxia/ischemia or mitochondrial inhibitors. In contrast, slow rod formation (50% of maximum response in ∼6 h occurs in a subpopulation (∼20% of hippocampal neurons upon exposure to soluble human amyloid-β dimer/trimer (Aβd/t at subnanomolar concentrations. Here we show that proinflammatory cytokines (TNFα, IL-1β, IL-6 also induce rods at the same rate and within the same neuronal population as Aβd/t. Neurons from prion (PrP(C-null mice form rods in response to glutamate or antimycin A, but not in response to proinflammatory cytokines or Aβd/t. Two pathways inducing rod formation were confirmed by demonstrating that NADPH-oxidase (NOX activity is required for prion-dependent rod formation, but not for rods induced by glutamate or energy depletion. Surprisingly, overexpression of PrP(C is by itself sufficient to induce rods in over 40% of hippocampal neurons through the NOX-dependent pathway. Persistence of PrP(C-dependent rods requires the continuous activity of NOX. Removing inducers or inhibiting NOX activity in cells containing PrP(C-dependent rods causes rod disappearance with a half-life of about 36 min. Cofilin-actin rods provide a mechanism for synapse loss bridging the amyloid and cytokine hypotheses for Alzheimer disease, and may explain how functionally diverse Aβ-binding membrane proteins induce synaptic dysfunction.
A Geometric Approach to Noncommutative Principal Bundles
Wagner, Stefan
2011-01-01
From a geometrical point of view it is, so far, not sufficiently well understood what should be a "noncommutative principal bundle". Still, there is a well-developed abstract algebraic approach using the theory of Hopf algebras. An important handicap of this approach is the ignorance of topological and geometrical aspects. The aim of this thesis is to develop a geometrically oriented approach to the noncommutative geometry of principal bundles based on dynamical systems and the representation theory of the corresponding transformation group.
Supporting the Secure Deployment of OSGi Bundles
Parrend, Pierre; Frénot, Stéphane
2007-01-01
International audience; The OSGi platform is a lightweight management layer over a Java virtual machine that makes runtime extensi- bility and multi-application support possible in mobile and constraint environments. This powerfull capability opens a particular attack vector against mobile platforms: the in- stallation of malicious OSGi bundles. The first countermea- sure is the digital signature of the bundles. We developed a tool suite that supports the signature, the publication and the va...
Is It Complete Left Bundle Branch Block? Just Ablate the Right Bundle.
Ali, Hussam; Lupo, Pierpaolo; Foresti, Sara; De Ambroggi, Guido; Epicoco, Gianluca; Fundaliotis, Angelica; Cappato, Riccardo
2017-03-01
Complete left bundle branch block (LBBB) is established according to standard electrocardiographic criteria. However, functional LBBB may be rate-dependent or can perpetuate during tachycardia due to repetitive concealed retrograde penetration of impulses through the contralateral bundle "linking phenomenon." In this brief article, we present two patients with basal complete LBBB in whom ablating the right bundle unmasked the actual antegrade conduction capabilities of the left bundle. These cases highlight intriguing overlap between electrophysiological concepts of complete block, linking, extremely slow, and concealed conduction.
Topological Optimization of Rod Mixers
Finn, Matthew D.; Thiffeault, Jean-Luc
2006-11-01
Stirring of fluid with moving rods is necessary in many practical applications to achieve homogeneity. These rods are topological obstacles that force stretching of fluid elements. The resulting stretching and folding is commonly observed as filaments and striations, and is a precursor to mixing. In a space-time diagram, the trajectories of the rods form a braid [1], and the properties of this braid impose a minimal complexity in the flow. We discuss how optimal mixing protocols can be obtained by a judicious choice of braid, and how these protocols can be implemented using simple gearing [2].[12pt] [1] P. L. Boyland, H. Aref, and M. A. Stremler, JFM 403, 277 (2000).[8pt] [2] J.-L. Thiffeault and M. D. Finn, http://arxiv.org/nlin/0603003
Advanced gray rod control assembly
Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O
2013-09-17
An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.
Twisted Bundle on Noncommutative Space and U(1) Instanton
Ho, P M
2000-01-01
We study the notion of twisted bundles on noncommutative space. Due to theexistence of projective operators in the algebra of functions on thenoncommutative space, there are twisted bundles with non-constant dimension.The U(1) instanton solution of Nekrasov and Schwarz is such an example. As amathematical motivation for not excluding such bundles, we find gaugetransformations by which a bundle with constant dimension can be equivalent toa bundle with non-constant dimension.
Control rods in LMFBRs: a physics assessment
McFarlane, H.F.; Collins, P.J.
1982-08-01
This physics assessment is based on roughly 300 control rod worth measurements in ZPPR from 1972 to 1981. All ZPPR assemblies simulated mixed-oxide LMFBRs, representing sizes of 350, 700, and 900 MWe. Control rod worth measurements included single rods, various combinations of rods, and Ta and Eu rods. Additional measurements studied variations in B/sub 4/C enrichment, rod interaction effects, variations in rod geometry, neutron streaming in sodium-filled channels, and axial worth profiles. Analyses were done with design-equivalent methods, using ENDF/B Version IV data. Some computations for the sensitivities to approximations in the methods have been included. Comparisons of these analyses with the experiments have allowed the status of control rod physics in the US to be clearly defined.
The histology of retinal nerve fiber layer bundles and bundle defects.
Radius, R L; Anderson, D R
1979-05-01
The fiber bundle striations recognized clinically in normal monkey eyes appear to be bundles of axons compartmentalized within glial tunnels formed by Müller's-cell processes, when viewed histologically. The dark boundaries that separate individual bundles are the broadened foot endings of these cells near the inner surface of the retina. Within one week after focal retinal photocoagulation, characteristic fundus changes could be seen in experimental eyes. In histologic sections of the involved retina, there was marked cystic degeneration of the retinal nerve fiber layer. Within one month, atrophy of distal axon segments was complete. With the drop-out of damaged axons and thinning of individual fiber bundles, retinal striations became less prominent. The resulting fundus picture in these experimental eyes is similar to fiber bundle defects that can be seen clinically in various neuro-ophthalmic disorders.
Gettemy, D.J.; Barnes, N.P.; Griggs, J.E.
1981-08-11
The disclosure relates to a solid state laser rod holder comprising Invar, copper tubing, and epoxy joints. Materials and coefficients of expansion of the components of the holder combine with the rod to produce a joint which will give before the rod itself will. The rod may be lased at about 70 to 80/sup 0/K and returned from such a temperature to room temperature repeatedly without its or the holder's destruction.
21 CFR 876.4270 - Colostomy rod.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Colostomy rod. 876.4270 Section 876.4270 Food and... GASTROENTEROLOGY-UROLOGY DEVICES Surgical Devices § 876.4270 Colostomy rod. (a) Identification. A colostomy rod is a device used during the loop colostomy procedure. A loop of colon is surgically brought out...
Solitary waves on nonlinear elastic rods. II
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1987-01-01
In continuation of an earlier study of propagation of solitary waves on nonlinear elastic rods, numerical investigations of blowup, reflection, and fission at continuous and discontinuous variation of the cross section for the rod and reflection at the end of the rod are presented. The results...
Phase behavior of colloidal silica rods
Kuijk, A.; Byelov, D.; Petukhov, A.V.; van Blaaderen, A.; Imhof, A.
2012-01-01
Recently, a novel colloidal hard-rod-like model system was developed which consists of silica rods [Kuijk et al., JACS, 2011, 133, 2346]. Here, we present a study of the phase behavior of these rods, for aspect ratios ranging from 3.7 to 8.0. By combining real-space confocal laser scanning microscop
Hydraulic Actuator for Ganged Control Rods
Thompson, D. C.; Robey, R. M.
1986-01-01
Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.
You, Byunghyun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2014-05-15
A fuel assembly had hexagonal structure adjacent to 6 fuel assemblies, which influence to the target fuel assembly due to elimination of duct. For calculating the influence, 6 additional channels were generated between the adjacent fuel assemblies and cross flow model was applied to the channels. The adjacent fuel assemblies were analyzed and the results were used in the additional channel as boundary condition of the target fuel assembly. To design the specifications of duct-less assembly, modified or brand-new thermal-hydraulic methodology is needed which is using MATRA-LMR and CFD codes in this study. The MATRA-LMR is a sub-channel analysis code for LMR that has been developed in Korea Atomic Energy Research Institute. It is designed to analyze a fuel assembly with wire-wrap and duct structure. However, the duct-less core is not able to be analyzed by the MATRA-LMR which doesn't consider cross flow between the fuel assemblies and effect of grid spacer. The code need improvement by editing source code to eliminate effect of duct and analyze pressure drop and mixing between the sub-channels caused by grid spacer and cross flow between the fuel assemblies. To validate reformed pressure drop model and cross flow model in MATRA-LMR, CFD analysis is performed. For verifying the results of CFD, LMR subchannel experimental data is benchmarked which is done by ORNL. The verified CFD for thermalhydraulic analysis calculated pressure drop and mixing caused by grid spacer and cross flow between fuel assemblies.
Repetto, G. [CEA Cadarache, Institut de Radioprotection et de Surete Nucleaire, DPAM, 13 - Saint-Paul-lez-Durance (France); Ederli, St. [Ente per le Nuove Technologie, l' Energia e l' Ambiente (ENEA) (Italy)
2007-07-01
ICARE/CATHARE code is developed by the 'Institut de Radioprotection et de Surete Nucleaire' to simulate Nuclear Reactor behaviour during the course of a Loss of Cooling accident up to the core melting. The assessment of the heat transfer model in porous medium has been performed against experiments performed in ACRR (SNL-USA) and in Phebus reactors (at Cadarache - France). Calculation versus experiment results indicate a good agreement for the thermal behaviour. The heat transfers inside solid debris bed can be well predicted using the Imura-Yagi correlation to calculate the debris bed equivalent thermal conductivity in a wide range of particles size. In the case of 'Rod like geometry' calculations, the fuel rod assembly was modelled assuming several rings of fuel rods, with heat transfer including radiative phenomena using view factors between rods. An alternative modelling has been used considering the fuel rods as a porous medium with with pure UO{sub 2} spherical particles of 1 cm diameter and a total porosity representative of the fuel bundle inside a cylindrical shroud. With this approach (heat exchanges accounted for with the Imura-Yagi correlation), the radial gradient calculated in a small bundle was significantly increased, from a few degrees (with the previous modelling) to about 150/200 K at 2273 K. This modelling has been recently improved, to account for the heat transfer inside a fuel rod bundle, by a specific model based on an electrical analogy, considering the porous medium as a cluster of true cylinders. (authors)
Tangent bundle formulation of a charged gas
Sarbach, Olivier
2013-01-01
We discuss the relativistic kinetic theory for a simple, collisionless, charged gas propagating on an arbitrary curved spacetime geometry. Our general relativistic treatment is formulated on the tangent bundle of the spacetime manifold and takes advantage of its rich geometric structure. In particular, we point out the existence of a natural metric on the tangent bundle and illustrate its role for the development of the relativistic kinetic theory. This metric, combined with the electromagnetic field of the spacetime, yields an appropriate symplectic form on the tangent bundle. The Liouville vector field arises as the Hamiltonian vector field of a natural Hamiltonian. The latter also defines natural energy surfaces, called mass shells, which turn out to be smooth Lorentzian submanifolds. A simple, collisionless, charged gas is described by a distribution function which is defined on the mass shell and satisfies the Liouville equation. Suitable fibre integrals of the distribution function define observable fie...
Classical Higgs fields on gauge gluon bundles
Palese Marcella
2016-01-01
Full Text Available Classical Higgs fields and related canonical conserved quantities are defined by invariant variational problems on suitably defined gauge gluon bundles. We consider Lagrangian field theories which are assumed to be invariant with respect to the action of a gauge-natural group. As an illustrative example we exploit the ‘gluon Lagrangian’, i.e. a Yang-Mills Lagrangian on the (1, 1-order gauge-natural bundle of SU(3-principal connections. The kernel of the gauge-natural Jacobi morphism for such a Lagrangian, by inducing a reductive split structure, canonically defines a ‘gluon classical Higgs field’.
Abelian conformal field theory and determinant bundles
Andersen, Jørgen Ellegaard; Ueno, K.
2007-01-01
Following [10], we study a so-called bc-ghost system of zero conformal dimension from the viewpoint of [14, 16]. We show that the ghost vacua construction results in holomorphic line bundles with connections over holomorphic families of curves. We prove that the curvature of these connections...... are up to a scale the same as the curvature of the connections constructed in [14, 16]. We study the sewing construction for nodal curves and its explicit relation to the constructed connections. Finally we construct preferred holomorphic sections of these line bundles and analyze their behaviour near...
ELECTROMAGNETIC APPARATUS FOR MOVING A ROD
Young, J.N.
1958-04-22
An electromagnetic apparatus for moving a rod-like member in small steps in either direction is described. The invention has particular application in the reactor field where the reactor control rods must be moved only a small distance and where the use of mechanical couplings is impractical due to the high- pressure seals required. A neutron-absorbing rod is mounted in a housing with gripping uaits that engage the rod, and coils for magnetizing the gripping units to make them grip, shift, and release the rod are located outside the housing.
Exploiting rod technology. Final report
NONE
1990-06-01
ROD development was proceeding apace until recent budgetary decisions caused funding support for ROD development to be drastically reduced. The funding which was originally provided by DARPA and the Balanced Technology Initiative (BTI) Office has been cut back to zero from $800K. To determine the aeroballistic coefficients of a candidate dart, ARDEC is currently supporting development out of its own 6.2 funds at about $100K. ARDEC has made slow progress toward achieving this end because of failures in the original dart during testing. It appears that the next dart design to be tested will diverge from the original concept visualized by DARPA and Science and Technology Associates (STA). STA, the design engineer, takes exception to these changes on the basis of inappropriate test conditions and insufficient testing. At this time, the full resolution of this issue will be difficult because of the current management structure, which separates the developer (ARDEC) from the designer (STA).
Yubao Ma
2014-01-01
Full Text Available Purpose. The present study sought to determine the influences of single-bundle (SB, single-bundle augmentation (SBA, and double-bundle (DB reconstructions on balance ability and proprioceptive function. Methods. 67 patients who underwent a single- or double-bundle ACL reconstruction or a SBA using multistranded autologous hamstring tendons were included in this study with a 1-year follow-up. Body sway and knee kinesthesia (using the threshold to detect passive motion test (TTDPM were measured to indicate balance ability and proprioceptive function, respectively. Additionally, within-subject differences in anterior-posterior stability of the tibia and lower extremity muscle strength were evaluated before and after surgery. Results. At 6 and 12 months after surgery, DB reconstruction resulted in better balance and proprioceptive function than SB reconstruction (P<0.05. Although no significant difference was observed in balance ability or proprioceptive function between the SBA and DB reconstructions, knee stability was significantly better with SBA and DB reconstructions than SB reconstruction (P<0.05. No significant differences were found in quadriceps and hamstrings strength among the three reconstruction techniques. Conclusions. Our findings consider that joint stability, proprioceptive function, and balance ability were superior with SBA and DB reconstructions compared to SB reconstruction at 6 and 12 months after surgery.
Computations in intersection rings of flag bundles
Grayson, Daniel R; Stillman, Michael E
2012-01-01
Intersection rings of flag varieties and of isotropic flag varieties are generated by Chern classes of the tautological bundles modulo the relations coming from multiplicativity of total Chern classes. In this paper we describe the Groebner bases of the ideals of relations and give applications to computation of intersections, as implemented in Macaulay2.
Capacity efficiency of recovery request bundling
Ruepp, Sarah Renée; Dittmann, Lars; Berger, Michael Stübert
2010-01-01
This paper presents a comparison of recovery methods in terms of capacity efficiency. In particular, a method where recovery requests are bundled towards the destination (Shortcut Span Protection) is evaluated against traditional recovery methods. Our simulation results show that Shortcut Span...... Protection uses more capacity than the unbundled related methods, but this is compensated by easier control and management of the recovery actions....
η-Invariant and Flat Vector Bundles
无
2006-01-01
We present an alternate definition of the mod Z component of the AtiyahPatodi-Singer η invariant associated to (not necessary unitary) fiat vector bundles, which identifies explicitly its real and imaginary parts. This is done by combining a deformation of flat connections introduced in a previous paper with the analytic continuation procedure appearing in the original article of Atiyah, Parodi and Singer.
Lazarsfeld-Mukai bundles and applications
Aprodu, Marian
2012-01-01
We survey the development of the notion of Lazarsfeld-Mukai bundles together with various applications, from the classification of Mukai manifolds to Brill-Noether theory and syzygies of $K3$ sections. To see these techniques at work, we present a short proof of a result of M. Reid on the existence of elliptic pencils.
Meromorphic Higgs bundles And Related Geometries
Dalakov, Peter
2016-01-01
The present note is mostly a survey on the generalised Hitchin integrable system and moduli spaces of meromorphic Higgs bundles. We also fill minor gaps in the existing literature, outline a calculation of the infinitesimal period map and review briefly some related geometries.
Meromorphic Higgs bundles and related geometries
Dalakov, Peter
2016-11-01
The present note is mostly a survey on the generalised Hitchin integrable system and moduli spaces of meromorphic G-Higgs bundles. We also fill minor gaps in the existing literature, outline a calculation of the infinitesimal period map and review some related geometries.
The Hodge bundle on Hurwitz spaces
van der Geer, G.; Kouvidakis, A.
2011-01-01
In 2009 Kokotov, Korotkin and Zograf gave in [7] a formula for the class of the Hodge bundle on the Hurwitz space of admissible covers of genus g and degree d of the projective line. They gave an analytic proof of it. In this note we give an algebraic proof and an extension of the result.
