WorldWideScience

Sample records for rock salt structural

  1. B1-to-B2 structural transitions in rock salt intergrowth structures.

    Science.gov (United States)

    Yamamoto, Takafumi; Kobayashi, Yoji; Okada, Taku; Yagi, Takehiko; Kawakami, Takateru; Tassel, Cédric; Kawasaki, Shota; Abe, Naoyuki; Niwa, Ken; Kikegawa, Takumi; Hirao, Naohisa; Takano, Mikio; Kageyama, Hiroshi

    2011-11-21

    The rock salt (B1) structure of binary oxides or chalcogenides transforms to the CsCl (B2) structure under high pressure, with critical pressures P(s) depending on the cation to anion size ratio (R(c)/R(a)). We investigated structural changes of A(2)MO(3) (A = Sr, Ca; M = Cu, Pd) comprising alternate 7-fold B1 AO blocks and corner-shared MO(2) square-planar chains under pressure. All of the examined compounds exhibit a structural transition at P(s) = 29-41 GPa involving a change in the A-site geometry to an 8-fold B2 coordination. This observation demonstrates, together with the high pressure study on the structurally related Sr(3)Fe(2)O(5), that the B1-to-B2 transition generally occurs in these intergrowth structures. An empirical relation of P(s) and the R(c)/R(a) ratio for the binary system holds well for the intergrowth structure also, which means that P(s) is predominantly determined by the rock salt blocks. However, a large deviation from the relation is found in LaSrNiO(3.4), where oxygen atoms partially occupy the apical site of the MO(4) square plane. We predict furthermore the occurrence of the same structural transition for Ruddlesden-Popper-type layered perovskite oxides (AO)(AMO(3))(n), under higher pressures. For investigating the effect on the physical properties, an electrical resistivity of Sr(2)CuO(3) is studied.

  2. Electronic Structure of the Metastable Epitaxial Rock-Salt SnSe {111} Topological Crystalline Insulator

    Directory of Open Access Journals (Sweden)

    Wencan Jin

    2017-10-01

    Full Text Available Topological crystalline insulators have been recently predicted and observed in rock-salt structure SnSe {111} thin films. Previous studies have suggested that the Se-terminated surface of this thin film with hydrogen passivation has a reduced surface energy and is thus a preferred configuration. In this paper, synchrotron-based angle-resolved photoemission spectroscopy, along with density functional theory calculations, is used to demonstrate that a rock-salt SnSe {111} thin film epitaxially grown on Bi_{2}Se_{3} has a stable Sn-terminated surface. These observations are supported by low-energy electron diffraction (LEED intensity-voltage measurements and dynamical LEED calculations, which further show that the Sn-terminated SnSe {111} thin film has undergone a surface structural relaxation of the interlayer spacing between the Sn and Se atomic planes. In sharp contrast to the Se-terminated counterpart, the observed Dirac surface state in the Sn-terminated SnSe {111} thin film is shown to yield a high Fermi velocity, 0.50×10^{6}  m/s, which suggests a potential mechanism of engineering the Dirac surface state of topological materials by tuning the surface configuration.

  3. Compressibility of granulated rock salt

    Energy Technology Data Exchange (ETDEWEB)

    Stinebaugh, R.E.

    1979-08-01

    Crushed rock salt will be used extensively at the Waste Isolation Pilot Plant as a material for backfilling underground openings. This document addresses one of the characteristics of crushed salt which must be known to assess the consequences of its usage, namely, compressibility.

  4. Electric polarization switching in an atomically thin binary rock salt structure

    Science.gov (United States)

    Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.

    2018-01-01

    Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.

  5. COMPARISON OF GEO-MECHANICAL PROPERTIES OF WHITE ROCK SALT AND PINK ROCK SALT IN KŁODAWA SALT DIAPIR

    National Research Council Canada - National Science Library

    Malwina Kolano; Danuta Flisiak

    2013-01-01

    .... The present article introduces strength-strain properties of white rock salt, building the nucleus of northeastern edge anticline, and pink rock salt that belongs to the series of youngest rock salt...

  6. Nonlinear Analysis of Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Ottosen, N. S.; Krenk, Steen

    1979-01-01

    The paper covers some material and computational aspects of the rock mechanics of leached cavities in salt. A material model is presented in which the instantaneous stiffness of the salt is obtained by interpolation between the unloaded state and a relevant failure state. The model enables...

  7. Rheology of rock salt for salt tectonics modeling

    Directory of Open Access Journals (Sweden)

    Shi-Yuan Li

    2016-10-01

    Full Text Available Abstract Numerical modeling of salt tectonics is a rapidly evolving field; however, the constitutive equations to model long-term rock salt rheology in nature still remain controversial. Firstly, we built a database about the strain rate versus the differential stress through collecting the data from salt creep experiments at a range of temperatures (20–200 °C in laboratories. The aim is to collect data about salt deformation in nature, and the flow properties can be extracted from the data in laboratory experiments. Moreover, as an important preparation for salt tectonics modeling, a numerical model based on creep experiments of rock salt was developed in order to verify the specific model using the Abaqus package. Finally, under the condition of low differential stresses, the deformation mechanism would be extrapolated and discussed according to microstructure research. Since the studies of salt deformation in nature are the reliable extrapolation of laboratory data, we simplified the rock salt rheology to dislocation creep corresponding to power law creep (n = 5 with the appropriate material parameters in the salt tectonic modeling.

  8. Chemical analysis of the Assale (Ethiopia) rock salt deposit | Binega ...

    African Journals Online (AJOL)

    contaminants) elements found in the Assale (Ethiopia) rock salt. The results showed that the rock salt is found to be the best natural common salt. This was proved by comparison with the chemical requirement and trace elements in common ...

  9. New rock salt-related oxides Li{sub 3}M{sub 2}RuO{sub 6} (M=Co, Ni): Synthesis, structure, magnetism and electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Laha, S. [Departamento de Químicas Inorganica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India); Morán, E., E-mail: emoran@quim.ucm.es [Departamento de Químicas Inorganica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Sáez-Puche, R.; Alario-Franco, M.Á.; Dos santos-Garcia, A.J. [Departamento de Químicas Inorganica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Gonzalo, E.; Kuhn, A.; García-Alvarado, F. [Universidad CEU San Pablo, Facultad de Farmacia, Departamento de Química, 28668 Boadilla del Monte, Madrid (Spain); Sivakumar, T.; Tamilarasan, S.; Natarajan, S.; Gopalakrishnan, J. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India)

    2013-07-15

    We describe the synthesis, crystal structure, magnetic and electrochemical characterization of new rock salt-related oxides of formula, Li{sub 3}M{sub 2}RuO{sub 6} (M=Co, Ni). The M=Co oxide adopts the LiCoO{sub 2} (R-3m) structure, where sheets of LiO{sub 6} and (Co{sub 2}/Ru)O{sub 6} octahedra are alternately stacked along the c-direction. The M=Ni oxide also adopts a similar layered structure related to Li{sub 2}TiO{sub 3}, where partial mixing of Li and Ni/Ru atoms lowers the symmetry to monoclinic (C2/c). Magnetic susceptibility measurements reveal that in Li{sub 3}Co{sub 2}RuO{sub 6}, the oxidation states of transition metal ions are Co{sup 3+} (S=0), Co{sup 2+} (S=1/2) and Ru{sup 4+} (S=1), all of them in low-spin configuration and at 10 K, the material orders antiferromagnetically. Analogous Li{sub 3}Ni{sub 2}RuO{sub 6} presents a ferrimagnetic behavior with a Curie temperature of 100 K. The differences in the magnetic behavior have been explained in terms of differences in the crystal structure. Electrochemical studies correlate well with both magnetic properties and crystal structure. Li-transition metal intermixing may be at the origin of the more impeded oxidation of Li{sub 3}Ni{sub 2}RuO{sub 6} when compared to Li{sub 3}Co{sub 2}RuO{sub 6}. Interestingly high first charge capacities (between ca. 160 and 180 mAh g{sup −1}) corresponding to ca. 2/3 of theoretical capacity are reached albeit, in both cases, capacity retention and cyclability are not satisfactory enough to consider these materials as alternatives to LiCoO{sub 2}. - Graphical abstract: Two new rock salt related oxides of formula, Li{sub 3}M{sub 2}RuO{sub 6}, (M=Co, Ni) have been prepared. The M=Co oxide adopts the LiCoO{sub 2} (R-3m) structure and the M=Ni oxide adopts a similar layered structure related to Li{sub 2}TiO{sub 3,} monoclinic (C2/c), with partial mixing of Li and Ni/Ru atoms. For Li{sub 3}Co{sub 2}RuO{sub 6}, oxidation state for Ru is 4+ and antiferromagnetic (AFM) order is

  10. Numerical model of halite precipitation in porous sedimentary rocks adjacent to salt diapirs

    Science.gov (United States)

    Li, Shiyuan; Reuning, Lars; Marquart, Gabriele; Wang, Yan; Zhao, Pengyun

    2017-10-01

    Salt diapirs are commonly seen in the North Sea. Below the Zechstein Group exist possibly overpressured salt-anhydrite formations. One explanation as to the salt precipitation in areas with salt diapirs is that salt cementation is thermally driven and occurs strongly in places adjacent to salt diapirs. This paper assumes that the sealing effect of the cap rock above the salt formations is compromised and overpressured fluids, carrying dissolved minerals such as anhydrite (CaSO4) and salt mineral components (NaCl of halite), flow into the porous sedimentary layers above the salt formations. Additionally, a salt-diapir-like structure is assumed to be at one side of the model. The numerical flow and heat transport simulator SHEMAT-Suite was developed and applied to calculating the concentrations of species, and dissolution and precipitation amounts. Results show that the overpressured salt-anhydrite formations have higher pressure heads and the species elements sodium and chlorite are transported into porous sediment rocks through water influx (saturated brine). Halite can precipitate as brine with sodium and chlorite ions flows to the cooler environment. Salt cementation of reservoir rocks leads to decreasing porosity and permeability near salt domes, and cementation of reservoir formations decreases with growing distance to the salt diapir. The proposed approach in this paper can also be used to evaluate precipitation relevant to scaling problems in geothermal engineering.

  11. Theoretical investigation on the high-pressure physical properties of ZnN in cubic zinc blende, rock salt, and cesium chloride structures

    Science.gov (United States)

    Tian, J. H.; Song, T.; Sun, X. W.; Wang, T.; Jiang, G.

    2017-11-01

    In the current work, the aim is to report systematic results from first-principles calculations with density functional theory (DFT) on three cubic structures, rock salt (NaCl-type), zinc blende (ZnS-type), and cesium chloride (CsCl-type), of ZnN under high pressure. From the enthalpy versus pressure relations, we find that the NaCl-type phase of ZnN is more stable than the ZnS-type phase when the pressure higher than 2.55 GPa and high-pressure NaCl-type phase will stabilize up to 150 GPa. Through the careful evaluation with the quasi-harmonic Debye model, a complete set of thermodynamic data up to 2000 K, including PVT equation of state, isothermal bulk modulus, Debye temperature, Grüneisen parameter, thermal expansivity, heat capacity, and entropy for the ZnN with high-pressure NaCl-type structure is achieved. This set of data is considered as the useful information to understand the high-temperature and high-pressure properties of ZnN.

  12. Unprecedented Al supersaturation in single-phase rock salt structure VAlN films by Al+ subplantation

    Science.gov (United States)

    Greczynski, G.; Mráz, S.; Hans, M.; Primetzhofer, D.; Lu, J.; Hultman, L.; Schneider, J. M.

    2017-05-01

    Modern applications of refractory ceramic thin films, predominantly as wear-protective coatings on cutting tools and on components utilized in automotive engines, require a combination of excellent mechanical properties, thermal stability, and oxidation resistance. Conventional design approaches for transition metal nitride coatings with improved thermal and chemical stability are based on alloying with Al. It is well known that the solubility of Al in NaCl-structure transition metal nitrides is limited. Hence, the great challenge is to increase the Al concentration substantially while avoiding precipitation of the thermodynamically favored wurtzite-AlN phase, which is detrimental to mechanical properties. Here, we use VAlN as a model system to illustrate a new concept for the synthesis of metastable single-phase NaCl-structure thin films with the Al content far beyond solubility limits obtained with conventional plasma processes. This supersaturation is achieved by separating the film-forming species in time and energy domains through synchronization of the 70-μs-long pulsed substrate bias with intense periodic fluxes of energetic Al+ metal ions during reactive hybrid high power impulse magnetron sputtering of the Al target and direct current magnetron sputtering of the V target in the Ar/N2 gas mixture. Hereby, Al is subplanted into the cubic VN grains formed by the continuous flux of low-energy V neutrals. We show that Al subplantation enables an unprecedented 42% increase in metastable Al solubility limit in V1-xAlxN, from x = 0.52 obtained with the conventional method to 0.75. The elastic modulus is 325 ± 5 GPa, in excellent agreement with density functional theory calculations, and approximately 50% higher than for corresponding films grown by dc magnetron sputtering. The extension of the presented strategy to other Al-ion-assisted vapor deposition methods or materials systems is straightforward, which opens up the way for producing supersaturated single

  13. Interactive evolution concept for analyzing a rock salt cavern under cyclic thermo-mechanical loading

    Science.gov (United States)

    König, Diethard; Mahmoudi, Elham; Khaledi, Kavan; von Blumenthal, Achim; Schanz, Tom

    2016-04-01

    The excess electricity produced by renewable energy sources available during off-peak periods of consumption can be used e.g. to produce and compress hydrogen or to compress air. Afterwards the pressurized gas is stored in the rock salt cavities. During this process, thermo-mechanical cyclic loading is applied to the rock salt surrounding the cavern. Compared to the operation of conventional storage caverns in rock salt the frequencies of filling and discharging cycles and therefore the thermo-mechanical loading cycles are much higher, e.g. daily or weekly compared to seasonally or yearly. The stress strain behavior of rock salt as well as the deformation behavior and the stability of caverns in rock salt under such loading conditions are unknown. To overcome this, existing experimental studies have to be supplemented by exploring the behavior of rock salt under combined thermo-mechanical cyclic loading. Existing constitutive relations have to be extended to cover degradation of rock salt under thermo-mechanical cyclic loading. At least the complex system of a cavern in rock salt under these loading conditions has to be analyzed by numerical modeling taking into account the uncertainties due to limited access in large depth to investigate material composition and properties. An interactive evolution concept is presented to link the different components of such a study - experimental modeling, constitutive modeling and numerical modeling. A triaxial experimental setup is designed to characterize the cyclic thermo-mechanical behavior of rock salt. The imposed boundary conditions in the experimental setup are assumed to be similar to the stress state obtained from a full-scale numerical simulation. The computational model relies primarily on the governing constitutive model for predicting the behavior of rock salt cavity. Hence, a sophisticated elasto-viscoplastic creep constitutive model is developed to take into account the dilatancy and damage progress, as well as

  14. Specific Investigations Related to Salt Rock Behaviour

    DEFF Research Database (Denmark)

    Vons, L. H.; Zelikson, A.; Charo, L.

    1986-01-01

    In this paper results are given of work in various countries in rather unrelated areas of research. Nevertheless, since the studies have been undertaken to better understand salt behaviour, both from mechanical and chemical points of view, some connection between the studies can be found. Studies...

  15. Influence of rock salt impurities on limestone aggregate durability : final report.

    Science.gov (United States)

    2016-08-01

    Non-durable coarse aggregate in concrete pavement can break down under repeated freeze-thaw cycles. : Application of rock salt may increase the severity of exposure conditions because of trace compounds, such as calcium : sulfate, in rock salt. Concr...

  16. Influence of rock salt impurities on limestone aggregate durability : technical summary.

    Science.gov (United States)

    2016-08-01

    Non-durable coarse aggregate in concrete pavement can break down under : repeated freeze-thaw cycles. Application of rock salt may increase the severity of : exposure conditions because of trace compounds, such as calcium sulfate, in rock : salt. Con...

  17. Internally Pressurized Spherical and Cylindrical Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Krenk, Steen

    1978-01-01

    -linear zone and the volume reduction. Results are given for cavities in rock salt, and a comparison with measured stress concentrations is used to support the assumption of a hydrostatic stress state in undisturbed salt formations. Finally a method to estimate convergence due to creep is outlined.......The paper deals with the stress distribution around cavities under pressure in an infinite, non-linear elastic material. A homogeneous stress state is assumed at infinity. For spherical and cylindrical cavities simple formulae are derived for the stress concentration, the extent of the non...

  18. Folding and fracturing of rock adjacent to salt diapirs

    Science.gov (United States)

    Rowan, Mark G.

    2017-04-01

    When John Ramsay wrote his groundbreaking book in 1967, deformation around salt diapirs was not something he covered. At the time, most geologists considered diapirs to form due to density inversion, rising through thick overlying strata due to buoyancy. In doing so, salt was thought to shove aside the younger rocks, shearing and fracturing them in drag folds and supposedly producing "salt gouge". Even after it was realized that the majority of diapirs spend most of their history growing at or just beneath the surface, the relative rise of salt and sinking of minibasins were (and are) still thought by many to be accommodated in part by shear and fracturing of rocks in a collar zone around the salt. There are two arguments against this model. The first is mechanical: whereas halite behaves as a viscous fluid, even young sediment deforms as a brittle material with layer anisotropy. Thus, the salt-sediment interface is the outer margin of an intrasalt shear zone caused by viscous drag against the diapir margin. The velocity of salt flow decreases dramatically toward the edge of the diapir, so that the outermost salt effectively doesn't move. Hence, no shear or fracturing is expected in surrounding strata. The second and more important argument is that empirical field data do not support the idea of drag folds and associated deformation. Certainly, strata are typically folded and thinned adjacent to diapirs. However, stratal upturn is generated by monoclinal drape folding of the diapir roof over the edge of the rising salt, and thinning is caused by deposition onto the bathymetric highs formed by the diapirs, often supplemented by roof erosion and slumping. Halokinetic sequences observed in numerous salt basins (e.g., Paradox Basin, La Popa Basin, Spanish Pyrenees, Sivas Basin, Zagros Mountains, Kuqa Basin) contain no diapir-parallel shear zones and minimal thinning and fracturing caused by diapir rise. Even megaflaps, in which strata extend for kilometers up the sides

  19. Deformation and transport processes in salt rocks : An experimental study exploring effects of pressure and stress relaxation

    NARCIS (Netherlands)

    Muhammad, Nawaz|info:eu-repo/dai/nl/357286537

    2015-01-01

    The presence of evaporitic formations in sedimentary basins, often dominated by the salt mineral halite, is of great influence on the structural style developed during tectonic events. On a somewhat smaller scale, salt rocks often host a variety of deep solution mined caverns, which are increasingly

  20. Rock-Salt Growth-Induced (003) Cracking in a Layered Positive Electrode for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanlei [Materials; amp, Department; NorthEast; Omenya, Fredrick [NorthEast; Yan, Pengfei [Environmental; Luo, Langli [Environmental; Whittingham, M. Stanley [NorthEast; Wang, Chongmin [Environmental; Zhou, Guangwen [Materials; amp, Department; NorthEast

    2017-10-20

    For the first time, the (003) cracking is observed and determined to be the major cracking mechanism for the primary particles of Ni-rich layered dioxides as the positive electrode for Li-ion batteries. Using transmission electron microscopy techniques, here we show that the propagation and fracturing of platelet-like rock-salt phase along the (003) plane of the layered oxide are the leading cause for the cracking of primary particles. The fracturing of the rock-salt platelet is induced by the stress discontinuity between the parent layered oxide and the rock-salt phase. The high nickel content is considered to be the key factor for the formation of the rock-salt platelet and thus the (003) cracking. The (003)-type cracking can be a major factor for the structural degradation and associated capacity fade of the layered positive electrode.

  1. Mathematical Modelling for Micropiles Embedded in Salt Rock

    Directory of Open Access Journals (Sweden)

    Rădan (Toader Georgiana

    2016-03-01

    Full Text Available This study presents the results of the mathematical modelling for the micropiles foundation of an investement objective located in Slanic, Prahova county. Three computing models were created and analyzed with software, based on Finite Element Method. With Plaxis 2D model was analyzed the isolated micropile and the three-dimensional analysis was made with Plaxis 3D model, for group of micropiles. For the micropiles foundation was used Midas GTS-NX model. The mathematical models were calibrated based with the in-situ tests results for axially loaded micropiles, embedded in salt rock. The paper presents the results obtained with the three software, the calibration and validation models.

  2. Mineralogical and microstructural investigations of fractures in Permian z2 potash seam and surrounding salt rocks

    Science.gov (United States)

    Mertineit, Michael; Grewe, Wiebke; Schramm, Michael; Hammer, Jörg; Blanke, Hartmut; Patzschke, Mario

    2017-04-01

    Fractures occur locally in the z2 potash seam (Kaliflöz Staßfurt). Most of them extend several centimeter to meter into the surrounding salt rocks. The fractures are distributed on all levels in an extremely deformed area of the Morsleben salt mine, Northern Germany. The sampling site is located within a NW-SE trending synclinal structure, which was reverse folded (Behlau & Mingerzahn 2001). The samples were taken between the -195 m and - 305 m level at the field of Marie shaft. In this area, more than 200 healed fractures were mapped. Most of them show opening widths of only a few millimeters to rarely 10 cm. The fractures in rock salt are filled with basically polyhalite, halite and carnallite. In the potash seam, the fractures are filled with kainite, halite and minor amounts of carnallite and polyhalite. In some cases the fracture infill changes depending on the type of surrounding rocks. There are two dominant orientations of the fractures, which can be interpreted as a conjugated system. The main orientation is NE-SW trending, the dip angles are steep (ca. 70°, dip direction NW and SE, respectively). Subsequent deformation of the filled fractures is documented by a strong grain shape fabric of kainite, undulatory extinction and subgrain formation in kainite, and several mineral transformations. Subgrain formation in halite occurred in both, the fracture infill and the surrounding salt rocks. The results correlate in parts with investigations which were carried out at the close-by rock salt mine Braunschweig-Lüneburg (Horn et al. 2016). The development of the fractures occurred during compression of clayey salt rocks. However, the results are only partly comparable due to different properties (composition, impurities) of the investigated stratigraphic units. Further investigations will focus on detailed microstructural and geochemical analyses of the fracture infill and surrounding salt rocks. Age dating of suitable minerals, e.g. polyhalite (Leitner et al

  3. Impact of rock salt creep law choice on subsidence calculations for hydrocarbon reservoirs overlain by evaporite caprocks

    National Research Council Canada - National Science Library

    Marketos, G; Spiers, C.J; Govers, R

    2016-01-01

    .... Here we focus entirely on rock salt, which overlies a large number of reservoirs worldwide, and specifically on the role of creep of rock salt caprocks in response to production-induced differential stresses...

  4. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  5. Numerical Simulation on Open Wellbore Shrinkage and Casing Equivalent Stress in Bedded Salt Rock Stratum

    Directory of Open Access Journals (Sweden)

    Jianjun Liu

    2013-01-01

    Full Text Available Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength.

  6. Numerical simulation on open wellbore shrinkage and casing equivalent stress in bedded salt rock stratum.

    Science.gov (United States)

    Liu, Jianjun; Zhang, Linzhi; Zhao, Jinzhou

    2013-01-01

    Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength.

  7. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions.

    Science.gov (United States)

    Chen, Jie; Ren, Song; Yang, Chunhe; Jiang, Deyi; Li, Lin

    2013-08-12

    Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material.

  8. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions

    Directory of Open Access Journals (Sweden)

    Lin Li

    2013-08-01

    Full Text Available Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material.

  9. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions

    Science.gov (United States)

    Chen, Jie; Ren, Song; Yang, Chunhe; Jiang, Deyi; Li, Lin

    2013-01-01

    Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material. PMID:28811444

  10. Influence of deformation on the fluid transport properties of salt rocks

    NARCIS (Netherlands)

    Peach, C.J.

    1991-01-01

    While the fluid transport properties of rocks are well understood under hydrostatic conditions, little is known regarding these properties in rocks undergoing crystal plastic deformation. However, such data are needed as input in the field of radioactive waste disposal in salt formations. They

  11. Influence of deformation on the fluid transport properties of salt rocks

    NARCIS (Netherlands)

    Peach, C.J.

    1991-01-01

    While the fluid transport properties of rocks are well understood under hydrostatic conditions, little is known regarding these properties in rocks undergoing crystal plastic deformation. However, such data are needed as input in the field of radioactive waste disposal in salt formations. They are

  12. Remaining porosity and permeability of compacted crushed rock salt backfill in a HLW repository. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jobmann, M.; Mueller, C.; Schirmer, S.

    2015-11-15

    The safe containment of radioactive waste is to be ensured by the geotechnical barriers in combination with the containment-providing rock zone (CRZ). The latter is a key element of the recently developed concept of demonstrating the integrity of the geologic barrier (Krone et al., 2013). As stipulated in the safety requirements of the regulating body the CRZ has to have strong barrier properties, and evidence needs to be provided that it retains its integrity throughout the reference period (BMU, 2010). The underground openings excavated in the rock salt will close over time due to the creep properties of the rock salt. This process causes deformations in the surrounding rock salt, which leads to a change in stress state in the virgin rock and may impair the integrity of the containment-providing rock zone. In order to limit the effects of these processes, all underground openings will be backfilled with crushed salt. Immediately after backfilling, the crushed salt will have an initial porosity of approx. 35%, which - over time - will be reduced to very low values due to the creep properties of the rock salt. The supporting pressure that builds up in the crushed salt with increasing compaction slows down the creeping of the salt. Major influencing factors are the temperature (with higher temperatures accelerating the salt creeping) and the moisture of the salt, which - due to the related decrease in the resistance of the crushed salt - facilitates its compaction. The phenomenology of these processes and dependencies is understood to a wide extent. This project investigated the duration until compaction is completed and when and under what circumstances the crushed salt will have the sealing properties necessary to ensure safe containment. Thermo-hydro-mechanical (THM) processes play a crucial role in determining whether solutions which might enter the mine could reach the radioactive waste. This includes changes in material behaviour due to a partial or complete

  13. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions

    OpenAIRE

    Lin Li; Chunhe Yang; Deyi Jiang; Song Ren; Jie Chen

    2013-01-01

    Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperatur...

  14. The effects of naturally occurring impurities in rock salt

    Indian Academy of Sciences (India)

    In this paper we investigate the effect that naturally occurring impurities in salt mines have both on effective permittivity of the medium and on radio wave propagation at ∼200 MHz. The effective permittivity is determined based on the dielectric properties of salt and the characteristics of the main impurities. We conclude that ...

  15. Experimental investigation of two-phase flow in rock salt

    Energy Technology Data Exchange (ETDEWEB)

    Malama, Bwalya [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Howard, Clifford L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

  16. Microstructures in naturally deformed Upper Rotliegend salt rocks from Northern Germany

    Science.gov (United States)

    Henneberg, Mareike; Hammer, Jörg; Mertineit, Michael

    2017-04-01

    Permian and Meso-/Cenozoic salt formations are represented in wide parts of the German geologic underground (Reinhold & Hammer 2016). They are of interest for cavern storage of oil and gas as well as of renewable energies (in form of compressed air or hydrogen). For industrial exploration purposes, more detailed data about the composition, barrier properties, as well as the genesis and deformation of the rocks is needed. In central Northern Germany, salt rocks from the Upper Rotliegend are implemented in diapir structures together with salt formations from the Zechstein. Rotliegend salt rocks are characterized by halite that contains patches of detrital material which account for 5 to 60 vol.% of the rock. They show a characteristic red to purple color. Drill cores containing Rotliegend halite rocks from different locations were investigated in this study by using petrographical and microstructural methods. The halite shows different fabric types: (i) euhedral to hypidiomorphic grains with grain sizes up to several millimeters, (ii) polygonal grains with smaller grain sizes between 0.1 and 3 mm, and (iii) fibrous halite. Halite grain boundaries are decorated with fluid inclusions, especially around the contact to detrital material. Subgrains in halite are abundant in all investigated samples and show average sizes between 140 µm and 217 µm. These correspond to average differential stresses of 1 MPa to 1.45 MPa (Carter et al. 1993, Schléder & Urai 2005). The detrital material consists of clasts of quartz, feldspar, mica, carbonates and metal oxides with grain sizes of clay to silt fraction. In some samples, the detrital components show internal deformation by folding and fracturing. Depending on the location, different quantities of authigenic evaporite minerals, like carbonate and anhydrite, formed. Fractures are filled with halite, anhydrite and celestine. The different types of halite fabric are an indication of locally different deformational behavior of the

  17. A fractional derivative approach to full creep regions in salt rock

    DEFF Research Database (Denmark)

    Zhou, H. W.; Wang, C. P.; Mishnaevsky, Leon

    2013-01-01

    on the basis of time-based fractional derivative. The analytic solution for the fractional-derivative creep constitutive model is presented. The parameters of the fractional derivative creep model are determined by the Levenberg–Marquardt method on the basis of the experimental results of creep tests on salt...... rock. Furthermore, a sensitivity study is carried out, showing the effects of stress level, fractional derivative order and viscosity coefficient exponent on creep strain of salt rock. It is indicated that the fractional derivative creep model proposed in the paper provides a precise description...

  18. The effects of naturally occurring impurities in rock salt

    Indian Academy of Sciences (India)

    One of the key problems associated with a neutrino radio detector in salt is the capa- bility to reconstruct the ... in wave propagation as it connects the electric displacement field D to the electric field intensity E. In a linear, homogeneous, isotropic material with 'instantaneous' response to changes in electric field, the relation.

  19. Estimating Rheological Parameters of Anhydrite from Folded Evaporite sequences: Implications for Internal Dynamics of Salt Structure

    Science.gov (United States)

    Adamuszek, Marta; Dabrowski, Marcin; Schmalholz, Stefan M.; Urai, Janos L.; Raith, Alexander

    2015-04-01

    Salt structures have been identified as a potential target for hydrocarbon, CO2, or radioactive waste storage. The most suitable locations for magazines are considered in the thick and relatively homogeneous rock salt layers. However, salt structures often consist of the evaporite sequence including rock salt intercalated with other rock types e.g.: anhydrite, gypsum, potassium and magnesium salt, calcite, dolomite, or shale. The presence of such heterogeneities causes a serious disturbance in the structure management. Detailed analysis of the internal architecture and internal dynamics of the salt structure are crucial for evaluating them as suitable repositories and also their long-term stability. The goal of this study is to analyse the influence of the presence of anhydrite layers on the internal dynamics of salt structures. Anhydrite is a common rock in evaporite sequences. Its physical and mechanical properties strongly differ from the properties of rock salt. The density of anhydrite is much higher than the density of salt, thus anhydrite is likely to sink in salt causing the disturbance of the surrounding structures. This suggestion was the starting point to the discussion about the long-term stability of the magazines in salt structures [1]. However, the other important parameter that has to be taken into account is the viscosity of anhydrite. The high viscosity ratio between salt and anhydrite can restrain the layer from sinking. The rheological behaviour of anhydrite has been studied in laboratory experiments [2], but the results only provide information about the short-term behaviour. The long-term behaviour can be best predicted using indirect methods e.g. based on the analysis of natural structures that developed over geological time scale. One of the most promising are fold structures, the shape of which is very sensitive to the rheological parameters of the deforming materials. Folds can develop in mechanically stratified materials during layer

  20. A fractional derivative approach to full creep regions in salt rock

    Science.gov (United States)

    Zhou, H. W.; Wang, C. P.; Mishnaevsky, L.; Duan, Z. Q.; Ding, J. Y.

    2013-08-01

    Based on the definition of the constant-viscosity Abel dashpot, a new creep element, referred to as the variable-viscosity Abel dashpot, is proposed to characterize damage growth in salt rock samples during creep tests. Ultrasonic testing is employed to determine a formula of the variable viscosity coefficient, indicating that the change of the variable viscosity coefficient with the time meets a negative exponent law. In addition, by replacing the Newtonian dashpot in the classical Nishihara model with the variable-viscosity Abel dashpot, a damage-mechanism-based creep constitutive model is proposed on the basis of time-based fractional derivative. The analytic solution for the fractional-derivative creep constitutive model is presented. The parameters of the fractional derivative creep model are determined by the Levenberg-Marquardt method on the basis of the experimental results of creep tests on salt rock. Furthermore, a sensitivity study is carried out, showing the effects of stress level, fractional derivative order and viscosity coefficient exponent on creep strain of salt rock. It is indicated that the fractional derivative creep model proposed in the paper provides a precise description of full creep regions in salt rock, i.e., the transient creep region (the primary region), the steady-state creep region (the secondary region) and the accelerated creep region (the tertiary region).

  1. Study on Mechanical Features of Brazilian Splitting Fatigue Tests of Salt Rock

    Directory of Open Access Journals (Sweden)

    Weichao Wang

    2016-01-01

    Full Text Available The microtest, SEM, was carried out to study the fracture surface of salt rock after the Brazilian splitting test and splitting fatigue test were carried out with a servo-controlled test machine RMT-150B. The results indicate that the deviation of using the tablet splitting method is larger than that of using steel wire splitting method, in Brazilian splitting test of salt rock, when the conventional data processing method is adopted. There are similar deformation features in both the conventional splitting tests and uniaxial compression tests. The stress-strain curves include compaction, elasticity, yielding, and failure stage. Both the vertical deformation and horizontal deformation of splitting fatigue tests under constant average loading can be divided into three stages of “loosening-tightness-loosening.” The failure modes of splitting fatigue tests under the variational average loading are not controlled by the fracturing process curve of the conventional splitting tests. The deformation extent of fatigue tests under variational average loading is even greater than that of conventional splitting test. The tensile strength of salt rock has a relationship with crystallization conditions. Tensile strength of thick crystal salt rock is lower than the bonded strength of fine-grain crystals.

  2. Musical Structure as Narrative in Rock

    Directory of Open Access Journals (Sweden)

    John Fernando Encarnacao

    2011-09-01

    Full Text Available In an attempt to take a fresh look at the analysis of form in rock music, this paper uses Susan McClary’s (2000 idea of ‘quest narrative’ in Western art music as a starting point. While much pop and rock adheres to the basic structure of the establishment of a home territory, episodes or adventures away, and then a return, my study suggests three categories of rock music form that provide alternatives to common combinations of verses, choruses and bridges through which the quest narrative is delivered. Labyrinth forms present more than the usual number of sections to confound our sense of ‘home’, and consequently of ‘quest’. Single-cell forms use repetition to suggest either a kind of stasis or to disrupt our expectations of beginning, middle and end. Immersive forms blur sectional divisions and invite more sensual and participatory responses to the recorded text. With regard to all of these alternative approaches to structure, Judy Lochhead’s (1992 concept of ‘forming’ is called upon to underline rock music forms that unfold as process, rather than map received formal constructs. Central to the argument are a couple of crucial definitions. Following Theodore Gracyk (1996, it is not songs, as such, but particular recordings that constitute rock music texts. Additionally, narrative is understood not in (direct relation to the lyrics of a song, nor in terms of artists’ biographies or the trajectories of musical styles, but considered in terms of musical structure. It is hoped that this outline of non-narrative musical structures in rock may have applications not only to other types of music, but to other time-based art forms.

  3. Microfabrics and deformation mechanisms of rheologically stratified salt rocks: Constraints from EBSD-analyses of anhydrite and halite of Upper Permian salt rocks

    Science.gov (United States)

    Mertineit, Michael; Schramm, Michael; Hammer, Jörg; Zulauf, Gernold; Thiemeyer, Nicolas

    2017-04-01

    Salt rocks of the Leine Unit (z3), Upper Permian German Zechstein, are characterized by locally changing amounts of anhydrite. The interbeds of the more competent anhydrite layers may be affected by folding or boudinage. The present study is focusing on the texture of deformed halite and anhydrite. The samples for EBSD studies were collected from Anhydritmittelsalz (z3AM) of the Morsleben salt mine, which is affected by folding and boudinage of anhydrite in rock-salt matrix due to diapiric emplacement and subsequent horizontal shortening (Behlau & Mingerzahn 2001). Anhydrite is characterized by small grain size (≤ 50 µm) and high amounts of opaque and less soluble components (magnesite, quartz, phyllosilicates). Small fractures are filled with halite. For EBSD, line scans were performed with a step size of 50 µm. The results do not show any crystallographic preferred orientation of anhydrite. The grain size of halite ranges from 1-3 mm, grain boundaries are lobate and decorated with both fluid inclusions and small anhydrite crystals. Halite subgrains have a size of 70-90 µm. For EBSD analyses, map scans were performed with different size and step size, dependent on the magnification. The misorientation angles between single subgrains are very low (1°-2°), only subordinate misorientation angles of 5°-7° occur. Bending of some halite crystals is documented by misorientation angles of max. 3° within a single grain. The misorientation index M (Skemer et al. 2005) for whole rock analyses yielded values rocks. The small grain size of anhydrite, the lack of a preferred orientation and the development of opaque seams suggest solution-precipitation creep is the most important deformation mechanism in fine grained anhydrite rocks. Brittle deformation is documented by subsequent developed fractures, which are filled with halite. For halite, subgrain formation and solution-precipitation creep are the dominant deformation mechanisms. No lattice preferred orientation

  4. Synthesis, structure, and properties of azatriangulenium salts

    DEFF Research Database (Denmark)

    Laursen, B.W.; Krebs, Frederik C

    2001-01-01

    ), and triazatriangulenium (4), have been synthesized and their physicochemical properties have been investigated. Crystal structures for compounds 2 b-PF6: 2d-PF6, 4b-BF4, 4c-BF4, 6e-BF4, and 8 are reported. The different packing modes found for the triazatriagulenium salts are discussed in relation to the electrostatic...