Capacity efficiency of recovery request bundling
Ruepp, Sarah Renée; Dittmann, Lars; Berger, Michael Stübert
2010-01-01
This paper presents a comparison of recovery methods in terms of capacity efficiency. In particular, a method where recovery requests are bundled towards the destination (Shortcut Span Protection) is evaluated against traditional recovery methods. Our simulation results show that Shortcut Span...
Critical heat flux in natural convection cooled TRIGA reactors with hexagonal bundle
Yang, J.; Avery, M.; De Angelis, M.; Anderson, M.; Corradini, M. [Univ. of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States); Feldman, E. E.; Dunn, F. E.; Matos, J. E. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)
2012-07-01
A three-rod bundle Critical Heat Flux (CHF) study at low flow, low pressure, and natural convection condition has been conducted, simulating TRIGA reactors with the hexagonally configured core. The test section is a custom-made trefoil shape tube with three identical fuel pin heater rods located symmetrically inside. The full scale fuel rod is electrically heated with a chopped-cosine axial power profile. CHF experiments were carried out with the following conditions: inlet water subcooling from 30 K to 95 K; pressure from 110 kPa to 230 kPa; mass flux up to 150 kg/m{sup 2}s. About 50 CHF data points were collected and compared with a few existing CHF correlations whose application ranges are close to the testing conditions. Some tests were performed with the forced convection to identify the potential difference between the CHF under the natural convection and forced convection. The relevance of the CHF to test parameters is investigated. (authors)
Active Hair-Bundle Motility by the Vertebrate Hair Cell
Tinevez, J.-Y.; Martin, P.; Jülicher, F.
2009-02-01
The hair bundle is both a mechano-sensory antenna and a force generator that might help the vertebrate hair cell from the inner ear to amplify its responsiveness to small stimuli. To study active hair-bundle motility, we combined calcium iontophoresis with mechanical stimulation of single hair bundles from the bullfrog's sacculus. A hair bundle could oscillate spontaneously, or be quiescent but display non-monotonic movements in response to abrupt force steps. Extracellular calcium changes or static biases to the bundle's position at rest could affect the kinetics of bundle motion and evoke transitions between the different classes of motility. The calcium-dependent location of a bundle's operating point within its nonlinear force-displacement relation controlled the type of movements observed. A unified theoretical description, in which mechanical activity stems from myosin-based adaptation and electro-mechanical feedback by Ca2+, could account for the fast and slow manifestations of active hair-bundle motility.
LIULUOFEI
1996-01-01
The author proves several embedding theorems for finite covering maps,principal G-bundies into bundles.The main results are 1. Let π：E→X be a finite covering map, and X a connected locally path-connected paracompact space. If cat X≤k, then the finite covering space π:E→X can be embedded into the trivial real k-plane bundle. 2. Let π：E→X be a principal G-bundle over a paracompact space. If there exists a linera action of Gon F(F=R or C)and cat X≤k ,then π：E→X can be embedded into ξ1 … ξn for any F-vector bundles ξi,i=1,…k.
Interplanetary Overlay Network Bundle Protocol Implementation
Burleigh, Scott C.
2011-01-01
The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.
Bundling Revisited: Substitute Products and Inter-Firm Discounts
Armstrong, Mark
2011-01-01
This paper extends the standard model of bundling to allow products to be substitutes and for products to be supplied by separate sellers. Whether integrated or separate, firms have an incentive to introduce bundling discounts when demand for the bundle is elastic relative to demand for stand-alone products. When products are partial substitutes, this typically gives an integrated firm a greater incentive to offer a bundle discount (relative to the standard model with additive preferences), w...
Holomorphic Vector Bundle on Hopf Manifolds with Abelian Fundamental Groups
Xiang Yu ZHOU; Wei Ming LIU
2004-01-01
Let X be a Hopf manifolds with an Abelian fundamental group. E is a holomorphic vector bundle of rank r with trivial pull-back to W = Cn - {0}. We prove the existence of a non-vanishing section of L(×) E for some line bundle on X and study the vector bundles filtration structure of E. These generalize the results of D. Mall about structure theorem of such a vector bundle E.
Yoo, Yon-Sik; Song, Si Young; Yang, Cheol Jung; Ha, Jong Mun; Kim, Yoon Sang
2016-01-01
Purpose The purpose of this study was to compare the clinical outcomes of arthroscopic anatomical double bundle (DB) anterior cruciate ligament (ACL) reconstruction with either selective anteromedial (AM) or posterolateral (PL) bundle reconstruction while preserving a relatively healthy ACL bundle. Materials and Methods The authors evaluated 98 patients with a mean follow-up of 30.8±4.0 months who had undergone DB or selective bundle ACL reconstructions. Of these, 34 cases underwent DB ACL reconstruction (group A), 34 underwent selective AM bundle reconstruction (group B), and 30 underwent selective PL bundle reconstructions (group C). These groups were compared with respect to Lysholm and International Knee Documentation Committee (IKDC) score, side-to-side differences of anterior laxity measured by KT-2000 arthrometer at 30 lbs, and stress radiography and Lachman and pivot shift test results. Pre- and post-operative data were objectively evaluated using a statistical approach. Results The preoperative anterior instability measured by manual stress radiography at 90° of knee flexion in group A was significantly greater than that in groups B and C (all pACL tears offers comparable clinical results to DB reconstruction in complete ACL tears. PMID:27401652
VECTOR BUNDLE, KILLING VECTOR FIELD AND PONTRYAGIN NUMBERS
周建伟
1991-01-01
Let E be a vector bundle over a compact Riemannian manifold M. We construct a natural metric on the bundle space E and discuss the relationship between the killing vector fields of E and M. Then we give a proof of the Bott-Baum-Cheeger Theorem for vector bundle E.
Heat exchanger with helical bundles of finned tubes
Eyking, H.J.
1975-01-23
The invention applies to a heat exchanger with helical bundles of tubes consisting of finned tubes separated by spacers. The spacers are designed as closed holding cylinders with holding devices for the tube bundles, each ot which surrounds a bundle of tubes. This construction serves to simplify the production process and to enable the use of the heat exchanger at higher loads.
Gauge bundles and Born-Infeld on the noncommutative torus
Hofman, C.; Verlinde, E.
1998-01-01
In this paper, we describe non-abelian gauge bundles with magnetic and electric uxes on higher dimensional noncomm utative tori. We give an explicit construction of a large class of bundles with nonzero magnetic 't Hooft uxes. W e discuss Morita equiv alence between these bundles. The action of
QTLs analysis of rice peduncle vascular bundle and panicle traits
无
2001-01-01
@@The vascular bundle in plants plays an important role in transportation of photosynthetic products, mineral nutrients, water, and so on. Significant positive correlations were found between grain yield, panicle traits and the No. Of peduncle vascular bundles. So, it is very important to study the inheritance of peduncle vascular bundle, which is a quantitative trait.
Stability of Picard Bundle Over Moduli Space of Stable Vector Bundles of Rank Two Over a Curve
Indranil Biswas; Tomás L Gómez
2001-08-01
Answering a question of [BV] it is proved that the Picard bundle on the moduli space of stable vector bundles of rank two, on a Riemann surface of genus at least three, with fixed determinant of odd degree is stable.
High temperature control rod assembly
Vollman, Russell E. (Solana Beach, CA)
1991-01-01
A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.
Topological Mixing with Ghost Rods
2005-01-01
Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing. Boyland et al. [P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)] have studied a specific periodic motion of rods that exhibits topological chaos in a viscous fluid. We show that it is possible to extend their work to cases where the motion of the stirring...
Reactor control rod timing system. [LMFBR
Wu, P.T.K.
1980-03-18
A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.
Productivity and costs of slash bundling in Nordic conditions
Kaerhae, K.; Vartiamaeki, T. [Metsaeteho Oy, P.O. Box 101, FI-00171 Helsinki (Finland)
2006-12-15
The number of slash bundlers and the volume of slash bundling have been rapidly increasing during the last few years in Finland. However, no comprehensive time or follow-up studies have been carried out on slash bundling technology in Finland or in any other country. Metsateho Oy carried out studies on the productivity and costs of slash bundling in different Nordic recovering conditions. The study methods included both time and follow-up studies. Data were collected during the summer and winter period primarily in Norway spruce (Picea abies L. Karst.) dominated clear cutting sites. The bundling techniques performed by different types of bundler (Fiberpac 370, Timberjack 1490D, Pika RS 2000, Valmet WoodPac) were studied. The average productivity of slash bundling was 18.1 bundles per operating (E{sub 15}, including delays shorter than 15min) hour with the Timberjack 1490D and Fiberpac 370 bundlers in the follow-up study. The operator of the slash bundler had the greatest effect on the productivity of bundling. The prerequisite for increased bundling volumes is a reduction in the costs of the most expensive sub-stage of the bundling supply chain, i.e. bundling itself. This requires improved recovery conditions at bundling sites, increased bundling productivity, larger sized bundles, and the execution of bundling operations in two work shifts using an efficient bundler and effective operator working methods. Implementation of these development measures will bring the bundling supply chain up to a speed that makes it the most competitive supply chain for forest chips in terms of total supply costs for long-distance transportation distances of more than 60km. (author)
Kaipainen, H.; Seppaenen, V.; Rinne, S.
1996-12-31
The conditions on which the bundling of the harvesting residues from spruce regeneration fellings would become profitable were studied. The calculations showed that one of the most important features was sufficient compaction of the bundle, so that the portion of the wood in the unit volume of the bundle has to be more than 40 %. The tests showed that the timber grab loader of farm tractor was insufficient for production of dense bundles. The feeding and compression device of the prototype bundler was constructed in the research and with this device the required density was obtained.The rate of compaction of the dry spruce felling residues was about 40 % and that of the fresh residues was more than 50 %. The comparison between the bundles showed that the calorific value of the fresh bundle per unit volume was nearly 30 % higher than that of the dry bundle. This means that the treatment of the bundles should be done of fresh felling residues. Drying of the bundles succeeded well, and the crushing and chipping tests showed that the processing of the bundles at the plant is possible. The treatability of the bundles was also excellent. By using the prototype, developed in the research, it was possible to produce a bundle of the fresh spruce harvesting residues, the diameter of which was about 50 cm and the length about 3 m, and the rate of compaction over 50 %. By these values the reduction target of the costs is obtainable
Automatic safety rod for reactors. [LMFBR
Germer, J.H.
1982-03-23
An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.
Phase Slips in Oscillatory Hair Bundles
Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores
2013-01-01
Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production. PMID:25167040
Care bundles reduce readmissions for COPD.
Matthews, Healther; Tooley, Cathy; Nicholls, Carol; Lindsey-Halls, Anna
In 2011, the respiratory nursing team at the James Paget University Hospital Foundation Trust were considering introducing a discharge care bundle for patients admitted with an acute exacerbation of chronic obstructive pulmonary disease. At the same time, the trust was asking for applications for Commissioning for Quality and Innovation schemes (CQUINs). These are locally agreed packages of quality improvement goals and indicators, which, if achieved in total, enable the provider to earn its full CQUIN payment. A CQUIN scheme should address the three domains of quality, safety and effectiveness, patient experience and also show innovation. This article discusses how the care bundle was introduced and how, over a 12-month period, it showed tangible results in improving the care pathway for COPD patients as well as reducing readmissions and saving a significant amount of money.
Muñoz, C Sánchez; Del Valle, E; Tudela, A González; Müller, K; Lichtmannecker, S; Kaniber, M; Tejedor, C; Finley, J J; Laussy, F P
2014-07-01
Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or "bundles" of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications.
Client Provider Collaboration for Service Bundling
LETIA, I. A.
2008-04-01
Full Text Available The key requirement for a service industry organization to reach competitive advantages through product diversification is the existence of a well defined method for building service bundles. Based on the idea that the quality of a service or its value is given by the difference between expectations and perceptions, we draw the main components of a frame that aims to support the client and the provider agent in an active collaboration meant to co-create service bundles. Following e3-value model, we structure the supporting knowledge around the relation between needs and satisfying services. We deal with different perspectives about quality through an ontological extension of Value Based Argumentation. The dialog between the client and the provider takes the form of a persuasion whose dynamic object is the current best configuration. Our approach for building service packages is a demand driven approach, allowing progressive disclosure of private knowledge.
Non-abelian higher gauge theory and categorical bundle
Viennot, David
2016-12-01
A gauge theory is associated with a principal bundle endowed with a connection permitting to define horizontal lifts of paths. The horizontal lifts of surfaces cannot be defined into a principal bundle structure. An higher gauge theory is an attempt to generalize the bundle structure in order to describe horizontal lifts of surfaces. A such attempt is particularly difficult for the non-abelian case. Some structures have been proposed to realize this goal (twisted bundle, gerbes with connection, bundle gerbe, 2-bundle). Each of them uses a category in place of the total space manifold of the usual principal bundle structure. Some of them replace also the structure group by a category (more precisely a Lie crossed module viewed as a category). But the base space remains still a simple manifold (possibly viewed as a trivial category with only identity arrows). We propose a new principal categorical bundle structure, with a Lie crossed module as structure groupoid, but with a base space belonging to a bigger class of categories (which includes non-trivial categories), that we called affine 2-spaces. We study the geometric structure of the categorical bundles built on these categories (which are a more complicated structure than the 2-bundles) and the connective structures on these bundles. Finally we treat an example interesting for quantum dynamics which is associated with the Bloch wave operator theory.
Quantum principal bundles and their characteristic classes
Durdevic, M
1996-01-01
A brief exposition of the general theory of characteristic classes of quantum principal bundles is given. The theory of quantum characteristic classes incorporates ideas of classical Weil theory into the conceptual framework of non-commutative differential geometry. A purely cohomological interpretation of the Weil homomorphism is given, together with a standard geometrical interpretation via quantum invariant polynomials. A natural spectral sequence is described. Some quantum phenomena appearing in the formalism are discussed.
Uncovering ecosystem service bundles through social preferences.
Berta Martín-López
Full Text Available Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem's capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem's capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis. We found a clear trade-off among provisioning services (and recreational hunting versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs.
Uncontrolled inexact information within bundle methods
Malick, Jérôme; Welington De Oliveira, ·; Zaourar-Michel, Sofia
2016-01-01
International audience; We consider convex nonsmooth optimization problems where additional information with uncontrolled accuracy is readily available. It is often the case when the objective function is itself the output of an optimization solver, as for large-scale energy optimization problems tackled by decomposition. In this paper, we study how to incorporate the uncontrolled linearizations into (proximal and level) bundle algorithms in view of generating better iterates and possibly acc...
On Complex Supermanifolds with Trivial Canonical Bundle
Groeger, Josua
2016-01-01
We give an algebraic characterisation for the triviality of the canonical bundle of a complex supermanifold in terms of a certain Batalin-Vilkovisky superalgebra structure. As an application, we study the Calabi-Yau case, in which an explicit formula in terms of the Levi-Civita connection is achieved. Our methods include the use of complex integral forms and the recently developed theory of superholonomy.
Uncovering Ecosystem Service Bundles through Social Preferences
Martín-López, Berta; Iniesta-Arandia, Irene; García-Llorente, Marina; Palomo, Ignacio; Casado-Arzuaga, Izaskun; Amo, David García Del; Gómez-Baggethun, Erik; Oteros-Rozas, Elisa; Palacios-Agundez, Igone; Willaarts, Bárbara; González, José A.; Santos-Martín, Fernando; Onaindia, Miren; López-Santiago, Cesar; Montes, Carlos
2012-01-01
Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem’s capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem’s capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area) have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis). We found a clear trade-off among provisioning services (and recreational hunting) versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs. PMID:22720006
Uncovering ecosystem service bundles through social preferences
Berta Martín-López; Irene Iniesta-Arandia; Marina García-Llorente; Ignacio Palomo; Izaskun Casado-Arzuaga; David García Del Amo; Erik Gómez-Baggethun; Elisa Oteros-Rozas; Igone Palacios-Agundez; Bárbara Willaarts; González, José A.; Fernando Santos-Martín; Miren Onaindia; Cesar López-Santiago; Carlos Montes
2012-01-01
11 p. Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 d...
Deformations of Fell bundles and twisted graph algebras
Raeburn, Iain
2016-11-01
We consider Fell bundles over discrete groups, and the C*-algebra which is universal for representations of the bundle. We define deformations of Fell bundles, which are new Fell bundles with the same underlying Banach bundle but with the multiplication deformed by a two-cocycle on the group. Every graph algebra can be viewed as the C*-algebra of a Fell bundle, and there are are many cocycles of interest with which to deform them. We thus obtain many of the twisted graph algebras of Kumjian, Pask and Sims. We demonstate the utility of our approach to these twisted graph algebras by proving that the deformations associated to different cocycles can be assembled as the fibres of a C*-bundle.
Bundling harvester; Harvennuspuun automaattisen nippukorjausharvesterin kehittaeminen
Koponen, K. [Eko-Log Oy, Kuopio (Finland)
1997-12-01
The starting point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automating of the harvester, and automated loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilisation of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilised without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilisation of wood-energy. (orig.)