  5. Preliminary state-of-the-art survey: mining techniques for salt and other rock types

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    This is a systematic review of the state-of-the-art of underground mining and excavation technology in the U.S. as applied to salt, limestone, shale, and granite. Chapter 2 covers the basic characteristics of these rock types, the most frequently used underground mining methods, shaft and slope entry construction, equipment, and safety and productivity data. Chapters 3 and 4 summarize underground salt and limestone mining in the U.S. Chapter 5 shows that large amounts of thick shale exist in the U.S., but little is mined. Chapter 6 discusses underground excavations into granite-type rocks. Suggestions are given in the last chapter for further study. (DLC)

  6. Radar for detection of ultra-high-energy neutrinos reacting in a rock salt dome

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Masami, E-mail: chiba-masami@tmu.ac.jp [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji-shi, Tokyo 192-0397 (Japan); Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji-shi, Tokyo 192-0397 (Japan); Akiyama, Hidetoshi; Chikashige, Yuichi; Kataoka, Hiromi; Kon, Tadashi; Shimizu, Yutaka [Faculty of Science and Technology, Seikei University, Musashino-shi, Tokyo 180-8633 (Japan); Taniuchi, Yasuyuki; Utsumi, Michiaki [Department of Applied Science and Energy Engineering, School of Engineering, Tokai University Hiratsuka-shi, Kanagawa 259-1292 (Japan); Fujii, Masatoshi [School of Medicine, Shimane University, Izumo-shi, Shimane 693-8501 (Japan)

    2012-01-11

    Detection of GZK (Greisen, Zatsepin and Kuzmin) neutrinos that have an energy larger than 1 Multiplication-Sign 10{sup 16} eV are expected to explore ultra-high-energy (UHE) interactions between UHE protons (>4 Multiplication-Sign 10{sup 19} eV) and cosmic-microwave background in the cosmological distances. A study of the radar method was carried out using a 2 MeV electron beam to irradiate rock salt powder filled in a 435 MHz waveguide. Reflection of radio wave from the irradiated rock-salt powder was observed inside the waveguide. The reflection mechanism was elucidated and the reflection power ratio was compared with a Fresnel equation.

  7. Role of Lithology and Rock Structure in Drainage Development in ...

    African Journals Online (AJOL)

    Lithology and Rock structure play a vital role in the development of Drainage Network in any drainage basin. The drainage patterns upon land surface develop as directed by the underlying lithology and rock structure. In fact, lithology and rock structure together shape the basin and are decisive parameters of nature and ...

  8. Rock Pore Structure as Main Reason of Rock Deterioration

    Directory of Open Access Journals (Sweden)

    Ondrášik Martin

    2014-03-01

    Full Text Available Crashed or dimensional rocks have been used as natural construction material, decoration stone or as material for artistic sculptures. Especially old historical towns not only in Slovakia have had experiences with use of stones for construction purposes for centuries. The whole buildings were made from dimensional stone, like sandstone, limestone or rhyolite. Pavements were made especially from basalt, andesite, rhyolite or granite. Also the most common modern construction material - concrete includes large amounts of crashed rock, especially limestone, dolostone and andesite.

  9. Impact of rock salt creep law choice on subsidence calculations for hydrocarbon reservoirs overlain by evaporite caprocks

    NARCIS (Netherlands)

    Marketos, G.; Spiers, C.J.; Govers, R.

    2016-01-01

    Accurate forward modeling of surface subsidence above producing hydrocarbons reservoirs requires an understanding of the mechanisms determining how ground deformation and subsidence evolve. Here we focus entirely on rock salt, which overlies a large number of reservoirs worldwide, and specifically

  10. Rock stream stability structures in the vicinity of bridges.

    Science.gov (United States)

    2014-10-01

    This report was sponsored by the Utah Department of Transportation (UDOT) to determine if rock stream stability structures could be used as : scour countermeasures and to protect streambanks. Traditional scour countermeasures, such as rock riprap, ar...

  11. Emergent nanoscale fluctuations in high rock-salt PbTe

    Science.gov (United States)

    Billinge, Simon

    2013-03-01

    Lead Telluride is one of the most promising thermoelectric materials in the temperature range just above room temperature. It is a narrow band gap semiconductor with a high Seebeck coefficient and a low thermal conductivity. It is structurally much simpler than many other leading candidates for high performance thermoelectrics being a binary rock-salt, isostructural to NaCl. The thermoelectric figure of merit, ZT, can be markedly improved by alloying with various other elements by forming quenched nanostructures. The undoped endmember, PbTe, does not have any such quenched nanostructure, yet has a rather low intrinsic thermal conductivity. There are also a number of interesting and non-canonical behaviors that it exhibits, such as an increasing measured band-gap with increasing temperature, exactly opposite to what is normally seen due to Fermi smearing of the band edge, and an unexpected non-monotonicity of the band gap in the series PbTe - PbSe - PbS. The material is on the surface simple, but hides some interesting complexity. We have investigated in detail the PbTe endmember using x-ray and neutron diffraction and neutron inelastic scattering. To our surprise, using the atomic pair distribution function (PDF) analysis of neutron powder diffraction data we found that an interesting and non-trivial local structure that appears on warming. with the Pb atoms moving off the high-symmetry rock-salt positions towards neighboring Te ions. No evidence for the off-centering of the Pb atoms is seen at low temperature. The crossover from the locally undistorted to the locally distorted state occurs on warming between 100 K and 250 K. This unexpected emergence of local symmetry broken distortions from an undistorted ground-state we have called emphanisis, from the Greek for appearing from nothing. We have also investigated the lattice dynamics of the system to search for a dynamical signature of this behavior and extended the studies to doped systems and I will also

  12. Accelerator Measurments of the Askaryan Effect in Rock Salt: A Roadmap Toward Teraton Underground Neutrino Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gorham, P.

    2004-12-15

    We report on further SLAC measurements of the Askaryan effect: coherent radio emission from charge asymmetry in electromagnetic cascades. We used synthetic rock salt as the dielectric medium, with cascades produced by GeV bremsstrahlung photons at the Final Focus Test Beam. We extend our prior discovery measurements to a wider range of parameter space and explore the effect in a dielectric medium of great potential interest to large scale ultra-high energy neutrino detectors: rock salt (halite), which occurs naturally in high purity formations containing in many cases hundreds of cubic km of water-equivalent mass. We observed strong coherent pulsed radio emission over a frequency band from 0.2-15 GHz. A grid of embedded dual-polarization antennas was used to confirm the high degree of linear polarization and track the change of direction of the electric-field vector with azimuth around the shower. Coherence was observed over 4 orders of magnitude of shower energy. The frequency dependence of the radiation was tested over two orders of magnitude of UHF and microwave frequencies. We have also made the first observations of coherent transition radiation from the Askaryan charge excess, and the result agrees well with theoretical predictions. Based on these results we have performed detailed and conservative simulation of a realistic GZK neutrino telescope array within a salt-dome, and we find it capable of detecting 10 or more contained events per year from even the most conservative GZK neutrino models.

  13. Map data and Unmanned Aircraft System imagery from the May 25, 2014 West Salt Creek rock avalanche in western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On May 25, 2014, a rain-on-snow induced rock avalanche occurred in the West Salt Creek Valley on the northern flank of Grand Mesa in western Colorado. The avalanche traveled 4.6 km down the confined valley, killing 3 people. The avalanche was rare for the contiguous U.S. because of its large size (54.5 Mm3) and long travel distance. To understand the avalanche failure sequence, mechanisms, and mobility, we mapped landslide structures, geology, and ponds at 1:1000-scale. We used high-resolution, Unmanned Aircraft System (UAS) imagery from July 2014 as a base for our field mapping. Here we present the map data and UAS imagery. The data accompany an interpretive paper published in the journal Geosphere. The full citation for this interpretive journal paper is: Coe, J.A., Baum, R.L., Allstadt, K.E., Kochevar, B.F., Schmitt, R.G., Morgan, M.L., White, J.L., Stratton, B.T., Hayashi, T.A., and Kean, J.W., 2016, Rock avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek Valley, western Colorado: Geosphere, v. 12, no. 2, p. 607-631,  doi:10.1130/GES01265.1. 

  14. Evolution of rheologically heterogeneous salt structures: a case study from the NE Netherlands

    Science.gov (United States)

    Raith, A. F.; Strozyk, F.; Visser, J.; Urai, J. L.

    2016-01-01

    The growth of salt structures is controlled by the low flow strength of evaporites and by the tectonic boundary conditions. The potassium-magnesium salts (K-Mg salts) carnallite and bischofite are prime examples of layers with much lower effective viscosity than halite: their low viscosity presents serious drilling hazards but also allows squeeze solution mining. In contrast, intrasalt anhydrite and carbonate layers (stringers) are much stronger than halite. These rheological contrasts within an evaporite body have an important control on the evolution of the internal structure of salt, but how this mechanical layering affects salt deformation at different scales is not well known. In this study, we use high-resolution 3-D seismic and well data to study the evolution of the Veendam and Slochteren salt pillows at the southern boundary of the Groningen High, northern Netherlands. Here the rock salt layers contain both the mechanically stronger Zechstein III Anhydrite-Carbonate stringer and the weaker K-Mg salts, thus we are able to assess the role of extreme rheological heterogeneities on salt structure growth. The internal structure of the two salt pillows shows areas in which the K-Mg salt-rich ZIII 1b layer is much thicker than elsewhere, in combination with a complexly ruptured and folded ZIII Anhydrite-Carbonate stringer. Thickness maps of supra-salt sediments and well data are used to infer the initial depositional architecture of the K-Mg salts and their deformation history. Results suggest that faulting and the generation of depressions on the top Zechstein surface above a Rotliegend graben caused the local accumulation of bittern brines and precipitation of thick K-Mg salts. During the first phase of salt flow and withdrawal from the Veendam area, under the influence of differential loading by Buntsandstein sediments, the ZIII stringer was boudinaged while the lens of Mg salts remained relatively undeformed. This was followed by a convergence stage, when the

  15. Assessment of Rock Mass Stability in the Historic Area of Levels IV-V of the "Wieliczka" Salt Mine

    Science.gov (United States)

    d'Obyrn, Kajetan; Hydzik-Wiśniewska, Joanna

    2017-03-01

    As a result, of more than 700 years of exploitation in the Wieliczka Salt Mine, a network of underground workings spreading over eleven levels was created. All mine workings of significant historic and natural qualities and the majority of functional mine workings designated to be preserved are located on levels I to V. The most precious of them, available to tourists, are located in the central part of the Mine on levels I-III. The Mine is not anticipating to make levels IV, Kołobrzeg and V available for a wider range of visitors, even though there are historically and naturally precious workings in those areas as well. The most valuable of the mine workings come from the eighteenth and nineteenth centuries and were exploited mainly in a bed of fore-shaft salt, Spiza salt and the oldest ones. The characteristic feature of these excavations, distinguish them from the chambers located on the levels I-III, is the room-and-pillar system that had been used there. Mine workings exploited in this system measure up to 100 metres in length, and the unsupported pillars standing between the chambers measuring 4-10 metres in width were remained. The described above levels, including levels of VI-IX are to provide a stable support for the workings located higher up. The remaining part of the mine, with the exception of the function workings, is designated for liquidation by backfilling. The article presents an assessment of stability of the mine workings, located on levels IV-V, and their impact on the surrounding rock mass and the land surface. The analysis was based on geodetic measurements and numerical calculations for strain state of rock mass surrounding the mine workings, in actual conditions and after partial backfilling, and forecast of the rock stability factor after the end of backfilling. The assessment stability factor in the vicinity of excavations at levels IV-V was based on the results of spatial numerical analysis covering the entire central area of the mine

  16. An ultra-high-energy-neutrino detector using rock salt and ice as detection media for radar method

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Masami; Kamijo, Toshio; Tanikawa, Takahiro; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan); Faculty of Science and Technology, Seikei University, Musashino-shi, Tokyo 180-8633 (Japan); Department of Applied Science and Energy Engineering, School of Engineering, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); School of Medicine, Shimane University, Izumo-shi, Shimane 693-8501 (Japan)

    2012-11-12

    We had found radio-wave-reflection effect in rock salt for detection of an ultra-high energy neutrino (UHE{nu}) which is generated in GZK processes in the universe. When an UHE{nu} interacts with rock salt or ice as a detection medium, the energy converts to a thermal energy. Consequently, a temperature gives rise along an UHE{nu} shower at the interaction location. The permittivity arises with respect to the temperature at ionization processes of the UHE{nu} shower which is composed of hadronic and electromagnetic multiplication processes. The irregularity of the refractive index in the medium for radio wave rises to a reflection. The reflection effect with a long attenuation length of radio wave in rock salt and ice would yield a new method to detect UHE{nu}. They could be used for detection media in which the UHE{nu} interacts with. We could find a huge amount of rock salt or ice over 50 Gt in a natural rock salt formation or Antarctic ice sheet. Radio wave transmitted into the medium generated by a radar system could be reflected by the irregularity of the refractive index at the shower. Receiving the reflected radio wave yields information about the UHE{nu}.

  17. (Li/Ag)CoO2: a new intergrowth cobalt oxide composed of rock salt and delafossite layers.

    Science.gov (United States)

    Berthelot, R; Pollet, M; Doumerc, J-P; Delmas, C

    2011-07-18

    A new ordered (Li/Ag)CoO(2) layered compound with an unusual oxygen packing combining rock salt and delafossite layers is obtained during the (Li(+), Na(+))/Ag(+) ionic exchange from the OP4-(Li/Na)CoO(2) precursor. This compound is actually an intermediate step to the final D4-AgCoO(2) delafossite and can be isolated thanks to the kinetics difference between the Li(+)/Ag(+) and Na(+)/Ag(+) exchange processes. It crystallizes in the P6(3)/mmc space group with cell parameters a(hex.) = 2.848(3) Å and c(hex.) = 21.607(7) Å. The details of the structure as well as its thermal stability and transport properties are presented and discussed.

  18. Numerical analysis of the bearing capacity of complex rock mechanical underground systems with filigree structures in the presence of imponderables. A contribution to the systematization of the investigative process with application/demonstration using the example of the salt cavern ASSE II/south flank; Numerische Analyse des Tragverhaltens komplexer gebirgsmechanischer untertaegiger Systeme mit filigranen Strukturen bei Anwesenheit von Imponderabilien. Ein Beitrag zur Systematisierung des Untersuchungsprozesses mit Anwendung/Demonstration am Beispiel des Salzbergwerks Schacht ASSE II/Suedflanke

    Energy Technology Data Exchange (ETDEWEB)

    Dyogtyev, Oleksandr

    2017-03-02

    The thesis dealing with the numerical analysis of the bearing capacity of complex rock mechanical underground systems with filigree structures in the presence of imponderables covers the following issues: status of science and technology, concept for the performance of numerical studies on the bearing capacity of large-volume underground systems, application example salt cavern ASSE II - application of the developed concept/development of numerical tools for the overall system/application of the global model to the given questions/realization of the modification potential.

  19. Clinopyroxene application in petrogenesis identification of volcanic rocks associated with salt domes from Shurab (Southeast Qom

    Directory of Open Access Journals (Sweden)

    Somayeh Falahaty

    2016-07-01

    Full Text Available Introduction The study area is located in the Shurab area that is about 50 Km Southeast of Qom. Volcanic rocks of the Shurab area have basaltic composition that is associated with salt and marl units. Igneous rocks of the Shurab area have not been comprehensively studied thus far. Clinopyroxene composition of volcanic rocks, and especially the phenocrysts show Magma chemistry and can help to identify magma series (Lebas, 1962; Verhooge, 1962; Kushiro, 1960, Leterrier et al., 1982, tectonic setting (Leterrier et al., 1982; Nisbet and Pearce, 1977 as well as temperature formation and pressure of rock formation. Some geologists have estimated temperature of clinopyroxene formation by clinopyroxene composition (Adams and Bishop, 1986 and clinopyroxene-olivine couple. So, clinopyroxene is used in this study in order to identify magma series, tectonic setting, plus the temperature and pressure of volcanic rocks of the Shurab. Material and method Clinopyroxene analyses were conducted by wavelength-dispersive EPMA (JEOL JXA-8800R at the Cooperative Centre of Kanazawa University (Japan. The analyses were performed under an accelerating voltage of 15 kV and a beam current of 20 nA. The ZAF program was used for data corrections. Natural and synthetic minerals of known composition were used as standards. The Fe3+ content in minerals was estimated by Droop method (Droop, 1987. Discussion In the Shurab area, the volcanic rocks area with basaltic composition are located 50 km Southeast of Qom. Their age is the early Oligocene and they are associated with the salty marl units of the Lower Red Formation (LRF. The hand specimens of the studied rocks look green. These rocks are intergranular, microlitic, porphyric, vitrophyric and amygdaloidal and they consist of olivine, pyroxene and plagioclase. Accessory minerals contain sphene, apatite and opaque. According to Wo-En-Fs diagram (Morimoto, 1988, clinopyroxenes indicate diopside composition. Clinopyroxenes are

  20. A thermo-elastoplastic model for soft rocks considering structure

    Science.gov (United States)

    He, Zuoyue; Zhang, Sheng; Teng, Jidong; Xiong, Yonglin

    2017-11-01

    In the fields of nuclear waste geological deposit, geothermy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the superloading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the superloading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase.

  1. Morphology and anatomical structure of the larval salt gland of ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-10-09

    Oct 9, 2013 ... morphology and anatomical structure of the salt gland varied according to the salinity degree. At low salinities, salt gland was small, thin and flat having many shallow canals, while at high salinities, it was more elongated with deeper canals and grooves. Ultrastructure examination showed low amplification.

  2. Attainable high capacity in Li-excess Li-Ni-Ru-O rock-salt cathode for lithium ion battery

    Science.gov (United States)

    Wang, Xingbo; Huang, Weifeng; Tao, Shi; Xie, Hui; Wu, Chuanqiang; Yu, Zhen; Su, Xiaozhi; Qi, Jiaxin; Rehman, Zia ur; Song, Li; Zhang, Guobin; Chu, Wangsheng; Wei, Shiqiang

    2017-08-01

    Peroxide structure O2n- has proven to appear after electrochemical process in many lithium-excess precious metal oxides, representing extra reversible capacity. We hereby report construction of a Li-excess rock-salt oxide Li1+xNi1/2-3x/2Ru1/2+x/2O2 electrode, with cost effective and eco-friendly 3d transition metal Ni partially substituting precious 4d transition metal Ru. It can be seen that O2n- is formed in pristine Li1.23Ni0.155Ru0.615O2, and stably exists in subsequent cycles, enabling discharge capacities to 295.3 and 198 mAh g-1 at the 1st/50th cycle, respectively. Combing ex-situ X-ray absorption near edge spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, high resolution transmission electron microscopy and electrochemical characterization, we demonstrate that the excellent electrochemical performance comes from both percolation network with disordered structure and cation/anion redox couples occurring in charge-discharge process. Li-excess and substitution of common element have been demonstrated to be a breakthrough for designing novel high performance commercial cathodes in rechargeable lithium ion battery field.

  3. Effects of gaseous radioactive nuclides on the design and operation of repositories for spent LWR fuel in rock salt

    Energy Technology Data Exchange (ETDEWEB)

    Jenks, G.H.

    1979-12-01

    Information relating to the identities and amounts of gaseous radionuclides present in spent LWR fuel and to their release from canistered spent fuel under plausible storage and disposal conditions was assembled, reviewed, and analyzed. Information was also reviewed and analyzed on several other subjects that relate to the integrity of the carbon steel canister in which the spent fuel is to be encapsulated and to the expected rates of transfer of gaseous radionuclides through crushed salt backfill within a disposal room in a reference repository in rock salt. The advantages and disadvantages were considered for several different canister-backfill materials, and recommendations were made regarding preferred materials. Other recommendations relate to encapsulation procedures and specifications and to needs for additional experimental studies. The objective of this work was to provide reference information, conclusions, and recommendations that could be used to establish design and operating conditions and procedures for a bedded salt repository for spent LWR fuel and that could also be used to help evaluate the safety of the repository. The results of this work will also generally apply to spent fuel repositories in domal salt. However, because the domal salt may have little or no brine inclusions within it, there may be little or no possibility that brine will migrate into open spaces around an emplaced canister. Addordingly, some of the concerns that result from the possible occurrence of brine migration in bedded salt may be of no importance in domal salt.

  4. Measurements of the Suitability of Large Rock Salt Formations for Radio Detection of High-Energy Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Odian, Allen C.

    2001-09-14

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant (WIPP), located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain several hundred cubic kilometer water-equivalent mass, provide attractive sites for next-generation high-energy neutrino detectors.

  5. A new method to test rock abrasiveness based on physico-mechanical and structural properties of rocks

    Directory of Open Access Journals (Sweden)

    V.N. Oparin

    2015-06-01

    Full Text Available A new method to test rock abrasiveness is proposed based upon the dependence of rock abrasiveness on their structural and physico-mechanical properties. The article describes the procedure of presentation of properties that govern rock abrasiveness on a canonical scale by dimensionless components, and the integrated estimation of the properties by a generalized index. The obtained results are compared with the known classifications of rock abrasiveness.

  6. Determination of toxic and essential metals in rock and sea salts using pulsed nanosecond laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Rehan, I; Khan, M Zubair; Rehan, K; Mateen, A; Aamar Farooque, M; Sultana, S; Farooq, Z

    2018-01-10

    A spectrometer based on pulsed nanosecond laser-induced breakdown spectroscopy (LIBS) was employed for the quantitative determination of heavy and essential metals in salts from various sources available in Pakistan. Six salt samples were collected from sea salt and rock salt. Toxic metals (Cu, Cd, and Ni) and other microessentials (Fe, Ca, Co, Mg, Mn, S, and Zn) were investigated from the recorded spectra. The detection system was calibrated using a parametric dependence study. The quantitative analyses were accomplished under the assumption of local thermodynamic equilibrium and optically thin plasma. The results by the LIBS technique were in agreement with the outcomes of the same samples studied using a more standard approach like inductively coupled plasma-atomic emission spectroscopy (ICP-AES). When the concentrations of heavy and essential metals were calculated using a calibration-free LIBS method that does not need a standard salt specimen and dilution, both LIBS and ICP-AES were also in good agreement. The limit of detection of the experimental set up was determined for the observed heavy metals in the studied samples.

  7. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances rock-slide source area) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These

  8. Salt Damage and Rising Damp Treatment in Building Structures

    Directory of Open Access Journals (Sweden)

    J. M. P. Q. Delgado

    2016-01-01

    Full Text Available Salt damage can affect the service life of numerous building structures, both historical and contemporary, in a significant way. In this review, various damage mechanisms to porous building materials induced by salt action are analyzed. The importance of pretreatment investigations is discussed as well; in combination with the knowledge of salt and moisture transport mechanisms they can give useful indications regarding treatment options. The methods of salt damage treatment are assessed then, including both passive techniques based on environmental control, reduction of water transport, or conversion to less soluble salts and active procedures resulting in the removal of salts from deterioration zones. It is concluded that cellulose can still be considered as the favorite material presently used in desalination poultices but hydrophilic mineral wool can serve as its prospective alternative in future applications. Another important cause of building pathologies is the rising damp and, in this phenomenon, it is particularly severe considering the presence of salts in water. The treatment of rising damp in historic building walls is a very complex procedure and at Laboratory of Building Physics (LFC-FEUP a wall base hygroregulated ventilation system was developed and patented.

  9. Structural evolution of the Namakdan salt diapir in the Zagros fold-thrust belt: The Persian Gulf, Iran

    Science.gov (United States)

    Shahpasandzadeh, Majid; Hashemifar, Ghasem; Shafiei Bafti, Amir

    2016-04-01

    Intersalt and host roch structures of the the Namakdan diapir were studied and compared with available 14C and OSL dated sediments to determine the structural evolution and uplift pattern of the diapir. The Namakdan salt diapir is situated on Qeshm Island in the east of the Zagros fold-thrust belt of Iran, north of the Persian Gulf. This nearly circular diapir with ~ 7 km diameter penetrates the crest of Salkh anticline and is embedded by steep-dip bedding of the Miocene Mishan and Aghajari Formations, which demonstrates the concentric internal structure of the diapir. The intraformational unconformities of country rocks were developed due to the Zagros shortening and salt diapirism, which demonstrate their syn-tectonic sedimentation. In addition, the dip of these unconfromities and also bedding of the country rocks decrease upward. The Namakdan diapir is partly covered by gypsum/anhydrite residuals, dolomite, marine limestone, and tilted marine terraces. The salt belong to the Hormuz Complex, consisted of predominantly halite, gypsum, anhydrite, dolomite, shale, sandstone, and volcanic-volanoclastic blocks, which was deposited in the Late Proterozoic-Middle Cambrian evaporitic rift basins. The Hormuz Complex is not only the cause of many salt diapir oil/gas fields but is also considered to have been a major source rock for generation of younger reservoirs. Thus, the salt diapirs of the Zagros play an important role in generation of the oil/gas reservoirs in this strategic area, so determination of structural style and evolution of the salt diapirs are vital in oil/gas exploration and development. The upright folds are developed in the salt beds due to upward movement and minor extrusion of the salt rocks due to its low viscosity. The dip of country rock beds increase toward to the diapir rim, so that the beds shows a vertical and even overturned attitude in vicinity of the diapir. Differential uplift pattern of the diapir was deduced in rim-to-center profiles by

  10. Mechanical modeling of the growth of salt structures

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro, Ruben Alberto Mazariegos [Texas A & M Univ., College Station, TX (United States)

    1993-05-01

    A 2D numerical model for studying the morphology and history of salt structures by way of computer simulations is presented. The model is based on conservation laws for physical systems, a fluid marker equation to keep track of the salt/sediments interface, and two constitutive laws for rocksalt. When buoyancy alone is considered, the fluid-assisted diffusion model predicts evolution of salt structures 2.5 times faster than the power-law creep model. Both rheological laws predict strain rates of the order of 4.0 x 10-15 s-1 for similar structural maturity level of salt structures. Equivalent stresses and viscosities predicted by the fluid-assisted diffusion law are 102 times smaller than those predicted by the power-law creep rheology. Use of East Texas Basin sedimentation rates and power-law creep rheology indicate that differential loading is an effective mechanism to induce perturbations that amplify and evolve to mature salt structures, similar to those observed under natural geological conditions.

  11. Mitochondrial membranes with mono- and divalent salt: changes induced by salt ions on structure and dynamics

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Róg, Tomasz; Karttunen, Mikko

    2009-01-01

    We employ atomistic simulations to consider how mono- (NaCl) and divalent (CaCl(2)) salt affects properties of inner and outer membranes of mitochondria. We find that the influence of salt on structural properties is rather minute, only weakly affecting lipid packing, conformational ordering......, and membrane electrostatic potential. The changes induced by salt are more prominent in dynamical properties related to ion binding and formation of ion-lipid complexes and lipid aggregates, as rotational diffusion of lipids is slowed down by ions, especially in the case of CaCl(2). In the same spirit, lateral...... diffusion of lipids is slowed down rather considerably for increasing concentration of CaCl(2). Both findings for dynamic properties can be traced to the binding of ions with lipid head groups and the related changes in interaction patterns in the headgroup region, where the binding of Na(+) and Ca(2+) ions...

  12. Ambazone-lipoic acid salt: Structural and thermal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kacso, Irina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Racz, Csaba-Pal; Santa, Szabolcs [Babes-Bolyai' University, Faculty of Chemistry, 11 Arany Janos street, Cluj-Napoca (Romania); Rus, Lucia [' Iuliu Hatieganu' University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Louis Pasteur street, 400349 Cluj-Napoca (Romania); Dadarlat, Dorin; Borodi, Gheorghe [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania); Bratu, Ioan, E-mail: ibratu@gmail.com [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath street, 400293 Cluj-Napoca (Romania)

    2012-12-20

    Highlights: Black-Right-Pointing-Pointer Salt of Ambazone with lipoic acid obtained by solvent-drop grinding. Black-Right-Pointing-Pointer Ambazone lipoate salt crystallizes in monoclinic system. Black-Right-Pointing-Pointer FTIR data suggest the deprotonation of the lipoic acid. Black-Right-Pointing-Pointer Thermal behaviour different of ambazone salt as compared to the starting compounds. - Abstract: A suitable method for increasing the solubility, dissolution rate and consequently the bioavailability of poor soluble acidic or basic drugs is their salt formation. The aim of this study is to investigate the structural and thermal properties of the compound obtained by solvent drop grinding (SDG) method at room temperature, starting from the 1:1 molar ratios of ambazone (AMB) and {alpha}-lipoic acid (LA). The structural characterization was performed with X-ray powder diffraction (XRPD) and infrared spectroscopy (FTIR). The thermal behaviour of the obtained compound (AMB{center_dot}LA) was investigated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The photopyroelectric calorimetry, in front detection configuration (FPPE), was applied to measure and compare the room temperature values of one dynamic thermal parameter (thermal effusivity) for starting and resulting compounds. Both structural and supporting calorimetric techniques pointed out a salt structure for AMB{center_dot}LA compound as compared to those of the starting materials.

  13. Development of mechanical-hydraulic models for the prediction of the long-term sealing capacity of concrete based sealing materials in rock salt. Project Titel LASA

    Energy Technology Data Exchange (ETDEWEB)

    Czaikowski, Oliver; Dittrich, Juergen; Hertes, Uwe; Jantschik, Kyra; Wieczorek, Klaus; Zehle, Bernd

    2016-08-15

    The research work leading to these results has received funding from the German Federal Ministry of Economic Affairs and Energy (BMWi) under contract no. 02E11132. This report presents the current state of laboratory investigations and modelling activities related to the LASA project. The work is related to the research and development of plugging and sealing for repositories in salt rock and is of fundamental importance for the salt option which represents one of the three European repository options in addition to the clay rock and the crystalline rock options.

  14. Salt movements and faulting of the overburden - can numerical modeling predict the fault patterns above salt structures?

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Wesenberg, Rasmus

    the rheology of the deforming overburden, the mechanical coupling between the overburden and the underlying salt, as well as the kinematics of the moving salt structure. In this presentation, we demonstrate how the horizontal component on the salt motion influences the fracture patterns within the overburden....... The modeling shows that purely vertical movement of the salt introduces a mesh of concentric normal faults in the overburden, and that the frequency of radiating faults increases with the amount of lateral movements across the salt-overburden interface. The two end-member fault patterns (concentric vs....... radiating) can thus be linked to two different styles of salt movement: i) the vertical rising of a salt indenter and ii) the inflation of a ‘salt-balloon’ beneath the deformed strata. The results are in accordance with published analogue and theoretical models, as well as natural systems, and the model may...

  15. Salt effect on physiological, biochemical and anatomical structures ...

    African Journals Online (AJOL)

    Yomi

    2012-04-03

    Apr 3, 2012 ... In this study, we evaluated the salt concentration effect on plant growth, mineral composition, antioxidant responses and anatomical structure of two varieties of Origanum majorana after exposure to NaCl treatment. Our results show an inclusive behaviour of the two varieties, since the majority of.

  16. Salt effect on physiological, biochemical and anatomical structures ...

    African Journals Online (AJOL)

    In this study, we evaluated the salt concentration effect on plant growth, mineral composition, antioxidant responses and anatomical structure of two varieties of Origanum majorana after exposure to NaCl treatment. Our results show an inclusive behaviour of the two varieties, since the majority of sodium was exported and ...

  17. Prehistoric Rock Structures of the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R Pace

    2007-04-01

    Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

  18. Efficacy of nanolime in restoration procedures of salt weathered limestone rock

    Science.gov (United States)

    Ruffolo, Silvestro A.; La Russa, Mauro F.; Aloise, Piergiorgio; Belfiore, Cristina M.; Macchia, Andrea; Pezzino, Antonino; Crisci, Gino M.

    2014-03-01

    Salt crystallisation process is one of the most powerful weathering agents in stone materials, especially in the coastal areas, where sea-spray transports large amount of salts on the stone surface. The consolidation of such degraded stone material represents a critical issue in the field of restoration of cultural heritage. In this paper, the nanolime consolidation behaviour in limestone degraded by salt crystallization has been assessed. For this purpose, a stone material taken from a Sicilian historical quarry and widely used in the eastern Sicilian Baroque architecture has been artificially degraded by the salt crystallization test. Then degraded samples have been treated with NanoRestore®, a suspension of nanolime in isopropyl alcohol. To evaluate the consolidating effectiveness, the peeling test and point load test were performed. Moreover, mercury intrusion porosimetry has been executed to evaluate the variations induced by treatment, while colorimetric measurements have been aimed to assess aesthetical issues.

  19. Measurement of radio wave reflection due to temperature rising from rock salt and ice irradiated by an electron beam for an ultra-high-energy neutrino detector

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Takahiro; Chiba, Masami; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan); Faculty of Science and Technology, Seikei University, Musashino-shi, Tokyo 180-8633 (Japan); Department of Applied Science and Energy Engineering, School of Engineering, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); School of Medicine, Shimane University, Izumo-shi, Shimane 693-8501 (Japan)

    2012-11-12

    An ultra-high-energy neutrino (UHE{nu}) gives temperature rise along the hadronic and electromagnetic shower when it enters into rock salt or ice. Permittivities of them arise with respect the temperatures at ionization processes of the UHE{nu} shower. It is expected by Fresnel's formula that radio wave reflects at the irregularity of the permittivity in the medium. We had found the radio wave reflection effect in rock salt. The reflection effect and long attenuation length of radio wave in rock salt and ice would yield a new UHE{nu} detection method. An experiment for ice was performed to study the reflection effect. A coaxial tube was filled with rock salt powder or ice. Open end of the coaxial tube was irradiated by a 2 MeV electron beam. Radio wave of 435 MHz was introduced to the coaxial tube. We measured the reflection wave from the open end. We found the radio wave reflection effect due to electron beam irradiation in ice as well as in rock salt.

  20. A Variable Control Structure Controller for the Wing Rock Phenomenon

    OpenAIRE

    Abdullatif Alshati; Mohammed Alkandari

    2016-01-01

    This paper presents the design of a variable structure controller for the model of the wing rock phenomenon of a delta wing aircraft. It is considered to be a continue study of the last two researches for the same phenomena "Feedback linearization [15] and back stepping controller [14] ". A control technique is proposed to stabilize the aircraft phenomena. The solution presented in this paper give a guarantee of asymptotic convergence to zero of all variables of the system. MATLAB...

  1. Evolution characteristic of gypsum-salt rocks of the upper member of Oligocene Lower Ganchaigou Fm in the Shizigou area, western Qaidam Basin

    Directory of Open Access Journals (Sweden)

    Dinghong Yi

    2017-09-01

    Full Text Available Over years of oil and gas exploration in the Qaidam Basin, reservoirs have been discovered in many layers. In the Shizigou area, western Qaidam Basin, the upper member of Oligocene Lower Ganchaigou Fm is an important target for oil and gas exploration, and gypsum-salt rocks are the high-quality caprocks for the preservation of oil and gas reservoirs in this area. For predicting oil and gas exploration direction and target in the western Qaidam Basin and providing guidance for its oil and gas exploration deployment, its depositional characteristics and environment of gypsum-salt rocks in this area were investigated based on the core observation, thin section identification, and analysis of grain size, sensitivity parameter ratios (Sr/Cu, Fe/Mn, (Fe + Al/(Ca + Mg, V/(V + Ni and Pr/Ph, pyrite content and inclusions. The following characteristics are identified. First, gypsum-salt rocks are mainly distributed in the depocenter of the lake basin and their thickness decreases towards the margin of the basin. They are laterally transformed into carbonate rocks or terrigenous clastic rocks. They are areally distributed in the shape of irregular ellipse. Second, gypsum-salt rocks are vertically developed mainly in the middle and upper parts of the upper member of Lower Ganchaigou Fm and they are interbedded with carbonate rocks or terrigenous clastic rocks. Their single layer thickness changes greatly, and there are many layers with good continuity. Third, Sand Group III to Group I in the upper member of Lower Ganchaigou Fm (inter-salt are of reductive water environment of semi-deep to deep lake facies due to their sedimentation in an arid and hot climate. It is concluded that gypsum-salt rocks of the upper member of Lower Ganchaigou Fm are distributed widely with great accumulative thickness in this area; and that they are originated from deep lake water by virtue of evaporation, concentration and crystallization in an arid and hot climate instead

  2. Multiple Approaches to Characterizing Pore Structure in Natural Rock

    Science.gov (United States)

    Hu, Q.; Dultz, S.; Hamamoto, S.; Ewing, R. P.