Development of Strengthened Bundle High Temperature Superconductors
Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Demko, J.A. [Oak Ridge Inst. for Science and Education, TN (United States); Tomsic, M. [Plastronic, Inc., Troy, OH (United States); Sinha, U. [Southwire Company, Carollton, GA (United States)
1997-12-31
In the process of developing high temperature superconducting (HTS) transmission cables, it was found that mechanical strength of the superconducting tape is the most crucial property that needs to be improved. It is also desirable to increase the current carrying capacity of the conductor so that fewer layers are needed to make the kilo-amp class cables required for electric utility usage. A process has been developed by encapsulating a stack of Bi-2223/Ag tapes with a silver or non-silver sheath to form a strengthened bundle superconductor. This process was applied to HTS tapes made by the Continuous Tube Forming and Filling (CTFF) technique pursued by Plastronic Inc. and HTS tapes obtained from other manufacturers. Conductors with a bundle of 2 to 6 HTS tapes have been made. The bundled conductor is greatly strengthened by the non-silver sheath. No superconductor degradation as compared to the sum of the original critical currents of the individual tapes was seen on the finished conductors.
An analytical fiber bundle model for pullout mechanics of root bundles
Cohen, D.; Schwarz, M.; Or, D.
2011-09-01
Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without changing the distribution's shape increases
Sankararamakrishnan, R; Sansom, M S
1995-11-01
The transbilayer pore of the nicotinic acetylcholine receptor (nAChR) is formed by a pentameric bundle of M2 helices. Models of pentameric bundles of M2 helices have been generated using simulated annealing via restrained molecular dynamics. The influence of: (a) the initial C alpha template; and (b) screening of sidechain electrostatic interactions on the geometry of the resultant M2 helix bundles is explored. Parallel M2 helices, in the absence of sidechain electrostatic interactions, pack in accordance with simple ridges-in-grooves considerations. This results in a helix crossing angle of ca. +12 degrees, corresponding to a left-handed coiled coil structure for the bundle as a whole. Tilting of M2 helices away from the central pore axis at their C-termini and/or inclusion of sidechain electrostatic interactions may perturb such ridges-in-grooves packing. In the most extreme cases right-handed coiled coils are formed. An interplay between inter-helix H-bonding and helix bundle geometry is revealed. The effects of changes in electrostatic screening on the dimensions of the pore mouth are described and the significance of these changes in the context of models for the nAChR pore domain is discussed.
Viscoelasticity of suspensions of long, rigid rods
Dhont, Jan K.G.; Briels, W.J.
2003-01-01
A microscopic theory for the viscoelastic behaviour of suspensions of rigid rods with excluded volume interactions is presented, which is valid in the asymptotic limit of very long and thin rods. Stresses arising from translational and rotational Brownian motion and direct interactions are calculate
Study of the rod style SFRFQ structure
Yan Xue Qing; Chen J
2002-01-01
There is a problem about upper limit of energy in the RFQ structure, although it is a wonderful low-energy-suited high current accelerating structure. After proposing an improved rod style SFRFQ structure without reversed field, the author studies its energy gain and transverse motion. The rod style SFRFQ structure is roughly compared with diaphragm SFRFQ structure
Ozdemir, Ozkan Emre, E-mail: ozdemir@psu.edu; Avramova, Maria N., E-mail: mna109@psu.edu
2014-10-15
Highlights: • Validation of implemented multi-dimensional subchannel boron transport model. • Extension of boron transport model to entrained droplets. • Implementation of boron precipitation model. • Testing of the boron precipitation model under transient condition. - Abstract: The risk of small-break loss of coolant accident (SB-LOCA) and other reactivity initiated transients caused by boron dilution in the light water reactors (LWRs), and the complications of tracking the soluble boron concentration experimentally inside the primary coolant have stimulated the interest in computational studies for accurate boron tracking simulations in nuclear reactors. In Part I of this study, the development and implementation of a multi-dimensional boron transport model with modified Godunov scheme based on a subchannel approach within the COBRA-TF (CTF) thermal-hydraulic code was presented. The modified Godunov scheme approach with a physical diffusion term was determined to provide the most accurate and precise solution. Current paper extends these conclusions and presents the model validation studies against experimental data from the Rossendorf coolant mixing model (ROCOM) test facility. In addition, the importance of the two-phase flow characteristics in modeling boron transient are emphasized, especially during long-term cooling period after the loss of coolant accident (LOCA) condition in pressurized water reactors (PWRs). The CTF capabilities of boron transport modeling are further improved based on the three-field representation of the two-phase flow utilized in the code. The boron transport within entrained droplets is modeled, and a model for predicting the boron precipitation under transient conditions is developed and tested. It is aimed to extend the applicability of CTF to reactor transient simulations, and particularly to a large-break loss of coolant accident (LB-LOCA) analysis.
超临界水冷堆CSR1000燃料组件子通道分析%Subchannel Analysis of SCWR CSR1000 Assembly
杜代全; 肖泽军; 闫晓; 曾小康; 黄彦平
2013-01-01
利用实验数据和计算流体力学(CFD)商用软件CFX对现有子通道分析模型进行研究,分析其在超临界水冷堆(SCWR)分析中的适用性,并根据分析结果对ATHAS程序进行改进.采用改进的ATHAS程序对超临界水冷堆CSR1000燃料组件进行稳态子通道分析,获得燃料组件冷却剂和包壳温度分布、流动压降等参数.结果表明:减小螺旋肋螺距(Hw)可展平燃料组件冷却剂出口温度分布、降低包壳表面最高温度(MCST),但同时燃料组件流动阻力将增大.%Subchannel analysis models have been investigated for SCWR fuel assembly by using experimental data available and Computational Fluid Dynamics(CFD) code in the present paper, which applicability in SCWR analysis is also analyzed, and the analysis results is used to improve the ATHAS code.The steady state subchannel analysis is conducted on the CSR1000 fuel assembly using the improve ATHAS, to obtain the temperature distribution of coolant and cladding and pressure drop in assembly.The result shows that, smaller pitch will flatten the profile of coolant temperature and reduce MCST, but it also increases the pressure drop in the assembly.
Nrl is required for rod photoreceptor development.
Mears, A J; Kondo, M; Swain, P K; Takada, Y; Bush, R A; Saunders, T L; Sieving, P A; Swaroop, A
2001-12-01
The protein neural retina leucine zipper (Nrl) is a basic motif-leucine zipper transcription factor that is preferentially expressed in rod photoreceptors. It acts synergistically with Crx to regulate rhodopsin transcription. Missense mutations in human NRL have been associated with autosomal dominant retinitis pigmentosa. Here we report that deletion of Nrl in mice results in the complete loss of rod function and super-normal cone function, mediated by S cones. The photoreceptors in the Nrl-/- retina have cone-like nuclear morphology and short, sparse outer segments with abnormal disks. Analysis of retinal gene expression confirms the apparent functional transformation of rods into S cones in the Nrl-/- retina. On the basis of these findings, we postulate that Nrl acts as a 'molecular switch' during rod-cell development by directly modulating rod-specific genes while simultaneously inhibiting the S-cone pathway through the activation of Nr2e3.
An Alternative Bundle-to-Bundle Suturing Technique for Repairing Fresh Achilles Tendon Rupture.
Zhao, Jingjing; Yu, Bin; Xie, Ming; Huang, Ruokun; Xiao, Kai
2016-01-01
The main concern about conventional Achilles tendon repair surgical techniques is how to maintain the initial strength of the ruptured Achilles tendon through complicated suturing methods. The primary surgical problem lies in the properties of the soft tissue; the deterioration of the Achilles tendon, especially in its elasticity; and the surface lubricity of the local tissues. In the present study, we describe an innovative bundle-to-bundle suturing method that addresses these potential problems. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Phase behavior and structure formation of hairy-rod supramolecules
Subbotin, A; Stepanyan, R; Knaapila, M; Ikkala, O; ten Brinke, G
2003-01-01
Phase behavior and microstructure formation of rod and coil molecules, which can associate to form hairy-rod polymeric supramolecules, are addressed theoretically. Association induces considerable compatibility enhancement between the rod and coil molecules and various microscopically ordered struct
Eulerian Formulation of Spatially Constrained Elastic Rods
Huynen, Alexandre
Slender elastic rods are ubiquitous in nature and technology. For a vast majority of applications, the rod deflection is restricted by an external constraint and a significant part of the elastic body is in contact with a stiff constraining surface. The research work presented in this doctoral dissertation formulates a computational model for the solution of elastic rods constrained inside or around frictionless tube-like surfaces. The segmentation strategy adopted to cope with this complex class of problems consists in sequencing the global problem into, comparatively simpler, elementary problems either in continuous contact with the constraint or contact-free between their extremities. Within the conventional Lagrangian formulation of elastic rods, this approach is however associated with two major drawbacks. First, the boundary conditions specifying the locations of the rod centerline at both extremities of each elementary problem lead to the establishment of isoperimetric constraints, i.e., integral constraints on the unknown length of the rod. Second, the assessment of the unilateral contact condition requires, in principle, the comparison of two curves parametrized by distinct curvilinear coordinates, viz. the rod centerline and the constraint axis. Both conspire to burden the computations associated with the method. To streamline the solution along the elementary problems and rationalize the assessment of the unilateral contact condition, the rod governing equations are reformulated within the Eulerian framework of the constraint. The methodical exploration of both types of elementary problems leads to specific formulations of the rod governing equations that stress the profound connection between the mechanics of the rod and the geometry of the constraint surface. The proposed Eulerian reformulation, which restates the rod local equilibrium in terms of the curvilinear coordinate associated with the constraint axis, describes the rod deformed configuration
Anomalous water expulsion from carbon-based rods at high humidity
Nune, Satish K.; Lao, David B.; Heldebrant, David J.; Liu, Jian; Olszta, Matthew J.; Kukkadapu, Ravi K.; Gordon, Lyle M.; Nandasiri, Manjula I.; Whyatt, Greg; Clayton, Chris; Gotthold, David W.; Engelhard, Mark H.; Schaef, Herbert T.
2016-06-13
Managing water is critical for industrial applications including CO2 capture, catalysis, bio-oil separations and energy storage. Various classes of materials have been designed for these applications, achieving specific water adsorption capacities at a given relative humidity (RH). Three water adsorption-desorption mechanisms are common to inorganic materials: (1) chemisorption, which may lead to the modification of the first coordination sphere; (2) simple adsorption, which is reversible in nature; or (3) capillary condensation, which is irreversible in nature. Regardless of sorption mechanism, all materials known today increase water adsorption capacity with increasing RH; none exhibit repeated adsorption of water at low humidity and release at high humidity. We present here a material that breaks from this convention: a new class of nitrogen containing carbon rods along with nonstoichiometric FeXSY that adsorb water at low humidity, and spontaneously expel half of the adsorbed water when the RH exceeds a 50–80% threshold. Monolayers of water form on the surfaces of the carbon rods, with the amount of water adsorbed directly linked to the aspect ratio of the rods and the available surface area. This unprecedented water expulsion is a reversible physical process. Once a complete monolayer is formed, adjacent rods in the bundles begin to adhere together via formation of a bridging monolayer, reducing the surface area available for water to adhere to. We believe the unique surface chemistry of these carbon rods can be used on other functionalized materials. Such behaviour offers a paradigm shift in water purification and separation: water could be repeatedly adsorbed from a low humidity vapour stream and then expelled into a pure water vapour stream, or humidity-responsive membranes could change their water permeance or selectivity as a function of RH.
Amplitude death of coupled hair bundles with stochastic channel noise
Kim, Kyung-Joong
2014-01-01
Hair cells conduct auditory transduction in vertebrates. In lower vertebrates such as frogs and turtles, due to the active mechanism in hair cells, hair bundles(stereocilia) can be spontaneously oscillating or quiescent. Recently, the amplitude death phenomenon has been proposed [K.-H. Ahn, J. R. Soc. Interface, {\\bf 10}, 20130525 (2013)] as a mechanism for auditory transduction in frog hair-cell bundles, where sudden cessation of the oscillations arises due to the coupling between non-identical hair bundles. The gating of the ion channel is intrinsically stochastic due to the stochastic nature of the configuration change of the channel. The strength of the noise due to the channel gating can be comparable to the thermal Brownian noise of hair bundles. Thus, we perform stochastic simulations of the elastically coupled hair bundles. In spite of stray noisy fluctuations due to its stochastic dynamics, our simulation shows the transition from collective oscillation to amplitude death as inter-bundle coupling str...
Monopoles and Modifications of Bundles over Elliptic Curves
Andrey M. Levin
2009-06-01
Full Text Available Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case R × (elliptic curve. This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic.
A Tannakian approach to dimensional reduction of principal bundles
Álvarez-Cónsul, Luis; García-Prada, Oscar
2016-01-01
Let $P$ be a parabolic subgroup of a connected simply connected complex semisimple Lie group $G$. Given a compact K\\"ahler manifold $X$, the dimensional reduction of $G$-equivariant holomorphic vector bundles over $X\\times G/P$ was carried out by the first and third authors. This raises the question of dimensional reduction of holomorphic principal bundles over $X\\times G/P$. The method used for equivariant vector bundles does not generalize to principal bundles. In this paper, we adapt to equivariant principal bundles the Tannakian approach of Nori, to describe the dimensional reduction of $G$-equivariant principal bundles over $X\\times G/P$, and to establish a Hitchin--Kobayashi type correspondence. In order to be able to apply the Tannakian theory, we need to assume that $X$ is a complex projective manifold.
The avalanche process of the fiber bundle model with defect
Hao, Da-Peng; Tang, Gang; Xia, Hui; Xun, Zhi-Peng; Han, Kui
2017-04-01
In order to explore the impacts of defect on the tensile fracture process of materials, the fiber bundle model with defect is constructed based on the classical fiber bundle model. In the fiber bundle model with defect, the two key parameters are the mean size and the density of defects. In both uniform and Weibull threshold distributions, the mean size and density all bring impacts on the threshold distribution of fibers. By means of analytical approximation and numerical simulation, we show that the two key parameters of the model have substantial effects on the failure process of the bundle. From macroscopic view, the defect described by the altering of threshold distribution of fibers will has a significant impact on the mechanical properties of the bundle. While in microscopic scale, the statistical properties of the model are still harmonious with the classical fiber bundle model.
Cosmic multimuon bundles detected by DELPHI
Rídky, J
2004-01-01
The DELPHI detector located at LEP accelerator has been used also to measure multimuon bundles originated from cosmic ray interactions. Two subdetectors-hadron calorimeter and time projection chamber, are used for this purpose. The 1999 and 2000 data are analyzed over wide range of multiplicities. The multiplicity distribution is compared with prediction of Monte Carlo simulation based on CORSIKA/QGSJET. The Monte-Carlo does not describe the large multiplicity part of data. Even the extreme assumption on the cosmic ray composition (pure iron nuclei) hardly predicts comparable number of high-multiplicity events.
Differential geometry of complex vector bundles
Kobayashi, Shoshichi
2014-01-01
Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeto
Higher order mechanics on graded bundles
Bruce, Andrew James; Grabowska, Katarzyna; Grabowski, Janusz
2015-05-01
In this paper we develop a geometric approach to higher order mechanics on graded bundles in both, the Lagrangian and Hamiltonian formalism, via the recently discovered weighted algebroids. We present the corresponding Tulczyjew triple for this higher order situation and derive in this framework the phase equations from an arbitrary (also singular) Lagrangian or Hamiltonian, as well as the Euler-Lagrange equations. As important examples, we geometrically derive the classical higher order Euler-Lagrange equations and analogous reduced equations for invariant higher order Lagrangians on Lie groupoids.
Bundling Products and Services Through Modularization Strategies
Bask, Anu; Hsuan, Juliana; Rajahonka, Mervi;
2012-01-01
Modularity has been recognized as a powerful tool in improving the efficiency and management of product design and manufacturing. However, the integrated view on covering both, product and service modularity for product-service systems (PSS), is under researched. Therefore, in this paper our...... objective is to contribute to the PSS modularity. Thus, we describe configurations of PSSs and the bundling of products and services through modularization strategies. So far there have not been tools to analyze and determine the correct combinations of degrees of product and service modularities....
Compression of a bundle of light rays.
Marcuse, D
1971-03-01
The performance of ray compression devices is discussed on the basis of a phase space treatment using Liouville's theorem. It is concluded that the area in phase space of the input bundle of rays is determined solely by the required compression ratio and possible limitations on the maximum ray angle at the output of the device. The efficiency of tapers and lenses as ray compressors is approximately equal. For linear tapers and lenses the input angle of the useful rays must not exceed the compression ratio. The performance of linear tapers and lenses is compared to a particular ray compressor using a graded refractive index distribution.
Vector bundles on complex projective spaces
Okonek, Christian; Spindler, Heinz
1980-01-01
This expository treatment is based on a survey given by one of the authors at the Séminaire Bourbaki in November 1978 and on a subsequent course held at the University of Göttingen. It is intended to serve as an introduction to the topical question of classification of holomorphic vector bundles on complex projective spaces, and can easily be read by students with a basic knowledge of analytic or algebraic geometry. Short supplementary sections describe more advanced topics, further results, and unsolved problems.
Morphoelastic rods Part II: Growing birods
Lessinnes, Thomas; Moulton, Derek E.; Goriely, Alain
2017-03-01
The general problem of determining the shape and response of two attached growing elastic Kirchhoff rods is considered. A description of the kinematics of the individual interacting rods is introduced. Each rod has a given intrinsic shape and constitutive laws, and a map associating points on the two rods is defined. The resulting filamentary structure, a growing birod, can be seen as a new filamentary structure. This kinematic description is used to derive the general equilibrium equations for the shape of the rods under loads, or equivalently, for the new birod. It is shown that, in general, the birod is not simply a Kirchhoff rod but rather, due to the internal constraints, new effects can appear. The two-dimensional restriction is then considered explicitly and the limit for small deformation is shown to be equivalent to the classic Timsohenko bi-metallic strip problem. A number of examples and applications are presented. In particular, the problem of two attached rods with intrinsic helical shape and uniform growth is computed in detail and a host of new interesting solutions and bifurcations are observed.