    2012-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and chemical transport, and are important in hydrogeological studies of rock formations in the context of energy, environmental, and water resources management. This presentation discusses various approaches to investigating pore structure of rock, with a particular focus on the Barnett Shale in north Texas used for natural gas production. Approaches include imbibition, tracer diffusion, porosimetry (MIP, vapor adsorption/desorption isotherms, NMR cyroporometry), and imaging (μ-tomography, Wood's metal impregnation, FIB/SEM). Results show that the Barnett Shale pores are predominantly in the nm size range, with a measured median pore-throat diameter of 6.5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low gas diffusivity appears to be caused by low pore connectivity. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the pore structure characteristics in the Barnett Shale and other natural rocks.

  3. Spin-polarized investigation of ferromagnetism on magnetic semiconductors Mn{sub x}Ca{sub 1−x}S in the rock-salt phase

    Energy Technology Data Exchange (ETDEWEB)

    Choutri, H.; Ghebouli, M.A. [LMSE Laboratory, University of Bachir Ibrahimi, 34265 Bordj-Bou-Arréridj (Algeria); Ghebouli, B. [Laboratory of Surface and Interface Studies of Solid Materials, Department of Physics, Faculty of Science, Setif University 1, Setif 19000 (Algeria); Bouarissa, N., E-mail: n_bouarissa@yahoo.fr [Department of Physics, Faculty of Science, University of M' sila, 28000 M' sila (Algeria); Uçgun, E.; Ocak, H.Y. [Department of Physics, Faculty of Arts and Sciences, Dumlupinar University, Kutahya (Turkey)

    2014-12-15

    The structural, elastic, electronic and magnetic properties of the diluted magnetic semiconductors Mn{sub x}Ca{sub 1−x}S in the rock-salt phase have been investigated using first-principles calculations with both LDA and LDA + U functional. Features such as lattice constant, bulk modulus, elastic constants, spin-polarized band structure, total and local densities of states have been computed. We predict the values of the exchange constants and the band edge spin splitting of the valence and conduction bands. The hybridization between S-3p and Mn-3d produces small local magnetic moment on the nonmagnetic Ca and S sites. The ferromagnetism is induced due to the exchange splitting of S-3p and Mn-3d hybridized bands. The total magnetic moment per Mn of Mn{sub x}Ca{sub 1−x}S is 4.4μ{sub B} and 4.5μ{sub B} for LDA and LDA + U functional and is independent of the Mn concentration. The unfilled Mn-3d levels reduce the local magnetic moment of Mn from its free space charge value of 5μ{sub B}–4.4μ{sub B} and4.5μ{sub B} for LDA and LDA + U functional due to 3p–3d hybridization. - Highlights: • Fundamental properties of magnetic semiconductors Mn{sub x}Ca{sub 1−x}S. • Rock-salt phase of Mn{sub x}Ca{sub 1−x}S. • Magnetic properties of the diluted magnetic semiconductors Mn{sub x}Ca{sub 1−x}S. • The use of LDA + U functionals.

  4. The Distinct Element Method - Application to Structures in Jointed Rock

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.P.; Glen, L.; Blair, S.; Heuze, F.

    2001-11-30

    The Distinct Element Method (DEM) is a meshfree method with applications to rock mechanics, mining sciences, simulations of nuclear repositories, and the stability of underground structures. Continuum mesh-based methods have been applied successfully to many problems in geophysics. Even if the geology includes fractures and faults, when sufficiently large length scales are considered a continuum approximation may be sufficient. However, a large class of problems exist where individual rock joints must be taken into account. This includes problems where the structures of interest have sizes comparable with the block size. In addition, it is possible that while the structure may experience loads which do no measurable damage to individual blocks, some joints may fail. This may launch smaller blocks as dangerous projectiles or even cause total failure of a tunnel. Traditional grid-based continuum approaches are wholly unsuited to this class of problem. It is possible to introduce discontinuities or slide lines into existing grid-based methods, however, such limited approaches can break down when new contacts form between blocks. The distinct element method (DEM) is an alternative, meshfree approach. The DEM can directly approximate the block structure of the jointed rock using arbitrary polyhedra. Using this approach, preexisting joints are readily incorporated into the DEM model. In addition, the method detects all new contacts between blocks resulting from relative block motion. We will describe the background of the DEM and review previous application of the DEM to geophysical problems. Finally we present preliminary results from a investigation into the stability of underground structures subjected to dynamic loading.

  5. Uniaxial creep as a control on mercury intrusion capillary pressure in consolidating rock salt

    Energy Technology Data Exchange (ETDEWEB)

    Dewers, Thomas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Heath, Jason E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Leigh, Christi D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two - phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in oth er realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Mo dels for waste release scenarios in salt back - fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree of consolidation, and require experimental measurement to parameterize and vali date. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potent ial usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mech anics, using sieved run - of - mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (%7E900 psi) and temperatures to 90 o C. This corresponds to UFD Work Package 15SN08180211 milestone "FY:15 Transport Properties of Run - of - Mine Salt Backfill - Unconsolidated to Consolidated". Samples exposed to uniaxial compression undergo time - dependent consolidation, or creep, to various deg rees. Creep volume strain - time relations obey simple log - time behavior through the range of porosities (%7E50 to 2% as measured); creep strain rate increases with temperature and applied stress as

  6. Minjingu phosphate rock availability in low-pH highly weathered soil as affected by added salts

    Directory of Open Access Journals (Sweden)

    Isaac Savini

    2015-10-01

    Full Text Available Concentrations and identity of ions in the soil solution may affect soil phosphorus (P reactions and P availability. In this study, the magnitude of these reactions was evaluated following the application of Minjingu phosphate rock (MPR combined with chloride and carbonate salts of Na and Ca within an incubation experiment. Twenty-one days later NaOH-P and HCl-P were determined. This investigation was undertaken with the aim of identifying the role of Ca-ion activity in the liquid phase on the solubilization of MPR and formation of insoluble Ca-P phases. The increase in pH was higher with Na2CO3 than with CaCO3, while both CaCl2 and NaCl resulted in slight decreases in pH. The dissolution of MPR was higher overall when MPR was applied singularly than for the combined application of the phosphate rock with salts of calcium or sodium after 60 days of incubation. Dissolution of MPR decreased as levels of CaCO3 or CaCl2 increased but the decrease was more pronounced in CaCO3-treated than in CaCl2-treated soils. Ca-ion activity in the liquid phase is the main factor responsible for the insolubilization of MPR and the formation of insoluble Ca-P phases (HCl P. The formation of Ca-P solid phases increased with the concentration of Ca-ions, and was governed by the pH and nature of the accompanying anion. For soils with low levels of exchangeable cations and where liming is a recommended intervention measure, Ca from lime will form insoluble P phases and reduce the dissolution of PR and P availability to plants.

  7. Effect of salting process on the histological structure of salmon flesh

    OpenAIRE

    Astruc, Thierry; Loison, Olivier; Venien, Annie; Jiang, Weijunlang; Gaubain, Oulyana

    2017-01-01

    Atlantic Salmon , Salmo Salar, is composed of approximately 70% water, 19% protein, 10% lipid and 1% small nutrients (vitamins, glycogen, pigments ...). Smoked salmon comes from the processing of fresh salmon: the fillets are removed from the fish, salted and then smoked. Salting can be carried out with dry salt or by brine injection. The objective of the study was to compare the evolution of the cell structure and ultrastructure of the salmon muscle subjected to salting with dry salt and sal...

  8. Mechanism of groundwater inrush hazard caused by solution mining in a multilayered rock-salt-mining area: a case study in Tongbai, China

    Science.gov (United States)

    Zeng, Bin; Shi, Tingting; Chen, Zhihua; Xiang, Liu; Xiang, Shaopeng; Yang, Muyi

    2018-01-01

    The solution mining of salt mineral resources may contaminate groundwater and lead to water inrush out of the ground due to brine leakage. Through the example of a serious groundwater inrush hazard in a large salt-mining area in Tongbai County, China, this study mainly aims to analyse the source and channel of the inrushing water. The mining area has three different types of ore beds including trona (trisodium hydrogendicarbonate dihydrate, also sodium sesquicarbonate dihydrate, with the formula Na2CO3 × NaHCO3 × 2H2O, it is a non-marine evaporite mineral), glauber (sodium sulfate, it is the inorganic compound with the formula Na2SO4 as well as several related hydrates) and gypsum (a soft sulfate mineral composed of calcium sulfate dihydrate, with chemical formula CaSO4 × 2H2O). Based on characterisation of the geological and hydrogeological conditions, the hydrochemical data of the groundwater at different points and depths were used to analyse the pollution source and the pollutant component from single or mixed brine by using physical-chemical reaction principle analysis and hydrogeochemical simulation method. Finally, a possible brine leakage connecting the channel to the ground was discussed from both the geological and artificial perspectives. The results reveal that the brine from the trona mine is the major pollution source; there is a NW-SE fissure zone controlled by the geological structure that provides the main channels through which brine can flow into the aquifer around the water inrush regions, with a large number of waste gypsum exploration boreholes channelling the polluted groundwater inrush out of the ground. This research can be a valuable reference for avoiding and assessing groundwater inrush hazards in similar rock-salt-mining areas, which is advantageous for both groundwater quality protection and public health.

  9. A Variable-Parameter Creep Damage Model Incorporating the Effects of Loading Frequency for Rock Salt and Its Application in a Bedded Storage Cavern

    Science.gov (United States)

    Ma, Linjian; Wang, Mingyang; Zhang, Ning; Fan, Pengxian; Li, Jie

    2017-09-01

    Laboratory tests were conducted to assess the effects of the loading frequency on the time-dependent behavior and damage properties of rock salt under confining stress states. Axial two-stage irreversible deformation based on the loci of the minimum load of each cycle was observed, and this observation was similar to the result of conventional creep tests under static loads. The unloading modulus decreased exponentially with respect to time, and the damage variable was represented in terms of the decay of the material stiffness. To account for the effects of the loading frequency on the time-dependent degradation of rock salt, a unified damage evolution equation was formulated based on the experimental results. A creep damage model of rock salt was proposed by introducing non-stationary modular components into the Burgers viscoelastic model. Numerical simulation was performed using the newly developed model to evaluate the stability and serviceability of a storage cavern in a bedded salt formation under various loading scenarios. The simulated results indicate that a lower injection-withdrawal frequency results in a greater volume convergence rate and a wider dilatancy region of the storage cavern. Additionally, the stress concentration and dilatancy of the surrounding rock mass extend much deeper into the mudstone interbeds than into other regions of the cavern.

  10. Corrosion testing of selected packaging materials for disposal of high-level waste glass in rock-salt formations

    Energy Technology Data Exchange (ETDEWEB)

    Smailos, E.; Schwarzkopf, W.; Koester, R.; Fiehn, B.; Halm, G. [Kernforschungszentrum Karlsruhe GmbH (DE)

    1991-12-31

    In previous corrosion studies performed in salt brines, unalloyed steels, Ti 99.8-Pd and Hastelloy C4 have proved to be the most promising materials for long-term resistant packagings to be used in heat-generating waste (vitrified HLW, spent fuel) disposal in rock-salt formations. Investigations of the iron-base materials Ni-Resist D2 and D4, cast iron and Si-cast iron have also been carried out in order to complete the results available to date. The three steels (fine-grained steel, low-carbon steel, cast steel) investigated and Ti 99.8-Pd resisted pitting and crevice corrosion as well as stress-corrosion cracking under all test conditions. Gamma dose-rates of 1 Gy/h - 100 Gy/h or H{sub 2}S concentrations in the brines as well as welding and explosion plating did not influence noticeably the corrosion behaviour of the materials. Furthermore, the determined corrosion rates of the steels (50 {mu}m/a-250 {mu}m/a, depending on the test conditions) are intercomparable and imply technically acceptable corrosion allowances for the thick-walled containers discussed. For Ti 99.8-Pd no detectable corrosion was observed. By contrast, Hastelloy C4 proved susceptible to pitting and crevice corrosion at gamme dose-rates higher than 1 Gy/h and in the presence of H{sub 2}S (25 mg/l) in Q-brine. The materials Ni Resist D2 and D4, cast iron and Si-cast iron corroded at negligible rates in the in-situ experiments performed in rock salt/limited amounts of NaCI-brine. Nevertheless, these materials must be ruled out as container materials because they have proved to be susceptible to pitting and intergranular corrosion in previous laboratory studies conducted with MgCI{sub 2}-rich brine (Q-brine) in excess. 15 refs.; 29 figs.; 7 tabs.

  11. Structural Interactions within Lithium Salt Solvates. Acyclic Carbonates and Esters

    Energy Technology Data Exchange (ETDEWEB)

    Afroz, Taliman [North Carolina State Univ., Raleigh, NC (United States); Seo, D. M. [North Carolina State Univ., Raleigh, NC (United States); Han, Sang D. [North Carolina State Univ., Raleigh, NC (United States); Boyle, Paul D. [North Carolina State Univ., Raleigh, NC (United States); Henderson, Wesley A. [North Carolina State Univ., Raleigh, NC (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-06

    Solvate crystal structures serve as useful models for the molecular-level interactions within the diverse solvates present in liquid electrolytes. Although acyclic carbonate solvents are widely used for Li-ion battery electrolytes, only three solvate crystal structures with lithium salts are known for these and related solvents. The present work, therefore, reports six lithium salt solvate structures with dimethyl and diethyl carbonate: (DMC)2:LiPF6, (DMC)1:LiCF3SO3, (DMC)1/4:LiBF4, (DEC)2:LiClO4, (DEC)1:LiClO4 and (DEC)1:LiCF3SO3 and four with the structurally related methyl and ethyl acetate: (MA)2:LiClO4, (MA)1:LiBF4, (EA)1:LiClO4 and (EA)1:LiBF4.

  12. Two Voriconazole salts: Syntheses, crystal structures, solubility and bioactivities

    Science.gov (United States)

    Tang, Gui-Mei; Wang, Yong-Tao

    2018-01-01

    Two Voriconazole salts, namely, (H2FZ)2+·2(Cl-) (1) and (HFZ)+·NO3- (2) (FZ = (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoro-4-pyrimidiny)-1-(1H-1,2,4-triazol-1-yl)-2-butanol) have been obtained through the reaction of Voriconazole, hydrochloric acid and nitrate acid, respectively. They were structurally characterized by FT-IR, elemental analyses (EA), single crystal X-ray diffraction, and thermogravimetric analysis (TGA). A variety of hydrogen bonds (Osbnd H⋯N, Nsbnd H⋯Cl/O, Csbnd H⋯N/OF/Cl) were observed in the compounds 1 and 2, through which a 3D supramolecular architecture is generated. Both two salts 1 and 2 show the promising bioactivities against Aspergillus species (Aspergillus niger, Aspergillus terreus, Aspergillus fumigatus and Aspergillus flavus) and Candida ones (Candida albicans, Candida krusei, Candida glabrata and Cryptococcus neoformans), which is obviously more excellent than that of FZ. Additionally, the solubility of two salts is considerably higher than that of the drug Voriconazole.

  13. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.

    Science.gov (United States)

    Bourg, Ian C; Ajo-Franklin, Jonathan B

    2017-09-19

    The ability to predict the permeability of fine-grained soils, sediments, and sedimentary rocks is a fundamental challenge in the geosciences with potentially transformative implications in subsurface hydrology. In particular, fine-grained sedimentary rocks (shale, mudstone) constitute about two-thirds of the sedimentary rock mass and play important roles in three energy technologies: petroleum geology, geologic carbon sequestration, and radioactive waste management. The problem is a challenging one that requires understanding the properties of complex natural porous media on several length scales. One inherent length scale, referred to hereafter as the mesoscale, is associated with the assemblages of large grains of quartz, feldspar, and carbonates over distances of tens of micrometers. Its importance is highlighted by the existence of a threshold in the core scale mechanical properties and regional scale energy uses of shale formations at a clay content X clay ≈ 1/3, as predicted by an ideal packing model where a fine-grained clay matrix fills the gaps between the larger grains. A second important length scale, referred to hereafter as the nanoscale, is associated with the aggregation and swelling of clay particles (in particular, smectite clay minerals) over distances of tens of nanometers. Mesoscale phenomena that influence permeability are primarily mechanical and include, for example, the ability of contacts between large grains to prevent the compaction of the clay matrix. Nanoscale phenomena that influence permeability tend to be chemomechanical in nature, because they involve strong impacts of aqueous chemistry on clay swelling. The second length scale remains much less well characterized than the first, because of the inherent challenges associated with the study of strongly coupled nanoscale phenomena. Advanced models of the nanoscale properties of fine-grained media rely predominantly on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a mean field

  14. In situ AE records in cyclically loaded rock salt - The stress memory effect and spatio-temporal characteristics

    Science.gov (United States)

    Becker, D.; Cailleau, B.; Dahm, T.; Shapiro, S.; Kaiser, D.

    2009-04-01

    We study acoustic emission (AE) activity caused by cyclic thermal loading due to the backfilling of a cavity in an abandoned salt mine to answer questions regarding the stress memory effect of rock (Kaiser effect), the dependence of AE rates and b-value on the stress state as well as the stress rate and the spatio-temporal evolution of the AE activity. Event rates and b-values of the frequency magnitude relation are calculated for a region well covered by a network of piezo-electric receivers from an event catalog corrected for incomplete recording times. Results are compared and correlated with the output of a 2D thermo-elastic stress modelling performed with an FE program. The high quality of the AE dataset as well as the good control of the input parameters of the FE program allows us to study the in situ activity in the mining environment with exceptionally high precision and temporal resolution. The backfilling period can be subdivided into two AE activity regimes. The first one exhibits a clear and pronounced Kaiser effect as well as an upward migration of the AE event front away from the ceiling of the cavity which correlates with the calculated stress field. This observation of the Kaiser effect implies that no healing effect is observed for these first few loading cycles. The maximum event rate observed during a loading cycle scales with the absolute stress increase of this cycle with respect to the former maximum. This behavior is also observed for later loading cycles which show a deteriorated Kaiser effect with an onset of AE activity well before the former maximum stress and a smaller slope of the relation between maximum event rate and absolute stress increase. During later loading cycles also time periods showing a pronounced anti-correlation between event rate and Coulomb stress with event rate maxima during minima of the Coulomb stress are observed. These time periods are generally characterized by a b-value of the frequency magnitude relation much

  15. Structure, Ion Transport, and Rheology of Nanoparticle Salts

    KAUST Repository

    Wen, Yu Ho

    2014-07-08

    Above a critical surface chemistry-dependent particle loading associated with nanoscale interparticle spacing, ligand-ligand interactions-both electrostatic and steric-come into play and govern the structure and dynamics of charged oligomer-functionalized nanoparticle suspensions. We report in particular on the structure, ion transport, and rheology of suspensions of nanoparticle salts created by cofunctionalization of silica particles with tethered sulfonate salts and oligomers. Dispersion of the hairy ionic particles into medium and high dielectric constant liquids yields electrolytes with unique structure and transport properties. We find that electrostatic repulsion imparted by ion dissociation can be tuned to control the dispersion state and rheology through counterion size (i.e., Li+, Na+, and K+) and dielectric properties of the dispersing medium. Analysis of small-angle X-ray scattering (SAXS) structure factors and the mechanical modulus shows that when the interparticle spacing approaches nanometer dimensions, weakly entangled anchored ligands experience strong and long-lived topological constraints analogous to those normally found in well-entangled polymeric fluids. This finding provides insight into the molecular origins of the surprisingly similar rubbery plateau moduli observed in hairy nanoparticle suspensions and entangled polymers of the same chemistry as the tethered ligands. Additionally, we find that a time-composition superposition (TCS) principle exists for the suspensions, which can be used to substantially extend the observation time over which dynamics are observed in jammed, soft glassy suspensions. Application of TCS reveals dynamical similarities between the suspensions and entangled solutions of linear polymer chains; i.e., a hairy particle trapped in a cage appears to exhibit analogous dynamics to a long polymer chain confined to a tube. © 2014 American Chemical Society.

  16. Synthetic and structural studies of phosphine coordinated boronium salts.

    Science.gov (United States)

    Hill, Anthony F; Ward, Jas S

    2017-06-06

    The reaction of BrH2B·SMe2 with primary and secondary phosphines affords a range of boronium salts of the form [H2B(PR3)2]Br (PR3 = PHCy21; PHPh2, 2; PH2Cy, 3), which have been fully characterised including solid-state determinations. Reactions of bulky tertiary phosphines, e.g., PCy3 and PPh3, with BrH2B·SMe2 do not proceed beyond the phosphine-stabilised bromoborane adducts, however, the smaller tertiary phosphine PMe2Ph readily proceeds to form [H2B(PMe2Ph)2]Br (4). The formation of the unsymmetrical boronium salts [H2B(PH2Cy)(PHCy2)]Br (5) and [H2B(PHCy2)(PHPh2)]Br (6) was observed by in situ NMR spectroscopy, however, the compounds were found to spontaneously disproportionate to their respective homophosphine boronium cations, even on prolonged storage in solution at -78 °C. Di- and triphosphines were found to form ring-closed boronium salts to afford [H2B(κ(2)-P,P'-diphosphine)]Br (diphosphine = dppe, 7; dcpe, 8; dmpe, 9; dppf, 10; dppf with [AsF6](-) counterion, 11; amphos, 12). The analogous methodology with Br2HB·SMe2 proved less generally applicable due to an accessible decomposition pathway being available to boronium salts bearing primary and secondary phosphines, leading to the formation of phosphonium salts, although [BrHB(dcpe)]Br (13), [BrHB(PMe2Ph)2]Br (14) and [BrHB(amphos)]Br (15) were synthesised with varying degrees of success. Reaction of BrH2B·SMe2 with diphars afforded the boronium salt [H2B(κ(2)-P,P'-diphars)]Br (16), which featured two pendant arsine arms. Similarly, triphos was found to react with BrH2B·SMe2 to give [H2B(κ(2)-P,P'-triphos)]Br (17), which featured a pendant phosphine arm. Substitution of the bromide counter anion with either hexafluoroarsenate or hexfluoroantimonate anions revealed weak hydrogen bonds between the P-H bonds of the boronium cations and the anions, that appeared through NMR studies to be retained in solution (where hydrogen bonding order was determined to be Br(-) > [SbF6](-)/[AsF6](-)). This was

  17. Future development of peak-shaving rock salt underground gas storage in Russia; Russie - developpement futur de stockages souterrains du gaz naturel pour satisfaire les demandes de pointe

    Energy Technology Data Exchange (ETDEWEB)

    Remizov, V.V.; Parfenov, V.I. [OAO Gazprom (Russian Federation)

    2000-07-01

    In addition to other critical factors, sustained operation of the Russian fuel and energy sector largely depends on secure and uniform gas shipments across the country's transmission grid. Underground storage facilities built in rock salt have been increasingly prioritized world-wide, and this is a sustainable trend now. Operated in alternating mode, these facilities offer significant gas off-take capacity and are believed to be most suitable to ensure gas pipeline emergency needs and peak-shaving capability to meet consumption variations. Given the dynamics of natural gas seasonal and peak demand, a concept for rock-salt underground storage expansion through 2015 and beyond has been developed in Russia. (author)

  18. Iron-Ion Implantation into the Structure of Rock Crystal

    Directory of Open Access Journals (Sweden)

    A.V. Mukhametshin

    2017-03-01

    Full Text Available Iron ions with the energy of 40 keV have been implanted into colorless natural rock crystals to high fluencies of 1.0∙1017 and 1.5∙1017 ion/cm2. These crystals were selected from Svetlinsky deposits of the Southern Urals, which are well-known as minerals with high quality and low content of impurities. A radical change in the color of the crystals after iron-ion implantation and subsequent high-temperature annealing in air has been revealed. The origin of color changes has been studied by using optical methods, as well as Mössbauer and X-ray photoelectron spectroscopy. It has been established that the high-dose and high-energy flow of ions results in the formation of various kinds of structural defects on the surface layer of the matrix, such as electron-hole centers, as well as in the formation at a specific depth of the irradiated matrix of the ultrafine iron-containing phases with a structure, which is non-coherent to the structure of the original matrix. The subsequent high-temperature annealing of the implanted quartz has changed the color of the samples to orange-yellow. This color is similar to the color of natural citrine. The orange color richness of the heat-treated samples grew with increasing amounts of embedded iron impurity in the crystal. The nature of orange-yellow coloration of the implanted and annealed quartz plates can be explained by the formation of ultrafine hematite nanoparticles located in a layer at a depth of ~15 nm. The possibility of refining the color of minerals by ion-beam exposure has been discussed.

  19. Influence on structural characteristic of the rock material on expenditures for construction on horizontal mining facilities

    OpenAIRE

    Doneva, Nikolinka; Despodov, Zoran; Hadzi-Nikolova, Marija; Mijalkovski, Stojance

    2012-01-01

    This paper presents the structural characteristics of rock material and their influence on the expenditures for construction on horizontal mining facilities. Analyzed the construction of horizontal mining facilities in the same rock type, but with different structural characteristics and determined the expenditures of their construction.

  20. Imaging of salt structure. 2; Gan`enso kozo no imaging. 2

    Energy Technology Data Exchange (ETDEWEB)

    Akama, K.; Saeki, T. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Matsuoka, T. [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1997-05-27

    With respect to a velocity model structuring method using depth focusing analysis (DFA) as a depth image processing technology used for elastic wave exploration, its practicability was discussed. First, synthetic data were used to extract problems in the DFA. The problems were extracted by using a model with constant velocity as an initial model, deciding on the sequential structures from the higher order, and estimating velocity and depth of each layer by using a model fitting type method. In its application to field data, characteristic records include those for rock salt beds distributed in a sheet form and the folding structure associated with the growth thereof, as acquired in offshore seismic exploration carried out in the eastern part of Gulf of Mexico. The conclusion is that the DFA is a method that can derive a velocity model with required accuracy by using a minimum number of repetition even against relatively complex structures. Particularly, the quick convergence from the initial model with a constant velocity until a certain accuracy is reached is a noteworthy advantage. 3 refs., 6 figs.

  1. A new structural model of the Pachitea Basin, Peru: Interaction of thick-skinned tectonics and salt detached thrusting

    Science.gov (United States)

    Witte, J.; Rebaza, J.; Westlund, D.; Stratton, M.; Alegria, C.

    2015-11-01

    We present four new structural transects, a new seismo-stratigraphic correlation, a refined structural model and new shortening rates for the Pachitea Basin (=PB), Peru. Our results are based on the integration and detailed interpretation of newly acquired industry seismic (2D, 2005 vintage), existing well data, existing and proprietary surface geology data and newly acquired aero magnetic data (2007 vintage). Our assessment confirms the presence of at least four distinct structural styles in the area, thick-skinned structures, thin-skinned detachment thrusting, salt-tectonics and localized strike-slip tectonics. Based on seismo-stratigraphic correlations we conclude that the oldest rocks carried to outcrop by the San Matias (=SM) thrust are of Jurassic age. We interpret the thin-skinned master detachment to be located in varying positions, directly below or above, autochtonous salt pillows. Timing assessment of the SM thrust sheet reveals that it has been active from at least ∼5 Ma to post-2 Ma, supporting regionally published timing data for this latitude. Positive topographic surface expressions indicate ongoing contraction along the mountain front of the Peruvian Eastern Cordillera (=EC). Across the PB we calculate between 2.6% and 5.5% for thick-skinned shortening and at least 25.5% for the thin-skinned shortening. For the SM thrust sheet we calculate a slip-rate of ∼1-1.6 mm/yr, which is in line with published slip rates on individual thrusts from around the world. Observations along the SM thrust system indicate that thin- and thick-skinned systems interact mechanically, and that they have been active intermittently. We conclude that the location of salt pillows as well as pre-existing or growing basement-involved structures helped trigger the SM thrust. Different types of salt bodies are present in the PB, autochtonous pillows, slightly thrusted pillows and allochtonous diapirs. Our results provide new insight into the structural interplay, particularly

  2. First-Principle Predictions of Electronic Properties and Half-Metallic Ferromagnetism in Vanadium-Doped Rock-Salt SrO

    Science.gov (United States)

    Berber, Mohamed; Doumi, Bendouma; Mokaddem, Allel; Mogulkoc, Yesim; Sayede, Adlane; Tadjer, Abdelkader

    2018-01-01

    We have used first-principle methods of density functional theory within the full potential linearized augmented plane wave scheme to investigate the electronic and magnetic properties of cubic rock-salt, SrO, doped with vanadium (V) impurity as Sr1- x V x O at various concentrations, x = 0.25, 0.5, and 0.75. We have found that the ferromagnetic state arrangement of Sr1- x V x O is more stable compared to the anti-ferromagnetic state configuration. The electronic structures have a half-metallic (HM) ferromagnetic (F) behavior for Sr0.75V0.25O and Sr0.5V0.5O. This feature results from the metallic and semiconducting natures of majority-spin and minority-spin bands, respectively. The HMF gap decreases with the increasing concentration of vanadium atoms due to the broadening of 3 d (V) levels in the gap, and hence the Sr0.25V0.75O becomes metallic ferromagnetic. The Sr0.75V0.25O revealed a large HM gap with spin polarization of 100%. The Sr1- x V x O compound at low concentrations seems a better candidate to explore the half-metallicity for practical spintronics applications.

  3. First-Principle Predictions of Electronic Properties and Half-Metallic Ferromagnetism in Vanadium-Doped Rock-Salt SrO

    Science.gov (United States)

    Berber, Mohamed; Doumi, Bendouma; Mokaddem, Allel; Mogulkoc, Yesim; Sayede, Adlane; Tadjer, Abdelkader

    2017-09-01

    We have used first-principle methods of density functional theory within the full potential linearized augmented plane wave scheme to investigate the electronic and magnetic properties of cubic rock-salt, SrO, doped with vanadium (V) impurity as Sr1-x V x O at various concentrations, x = 0.25, 0.5, and 0.75. We have found that the ferromagnetic state arrangement of Sr1-x V x O is more stable compared to the anti-ferromagnetic state configuration. The electronic structures have a half-metallic (HM) ferromagnetic (F) behavior for Sr0.75V0.25O and Sr0.5V0.5O. This feature results from the metallic and semiconducting natures of majority-spin and minority-spin bands, respectively. The HMF gap decreases with the increasing concentration of vanadium atoms due to the broadening of 3d (V) levels in the gap, and hence the Sr0.25V0.75O becomes metallic ferromagnetic. The Sr0.75V0.25O revealed a large HM gap with spin polarization of 100%. The Sr1-x V x O compound at low concentrations seems a better candidate to explore the half-metallicity for practical spintronics applications.

  4. Healing and Shear Stress Reduction on Single Fracture of Rock Salt and Limestone under Slide-Hold-Slide Direct Shear Condition

    Science.gov (United States)

    Kishida, K.; Yano, T.; Yasuhara, H.

    2012-12-01

    In order to clarify the influence of the holding state on the shear strength in the shear process of a single rock fracture, slide-hold-slide (SHS) direct shear-flow coupling tests were carried out on single rock fractures at several confining stresses and under saturated/unsaturated conditions (Kishida, et al., 2011). Consequently, the mortar specimen could be confirmed as the significant shear strength recovery on the SHS process. In this research, the SHS direct shear tests are carried out on the halite (rock salt) and the limestone. In the case of rock salt, a single tensile fracture is artificially created by cutting away. On the other hand, the limestone has a natural rock joint. The experiments are carried out under various normal confining stress conditions and are employed various holding period at the residual state. Figure 1 shows the shear stress - shear displacement of the SHS direct shear experiments on the rock salt. From all cases, the shear stress increases at the initial phase of the experiments, and then, the shear stress reaches at the peak shear strength. After that, the shear stress slightly decreases such as strain softening. Finally, the shear stress reaches to the residual stress state. In every SHS processes, the shear stress is reducing in various hold period. And then, the shear stress is increasing in the process of re-sliding. The shear stress in the process of re-sliding takes over the value at the start time of the holding process. The shear stress reaches at the peak, and then, it reaches the residual stress state. In all cases, as the holding period becomes longer, it is confirmed that the decrement of the shear stress in the holding process is increasing and the increment of the shear stress at the re-sliding process is increasing. Therefore, it is confirmed that the time dependence of shear strength recovery can be observed. In addition, Dieterich's A constant value for the regression lines (Dieterich, 1972, 1994) is plotted

  5. VIRTUS. Virtual underground laboratory in rock salt; VIRTUS. Virtuelles Untertagelabor im Steinsalz

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, Klaus [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Behlau, Joachim; Heemann, Ulrich [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Masik, Steffen; Raab, Michael [Fraunhofer-Institut fuer Fabrikbetrieb und -Automatisierung (IFF), Magdeburg (Germany); Mueller, Christian; Simo, Eric Kuate [DBE Technology GmbH, Peine (Germany)

    2014-12-15

    Germany does not have an underground laboratory to study the behavior of geological formations for the use as final repository for radioactive high-level wastes. VIRTUS was developed to have an adequate tool to study the complex and safety relevant processes in geological structures for a fast and effective planning and testing of final repository design. The three-dimensional visualization of the numerical simulations results will help n the scientists and the interested public to understand the process flows in a final repository.

  6. Salt Contribution to RNA Tertiary Structure Folding Stability

    Science.gov (United States)

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    Accurate quantification of the ionic contribution to RNA folding stability could greatly enhance our ability to understand and predict RNA functions. Recently, motivated by the potential importance of ion correlation and fluctuation in RNA folding, we developed the tightly bound ion (TBI) model. Extensive experimental tests showed that the TBI model can lead to better treatment of multivalent ions than the Poisson-Boltzmann equation. In this study, we use the model to quantify the contribution of salt (Na+ and Mg2+) to the RNA tertiary structure folding free energy. Folding of the RNA tertiary structure often involves intermediates. We focus on the folding transition from an intermediate state to the native state, and compute the electrostatic folding free energy of the RNA. Based on systematic calculations for a variety of RNA molecules, we derive a set of formulas for the electrostatic free energy for tertiary structural folding as a function of the sequence length and compactness of the RNA and the Na+ and Mg2+ concentrations. Extensive comparisons with experimental data suggest that our model and the extracted empirical formulas are quite reliable. PMID:21723828

  7. Synthesis, single crystal structure and energy optimization of a multicomponent salt of imidazole and tetrabromoterepthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Singha, S.; Kumar, S., E-mail: skndey@gmail.com [Department of Physics, Jadavpur University, Kolkata-700032 (India); Dey, S. K., E-mail: skndey@gmail.com [Department of Physics, Jadavpur University, Kolkata-700032 (India); Department of Physics, NITMAS, 24 Paragana(S)-743368 (India)

    2015-06-24

    Single crystal of a multicomponent salt (IMTBTP) of imidazole with tetrabromoterepthalic acid has been synthesized by slow evaporation method at room temperature. The crystal structure of the salt has been determined by single crystal x-ray diffraction technique. The supramolecular structure analysis reveals that the multicomponent salt is formed by noncovalent hydrogen bonding interaction and Br···π interaction. The energy optimization and HOMO-LUMO energy gap calculation have been carried out by Density Functional Theory.

  8. Synthesis, single crystal structure and energy optimization of a multicomponent salt of imidazole and tetrabromoterepthalic acid

    Science.gov (United States)

    Singha, S.; Dey, S. K.; Kumar, S.

    2015-06-01

    Single crystal of a multicomponent salt (IMTBTP) of imidazole with tetrabromoterepthalic acid has been synthesized by slow evaporation method at room temperature. The crystal structure of the salt has been determined by single crystal x-ray diffraction technique. The supramolecular structure analysis reveals that the multicomponent salt is formed by noncovalent hydrogen bonding interaction and Br...π interaction. The energy optimization and HOMO-LUMO energy gap calculation have been carried out by Density Functional Theory.

  9. Field Observation of Joint Structures in Various Types of Igneous Rocks

    Science.gov (United States)

    Kano, Shingo; Tsuchiya, Noriyoshi

    2006-05-01

    In this study, field observations of natural fracture network systems in some intrusive and extrusive rocks were undertaken, to clarify the fracturing mechanism in the rocks. Shallow intrusives, whose depth of emplacement was less than several hundred metres, include the Momo-iwa Dacite dome on Rebun Island (Hokkaido), and Jodogahama Rhyolite in Iwate prefecture. Extrusive complexes studied include the Tojinbo Andesite and Ojima Rhyodacite in Fukui prefecture. Rocks of `granitic' composition were collected from the Takidani (Japan Alps) and Hijiori (Yamagata prefecture) plutons. The joint structure in Hijiori Granite was evaluated by analysis of core samples extracted from the HDR-3 geothermal production well. Based on detailed field observation, joint structures related to thermal contraction of a rock mass could be classified according to their inferred depth of formation. Joints from a near surface setting, such as shallow intrusive rocks and extrusives, tend to form pentagonal — hexagonal columnar structures (for a variety of rock types), whilst granitic rocks (from a deeper setting) typically exhibit a parallelepiped structure. The apparent differences in joint form are inferred to be dependent on the confining pressure, which acts on joint generation and propagation. In cases of non-confining pressure, such as the near-surface (shallow intrusive/extrusive) setting, joint networks typically form a columnar structure. On the contrary, confining pressure is considerably greater for deeper rock masses, and these form a parallelepiped joint structure.