Granular materials interacting with thin flexible rods
Neto, Alfredo Gay; Campello, Eduardo M. B.
2017-04-01
In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.
Magnetically controlled growing rods for scoliosis surgery.
Metkar, Umesh; Kurra, Swamy; Quinzi, David; Albanese, Stephen; Lavelle, William F
2017-02-01
Early onset scoliosis can be both a disfiguring as well as a life threatening condition. When more conservative treatments fail, pediatric spinal surgeons are forced to consider operative interventions. Traditionally, these interventions have involved the insertion of a variety of implants into the patient with a limited number of anchor points controlling the spine. In the past, these pediatric patients have had multiple surgeries for elective lengthening of these devices to facilitate their growth while attempting to control the scoliosis. These patients often experience a physical and emotional toll from their multiple repeated surgeries. Growing spine techniques have also had a noted high complication rate due to implant dislodgement and infections. Recently, the development of non-invasively, self-lengthening growing rods has occurred. These devices have the potential to allow for the devices to be lengthened magnetically in a conscious patient in the surgeon's office. Areas covered: This review summarized previously published articles in the English literature using a key word search in PubMed for: 'magnetically controlled growing rods', 'Magec rods', 'magnetic growing rods' and 'growing rods'. Expert commentary: Magnetically controlled growing rods have an advantage over growing rods in lengthening the growing spine in the absence of repetitive surgeries.
Control Rod Malfunction at the NRAD Reactor
Thomas L. Maddock
2010-05-01
The neutron Radiography Reactor (NRAD) is a training, research, and isotope (TRIGA) reactor located at the INL. The reactor is normally shut down by the insertion of three control rods that drop into the core when power is removed from electromagnets. During a routine shutdown, indicator lights on the console showed that one of the control rods was not inserted. It was initially thought that the indicator lights were in error because of a limit switch that was out of adjustment. Through further testing, it was determined that the control rod did not drop when the scram switch was initially pressed. The control rod anomaly led to a six month shutdown of the reactor and an in depth investigation of the reactor protective system. The investigation looked into: scram switch operation, console modifications, and control rod drive mechanisms. A number of latent issues were discovered and corrected during the investigation. The cause of the control rod malfunction was found to be a buildup of corrosion in the control rod drive mechanism. The investigation resulted in modifications to equipment, changes to both operation and maintenance procedures, and additional training. No reoccurrences of the problem have been observed since corrective actions were implemented.
Estimation of irradiated control rod worth
Varvayanni, M., E-mail: melina@ipta.demokritos.g [NCSR ' DEMOKRITOS' , PO Box 60228, 15310 Aghia Paraskevi (Greece); Catsaros, N. [NCSR ' DEMOKRITOS' , PO Box 60228, 15310 Aghia Paraskevi (Greece); Antonopoulos-Domis, M. [School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece)
2009-11-15
When depleted control rods are planned to be used in new core configurations, their worth has to be accurately predicted in order to deduce key design and safety parameters such as the available shutdown margin. In this work a methodology is suggested for the derivation of the distributed absorbing capacity of a depleted rod, useful in the case that the level of detail that is known about the irradiation history of the control rod does not allow an accurate calculation of the absorber's burnup. The suggested methodology is based on measurements of the rod's worth carried out in the former core configuration and on corresponding calculations based on the original (before first irradiation) absorber concentration. The methodology is formulated for the general case of the multi-group theory; it is successfully tested for the one-group approximation, for a depleted control rod of the Greek Research Reactor, containing five neutron absorbers. The computations reproduce satisfactorily the irradiated rod worth measurements, practically eliminating the discrepancy of the total rod worth, compared to the computations based on the nominal absorber densities.
Granular materials interacting with thin flexible rods
Neto, Alfredo Gay; Campello, Eduardo M. B.
2016-01-01
In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.
Heat transfer in bundles of finned tubes in crossflow
Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.; Hewitt, G.F.
1986-01-01
This book provides correlations of heat transfer and hydraulic data for bundles of finned tubes in crossflow at high Reynolds numbers. Results of studies of the effectiveness of the fin, local, and mean heat transfer coefficients are presented. The effect of geometric parameters of the fins and of the location of tubes in the bundle on heat transfer and hydraulic drag are described. The resistance of the finned tube bundles under study and other factors are examined.
Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles
Rickman, S. L.; Iamello, C. J.
2016-01-01
Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.
Isothermal microcalorimetry, a tool for probing SWNT bundles.
Marquis, Renaud; Greco, Carla; Schultz, Patrick; Meunier, Stéphane; Mioskowski, Charles
2009-11-01
The bundling state of several dry single-walled carbon nanotube (SWNT) samples is compared using isothermal microcalorimetry (IMC). So as to get different dry samples with various bundling states, the pristine SWNTs were pretreated with a solution of an aromatic amphiphile with or without sonication, washed and dried before being studied by IMC. The bundling state of the different SWNT samples, which was first analyzed by TEM, was then correlated to the obtained IMC data thanks to the interpretation of the observed energy transfer phenomena. From our results, IMC appears to be an interesting technique for the surface probing of dry SWNT samples, and herein for the evaluation of the bundling state.
Restriction Theorem for Principal bundles in Arbitrary Characteristic
Gurjar, Sudarshan
2015-01-01
The aim of this paper is to prove two basic restriction theorem for principal bundles on smooth projective varieties in arbitrary characteristic generalizing the analogues theorems of Mehta-Ramanathan for vector bundles. More precisely, let G be a reductive algebraic group over an algebraically...... closed field k and let X be a smooth, projective variety over k together with a very ample line bundle O(1). The main result of the paper is that if E is a semistable (resp. stable) principal G-bundle on X w.r.t O(1), then the restriction of E to a general, high multi-degree, complete-intersection curve...
Parrikar, Onkar [Birla Institute of Technology and Science-Pilani, Goa campus, Zuarinagar, Goa 4032726 (India)], E-mail: onkarsp@gmail.com
2010-03-15
The behaviour of a quantum rod, pivoted at its lower end on an impenetrable floor and restricted to moving in the vertical plane under the gravitational potential, is studied analytically under the approximation that the rod is initially localized to a 'small-enough' neighbourhood around the point of classical unstable equilibrium. It is shown that the rod evolves out of this neighbourhood. The time required for this to happen, i.e. the tipping time, is calculated using the semi-classical path integral. It is shown that equilibrium is recovered in the classical limit, and that our calculations are consistent with the uncertainty principle.
High temperature control rod assembly
Vollman, R.E.
1991-12-24
This patent describes a control rod assembly for use in nuclear reactor control. It comprises segments, each the segment being made of a graphite composite material, each the segment having a chamber for containing neutron-absorbing material, wherein the chamber compromises a hollow cylindrical sleeve having a first end formed with an opening for receiving the neutron-absorbing material, and having a second end formed with a sleeve bore and an outer sleeve surface; a cylindrical weight-bearing support post positioned substantially centrally of the sleeve, the support post having a first end formed as a ball surface portion and a second end formed as a ball surface portion and a second end formed as a shaft, the shaft being engageable with the sleeve bore for rigidly coupling the support post axially within the hollow sleeve, a hollow cylindrical collar having a socket lip portion correspondingly shaped to receive the ball surface portion of an adjacent support post, and having an inner surface for engaging the outer sleeve surface on the second end of the sleeve to rigidly couple the collar to the sleeve.
Bundled capillary electrophoresis using microstructured fibres.
Rogers, Benjamin; Gibson, Graham T T; Oleschuk, Richard D
2011-01-01
Joule heating, arising from the electric current passing through the capillary, causes many undesired effects in CE that ultimately result in band broadening. The use of narrow-bore capillaries helps to solve this problem as smaller cross-sectional area results in decreased Joule heating and the rate of heat dissipation is increased by the larger surface-to-volume ratio. Issues arising from such small capillaries, such as poor detection sensitivity, low loading capacity and high flow-induced backpressure (complicating capillary loading) can be avoided by using a bundle of small capillaries operating simultaneously that share buffer reservoirs. Microstructured fibres, originally designed as waveguides in the telecommunication industry, are essentially a bundle of parallel ∼5 μm id channels that extend the length of a fibre having otherwise similar dimensions to conventional CE capillaries. This work presents the use of microstructured fibres for CZE, taking advantage of their relatively high surface-to-volume ratio and the small individual size of each channel to effect highly efficient separations, particularly for dye-labelled peptides.
Development boiling to sprinkled tube bundle
Kracík Petr
2016-01-01
Full Text Available This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes’ interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.
Development boiling to sprinkled tube bundle
Kracík, Petr; Pospíšil, Jiří
2016-03-01
This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes' interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.
Nichita, E., E-mail: Eleodor.Nichita@uoit.ca; Haroon, J., E-mail: Jawad.Haroon@uoit.ca
2016-10-15
Highlights: • A 37-element fuel bundle modified for {sup 99}Mo production in CANDU reactors is presented. • The modified bundle is neutronically and thermal-hydraulically equivalent to the standard bundle. • The modified bundle satisfies all safety criteria satisfied by the standard bundle. - Abstract: {sup 99m}Tc, the most commonly used radioisotope in diagnostic nuclear medicine, results from the radioactive decay of {sup 99}Mo which is currently being produced at various research reactors around the globe. In this study, the potential use of CANDU power reactors for the production of {sup 99}Mo is investigated. A modified 37-element fuel bundle, suitable for the production of {sup 99}Mo in existing CANDU-type reactors is proposed. The new bundle is specifically designed to be neutronically and thermal-hydraulically equivalent to the standard 37-element CANDU fuel bundle in normal, steady-state operation and, at the same time, be able to produce significant quantities of {sup 99}Mo when irradiated in a CANDU reactor. The proposed bundle design uses fuel pins consisting of a depleted-uranium centre surrounded by a thin layer of low-enriched uranium. The new molybdenum-producing bundle is analyzed using the lattice transport code DRAGON and the diffusion code DONJON. The proposed design is shown to produce 4081 six-day Curies of {sup 99}Mo activity per bundle when irradiated in the peak-power channel of a CANDU core, while maintaining the necessary reactivity and power rating limits. The calculated {sup 99}Mo yield corresponds to approximately one third of the world weekly demand. A production rate of ∼3 bundles per week can meet the global demand of {sup 99}Mo.
Experiments on silver-indium-cadmium control rod failure during severe accident sequences
Steinbrueck, M.; Stegmaier, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)
2010-05-15
Silver-indium-cadmium (SIC) alloy is used as neutron absorber material in control rods (CR) of Pressurized Water Reactors (PWR). It is the material with the lowest melting temperature (approx. 1100 K) among all metallic and ceramic materials applied in nuclear reactors. During a hypothetical severe accident the SIC melt is kept in its stainless steel (SS) cladding tube as long as this is intact. After failure of the cladding tube by eutectic interaction with the Zircaloy-4 (Zry-4) guide tube or latest by reaching the SS melting temperature SIC elements are released and may interact with other core components. Furthermore, Ag-In-Cd are one of the main contributors to aerosol release in the reactor cooling system and may strongly influence nature and transport of fission products in the primary circuit and later on in the containment. The bundle experiment QUENCH-13 with prototypical SIC control rod as well as two series of single-rod tests with 10-cm long CR segments were performed at Karlsruhe Institute of Technology (KIT, former FZK) in order to improve the data base on SIC CR degradation and aerosol release. This paper concentrates on the degradation and failure mechanisms of SIC CRs as well as on the interaction between SIC absorber melt with other core components. (orig.)
Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors
Bakosi, J; Lowrie, R B; Pritchett-Sheats, L A; Nourgaliev, R R
2013-01-01
The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3x3 and 5x5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carried out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the single-phase incompressible Navier-Stokes equations. The simulations explicitly resolve the la...
Masataka Deie
2015-01-01
Full Text Available Background. Posterior cruciate ligament (PCL injuries are not rare in acute knee injuries, and several recent anatomical studies of the PCL and reconstructive surgical techniques have generated improved patient results. Now, we have evaluated PCL reconstructions performed by either the single-bundle or double-bundle technique in a patient group followed up retrospectively for more than 10 years. Methods. PCL reconstructions were conducted using the single-bundle (27 cases or double-bundle (13 cases method from 1999 to 2002. The mean age at surgery was 34 years in the single-bundle group and 32 years in the double-bundle group. The mean follow-up period was 12.5 years. Patients were evaluated by Lysholm scoring, the gravity sag view, and knee arthrometry. Results. The Lysholm score after surgery was 89.1±5.6 points for the single-bundle group and 91.9±4.5 points for the double-bundle group. There was no significant difference between the methods in the side-to-side differences by gravity sag view or knee arthrometer evaluation, although several cases in both groups showed a side-to-side difference exceeding 5 mm by the latter evaluation method. Conclusions. We found no significant difference between single- and double-bundle PCL reconstructions during more than 10 years of follow-up.
Safety assessment for the CANFLEX-NU fuel bundles with respect to the 37-element fuel bundles
Suk, H. C.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-11-01
The KAERI and AECL have jointly developed an advanced CANDU fuel, called CANFLEX-NU fuel bundle. CANFLEX 43-element bundle has some improved features of increased operating margin and enhanced safety compared to the existing 37-element bundle. Since CANFLEX fuel bundle is designed to be compatible with the CANDU-6 reactor design, the behaviour in the thermalhydraulic system will be nearly identical with 37-element bundle. But due to different element design and linear element power distribution between the two bundles, it is expected that CANFLEX fuel behaviour would be different from the behaviour of the 37-element fuel. Therefore, safety assessments on the design basis accidents which result if fuel failures are performed. For all accidents selected, it is observed that the loading of CANFLEX bundle in an existing CANDU-6 reactor would not worsen the reactor safety. It is also predicted that fission product release for CANFLEX fuel bundle generally is lower than that for 37-element bundle. 3 refs., 2 figs., 2 tabs. (Author)
Chhabildas, L.C.; Furnish, M.D.; Reinhart, W.D. [Sandia National Labs., Albuquerque, NM (United States); Grady, D.E. [Applied Research Associates, Inc., Albuquerque, NM (United States)
1997-10-01
Gas guns and velocity interferometric techniques have been used to determine the loading behavior of an AD995 alumina rod 19 mm in diameter by 75 mm and 150 mm long, respectively. Graded-density materials were used to impact both bare and sleeved alumina rods while the velocity interferometer was used to monitor the axial-velocity of the free end of the rods. Results of these experiments demonstrate that (1) a time-dependent stress pulse generated during impact allows an efficient transition from the initial uniaxial strain loading to a uniaxial stress state as the stress pulse propagates through the rod, and (2) the intermediate loading rates obtained in this configuration lie between split Hopkinson bar and shock-loading techniques.
Computer simulation of rod-sphere mixtures
Antypov, D
2003-01-01
Results are presented from a series of simulations undertaken to investigate the effect of adding small spherical particles to a fluid of rods which would otherwise represent a liquid crystalline (LC) substance. Firstly, a bulk mixture of Hard Gaussian Overlap particles with an aspect ratio of 3:1 and hard spheres with diameters equal to the breadth of the rods is simulated at various sphere concentrations. Both mixing-demixing and isotropic-nematic transition are studied using Monte Carlo techniques. Secondly, the effect of adding Lennard-Jones particles to an LC system modelled using the well established Gay-Berne potential is investigated. These rod-sphere mixtures are simulated using both the original set of interaction parameters and a modified version of the rod-sphere potential proposed in this work. The subject of interest is the internal structure of the binary mixture and its dependence on density, temperature, concentration and various parameters characterising the intermolecular interactions. Both...
Bouncing Balls and Hot Rod Races.
Tibbs, Peggy; Sherrill, Donna
This paper presents the Bouncing Ball Experiment which models quadratic and exponential functions, and the Hot Rod Races activity that explores velocity and acceleration. Activities include directions for the use of TI-82 and TI-83 calculators. (YDS)
Coherent hollow-core waveguide bundles for thermal imaging.
Gal, Udi; Harrington, James; Ben-David, Moshe; Bledt, Carlos; Syzonenko, Nicholas; Gannot, Israel
2010-09-01
There has been very little work done in the past to extend the wavelength range of fiber image bundles to the IR range. This is due, in part, to the lack of IR transmissive fibers with optical and mechanical properties analogous to the oxide glass fibers currently employed in the visible fiber bundles. Our research is aimed at developing high-resolution hollow-core coherent IR fiber bundles for transendoscopic infrared imaging. We employ the hollow glass waveguide (HGW) technology that was used successfully to make single-HGWs with Ag/AgI thin film coatings to form coherent bundles for IR imaging. We examine the possibility of developing endoscopic systems to capture thermal images using hollow waveguide fiber bundles adjusted to the 8-10?mum spectral range and investigate the applicability of such systems. We carried out a series of measurements in order to characterize the optical properties of the fiber bundles. These included the attenuation, resolution, and temperature response. We developed theoretical models and simulation tools that calculate the light propagation through HGW bundles, and which can be used to calculate the optical properties of the fiber bundles. Finally, the HGW fiber bundles were used to transmit thermal images of various heated objects; the results were compared with simulation results. The experimental results are encouraging, show an improvement in the resolution and thermal response of the HGW fiber bundles, and are consistent with the theoretical results. Nonetheless, additional improvements in the attenuation of the bundles are required in order to be able to use this technology for medical applications.
Double-clad nuclear fuel safety rod
McCarthy, William H.; Atcheson, Donald B.; Vaidyanathan, Swaminathan
1984-01-01
A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.
Microelectrophoresis of Silica Rods Using Confocal Microscopy.
Bakker, Henriëtte E; Besseling, Thijs H; Wijnhoven, Judith E G J; Helfferich, Peter H; van Blaaderen, Alfons; Imhof, Arnout
2017-01-31
The electrophoretic mobility and the zeta potential (ζ) of fluorescently labeled colloidal silica rods, with an aspect ratio of 3.8 and 6.1, were determined with microelectrophoresis measurements using confocal microscopy. In the case where the colloidal particles all move at the same speed parallel to the direction of the electric field, we record a xyz-stack over the whole depth of the capillary. This method is faster and more robust compared to taking xyt-series at different depths inside the capillary to obtain the parabolic flow profile, as was done in previous work from our group. In some cases, rodlike particles do not move all at the same speed in the electric field, but exhibit a velocity that depends on the angle between the long axis of the rod and the electric field. We measured the orientation-dependent velocity of individual silica rods during electrophoresis as a function of κa, where κ(-1) is the double layer thickness and a is the radius of the rod associated with the diameter. Thus, we determined the anisotropic electrophoretic mobility of the silica rods with different sized double layers. The size of the double layer was tuned by suspending silica rods in different solvents at different electrolyte concentrations. We compared these results with theoretical predictions. We show that even at already relatively high κa when the Smoluchowski limiting law is assumed to be valid (κa > 10), an orientation dependent velocity was measured. Furthermore, we observed that at decreasing values of κa the anisotropy in the electrophoretic mobility of the rods increases. However, in low polar solvents with κa < 1, this trend was reversed: the anisotropy in the electrophoretic mobility of the rods decreased. We argue that this decrease is due to end effects, which was already predicted theoretically. When end effects are not taken into account, this will lead to strong underestimation of the experimentally determined zeta potential.
High Power Performance of Rod Fiber Amplifiers
Johansen, Mette Marie; Michieletto, Mattia; Kristensen, Torben
2015-01-01
An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W.......An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W....
IMPACT CONICAL ROD ON HARD LIMITER
Ulitin G.
2014-12-01
Full Text Available The problem is considered of longitudinal impact conical rod in article. A recommendation on the use of the approximate method of calculation is based on an analysis of the influence of design parameters on the value of the main oscillation frequency. There was obtained an equation of the displacement and stress of the rod. Engineering dependence has been proposed to determine the maximum force in the impact section.
Self-diagnosing braided composite rod
Fangueiro, Raúl; Zdraveva, E.; Pereira, Cristiana Gonilho; Ferreira, A; Lanceros-Méndez, S.
2010-01-01
This paper presents the development of a braided reinforced composite rod (BCR) able to both reinforce and monitor the stress state of concrete structures. Carbon fibers have been used as sensing and reinforcing materials along with glass fiber. Various composites rods have been produced using an author patented technique based on a modified conventional braiding machine. The materials investigated were prepared with different carbon fiber content as follows: BCR2 (77% glass/23...
Measurements of control rod efficiency in RBMK critical assembly upon dropping of the rods
Zhitarev, V. E., E-mail: vejitarev@nnrd.kiae.su; Kachanov, V. M.; Sergevnin, A. Yu.; Lebedev, G. V., E-mail: lgv2004@mail.ru [National Research Center Kurchatov Institute (Russian Federation)
2014-12-15
The efficiency of control rods in the RBMK critical assembly was measured in the case where one manual-control rod (MCR) is dropped from a steady critical state, and several other MCRs were additionally dropped after 44 s. The measured number of neutrons in the assembly during and after dropping of the rods was used to calculate the efficiency values of the rods by solution of the system of point kinetics equations. A series of methods of the initial data treatment for determination of the desired values of reactivity without the calculated corrections were used.
Measurements of control rod efficiency in RBMK critical assembly upon dropping of the rods
Zhitarev, V. E.; Kachanov, V. M.; Sergevnin, A. Yu.; Lebedev, G. V.
2014-12-01
The efficiency of control rods in the RBMK critical assembly was measured in the case where one manual-control rod (MCR) is dropped from a steady critical state, and several other MCRs were additionally dropped after 44 s. The measured number of neutrons in the assembly during and after dropping of the rods was used to calculate the efficiency values of the rods by solution of the system of point kinetics equations. A series of methods of the initial data treatment for determination of the desired values of reactivity without the calculated corrections were used.
High-throughput rod-induced electrospinning
Wu, Dezhi; Xiao, Zhiming; Teh, Kwok Siong; Han, Zhibin; Luo, Guoxi; Shi, Chuan; Sun, Daoheng; Zhao, Jinbao; Lin, Liwei
2016-09-01
A high throughput electrospinning process, directly from flat polymer solution surfaces induced by a moving insulating rod, has been proposed and demonstrated. Different rods made of either phenolic resin or paper with a diameter of 1-3 cm and a resistance of about 100-500 MΩ, has been successfully utilized in the process. The rod is placed approximately 10 mm above the flat polymer solution surface with a moving speed of 0.005-0.4 m s-1 this causes the solution to generate multiple liquid jets under an applied voltage of 15-60 kV for the tip-less electrospinning process. The local electric field induced by the rod can boost electrohydrodynamic instability in order to generate Taylor cones and liquid jets. Experimentally, it is found that a large rod diameter and a small solution-to-rod distance can enhance the local electrical field to reduce the magnitude of the applied voltage. In the prototype setup with poly (ethylene oxide) polymer solution, an area of 5 cm × 10 cm and under an applied voltage of 60 kV, the maximum throughput of nanofibers is recorded to be approximately144 g m-2 h-1.
Rigid rod anchored to infinite membrane.
Guo, Kunkun; Qiu, Feng; Zhang, Hongdong; Yang, Yuliang
2005-08-15
We investigate the shape deformation of an infinite membrane anchored by a rigid rod. The density profile of the rod is calculated by the self-consistent-field theory and the shape of the membrane is predicted by the Helfrich membrane elasticity theory [W. Helfrich, Z. Naturforsch. 28c, 693 (1973)]. It is found that the membrane bends away from the rigid rod when the interaction between the rod and the membrane is repulsive or weakly attractive (adsorption). However, the pulled height of the membrane at first increases and then decreases with the increase of the adsorption strength. Compared to a Gaussian chain with the same length, the rigid rod covers much larger area of the membrane, whereas exerts less local entropic pressure on the membrane. An evident gap is found between the membrane and the rigid rod because the membrane's curvature has to be continuous. These behaviors are compared with that of the flexible-polymer-anchored membranes studied by previous Monte Carlo simulations and theoretical analysis. It is straightforward to extend this method to more complicated and real biological systems, such as infinite membrane/multiple chains, protein inclusion, or systems with phase separation.
Long-Rod Moving-Plate Interaction
Partom, Y.
2002-07-01
Understanding the mechanics of interaction of a long rod projectile with a forward moving plate at an angle is essential to understanding long rod interaction with an explosive reactive armor cassette. To investigate the mechanics of such an interaction we use AUTODIN2D/EULER in plane geometry, although the problem is 3D. We assume that this is a satisfactory approximation, as we're only interested in the main features, and are not comparing fine details to experimental results. From the simulations we learn that the interaction never reaches steady state. Initially each material splits into two streams, and the interaction plane is perpendicular to the rod. But with time the interaction plane rotates slowly, until it becomes parallel to the rod, which is then able to continue moving forward without interruption. During this process interacting rod material of length DeltaL is diverted at an angle and becomes ineffective for penetrating the main target. We made many such runs to determine the dependence of DeltaL on the parameters of the problem. This dependence makes it possible to predict DeltaL for a variety of rod-plate situations.
Topological optimisation of rod-stirring devices
Finn, Matthew D
2011-01-01
There are many industrial situations where rods are used to stir a fluid, or where rods repeatedly stretch a material such as bread dough or taffy. The goal in these applications is to stretch either material lines (in a fluid) or the material itself (for dough or taffy) as rapidly as possible. The growth rate of material lines is conveniently given by the topological entropy of the rod motion. We discuss the problem of optimising such rod devices from a topological viewpoint. We express rod motions in terms of generators of the braid group, and assign a cost based on the minimum number of generators needed to write the braid. We show that for one cost function -- the topological entropy per generator -- the optimal growth rate is the logarithm of the golden ratio. For a more realistic cost function,involving the topological entropy per operation where rods are allowed to move together, the optimal growth rate is the logarithm of the silver ratio, $1+\\sqrt{2}$. We show how to construct devices that realise th...
International symposium on fuel rod simulators: development and application
McCulloch, R.W. (comp.)
1981-05-01
Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.
Non-abelian higher gauge theory and categorical bundle
Viennot, David
2012-01-01
A gauge theory is associated with a principal bundle endowed with a connection permitting to define horizontal lifts of paths. The horizontal lifts of surfaces cannot be defined into a principal bundle structure. An higher gauge theory is an attempt to generalize the bundle structure in order to describe horizontal lifts of surfaces. A such attempt is particularly difficult for the non-abelian case. Some structures have been proposed to realize this goal (twisted bundle, gerbes with connection, bundle gerbe, 2-bundle). Each of them uses a category in place of the total space manifold of the usual principal bundle structure. Some of them replace also the structure group by a category (more precisely a Lie crossed module viewed as a category). But the base space remains still a simple manifold (possibly viewed as a trivial category with only identity arrows). We propose a new principal categorical bundle structure, with a Lie crossed module as structure groupoid, but with a base space belonging to a bigger clas...
Presenting Lexical Bundles for Explicit Noticing with Schematic Linguistic Representation
Thomson, Haidee Elizabeth
2016-01-01
Lexical bundles are essential for fluency, but their incompleteness is a stumbling block for learners. In this study, two presentation methods to increase awareness of lexical bundles through explicit noticing are explored and compared with incidental exposure. The three conditions in this study were as follows: noticing with schematic linguistic…
Smooth Bundling of Large Streaming and Sequence Graphs
Hurter, C.; Ersoy, O.; Telea, A.
2013-01-01
Dynamic graphs are increasingly pervasive in modern information systems. However, understanding how a graph changes in time is difficult. We present here two techniques for simplified visualization of dynamic graphs using edge bundles. The first technique uses a recent image-based graph bundling met
Helical twist controls the thickness of F-actin bundles
Claessens, M.M.A.E.; Semmrich, C.; Ramos, L.; Bausch, A.R.
2008-01-01
In the presence of condensing agents such as nonadsorbing polymer, multivalent counter ions, and specific bundling proteins, chiral biopolymers typically form bundles with a finite thickness, rather than phase-separating into a polymer-rich phase. Although short-range repulsive interactions or geome
Lexical Bundles in L1 and L2 Academic Writing
Chen, Yu-Hua; Baker, Paul
2010-01-01
This paper adopts an automated frequency-driven approach to identify frequently-used word combinations (i.e., "lexical bundles") in academic writing. Lexical bundles retrieved from one corpus of published academic texts and two corpora of student academic writing (one L1, the other L2), were investigated both quantitatively and qualitatively.…
Lexical Bundles: Facilitating University "Talk" in Group Discussions
Heng, Chan Swee; Kashiha, Hadi; Tan, Helen
2014-01-01
Group discussion forms an integral language experience for most language learners, providing them with an opportunity to express themselves in a naturalistic setting. Multi-word expressions are commonly used and one of them is lexical bundles. Lexical bundles are types of extended collocations that occur more commonly than we expect; they are…
Vector bundles of rank 2 computing Clifford indices
Lange, H
2010-01-01
Clifford indices of vector bundles on algebraic curves were introduced in a previous paper of the authors. In this paper we study bundles of rank 2 which compute these Clifford indices. This is of particular interest in the light of recently discovered counterexamples to a conjecture of Mercat.
On the general elephant conjecture for Mori conic bundles
Prokhorov, Yu G
1996-01-01
Let $f:X\\to S$ be an extremal contraction from a threefolds with terminal singularities onto a surface (so called Mori conic bundle). We study some particular cases of such contractions: quotients of usual conic bundles and index two contractions. Assuming Reid's general elephants conjecture we also obtain a rough classification. We present many examples.
Subanalytic Bundles and Tubular Neighbourhoods of Zero-Loci
Vishwambhar Pati
2003-08-01
We introduce the natural and fairly general notion of a subanalytic bundle (with a finite dimensional vector space of sections) on a subanalytic subset of a real analytic manifold , and prove that when is compact, there is a Baire subset of sections in whose zero-loci in have tubular neighbourhoods, homeomorphic to the restriction of the given bundle to these zero-loci.
Computational imaging through a fiber-optic bundle
Lodhi, Muhammad A.; Dumas, John Paul; Pierce, Mark C.; Bajwa, Waheed U.
2017-05-01
Compressive sensing (CS) has proven to be a viable method for reconstructing high-resolution signals using low-resolution measurements. Integrating CS principles into an optical system allows for higher-resolution imaging using lower-resolution sensor arrays. In contrast to prior works on CS-based imaging, our focus in this paper is on imaging through fiber-optic bundles, in which manufacturing constraints limit individual fiber spacing to around 2 μm. This limitation essentially renders fiber-optic bundles as low-resolution sensors with relatively few resolvable points per unit area. These fiber bundles are often used in minimally invasive medical instruments for viewing tissue at macro and microscopic levels. While the compact nature and flexibility of fiber bundles allow for excellent tissue access in-vivo, imaging through fiber bundles does not provide the fine details of tissue features that is demanded in some medical situations. Our hypothesis is that adapting existing CS principles to fiber bundle-based optical systems will overcome the resolution limitation inherent in fiber-bundle imaging. In a previous paper we examined the practical challenges involved in implementing a highly parallel version of the single-pixel camera while focusing on synthetic objects. This paper extends the same architecture for fiber-bundle imaging under incoherent illumination and addresses some practical issues associated with imaging physical objects. Additionally, we model the optical non-idealities in the system to get lower modelling errors.
Parabolic stable Higgs bundles over complete noncompact Riemann surfaces
李嘉禹; 王友德
1999-01-01
Let M be an open Riemann surface with a finite set of punctures, a complete Poincar(?)-like metric is introduced near the punctures and the equivalence between the stability of an indecomposable parabolic Higgs bundle, and the existence of a Hermitian-Einstein metric on the bundle is established.
Lexical Bundles in L1 and L2 Academic Writing
Chen, Yu-Hua; Baker, Paul
2010-01-01
This paper adopts an automated frequency-driven approach to identify frequently-used word combinations (i.e., "lexical bundles") in academic writing. Lexical bundles retrieved from one corpus of published academic texts and two corpora of student academic writing (one L1, the other L2), were investigated both quantitatively and qualitatively.…
An integral Riemann-Roch theorem for surface bundles
Madsen, Ib Henning
2010-01-01
This paper is a response to a conjecture by T. Akita about an integral Riemann–Roch theorem for surface bundles.......This paper is a response to a conjecture by T. Akita about an integral Riemann–Roch theorem for surface bundles....
On the Classification of Complex Vector Bundles of Stable Rank
Constantin Bǎnicǎ; Mihai Putinar
2006-08-01
One describes, using a detailed analysis of Atiyah–Hirzebruch spectral sequence, the tuples of cohomology classes on a compact, complex manifold, corresponding to the Chern classes of a complex vector bundle of stable rank. This classification becomes more effective on generalized flag manifolds, where the Lie algebra formalism and concrete integrability conditions describe in constructive terms the Chern classes of a vector bundle.
Bundled automobile insurance coverage and accidents.
Li, Chu-Shiu; Liu, Chwen-Chi; Peng, Sheng-Chang
2013-01-01
This paper investigates the characteristics of automobile accidents by taking into account two types of automobile insurance coverage: comprehensive vehicle physical damage insurance and voluntary third-party liability insurance. By using a unique data set in the Taiwanese automobile insurance market, we explore the bundled automobile insurance coverage and the occurrence of claims. It is shown that vehicle physical damage insurance is the major automobile coverage and affects the decision to purchase voluntary liability insurance coverage as a complement. Moreover, policyholders with high vehicle physical damage insurance coverage have a significantly higher probability of filing vehicle damage claims, and if they additionally purchase low voluntary liability insurance coverage, their accident claims probability is higher than those who purchase high voluntary liability insurance coverage. Our empirical results reveal that additional automobile insurance coverage information can capture more driver characteristics and driving behaviors to provide useful information for insurers' underwriting policies and to help analyze the occurrence of automobile accidents.
Habibi, Somayeh
2011-01-01
Let $G$ be a reductive algebraic group over a perfect field $k$ and $\\mathcal{G}$ a $G$-bundle over a scheme $X/k$. The main aim of this article is to study the motive associated with $\\mathcal{G}$, inside the Veovodsky Motivic categories. We consider the case that $\\charakt k=0$ (resp. $\\charakt k\\geq 0$), the motive associated to $X$ is geometrically mixed Tate (resp. geometrically cellular) and $\\mathcal{G}$ is locally trivial for the Zariski (resp. \\'etale) topology on $X$ and show that the motive of $\\mathcal{G}$ is a geometrically mixed Tate motive. Moreover for a general $X$ we construct a filtration on the motive associated to $\\mathcal{G}$ in terms of weight polytopes. Along the way we give some applications and examples.
Fiber bundle model under fluid pressure
Amitrano, David; Girard, Lucas
2016-03-01
Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting.