  10. Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties

    Science.gov (United States)

    Miyazaki, R.; Maekawa, H.; Takamura, H.

    2014-05-01

    The high energy density and excellent cycle performance of lithium ion batteries makes them superior to all other secondary batteries and explains why they are widely used in portable devices. However, because organic liquid electrolytes have a higher operating voltage than aqueous solution, they are used in lithium ion batteries. This comes with the risk of fire due to their flammability. Solid electrolytes are being investigated to find an alternative to organic liquid. However, the nature of the solid-solid point contact at the interface between the electrolyte and electrode or between the electrolyte grains is such that high power density has proven difficult to attain. We develop a new method for the fabrication of a solid electrolyte using LiBH4, known for its super Li+ ion conduction without any grain boundary contribution. The modifications to the conduction pathway achieved by stabilizing the high pressure form of this material provided a new structure with some LiBH4, more suitable to the high rate condition. We synthesized the H.P. form of LiBH4 under ambient pressure by doping LiBH4 with the KI lattice by sintering. The formation of a KI - LiBH4 solid solution was confirmed both macroscopically and microscopically. The obtained sample was shown to be a pure Li+ conductor despite its small Li+ content. This conduction mechanism, where the light doping cation played a major role in ion conduction, was termed the "Parasitic Conduction Mechanism." This mechanism made it possible to synthesize a new ion conductor and is expected to have enormous potential in the search for new battery materials.

  11. Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties

    Directory of Open Access Journals (Sweden)

    R. Miyazaki

    2014-05-01

    Full Text Available The high energy density and excellent cycle performance of lithium ion batteries makes them superior to all other secondary batteries and explains why they are widely used in portable devices. However, because organic liquid electrolytes have a higher operating voltage than aqueous solution, they are used in lithium ion batteries. This comes with the risk of fire due to their flammability. Solid electrolytes are being investigated to find an alternative to organic liquid. However, the nature of the solid-solid point contact at the interface between the electrolyte and electrode or between the electrolyte grains is such that high power density has proven difficult to attain. We develop a new method for the fabrication of a solid electrolyte using LiBH4, known for its super Li+ ion conduction without any grain boundary contribution. The modifications to the conduction pathway achieved by stabilizing the high pressure form of this material provided a new structure with some LiBH4, more suitable to the high rate condition. We synthesized the H.P. form of LiBH4 under ambient pressure by doping LiBH4 with the KI lattice by sintering. The formation of a KI - LiBH4 solid solution was confirmed both macroscopically and microscopically. The obtained sample was shown to be a pure Li+ conductor despite its small Li+ content. This conduction mechanism, where the light doping cation played a major role in ion conduction, was termed the “Parasitic Conduction Mechanism.” This mechanism made it possible to synthesize a new ion conductor and is expected to have enormous potential in the search for new battery materials.

  12. 3D Multiscale Integrated Modeling Approach of Complex Rock Mass Structures

    Directory of Open Access Journals (Sweden)

    Mingchao Li

    2014-01-01

    Full Text Available Based on abundant geological data of different regions and different scales in hydraulic engineering, a new approach of 3D engineering-scale and statistical-scale integrated modeling was put forward, considering the complex relationships among geological structures and discontinuities and hydraulic structures. For engineering-scale geological structures, the 3D rock mass model of the study region was built by the exact match modeling method and the reliability analysis technique. For statistical-scale jointed rock mass, the random network simulation modeling method was realized, including Baecher structure plane model, Monte Carlo simulation, and dynamic check of random discontinuities, and the corresponding software program was developed. Finally, the refined model was reconstructed integrating with the engineering-scale model of rock structures, the statistical-scale model of discontinuities network, and the hydraulic structures model. It has been applied to the practical hydraulic project and offers the model basis for the analysis of hydraulic rock mass structures.

  13. Aggregation enhanced emission (AEE) in organic salt: A structure ...

    Indian Academy of Sciences (India)

    media wherein the highly hydrophobic luminescent moieties are expected to aggregate, leading to ACQ ... It was observed that photoluminescence of the salts were enhanced manifolds compared to that .... making supramolecular polymer via hydrogen bonding. Organic salt formation is one such easy way towards.

  14. The Use of Gabbro Rock Armour in Rubble Mound Structures

    DEFF Research Database (Denmark)

    Beck, J. Blow; Burcharth, H. F.; Danielsen, S. W.

    2000-01-01

    Throughout several years Gabbro rocks have been used for various coast protective constructions and breakwaters at the North Sea Coast and in inner Danish waters. So far the use of Gabbro has been based solely on calculations from Shore Protection Manuals, i.e without model tests. Compared to ord...

  15. Response of salt structures to ice-sheet loading: implications for ice-marginal and subglacial processes

    Science.gov (United States)

    Lang, Jörg; Hampel, Andrea; Brandes, Christian; Winsemann, Jutta

    2014-10-01

    During the past decades the effect of glacioisostatic adjustment has received much attention. However, the response of salt structures to ice-sheet loading and unloading is poorly understood. Our study aims to test conceptual models of the interaction between ice-sheet loading and salt structures by finite-element modelling. The results are discussed with regard to their implications for ice-marginal and subglacial processes. Our models consist of 2D plane-strain cross-sections, which represent simplified geological cross-sections from the Central European Basin System. The model layers represent (i) sedimentary rocks of elastoplastic rheology, (ii) a viscoelastic diapir and layer of salt and (iii) an elastoplastic basement. On top of the model, a temporarily variable pressure simulates the advance and retreat of an ice sheet. The durations of the individual loading phases were defined to resemble the durations of the Pleistocene ice advances in northern central Europe. The geometry and rheology of the model layers and the magnitude, spatial distribution and timing of ice-sheet loading were systematically varied to detect the controlling factors. All simulations indicate that salt structures respond to ice-sheet loading. An ice advance towards the diapir causes salt flow from the source layer below the ice sheet towards the diapir, resulting in an uplift of up to +4 m. The diapir continues to rise as long as the load is applied to the source layer but not to the crest of the diapir. When the diapir is transgressed by the ice sheet the diapir is pushed down (up to -36 m) as long as load is applied to the crest of the diapir. During and after ice unloading large parts of the displacement are compensated by a reversal of the salt flow. Plastic deformation of the overburden is restricted to the area immediately above the salt diapir. The displacements after unloading range between -3.1 and +2.7 m. Larger displacements are observed in models with deep-rooted diapirs

  16. Modelling of the reactive transport for rock salt-brine in geological repository systems based on improved thermodynamic database (Invited)

    Science.gov (United States)

    Müller, W.; Alkan, H.; Xie, M.; Moog, H.; Sonnenthal, E. L.

    2009-12-01

    for both Pitzer ion-interaction parameters and thermodynamic equilibrium constants. The reliability of the parameters is as important as the accuracy of the modelling tool. For this purpose the project THEREDA (www.thereda.de)was set up. The project aims at a comprehensive and internally consistent thermodynamic reference database for geochemical modelling of near and far-field processes occurring in repositories for radioactive wastes in various host rock formations. In the framework of the project all data necessary to perform thermodynamic equilibrium calculations for elevated temperature in the system of oceanic salts are under revision, and it is expected that related data will be available for download by 2010-03. In this paper the geochemical issues that can play an essential role for the transport of radioactive contaminants within and around waste repositories are discussed. Some generic calculations are given to illustrate the geochemical interactions and their probable effects on the transport properties around HLW emplacements and on CO2 generating and/or containing repository systems.

  17. Salt creep and wicking counteract hydrophobic organic structures

    Science.gov (United States)

    Burkhardt, Juergen

    2017-04-01

    The hydrophobic nature of many biological and edaphic surfaces prevents wetting and water movement. Already small amounts of salts and other hygroscopic material (e.g. by aerosol deposition to leaf surfaces) may change this situation. Salts attract minute amounts of liquid water to the surface and may dynamically expand on the original surface by creeping (evaporation-driven extension of crystals). Creeping is governed by fluctuations of relative humidity and increases with time. Under high, almost saturated concentrations of the salt solutions, ions from the chaotropic side of the Hofmeister series creep most efficiently. Once established, continuous salt connections may act to channel small water flows along the surface. They may act as wicks if water is removed from one side by evaporation. Stomata may in this way become 'leaky' by the leaf surface accumulation of hygroscopic aerosols.

  18. Theoretical study on the electronic structure of triphenyl sulfonium salts: Electronic excitation and electron transfer processes

    Science.gov (United States)

    Petsalakis, Ioannis D.; Theodorakopoulos, Giannoula; Lathiotakis, Nektarios N.; Georgiadou, Dimitra G.; Vasilopoulou, Maria; Argitis, Panagiotis

    2014-05-01

    Density functional theory (DFT) and Time Dependent DFT calculations on triphenyl sulfonium cation (TPS) and the salts of TPS with triflate, nonaflate, perfluoro-1-octanesulfonate and hexafluoro antimonate anions are presented. These systems are widely used as cationic photoinitiators and as electron ejection layer for polymer light-emitting diodes. While some differences exist in the electronic structure of the different salts, their lowest energy intense absorption maxima are calculated at nearly the same energy for all systems. The first excited state of TPS and of the TPS salts is dissociating. Electron addition to the TPS salts lowers their energy by 1.0-1.33 eV.

  19. A New Assessment Method for Structural-Control Failure Mechanisms in Rock Slopes — Case Examples

    OpenAIRE

    Christian Arnhardt; Smith, John V.

    2016-01-01

    Mass movement processes of bedrock slopes are highly dependent on the orientations of structural discontinuities within the rock mass. The associated hazards are typically defined by the orientation of structures and associated mechanisms of slope failure such as planar sliding, wedge sliding and toppling. A typical rock mass with multiple weak surfaces, or discontinuities, may form a consistent pattern over a range of spatial scale. The type of hazard resulting from the pattern of discontinu...

  20. Preliminary projections of the effects of chloride-control structures on the Quaternary aquifer at Great Salt Plains, Oklahoma

    Science.gov (United States)

    Reed, J.E.

    1982-01-01

    About 1,200 tons of chloride per day are added to the salt load of the Salt Fork of the Arkansas River at Great Salt Plains Lake from natural sources. The source of this chloride is brine discharge from the rocks of Permian age in the vicinity of the lake. The U.S. Army Corps of Engineers has planned a chloride-control project. The Corps requested that the U.S. Geological Survey use a digital model to project the effects of the chloride-control plan on ground water. Ground-water flow and ground-water transport models were calibrated to represent the Quaternary aquifer that is the near-surface part of the flow system. The models were used to project the effects of planned chloride-control structures. Based on model results, ground-water levels are projected to rise as much as 19 feet. However, these water-level rises will occur only in areas near three reservoirs. Changes in ground-water level caused by the project will be small throughout most of the area. Chloride concentration of ground water is projected to increase by more than 90,000 milligrams per liter at one location. However, significant increases in chloride concentration during the 50-year period simulated are projected to be limited to areas where the ground water already contains excessive chloride concentrations.

  1. Salt deposits in Los Medanos area, Eddy and Lea counties, New Mexico

    Science.gov (United States)

    Jones, C.L.; with sections on Ground water hydrology, Cooley; and Surficial Geology, Bachman

    1973-01-01

    The salt deposits of Los Medanos area, in Eddy and Lea Counties, southeastern New Mexico, are being considered for possible use as a receptacle for radioactive wastes in a pilot-plant repository. The salt deposits of the area. are in three evaporite formations: the Castile, Salado, and Rustler Formations, in ascending order. The three formations are dominantly anhydrite and rock salt, but some gypsum, potassium ores, carbonate rock, and fine-grained clastic rocks are present. They have combined thicknesses of slightly more than 4,000 feet, of which roughly one-half belongs to the Salado. Both the Castile and the Rustler are-richer in anhydrite-and poorer in rock salt-than the Salado, and they provide this salt-rich formation with considerable Protection from any fluids which might be present in underlying or overlying rocks. The Salado Formation contains many thick seams of rock salt at moderate depths below the surface. The rock salt has a substantial cover of well-consolidated rocks, and it is very little deformed structurally. Certain geological details essential for Waste-storage purposes are unknown or poorly known, and additional study involving drilling is required to identify seams of rock salt suitable for storage purposes and to establish critical details of their chemistry, stratigraphy, and structure.

  2. Modeling internal deformation of salt structures targeted for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Chemia, Zurab

    2008-09-15

    This thesis uses results of systematic numerical models to argue that externally inactive salt structures, which are potential targets for radioactive waste disposal, might be internally active due to the presence of dense layers or blocks within a salt layer. The three papers that support this thesis use the Gorleben salt diapir (NW Germany), which was targeted as a future final repository for high-grade radioactive waste, as a general guideline. The first two papers present systematic studies of the parameters that control the development of a salt diapir and how it entrains a dense anhydrite layer. Results from these numerical models show that the entrainment of a dense anhydrite layer within a salt diapir depends on four parameters: sedimentation rate, viscosity of salt, perturbation width and the stratigraphic location of the dense layer. The combined effect of these four parameters, which has a direct impact on the rate of salt supply (volume/area of the salt that is supplied to the diapir with time), shape a diapir and the mode of entrainment. Salt diapirs down-built with sedimentary units of high viscosity can potentially grow with an embedded anhydrite layer and deplete their source layer (salt supply ceases). However, when salt supply decreases dramatically or ceases entirely, the entrained anhydrite layer/segments start to sink within the diapir. In inactive diapirs, sinking of the entrained anhydrite layer is inevitable and strongly depends on the rheology of the salt, which is in direct contact with the anhydrite layer. During the post-depositional stage, if the effective viscosity of salt falls below the threshold value of around 1018-1019 Pa s, the mobility of anhydrite blocks might influence any repository within the diapir. However, the internal deformation of the salt diapir by the descending blocks decreases with increase in effective viscosity of salt. The results presented in this thesis suggest that it is highly likely that salt structures

  3. A Study on Salt Attack Protection of Structural and Finishing Materials in Power Plant Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W.B.; Kweon, K.J.; Suh, Y.P.; Nah, H.S.; Lee, K.J.; Park, D.S.; Jo, Y.K. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This is a final report written by both KEPRI and KICT as a co-operative research titled {sup A} study on Salt Protection of Structural and Finishings in Power Plant Structures{sup .} This study presented the methods to prevent the chloride-induced corrosion of power plant structures through collection and analysis of research datum relating to design, construction and maintenance for the prevention of structural and finishing materials, thru material performance tests for anti-corrosion under many kinds of chloride-induced corrosion environments. As a result, this study proposed the guidelines for design, construction and maintenance of power plant structures due to chloride-induced corrosion. (author). 257 refs., 111 figs., 86 tabs.

  4. A New Assessment Method for Structural-Control Failure Mechanisms in Rock Slopes — Case Examples

    Directory of Open Access Journals (Sweden)

    Christian Arnhardt

    2016-07-01

    Full Text Available Mass movement processes of bedrock slopes are highly dependent on the orientations of structural discontinuities within the rock mass. The associated hazards are typically defined by the orientation of structures and associated mechanisms of slope failure such as planar sliding, wedge sliding and toppling. A typical rock mass with multiple weak surfaces, or discontinuities, may form a consistent pattern over a range of spatial scale. The type of hazard resulting from the pattern of discontinuities will vary according to the angle and direction of the slope face. Assessing the risk of rock slope instability involves understanding of the complex three-dimensional structural features of the rock mass. Recent developments in stereographic methods show advantages are gained by representing wedges by linking great circles rather than showing the intersection line on the stereograph. We applied these methods to three rock slopes where active mass movement has occurred. The case studies include a large rock slide-debris avalanche in the Philippines, coastal cliffs in Australia and mining excavation slopes in Ghana, West Africa.

  5. Rock fall susceptibility assessment using structural geological indicators for detaching processes such as sliding or toppling

    Science.gov (United States)

    Melzner, Sandra; Tilch, Nils; Lotter, Michael; Kociu, Arben

    2010-05-01

    A structural geological assessment of cliffs in terms of rock fall susceptibility is expensive and time-consuming particularly in remote areas (exposed cliffs) where it may even be impossible. Hence it is important to develop methods and strategies that can be used to extrapolate the acquired knowledge from representative sub-regions to the whole study area. Using a case study in Carinthia (Austria), a GIS method was developed which can be used for regional, qualitative determination of the susceptibility of cliffs in carbonatic sedimentary rock, regarding two potential initial detachment processes of rock fall: sliding and/or toppling. During the development of this GIS method, it was found that not all of the mapped structural geologic parameters are equally suitable for a comprehensive regionalisation. Subsequently, only those parameters were included in the assessment which experts deemed to be representative in terms of parameter homogeneity/heterogeneity and thus applicable to the entire survey region: bedding thickness, tectonic lineaments, orientation of discontinuities and type of rock mass structure. Regions of homogeneity/heterogeneity differ with regard to parameter values, as well as parameter uncertainties and scattering. At first, the cliffs were categorised in terms of potential form and size of rock blocks by overlaying various parameter maps. In the next step, the relative orientation of the rock mass structures and their variations towards slope aspect and slope inclination were considered within a region of homogeneity. This allowed an accurate estimate of the possible maximum dip angle (or apparent dip angle) of a joint set over a wide area. It also permitted those areas to be pointed out in which process-initialising sliding and/or toppling might be possible along one or several joint sets. Comparing this method to the acquired field data has proven the approach to be successful when it comes to assessing cliffs in carbonate rocks in terms of

  6. Structural Analysis: Folds Classification of metasedimentary rock in the Peninsular Malaysia

    Science.gov (United States)

    Shamsuddin, A.

    2017-10-01

    Understanding shear zone characteristics of deformation are a crucial part in the oil and gas industry as it might increase the knowledge of the fracture characteristics and lead to the prediction of the location of fracture zones or fracture swarms. This zone might give high influence on reservoir performance. There are four general types of shear zones which are brittle, ductile, semibrittle and brittle-ductile transition zones. The objective of this study is to study and observe the structural geometry of the shear zones and its implication as there is a lack of understanding, especially in the subsurface area because of the limitation of seismic resolution. A field study was conducted on the metasedimentary rocks (shear zone) which are exposed along the coastal part of the Peninsular Malaysia as this type of rock resembles the types of rock in the subsurface. The analysis in this area shows three main types of rock which are non-foliated metaquartzite and foliated rock which can be divided into slate and phyllite. Two different fold classification can be determined in this study. Layer 1 with phyllite as the main type of rock can be classified in class 1C and layer 2 with slate as the main type of rock can be classified in class 1A. This study will benefit in predicting the characteristics of the fracture and fracture zones.

  7. The structure and behavior of salts in kraft recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R.; Badoi, R.D.; Enestam, S. [Aabo Akademi Univ., Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The melting behavior in the salt system (Na,K)(CO{sub 3},SO{sub 4},S,Cl,OH) is investigated by laboratory methods to enhance and further develop a chemical model for salt mixtures with compositions relevant for recovery boilers. The model, based on both literature data and experimental work can be used as (a) submodel in models for the over-all chemistry in recovery boilers and to estimate (b) deposit formation on heat transfer surfaces (fouling), (c) the melting properties of the fly ash, and (d) the smelt bed in recovery boilers. Experimental techniques used are thermal analysis, high temperature microscopy` and scanning electron microscopy. The model is implemented in a global calculation model which can handle both gas phases and condensed phases in the recovery boiler. The model gives a detailed description of the chemical reactions involved in the fume and dust formation in different locations of the flue gas channel in the boiler. (orig.)

  8. Some new developments in the design rules for coastal structures in relation with the new Rock Manual

    NARCIS (Netherlands)

    Verhagen, H.J.

    2005-01-01

    In 1991 CUR in the Netherlands and CIRIA in the UK have published the "manual on the use of rock in coastal engineering", usually referred to as the "Rock Manual". This book of 600 pages gave an overview of the state of the art regarding the design of rock structures along coasts. In 1995 CUR

  9. Structure and content of competitive programs for trained athletes in acrobatic rock'n'roll

    Directory of Open Access Journals (Sweden)

    Viacheslav Mulyk

    2017-10-01

    Full Text Available Purpose: to determine the structure of competitive programs of qualified "B" class athletes in acrobatic rock'n'roll. Material & Methods: pedagogical, sociological and methods of mathematical statistics were used. In the experimental part of the study, specialists of various categories and qualifications participated, an analysis of the video materials of the competitions of qualified athletes performing in the "B" class. Results: the content and the structure of the competitive compositions of qualified athletes in acrobatic rock'n'roll have been studied, the components of the competitive program indicators are compiled. Conclusion: main structural components characterizing the competitive program of qualified athletes in acrobatic rock'n'roll are highlighted. Their components, number and time of execution are determined. It is established that a variety of acrobatic elements, competitive moves, dance figures, design tools and the consistency of the construction of the entire competitive composition with high quality of performance characterizes the winning couple.

  10. Structure instability forecasting and analysis of giant rock pillars in steeply dipping thick coal seams

    Science.gov (United States)

    Lai, Xing-ping; Sun, Huan; Shan, Peng-fei; Cai, Ming; Cao, Jian-tao; Cui, Feng

    2015-12-01

    Structure stability analysis of rock masses is essential for forecasting catastrophic structure failure in coal seam mining. Steeply dipping thick coal seams (SDTCS) are common in the Urumqi coalfield, and some dynamical hazards such as roof collapse and mining- induced seismicity occur frequently in the coal mines. The cause of these events is mainly structure instability in giant rock pillars sandwiched between SDTCS. Developing methods to predict these events is important for safe mining in such a complex environment. This study focuses on understanding the structural mechanics model of a giant rock pillar and presents a viewpoint of the stability of a trend sphenoid fractured beam (TSFB). Some stability index parameters such as failure surface dips were measured, and most dips were observed to be between 46° and 51°. We used a digital panoramic borehole monitoring system to measure the TSFB's height (Δ H), which varied from 56.37 to 60.50 m. Next, FLAC3D was used to model the distribution and evolution of vertical displacement in the giant rock pillars; the results confirmed the existence of a TSFB structure. Finally, we investigated the acoustic emission (AE) energy accumulation rate and observed that the rate commonly ranged from 20 to 40 kJ/min. The AE energy accumulation rate could be used to anticipate impeding seismic events related to structure failure. The results presented provide a useful approach for forecasting catastrophic events related to structure instability and for developing hazard prevention technology for mining in SDTCS.

  11. Draft genome sequence of the extremely halophilic Halorubrum sp. SAH-A6 isolated from rock salts of the Danakil depression, Ethiopia

    Directory of Open Access Journals (Sweden)

    Ashagrie Gibtan

    2016-12-01

    Full Text Available The draft genome sequence of Halorubrum sp. SAH-A6, isolated from commercial rock salts of the Danakil depression, Ethiopia. The genome comprised 3,325,770 bp, with the G + C content of 68.0%. The strain has many genes which are responsible for secondary metabolites biosynthesis, transport and catabolism as compared to other Halorubrum archaea members. Abundant genes responsible for numerous transport systems, solute accumulation, and aromatic/sulfur decomposition were detected. The first genomic analysis encourages further research on comparative genomics, and biotechnological applications. The NCBI accession number for this genome is SAMN04278861 and ID: 4278861 and strain deposited with accession number KCTC 43215.

  12. A salt-bridge structure in solution revealed by 2D-IR spectroscopy.

    Science.gov (United States)

    Huerta-Viga, Adriana; Domingos, Sérgio R; Amirjalayer, Saeed; Woutersen, Sander

    2014-08-14

    Salt bridges are important interactions for the stability of protein conformations, but up to now it has been difficult to determine salt-bridge geometries in solution. Here we characterize the spatial structure of a salt bridge between guanidinium (Gdm(+)) and acetate (Ac(-)) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridge formation there is a significant change in the infrared response of Gdm(+) and Ac(-), and cross peaks between them appear in the 2D-IR spectrum. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes of Gdm(+) and Ac(-), as well as the coupling between them.

  13. Highly Shocked Low Density Sedimentary Rocks from the Haughton Impact Structure, Devon Island, Nunavut, Canada

    Science.gov (United States)

    Osinski, G. R.; Spray, J. G.

    2001-01-01

    We present the preliminary results of a detailed investigation of the shock effects in highly shocked, low density sedimentary rocks from the Haughton impact structure. We suggest that some textural features can be explained by carbonate-silicate immiscibility. Additional information is contained in the original extended abstract.

  14. The catazonal poly-metamorphic rocks of Cabo Ortegal (NW Spain), a structural and petrofabric study

    NARCIS (Netherlands)

    Engels, J.P.

    1972-01-01

    The petrological study of the southern part of the Cabo Ortegal area is a complement of Vogel’s (1967) investigation of the northern half. The present investigations include a structural as well as a petrofabric study. The rocks belong to an eugeosynclinal sequence which during the Precambrian

  15. The peculiarities of structurizing enclosing rock massif while developing a coal seam

    Science.gov (United States)

    Kozyreva, E. N.; Shinkevich, M. V.

    2017-09-01

    Different concepts of the development of geo-mechanical processes during longwall mining of a seam which are fundamentally different from the conventional ones are introduced in the article. Fundamental principles of the model for structurizing enclosing rock mass while longwall mining along the strike are described. The model was developed on the bases of non-linear geomechanical laws. According to the model, rock mass in the area of mining operation is organized as rock geomechanical layers with shifting arches. And the formation period of shifting arches in disintegrated rock mass is divisible by the length of the stope. Undulate characteristic of a massif as a peculiarity of man-made structurization of a massif is defined. It is shown that structuring the broken massif causes the formation of block-structured system and it can be detected while monitoring the ground pressure in powered support props. The results of the research allow decreasing the negative influence of a ground pressure and can be applied to specify parameters for controlling the roof, defining geometrical dimensions of a mining section and positioning of holing chute (face entry).

  16. Elements of Regolith Simulant's Cost Structure--Why Rock Is NOT Cheap

    Science.gov (United States)

    Rickman, Douglas L.

    2009-01-01

    The cost of lunar regolith simulants is much higher than many users anticipate. After all, it is nothing more than broken rock. This class will discuss the elements which make up the cost structure for simulants. It will also consider which elements can be avoided under certain circumstances and which elements might be altered by the application of additional research and development.

  17. DFT analysis of the structure and IR spectrum of potassium salt of diphenylsulfophthalide - A model compound for polydiphenylenesulfophthalide salts

    Science.gov (United States)

    Shishlov, N. M.; Akhmetzyanov, Sh S.; Khursan, S. L.

    2017-02-01

    Experimental IR spectra of crystalline dried and non-dried potassium diphenylsulfophthalide (TAC-K) as a model compound for polymeric salts are presented. DFT analysis (B3LYP/6-311G(d,p)) of the structure and IR spectra of a series of compounds similar in structure to TAC-K as well as their dimers indicates that the sulfonate group environment strongly affects the positions of absorption bands (ABs) of vibrations of Ssbnd O bonds and demonstrates that information on the exact structure of ion clusters is needed for reliable and unambiguous assignment of the ABs in experimental IR spectra of real sulfonate ion containing systems to particular vibrational modes. Various ways of metal ion coordination with sulfonate ion, as well as their reflection in IR spectra of model compounds, are considered and discussed. Using TAC-K as an example, the effect of an intramolecular hydrogen bond on the vibrational modes of sulfonate group and hydroxy group is considered. The effect of ion aggregation on the shape of the IR spectrum of TAC-K is analyzed for an energetically favorable dimer of this salt as an example. Based on a combination of calculated, literature and reference data, a number of ABs in the IR spectra of TAC-K have been tentatively assigned. In particular, the bands in the region of 3230-3180 cm-1 have been assigned to ν(Osbnd H); those at 1240-1160 cm-1, to νas(SO3-); the AB at 1080 cm-1, to νs(SO3-); that at 616 cm-1, to δ(oop)s(SO3-); and that at 570 cm-1, to δ(ip)as(SO3-).

  18. Mineral resource of the month: salt

    Science.gov (United States)

    Kostick, Dennis S.

    2010-01-01

    The article presents information on various types of salt. Rock salt is either found from underground halite deposits or near the surface. Other types of salt include solar salt, salt brine, and vacuum pan salt. The different uses of salt are also given including its use as a flavor enhancer, as a road deicing agent, and to manufacture sodium hydroxide.

  19. Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia).

    Science.gov (United States)

    Martignon, Stefania; Opazo-Gutiérrez, Mario Omar; Velásquez-Riaño, Möritz; Orjuela-Osorio, Iván Rodrigo; Avila, Viviana; Martinez-Mier, Esperanza Angeles; González-Carrera, María Clara; Ruiz-Carrizosa, Jaime Alberto; Silva-Hermida, Blanca Cecilia

    2017-06-01

    Fluoride is an element that affects teeth and bone formation in animals and humans. Though the use of systemic fluoride is an evidence-based caries preventive measure, excessive ingestion can impair tooth development, mainly the mineralization of tooth enamel, leading to a condition known as enamel fluorosis. In this study, we investigated the geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples in four endemic enamel fluorosis sentinel municipalities of the department of Huila, Colombia (Pitalito, Altamira, El Agrado and Rivera), and its possible relationship with the prevalence of enamel fluorosis in children. The concentration of fluoride in drinking water, table salt, active sediment, rock, and soil was evaluated by means of an ion selective electrode and the geochemical analyses were performed using X-ray fluorescence. Geochemical analysis revealed fluoride concentrations under 15 mg/kg in active sediment, rock and soil samples, not indicative of a significant delivery to the watersheds studied. The concentration of fluoride in table salt was found to be under the inferior limit (less than 180 μg/g) established by the Colombian regulations. Likewise, exposure doses for fluoride water intake did not exceed the recommended total dose for all ages from 6 months. Although the evidence does not point out at rocks, soils, fluoride-bearing minerals, fluoridated salt and water, the hypothesis of these elements as responsible of the current prevalence of enamel fluorosis cannot be discarded since, aqueducts might have undergone significant changes overtime.

  20. Cool barnacles: Do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete?

    Science.gov (United States)

    Coombes, Martin A; Viles, Heather A; Naylor, Larissa A; La Marca, Emanuela Claudia

    2017-02-15

    Sedentary and mobile organisms grow profusely on hard substrates within the coastal zone and contribute to the deterioration of coastal engineering structures and the geomorphic evolution of rocky shores by both enhancing and retarding weathering and erosion. There is a lack of quantitative evidence for the direction and magnitude of these effects. This study assesses the influence of globally-abundant intertidal organisms, barnacles, by measuring the response of limestone, granite and marine-grade concrete colonised with varying percentage covers of Chthamalus spp. under simulated, temperate intertidal conditions. Temperature regimes at 5 and 10mm below the surface of each material demonstrated a consistent and statistically significant negative relationship between barnacle abundance and indicators of thermal breakdown. With a 95% cover of barnacles, subsurface peak temperatures were reduced by 1.59°C for limestone, 5.54°C for concrete and 5.97°C for granite in comparison to no barnacle cover. The amplitudes of short-term (15-30min) thermal fluctuations conducive to breakdown via 'fatigue' effects were also buffered by 0.70°C in limestone, 1.50°C in concrete and 1.63°C in granite. Furthermore, concentrations of potentially damaging salt ions were consistently lower under barnacles in limestone and concrete. These results indicate that barnacles do not enhance, but likely reduce rates of mechanical breakdown on rock and concrete by buffering near-surface thermal cycling and reducing salt ion ingress. In these ways, we highlight the potential role of barnacles as agents of bioprotection. These findings support growing international efforts to enhance the ecological value of hard coastal structures by facilitating their colonisation (where appropriate) through design interventions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Geochemical studies of impact breccias and country rocks from the El'gygytgyn impact structure, Russia

    OpenAIRE

    Raschke, Ulli; Schmitt, Ralf Thomas; McDonald, Iain; Reimold, Wolf Uwe; Mader, Dieter; Koeberl, Christian

    2015-01-01

    The complex impact structure El'gygytgyn (age 3.6 Ma, diameter 18 km) in northeastern Russia was formed in ~88 Ma old volcanic target rocks of the Ochotsk-Chukotsky Volcanic Belt (OCVB). In 2009, El'gygytgyn was the target of a drilling project of the International Continental Scientific Drilling Program (ICDP), and in summer 2011 it was investigated further by a Russian–German expedition. Drill core material and surface samples, including volcanic target rocks and impactites, have been inves...

  2. The Surface Structure of Concentrated Aqueous salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sloutskin,E.; Baumert, J.; Ocko, B.; Kuzmenko, I.; Checco, A.; Tamam, L.; Ofer, E.; Gog, T.; Deutsch, M.

    2007-01-01

    The surface-normal electron density profile {rho}{sub s}(z) of concentrated aqueous salt solutions of RbBr, CsCl, LiBr, RbCl, and SrCl{sub 2} was determined by x-ray reflectivity (XR). For all but RbBr and SrCl{sub 2} {rho}{sub s}(z) increases monotonically with depth z from {rho}{sub s}(z)=0 in the vapor (z<0) to {rho}{sub s}(z) = {rho}{sub b} of the bulk (z>0) over a width of a few angstroms. The width is commensurate with the expected interface broadening by thermally excited capillary waves. Anomalous (resonant) XR of RbBr reveals a depletion at the surface of Br{sup -} ions to a depth of {approx}10 A. For SrCl{sub 2}, the observed {rho}{sub s}(z)>{rho}{sub b} may imply a similar surface depletion of Cl{sup -} ions to a depth of a few angstroms. However, as the deviations of the XRs of RbBr and SrCl{sub 2} from those of the other solutions are small, the evidence for a different ion composition in the surface and the bulk is not strongly conclusive. Overall, these results contrast earlier theoretical and simulational results and nonstructural measurements, where significant surface layering of alternate, oppositely charged, ions is concluded.

  3. Crystal structure of a coiled-coil domain from human ROCK I.

    Directory of Open Access Journals (Sweden)

    Daqi Tu

    Full Text Available The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK, participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535-700. The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620 are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation.

  4. Synthesis, structural, solubility and anticancer activity studies of salts using nucleobases and sulfonic acids coformer

    Science.gov (United States)

    Singh, Neetu; Singh, Udai P.; Nikhil, Kumar; Roy, Partha; Singh, Hariji

    2017-10-01

    The reactions of natural and unnatural nucleobases (cytosine (Cyt), adenine (Ade), 5-aminouracil (AU) and caffeine (Caff)) with sulfonic acids coformer (1,5-naphthalenedisulfonic acid, NDSA; 5-sulfosalicylic acid, SSA) resulted in the formation of salts viz. [NDSA.Cyt] (1), [NDSA.Ade] (2), [NDSA.AU] (3), [NDSA.Caff] (4), [SSA.Cyt] (5), [SSA.Ade] (6), [SSA.AU] (7), and [SSA.Caff] (8). The structural analysis revealed that salts 1, 4, 6 and 7 have intermolecular interactions between adjacent nucleobases which form two different homodimer shown in R22 (8) motif and assembled via complementary Nsbnd H⋯O and Nsbnd H⋯N interactions. However, in all other salts an intermediate supramolecular synthon pattern was observed between nucleobases and sulfonic acids. The lattice energy was also calculated by DFT to investigate whether salts were thermodynamically more stable than its coformer. The same was further confirmed by differential scanning calorimetry-thermogravimetric (DSC-TG) analysis. The anticancer activity study of individual nucleobases and their NDSA salts were also performed on human breast (MCF-7) and lung (A 549) cancer cell. The salts formation of nucleobases with sulfonic acids improved their solubility, thereby demonstrating up to 8-fold increase in solubility of nucleobases.

  5. Use of structured decision making to identify monitoring variables and management priorities for salt marsh ecosystems

    Science.gov (United States)

    Neckles, Hilary A.; Lyons, James E.; Guntenspergen, Glenn R.; Shriver, W. Gregory; Adamowicz, Susan C.

    2015-01-01

    Most salt marshes in the USA have been degraded by human activities, and coastal managers are faced with complex choices among possible actions to restore or enhance ecosystem integrity. We applied structured decision making (SDM) to guide selection of monitoring variables and management priorities for salt marshes within the National Wildlife Refuge System in the northeastern USA. In general, SDM is a systematic process for decomposing a decision into its essential elements. We first engaged stakeholders in clarifying regional salt marsh decision problems, defining objectives and attributes to evaluate whether objectives are achieved, and developing a pool of alternative management actions for achieving objectives. Through this process, we identified salt marsh attributes that were applicable to monitoring National Wildlife Refuges on a regional scale and that targeted management needs. We then analyzed management decisions within three salt marsh units at Prime Hook National Wildlife Refuge, coastal Delaware, as a case example of prioritizing management alternatives. Values for salt marsh attributes were estimated from 2 years of baseline monitoring data and expert opinion. We used linear value modeling to aggregate multiple attributes into a single performance score for each alternative, constrained optimization to identify alternatives that maximized total management benefits subject to refuge-wide cost constraints, and used graphical analysis to identify the optimal set of alternatives for the refuge. SDM offers an efficient, transparent approach for integrating monitoring into management practice and improving the quality of management decisions.

  6. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    Energy Technology Data Exchange (ETDEWEB)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon

    2009-03-01

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

  7. Reverse Polarity Magnetized Melt Rocks from the Cretaceous/Tertiary Chicxulub Structure, Yucatan Peninsula, Mexico

    Science.gov (United States)

    Urrutia-Fucugauchi, J.; Marin, Luis; Sharpton, Virgil L.

    1994-01-01

    We report paleomagnetic results for core samples of the breccia and andesitic rocks recovered from the Yucatan-6 Petrolcos Mexicanos exploratory well within the Chicxulub structure (about 60 km SSW from its center), northern Yucatan, Mexico. A previous study has shown that the rocks studied contain high iridium levels and shocked breccia clasts and an Ar/Ar date of 65.2 +/- 0.4 Ma. Andesitic rocks are characterized by stable single-component magnetizations with a mean inclination of -42.6 deg +/- 2.4 deg. Breccias present a complex paleomagnetic record characterized by multivectorial magnetizations with widely different initial NRM inclinations. However, after alternating field demagnetization, well defined characteristic components with upward inclinations are defined. IRM acquisition experiments, comparison of IRM and NRM coercivity spectra and the single component magnetization of the andesitic rocks indicate the occurrence of iron-rich titanomagnetites of single or pseudo-single domain states as the dominant magnetic carriers. Mean inclinations from the andesitic rocks and most of the breccia samples give a mean inclination of about -40 deg to -45 deg, indicating a reverse polarity for the characteristic magnetization that is consistent with geomagnetic chron 29R, which spans the Cretaceous/Tertiary (K/T) boundary. The inclination is also consistent with the expected value (and corresponding paleolatitude) for the site estimated from the reference polar wander curve for North America. We suggest that the characteristic magnetizations for the andesitic and breccia rocks are the result of shock heating at the time of formation of the impact structure and that the age, polarity and pateolatitude are consistent with a time at the K/T boundary.

  8. Reverse polarity magnetized melt rocks from the cretaceous/tertiary chicxulub structure, Yucatan peninsula, Mexico

    Science.gov (United States)

    Urrutia-Fucugauchi, J.; Marin, Luis; Sharpton, Virgil L.

    1994-10-01

    We report paleomagnetic results for core samples of the breccia and andesitic rocks recovered from the Yucatan-6 Petroleos Mexicanos exploratory well within the Chicxulub structure (about 60 km SSW from its center), northern Yucatan, Mexico. A previous study has shown that the rocks studied contain high iridium levels and shocked breccia clasts and an Ar/Ar date of 65.2 ± 0.4 Ma (Sharpton et al., 1992). Andesitic rocks are characterized by stable single-component magnetizations with a mean inclination of -42.6° ± 2.4°. Breccias present a complex paleomagnetic record characterized by multivectorial magnetizations with widely different initial NRM inclinations. However, after alternating field demagnetization, well defined characteristic components with upward inclinations are defined. IRM acquisition experiments, comparison of IRM and NRM coercivity spectra and the single component magnetization of the andesitic rocks indicate the occurrence of iron-rich titanomagnetites of single or pseudo-single domain states as the dominant magnetic carriers. Mean inclinations from the andesitic rocks and most of the breccia samples give a mean inclination of about -40° to -45°, indicating a reverse polarity for the characteristic magnetization that is consistent with geomagnetic chron 29R, which spans the Cretaceous/Tertiary (K/T) boundary. The inclination is also consistent with the expected value (and corresponding paleolatitude) for the site estimated from the reference polar wander curve for North America. We suggest that the characteristic magnetizations for the andesitic and breccia rocks are the result of shock heating at the time of formation of the impact structure and that the age, polarity and paleolatitude are consistent with a time at the K/T boundary.

  9. Structural and functional characterization of the conserved salt bridge in mammalian paneth cell alpha-defensins

    DEFF Research Database (Denmark)

    Rosengren, K Johan; Daly, Norelle L; Fornander, Liselotte M

    2006-01-01

    )-Crp4 peptide, in which a conserved Glu(15) residue was replaced by Asp. Structural analysis of the two peptides confirms the involvement of this Glu in a conserved salt bridge that is removed in the mutant because of the shortened side chain. Despite disruption of this structural feature, the peptide...... bactericidal activities and stability to proteolysis. These findings support the conclusion that the function of the conserved salt bridge in Crp4 is not linked to bactericidal activity or proteolytic stability of the mature peptide....... variant retains a well defined native fold because of a rearrangement of side chains, which result in compensating favorable interactions. Furthermore, salt bridge-deficient Crp4 mutants were tested for bactericidal effects and resistance to proteolytic degradation, and all of the variants had similar...

  10. Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution

    Science.gov (United States)

    Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.

    2017-04-01

    The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.

  11. Centrifuge Testing and Seismic Response Analysis for Uplift Behavior of Spread Foundation Structures on Rock

    Directory of Open Access Journals (Sweden)

    Takuya Suzuki

    2016-09-01

    Full Text Available The uplift behavior of structures subjected to severe seismic motion has not been clarified. This paper presents experimental and analytical studies conducted for clarifying this problem of spread foundation structures on rock. First, centrifugal loading tests are conducted to determine the uplift behavior of these structures, and the uplift behavior of these structures is confirmed. Then, simulation analyses are performed using a three-dimensional FE model and the accuracy of these analyses is confirmed. A comparison between test and analyses results clarified the important analytical conditions required for maintaining analysis precision and the limit of analysis precision.

  12. Technogenic Rock Dumps Physical Properties' Prognosis via Results of the Structure Numerical Modeling

    Science.gov (United States)

    Markov, Sergey; Martyanov, Victor; Preis, Elena; Abay, Asmelash

    2017-11-01

    Understanding of internal structure of the technogenic rock dumps (gob dumps) is required condition for estimation of using ones as filtration massifs for treatment of mine wastewater. Internal structure of gob piles greatly depends on dumping technology to applying restrictions for use them as filtration massifs. Numerical modelling of gob dumps allows adequately estimate them physical parameters, as a filtration coefficient, density, etc. The gob dumps numerical modelling results given in this article, in particular was examined grain size distribution of determined fractions depend on dump height. Shown, that filtration coefficient is in a nonlinear dependence on amount of several fractions of rock in gob dump. The numerical model adequacy both the gob structure and the dependence of filtration coefficient from gob height acknowledged equality of calculated and real filtration coefficient values. The results of this research can be apply to peripheral dumping technology.

  13. Technogenic Rock Dumps Physical Properties' Prognosis via Results of the Structure Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Markov Sergey

    2017-01-01

    Full Text Available Understanding of internal structure of the technogenic rock dumps (gob dumps is required condition for estimation of using ones as filtration massifs for treatment of mine wastewater. Internal structure of gob piles greatly depends on dumping technology to applying restrictions for use them as filtration massifs. Numerical modelling of gob dumps allows adequately estimate them physical parameters, as a filtration coefficient, density, etc. The gob dumps numerical modelling results given in this article, in particular was examined grain size distribution of determined fractions depend on dump height. Shown, that filtration coefficient is in a nonlinear dependence on amount of several fractions of rock in gob dump. The numerical model adequacy both the gob structure and the dependence of filtration coefficient from gob height acknowledged equality of calculated and real filtration coefficient values. The results of this research can be apply to peripheral dumping technology.

  14. Effect of pore structure on seismic rock-physics characteristics of dense carbonates

    Science.gov (United States)

    Pan, Jian-Guo; Wang, Hong-Bin; Li, Chuang; Zhao, Jian-Guo

    2015-03-01

    The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters (e.g., wave velocity) depend on porosity and pore structure. We estimated the average specific surface, average pore-throat radius, pore roundness, and average aspect ratio of carbonate rocks from the Tazhong area. High P-wave velocity samples have small average specific surface, small average pore-throat radius, and large average aspect ratio. Differences in the pore structure of dense carbonate samples lead to fluid-related velocity variability. However, the relation between velocity dispersion and average specific surface, or the average aspect ratio, is not linear. For large or small average specific surface, the pore structure of the rock samples becomes uniform, which weakens squirt flow and minimizes the residuals of ultrasonic data and predictions with the Gassmann equation. When rigid dissolved (casting mold) pores coexist with less rigid microcracks, there are significant P-wave velocity differences between measurements and predictions.

  15. The structure of salt marsh soil mesofauna food webs - The prevalence of disturbance.

    Science.gov (United States)

    Haynert, Kristin; Kiggen, Mirijam; Klarner, Bernhard; Maraun, Mark; Scheu, Stefan

    2017-01-01

    Mesofauna taxa fill key trophic positions in soil food webs, even in terrestrial-marine boundary habitats characterized by frequent natural disturbances. Salt marshes represent such boundary habitats, characterized by frequent inundations increasing from the terrestrial upper to the marine pioneer zone. Despite the high abundance of soil mesofauna in salt marshes and their important function by facilitating energy and carbon flows, the structure, trophic ecology and habitat-related diet shifts of mesofauna species in natural salt marsh habitats is virtually unknown. Therefore, we investigated the effects of natural disturbance (inundation frequency) on community structure, food web complexity and resource use of soil mesofauna using stable isotope analysis (15N, 13C) in three salt marsh zones. In this intertidal habitat, the pioneer zone is exposed to inundations twice a day, but lower and upper salt marshes are less frequently inundated based on shore height. The mesofauna comprised 86 species / taxa dominated by Collembola, Oribatida and Mesostigmata. Shifts in environmental disturbances influenced the structure of food webs, diversity and density declined strongly from the land to the sea pointing to the importance of increasing levels of inundation frequency. Accordingly, the reduced diversity and density was associated by a simplification of the food web in the pioneer zone as compared to the less inundated lower and upper salt marsh with a higher number of trophic levels. Strong variations in δ15N signatures demonstrated that mesofauna species are feeding at multiple trophic levels. Primary decomposers were low and most mesofauna species functioned as secondary decomposers or predators including second order predators or scavengers. The results document that major decomposer taxa, such as Collembola and Oribatida, are more diverse than previously assumed and predominantly dwell on autochthonous resources of the respective salt marsh zone. The results further

  16. The structure of salt marsh soil mesofauna food webs - The prevalence of disturbance.

    Directory of Open Access Journals (Sweden)

    Kristin Haynert

    Full Text Available Mesofauna taxa fill key trophic positions in soil food webs, even in terrestrial-marine boundary habitats characterized by frequent natural disturbances. Salt marshes represent such boundary habitats, characterized by frequent inundations increasing from the terrestrial upper to the marine pioneer zone. Despite the high abundance of soil mesofauna in salt marshes and their important function by facilitating energy and carbon flows, the structure, trophic ecology and habitat-related diet shifts of mesofauna species in natural salt marsh habitats is virtually unknown. Therefore, we investigated the effects of natural disturbance (inundation frequency on community structure, food web complexity and resource use of soil mesofauna using stable isotope analysis (15N, 13C in three salt marsh zones. In this intertidal habitat, the pioneer zone is exposed to inundations twice a day, but lower and upper salt marshes are less frequently inundated based on shore height. The mesofauna comprised 86 species / taxa dominated by Collembola, Oribatida and Mesostigmata. Shifts in environmental disturbances influenced the structure of food webs, diversity and density declined strongly from the land to the sea pointing to the importance of increasing levels of inundation frequency. Accordingly, the reduced diversity and density was associated by a simplification of the food web in the pioneer zone as compared to the less inundated lower and upper salt marsh with a higher number of trophic levels. Strong variations in δ15N signatures demonstrated that mesofauna species are feeding at multiple trophic levels. Primary decomposers were low and most mesofauna species functioned as secondary decomposers or predators including second order predators or scavengers. The results document that major decomposer taxa, such as Collembola and Oribatida, are more diverse than previously assumed and predominantly dwell on autochthonous resources of the respective salt marsh zone

  17. Stabilization of protein structure in freeze-dried amorphous organic acid buffer salts.

    Science.gov (United States)

    Izutsu, Ken-ichi; Kadoya, Saori; Yomota, Chikako; Kawanishi, Toru; Yonemochi, Etsuo; Terada, Katsuhide

    2009-11-01

    The purpose of this study was to elucidate the physical properties and protein-stabilizing effects of some pH-adjusting excipients (carboxylic acids and their sodium salts) in frozen solutions and in freeze-dried solids. Thermal and powder X-ray diffraction (XRD) analysis indicated a high propensity of sodium citrates to form glass-state amorphous solids upon freeze-drying. Some salts (e.g., sodium succinate) crystallized in the single-solute frozen solutions. FT-IR analysis of bovine serum albumin (BSA) and bovine immunoglobulin G (IgG) in the aqueous solutions and the freeze-dried solids showed that some glass-forming salts (e.g., monosodium citrate) protected the secondary structure from lyophilization-induced perturbation. Freeze-drying of BSA at different concentrations indicated retention of the secondary structure at similar monosodium citrate/protein concentration ratios, suggesting stabilization through direct interaction that substitute water molecules inevitable for the conformation integrity. The carboxylic acid salts should provide rigid hydrogen bonds and electrostatic interactions that raise the glass transition temperature of the amorphous solids and stabilize protein structure. The relevance of the structural stabilization to the protein formulation design was discussed.

  18. Structure and Reaction Chemistry of Magnesium Organocuprates Derived from Magnesiacyclopentadienes and Copper(I) Salts.

    Science.gov (United States)

    Liu, Liang; Wei, Junnian; Chi, Yue; Zhang, Wen-Xiong; Xi, Zhenfeng

    2016-11-14

    The chemistry of magnesium organocuprates, including their synthesis, structures, and reactions, remains underexplored. In this work, by taking advantage of the high reactivity and ready availability of magnesiacyclopentadienes, a series of magnesiacyclopentadiene-based organocuprates were synthesized and structurally characterized. A variety of CuX salts (X=Cl, Br, I, or alkynyl) were successfully applied to react with magnesiacyclopentadienes. Besides CuX salts, AgX salts (X=Cl, alkynyl) also undergwent the above reaction to afford the corresponding magnesium organoargentates. Single-crystal X-ray structural analysis and DFT calculations of these butadienyl magnesium organocuprates revealed unique structural characteristics and bonding modes. These results are also very useful to understand the transmetalation process, since the product can be viewed as the resting-state intermediate of a transmetalation reaction between organomagnesium compounds and coinage-metal salts. Preliminary information on the reaction chemistry of these magnesium organocuprates is provided by their reactions with allyl bromide, benzoyl chloride, and CO2 . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structure of pectic polysaccharides from sunflower salts-soluble fraction

    Science.gov (United States)

    The manuscript discusses the structural features of pectin polysaccharides extracted from seedless sunflower head residues. The analysis using 1H, 13C and two-dimensional gHSQC NMR showed various numbers of methyl and hydroxyl groups attached to the anomeric carbons in the pectin backbone at differe...

  20. Shear Creep Simulation of Structural Plane of Rock Mass Based on Discontinuous Deformation Analysis

    Directory of Open Access Journals (Sweden)

    Guoxin Zhang

    2017-01-01

    Full Text Available Numerical simulations of the creep characteristics of the structural plane of rock mass are very useful. However, most existing simulation methods are based on continuum mechanics and hence are unsuitable in the case of large displacements and deformations. The discontinuous deformation analysis method proposed by Genhua is a discrete one and has a significant advantage when simulating the contacting problem of blocks. In this study, we combined the viscoelastic rheological model of Burgers with the discontinuous deformation analysis (DDA method. We also derived the recurrence formula for the creep deformation increment with the time step during numerical simulations. Based on the minimum potential energy principle, the general equilibrium equation was derived, and the shear creep deformation in the structural plane was considered. A numerical program was also developed and its effectiveness was confirmed based on the curves obtained by the creep test of the structural plane of a rock mass under different stress levels. Finally, the program was used to analyze the mechanism responsible for the creep features of the structural plane in the case of the toppling deformation of the rock slope. The results showed that the extended DDA method is an effective one.

  1. Natural analogs in the host rock salt. Pt. 1. General study (2011). Pt. 2. Detail studies (2012-2013); Natuerliche Analoga im Wirtsgestein Salz. T. 1. Generelle Studie (2011). T. 2. Detailstudien (2012-2013)

    Energy Technology Data Exchange (ETDEWEB)

    Brasser, Thomas; Fahrenholz, Christine; Kull, Herbert; Meleshyn, Artur; Moenig, Heike; Noseck, Ulrich; Schoenwiese, Dagmar; Wolf, Jens

    2014-12-15

    The first part of the project ISIBELII on natural analogs in the host rock salt included a summary of available studies on the topic to be used in a safety analysis for a final repository for heat generating radioactive waste. In 2012 the results of the preliminary safety analysis Gorleben was available, including results on the fracturing of anhydrite, the formation of cryogenic gaps and the influence of earthquakes. The requirements for the barrier system have been modified due to the safety requirements for the final disposal of heat-generating radioactive wastes valid since 2010. For containers the functionality gas to be demonstrated for 500 years. The following issues are covered: natural analogs for the integrity demonstration of the geological barrier, natural analogs for the integrity demonstration of geotechnical barriers, natural analogs for the evaluation of release scenarios. The detail studies include anhydrite fracturing, salt grit compaction, chemical composition of fluid inclusions, thermal stability of salt rock, mechanical stability of salt rock, influence of earthquakes, qualified closures, iron corrosion, and microbial processes.

  2. Alkali and alkaline earth metal salts of tetrazolone: structurally interesting and excellently thermostable.

    Science.gov (United States)

    He, Piao; Wu, Le; Wu, Jin-Ting; Yin, Xin; Gozin, Michael; Zhang, Jian-Guo

    2017-07-04

    Tetrazolone (5-oxotetrazole) was synthesized by a moderate strategy through three steps (addition, cyclization and catalytic hydrogenation) avoiding the unstable intermediate diazonium, as reported during the previous preparation. Alkali and alkaline earth metal salts with lithium (1), sodium (2), potassium (3), rubidium (4) caesium (5), magnesium (6), calcium (7), strontium (8) and barium (9) were prepared and fully characterized using elemental analysis, IR and NMR spectroscopy, DSC and TG analysis. All metal salts were characterized via single-crystal X-ray diffraction. They crystallize in common space groups with high densities ranging from 1.479 (1) to 3.060 g cm-3 (5). Furthermore, the crystal structures of 7, 8 and 9 reveal interesting porous energetic coordination polymers with strong hydrogen bond interactions. All new salts have good thermal stabilities with decomposition temperature between 215.0 °C (4) and 328.2 °C (7), significantly higher than that of the reported nitrogen-rich salt neutral tetrazolone. The sensitivities towards impact and friction were tested using standard methods, and all the tetrazolone-based compounds investigated can be classified into insensitive. The flame test of these metal salts supports their potential use as perchlorate-free pyrotechnics or eco-friendly insensitive energetic materials.

  3. The impact of the structural features of the rock mass on seismicity in Polish coal mines

    Science.gov (United States)

    Patyńska, Renata

    2017-11-01

    The article presents seismic activity induced in the coal mines of the Upper Silesian Coal Basin (GZW) in relation to the locations of the occurrence of rockbursts. The comparison of these measurements with the structural features of the rock mass of coal mines indicates the possibility of estimating the so-called Unitary Energy Expenditure (UEE) in a specific time. The obtained values of UEE were compared with the distribution of seismic activity in GZW mines. The level of seismic activity in the analysed period changed and depended on the intensity of mining works and diverse mining and geological conditions. Five regions, where tremors occurred (Bytom Trough, Main Saddle, Main Trough, Kazimierz Trough, and Jejkowice and Chwałowice Trough) which belong to various structural units of the Upper Silesia were analyzed. It was found out that rock bursts were recorded only in three regions: Main Saddle, Bytom Trough, and Jejkowice and Chwałowice Trough.

  4. Structure of eight molecular salts assembled from noncovalent bonding between carboxylic acids, imidazole, and benzimidazole

    Science.gov (United States)

    Jin, Shouwen; Zhang, Huan; Liu, Hui; Wen, Xianhong; Li, Minghui; Wang, Daqi

    2015-09-01

    Eight organic salts of imidazole/benzimidazole have been prepared with carboxylic acids as 2-methyl-2-phenoxypropanoic acid, α-ketoglutaric acid, 5-nitrosalicylic acid, isophthalic acid, 4-nitro-phthalic acid, and 3,5-dinitrosalicylic acid. The eight crystalline forms reported are proton-transfer compounds of which the crystals and compounds were characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. These structures adopted hetero supramolecular synthons, with the most common R22(7) motif observed at salts 2, 3, 5, 6 and 8. Analysis of the crystal packing of 1-8 suggests that there are extensive strong Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds (charge assisted or neutral) between acid and imidazolyl components in all of the salts. Except the classical hydrogen bonding interactions, the secondary propagating interactions also play important roles in structure extension. This variety, coupled with the varying geometries and number of acidic groups of the acids utilized, has led to the creation of eight supramolecular arrays with 1D-3D structure. The role of weak and strong noncovalent interactions in the crystal packing is analyzed. The results presented herein indicate that the strength and directionality of the Nsbnd H⋯O, and Osbnd H⋯O hydrogen bonds between acids and imidazole/benzimidazole are sufficient to bring about the formation of organic salts.

  5. Research to lessen the amounts of curing agents in processed meat through use of rock salt and carbon monoxide

    Science.gov (United States)

    Sakata, R.; Takeda, S.; Kinoshita, Y.; Waga, M.

    2017-09-01

    This study was carried out to examine the reddening of meat products due to the addition of natural yellow salt (YS) and carbon monoxide (CO). Following YS or NaCl addition at 2% to pork subsequent to nitrite (0∼100 ppm) treatment, color development due to this addition was analyzed visually. Heme pigment content in the meat was also determined spectrophotometrically. YS was found to bring about greater reddening than NaCl, indicating residual nitrite and nitrate content to be significantly higher in meat containing YS, through the amount of either was quite small. The amount of nitrite required for a red color to develop was noted to vary significantly from one meat product to another. CO treatment of pork caused the formation of carboxy myoglobin (COMb) with consequent reddening of the meat. COMb was shown to be heat-stable and form stably at pH 5.0 to ∼8.0 and to be extractable with water, but was barely extractable at all with acetone. Nitric oxide was found to have greater affinity toward myoglobin (Mb) than CO. Nitrosyl Mb was noted to be stable in all meat products examined. CO was seen to be capable of controlling the extent of lipid oxidation.

  6. Assessing the disturbed rock zone (DRZ) around a 655 meter vertical shaft in salt using ultrasonic waves: An update

    Energy Technology Data Exchange (ETDEWEB)

    HARDY,ROBERT D.; HOLCOMB,DAVID J.

    2000-03-14

    An array of ultrasonic transducers was constructed consisting of three identical arrays at various depths in an air intake shaft at the Waste Isolation Pilot Plant (WIPP). Each array consists of transducers permanently installed in three holes arranged in an L shape. An active array, created by appropriate arrangement of the transducers and selection of transmitter-receiver pairs, allows the measurement of transmitted signal velocities and amplitudes (for attenuation studies) along 216 paths parallel, perpendicular and tangential to the shaft walls. Transducer positions were carefully surveyed, allowing absolute velocity measurements. Installation occurred over a period of about two years beginning in early 1989, with nearly continuous operation since that time, resulting in a rare, if not unique, record of the spatial and temporal variability of damage development around an underground opening. This paper reports results from the last two years of operation, updating the results reported by Holcomb, 1999. Results will be related to the damage, due to microcracking, required to produce the observed changes. It is expected that the results will be useful to other studies of the long-term deformation characteristics of salt.

  7. Paleoproterozoic structural evolution of rocks exposed in the underground science and engineering laboratory, Lead SD, USA

    Science.gov (United States)

    Terry, M. P.; Redden, J. A.

    2008-12-01

    The lab provides a unique 3-dimensional view of the crustal structure of the Precambrian core of the Black Hills that lies along the margin of the Wyoming Craton. The Paleoproterozoic structural evolution of these rocks controls the distribution of lithologies and rock fabric and thus the rheologic properties in the lab. These properties have potential to influence later formed structures such as fractures and a range of experiments from in the areas hydrology to rock mechanics. The rock at the lab is composed of metamorphosed volcanic and sedimentary rocks that include, from oldest to youngest, the Yates unit, Poorman Formation, Homestake Formation and Ellison Formation. The Yates unit is a hornblende- plagioclase schist. The Poorman Formation is a sericite-biotite carbonate-bearing phyllite. The Homestake Formation is a grunerite-siderite schist with interbedded chlorite or biotite phyllite. The Ellison Formation is a sericite-biotite phyllite or schist with interbedded impure quartzite (biotite-quartzschist). Compilation of available structural data and analysis indicate a complex evolution of folds and fabrics between 1780 and 1715 Ma. The lab is located on a late upright SE-plunging anticlinorium which is interpreted to deform the earliest folds (NE trending?). The earliest phase resulted in repetition is Homestake Formation and associated units. Overprinting during later deformation events caused tightening and local dismemberment of these early folds that led to the previous interpretation that multiple iron formations existed in the lab. The second phase of folding shallow to moderate upright SE-plunging folds and associated northwest striking, steeply dipping foliation. The third phase of folding overprints the previous phase to varying degrees and produced four structural domains that are recognized by changes in the orientation of structural fabrics. The third phase of folding is best developed in the western part of the lab and is represented by steeply

  8. Imaging of salt structure; Gan`enso kozo no imaging

    Energy Technology Data Exchange (ETDEWEB)

    Akama, K.; Saeki, T. [Japan National Corp., Tokyo (Japan). Technology Research Center; Matsuoka, T. [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1996-10-01

    Due to the improvement of algorithm and the advancement of calculation performance, the imaging by depth migration before stacking is being put into practice from the viewpoint of both calculation cost and accuracy. A lot of imaging examples have been already reported from the survey areas with complicated velocity structures, such as the North Sea and the Gulf of Mexico. Effectiveness of the method has been confirmed. For imaging techniques in Japan National Oil Corporation and Japan Petroleum Exploration Co., Ltd., high-speed depth migration before stacking and high efficiency velocity structure estimation technique have been investigated. This paper describes necessary care to be taken when using depth focusing analysis (DFA) for correcting a velocity model, as an interim stage of case study. The results of depth migration before stacking using dip moveout (DMO) velocity were further inferior to the section obtained by the migration after tracking. Tendency of velocity errors was distinctly deviated with the variation of depth and horizontal position. It was not suitable for modifying the velocity model using DFA. 4 refs., 4 figs.

  9. Numerical simulation of ice-load induced salt movements

    Science.gov (United States)

    Lang, Joerg; Al-Hseinat, Muayyad; Brandes, Christian; Hampel, Andrea; Hübscher, Christian; Winsemann, Jutta

    2015-04-01

    A correlation between salt structures, glacigenic features and faulting of Pleistocene deposits above salt structures has been recognised in many places of the formerly glaciated areas in northern central Europe and attributed to ice-sheet loading. Conceptual models predict that the load applied by an ice sheet will favour ice-marginal salt rise and obstruct salt rise beneath the ice sheet (e.g., Liszkowski, 1993). To test these models, we simulated the response of salt structures to ice-sheet loading using a 2D finite-element model (ABAQUS). The subsurface geometries used in our models are based on regional geological cross-sections and 2D seismic profiles of salt structures in the Central European Basin System. The model layers represent (i) sedimentary rocks of elastoplastic rheology, (ii) a viscoelastic salt structure and (iii) elastoplastic basement rocks. At the model surface a temporarily and spatially variable pressure simulates ice-sheet loading. All our simulations show a response of salt structures to ice-sheet loading, which strongly depends on the location of the ice margin relative to the salt structure. Salt structures rise in front of the ice margin (up to 4 m), if load is applied to the salt source layer. Beneath an ice sheet salt structures are pushed down (up to 36 m). Much of the subglacial downwards displacement is compensated by a reversal of the movement during ice retreat. The resulting surface displacements are therefore rather low and depend on the spatial and temporal configuration of the ice load (Lang et al., 2014). Permanent deformation is restricted to the model layers above the salt structure, which either have a low yield stress to represent the unconsolidated infill of secondary rim-synclines or are dissected by steeply dipping crestal graben faults. Ice-induced salt movements will reactivate faults above the crests of salt structures, although the resulting displacements will be low due to the repeated reversals of the sense of

  10. Crystal structures of seven molecular salts derived from benzylamine and organic acidic components

    Science.gov (United States)

    Wen, Xianhong; Jin, Xiunan; Lv, Chengcai; Jin, Shouwen; Zheng, Xiuqing; Liu, Bin; Wang, Daqi; Guo, Ming; Xu, Weiqiang

    2017-07-01

    Cocrystallization of the commonly available organic amine, benzylamine, with a series of organic acids gave a total of seven molecular salts with the compositions: (benzylamine): (p-toluenesulfonic acid) (1) [(HL)+ · (tsa-)], (benzylamine): (o-nitrobenzoic acid) (2) [(HL+) · (onba)-], (benzylamine): (3,4-methylenedioxybenzoic acid) (3) [(HL+) · (mdba-)], (benzylamine): (mandelic acid) (4) [(HL+) · (mda-)], (benzylamine): (5-bromosalicylic acid)2(5) [(HL+) · (bsac-) · (Hbsac)], (benzylamine): (m-phthalic acid) (6) [(HL+) · (Hmpta-)], and (benzylamine)2: (trimesic acid) (7) [(HL+)2 · (Htma2-)]. The seven salts have been characterised by X-ray diffraction technique, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the seven investigated crystals the NH2 groups in the benzylamine moieties are protonated when the organic acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted Nsbnd H⋯O hydrogen bond formation between the ammonium and the deprotonated acidic groups. Except the Nsbnd H⋯O hydrogen bond, the Osbnd H⋯O hydrogen bonds (charge assisted or neutral) were also found at the salts 4-7. Further analysis of the crystal packing of the salts indicated that a different family of additional CHsbnd O/CH2sbnd O, CHsbnd π/CH2sbnd π, Osbnd O, and Osbnd Cπ associations contribute to the stabilization and expansion of the total high-dimensional (2D-3D) framework structures. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R42(8), R43(10) and R44(12), usually observed in organic solids of organic acids with amine, were again shown to be involved in constructing most of these hydrogen bonding networks.

  11. Experimental alteration of artificial and natural impact melt rock from the Chesapeake Bay impact structure

    Science.gov (United States)

    Declercq, J.; Dypvik, H.; Aagaard, Per; Jahren, J.; Ferrell, R.E.; Horton, J. Wright

    2009-01-01

    The alteration or transformation of impact melt rock to clay minerals, particularly smectite, has been recognized in several impact structures (e.g., Ries, Chicxulub, Mj??lnir). We studied the experimental alteration of two natural impact melt rocks from suevite clasts that were recovered from drill cores into the Chesapeake Bay impact structure and two synthetic glasses. These experiments were conducted at hydrothermal temperature (265 ??C) in order to reproduce conditions found in meltbearing deposits in the first thousand years after deposition. The experimental results were compared to geochemical modeling (PHREEQC) of the same alteration and to original mineral assemblages in the natural melt rock samples. In the alteration experiments, clay minerals formed on the surfaces of the melt particles and as fine-grained suspended material. Authigenic expanding clay minerals (saponite and Ca-smectite) and vermiculite/chlorite (clinochlore) were identified in addition to analcime. Ferripyrophyllite was formed in three of four experiments. Comparable minerals were predicted in the PHREEQC modeling. A comparison between the phases formed in our experiments and those in the cores suggests that the natural alteration occurred under hydrothermal conditions similar to those reproduced in the experiment. ?? 2009 The Geological Society of America.

  12. Geo-structural modelling for potential large rock slide in Machu Picchu

    Science.gov (United States)

    Spizzichino, D.; Delmonaco, G.; Margottini, C.; Mazzoli, S.

    2009-04-01

    The monumental complex of the Historical Sanctuary of Machu Picchu, declared as World Heritage Site by UNESCO in 1983, is located in the Andean chain at approx. 80 km from Cuzco (Peru) and at an elevation of 2430 m a.s.l. along the Urubamba River Valley. From a geological point of view, the Machu Picchu granitoid pluton, forming part of the larger "Quillabamba granite", is one of a series of plutons intruded along the axial zone of the high Eastern Cordillera Permo-Liassic rift system including a variety of rock types, dominantly granites and granodiorites. The most evident structures at the outcrop scale consist of planar joint sets that may be variably reactivated and exhibiting 4 main orientations. At present, the site is affected by geological risk due to frequent landslides that threaten security and tourist exploitation. In the last years, the international landslide scientific community has promoted a multi-discipline joint programme mainly finalised to slope deformation monitoring and analysis after the warning, launched in 2001, of a potential collapse of the citadel, caused by a huge rock slide. The contribute of the Italian research team was devoted to implement a landslide risk analysis and an innovative remote sensing techniques. The main scope of this work is to present the implementation of a geo-structural modelling aimed at defining present and potential slope stability conditions of the Machu Picchu Citadel. Data have been collected by geological, structural and geomechanical field surveys and laboratory tests in order to reconstruct the geomorphological evolution of the area. Landslide types and evolution are strictly controlled by regional tectonic uplift and structural setting. Several slope instability phenomena have been identified and classified according to mechanism, material involved and state of activity. Rock falls, debris flows, rock slides and debris slides are the main surveyed landslide types. Rock slides and rock falls may produce

  13. Nano-structured Pt embedded in acidic salts of heteropolymolybdate matrices: MS EXAFS study

    Energy Technology Data Exchange (ETDEWEB)

    Witkowska, Agnieszka, E-mail: agnieszka@mif.pg.gda.pl [Department of Solid State Physics, Gdansk University of Technology, Gdansk (Poland); Dsoke, Sonia; Marassi, Roberto [School of Science and Technology, Chemistry Division, University of Camerino, Camerino (Italy); Di Cicco, Andrea [School of Science and Technology, Physics Division, University of Camerino, Camerino (Italy)

    2015-12-01

    A structural study of Pt nano-catalysts is presented in the paper. The innovation in the case of the considered catalytic materials resides in the use a meso-microporous inorganic matrix of heteropolyacid salt of composition X{sub 2.5}H{sub 0.5}YMo{sub 12}O{sub 40} where X = Rb, Cs and Y = P, Si as a catalyst support. Metallic nanoparticles were created by platinum ions reduction in a hot H{sub 2}/Argon stream and were mainly located into matrix pores. As the porous structure can be controlled by the type and content of the cation used, the desired/optimal Pt nanoparticle size can be precisely defined by using a proper heteropolyacid salt composition. Multiple-scattering extended X-ray absorption fine structure (MS EXAFS) analysis was applied to obtain the relation between the matrix composition and the size of the catalyst nanoparticles. The results showed that it was only the secondary structure form of the heteropolymolybdate salt (i.e. Rb or Cs cations) that influenced the metallic nanoparticle size. The smaller the X atom ionic radii, the larger the mean diameter of the embedded Pt nanoparticles.

  14. Reverse polarity magnetized melt rocks from the Chicxulub impact structure, Yucatan Peninsula, Mexico

    Science.gov (United States)

    Urrutia-Fucugauchi, Jaime; Marin, Luis E.; Sharpton, Virgil L.; Quezada, Juan Manuel

    1993-01-01

    Further paleomagnetic data for core samples of melt rock recovered in the Petroleos Mexicanos (PEMEX) exploratory wells within the Chicxulub structure, northern Yucatan peninsula, Mexico are reported. A previous report by Sharpton showed that the rocks studied contain high iridium levels and shocked breccia clasts, and an Ar-40/Ar-39 age of 65.2 plus or minus 0.4 Ma. The geomagnetic polarity determined for two samples is reverse (R) and was correlated with chron 29R that includes the K/T boundary. Our present analysis is based on two samples from each of three clasts of the melt rock from PEMEX well Y6-N17 (1295 to 1299 m b.s.l.). This study concentrates on the vectorial nature and stability of the remanence (NRM), the magnetic mineralogy and remanence carriers (i.e., the reliability and origin of the record), and on the implications (correlation with expected paleolatitude and polarity). The relative orientation of the drill core samples with respect to the horizontal is known. Samples were stable under alternating field (AF) and thermal treatments, and after removal of a small component they exhibited single-vectorial behavior. The characteristic remanence inclinations show small dispersion and a mean value (-43 deg) in close agreement with the expected inclination and paleolatitude (derived from the North American apparent polar wander path). Isothermal remenence (IRM) acquisition experiments, Lowrie-Fuller tests, coercivity and unblocking temperature spectra of NRM and saturation IRM, susceptibility and Q-coefficient analyses, and the single-component nature indicate a dominant mineralogy of iron-rich titanomagnetites with single or pseduo-single domain states. The stable characteristic magnetization may be interpreted as a result of shock heating of the rock at the time of formation of the inpact structure and its polarity, age, and paleolatitude are consistent with a time about the K/T boundary.