Artificial ciliary bundles with nano fiber tip links
Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael
2015-01-01
Mechanosensory ciliary bundles in fishes are the inspiration for carefully engineered artificial flow sensors. We report the development of a new class of ultrasensitive MEMS flow sensors that mimic the intricate morphology of the ciliary bundles, including the stereocilia, tip links, and the cupula, and thereby achieve threshold detection limits that match the biological example. An artificial ciliary bundle is achieved by fabricating closely-spaced arrays of polymer micro-pillars with gradiating heights. Tip links that form the fundamental sensing elements are realized through electrospinning aligned PVDF piezoelectric nano-fibers that link the distal tips of the polymer cilia. An optimized synthesis of hyaluronic acid-methacrylic anhydride hydrogel that results in properties close to the biological cupula, together with drop-casting method are used to form the artificial cupula that encapsulates the ciliary bundle. In testing, fluid drag force causes the ciliary bundle to slide, stretching the flexible nan...
HORIZONTAL LAPLACE OPERATOR IN REAL FINSLER VECTOR BUNDLES
无
2008-01-01
A vector bundle F over the tangent bundle TM of a manifold M is said to be a Finsler vector bundle if it is isomorphic to the pull-back π*E of a vector bundle E over M([1]). In this article the authors study the h-Laplace operator in Finsler vector bundles.An h-Laplace operator is defined, first for functions and then for horizontal Finsler forms on E. Using the h-Laplace operator, the authors define the h-harmonic function and h-harmonic horizontal Finsler vector fields, and furthermore prove some integral formulas for the h-Laplace operator, horizontal Finsler vector fields, and scalar fields on E.
The 2-Hilbert Space of a Prequantum Bundle Gerbe
Bunk, Severin; Szabo, Richard J
2016-01-01
We construct a prequantum 2-Hilbert space for any line bundle gerbe whose Dixmier-Douady class is torsion. Analogously to usual prequantisation, this 2-Hilbert space has the category of sections of the line bundle gerbe as its underlying 2-vector space. These sections are obtained as certain morphism categories in Waldorf's version of the 2-category of line bundle gerbes. We show that these morphism categories carry a monoidal structure under which they are semisimple and abelian. We introduce a dual functor on the sections, which yields a closed structure on the morphisms between bundle gerbes and turns the category of sections into a 2-Hilbert space. We discuss how these 2-Hilbert spaces fit various expectations from higher prequantisation. We then extend the transgression functor to the full 2-category of bundle gerbes and demonstrate its compatibility with the additional structures introduced. We discuss various aspects of Kostant-Souriau prequantisation in this setting, including its dimensional reductio...
Bundles over Quantum RealWeighted Projective Spaces
Tomasz Brzeziński
2012-09-01
Full Text Available The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that generalises the quantum disc, so do the constructed principal bundles. In the negative case the principal bundle is proven to be non-trivial and associated projective modules are described. In the positive case the principal bundles turn out to be trivial, and so all the associated modules are free. It is also shown that the circle (coactions on the quantum Seifert manifold that define quantum real weighted projective spaces are almost free.
A geometric approach to noncommutative principal torus bundles
Wagner, Stefan
2013-01-01
for noncommutative algebras and say that a dynamical system (A, 핋n,α) is called a noncommutative principal 핋n-bundle, if localization leads to a trivial noncommutative principal 핋n-bundle. We prove that this approach extends the classical theory of principal torus bundles and present a bunch of (nontrivial......A (smooth) dynamical system with transformation group 핋n is a triple (A, 핋n,α), consisting of a unital locally convex algebra A, the n-torus 핋n and a group homomorphism α:핋n→Aut(A), which induces a (smooth) continuous action of 핋n on A. In this paper, we present a new, geometrically oriented...... approach to the noncommutative geometry of principal torus bundles based on such dynamical systems. Our approach is inspired by the classical setting: In fact, after recalling the definition of a trivial noncommutative principal torus bundle, we introduce a convenient (smooth) localization method...
Morse theory for the space of Higgs G-bundles
Biswas, Indranil
2010-01-01
Fix a $C^\\infty$ principal $G$--bundle $E^0_G$ on a compact connected Riemann surface $X$, where $G$ is a connected complex reductive linear algebraic group. We consider the gradient flow of the Yang--Mills--Higgs functional on the cotangent bundle of the space of all smooth connections on $E^0_G$. We prove that this flow preserves the subset of Higgs $G$--bundles, and, furthermore, the flow emanating from any point of this subset has a limit. Given a Higgs $G$--bundle, we identify the limit point of the integral curve passing through it. These generalize the results of the second named author on Higgs vector bundles.
[Bundle-branch block depending on the heart rate].
Apostolov, L
1975-01-01
Five patients are reported, admitted to the hospital, with diseases predominantly of the cardio-vascular system. During the electrocardiographic examinations bundle branch block was established, depending on heart rate. It fluctuated within the physiological limits from 50 to 90/min. In three of the patients, the bundle branch block appeared with the quickening of the heart rate (tachycardia-depending bundle branch block) and in two of the patients--the bundle branch block appeared during the slowing down of the heart action and disappeared with its quickening (bradicardia-depending bundle branch block). A brief literature review is presented and attention is paid to the possible diagnostic errors and the treatment mode of those patients with cardiac tonic and antiarrhythmic medicaments.
Voltage- and calcium-dependent motility of saccular hair bundles
Quiñones, Patricia M.; Meenderink, Sebastiaan W. F.; Bozovic, Dolores
2015-12-01
Active bundle motility, which is hypothesized to supply feedback for mechanical amplification of signals, is thought to enhance sensitivity and sharpen tuning in vestibular and auditory organs. To study active hair bundle motility, we combined high-speed camera recordings of bullfrog sacculi, which were mounted in a two-compartment chamber, and voltage-clamp of the hair cell membrane potential. Using this paradigm, we measured three types of bundle motions: 1) spontaneous oscillations which can be analyzed to measure the physiological operating range of the transduction channel; 2) a sustained quasi-static movement of the bundle that depends on membrane potential; and 3) a fast, transient and asymmetric movement that resets the bundle position and depends on changes in the membrane potential. These data support a role for both calcium and voltage in the transduction-channel function.
Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes
Ilya Grigorenko
2013-01-01
Full Text Available Using Bogoliubov-de Gennes formalism for inhomogeneous systems, we have studied superconducting properties of a bundle of packed carbon nanotubes, making a triangular lattice in the bundle's transverse cross-section. The bundle consists of a mixture of metallic and doped semiconducting nanotubes, which have different critical transition temperatures. We investigate how a spatially averaged superconducting order parameter and the critical transition temperature depend on the fraction of the doped semiconducting carbon nanotubes in the bundle. Our simulations suggest that the superconductivity in the bundle will be suppressed when the fraction of the doped semiconducting carbon nanotubes will be less than 0.5, which is the percolation threshold for a two-dimensional triangular lattice.
Schalk, S.
1999-01-01
In contrast to the neo-classical theory of Arrow and Debreu, a model of a private ownership economy is presented, in which production and consumption bundles are treated separately. Each of the two types of bundles is assumed to establish a con- vex cone. Production technologies can convert producti
Schalk, S.
1999-01-01
In contrast to the neo-classical theory of Arrow and Debreu, a model of a private ownership economy is presented, in which production and consumption bundles are treated separately. Each of the two types of bundles is assumed to establish a con- vex cone. Production technologies can convert
Regulatory perspective on incomplete control rod insertions
Chatterton, M.
1997-01-01
The incomplete control rod insertions experienced at South Texas Unit 1 and Wolf Creek are of safety concern to the NRC staff because they represent potential precursors to loss of shutdown margin. Even before it was determined if these events were caused by the control rods or by the fuel there was an apparent correlation of the problem with high burnup fuel. It was determined that there was also a correlation between high burnup and high drag forces as well as with rod drop time histories and lack of rod recoil. The NRC staff initial actions were aimed at getting a perspective on the magnitude of the problem as far as the number of plants and the amount of fuel that could be involved, as well as the safety significance in terms of shutdown margin. As tests have been performed and data has been analyzed the focus has shifted more toward understanding the problem and the ways to eliminate it. At this time the staff`s understanding of the phenomena is that it was a combination of factors including burnup, power history and temperature. The problem appears to be very sensitive to these factors, the interaction of which is not clearly understood. The model developed by Westinghouse provides a possible explanation but there is not sufficient data to establish confidence levels and sensitivity studies involving the key parameters have not been done. While several fixes to the problem have been discussed, no definitive fixes have been proposed. Without complete understanding of the phenomena, or fixes that clearly eliminate the problem the safety concern remains. The safety significance depends on the amount of shutdown margin lost due to incomplete insertion of the control rods. Were the control rods to stick high in the core, the reactor could not be shutdown by the control rods and other means such as emergency boration would be required.
Method and device for tensile testing of cable bundles
Robertson, Lawrence M; Ardelean, Emil V; Goodding, James C; Babuska, Vit
2012-10-16
A standard tensile test device is improved to accurately measure the mechanical properties of stranded cables, ropes, and other composite structures wherein a witness is attached to the top and bottom mounting blocks holding the cable under test. The witness is comprised of two parts: a top and a bottom rod of similar diameter with the bottom rod having a smaller diameter stem on its upper end and the top rod having a hollow opening in its lower end into which the stem fits forming a witness joint. A small gap is present between the top rod and the larger diameter portion of the bottom rod. A standard extensometer is attached to the top and bottom rods of the witness spanning this small witness gap. When a force is applied to separate the mounting blocks, the gap in the witness expands the same length that the entire test specimen is stretched.
Vasiliev, A., E-mail: vasil@ibrae.ac.ru [Nuclear Safety Institute (IBRAE), B. Tulskaya 52, 115191 Moscow (Russian Federation); Stuckert, J., E-mail: juri.stuckert@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2015-03-15
Highlights: • Modeling of processes in porous debris regions. • Analysis of coolability of massive debris bed. • Complexity of simulation of flow regime near boiling curve. - Abstract: The thermal hydraulic and SFD (Severe Fuel Damage) best estimate computer modeling code SOCRAT/V3 was used for the post-test analysis of the QUENCH-17 experiment performed at KIT on January 2013. The objective of this test was to examine the formation of a debris bed inside the completely oxidized region of the bundle without melt formation and to investigate the coolability behavior during the reflood. The test bundle for QUENCH-17 test was intentionally changed in comparison to basic QUENCH bundles (usually 21 heated rod simulators) with the emphasis to investigate debris behavior phenomena. Only 12 periphery fuel rod simulators were heated by centerline tungsten heaters. 9 unheated fuel rod simulators were located in the inner part of the test bundle. This is why the massive porous debris formation in the inner part of the bundle was not influenced by the presence of tungsten heaters. The QUENCH-17 test conditions simulated a hypothetical scenario of nuclear power plant severe accident sequence with debris bed formation in which the overheated up to 1800 K core would be flooded from the bottom by ECCS (Emergency Core Cooling System). The QUENCH-17 test included the following phases: (1) heat-up phase (heat-up rate up to 0.25 K/s); (2) oxidation phase (the cladding temperature about 1800 K in hottest region, steam mass flow rate 2 g/s); (3) bottom flood phase (characteristic cooling time about 600 s, water mass flow rate 10 g/s). SOCRAT/V3 computer modeling code was used for calculation of basic thermal hydraulic, oxidation and thermal mechanical behavior during all phases of the experiment. The calculated results are in a good agreement with experimental data which justifies the adequacy of modeling capabilities of SOCRAT code system.
Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional
2015-07-01
Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)
Bent Telescopic Rods in Patients With Osteogenesis Imperfecta.
Lee, R Jay; Paloski, Michael D; Sponseller, Paul D; Leet, Arabella I
2016-09-01
Telescopic rods require alignment of 2 rods to enable lengthening. A telescopic rod converts functionally into a solid rod if either rod bends, preventing proper engagement. Our goal was to characterize implant bending as a mode of failure of telescopic rods used in the treatment of osteogenesis imperfecta in children. We conducted a retrospective review of our osteogenesis imperfecta database for patients treated with intramedullary telescopic rods at our institution from 1992 through 2010 and identified 12 patients with bent rods. The 6 boys and 6 girls had an average age at the time of initial surgery of 3.1 years (range, 1.8 to 8.3 y) and a total of 51 telescoping rods. Clinic notes, operative reports, and radiographs were reviewed. The rods were analyzed for amount of lengthening, characteristics of bending, presence of cut out, or disengagement from an anchor point. Bends in the rods were characterized by their location on the implant component. The bent and straight rods were compared. Data were analyzed with the Mann-Whitney test (statistical significance set at P≤0.05). Of the 51 telescoping rods, 17 constructs (33%) bent. The average interval between surgery and rod bending was 4.0 years (range, 0.9 to 8.2 y). Before bending, 11 of 17 telescoping rods had routine follow-up radiographs for review. In 10 of the rods, bending was present when early signs of rod failure were first detected. Rod bending did not seem to be related to rod size. There was no area on the rod itself that seemed more susceptible to bending. Rod bending can be an early sign of impending rod failure. When rod bending is first noted, it may predispose the rod to other subsequent failures such as loss of proximal and distal fixation and cut out. Rod bending should be viewed as an indicator for closer monitoring of the patient and discussions regarding future need for rod exchange. Level III-retrospective review.
COBRA-IV: the model and the method
Stewart, C.W.; Wheeler, C.L.; Cena, R.J.; McMonagle, C.A.; Cuta, J.M.; Trent, D.S.
1977-07-01
The objective of this report is to present the mathematical basis of the COBRA-IV computer program (Wheeler et al., 1976) being developed by Battelle, Pacific Northwest Laboratory. The COBRA-IV code is an extended version of the COBRA-IIIC subchannel analysis code that computes the flow and enthalpy distributions in nuclear fuel rod bundles and cores for both steady state and transient conditions (Rowe, 1973).
Axial Vibration Confinement in Nonhomogenous Rods
S. Choura
2005-01-01
Full Text Available A design methodology for the vibration confinement of axial vibrations in nonhomogenous rods is proposed. This is achieved by a proper selection of a set of spatially dependent functions characterizing the rod material and geometric properties. Conditions for selecting such properties are established by constructing positive Lyapunov functions whose derivative with respect to the space variable is negative. It is shown that varying the shape of the rod alone is sufficient to confine the vibratory motion. In such a case, the vibration confinement requires that the eigenfunctions be exponentially decaying functions of space, where the notion of spatial domain stability is introduced as a concept dual to that of the time domain stability. It is also shown that vibration confinement can be produced if the rod density and/or stiffness are varied with respect to the space variable while the cross-section area is kept constant. Several case studies, supporting the developed conditions imposed on the spatially dependent functions for vibration confinement in vibrating rods, are discussed. Because variation in the geometric and material properties might decrease the critical buckling loads, we also discuss the buckling problem.
Wetting of a partially immersed compliant rod
Hui, Chung-Yuen; Jagota, Anand
2016-11-01
The force on a solid rod partially immersed in a liquid is commonly used to determine the liquid-vapor surface tension by equating the measured force required to remove the rod from the liquid to the vertical component of the liquid-vapor surface tension. Here, we study how this process is affected when the rod is compliant. For equilibrium, we enforce force and configurational energy balance, including contributions from elastic energy. We show that, in general, the contact angle does not equal that given by Young's equation. If surface stresses are tensile, the strain in the immersed part of the rod is found to be compressive and to depend only on the solid-liquid surface stress. The strain in the dry part of the rod can be either tensile or compressive, depending on a combination of parameters that we identify. We also provide results for compliant plates partially immersed in a liquid under plane strain and plane stress. Our results can be used to extract solid surface stresses from such experiments.
Single Rod Vibration in Axial Flow
Weichselbaum, Noah; Wang, Shengfu; Bardet, Philippe
2013-11-01
Fluid structure interaction of a single rod in axial flow is a coupled dynamical system present in many application including nuclear reactors, steam generators, and towed antenna arrays. Fluid-structure response can be quantified thanks to detailed experimental data where both structure and fluid responses are recorded. Such datum deepen understanding of the physics inherent to the system and provide high-dimensionality quantitative measurements to validate coupled structural and CFD codes with various level of complexity. In this work, single rods fixed on both ends in a concentric pipe, are subjected to an axial flow with Reynolds number based on hydraulic diameter of Re =4000. Rods of varying material stiffness and diameter are utilized in the experiment resulting in a range of dimensionless U between 0.5 and 1, where U = (ρA/EI)1/2uL. Experimental measurements of the velocity field around the rod are taken with PIV from time-resolved Nd:YLF laser and a high speed CMOS camera. Three-dimensional and temporal vibration and deflection of the rod is recorded with shadowgraphy utilizing two sets of pulsed high power LED and dedicated CMOS camera. Through integration of these two diagnostics, it is possible to reconstruct the full FSI domain providing unique validation data.
Dielectric rod feed for compact range reflector
Balabukha, Nikolay P; Shapkina, Natalia E
2014-01-01
A dielectric rod feed with a special radiation pattern of a tabletop form used for the compact range reflector is developed and analyzed. Application of this feed increases the size of the compact range quiet zone generated by the reflector. The feed consists of the dielectric rod made of polystyren, the rod is inserted into the circular waveguide with a corrugated flange. The waveguide is excited by the H11-mode. The rod is covered by the textolite biconical bushing and has a fluoroplastic insert in the vicinity of the bushing. Mathematical modeling was used to obtain the parameters of the feed for the optimal tabletop form of the radiation pattern. The problem of the electromagnetic radiation was solved for metal-dielectric bodies of rotation by method of integral equations with further solving of the problem of the synthesis for feed parameters. The dielectric rod feed was fabricated for the X-frequency range. Feed amplitude and phase patterns were measured in the frequency range 8.2-12.5 GHz. Presented re...
Bundling Actin Filaments From Membranes: Some Novel Players
Clément eThomas
2012-08-01
Full Text Available Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.
Rod consolidation at the West Valley Demonstration Project
Bailey, W.J.