  15. Orientation Uncertainty of Structures Measured in Cored Boreholes: Methodology and Case Study of Swedish Crystalline Rock

    Science.gov (United States)

    Stigsson, Martin

    2016-11-01

    Many engineering applications in fractured crystalline rocks use measured orientations of structures such as rock contact and fractures, and lineated objects such as foliation and rock stress, mapped in boreholes as their foundation. Despite that these measurements are afflicted with uncertainties, very few attempts to quantify their magnitudes and effects on the inferred orientations have been reported. Only relying on the specification of tool imprecision may considerably underestimate the actual uncertainty space. The present work identifies nine sources of uncertainties, develops inference models of their magnitudes, and points out possible implications for the inference on orientation models and thereby effects on downstream models. The uncertainty analysis in this work builds on a unique data set from site investigations, performed by the Swedish Nuclear Fuel and Waste Management Co. (SKB). During these investigations, more than 70 boreholes with a maximum depth of 1 km were drilled in crystalline rock with a cumulative length of more than 34 km including almost 200,000 single fracture intercepts. The work presented, hence, relies on orientation of fractures. However, the techniques to infer the magnitude of orientation uncertainty may be applied to all types of structures and lineated objects in boreholes. The uncertainties are not solely detrimental, but can be valuable, provided that the reason for their presence is properly understood and the magnitudes correctly inferred. The main findings of this work are as follows: (1) knowledge of the orientation uncertainty is crucial in order to be able to infer correct orientation model and parameters coupled to the fracture sets; (2) it is important to perform multiple measurements to be able to infer the actual uncertainty instead of relying on the theoretical uncertainty provided by the manufacturers; (3) it is important to use the most appropriate tool for the prevailing circumstances; and (4) the single most

  16. Reverse polarity magnetized melt rocks from the Chicxulub impact structure, Yucatan Peninsula, Mexico

    Science.gov (United States)

    Urrutia-Fucugauchi, Jaime; Marin, Luis E.; Sharpton, Virgil L.; Quezada, Juan Manuel

    1993-03-01

    Further paleomagnetic data for core samples of melt rock recovered in the Petroleos Mexicanos (PEMEX) exploratory wells within the Chicxulub structure, northern Yucatan peninsula, Mexico are reported. A previous report by Sharpton showed that the rocks studied contain high iridium levels and shocked breccia clasts, and an Ar-40/Ar-39 age of 65.2 plus or minus 0.4 Ma. The geomagnetic polarity determined for two samples is reverse (R) and was correlated with chron 29R that includes the K/T boundary. Our present analysis is based on two samples from each of three clasts of the melt rock from PEMEX well Y6-N17 (1295 to 1299 m b.s.l.). This study concentrates on the vectorial nature and stability of the remanence (NRM), the magnetic mineralogy and remanence carriers (i.e., the reliability and origin of the record), and on the implications (correlation with expected paleolatitude and polarity). The relative orientation of the drill core samples with respect to the horizontal is known. Samples were stable under alternating field (AF) and thermal treatments, and after removal of a small component they exhibited single-vectorial behavior. The characteristic remanence inclinations show small dispersion and a mean value (-43 deg) in close agreement with the expected inclination and paleolatitude (derived from the North American apparent polar wander path). Isothermal remenence (IRM) acquisition experiments, Lowrie-Fuller tests, coercivity and unblocking temperature spectra of NRM and saturation IRM, susceptibility and Q-coefficient analyses, and the single-component nature indicate a dominant mineralogy of iron-rich titanomagnetites with single or pseduo-single domain states. The stable characteristic magnetization may be interpreted as a result of shock heating of the rock at the time of formation of the inpact structure and its polarity, age, and paleolatitude are consistent with a time about the K/T boundary.

  17. Synthesis, crystal structure and Hirschfeld surface analyses of an alkyl amine based salt, [C5H16N2][ZnCl4] and its enzyme inhibition activity

    Directory of Open Access Journals (Sweden)

    Saud I. Al-Resayes

    2017-05-01

    Full Text Available A novel ionic zinc salt based on alkyl amine is reported. The structure of the studied salt is established by crystal X-ray crystallography, FT-IR and NMR spectroscopy. Furthermore, Hirschfeld surface analyses of the studied salt have also been carried out. In addition, reported salt shows significant enzyme inhibition activity against acetylcholinesterase.

  18. Synthesis, crystal structure and Hirschfeld surface analyses of an alkyl amine based salt, [C5H16N2][ZnCl4] and its enzyme inhibition activity

    OpenAIRE

    Al-Resayes, Saud I.; Azam, Mohammad; Alam, Mahboob; Suresh Kumar, Raju; Adil, S. F.

    2017-01-01

    A novel ionic zinc salt based on alkyl amine is reported. The structure of the studied salt is established by crystal X-ray crystallography, FT-IR and NMR spectroscopy. Furthermore, Hirschfeld surface analyses of the studied salt have also been carried out. In addition, reported salt shows significant enzyme inhibition activity against acetylcholinesterase.

  19. Numerical analysis of the performance of rock weirs: Effects of structure configuration on local hydraulics

    Science.gov (United States)

    Holmquist-Johnson, C. L.

    2009-01-01

    River spanning rock structures are being constructed for water delivery as well as to enable fish passage at barriers and provide or improve the aquatic habitat for endangered fish species. Current design methods are based upon anecdotal information applicable to a narrow range of channel conditions. The complex flow patterns and performance of rock weirs is not well understood. Without accurate understanding of their hydraulics, designers cannot address the failure mechanisms of these structures. Flow characteristics such as jets, near bed velocities, recirculation, eddies, and plunging flow govern scour pool development. These detailed flow patterns can be replicated using a 3D numerical model. Numerical studies inexpensively simulate a large number of cases resulting in an increased range of applicability in order to develop design tools and predictive capability for analysis and design. The analysis and results of the numerical modeling, laboratory modeling, and field data provide a process-based method for understanding how structure geometry affects flow characteristics, scour development, fish passage, water delivery, and overall structure stability. Results of the numerical modeling allow designers to utilize results of the analysis to determine the appropriate geometry for generating desirable flow parameters. The end product of this research will develop tools and guidelines for more robust structure design or retrofits based upon predictable engineering and hydraulic performance criteria. ?? 2009 ASCE.

  20. Development of a rocking R/C shear wall system implementing repairable structural fuses

    Science.gov (United States)

    Parsafar, Saeed; Moghadam, Abdolreza S.

    2017-09-01

    In the last decades, the concept of earthquake resilient structural systems is becoming popular in which the rocking structure is considered as a viable option for buildings in regions of high seismicity. To this end, a novel wall-base connection based on the " repairable structure" approach is proposed and evaluated. The proposed system is made of several steel plates and high strength bolts act as a friction connection. To achieve the desired rocking motion in the proposed system, short-slotted holes are used in vertical directions for connecting the steel plates to the shear wall (SW). The experimental and numerical studies were performed using a series of displacement control quasi-static cyclic tests on a reference model and four different configurations of the proposed connection installed at the wall corners. The seismic response of the proposed system is compared to the conventional SW in terms of energy dissipation and damage accumulation. In terms of energy dissipation, the proposed system depicted better performance with 95% more energy dissipation capability compared to conventional SW. In terms of damage accumulation, the proposed SW system is nearly undamaged compared to the conventional wall system, which was severely damaged at the wall-base region. Overall, the introduced concept presents a feasible solution for R/C structures when a low-damage design is targeted, which can improve the seismic performance of the structural system significantly.

  1. Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Nav Nidhi; Murugesan, Vijayakumar; Shin, Yongwoo; Han, Kee Sung; Lau, Kah Chun; Chen, Junzheng; Liu, Jun; Curtiss, Larry A.; Mueller, Karl T.; Persson, Kristin A.

    2017-04-10

    Fundamental molecular level understanding of functional properties of liquid solutions provides an important basis for designing optimized electrolytes for numerous applica-tions. In particular, exhaustive knowledge of solvation structure, stability and transport properties is critical for developing stable electrolytes for fast charging and high energy density next-generation energy storage systems. Here we report the correlation between solubility, solvation structure and translational dynamics of a lithium salt (Li-TFSI) and polysulfides species using well-benchmarked classical molecular dynamics simulations combined with nuclear magnetic resonance (NMR). It is observed that the polysulfide chain length has a significant effect on the ion-ion and ion-solvent interaction as well as on the diffusion coefficient of the ionic species in solution. In particular, extensive cluster formation is observed in lower order poly-sulfides (Sx2-; x≤4), whereas the longer polysulfides (Sx2-; x>4) show high solubility and slow dynamics in the solu-tion. It is observed that optimal solvent/salt ratio is essen-tial to control the solubility and conductivity as the addi-tion of Li salt increases the solubility but decreases the mo-bility of the ionic species. This work provides a coupled theoretical and experimental study of bulk solvation struc-ture and transport properties of multi-component electro-lyte systems, yielding design metrics for developing optimal electrolytes with improved stability and solubility.

  2. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Snodin, Benedict E. K., E-mail: benedict.snodin@chem.ox.ac.uk; Mosayebi, Majid; Schreck, John S.; Romano, Flavio; Doye, Jonathan P. K., E-mail: jonathan.doye@chem.ox.ac.uk [Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Randisi, Ferdinando [Life Sciences Interface Doctoral Training Center, South Parks Road, Oxford OX1 3QU (United Kingdom); Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Šulc, Petr [Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065 (United States); Ouldridge, Thomas E. [Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2AZ (United Kingdom); Tsukanov, Roman; Nir, Eyal [Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva (Israel); Louis, Ard A. [Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2015-06-21

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.

  3. Lamellar structures and bacteria as main components of the amorphous matter of source rocks

    Energy Technology Data Exchange (ETDEWEB)

    Raynaud, J.F.; Lacrampe-Couloume, G. (Societe Nationale Elf-Aquitaine, 64 - Pau (FR). Lab. de Geologie); Lugardon, B. (Toulouse-3 Univ., 31 (FR). Lab. de Biologie Vegetale)

    1989-01-01

    Kerogen of most marine and lacustrine petroleum source rocks is optically composed of amorphous organic matter devoid of any mark of nature or origin. Analysis of this organic matter with a transmission electron microscope shows many structures of obviously biological origin, the most prominent of which are lamellar membranes, frequently associated with groups of bacteria-like bodies. Lamellar structures could correspond either to cellular membranes issued from phytoplankton which are strengthened by rigidifying agents (hopanetetrols and sterols), or to cell-walls composed of insoluble acid-resistant biopolymers. Such cell-walls have already been observed in blue and green algae but very exceptionally in extent phytoplanktonic algae such as dinoflagellates, diatoms and coccolithophorids. Whatever these lamellar structures could be, these observations show that amorphous kerogens of aquatic petroleum source rocks result essentially from accumulation of organic structures directly inherited from phytoplankton. So the former geochemical theories, abiological (polycondensation of dispersed organic particles or polymerization of monomers), or biological (complete bacterial reworking), must be reinterpreted in the light of these new data. 6 plates.

  4. A velocity-based approach to visco-elastic flow of rock

    NARCIS (Netherlands)

    Zijl, W.; Hendriks, M.; Hart, M. 't

    2005-01-01

    In structural geology, viscous creep is generally recognized as the major deformation mechanism in the folding of rock layers through geological time scales of hundreds of thousands of years. Moreover, since deformation of rock salt by creep takes already place on relatively small time scales -

  5. Response of Soil Fungi Community Structure to Salt Vegetation Succession in the Yellow River Delta.

    Science.gov (United States)

    Wang, Yan-Yun; Guo, Du-Fa

    2016-10-01

    High-throughput sequencing technology was used to reveal the composition and distribution of fungal community structure in the Yellow River Delta under bare land and four kinds of halophyte vegetation (saline seepweed, Angiospermae, Imperata and Apocynum venetum [A. venetum]). The results showed that the soil quality continuously improved with the succession of salt vegetation types. The soil fungi richness of mild-salt communities (Imperata and A. venetum) was relatively higher, with Shannon index values of 5.21 and 5.84, respectively. The soil fungi richness of severe-salt-tolerant communities (saline seepweed, Angiospermae) was relatively lower, with Shannon index values of 4.64 and 4.66, respectively. The UniFrac metric values ranged from 0.48 to 0.67 when the vegetation was in different succession stages. A total of 60,174 valid sequences were obtained for the five vegetation types, and they were classified into Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Mucoromycotina. Ascomycota had the greatest advantage among plant communities of Imperata and A. venetum, as indicated by relative abundances of 2.69 and 69.97 %, respectively. Basidiomycota had the greatest advantage among mild-salt communities of saline seepweed and Angiospermae, with relative abundances of 9.43 and 6.64 %, respectively. Soil physical and chemical properties were correlated with the distribution of the fungi, and Mucor was significantly correlated with soil moisture (r = 0.985; P Soil quality, salt vegetation and soil fungi were influenced by each other.

  6. Random Neighborhood Graphs as Models of Fracture Networks on Rocks: Structural and Dynamical Analysis

    CERN Document Server

    Estrada, Ernesto

    2016-01-01

    We propose a new model to account for the main structural characteristics of rock fracture networks (RFNs). The model is based on a generalization of the random neighborhood graphs to consider fractures embedded into rectangular spaces. We study a series of 29 real-world RFNs and find the best fit with the random rectangular neighborhood graphs (RRNGs) proposed here. We show that this model captures most of the structural characteristics of the RFNs and allows a distinction between small and more spherical rocks and large and more elongated ones. We use a diffusion equation on the graphs in order to model diffusive processes taking place through the channels of the RFNs. We find a small set of structural parameters that highly correlates with the average diffusion time in the RFNs. In particular, the second smallest eigenvalue of the Laplacian matrix is a good predictor of the average diffusion time on RFNs, showing a Pearson correlation coefficient larger than $0.99$ with the average diffusion time on RFNs. ...

  7. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    Science.gov (United States)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  8. Population structure and marker-trait association of salt tolerance in barley (Hordeum vulgare L.).

    Science.gov (United States)

    Elakhdar, Ammar; El-Sattar, Mohamed Abd; Amer, Khairy; Rady, Assma; Kumamaru, Toshihiro

    Association mapping is becoming an important tool for identifying alleles and loci responsible for dissecting highly complex traits in barley. This study describes the population structure and marker-trait association using general linear model (GLM) analysis on a site of 60 barley genotypes, evaluated in six salinity environments. Ninety-eight SSR and SNP alleles were employed for the construction of a framework genetic map. The genetic structure analysis of the collection turned out to consist of two major sub-populations, mainly comprising hulled and naked types. LD significantly varied among the barley chromosomes, suggesting that this factor may affect the resolution of association mapping for QTL located on different chromosomes. Numerous significant marker traits were associated in different regions of the barley genome controlling salt tolerance and related traits; among them, 46 QTLs were detected on 14 associated traits over the two years, with a major QTL controlling salt tolerance on 1H, 2H, 4H and 7H, which are important factors in improving barley's salt tolerance. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Features of West Hackberry SPR Caverns and Internal Structure Of the Salt Dome

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Darrell Eugene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Underground Storage Technology Dept.

    2006-09-01

    The intent of this report is to examine the internal structure of the West Hackberry salt dome utilizing the information from the geometric configuration of the internal cavern surfaces obtained from graphical representations of sonar survey data. In a general sense, the caverns of West Hackberry are remarkable in the symmetry of their shapes. There are only rather moderate deviations from what would be considered an ideal cylindrical solution mining geometry in these caverns. This finding is in marked contrast to the directional solutioning found in the elliptical cross sectioned, sometimes winged, caverns of Big Hill. None of the persistent lineaments prevalent in Big Hill caverns are evident in West Hackberry caverns. Irregularities of the West Hackberry caverns are restricted to preferential solution formed pits and protuberances with moderate dimensions. In fact, the principal characteristic of West Hackberry caverns is the often large sections of smooth and cylindrical cavern wall. Differences in the cavern characteristics between West Hackberry and Big Hill suggest that the former dome is quite homogeneous, while the latter still retains strong remnants of the interbeds of the original bedded Louann salt. One possible explanation is that the source of the two domes, while both from the Louann mother salt, differs. While the source of the Big Hill dome is directly from the mother salt bed, it appears that the West Hackberry arises from a laterally extruded sill of the mother salt. Consequently, the amount of deformation, and hence, mixing of the salt and interbed material in the extruded sill is significantly greater than would be the case for the directly formed diapir. In West Hackberry, remnants of interbeds apparently no longer exist. An important aspect of the construction of the West Hackberry caverns is the evidence of an attempt to use a uniform solutioning construction practice. This uniformity involved the utilization of single well solutioning and

  10. Structures and Energetic Properties of Two New Salts Comprising the 5,5'-Azotetrazolate Dianion

    Directory of Open Access Journals (Sweden)

    Raik Deblitz

    2015-09-01

    Full Text Available Two new potentially energetic salts comprising the 5,5'-azotetrazolate dianion have been prepared and structurally characterized. The new azotetrazolates are tetraphenylphosphonium-5,5'-azotetrazolate (1 and 1H-1,2,4-triazole-1-carboxamidine-5,5'-azotetrazolate (2. The crystal structures of both compounds have been determined by single-crystal X-ray diffraction and their energetic properties have been tested. Due to its high nitrogen-content of 73.14%, compound 2 was found to be significantly impact-sensitive.

  11. Structural transition in aqueous lipid/bile salt [DPPC/NaDC] supramolecular aggregates: SANS and DLS study

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.A. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Janich, M.; Hildebrand, A. [Martin-Luther-University, Halle (Saale) (Germany); Strunz, P. [Berlin Neutron Scattering Center, HZB, Berlin (Germany); Neubert, R.H.H. [Martin-Luther-University, Halle (Saale) (Germany); Lombardo, D., E-mail: lombardo@me.cnr.it [CNR–IPCF, Istituto per i Processi Chimico Fisici – (Sez. Messina), I-98158, Messina (Italy)

    2013-10-16

    Highlights: • Self-assembly in model DPPC lipids and NaDC bile salt by SANS and DLS experiments. • Bile salt creates structural interference against cohesive tendency of DPPC bilayers. • NaDC steric interactions cause transition toward different supramolecular structures. - Abstract: Small angle neutron scattering (SANS) and dynamic light scattering (DLS) were used to study different aggregation states in sodium deoxycholate (NaDC)-phosphatidylcholine systems at T = 60 °C. Size and shape of the aggregates investigated as a function of the NaDC bile salt concentration (at the constant DPPC concentration of 6 mM) indicate a strong dependence of the size and morphology of the generated aggregates on the relative amount of NaDC bile salt. More specifically large occupied area of the bile salt induces a steric interaction which promotes the transition toward a variety of supramolecular structures ranging from ellipsoidal vesicles, ribbon-like structures, up to final spherical mixed micelles at the large amount of bile salt of 10 mM NaDC. The findings of the obtained results give important insight for understanding the formation of different topologies in aqueous lipid–bile salt mixtures as well as stimulate new routes for liposome reconstitution–solubilisation processes suitable for technological applications.

  12. Retrogressive harmonic motion as structural and stylistic characteristic of pop-rock music

    Science.gov (United States)

    Carter, Paul S.

    The central issue addressed in this dissertation is that of progressive and retrogressive harmonic motion as it is utilized in the repertoire of pop-rock music. I believe that analysis in these terms may prove to be a valuable tool for the understanding of the structure, style and perception of this music. Throughout my study of this music, various patterns of progressive and retrogressive harmonic motions within a piece reveal a kind of musical character about it, a character on which much of a work's style, organization and extramusical nature often depends. Several influential theorists, especially Jean-Phillipe Rameau, Hugo Riemann, and Arnold Schoenberg, have addressed the issues of functional harmony and the nature of the motion between chords of a tonal harmonic space. After assessing these views, I have found that it is possible to differentiate between two fundamental types of harmonic motions. This difference, one that I believe is instrumental in characterizing pop-rock music, is the basis for the analytical perspective I wish to embrace. After establishing a method of evaluating tonal harmonic root motions in these terms, I wish to examine a corpus of this music in order to discover what a characterization of its harmonic motion may reveal about each piece. Determining this harmonic character may help to establish structural and stylistic traits for that piece, its genre, composer, period, or even its sociological purpose. Conclusions may then be drawn regarding the role these patterns play in defining musical style traits of pop-rock. Partly as a tool for serving the study mentioned above I develop a graphical method of accounting for root motion I name the tonal "Space-Plot"; This apparatus allows the analyst to measure several facets about the harmonic motion of the music, and to see a wide scope of relations in and around a diatonic key.

  13. Methods and uncertainty estimations of 3-D structural modelling in crystalline rocks: a case study

    Science.gov (United States)

    Schneeberger, Raphael; de La Varga, Miguel; Egli, Daniel; Berger, Alfons; Kober, Florian; Wellmann, Florian; Herwegh, Marco

    2017-09-01

    Exhumed basement rocks are often dissected by faults, the latter controlling physical parameters such as rock strength, porosity, or permeability. Knowledge on the three-dimensional (3-D) geometry of the fault pattern and its continuation with depth is therefore of paramount importance for applied geology projects (e.g. tunnelling, nuclear waste disposal) in crystalline bedrock. The central Aar massif (Central Switzerland) serves as a study area where we investigate the 3-D geometry of the Alpine fault pattern by means of both surface (fieldwork and remote sensing) and underground ground (mapping of the Grimsel Test Site) information. The fault zone pattern consists of planar steep major faults (kilometre scale) interconnected with secondary relay faults (hectometre scale). Starting with surface data, we present a workflow for structural 3-D modelling of the primary faults based on a comparison of three extrapolation approaches based on (a) field data, (b) Delaunay triangulation, and (c) a best-fitting moment of inertia analysis. The quality of these surface-data-based 3-D models is then tested with respect to the fit of the predictions with the underground appearance of faults. All three extrapolation approaches result in a close fit ( > 10 %) when compared with underground rock laboratory mapping. Subsequently, we performed a statistical interpolation based on Bayesian inference in order to validate and further constrain the uncertainty of the extrapolation approaches. This comparison indicates that fieldwork at the surface is key for accurately constraining the geometry of the fault pattern and enabling a proper extrapolation of major faults towards depth. Considerable uncertainties, however, persist with respect to smaller-sized secondary structures because of their limited spatial extensions and unknown reoccurrence intervals.

  14. Methods and uncertainty estimations of 3-D structural modelling in crystalline rocks: a case study

    Directory of Open Access Journals (Sweden)

    R. Schneeberger

    2017-09-01

    Full Text Available Exhumed basement rocks are often dissected by faults, the latter controlling physical parameters such as rock strength, porosity, or permeability. Knowledge on the three-dimensional (3-D geometry of the fault pattern and its continuation with depth is therefore of paramount importance for applied geology projects (e.g. tunnelling, nuclear waste disposal in crystalline bedrock. The central Aar massif (Central Switzerland serves as a study area where we investigate the 3-D geometry of the Alpine fault pattern by means of both surface (fieldwork and remote sensing and underground ground (mapping of the Grimsel Test Site information. The fault zone pattern consists of planar steep major faults (kilometre scale interconnected with secondary relay faults (hectometre scale. Starting with surface data, we present a workflow for structural 3-D modelling of the primary faults based on a comparison of three extrapolation approaches based on (a field data, (b Delaunay triangulation, and (c a best-fitting moment of inertia analysis. The quality of these surface-data-based 3-D models is then tested with respect to the fit of the predictions with the underground appearance of faults. All three extrapolation approaches result in a close fit (> 10 % when compared with underground rock laboratory mapping. Subsequently, we performed a statistical interpolation based on Bayesian inference in order to validate and further constrain the uncertainty of the extrapolation approaches. This comparison indicates that fieldwork at the surface is key for accurately constraining the geometry of the fault pattern and enabling a proper extrapolation of major faults towards depth. Considerable uncertainties, however, persist with respect to smaller-sized secondary structures because of their limited spatial extensions and unknown reoccurrence intervals.

  15. Corrosion Behavior Of Potential Structural Materials For Use In Nitrate Salts Based Solar Thermal Power Plants

    Science.gov (United States)

    Summers, Kodi

    The increasing global demand for electricity is straining current resources of fossil fuels and placing increased pressure on the environment. The implementation of alternative sources of energy is paramount to satisfying global electricity demand while reducing reliance on fossil fuels and lessen the impact on the environment. Concentrated solar power (CSP) plants have the ability to harness solar energy at an efficiency not yet achieved by other technologies designed to convert solar energy to electricity. The problem of intermittency in power production seen with other renewable technologies can be virtually eliminated with the use of molten salt as a heat transfer fluid in CSP plants. Commercial and economic success of CSP plants requires operating at maximum efficiency and capacity which requires high temperature and material reliability. This study investigates the corrosion behavior of structural alloys and electrochemical testing in molten nitrate salts at three temperatures common to CSP plants. Corrosion behavior was evaluated using gravimetric and inductively-coupled plasma optical emission spectroscopy (ICP-OES) analysis. Surface morphology was studied using scanning electron microscopy. Surface oxide structure and chemistry was characterized using X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical behavior of candidate structural alloys Alloy 4130, austenitic stainless steel 316, and super-austenitic Incoloy 800H was evaluated using potentiodynamic polarization characteristics. It was observed that electrochemical evaluation of these candidate materials correlates well with the corrosion behavior observed from gravimetric and ICP-OES analysis. This study identifies that all three alloys exhibited acceptable corrosion in 300°C molten salt while elevated salt temperatures require the more corrosion resistant alloys, stainless steel 316 and 800H. Characterization of the sample

  16. Rock Valley Source Physics Experiment Preparation: Earthquake Relocation and Attenuation Structure Characterization

    Science.gov (United States)

    Pyle, M. L.; Walter, W. R.; Myers, S.; Pasyanos, M. E.; Smith, K. D.

    2012-12-01

    ensure that we have the best possible locations for the 1993 Rock Valley earthquake sequence, and current ongoing microseismicity in the region, we are using the new Bayesloc multiple-event location algorithm (Myers et al., 2007; 2009) to improve hypocentral locations. Bayesloc formulates the location problem as a hierarchy of the traveltime model with travel time corrections, an arrival time model including picking errors, and a prior model for each parameter. Since these events occur on the NNSS, we have the ability to test and fine-tune regional relocation parameters using known locations of previous nuclear tests. In addition, in order to ensure that any SPE explosion is large enough to be recorded at the same regional stations as the original earthquake sequence over a reasonable frequency range, we are performing a seismic amplitude tomography. The tomography uses NNSS earthquake seismicity to determine local and near regional P and S-wave attenuation structure, allowing us to better predict signal-to-noise values for a variety of possible SPE scenarios. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-571335

  17. Temperature- and pressure-dependent structural transformation of methane hydrates in salt environments

    Science.gov (United States)

    Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho

    2017-03-01

    Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.

  18. Experiment on Chloride Ion Content of Concrete Structure in Coastal Salt-fog Area

    Directory of Open Access Journals (Sweden)

    Nie Ming

    2016-01-01

    Full Text Available This paper chose the south-east coastal salt-fog area Shantou to carry out the experiment study on chloride ion content of concrete structure, through the chloride ion content field test on reinforced concrete structure in Shantou, respectively for the slat-fog atmosphere zone and the splash zone in marine environment, discuss the corrosion by chloride ion of long-time existing concrete structure.And then measure the chloride ion content of concrete cover in different depth, and determine the chloride ion diffusion model in different conditions concrete through comparative analysis.The result of study, can be used in directing the selection of design scheme for building in planning, and also it will help predict the corrosion time of reinforcement inside the concrete on different positions for existing structure.

  19. The Impact of Host Rock Geochemistry on Bacterial Community Structure in Oligotrophic Cave Environments.

    Directory of Open Access Journals (Sweden)

    Hazel A. Barton

    2007-07-01

    Full Text Available Despite extremely starved conditions, caves contain surprisingly diverse microbial communities. Our research is geared toward understanding what ecosystems drivers are responsible for this high diversity. To asses the effect of rock fabric and mineralogy, we carried out a comparative geomicrobiology study within Carlsbad Cavern, New Mexico, USA. Samples were collected from two different geologic locations within the cave: WF1 in the Massive Member of the Capitan Formation and sF88 in the calcareous siltstones of the Yates Formation. We examined the organic content at each location using liquid chromatography mass spectroscopy and analyzed microbial community structure using molecular phylogenetic analyses. In order to assess whether microbial activity was leading to changes in the bedrock at each location, the samples were also examined by petrology, X-ray diffraction (XRD and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX. Our results suggest that on the chemically complex Yates Formation (sF88, the microbial community was significantly more diverse than on the limestone surfaces of the Capitan (WF1, despite a higher total number of cells on the latter. Further, the broader diversity of bacterial species at sF88 reflected a larger range of potential metabolic capabilities, presumably due to opportunities to use ions within the rock as nutrients and for chemolithotrophic energy production. The use of these ions at sF88 is supported by the formation of a corrosion residue, presumably through microbial scavenging activities. Our results suggest that rock fabric and mineralogy may be an important driver of ecosystem function and should be carefully reviewed when carrying out microbial community analysis in cave environments.

  20. Monoclinic tridymite in clast-rich impact melt rock from the Chesapeake Bay impact structure

    Science.gov (United States)

    Jackson, John C.; Horton, J. Wright; Chou, I-Ming; Belkin, Harvey E.

    2011-01-01

    X-ray diffraction and Raman spectroscopy confirm a rare terrestrial occurrence of monoclinic tridymite in clast-rich impact melt rock from the Eyreville B drill core in the Chesapeake Bay impact structure. The monoclinic tridymite occurs with quartz paramorphs after tridymite and K-feldspar in a microcrystalline groundmass of devitrified glass and Fe-rich smectite. Electron-microprobe analyses revealed that the tridymite and quartz paramorphs after tridymite contain different amounts of chemical impurities. Inspection by SEM showed that the tridymite crystal surfaces are smooth, whereas the quartz paramorphs contain irregular tabular voids. These voids may represent microporosity formed by volume decrease in the presence of fluid during transformation from tridymite to quartz, or skeletal growth in the original tridymite. Cristobalite locally rims spherulites within the same drill core interval. The occurrences of tridymite and cristobalite appear to be restricted to the thickest clast-rich impact melt body in the core at 1402.02–1407.49 m depth. Their formation and preservation in an alkali-rich, high-silica melt rock suggest initially high temperatures followed by rapid cooling.

  1. Rock Slope Monitoring from 4D Time-Lapse Structure from Motion Analysis

    Science.gov (United States)

    Kromer, Ryan; Abellan, Antonio; Chyz, Alex; Hutchinson, Jean

    2017-04-01

    Structure from Motion (SfM) photogrammetry has become an important tool for studying earth surface processes because of its flexibility, ease of use, low cost and its capability of producing high quality 3-D surface models. A major benefit of SfM is that model accuracy is fit for purpose and surveys can be designed to meet a large range of spatial and temporal scales. In the Earth sciences, research in time-lapse SfM photogrammetry or videogrammetry is an area that is difficult to undertake due to complexities in acquiring, processing and managing large 4D datasets and represents an area with significant advancement potential (Eltner et al. 2016). In this study, we investigate the potential of 4D time-lapse SfM to monitor unstable rock slopes. We tested an array of statically mounted cameras collecting time-lapse photos of a limestone rock slope located along a highway in Canada. Our setup consisted of 8 DSLR cameras with 50 mm prime lenses spaced 2-3 m apart at a distance of 10 m from the slope. The portion of the rock slope monitored was 20 m wide and 6 m high. We collected data in four phases, each having 50 photographs taken simultaneously by each camera. The first phase of photographs was taken of the stable slope. In each successive phase, we gradually moved small, discrete blocks within the rock slope by 5-15 mm, simulating pre-failure deformation of rockfall. During the last phase we also removed discrete rock blocks, simulating rockfall. We used Agisoft Photoscan's 4D processing functionality and timeline tools to create 3D point clouds from the time-lapse photographs. These tools have the benefit of attaining better accuracy photo alignments as a greater number of photos are used. For change detection, we used the 4D filtering and calibration technique proposed by Kromer et al. (2015), which takes advantage of high degrees of spatial and temporal point redundancy to decrease measurement uncertainty. Preliminary results show that it is possible to attain

  2. An acoustic sensor for prediction of the structural stability of rock

    CSIR Research Space (South Africa)

    Brink, S

    2016-05-01

    Full Text Available . The rock fall risks in deep rock mining are related to the behaviour of the rock surrounding excavations under high confining pressures. This is a particular concern in South African gold mines, where tunnels and stopes are excavated at depths of up to 4000...

  3. The Folding and Fracturing of Rocks: A milestone publication in Structural Geology research

    Science.gov (United States)

    Lisle, Richard; Bastida, Fernando

    2017-04-01

    In the field of structural geology, the textbook written by John G Ramsay in 1967, reprinted in 2004 and translated into Spanish and Chinese, is the one that has made the greatest research impact. With citations exceeding 4000 (Google Scholar) it far surpasses books by other authors on the subject, with this figure only being approached by his later book Modern Structural Geology (Ramsay and Huber 1983). In this paper we consider the factors that account for the book's success despite the fact that it is a research-level text beyond the comfort zone of most undergraduates. We also take stock of other measures of the book's success; the way it influenced the direction subsequent research effort. We summarize the major advances in structural geology that were prompted by Ramsay's book. Finally we consider the book's legacy. Before the publication of the book in 1967 structural geology had been an activity that had concentrated almost exclusively on geological mapping aimed at establishing the geometrical configuration of rock units. In fact, Ramsay himself has produced beautiful examples of such maps. However, the book made us aware that the geometrical pattern is controlled by the spatial variation of material properties, the boundary conditions, the deformation environment and the temporal variation of stresses. With the arrival of the book Structural Geology came of age as a modern scientific discipline that employed a range of tools such as those of physics, maths and engineering as well as those of geology.

  4. Seismic wave velocity of rocks in the Oman ophiolite: constraints for petrological structure of oceanic crust

    Science.gov (United States)

    Saito, S.; Ishikawa, M.; Shibata, S.; Akizuki, R.; Arima, M.; Tatsumi, Y.; Arai, S.

    2010-12-01

    Evaluation of rock velocities and comparison with velocity profiles defined by seismic refraction experiments are a crucial approach for understanding the petrological structure of the crust. In this study, we calculated the seismic wave velocities of various types of rocks from the Oman ophiolite in order to constrain a petrological structure of the oceanic crust. Christensen & Smewing (1981, JGR) have reported experimental elastic velocities of rocks from the Oman ophiolite under oceanic crust-mantle conditions (6-430 MPa). However, in their relatively low-pressure experiments, internal pore-spaces might affect the velocity and resulted in lower values than the intrinsic velocity of sample. In this study we calculated the velocities of samples based on their modal proportions and chemical compositions of mineral constituents. Our calculated velocities represent the ‘pore-space-free’ intrinsic velocities of the sample. We calculated seismic velocities of rocks from the Oman ophiolite including pillow lavas, dolerites, plagiogranites, gabbros and peridotites at high-pressure-temperature conditions with an Excel macro (Hacker & Avers 2004, G-cubed). The minerals used for calculations for pillow lavas, dolerites and plagiogranites were Qtz, Pl, Prh, Pmp, Chl, Ep, Act, Hbl, Cpx and Mag. Pl, Hbl, Cpx, Opx and Ol were used for the calculations for gabbros and peridotites. Assuming thermal gradient of 20° C/km and pressure gradient of 25 MPa/km, the velocities were calculated in the ranges from the atmospheric pressure (0° C) to 200 MPa (160° C). The calculation yielded P-wave velocities (Vp) of 6.5-6.7 km/s for the pillow lavas, 6.6-6.8 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6.9-7.5 km/s for the gabbros and 8.1-8.2 km/s for the peridotites. On the other hand, experimental results reported by Christensen & Smewing (1981, JGR) were 4.5-5.9 km/s for the pillow lavas, 5.5-6.3 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6

  5. Demarcation of homogeneous structural domains within a rock mass based on joint orientation and trace length

    Science.gov (United States)

    Song, Shengyuan; Wang, Qing; Chen, Jianping; Cao, Chen; Li, Yanyan; Zhou, Xin

    2015-11-01

    This paper presents a new method for determining the structural domain boundaries within the rock mass. This new method is based on a statistical comparison of data from pairs of sample regions. The stereonet is divided into 100 windows with approximately equal areas. The poles of joints occurring in each corresponding window on the two projection plots of the regions being compared are then merged and arranged in ascending order with respect to their trace lengths. Finally, the Wald-Wolfowitz runs test is used to identify the homogeneity of structural populations by analyzing the joint sequence. Based on a significance level of 0.01, the homogeneity of structural populations collected from four adjacent adits at the Songta dam site is determined using the proposed method. The results show that the boundaries of structural domain change with the sizes of the sampling domains being compared. The initial sampling domains should be selected according to the engineering geological conditions of the studied area. In addition, the clear advantage of the proposed method is that both joint orientation and trace length are considered.

  6. Experimental studies the evolution of stress-strain state in structured rock specimens under uniaxial loading

    Science.gov (United States)

    Oparin, Viktor; Tsoy, Pavel; Usoltseva, Olga; Semenov, Vladimir

    2014-05-01

    The aim of this study was to analyze distribution and development of stress-stress state in structured rock specimens subject to uniaxial loading to failure. Specific attention was paid to possible oscillating motion of structural elements of the rock specimens under constraints (pre-set stresses at the boundaries of the specimens) and the kinetic energy fractals. The detailed studies into the micro-level stress-strain state distribution and propagation over acting faces of rock specimens subject to uniaxial loading until failure, using automated digital speckle photography analyzer ALMEC-tv, have shown that: • under uniaxial stiff loading of prismatic sandstone, marble and sylvinite specimens on the Instron-8802 servohydraulic testing machine at the mobile grip displacement rate 0.02-0.2 mm/min, at a certain level of stressing, low-frequency micro-deformation processes originate in the specimens due to slow (quasi-static) force; • the amplitude of that deformation-wave processes greatly depends on the micro-loading stage: — at the elastic deformation stage, under the specimen stress lower than half ultimate strength of the specimen, there are no oscillations of microstrains; —at the nonlinearly elastic deformation stage, under stress varied from 0.5 to 1 ultimate strength of the specimens, the amplitudes of microstrains grow, including the descending stage 3; the oscillation frequency f=0.5-4 Hz; —at the residual strength stage, the amplitudes of the microstrains drop abruptly (3-5 times) as against stages 2 and 3; • in the elements of the scanned specimen surface in the region with the incipient crack, the microstrain rate amplitudes are a few times higher than in the undamged surface region of the same specimen. Sometimes, deformation rate greatly grows with increase in the load. The authors have used the energy scanning function of the deformation-wave processes in processing experimental speckle-photography data on the surface of the test specimen

  7. Ecological structure and function in a restored versus natural salt marsh.

    Science.gov (United States)

    Rezek, Ryan J; Lebreton, Benoit; Sterba-Boatwright, Blair; Beseres Pollack, Jennifer

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions.

  8. Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    Science.gov (United States)

    Rizzi, Stephen A.; Cabell, Randolph H.; Allen, Albert R.

    2013-01-01

    The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket.

  9. Structure of the Western Gulf of Mexico Salt Canopy Surface Imaged by Regional 2D Multichannel Seismic Data

    Science.gov (United States)

    Sager, W. W.; Robla, V.; Emmet, P. A.

    2016-12-01

    The morphology of the continental slope of the northwestern Gulf of Mexico (GoM) shifts going from the smoother offshore Texas (TX) margin to the rugose central Louisiana (LA) offshore. This change is considered a reflection of the structure of mobile Jurassic salt residing within the margin sediment column. To test this hypothesis, the structure of the top of salt across the TX and western LA continental slopes has been imaged and compared to the bathymetry using a regional grid of 2D industry multichannel seismic data. The 2D data, provided by TGS, were analyzed using IHS Kingdom software. Prior studies, regional well data, and satellite gravity data were examined to support and constrain interpretations. Seafloor (SF) and top-of-salt (TOS) time picks from seismic profiles were gridded to make regional time-structure maps of these surfaces. Comparison of SF and TOS contours demonstrates the expected correlation. A closer inspection reveals that the preponderance of SF is coincident with the underlying highs and lows of the TOS and that the study area is characterized by a transition in salt morphology that corresponds to bathymetric expression. The western slope is dominated by large, shallow, circular, isolated salt bodies and the overlying seafloor is smooth with exception of large, circular high relief above nearly all of the interpreted salt structures. The TOS texture gradually changes going eastward where individual salt bodies increase in number and coalesce into large, shallow canopies of increasing rugosity. Again, the outline of the canopies, and many of the crests of the constitute salt bodies, are observable on the SF. Elongate salt structures dominate the north central and northeast study area, while a relatively continuous, highly rugged canopy spans the southern and outer margin of the slope. While some of the northern-most elongate bodies are less correlated with the SF, most are and the undulating relief of the canopy clearly translates to SF

  10. Crystal structure of the bis(cyclohexylammonium succinate succinic acid salt adduct

    Directory of Open Access Journals (Sweden)

    Modou Sarr

    2015-08-01

    Full Text Available The crystal structure of the title salt adduct, 2C6H14N+·C4H4O42−·C4H6O4, consists of two cyclohexylammonium cations, one succcinate dianion and one neutral succinic acid molecule. Succinate dianions and succinic acid molecules are self-assembled head-to-tail through O—H...O hydrogen bonds and adopt a syn–syn configuration, leading to a strand-like arrangement along [101]. The cyclohexylammonium cations have a chair conformation and act as multidentate hydrogen-bond donors linking adjacent strands through intermolecular N—H...O interactions to both the succinate and the succinic acid components. This results in two-dimensional supramolecular layered structures lying parallel to (010.

  11. Structural and dynamical aspects of alkylammonium salts of a silicodecatungstate as heterogeneous epoxidation catalysts.

    Science.gov (United States)

    Uchida, Sayaka; Kamata, Keigo; Ogasawara, Yoshiyuki; Fujita, Megumi; Mizuno, Noritaka

    2012-09-07

    The structural and dynamical aspects of alkylammonium salts of a silicodecatungstate [(CH(3))(4)N](4)[γ-SiW(10)O(34)(H(2)O)(2)] [C1], [(n-C(3)H(7))(4)N](4)[γ-SiW(10)O(34)(H(2)O)(2)] [C3], [(n-C(4)H(9))(4)N](4)[γ-SiW(10)O(34)(H(2)O)(2)] [C4], and [(n-C(5)H(11))(4)N](4)[γ-SiW(10)O(34)(H(2)O)(2)] [C5] were investigated. The results of sorption isotherms, XRD analyses, and solid-state NMR spectroscopy show that facile sorption of solvent molecules, flexibility of structures, and high mobility of alkylammonium cations are crucial to the uniform distribution of reactant and oxidant molecules throughout the bulk solid, which are related to the high catalytic activities for epoxidation of alkenes.

  12. Raman mapping in the elucidation of solid salt eutectic and near eutectic structures

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Kerridge, D. H.

    2002-01-01

    The distribution of the different components of solidified eutectic or near-eutectic salt mixtures (eutectics) was examined by use of Raman microscope mapping of the structures formed when these melts were slowly cooled. Seven binary and one ternary system were investigated. In most cases...... the component crystallized phases consisted of roughly rounded areas of about 0.5-5 mum across, the areas alternating in all directions across the sections. These three-dimensional structures may best be described by the terns 'conglomerate.' The size of these areas depended on the cooling rate...... and the composition. When unidirectional cooling was applied it was possible for the system (KCl-Na2SO4, 60:40 mol/mol) to observe lamellar arrangements of the component phases, in an arrangement closely similar to what is frequently found among metallic or ceramic eutectics. Each area, conglomerate or lamellar, did...

  13. Synthesis, characterization, and crystal structure of mercury(II) complex containing new phosphine oxide salt

    Science.gov (United States)

    Samiee, Sepideh; Kooti, Nadieh; Gable, Robert W.

    2017-02-01

    The reaction of new phosphonium-phosphine oxide salt [P(O)Ph2(CH2)2PPh2CH2C(O)C6H4NO2]Br (1) with mercury(II) iodide in a methanolic solution yielded [P(O)Ph2(CH2)2PPh2CH2C(O)C6H4NO2]2[Hg2I5Br](2). These two compounds were fully characterized by elemental analysis, IR, 1H, 31P, and 13C NMR spectra. Crystal and molecular structure of 2 has been determined by means of X-ray diffraction. In mercury compound, the phosphine oxide salt is found as a counter ion letting the mercury(II) ion to bound halides to all four coordination sites and to give dimermercurate(II) ions as the structure-constructing species. The neighboring [P(O)Ph2(CH2)2PPh2CH2C(O)C6H4NO2]2+cations are joined together by intramolecular Csbnd H⋯O hydrogen bonds to give a 1-D chain structure along the crystallographic b-axis. The [Hg2I5Br]2-anions act as cross-linkers between neighbouring strands extending the supramolecular structure into 2D layers in (110) planes as well as balances the charge of the complex. The significant effects of Csbnd H⋯X (Xdbnd O, Br and I) and π⋯π aromatic interactions play a major role in the crystal packing of compound 2.

  14. Synthesis, Structure, Surface and Antimicrobial Properties of New Oligomeric Quaternary Ammonium Salts with Aromatic Spacers

    Directory of Open Access Journals (Sweden)

    Bogumił Brycki

    2017-10-01

    Full Text Available New dimeric, trimeric and tetrameric quaternary ammonium salts were accomplished by reaction of tertiary alkyldimethyl amines with appropriate bromomethylbenzene derivatives. A series of new cationic surfactants contain different alkyl chain lengths (C4–C18, aromatic spacers and different numbers of quaternary nitrogen atoms. The structure of the products was confirmed by spectral analysis (FT-IR, 1H-NMR, 13C-NMR and 2D-NMR, mass spectroscopy (ESI-MS, elemental analysis, as well as PM5 semiempirical methods. Compound (21 was also analyzed using X-ray crystallography. Critical micelle concentration (CMC of 1,4-bis-[N-(1-alkyl-N,N-dimethylammoniummethyl]benzene dibromides (3–9 was determined to characterize the aggregation behavior. The antimicrobial properties of novel QACs (Quaternary Ammonium Salts were examined to set their minimal inhibitory concentration (MIC values against fungi Aspergillus niger, Candida albicans, Penicillium chrysogenum and bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa.

  15. Microbial community structure and diversity within hypersaline Keke Salt Lake environments.

    Science.gov (United States)

    Han, Rui; Zhang, Xin; Liu, Jing; Long, Qifu; Chen, Laisheng; Liu, Deli; Zhu, Derui

    2017-11-01

    Keke Salt Lake is located in the Qaidamu Basin of China. It is a unique magnesium sulfate-subtype hypersaline lake that exhibits a halite domain ecosystem, yet its microbial diversity has remained unstudied. Here, the microbial community structure and diversity was investigated via high-throughput sequencing of the V3-V5 regions of 16S rRNA genes. A high diversity of operational taxonomic units was detected for Bacteria and Archaea (734 and 747, respectively), comprising 21 phyla, 43 classes, and 201 genera of Bacteria and 4 phyla, 4 classes, and 39 genera of Archaea. Salt-saturated samples were dominated by the bacterial genera Bacillus (51.52%-58.35% relative abundance), Lactococcus (9.52%-10.51%), and Oceanobacillus (8.82%-9.88%) within the Firmicutes phylum (74.81%-80.99%), contrasting with other hypersaline lakes. The dominant Archaea belonged to the Halobacteriaceae family, and in particular, the genera (with an abundance of >10% of communities) Halonotius, Halorubellus, Halapricum, Halorubrum, and Natronomonas. Additionally, we report the presence of Nanohaloarchaeota and Woesearchaeota in Qinghai-Tibet Plateau lakes, which has not been previously documented. Total salinity (especially Mg 2+ , Cl - , Na + , and K + ) mostly correlated with taxonomic distribution across samples. These results expand our understanding of microbial resource utilization within hypersaline lakes and the potential adaptations of dominant microorganisms that allow them to inhabit such environments.

  16. Structural and chemical variations in phlogopite from lamproitic rocks of the Central Mediterranean region

    Science.gov (United States)

    Lepore, Giovanni O.; Bindi, Luca; Pedrazzi, Giuseppe; Conticelli, Sandro; Bonazzi, Paola

    2017-08-01

    Micas from mafic ultrapotassic rocks with lamproitic affinity from several localities of the Central Mediterranean region were studied through single-crystal X-ray diffraction (SC-XRD), electron microprobe analysis (EMPA) and Secondary Ion Mass Spectrometry (SIMS); Mössbauer Spectroscopy (MöS), when feasible, was also applied to minimise the number of unknown variables and uncertainties. Analysed lamproitic samples cover the most important Central Mediterranean type localities, from Plan d'Albard (Western Alps) to Sisco (Corsica), Montecatini Val di Cecina and Orciatico (Tuscany, Italy) and Torre Alfina (Northern Latium, Italy). The studied crystals show distinctive chemical and structural features; all of them belong to the phlogopite-annite join and crystallise in the 1M polytype, except for micas from Torre Alfina, where both 1M and 2M1 polytypes were found. Studied micas have variable but generally high F and Ti contents, with Mg/(Mg + Fe) ranging from 0.5 to 0.9; 2M1 crystals from Torre Alfina radically differ in chemical composition, showing high contents of Ti and Fe as well as of Al in both tetrahedra and octahedra, leading to distinctive structural distortions, especially in tetrahedral sites. SIMS data indicate that studied micas are generally dehydrogenated with OH contents ranging from 0.2 apfu (atoms per formula unit) for Orciatico and Torre Alfina to 1.4 for Plan d'Albard crystals; this feature is also testified by the length of the c parameter, which decreases with the loss of hydrogen and/or the increase of the F → OH substitution. Chemical and structural data suggest that the entry of high charge octahedral cations is mainly balanced by an oxy mechanism and, to a lesser extent, by a M3 +,4 +-Tschermak substitution. Our data confirm that Ti preferentially partitions into the M2 site and that different Ti and F contents, as well as different K/Al values, are both dependant upon fH2O and the composition of magma rather than controlled by P and T

  17. Comparison of wetland structural characteristics between created and natural salt marshes in southwest Louisiana, USA

    Science.gov (United States)

    Edwards, K.R.; Proffitt, C.E.

    2003-01-01

    The use of dredge material is a well-known technique for creating or restoring salt marshes that is expected to become more common along the Gulf of Mexico coast in the future. However, the effectiveness of this restoration method is still questioned. Wetland structural characteristics were compared between four created and three natural salt marshes in southwest Louisiana, USA. The created marshes, formed by the pumping of dredge material into formerly open water areas, represent a chronosequence, ranging in age from 3 to 19 years. Vegetation and soil structural factors were compared to determine whether the created marshes become more similar over time to the natural salt marshes. Vegetation surveys were conducted in 1997, 2000, and 2002 using the line-intercept technique. Site elevations were measured in 2000. Organic matter (OM) was measured in 1996 and 2002, while bulk density and soil particle-size distribution were determined in 2002 only. The natural marshes were dominated by Spartina alterniflora, as were the oldest created marshes; these marshes had the lowest mean site elevations ( 35 cm NGVD) and became dominated by high marsh (S. patens, Distichlis spicata) and shrub (Baccharis halimifolia, Iva frutescens) species. The higher elevation marsh seems to be following a different plant successional trajectory than the other marshes, indicating a relationship between marsh elevation and species composition. The soils in both the created and natural marshes contain high levels of clays (30-65 %), with sand comprising < 1 % of the soil distribution. OM was significantly greater and bulk density significantly lower in two of the natural marshes when compared to the created marshes. The oldest created marsh had significantly greater OM than the younger created marshes, but it may still take several decades before equivalency is reached with the natural marshes. Vegetation structural characteristics in the created marshes take only a few years to become similar

  18. Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure

    Directory of Open Access Journals (Sweden)

    Stephen Majoni

    2014-01-01

    Full Text Available Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs and hydroxy double salts (HDSs can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release in HDSs. Following intercalation and subsequent release of the isomers, it has been demonstrated that the nature and position of substituent groups on intercalated anions have profound effects on the rate and extent of release. The extent of release was correlated with the magnitude of dipole moments while the rate of reaction showed strong dependence on the extent of hydrogen bonding within the layers. The orthoisomer showed a more sustained and complete release as compared to the other isomers.

  19. Mixed sodium nickel-manganese sulfates: Crystal structure relationships between hydrates and anhydrous salts

    Energy Technology Data Exchange (ETDEWEB)

    Marinova, Delyana M.; Zhecheva, Ekaterina N.; Kukeva, Rositsa R.; Markov, Pavel V. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Nihtianova, Diana D. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Stoyanova, Radostina K., E-mail: radstoy@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2017-06-15

    The present contribution provides new structural and spectroscopic data on the formation of solid solutions between hydrated and dehydrated sulfate salts of sodium-nickel and sodium-manganese in a whole concentration range: Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}·yH{sub 2}O, 0≤ x≤1.0. Using powder XRD, electron paramagnetic resonance spectroscopy (EPR), IR and Raman spectroscopy it has been found that double sodium-nickel and sodium-manganese salts form solid solutions Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}·4H{sub 2}O with a blödite-type of structure within a broad concentration range of 0≤x≤0.49, while the manganese rich compositions Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}·2H{sub 2}O (0.97≤x≤1.0) crystallize in the kröhnkite-type of structure. The Ni-based blödites Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}·4H{sub 2}O dehydrate between 140 and 260 °C into anhydrous salts Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}, 0≤ x≤0.44, with a structure where Ni{sub 1−x}Mn{sub x}O{sub 6} octahedra are bridged into pairs by edge- and corner sharing SO{sub 4}{sup 2−} groups. Both TEM and EPR methods show that the Ni{sup 2+} and Mn{sup 2+} ions are homogenously distributed over three crystallographic positions of the large monoclinic cell. The dehydration of the kröhnkite phase Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}·2H{sub 2}O yields the alluaudite phase Na{sub 2+δ}Mn{sub 2-δ/2}(SO{sub 4}){sub 3}, where the Na-to-Mn ratio decreases and all Ni{sup 2+} dopants are released from the structure. The process of the dehydration is discussed in terms of structural aspects taking into account the distortion degree of the Ni,MnO{sub 6} and SO{sub 4} polyhedra. - Graphical abstract: Thermal dehydration of the blödite phase Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2}·4H{sub 2}O (0≤ x≤0.49) yields nickel-manganese sulfates Na{sub 2}Ni{sub 1−x}Mn{sub x}(SO{sub 4}){sub 2} (0≤ x≤0.44) with

  20. White Rock

    Science.gov (United States)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  1. Structure based classification for bile salt export pump (BSEP) inhibitors using comparative structural modeling of human BSEP

    Science.gov (United States)

    Jain, Sankalp; Grandits, Melanie; Richter, Lars; Ecker, Gerhard F.

    2017-06-01

    The bile salt export pump (BSEP) actively transports conjugated monovalent bile acids from the hepatocytes into the bile. This facilitates the formation of micelles and promotes digestion and absorption of dietary fat. Inhibition of BSEP leads to decreased bile flow and accumulation of cytotoxic bile salts in the liver. A number of compounds have been identified to interact with BSEP, which results in drug-induced cholestasis or liver injury. Therefore, in silico approaches for flagging compounds as potential BSEP inhibitors would be of high value in the early stage of the drug discovery pipeline. Up to now, due to the lack of a high-resolution X-ray structure of BSEP, in silico based identification of BSEP inhibitors focused on ligand-based approaches. In this study, we provide a homology model for BSEP, developed using the corrected mouse P-glycoprotein structure (PDB ID: 4M1M). Subsequently, the model was used for docking-based classification of a set of 1212 compounds (405 BSEP inhibitors, 807 non-inhibitors). Using the scoring function ChemScore, a prediction accuracy of 81% on the training set and 73% on two external test sets could be obtained. In addition, the applicability domain of the models was assessed based on Euclidean distance. Further, analysis of the protein-ligand interaction fingerprints revealed certain functional group-amino acid residue interactions that could play a key role for ligand binding. Though ligand-based models, due to their high speed and accuracy, remain the method of choice for classification of BSEP inhibitors, structure-assisted docking models demonstrate reasonably good prediction accuracies while additionally providing information about putative protein-ligand interactions.

  2. Numerical Study on Dynamic Response of a Horizontal Layered-Structure Rock Slope under a Normally Incident Sv Wave

    Directory of Open Access Journals (Sweden)

    Zhifa Zhan

    2017-07-01

    Full Text Available Several post-earthquake investigations have indicated that the slope structure plays a leading role in the stability of rock slopes under dynamic loads. In this paper, the dynamic response of a horizontal layered-structure rock slope under harmonic Sv wave is studied by making use of the Fast Lagrangian Analysis of Continua method (FLAC. The suitability of FLAC for studying wave transmission across rock joints is validated through comparison with analytical solutions. After parametric studies on Sv wave transmission across the horizontal layered-structure rock slope, it is found that the acceleration amplification coefficient η, which is defined as the ratio of the acceleration at the monitoring point to the value at the toe, wavily increases with an increase of the height along the slope surface. Meanwhile, the fluctuation weakens with normalized joint stiffness K increasing and enhances with normalized joint spacing ξ increasing. The acceleration amplification coefficient of the slope crest ηcrest does not monotonously increase with the increase of ξ, but decreases with the increase of K. Additionally, ηcrest is more sensitive to ξ compared to K. From the contour figures, it can also be found that the contour figures of η take on rhythm, and the effects of ξ on the acceleration amplification coefficient are more obvious compared to the effects on K.

  3. Assessment of natural radioactivity levels in rocks and their relationships with the geological structure of Johor state, Malaysia.

    Science.gov (United States)

    Alnour, I A; Wagiran, H; Ibrahim, N; Hamzah, S; Elias, M S; Laili, Z; Omar, M

    2014-01-01

    The distribution of natural radionuclides ((238)U, (232)Th and (40)K) and their radiological hazard effect in rocks collected from the state of Johor, Malaysia were determined by gamma spectroscopy using a high-purity germanium detector. The highest values of (238)U, (232)Th and (40)K activity concentrations (67±6, 85±7 and 722±18 Bg kg(-1), respectively) were observed in the granite rock. The lowest concentrations of (238)U and (232)Th (2±0.1 Bq kg(-1) for (238)U and 2±0.1 Bq kg(-1) for (232)Th) were observed in gabbro rock. The lowest concentration of (40)K (45±2 Bq kg(-1)) was detected in sandstone. The radium equivalent activity concentrations for all rock samples investigated were lower than the internationally accepted value of 370 Bq kg(-1). The highest value of radium equivalent in the present study (239±17 Bq kg(-1)) was recorded in the area of granite belonging to an acid intrusive rock geological structure. The absorbed dose rate was found to range from 4 to 112 nGy h(-1). The effective dose ranged from 5 to 138 μSv h(-1). The internal and external hazard index values were given in results lower than unity. The purpose of this study is to provide information related to radioactivity background levels and the effects of radiation on residents in the study area under investigation. Moreover, the relationships between the radioactivity levels in the rocks within the geological structure of the studied area are discussed.

  4. Rockfall source characterization at high rock walls in complex geological settings by photogrammetry, structural analysis and DFN techniques

    Science.gov (United States)

    Agliardi, Federico; Riva, Federico; Galletti, Laura; Zanchi, Andrea; Crosta, Giovanni B.

    2016-04-01

    Rockfall quantitative risk analysis in areas impended by high, subvertical cliffs remains a challenge, due to the difficult definition of potential rockfall sources, event magnitude scenarios and related probabilities. For this reasons, rockfall analyses traditionally focus on modelling the runout component of rockfall processes, whereas rock-fall source identification, mapping and characterization (block size distribution and susceptibility) are over-simplified in most practical applications, especially when structurally complex rock masses are involved. We integrated field and remote survey and rock mass modelling techniques to characterize rock masses and detect rockfall source in complex geo-structural settings. We focused on a test site located at Valmadrera, near Lecco (Southern Alps, Italy), where cliffs up to 600 m high impend on a narrow strip of Lake Como shore. The massive carbonates forming the cliff (Dolomia Principale Fm), normally characterized by brittle structural associations due to their high strength and stiffness, are here involved in an ENE-trending, S-verging kilometre-scale syncline. Brittle mechanisms associated to folding strongly controlled the nature of discontinuities (bedding slip, strike-slip faults, tensile fractures) and their attributes (spacing and size), as well as the spatial variability of bedding attitude and fracture intensity, with individual block sizes up to 15 m3. We carried out a high-resolution terrestrial photogrammetric survey from distances ranging from 1500 m (11 camera stations from the opposite lake shore, 265 pictures) to 150 m (28 camera stations along N-S directed boat routes, 200 pictures), using RTK GNSS measurements for camera station geo-referencing. Data processing by Structure-from-Motion techniques resulted in detailed long-range (1500 m) and medium-range (150 to 800 m) point clouds covering the entire slope with maximum surface point densities exceeding 50 pts/m2. Point clouds allowed a detailed

  5. The information content of high-frequency seismograms and the near-surface geologic structure of "hard rock" recording sites

    Science.gov (United States)

    Cranswick, E.

    1988-01-01

    Due to hardware developments in the last decade, the high-frequency end of the frequency band of seismic waves analyzed for source mechanisms has been extended into the audio-frequency range (>20 Hz). In principle, the short wavelengths corresponding to these frequencies can provide information about the details of seismic sources, but in fact, much of the "signal" is the site response of the nearsurface. Several examples of waveform data recorded at "hard rock" sites, which are generally assumed to have a "flat" transfer function, are presented to demonstrate the severe signal distortions, including fmax, produced by near-surface structures. Analysis of the geology of a number of sites indicates that the overall attenuation of high-frequency (>1 Hz) seismic waves is controlled by the whole-path-Q between source and receiver but the presence of distinct fmax site resonance peaks is controlled by the nature of the surface layer and the underlying near-surface structure. Models of vertical decoupling of the surface and nearsurface and horizontal decoupling of adjacent sites on hard rock outcrops are proposed and their behaviour is compared to the observations of hard rock site response. The upper bound to the frequency band of the seismic waves that contain significant source information which can be deconvolved from a site response or an array response is discussed in terms of fmax and the correlation of waveform distortion with the outcrop-scale geologic structure of hard rock sites. It is concluded that although the velocity structures of hard rock sites, unlike those of alluvium sites, allow some audio-frequency seismic energy to propagate to the surface, the resulting signals are a highly distorted, limited subset of the source spectra. ?? 1988 Birkha??user Verlag.

  6. Low-temperature structural effects in the (TMTSF)2PF6 and AsF6 Bechgaard salts

    Science.gov (United States)

    Foury-Leylekian, P.; Petit, S.; Mirebeau, I.; André, G.; de Souza, M.; Lang, M.; Ressouche, E.; Moradpour, A.; Pouget, J.-P.

    2013-07-01

    We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)2PF6 and (TMTSF)2AsF6 (TMTSF: tetramethyl-tetraselenafulvalene). The 4 K neutron-scattering structure refinement of the fully deuterated (TMTSF)2PF6-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)2PF6-H12 salt previously determined at the same temperature. Surprisingly, it is found that deuteration corresponds to the application of a negative pressure of 5×102 MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF6 and AsF6 salts. Two different thermal behaviors have been distinguished. Small Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies θE = 8.3 K and θE = 6.7 K for the PF6-D12 and AsF6-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large Bragg-angle measurements evidence an unexpected structural change around 55 K, which probably corresponds to the linkage of the anions to the methyl groups via the formation of F…D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)2PF6 is dominated by the librational motion of the PF6 units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: θE ≈ 50 K and θE = 76 K for the PF6-D12 and PF6-H12 salts, respectively.

  7. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Donald A. Goddard

    2005-04-15

    The principal research effort for the first six months of Year 2 of the project has been petroleum system characterization. Understanding the burial and thermal maturation histories of the strata in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas is important in petroleum system characterization. The underburden and overburden rocks in these basins and subbasins are a product of their rift-related geohistory. Petroleum source rock analysis and thermal maturation and hydrocarbon expulsion modeling indicate that an effective regional petroleum source rock in the onshore interior salt basins, the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin, was the Upper Jurassic Smackover lime mudstone. The Upper Cretaceous Tuscaloosa shale was an effective local petroleum source rock in the Mississippi Interior Salt Basin and a possible local source bed in the North Louisiana Salt Basin. Hydrocarbon generation and expulsion was initiated in the Early Cretaceous and continued into the Tertiary in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin. Hydrocarbon generation and expulsion was initiated in the Late Cretaceous and continued into the Tertiary in the Manila Subbasin and Conecuh Subbasin. Reservoir rocks include Jurassic, Cretaceous and Tertiary siliciclastic and carbonate strata. Seal rocks include Jurassic, Cretaceous and Tertiary anhydrite and shale beds. Petroleum traps include structural and combination traps.

  8. Effects of rock mineralogy and pore structure on stress-dependent permeability of shale samples.

    Science.gov (United States)

    Al Ismail, Maytham I; Zoback, Mark D

    2016-10-13

    We conducted pulse-decay permeability experiments on Utica and Permian shale samples to investigate the effect of rock mineralogy and pore structure on the transport mechanisms using a non-adsorbing gas (argon). The mineralogy of the shale samples varied from clay rich to calcite rich (i.e. clay poor). Our permeability measurements and scanning electron microscopy images revealed that the permeability of the shale samples whose pores resided in the kerogen positively correlated with organic content. Our results showed that the absolute value of permeability was not affected by the mineral composition of the shale samples. Additionally, our results indicated that clay content played a significant role in the stress-dependent permeability. For clay-rich samples, we observed higher pore throat compressibility, which led to higher permeability reduction at increasing effective stress than with calcite-rich samples. Our findings highlight the importance of considering permeability to be stress dependent to achieve more accurate reservoir simulations especially for clay-rich shale reservoirs.This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  9. Genetic diversity and structure in the Endangered Allen Cays Rock Iguana, Cyclura cychlura inornata

    Directory of Open Access Journals (Sweden)

    Andrea C. Aplasca

    2016-03-01

    Full Text Available The Endangered Allen Cays Rock Iguana (Cyclura cychlura inornata is endemic to the Allen Cays, a tiny cluster of islands in the Bahamas. Naturally occurring populations exist on only two cays (<4 ha each. However, populations of unknown origin were recently discovered on four additional cays. To investigate patterns of genetic variation among these populations, we analyzed nuclear and mitochondrial markers for 268 individuals. Analysis of three mitochondrial gene regions (2,328 bp and data for eight nuclear microsatellite loci indicated low genetic diversity overall. Estimates of effective population sizes based on multilocus genotypes were also extremely low. Despite low diversity, significant population structuring and variation in genetic diversity measures were detected among cays. Genetic data confirm the source population for an experimentally translocated population while raising concerns regarding other, unauthorized, translocations. Reduced heterozygosity is consistent with a documented historical population decline due to overharvest. This study provides the first range-wide genetic analysis of this subspecies. We suggest strategies to maximize genetic diversity during ongoing recovery including additional translocations to establish assurance populations and additional protective measures for the two remaining natural populations.

  10. Bis-phosphonium salts of pyridoxine: the relationship between structure and antibacterial activity.

    Science.gov (United States)

    Pugachev, Mikhail V; Shtyrlin, Nikita V; Sapozhnikov, Sergey V; Sysoeva, Lubov P; Iksanova, Alfiya G; Nikitina, Elena V; Musin, Rashid Z; Lodochnikova, Olga A; Berdnikov, Eugeny A; Shtyrlin, Yurii G

    2013-12-01

    A series of 23 novel bis-phosphonium salts based on pyridoxine were synthesized and their antibacterial activities were evaluated in vitro. All compounds were inactive against gram-negative bacteria and exhibited the structure-dependent activity against gram-positive bacteria. The antibacterial activity enhanced with the increase in chain length at acetal carbon atom in the order n-Pr>Et>Me. Further increasing of length and branching of alkyl chain leads to the reduction of antibacterial activity. Replacement of the phenyl substituents at the phosphorus atoms in 5,6-bis(triphenylphosphonio(methyl))-2,2,8-trimethyl-4H-[1,3]-dioxino[4,5-c]pyridine dichloride (compound 1) with n-butyl, m-tolyl or p-tolyl as well as chloride anions in the compound 1 with bromides (compound 14a) increased the activity against Staphylococcus aureus and Staphylococcus epidermidis up to 5 times (MICs=1-1.25 μg/ml). But in practically all cases chemical modifications of compound 1 led to the increase of its toxicity for HEK-293 cells. The only exception is compound 5,6-bis[tributylphosphonio(methyl)]-2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridine dichloride (10a) which demonstrated lower MIC values against S. aureus and S. epidermidis (1 μg/ml) and lower cytotoxicity on HEK-293 cells (CC(50)=200 μg/ml). Compound 10a had no significant mutagenic and genotoxic effects and was selected for further evaluation. It should be noted that all bis-phosphonium salt based on pyridoxine were much more toxic than vancomycin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Microbial Community Structure of Activated Sludge for Biosolubilization of Two Different Rock Phosphates.

    Science.gov (United States)

    Xiao, Chunqiao; Wu, Xiaoyan; Liu, Tingting; Xu, Guang; Chi, Ruan

    2017-06-01

    A microbial consortium was directly taken from activated sludge and was used to solubilize rock phosphates (RPs) in a lab-scale bioreactor in this study. Results showed that the microbial consortium could efficiently release soluble phosphorus (P) from the RPs, and during 30-day incubation, it grew well in the bioreactor and reduced the pH of the solutions. The biosolubilization process was also illustrated by the observation of scanning electron microscopy combined with an energy dispersive X-ray spectroscopy (SEM-EDX), which showed an obvious corrosion on the ore surfaces, and most elements were removed from the ore samples. The analysis of microbial community structure by Illumina 16S ribosomal RNA (rRNA) gene and 18S rRNA gene MiSeq sequencing reflected different microbial diversity and richness in the solutions added with different ore samples. A lower richness and diversity of bacteria but a higher richness and diversity of fungi occurred in the solution added with ore sample 1 compared to that of in the solution added with ore sample 2. Alphaproteobacteria and Saccharomycetes were the dominating bacterial and fungal group, respectively, both in the solutions added with ore samples 1 and 2 at the class level. However, their abundances in the solution added with ore sample 1 were obviously lower than that in the solution added with ore sample 2. This study provides new insights into our understanding of the microbial community structure in the biosolubilization of RPs by a microbial consortium directly taken from activated sludge.

  12. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  13. Crystal structure of indoline alkaloids kopsinilam, kopsinine, and the salts of the latter

    DEFF Research Database (Denmark)

    Adizov, Sh. M.; Tashkhodzhaev, B.; Kunafiev, R. Zh.

    2016-01-01

    Indoline alkaloids kopsinilam and kopsinine extracted from the plant Vinca erecta have been studied by X-ray crystallography; mono and double salts of the latter alkaloid also have been examined. Experimentally determined positions of Н atoms suggest sp3 hybridization of the indoline nitrogen atom...... N1 in the bases and the salts. Tetrahedral hybridization of the atom N1 in indoline alkaloids favors the formation of their double salts, what is unlikely for indole and indolinine alkaloids. In the halogen double salts there is an intramolecular Н bond between one of the protons of the NH2 group...

  14. Local structuring factors of invertebrate communities in ephemeral freshwater rock pools and the influence of more permanent water bodies in the region

    Science.gov (United States)

    Jocque, M.; Graham, T.; Brendonck, L.

    2007-01-01

    We used three isolated clusters of small ephemeral rock pools on a sandstone flat in Utah to test the importance of local structuring processes on aquatic invertebrate communities. In the three clusters we characterized all ephemeral rock pools (total: 27) for their morphometry, and monitored their water quality, hydrology and community assemblage during a full hydrocycle. In each cluster we also sampled a set of more permanent interconnected freshwater systems positioned in a wash, draining the water from each cluster of rock pools. This design allowed additional testing for the potential role of more permanent water bodies in the region as source populations for the active dispersers and the effect on the community structure in the rock pools. Species richness and community composition in the rock pools correlated with level of permanence and the ammonia concentration. The length of the rock pool inundation cycle shaped community structure, most probably by inhibiting colonization by some taxa (e.g. tadpoles and insect larvae) through developmental constraints. The gradient in ammonia concentrations probably reflects differences in primary production. The more permanent water bodies in each wash differed both environmentally and in community composition from the connected set of rock pools. A limited set of active dispersers was observed in the rock pools. Our findings indicate that aquatic invertebrate communities in the ephemeral rock pools are mainly structured through habitat permanence, possibly linked with biotic interactions and primary production. ?? 2007 Springer Science+Business Media B.V.

  15. Structural insights into the adaptation of proliferating cell nuclear antigen (PCNA) from Haloferax volcanii to a high-salt environment

    OpenAIRE

    Morgunova, Ekaterina; Gray, Fiona C.; MacNeill, Stuart A.; Ladenstein, Rudolf

    2009-01-01

    The crystal structure of PCNA from the halophilic archaeon H. volcanii reveals specific features of the charge distribution on the protein surface that reflect adaptation to a high-salt environment and suggests a different type of interaction with DNA in halophilic PCNAs.

  16. Examination of Below-Ground Structure and Soil Respiration Rates of Stable and Deteriorating Salt Marshes in Jamaica Bay (NY)

    Science.gov (United States)

    CAT scan imaging is currently being used to examine below-ground peat and root structure in cores collected from salt marshes of Jamaica Bay, part of the Gateway National Recreation Area (NY). CAT scans or Computer-Aided Tomography scans use X-ray equipment to produce multiple i...

  17. Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process : Linking Microbial Activity with Microbial Community Structure

    NARCIS (Netherlands)

    Bassin, J.P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; Van Loosdrecht, M.C.M.

    2011-01-01

    The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products

  18. The Innovative Structure Solution for Preventing Salt Intrusion and Retaining Freshwater In Mekong Delta VietNam

    NARCIS (Netherlands)

    Hong, S.T.; Vrijling, J.K.; Stive, M.J.F.