1986-12-01
A rod consolidation demonstration with irradiated pressurized water reactor fuel was recently conducted by personnel from Nuclear Assurance Corporation and West Valley Nuclear Services Company at the West Valley Demonstration Project in West Valley, New York. The rod consolidation demonstration involved pulling all of the fuel rods from six fuel Assemblies. In general, the rod pulling proceeded smoothly. The highest compaction ratio attained was 1:8:1. Among the total of 1074 fuel rods were some known degraded rods (they had collapsed cladding, a result of in-reactor fuel densification), but no rods were broken or dropped during the demonstration. One aim was to gather information on the effect of rod consolidation operations on the integrity of the fuel rods during subsequent handling and storage. Another goal was to collect information on the condition and handling of intact, damaged, and failed fuel that has been in storage for an extended period. 9 refs., 8 figs., 1 tab.
Magnetic switch for reactor control rod. [LMFBR
Germer, J.H.
1982-09-30
A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.
Todreas, N.E.; Golay, M.W.; Wolf, L.
1978-01-01
An optical technique has been developed for the measurement of the eddy diffusivity of heat in a transparent flowing medium. The method uses a combination of two established measurement tools: a Mach--Zehnder interferometer for the monitoring of turbulently fluctuating temperature and a Laser Doppler Anemometer (LDA) for the measurement of turbulent velocity fluctuations. The technique is applied to the investigation of flow fields characteristic of the LMFBR outlet plenum. The study is accomplished using air as the working fluid in a small scale Plexiglas test section. Flows are introduced into both the 1/15 scale FFTF outlet plenum and the 3/80 scale CRBR geometry plenum at inlet Reynolds numbers of 22,000.
Bondage Numbers of C4 Bundles over a Cycle Cn
Moo Young Sohn
2013-01-01
Full Text Available Graph bundles generalize the notion of covering graphs and graph products. Graph bundles have been applied in computer architecture and communication networks. The bondage number is an important parameter for measuring the vulnerability and stability of the network domination under link failure. The bondage number b(G of a graph G is the minimum number of edges whose removal enlarges the domination number. In this paper, we show that the bondage number of every C4 bundles over a cycle Cn (n≥4 is equal to 4.
The Born rule as structure of spectral bundles (extended abstract
Bertfried Fauser
2012-10-01
Full Text Available Topos approaches to quantum foundations are described in a unified way by means of spectral bundles, where the base space is a space of contexts and each fibre is its spectrum. Differences in variance are due to the bundle being a fibration or opfibration. Relative to this structure, the probabilistic predictions of the Born rule in finite dimensional settings are then described as a section of a bundle of valuations. The construction uses in an essential way the geometric nature of the valuation locale monad.
—Impact of Customer Knowledge Heterogeneity on Bundling Strategy
Amiya Basu; Padmal Vitharana
2009-01-01
We consider a marketer of components who can select one of three alternative pricing strategies: (1) a pure component strategy (i.e., the customer can only buy the components individually), (2) a pure bundling strategy (i.e., the components must be purchased together), or (3) a mixed bundling strategy (i.e., the customer may buy a component individually, or buy the bundle). We consider a market where customer knowledge of components varies and propose that a high-knowledge customer can determ...
Systematic evaluation of bundled SPC water for biomolecular simulations.
Gopal, Srinivasa M; Kuhn, Alexander B; Schäfer, Lars V
2015-04-07
In bundled SPC water models, the relative motion of groups of four water molecules is restrained by distance-dependent potentials. Bundled SPC models have been used in hybrid all-atom/coarse-grained (AA/CG) multiscale simulations, since they enable to couple atomistic SPC water with supra-molecular CG water models that effectively represent more than a single water molecule. In the present work, we systematically validated and critically tested bundled SPC water models as solvent for biomolecular simulations. To that aim, we investigated both thermodynamic and structural properties of various biomolecular systems through molecular dynamics (MD) simulations. Potentials of mean force of dimerization of pairs of amino acid side chains as well as hydration free energies of single side chains obtained with bundled SPC and standard (unrestrained) SPC water agree closely with each other and with experimental data. Decomposition of the hydration free energies into enthalpic and entropic contributions reveals that in bundled SPC, this favorable agreement of the free energies is due to a larger degree of error compensation between hydration enthalpy and entropy. The Ramachandran maps of Ala3, Ala5, and Ala7 peptides are similar in bundled and unrestrained SPC, whereas for the (GS)2 peptide, bundled water leads to a slight overpopulation of extended conformations. Analysis of the end-to-end distance autocorrelation times of the Ala5 and (GS)2 peptides shows that sampling in more viscous bundled SPC water is about two times slower. Pronounced differences between the water models were found for the structure of a coiled-coil dimer, which is instable in bundled SPC but not in standard SPC. In addition, the hydration of the active site of the serine protease α-chymotrypsin depends on the water model. Bundled SPC leads to an increased hydration of the active site region, more hydrogen bonds between water and catalytic triad residues, and a significantly slower exchange of water
Shatz, L F
2000-03-01
The relationship between size and shape of the hair bundle of a hair cell in the inner ear and its sensitivity at asymptotically high and low frequencies was determined, thereby extending the results of an analysis of hair bundle hydrodynamics in two dimensions (Freeman and Weiss, 1990. Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles. Hear. Res. 48, 37-68) to three dimensions. A hemispheroid was used to represent the hair bundle. The hemispheroid had a number of advantages: it could represent shapes that range from thin, pencil-like shapes, to wide, flat, disk-like shapes. Also analytic methods could be used in the high frequency range to obtain an exact solution to the equations of motion. In the low frequency range, where an approximate solution was found using boundary element methods, the sensitivity of the responses of hair cells was mainly proportional to the cube of the heights of their hair bundles, and at high frequencies, the sensitivity of the hair cells was mainly proportional to the inverse of their heights. An excellent match was obtained between measurements of sensitivity curves in the basillar papilla of the alligator and bobtail lizards and the model's predictions. These results also suggest why hair bundles of hair cells in vestibular organs which are sensitive to low frequencies have ranges of heights that are an order of magnitude larger than the range of heights of hair bundles of hair cells found in auditory organs.
HIGH STRENGTH CONTROL RODS FOR NEUTRONIC REACTORS
Lustman, B.; Losco, E.F.; Cohen, I.
1961-07-11
Nuclear reactor control rods comprised of highly compressed and sintered finely divided metal alloy panticles and fine metal oxide panticles substantially uniformly distributed theretbrough are described. The metal alloy consists essentially of silver, indium, cadmium, tin, and aluminum, the amount of each being present in centain percentages by weight. The oxide particles are metal oxides of the metal alloy composition, the amount of oxygen being present in certain percentages by weight and all the oxygen present being substantially in the form of metal oxide. This control rod is characterized by its high strength and resistance to creep at elevated temperatures.
Sensitivity study of control rod depletion coefficients
Blomberg, Joel
2015-01-01
This report investigates the sensitivity of the control rod depletion coefficients, Sg, to different input parameters and how this affects the accumulated 10B depletion, β. Currently the coefficients are generated with PHOENIX4, but the geometries can be more accurately simulated in McScram. McScram is used to calculate Control Rod Worth, which in turn is used to calculate Nuclear End Of Life, and Sg cannot be generated in the current version of McScram. Therefore, it is also analyzed whether...
A study of bacterial flagellar bundling.
Flores, Heather; Lobaton, Edgar; Méndez-Diez, Stefan; Tlupova, Svetlana; Cortez, Ricardo
2005-01-01
Certain bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), use multiple flagella often concentrated at one end of their bodies to induce locomotion. Each flagellum is formed in a left-handed helix and has a motor at the base that rotates the flagellum in a corkscrew motion. We present a computational model of the flagellar motion and their hydrodynamic interaction. The model is based on the equations of Stokes flow to describe the fluid motion. The elasticity of the flagella is modeled with a network of elastic springs while the motor is represented by a torque at the base of each flagellum. The fluid velocity due to the forces is described by regularized Stokeslets and the velocity due to the torques by the associated regularized rotlets. Their expressions are derived. The model is used to analyze the swimming motion of a single flagellum and of a group of three flagella in close proximity to one another. When all flagellar motors rotate counterclockwise, the hydrodynamic interaction can lead to bundling. We present an analysis of the flow surrounding the flagella. When at least one of the motors changes its direction of rotation, the same initial conditions lead to a tumbling behavior characterized by the separation of the flagella, changes in their orientation, and no net swimming motion. The analysis of the flow provides some intuition for these processes.
Nursing Care Management: Influence on Bundled Payments.
Lentz, Shaynie; Luther, Brenda
Fragmented and uncoordinated care is the third highest driver of U.S. healthcare costs. Although less than 10% of patients experience uncoordinated care, these patients represent 36% of total healthcare costs; care management interaction makes a significant impact on the utilization of healthcare dollars. A literature search was conducted to construct a model of care coordination for elective surgical procedures by collecting best practices for acute, transitions, and post-acute care periods. A case study was used to demonstrate the model developed. Care management defines care coordination as a model of care to address improving patient and caregiver engagement, communication across settings of care, and ultimately improved patient outcomes of care. Nurse-led care coordination in the presurgical, inpatient, and post-acute care settings requires systems change and administrative support to effectively meet the goals of the Affordable Care Act of reducing redundancy and costs while improving the patient experience. Nursing is the lynchpin of care management processes in all settings of care; thus, this model of care coordination for elective surgical admissions can provide nursing care management leaders a comprehensive view of coordinating care for these patient across settings of care during the predetermined time period of care. As bundled payment structures increasingly affect hospital systems, nursing leaders need to be ready to create or improve their care management processes; care coordination is one such process requiring immediate attention.
LVRF fuel bundle manufacture for Bruce
Pant, A. [Zircatec Precision Industries, Port Hope, Ontario (Canada)
2005-12-15
In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element Bruce LVRF bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37-element fuel over 20 years ago. Introduction of this new line has involved the introduction of significant changes to an environment that is not used to rapid changes with significant impact. At ZPI we have been able to build on our innovative capabilities in new fuel manufacturing, the strength and experience of our core team, and on our prevailing management philosophy of 'support the doer'. The presentation will discuss some of the novel aspects of this fuel introduction and the mix of innovative and classical project management methods that are being used to ensure that project deliveries are being met. Supporting presentations will highlight some of the issues in more detail. (author)
Quivers For Special Fuel Rods-Disposal Of Special Fuel Rods In CASTOR V Casks
Bannani, Amin; Cebula, Wojciech; Buchmuller, Olga; Huggenberg, Roland [GNS, Essen (Germany); Helmut Kuhl [WTI, Julich (Germany)
2015-05-15
While GNS casks of the CASTOR family are a suitable means to transfer fuel assemblies (FA) from the NPP to an interim dry storage site, Germanys phase-out of nuclear energy has triggered the demand for an additional solution to dispose of special fuel rods (SFR), normally remaining in the fuel pond until the final shutdown of the NPP. SFR are fuel rods that had to be removed from fuel assemblies mainly due to their special condition, e. g. damages in the cladding of the fuel rods which may have occurred during reactor operations. SFR are usually stored in the spent fuel pond after they are removed from the FA. The quiver for special fuel rods features a robust yet simple design, with a high mechanical stability, a reliable leak-tightness and large safety margins for future requirements on safety analysis. The quiver for special fuel rods can be easily adapted to a large variety of different damaged fuel rods and tailored to the specific need of the customer. The quiver for special fuel rods is adaptable e.g. in length and diameter for use in other types of transport and storage casks and is applicable in other countries as well. The overall concept presented here is a first of its kind solution for the disposal of SFRs via Castor V-casks. This provides an important precondition in achieving the status 'free from nuclear fuel' of the shut down German NPPs.
Conceptional design of test loop for FIV in fuel bundle
Sim, W. G.; Yang, J. S.; Kim, S. W. [Hannam Univ., Taejeon (Korea)
2001-01-01
It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model. Because of this reason, it is required to design proper test loop. Using the optimized test loop, with the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 23 figs., 2 tabs. (Author)
Zeta Functions for Elliptic Curves I. Counting Bundles
Weng, Lin
2012-01-01
To count bundles on curves, we study zetas of elliptic curves and their zeros. There are two types, i.e., the pure non-abelian zetas defined using moduli spaces of semi-stable bundles, and the group zetas defined for special linear groups. In lower ranks, we show that these two types of zetas coincide and satisfy the Riemann Hypothesis. For general cases, exposed is an intrinsic relation on automorphism groups of semi-stable bundles over elliptic curves, the so-called counting miracle. All this, together with Harder-Narasimhan, Desale-Ramanan and Zagier's result, gives an effective way to count semi-stable bundles on elliptic curves not only in terms of automorphism groups but more essentially in terms of their $h^0$'s. Distributions of zeros of high rank zetas are also discussed.
Bundles of Norms About Teen Sex and Pregnancy.
Mollborn, Stefanie; Sennott, Christie
2015-09-01
Teen pregnancy is a cultural battleground in struggles over morality, education, and family. At its heart are norms about teen sex, contraception, pregnancy, and abortion. Analyzing 57 interviews with college students, we found that "bundles" of related norms shaped the messages teens hear. Teens did not think their communities encouraged teen sex or pregnancy, but normative messages differed greatly, with either moral or practical rationalizations. Teens readily identified multiple norms intended to regulate teen sex, contraception, abortion, childbearing, and the sanctioning of teen parents. Beyond influencing teens' behavior, norms shaped teenagers' public portrayals and post hoc justifications of their behavior. Although norm bundles are complex to measure, participants could summarize them succinctly. These bundles and their conflicting behavioral prescriptions create space for human agency in negotiating normative pressures. The norm bundles concept has implications for teen pregnancy prevention policies and can help revitalize social norms for understanding health behaviors.
Design and synthesis of DNA four-helix bundles
Rangnekar, Abhijit; Gothelf, Kurt V [Department of Chemistry, Centre for DNA Nanotechnology (CDNA) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C (Denmark); LaBean, Thomas H, E-mail: kvg@chem.au.dk, E-mail: thl@cs.duke.edu [Department of Chemistry, Duke University, Durham, NC 27708 (United States)
2011-06-10
The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.
CANFLEX fuel bundle cross-flow endurance test (test report)
Hong, Sung Deok; Chung, C. H.; Chang, S. K.; Kim, B. D.
1997-04-01
As part of the normal refuelling sequence of CANDU nuclear reactor, both new and irradiated bundles can be parked in the cross-flow region of the liner tubes. This situation occurs normally for a few minutes. The fuel bundle which is subjected to the cross-flow should be capable of withstanding the consequences of cross flow for normal periods, and maintain its mechanical integrity. The cross-flow endurance test was conducted for CANFLEX bundle, latest developed nuclear fuel, at CANDU-Hot Test Loop. The test was carried out during 4 hours at the inlet cross-flow region. After the test, the bundle successfully met all acceptance criteria after the 4 hours cross-flow test. (author). 2 refs., 3 tabs.
On exact triangles consisting of stable vector bundles on tori
Kobayashi, Kazushi
2016-01-01
In this paper, we consider the exact triangles consisting of stable holomorphic vector bundles on one-dimensional complex tori, and discuss their relations with the corresponding Fukaya category via the homological mirror symmetry.
Steric effects induce geometric remodeling of actin bundles in filopodia
Dobramysl, Ulrich; Erban, Radek
2016-01-01
Filopodia are ubiquitous fingerlike protrusions, spawned by many eukaryotic cells, to probe and interact with their environments. Polymerization dynamics of actin filaments, comprising the structural core of filopodia, largely determine their instantaneous lengths and overall lifetimes. The polymerization reactions at the filopodial tip require transport of G-actin, which enter the filopodial tube from the filopodial base and diffuse toward the filament barbed ends near the tip. Actin filaments are mechanically coupled into a tight bundle by cross-linker proteins. Interestingly, many of these proteins are relatively short, restricting the free diffusion of cytosolic G-actin throughout the bundle and, in particular, its penetration into the bundle core. To investigate the effect of steric restrictions on G-actin diffusion by the porous structure of filopodial actin filament bundle, we used a particle-based stochastic simulation approach. We discovered that excluded volume interactions result in partial and the...
Mechanical Models of Microtubule Bundle Collapse in Alzheimer's Disease
Sendek, Austin; Singh, Rajiv; Cox, Daniel
2013-03-01
Amyloid-beta aggregates initiate Alzheimer's disease, and downstream trigger degradation of tau proteins that act as microtubule bundle stabilizers and mechanical spacers. Currently it is unclear which of tau cutting by proteases, tau phosphorylation, or tau aggregation are responsible for cytoskeleton degradation., We construct a percolation simulation of the microtubule bundle using a molecular spring model for the taus and including depletion force attraction between microtubules and membrane/actin cytoskeletal surface tension. The simulation uses a fictive molecular dynamics to model the motion of the individual microtubules within the bundle as a result of random tau removal, and calculates the elastic modulus of the bundle as the tau concentration falls. We link the tau removal steps to kinetic tau steps in various models of tau degradation. Supported by US NSF Grant DMR 1207624
Introductory lectures on fibre bundles and topology for physicists
Thomas, G.H.
1978-05-01
These lectures may provide useful background material for understanding gauge theories, particularly the nonperturbative effects such as instantons and monopoles. The mathematical language of topology and fibre bundles is introduced.
Improved Conjugate Gradient Bundle Adjustment of Dunhuang Wall Painting Images
Hu, K.; Huang, X.; You, H.
2017-09-01
Bundle adjustment with additional parameters is identified as a critical step for precise orthoimage generation and 3D reconstruction of Dunhuang wall paintings. Due to the introduction of self-calibration parameters and quasi-planar constraints, the structure of coefficient matrix of the reduced normal equation is banded-bordered, making the solving process of bundle adjustment complex. In this paper, Conjugate Gradient Bundle Adjustment (CGBA) method is deduced by calculus of variations. A preconditioning method based on improved incomplete Cholesky factorization is adopt to reduce the condition number of coefficient matrix, as well as to accelerate the iteration rate of CGBA. Both theoretical analysis and experimental results comparison with conventional method indicate that, the proposed method can effectively conquer the ill-conditioned problem of normal equation and improve the calculation efficiency of bundle adjustment with additional parameters considerably, while maintaining the actual accuracy.
IMPROVED CONJUGATE GRADIENT BUNDLE ADJUSTMENT OF DUNHUANG WALL PAINTING IMAGES
K. Hu
2017-09-01
Full Text Available Bundle adjustment with additional parameters is identified as a critical step for precise orthoimage generation and 3D reconstruction of Dunhuang wall paintings. Due to the introduction of self-calibration parameters and quasi-planar constraints, the structure of coefficient matrix of the reduced normal equation is banded-bordered, making the solving process of bundle adjustment complex. In this paper, Conjugate Gradient Bundle Adjustment (CGBA method is deduced by calculus of variations. A preconditioning method based on improved incomplete Cholesky factorization is adopt to reduce the condition number of coefficient matrix, as well as to accelerate the iteration rate of CGBA. Both theoretical analysis and experimental results comparison with conventional method indicate that, the proposed method can effectively conquer the ill-conditioned problem of normal equation and improve the calculation efficiency of bundle adjustment with additional parameters considerably, while maintaining the actual accuracy.
Vertical, Bubbly, Cross-Flow Characteristics over Tube Bundles
Iwaki, C.; Cheong, K. H.; Monji, H.; Matsui, G.
2005-12-01
Two-phase flow over tube bundles is commonly observed in shell and tube-type heat exchangers. However, only limited amount of data concerning flow pattern and void fraction exists due to the flow complexity and the difficulties in measurement. The detailed flow structure in tube bundles needs to be understood for reliable and effective design. Therefore, the objective of this study was to clarify the two-phase structure of cross-flow in tube bundles by PIV. Experiments were conducted using two types of models, namely in-line and staggered arrays with a pitch-to-diameter ratio of 1.5. Each test section contains 20 rows of five 15 mm O.D. tubes in each row. The experiment’s data were obtained under very low void fraction (αtube bundles were described in terms of the velocity vector field, turbulence intensity and void fraction.
National Partnership for Maternal Safety: Consensus Bundle on Obstetric Hemorrhage.
Main, Elliott K; Goffman, Dena; Scavone, Barbara M; Low, Lisa Kane; Bingham, Debra; Fontaine, Patricia L; Gorlin, Jed B; Lagrew, David C; Levy, Barbara S
2015-07-01
Hemorrhage is the most frequent cause of severe maternal morbidity and preventable maternal mortality and therefore is an ideal topic for the initial national maternity patient safety bundle. These safety bundles outline critical clinical practices that should be implemented in every maternity unit. They are developed by multidisciplinary work groups of the National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care. The safety bundle is organized into four domains: Readiness, Recognition and Prevention, Response, and Reporting and System Learning. Although the bundle components may be adapted to meet the resources available in individual facilities, standardization within an institution is strongly encouraged. References contain sample resources and "Potential Best Practices" to assist with implementation.
National Partnership for Maternal Safety Consensus Bundle on Obstetric Hemorrhage.
Main, Elliott K; Goffman, Dena; Scavone, Barbara M; Low, Lisa Kane; Bingham, Debra; Fontaine, Patricia L; Gorlin, Jed B; Lagrew, David C; Levy, Barbara S
2015-01-01
Hemorrhage is the most frequent cause of severe maternal morbidity and preventable maternal mortality and therefore is an ideal topic for the initial national maternity patient safety bundle. These safety bundles outline critical clinical practices that should be implemented in every maternity unit. They are developed by multidisciplinary work groups of the National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care. The safety bundle is organized into 4 domains: Readiness, Recognition and Prevention, Response, and Reporting and Systems Learning. Although the bundle components may be adapted to meet the resources available in individual facilities, standardization within an institution is strongly encouraged. References contain sample resources and "Potential Best Practices" to assist with implementation.
Modeling and simulation performance of sucker rod beam pump
Aditsania, Annisa; Rahmawati, Silvy Dewi; Sukarno, Pudjo; Soewono, Edy
2015-09-01
Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.
Modeling and simulation performance of sucker rod beam pump
Aditsania, Annisa, E-mail: annisaaditsania@gmail.com [Department of Computational Sciences, Institut Teknologi Bandung (Indonesia); Rahmawati, Silvy Dewi, E-mail: silvyarahmawati@gmail.com; Sukarno, Pudjo, E-mail: psukarno@gmail.com [Department of Petroleum Engineering, Institut Teknologi Bandung (Indonesia); Soewono, Edy, E-mail: esoewono@math.itb.ac.id [Department of Mathematics, Institut Teknologi Bandung (Indonesia)
2015-09-30
Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.
Results of international standard problem No. 36 severe fuel damage experiment of a VVER fuel bundle
Firnhaber, M. [Gesellschaft fuer Anlagen-und Reaktorsicherheit, Koeln (Germany); Yegorova, L. [Nuclear Safety Institute of Russian Research Center, Moscow (Russian Federation); Brockmeier, U. [Ruhr-Univ. of Bochum (Germany)] [and others
1995-09-01
International Standard Problems (ISP) organized by the OECD are defined as comparative exercises in which predictions with different computer codes for a given physical problem are compared with each other and with a carefully controlled experimental study. The main goal of ISP is to increase confidence in the validity and accuracy of analytical tools used in assessing the safety of nuclear installations. In addition, it enables the code user to gain experience and to improve his competence. This paper presents the results and assessment of ISP No. 36, which deals with the early core degradation phase during an unmitigated severe LWR accident in a Russian type VVER. Representatives of 17 organizations participated in the ISP using the codes ATHLET-CD, ICARE2, KESS-III, MELCOR, SCDAP/RELAP5 and RAPTA. Some participants performed several calculations with different codes. As experimental basis the severe fuel damage experiment CORA-W2 was selected. The main phenomena investigated are thermal behavior of fuel rods, onset of temperature escalation, material behavior and hydrogen generation. In general, the calculations give the right tendency of the experimental results for the thermal behavior, the hydrogen generation and, partly, for the material behavior. However, some calculations deviate in important quantities - e.g. some material behavior data - showing remarkable discrepancies between each other and from the experiments. The temperature history of the bundle up to the beginning of significant oxidation was calculated quite well. Deviations seem to be related to the overall heat balance. Since the material behavior of the bundle is to a great extent influenced by the cladding failure criteria a more realistic cladding failure model should be developed at least for the detailed, mechanistic codes. Regarding the material behavior and flow blockage some models for the material interaction as well as for relocation and refreezing requires further improvement.
Performance-based bundled payments: potential benefits and burdens.
Satin, David J; Miles, Justin
2009-10-01
Performance-based bundled payments have emerged as the most recent iteration of pay for performance. These are programs in which providers are paid a single fee for a set of evidenced-based services related to a diagnosis. The payments are typically linked to outcomes as well as other quality measures. This paper reviews two prominent bundled payment programs--PROMETHEUS and ProvenCare--and discusses the potential pitfalls of these approaches.
Identity-Based Cryptosystems for Enhanced Deployment of OSGi Bundles
Parrend, Pierre; Galice, Samuel; Frénot, Stéphane; Ubéda, Stéphane
2007-01-01
International audience; The OSGi platform is designed to make Java soft- ware extensible at runtime. This undeniably presents a great interest in several domains like embedded plat- forms or enterprise application servers. However, se- curing the deployment of the OSGi components, or bundles, proves to be a major challenge. The current approach consists in digitally signing the bundles and certifying the signature through a Public Key Infras- tructure. We propose to replace this technology wi...
Codimension-Three Bundle Singularities in F-Theory
Candelas, Philip; Florea, B; Morrison, Douglas Robert Ogston; Rajesh, G; Candelas, Philip; Diaconescu, Duiliu-Emanuel; Florea, Bogdan; Morrison, David R.; Rajesh, Govindan
2002-01-01
We study new nonperturbative phenomena in N=1 heterotic string vacua corresponding to pointlike bundle singularities in codimension three. These degenerations result in new four-dimensional infrared physics characterized by light solitonic states whose origin is explained in the dual F-theory model. We also show that such phenomena appear generically in $E_7 \\to E_6$ Higgsing and describe in detail the corresponding bundle transition.
Generalized holomorphic bundles and the B-field action
Hitchin, Nigel
2010-01-01
On a generalized complex manifold there is an associated definition of a generalized holomorphic bundle, introduced by Gualtieri. This notion in the case of an ordinary complex structure yields an object which we call a co-Higgs bundle and we consider the B-field action of a closed form of type (1,1), both local and global. The effect makes contact with both Nahm's equations and holomorphic gerbes.
Generalized holomorphic bundles and the B-field action
Hitchin, Nigel
2011-01-01
On a generalized complex manifold, there is an associated definition of a generalized holomorphic bundle, introduced by Gualtieri. In the case of an ordinary complex structure, this notion yields an object which we call a co-Higgs bundle, and we consider the B-field action of a closed form of type (1,1), both local and global. The effect makes contact with both Nahm's equations and holomorphic gerbes.
Simplified modeling of EM field coupling to complex cable bundles
Schetelig, B.; J. Keghie; Kanyou Nana, R.; Fichte, L.-O.; S. Potthast; Dickmann, S.
2010-01-01
In this contribution, the procedure "Equivalent Cable Bundle Method" is used for the simplification of large cable bundles, and it is extended to the application on differential signal lines. The main focus is on the reduction of twisted-pair cables. Furthermore, the process presented here allows to take into account cables with wires that are situated quite close to each other. The procedure is based on a new approach to calculate the geometry of the simplified cable and us...
Dunkl Operators as Covariant Derivatives in a Quantum Principal Bundle
Micho Đurđevich; Stephen Bruce Sontz
2011-01-01
A quantum principal bundle is constructed for every Coxeter group acting on a finite-dimensional Euclidean space $E$, and then a connection is also defined on this bundle. The covariant derivatives associated to this connection are the Dunkl operators, originally introduced as part of a program to generalize harmonic analysis in Euclidean spaces. This gives us a new, geometric way of viewing the Dunkl operators. In particular, we present a new proof of the commutativity of these operators amo...
Spent nuclear fuel rods encapsulated in copper
Hanes, H.D.
1984-04-01
Using hot isostatic pressing, spent nuclear fuel rods and other radioactive wastes can be encapsulated in solid copper. The copper capsule which is formed is free of pores and cracks, and is highly resistant to attack by reducing ground waters. Such capsules should contain radioactive materials safely for hundreds of thousands of years in underground storage.
Solitary waves on nonlinear elastic rods. I
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1984-01-01
Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...
ELECTRIC FIELD MEASUREMENT IN ROD-DISCONTINUED ...
2014-06-30
Jun 30, 2014 ... The used arrangement with homogeneous system is made up of a square metallic sheet ... This distance is considered positive when the rod is located ... in the case of the discontinuous earth which were defined according to ...
Fabrication of preliminary fuel rods for SFR
Kim, Sun Ki; Oh, Seok Jin; Ko, Young Mo; Woo, Youn Myung; Kim, Ki Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2012-05-15
Metal fuels was selected for fueling many of the first reactors in the US, including the Experimental Breeder Reactor-I (EBR-I) and the Experimental Breeder Reactor-II (EBR-II) in Idaho, the FERMI-I reactor, and the Dounreay Fast Reactor (DFR) in the UK. Metallic U.Pu.Zr alloys were the reference fuel for the US Integral Fast Reactor (IFR) program. Metallic fuel has advantages such as simple fabrication procedures, good neutron economy, high thermal conductivity, excellent compatibility with a Na coolant and inherent passive safety. U-Zr-Pu alloy fuels have been used for SFR (sodium-cooled fast reactor) related to the closed fuel cycle for managing minor actinides and reducing a high radioactivity levels since the 1980s. Fabrication technology of metallic fuel for SFR has been in development in Korea as a national nuclear R and D program since 2007. For the final goal of SFR fuel rod fabrication with good performance, recently, three preliminary fuel rods were fabricated. In this paper, the preliminary fuel rods were fabricated, and then the inspection for QC(quality control) of the fuel rods was performed
Brownian rod scheme in microenvironment sensing
Ian Gralinski
2012-03-01
Full Text Available Fluctuations of freely translating spherical particles via Brownian motion should provide inexhaustible information about the micro-environment, but is beset by the problem of particles drifting away from the venue of measurement as well as colliding with other particles. We propose a scheme here to circumvent this in which a Brownian rod that lies in proximity to a cylindrical pillar is drawn in by a tuneable attractive force from the pillar. The force is assumed to act through the centre of each body and the motion exclusive to the x-y plane. Simulation studies show two distinct states, one in which the rod is moving freely (state I and the other in which the rod contacts the cylinder surface (state II. Information about the micro-environment could be obtained by tracking the rotational diffusion coefficient Dθ populating in either of these two states. However, the magnitude of the normalized charge product in excess of 6.3x104 was found necessary for a rod of 6.81 × 0.93 μm2 (length × diameter and 10μm diameter cylindrical pillar to minimize deviation errors. It was also found that the extent of spatial sensing coverage could be controlled by varying the charge level. The conditions needed to ascertain the rotational sampling for angle determination through the Hough transform were also discussed.
Piston rod seal for a Stirling engine
Shapiro, Wilbur
1984-01-01
In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.
Adjustable solitary waves in electroactive rods
Wang, Y. Z.; Zhang, C. L.; Dai, H.-H.; Chen, W. Q.
2015-10-01
This paper presents an asymptotic analysis of solitary waves propagating in an incompressible isotropic electroactive circular rod subjected to a biasing longitudinal electric displacement. Several asymptotic expansions are introduced to simplify the rod governing equations. The boundary conditions on the lateral surface of the rod are satisfied from the asymptotic point of view. In the limit of finite-small amplitude and long wavelength, a set of ten simplified one-dimensional nonlinear governing equations is established. To validate our approach and the derivation, we compare the linear dispersion relation with the one directly derived from the three-dimensional linear theory in the limit of long wavelength. Then, by the reductive perturbation method, we deduce the far-field equation (i.e. the KdV equation). Finally, the leading order of the electroelastic solitary wave solution is presented. Numerical examples are provided to show the influences of the biasing electric displacement and material constants on the solitary waves. It is found that the biasing electric displacement can modulate the velocity of solitary waves with a prescribed amplitude in the electroactive rod, a very interesting result which may promote the particular application of solitary waves in solids with multi-field coupling.
On contact numbers in random rod packings
Wouterse, A.; Luding, Stefan; Philipse, A.P.
2009-01-01
Random packings of non-spherical granular particles are simulated by combining mechanical contraction and molecular dynamics, to determine contact numbers as a function of density. Particle shapes are varied from spheres to thin rods. The observed contact numbers (and packing densities) agree well
BiSet: Semantic Edge Bundling with Biclusters for Sensemaking.
Sun, Maoyuan; Mi, Peng; North, Chris; Ramakrishnan, Naren
2016-01-01
Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships, such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset. Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer, "in-between", to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.
Oscillation of carbon molecules inside carbon nanotube bundles
Thamwattana, Ngamta; Cox, Barry J.; Hill, James M.
2009-04-01
In this paper, we investigate the mechanics of a nanoscaled gigahertz oscillator comprising a carbon molecule oscillating within the centre of a uniform concentric ring or bundle of carbon nanotubes. Two kinds of oscillating molecules are considered, which are a carbon nanotube and a C60 fullerene. Using the Lennard-Jones potential and the continuum approach, we obtain a relation between the bundle radius and the radii of the nanotubes forming the bundle, as well as the optimum bundle size which gives rise to the maximum oscillatory frequency for both the nanotube-bundle and the C60-bundle oscillators. While previous studies in this area have been undertaken through molecular dynamics simulations, this paper emphasizes the use of applied mathematical modelling techniques, which provides considerable insight into the underlying mechanisms of the nanoscaled oscillators. The paper presents a synopsis of the major results derived in detail by the present authors (Cox et al 2007 Proc. R. Soc. A 464 691-710 and Cox et al 2007 J. Phys. A: Math. Theor. 40 13197-208).
Stimulus-evoked outer segment changes in rod photoreceptors
Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Lu, Yiming; Gai, Shaoyan; Yao, Xincheng
2016-06-01
Rod-dominated transient retinal phototropism (TRP) has been recently observed in freshly isolated mouse and frog retinas. Comparative confocal microscopy and optical coherence tomography revealed that the TRP was predominantly elicited from the rod outer segment (OS). However, the biophysical mechanism of rod OS dynamics is still unknown. Mouse and frog retinal slices, which displayed a cross-section of retinal photoreceptors and other functional layers, were used to test the effect of light stimulation on rod OSs. Time-lapse microscopy revealed stimulus-evoked conformational changes of rod OSs. In the center of the stimulated region, the length of the rod OS shrunk, while in the peripheral region, the rod OS swung toward the center region. Our experimental observation and theoretical analysis suggest that the TRP may reflect unbalanced rod disc-shape changes due to localized visible light stimulation.
Validation Test of CARR Safety Rod Driving Mechanism
2008-01-01
<正>CARR safety Rods are driven by hydraulic force. The safety rod driving mechanism is designed by Tsinghua University and manufactured by Shenyang LIMING factory. Two sets of the mechanism are used for the validation test.