    2013-01-01

    In the Mekong Delta Vietnam, the construction of sluices with the purpose of retaining fresh water and preventing salt water intrusion potentially plays a very important role. However, the structures constructed in small rivers according to local or traditional technology revealed many disadvantages

  19. Fluid distribution in grain boundaries of natural fine-grained rock salt deformed at low differential stress (Qom Kuh salt fountain, central Iran): Implications for rheology and transport properties

    NARCIS (Netherlands)

    Desbois, G.; Urai, J.L.; Bresser, J.H.P. de

    2012-01-01

    We used a combination of broad ion beam cross-sectioning and cryogenic SEM to image polished surfaces and corresponding pairs of fractured grain boundaries in an investigation of grain boundary microstructures and fluid distribution in naturally deformed halite from the Qom Kuh salt glacier (central

  20. Forceful emplacement of the Eureka Valley-Joshua Flat-Beer Creek composite pluton into a structural basin in eastern California; internal structure and wall rock deformation

    Science.gov (United States)

    Morgan, Sven; Law, Richard; de Saint Blanquat, Michel

    2013-11-01

    Anisotropy of Magnetic Susceptibility parameters have been analyzed at 311 locations in the Eureka Valley-Joshua Flat-Beer Creek (EJB) pluton of eastern California. The large amount of data has allowed for the AMS parameters to be contoured using techniques that both reveal map-scale trends and emphasize small-scale differences. The contour maps suggest that magnetic susceptibility is dominantly controlled by composition of the magma but may also be affected by emplacement-related strain as the magma chamber inflated and forced the wall rocks outward. Pluton construction involved two major pulses of different composition magmas that were emplaced sequentially but with overlapping periods of crystallization. The magmas initially intruded as sill-like bodies into a structural basin. The magnetic foliation of the pluton cuts across internal magmatic contacts on the map scale and is parallel to local contacts between the pluton and surrounding metasedimentary wall rocks. The magnetic fabric is similar in orientation and symmetry to intense flattening strains recorded in the aureole rocks. The metasedimentary wall rocks have been shortened between 60 and 70% and this strain magnitude is approximately equal on the west, south, and east margins of the pluton. Strain in the wall rocks is dominantly flattening and concentrated into a narrow (1 km wide) inner aureole. Mapping of bedding/cleavage intersection lineations south of the pluton indicates that the magma made room for itself by translating the wall rocks outward and rotating the already inward dipping wall rocks of the structural basin to sub-vertical. Stretching of the inner aureole around an expanding magma chamber was responsible for the intense shortening. Limited data on the Marble Canyon pluton to the south of the EJB pluton indicates a very similar emplacement process.

  1. Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent α-glucosidase inhibitors.

    Science.gov (United States)

    Xie, Weijia; Tanabe, Genzoh; Akaki, Junji; Morikawa, Toshio; Ninomiya, Kiyofumi; Minematsu, Toshie; Yoshikawa, Masayuki; Wu, Xiaoming; Muraoka, Osamu

    2011-03-15

    Two hitherto missing members of sulfonium salts family in Salacia genus plants as a new class of α-glucosidase inhibitors, neoponkoranol (7) and neosalaprinol (8), were isolated from the water extracts, and their structures were unambiguously identified. For further SAR studies on this series of sulfonium salts, several epimers of 7 and 8 were synthesized, and their inhibitory activities against rat small intestinal α-glucosidases were evaluated. Among them, 3'-epimer of 7 was found most potent in this class of molecules, and revealed as potent as currently used antidiabetics, voglibose and acarbose. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Population structure of the burrowing crab Neohelice granulata (Brachyura, Varunidae in a southwestern Atlantic salt marsh

    Directory of Open Access Journals (Sweden)

    Sabrina Angeletti

    2015-07-01

    Full Text Available Neohelice granulata inhabits estuarine and protected coastal areas in temperate regions and is the most dominant decapod crustacean in the Bahía Blanca Estuary, Argentina. The population structure was studied during a year in a SW Atlantic salt marsh located in the Bahía Blanca Estuary. Crabs were sampled monthly from August 2010 to July 2011. The maximum observed density was 30 crabs m-2 in February and 70 burrows m-2 in May. The maximum carapace width (CW was 32 and 27.5 mm in males and females respectively. Medium size crabs were between 16 and 20 mm CW. Significantly smaller sized crabs were observed at the lower intertidal regions (P < 0.05. The sex ratio was favorable for males and was significantly different from the expected 1:1 (P < 0.05. The recruitment of unsexed juveniles crabs (CW <6.5 mm was observed throughout the year and the presence of ovigerous females from October to February indicated seasonal reproduction. The average size of ovigerous females was CW = 20.8 mm and the smallest ovigerous female measured was 16 mm CW. For the first time, the population structure of the most important macro-invertebrate is analyzed in the Bahía Blanca Estuary. This study may help to make decisions in the area, where anthropic action is progressing day by day.

  3. New Diethyl Ammonium Salt of Thiobarbituric Acid Derivative: Synthesis, Molecular Structure Investigations and Docking Studies

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2015-11-01

    Full Text Available The synthesis of the new diethyl ammonium salt of diethylammonium(E-5-(1,5-bis(4-fluorophenyl-3-oxopent-4-en-1-yl-1,3-diethyl-4,6-dioxo-2-thioxohexaydropyrimidin-5-ide 3 via a regioselective Michael addition of N,N-diethylthiobarbituric acid 1 to dienone 2 is described. In 3, the carboanion of the thiobarbituric moiety is stabilized by the strong intramolecular electron delocalization with the adjacent carbonyl groups and so the reaction proceeds without any cyclization. The molecular structure investigations of 3 were determined by single-crystal X-ray diffraction as well as DFT computations. The theoretically calculated (DFT/B3LYP geometry agrees well with the crystallographic data. The effect of fluorine replacement by chlorine atoms on the molecular structure aspects were investigated using DFT methods. Calculated electronic spectra showed a bathochromic shift of the π-π* transition when fluorine is replaced by chlorine. Charge decomposition analyses were performed to study possible interaction between the different fragments in the studied systems. Molecular docking simulations examining the inhibitory nature of the compound show an anti-diabetic activity with Pa (probability of activity value of 0.229.

  4. Ionic Conductivity and Assembled Structures of Imidazolium Salt-Based Block Copolymers with Thermoresponsive Segments

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2017-11-01

    Full Text Available Ionic liquid-based block copolymers composed of ionic (solubility tunable–nonionic (water-soluble and thermoresponsive segments were synthesized to explore the relationship between ionic conductivity and assembled structures. Three block copolymers, comprising poly(N-vinylimidazolium bromide (poly(NVI-Br as a hydrophilic poly(ionic liquid segment and thermoresponsive poly(N-isopropylacrylamide (poly(NIPAM, having different compositions, were initially prepared by RAFT polymerization. The anion-exchange reaction of the poly(NVI-Br in the block copolymers with lithium bis(trifluoromethanesulfonylimide (LiNTf2 proceeded selectively to afford amphiphilic block copolymers composed of hydrophobic poly(NVI-NTf2 and hydrophilic poly(NIPAM. Resulting poly(NVI-NTf2-b-poly(NIPAM exhibited ionic conductivities greater than 10−3 S/cm at 90 °C and 10−4 S/cm at 25 °C, which can be tuned by the comonomer composition and addition of a molten salt. Temperature-dependent ionic conductivity and assembled structures of these block copolymers were investigated, in terms of the comonomer composition, nature of counter anion and sample preparation procedure.

  5. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M., E-mail: luismiguel.varela@usc.es [Grupo de Nanomateriais e Materia Branda, Departamento de Física da Materia Condensada, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela (Spain); Cabeza, Oscar [Facultade de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, E-15008 A Coruña (Spain); Fedorov, Maxim [Department of Physics, Scottish University Physics Alliance (SUPA), University of Strathclyde, John Anderson Bldg., 107 Rottenrow East, Glasgow G4 0NG (United Kingdom); Lynden-Bell, Ruth M. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF{sub 6}]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO{sub 3}]{sup −} and [PF{sub 6}]{sup −} anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca{sup 2

  6. Major structural controls on the distribution of pre-Tertiary rocks, Nevada Test Site vicinity, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.C.

    1998-10-23

    The lateral and vertical distributions of Proterozoic and Paleozoic sedimentary rocks in southern Nevada are the combined products of original stratigraphic relationships and post-depositional faults and folds. This map compilation shows the distribution of the pre-Tertiary rocks in the region including and surrounding the Nevada Test Site. It is based on considerable new evidence from detailed geologic mapping, biostratigraphic control, sedimentological analysis, and a review of regional map relationships. Proterozoic and Paleozoic rocks of the region record paleogeographic transitions between continental shelf depositional environments on the east and deeper-water slope-facies depositional environments on the west. Middle Devonian and Mississippian sequences, in particular, show strong lateral facies variations caused by contemporaneous changes in the western margin of North America during the Antler orogeny. Sections of rock that were originally deposited in widely separated facies localities presently lie in close proximity. These spatial relationships chiefly result from major east- and southeast-directed thrusts that deformed the region in Permian or later time. Somewhat younger contractional structures are identified within two irregular zones that traverse the region. These folds and thrusts typically verge toward the west and northwest and overprint the relatively simple pattern of the older contractional terranes. Local structural complications are significant near these younger structures due to the opposing vergence and due to irregularities in the previously folded and faulted crustal section. Structural and stratigraphic discontinuities are identified on opposing sides of two north-trending fault zones in the central part of the compilation region north of Yucca Flat. The origin and significance of these zones are enigmatic because they are largely covered b Tertiary and younger deposits. These faults most likely results from significant lateral

  7. Exploring Salt Bridge Structures of Gas-Phase Protein Ions using Multiple Stages of Electron Transfer and Collision Induced Dissociation

    Science.gov (United States)

    Zhang, Zhe; Browne, Shaynah J.; Vachet, Richard W.

    2014-04-01

    The gas-phase structures of protein ions have been studied by electron transfer dissociation (ETD) and collision-induced dissociation (CID) after electrospraying these proteins from native-like solutions into a quadrupole ion trap mass spectrometer. Because ETD can break covalent bonds while minimally disrupting noncovalent interactions, we have investigated the ability of this dissociation technique together with CID to probe the sites of electrostatic interactions in gas-phase protein ions. By comparing spectra from ETD with spectra from ETD followed by CID, we find that several proteins, including ubiquitin, CRABP I, azurin, and β-2-microglobulin, appear to maintain many of the salt bridge contacts known to exist in solution. To support this conclusion, we also performed calculations to consider all possible salt bridge patterns for each protein, and we find that the native salt bridge pattern explains the experimental ETD data better than nearly all other possible salt bridge patterns. Overall, our data suggest that ETD and ETD/CID of native protein ions can provide some insight into approximate location of salt bridges in the gas phase.

  8. Population structure within an alpine archipelago: strong signature of past climate change in the New Zealand rock wren (Xenicus gilviventris).

    Science.gov (United States)

    Weston, K A; Robertson, B C

    2015-09-01

    Naturally subdivided populations such as those occupying high-altitude habitat patches of the 'alpine archipelago' can provide significant insight into past biogeographical change and serve as useful models for predicting future responses to anthropogenic climate change. Among New Zealand's alpine taxa, phylogenetic studies support two major radiations: the first correlating with geological forces (Pliocene uplift) and the second with climatic processes (Pleistocene glaciations). The rock wren (Xenicus gilviventris) is a threatened alpine passerine belonging to the endemic New Zealand wren family (Acanthisittidae). Rock wren constitute a widespread, naturally fragmented population, occurring in patches of suitable habitat over c. 900 m in altitude throughout the length of the South Island, New Zealand. We investigated the relative role of historical geological versus climatic processes in shaping the genetic structure of rock wren (N = 134) throughout their range. Using microsatellites combined with nuclear and mtDNA sequence data, we identify a deep north-south divergence in rock wren (3.7 ± 0.5% at cytochrome b) consistent with the glacial refugia hypothesis whereby populations were restricted in isolated refugia during the Pleistocene c. 2 Ma. This is the first study of an alpine vertebrate to test and provide strong evidence for the glacial refugia hypothesis as an explanation for the low endemicity central zone known as the biotic 'gap' in the South Island of New Zealand. © 2015 John Wiley & Sons Ltd.

  9. Effect of salt valency and concentration on structure and thermodynamic behavior of anionic polyelectrolyte Na+-polyethacrylate aqueous solution.

    Science.gov (United States)

    Sappidi, Praveenkumar; Natarajan, Upendra

    2016-11-01

    The intermolecular structure and solvation enthalpy of anionic polyelectrolyte atactic Na+-polyethacrylate (PEA) in aqueous solution, as a function of added salt concentration C s (dilute to concentrated) and valency (NaCl versus CaCl2), were investigated via molecular dynamics simulations with explicit-ion-solvent and atomistic polymer description. An increase in C s leads to a decrease in α, which stabilizes to a constant value beyond critical C s. A significant reduction in R g in the presence of CaCl2 salt was observed, due to ion bridging of PEA by Ca2+ ions, in agreement with results available in literature on other similar polycarboxylates. An increase in salt valency reduces the value of critical C s for the onset of stabilization of the overall size and shape of the polymer chain. The critical C s ratio for the divalent to monovalent salt case is in excellent agreement with results of Langevin dynamics studies on model systems available in the literature. PEA-water H-bond half-life increases with C s for CaCl2, but no appreciable effect is seen for NaCl. The hydration of PEA becomes stronger in the presence of divalent salt. The strength of H-bond interaction energy is greater for cations as compared to anions of the salt. The salt cation effect in displacing water molecules from the vicinity of PEA, with increase in C s, is greater for NaCl solution. The decrease in water coordination to PEA carboxylate groups, due to increased C s, is more pronounced in NaCl solution. The nature of the behavior of the solvation enthalpy of PEA and the type of intermolecular interactions contributing to it, is in agreement with experimental observations from the literature. The hydration enthalpy of PEA in divalent CaCl2 aqueous salt solution is more exothermic compared to monovalent NaCl salt solution, in agreement with experimental data. The solvation of PEA is thermodynamically more favorable in the case of CaCl2 solution. The exothermic solvation enthalpy, H

  10. The structure of salt bridges between Arg(+) and Glu(-) in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries.

    Science.gov (United States)

    Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander

    2015-06-07

    Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.

  11. Characterization of the Reverberation Chamber at the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    Science.gov (United States)

    Grosveld, Ferdinand W.

    2013-01-01

    In 2011 the noise generating capabilities in the reverberation chamber of the Structural Acoustic Loads and Transmission (SALT) facility at NASA Langley Research Center were enhanced with two fiberglass reinforced polyester resin exponential horns, each coupled to Wyle Acoustic Source WAS-3000 airstream modulators. This report describes the characterization of the reverberation chamber in terms of the background noise, diffusivity, sound pressure levels, the reverberation times and the related overall acoustic absorption in the empty chamber and with the acoustic horn(s) installed. The frequency range of interest includes the 80 Hz to 8000 Hz one-third octave bands. Reverberation time and sound pressure level measurements were conducted and standard deviations from the mean were computed. It was concluded that a diffuse field could be produced above the Schroeder frequency in the 400 Hz one-third octave band and higher for all applications. This frequency could be lowered by installing panel diffusers or moving vanes to improve the acoustic modal overlap in the chamber. In the 80 Hz to 400 Hz one-third octave bands a successful measurement will be dependent on the type of measurement, the test configuration, the source and microphone locations and the desired accuracy. It is recommended that qualification measurements endorsed in the International Standards be conducted for each particular application.

  12. Structural Characterization of Emeraldine-Salt Polyaniline/Gold Nanoparticles Complexes

    Directory of Open Access Journals (Sweden)

    E. A. Sanches

    2011-01-01

    Full Text Available Gold nanoparticles (Au NPs stabilized with polyamidoamine dendrimers (Au-PAMAM or sodium citrate (Au-CITRATE were synthesized and complexed with polyaniline emeraldine-salt form (ES-PANI. The complexes were characterized using structural and morphological techniques, including X-Ray Diffraction (XRD, Scanning Electron Microscopy (SEM, Zeta Potential analyses, and Fourier-Transformed Infrared spectroscopy (FTIR. When the Au-CITRATE NPs are added to the polymeric solution, the formation of a precipitate is clearly observed. The precipitate exhibited a different morphology from that found for ES-PANI and Au-CITRATE NPs, suggesting the formation of ES-PANI coating over the surface of Au-CITRATE NPs. On the other hand, when the Au-PAMAM NPs are incorporated into the ES-PANI solution, none interaction was observed, probably due to the repulsive electrostatic interactions, being the organization of the ES-PANI chains unaffected by the presence of the Au-PAMAM NPs.

  13. Features of Bayou Choctaw SPR caverns and internal structure of the salt dome.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Darrell E.

    2007-07-01

    The intent of this study is to examine the internal structure of the Bayou Choctaw salt dome utilizing the information obtained from graphical representations of sonar survey data of the internal cavern surfaces. Many of the Bayou Choctaw caverns have been abandoned. Some existing caverns were purchased by the Strategic Petroleum Reserve (SPR) program and have rather convoluted histories and complex cavern geometries. In fact, these caverns are typically poorly documented and are not particularly constructive to this study. Only two Bayou Choctaw caverns, 101 and 102, which were constructed using well-controlled solutioning methods, are well documented. One of these was constructed by the SPR for their use while the other was constructed and traded for another existing cavern. Consequently, compared to the SPR caverns of the West Hackberry and Big Hill domes, it is more difficult to obtain a general impression of the stratigraphy of the dome. Indeed, caverns of Bayou Choctaw show features significantly different than those encountered in the other two SPR facilities. In the number of abandoned caverns, and some of those existing caverns purchased by the SPR, extremely irregular solutioning has occurred. The two SPR constructed caverns suggest that some sections of the caverns may have undergone very regular solutioning to form uniform cylindrical shapes. Although it is not usually productive to speculate, some suggestions that point to the behavior of the Bayou Choctaw dome are examined. Also the primary differences in the Bayou Choctaw dome and the other SPR domes are noted.

  14. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Geotechnical Inst. Ltd., Bern (Switzerland); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Mazurek, M. [Univ. of Bern (Switzerland)

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features.

  15. Structure of Shroom domain 2 reveals a three-segmented coiled-coil required for dimerization, Rock binding, and apical constriction.

    Science.gov (United States)

    Mohan, Swarna; Rizaldy, Ryan; Das, Debamitra; Bauer, Robert J; Heroux, Annie; Trakselis, Michael A; Hildebrand, Jeffrey D; VanDemark, Andrew P

    2012-06-01

    Shroom (Shrm) proteins are essential regulators of cell shape and tissue morpho-logy during animal development that function by interacting directly with the coiled-coil region of Rho kinase (Rock). The Shrm-Rock interaction is sufficient to direct Rock subcellular localization and the subsequent assembly of contractile actomyosin networks in defined subcellular locales. However, it is unclear how the Shrm-Rock interaction is regulated at the molecular level. To begin investigating this issue, we present the structure of Shrm domain 2 (SD2), which mediates the interaction with Rock and is required for Shrm function. SD2 is a unique three-segmented dimer with internal symmetry, and we identify conserved residues on the surface and within the dimerization interface that are required for the Rock-Shrm interaction and Shrm activity in vivo. We further show that these residues are critical in both vertebrate and invertebrate Shroom proteins, indicating that the Shrm-Rock signaling module has been functionally and molecularly conserved. The structure and biochemical analysis of Shrm SD2 indicate that it is distinct from other Rock activators such as RhoA and establishes a new paradigm for the Rock-mediated assembly of contractile actomyosin networks.

  16. Pre-Messinian (Sub-Salt Source-Rock Potential on Back-Stop Basins of the Hellenic Trench System (Messara Basin, Central Crete, Greece

    Directory of Open Access Journals (Sweden)

    Maravelis A.

    2016-01-01

    Full Text Available The Greek part of the Mediterranean Ridge suggests, in terms of its hydrocarbon potential, further frontier exploration. The geological similarities between its prolific portions, within the Cyprus and Egyptian Exclusive Economic Zones, indicate possible recoverable natural gas reserves in its Greek portion. Nevertheless it lacks of systematic frontier exploration although direct petroleum indicators occur. Active mud volcanoes on the Mediterranean Ridge, still emitting concurrently gas and gas hydrates, have not been yet assessed even though are strongly related to hydrocarbon occurrence worldwide (Caspian Sea, Gulf of Mexico, Western African Basin, Trinidad-Tobago, the Nile Cone. For this reason, the source rock potential of the Late Miocene lacustrine deposits on a backstop basin of the Hellenic Trench System (Messara Basin, Crete, Greece, was studied. The obtained pyrolysis data indicate that the containing organic matter is present in sufficient abundance and with good enough quality to be regarded as potential source rocks. The observed type III kerogen suggests gas generation potential. Although indications of higher thermal evolution occur the studied rocks suggest low maturation levels. The biogenic gas seeps in the studied research well further demonstrate the regional gas generation potential.

  17. Ion aggregation in high salt solutions. II. Spectral graph analysis of water hydrogen-bonding network and ion aggregate structures

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2014-10-01

    Graph theory in mathematics and computer science is the study of graphs that are structures with pairwise connections between any objects. Here, the spectral graph theory and molecular dynamics simulation method are used to describe both morphological variation of ion aggregates in high salt solutions and ion effects on water hydrogen-bonding network structure. From the characteristic value analysis of the adjacency matrices that are graph theoretical representations of ion clusters, ion networks, and water H-bond structures, we obtained the ensemble average eigenvalue spectra revealing intricate connectivity and topology of ion aggregate structure that can be classified as either ion cluster or ion network. We further show that there is an isospectral relationship between the eigenvalue spectra of ion networks in high KSCN solutions and those of water H-bonding networks. This reveals the isomorphic relationship between water H-bond structure and ion-ion network structure in KSCN solution. On the other hand, the ion clusters formed in high NaCl solutions are shown to be graph-theoretically and morphologically different from the ion network structures in KSCN solutions. These observations support the bifurcation hypothesis on large ion aggregate growth mechanism via either ion cluster or ion network formation. We thus anticipate that the present spectral graph analyses of ion aggregate structures and their effects on water H-bonding network structures in high salt solutions can provide important information on the specific ion effects on water structures and possibly protein stability resulting from protein-water interactions.

  18. Ion aggregation in high salt solutions. II. Spectral graph analysis of water hydrogen-bonding network and ion aggregate structures.

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2014-10-21

    Graph theory in mathematics and computer science is the study of graphs that are structures with pairwise connections between any objects. Here, the spectral graph theory and molecular dynamics simulation method are used to describe both morphological variation of ion aggregates in high salt solutions and ion effects on water hydrogen-bonding network structure. From the characteristic value analysis of the adjacency matrices that are graph theoretical representations of ion clusters, ion networks, and water H-bond structures, we obtained the ensemble average eigenvalue spectra revealing intricate connectivity and topology of ion aggregate structure that can be classified as either ion cluster or ion network. We further show that there is an isospectral relationship between the eigenvalue spectra of ion networks in high KSCN solutions and those of water H-bonding networks. This reveals the isomorphic relationship between water H-bond structure and ion-ion network structure in KSCN solution. On the other hand, the ion clusters formed in high NaCl solutions are shown to be graph-theoretically and morphologically different from the ion network structures in KSCN solutions. These observations support the bifurcation hypothesis on large ion aggregate growth mechanism via either ion cluster or ion network formation. We thus anticipate that the present spectral graph analyses of ion aggregate structures and their effects on water H-bonding network structures in high salt solutions can provide important information on the specific ion effects on water structures and possibly protein stability resulting from protein-water interactions.

  19. Corrosion behavior of Ni-based structural materials for electrolytic reduction in lithium molten salt

    Science.gov (United States)

    Cho, Soo Haeng; Park, Sung Bin; Lee, Jong Hyeon; Hur, Jin Mok; Lee, Han Soo

    2011-05-01

    In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li 2O molten salt at 650 °C for 24-216 h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700 °C under an inert atmosphere. The melt was poured into a preheated metallic mold to prepare an as-cast alloy. The corrosion products and fine structures of the corroded specimens were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS), and X-ray diffraction (XRD). The corrosion products of as cast and heat treated low Si/high Ti alloys were Cr 2O 3, NiCr 2O 4, Ni, NiO, and (Al,Nb,Ti)O 2; those of as cast and heat treated high Si/low Ti alloys were Cr 2O 3, NiCr 2O 4, Ni, and NiO. The corrosion layers of as cast and heat treated low Si/high Ti alloys were continuous and dense. However, those of as cast and heat treated high Si/low Ti alloys were discontinuous and cracked. Heat treated low Si/high Ti alloy showed the highest corrosion resistance among the examined alloys. The superior corrosion resistance of the heat treated low Si/high Ti alloy was attributed to the addition of an appropriate amount of Si, and the metallurgical evaluations were performed systematically.

  20. Ion aggregation in high salt solutions. VII. The effect of cations on the structures of ion aggregates and water hydrogen-bonding network

    Science.gov (United States)

    Choi, Jun-Ho; Choi, Hyung Ran; Jeon, Jonggu; Cho, Minhaeng

    2017-10-01

    Ions in high salt solutions have a strong propensity to form polydisperse ion aggregates with broad size and shape distributions. In a series of previous comparative investigations using femtosecond IR pump-probe spectroscopy, molecular dynamics simulation, and graph theoretical analysis, we have shown that there exists a morphological difference in the structures of ion aggregates formed in various salt solutions. As salt concentration increases, the ions in high salt solutions form either cluster-like structures excluding water molecules or network-like structures entwined with water hydrogen-bonding networks. Interestingly, such morphological characteristics of the ion aggregates have been found to be in correlation with the solubility limits of salts. An important question that still remains unexplored is why certain salts with different cations have notably different solubility limits in water. Here, carrying out a series of molecular dynamics simulations of aqueous salt solutions and analyzing the distributions and connectivity patterns of ion aggregates with a spectral graph analysis method, we establish the relationship between the salt solubility and the ion aggregate morphology with a special emphasis on the cationic effects on water structures and ion aggregation. We anticipate that the understanding of large scale ion aggregate structures revealed in this study will be critical for elucidating the specific ion effects on the solubility and conformational stability of co-solute molecules such as proteins in water.

  1. Permeability to brine of crushed salt rock for waste isolation, considering long-term pressure variation of overlying strata and dissolution processes. Final report; Durchlaessigkeitsverhalten von Steinsalzversatz gegenueber Laugen unter Beruecksichtigung von zeitlich veraenderlichen Ueberlagerungsdruecken und Loesungsvorgaengen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, H. [Battelle Ingenieurtechnik GmbH, Eschborn (Germany); Conen, O. [Technische Univ. Darmstadt (Germany); Haefner, F.; Bruck, J. v. der [Technische Univ. Bergakademie Freiberg (Germany)

    1999-07-01

    It cannot be excluded that there will be ingress of brines to underground isolation plants for nuclear and chemical toxic wastes. The transport mechanisms in the waste repository are much determined by the perviousness of the backfilling and the sealing material used after waste emplacement in salt rock mine shafts. The critical quantity is the permeability, both for inflow of brine into the bedded waste areas, and for contaminated brine squeeze-out mechanisms. The project research work was to establish the mass transfer parameters for calculating the transport mechanisms in backfilled and sealed shafts. Using near-reality simulation of conditions, the time-dependent influence of pressure variations of overlying strata, humidity and salt/brine interactions on the permeability was examined and quantified. (orig./CB) [German] In Endlagern fuer nukleare und chemotoxische Abfaelle im Salinar kann der Zutritt von Laugen nicht prinzipiell ausgeschlossen werden. Die Transportvorgaenge innerhalb des Endlagers werden wesentlich von der Durchlaessigkeit der Versatzmaterialien und der Verschluesse bestimmt. Die bestimmende Groesse, sowohl fuer den Laugenzufluss in die Einlagerungsbereiche als auch fuer das Auspressen kontaminierter Lauge aus dem Endlager, ist dabei die Permeabilitaet. Ziel der hier vorgestellten Arbeiten war es, Stofftransportparameter fuer die Berechnung von Ausbreitungsvorgaengen in den verfuellten Bereichen eines salinaren Endlagers bereitzustellen. Unter Simulation realitaetsnaher Bedingungen wurde der Einfluss von zeitabhaengigem Ueberlagerungsdruck (Gebirgsdruck), Feuchte und die Wechselwirkung von Salz/Lauge auf das Durchlaessigkeitsverhalten untersucht und quantifiziert. (orig.)

  2. Clast size distribution and quantitative petrography of shocked and unshocked rocks from the El'gygytgyn impact structure

    Science.gov (United States)

    Pittarello, Lidia; Koeberl, Christian

    2013-07-01

    A variety of quantitative petrographic methods, such as the study of clast size distribution (CSD), have been used in the study of melt rocks and have, for example, led to validation of the melting origin of pseudotachylites in paleoseismic faults, the estimate of the energy involved in melting and crushing processes, the distinction between seismic and aseismic faults, and understanding the crystallization process in volcanic rocks. Recently, quantitative petrography was applied to distinguish impact melts from pristine mare basalts on the Moon. Here, we apply this approach to impact lithologies formed in a volcanic target. The El'gygytgyn structure, an 18 km-diameter and 3.58 Ma old impact crater in north-eastern Chukotka, Arctic Russia, represents the only known impact crater on Earth mainly excavated in siliceous volcanic rocks. The structure was recently drilled in the framework of an ICDP project, providing fresh samples of suevite and other impact breccias, which can be compared with samples from the unshocked target. As the target is mostly composed of rhyolitic-dacitic ignimbrites and tuffs, impact melt clasts are almost indistinguishable from the unshocked volcanic clasts in the absence of shock evidence. We show here that geometric characterization provides a reproducible technique for quantitative description of impact lithologies. Although the studied suevite reveals a high local variability in the evaluated geometric parameters, an overall homogenization of these parameters occurs. Furthermore, quantitative petrography allows the classification of unshocked to slightly shocked volcanic clasts included in the suevite.

  3. Salt ingestion caves.

    Directory of Open Access Journals (Sweden)

    Lundquist Charles A.

    2006-01-01

    Full Text Available Large vertebrate herbivores, when they find a salt-bearing layer of rock, say in a cliff face, can produce sizable voids where, overgenerations, they have removed and consumed salty rock. The cavities formed by this natural animal process constitute a uniqueclass of caves that can be called salt ingestion caves. Several examples of such caves are described in various publications. Anexample in Mississippi U.S.A., Rock House Cave, was visited by the authors in 2000. It seems to have been formed by deer orbison. Perhaps the most spectacular example is Kitum Cave in Kenya. This cave has been excavated to a length over 100 metersby elephants. An ancient example is La Cueva del Milodon in Chile, which is reported to have been excavated by the now extinctmilodon, a giant ground sloth. Still other possible examples can be cited. This class of caves deserves a careful definition. First, thecavity in rock should meet the size and other conventions of the locally accepted definition of a cave. Of course this requirement differsin detail from country to country, particularly in the matter of size. The intent is to respect the local conventions. The characteristicthat human entry is possible is judged to be a crucial property of any recognized cave definition. Second, the cavity should besignificantly the result of vertebrate animal consumption of salt-bearing rock. The defining process is that rock removed to form thecave is carried away in the digestive track of an animal. While sodium salts are expected to be the norm, other salts for which thereis animal hunger are acceptable. Also some other speleogenesis process, such as solution, should not be excluded as long as it issecondary in formation of a cave in question.

  4. Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaum, Ch.; Bossart, P. [Federal Office of Topography swisstopo, Wabern (Switzerland); Amann, F. [Swiss Federal Institute of Technology Zuerich, Zuerich (Switzerland); Aubourg, Ch. [Laboratoire des fluides complexes et leurs reservoirs, Centre National de la Recherche Scientitfique CNRS, Universite de Pau, Pau (France)

    2011-09-15

    Excavated in the Opalinus Clay formation, the Mont Terri underground rock laboratory in the Jura Mountains of NW Switzerland is an important international test site for researching argillaceous formations, particularly in the context of deep geological disposal of radioactive waste. The rock laboratory is intersected by naturally formed tectonic structures, as well as artificial fractures primarily formed as a consequence of tunnel excavation and the associated stress redistribution. The description and characterisation of tectonic and artificial structures is, in many cases, of key importance for interpreting the results of the various in situ experiments conducted in the rock laboratory. Systematic small-scale mapping of the tunnel walls and floor, and adjacent niches, provides basic information about the geometry and the kinematics of the geological fractures intersecting the underground laboratory. A compilation of all tectonic structures identified is presented in this paper. The underground laboratory is located in the backlimb of the Mont Terri anticline, a NNW-vergent imbricate fault-bend fold, which is characterised by a pronounced along-strike asymmetry resulting from variously oriented inherited faults. The total shortening accommodated by this structure was estimated by mass (area) balancing to be approximately 2.1 km. The Mont Terri area is significantly affected by N- to NNE-striking normal faults of the Eo-Oligocene Rhine-Bresse transfer zone and by ENE-striking faults of Late Variscan age. Depending on their orientation with respect to the transport direction towards the NNW, these faults served as oblique and frontal ramps during the subsequent Jura thrusting in the Late Miocene. The various fault systems identified in the underground rock laboratory clearly correlate with the regional-scale structures. In addition to classical structural analysis, the anisotropy of magnetic susceptibility was measured to determine the magnetic fabric and strain

  5. TOWARDS A RATIONAL DESIGN OF RESOLVING AGENTS .3. STRUCTURAL STUDY OF 2 PAIRS OF DIASTEREOMERIC SALTS OF EPHEDRINE AND A CYCLIC PHOSPHORIC-ACID

    NARCIS (Netherlands)

    LEUSEN, FJJ; SLOT, HJB; NOORDIK, JH; VANDERHAEST, AD; WYNBERG, H; BRUGGINK, A

    The crystal structures of two pairs of diastereomeric salts consisting of ephedrine and a cyclic phosphoric acid were analyzed in detail. One pair (R = H; Figure 1) shows no difference in solubility, as reflected in identical non-bonded interaction patterns in the two salts. The other pair (R = Cl;

  6. The influence of raw material, added emulsifying salt and spray drying on cheese powder structure and hydration properties

    DEFF Research Database (Denmark)

    Felix da Silva, Denise; Larsen, Flemming Hofmann; Hougaard, Anni Bygvrå

    2017-01-01

    The present work has evaluated how raw material, addition of emulsifying salts (ES) and drying technology affect particle characteristics, structure, and hydration of cheese powders. In this context the spray drying technology induced the strongest effect on morphology and swelling of cheese powder...... particles showed enhanced swelling but unchanged hydration properties compared with non-aggregated powder. Rheological measurements indicated the presence of a stable and elastic network after hydration....

  7. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-01

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K+ and SCN- ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  8. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network.

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-28

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K(+) and SCN(-) ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  9. Mechanical performance experiments on rock and cement, casing residual stress evaluation in the thermal recovery well based on thermal-structure coupling

    National Research Council Canada - National Science Library

    Chen, Yong; Peng, Xu; Yu, Hao

    2017-01-01

    .... In this paper, mechanical performance experiments on rock and cement are carried out first, and then a finite element mechanical model of thermal recovery wellbore based on thermal-structure coupling is established...

  10. Supracrustal rocks in the Kuovila area, Southern Finland: structural evolution, geochemical characteristics and the age of volcanism

    Directory of Open Access Journals (Sweden)

    Pietari Skyttä

    2005-01-01

    Full Text Available The supracrustal rocks of the Kuovila area in the Palaeoproterozoic Svecofennian Uusimaa Belt, southern Finland, consist mainly of volcaniclastic rocks associated with banded iron formations (BIFs and marbles. Small ZnS and PbS mineralizations are occasionally located within the marbles. Some primary features are well preserved in the sedimentary and volcanic rocks, including lamination in tuffites and banded iron formations. Geochemical results show that the volcanism was bimodal and it mainly had volcanic arc affinity. Specific geochemical indicators suggesting a volcanic arc origin for the Kuovila volcanic rocks include: 1 Enrichment of LILE over the HFSE elements and 2 Distinctly low Nb and Ta contents in relation to Th, Ce and LREE. Geochemistry of the Kuovila area volcanic rocks is very similar to those of the Orijärvi and Kisko formations, located ~15 km NE of Kuovila. Felsic tuff in the Kuovila area was dated at 1891±4 Ma by the U-Pb system on zircons. Consequently volcanism was contemporaneous with magmatism in the adjacent Orijärvi area, thus representing the earliest identified volcanic stage in the southern Svecofennian Uusimaa Belt. Early deformation structures within the Kuovila area are suggested to relate to low-metamorphic or localized low-angle thrusting during D1. F1 folds were recumbent and the S1 cleavages are generally weak. Thrusting was followed by approximately N–S contraction with upright, peak-metamorphic F2 folding overprinting D1 structures and defining the Kuovila synform. Two separate intrusive phases include a synvolcanic granodiorite-diorite-gabbro association and a weakly S2-foliated syn-D2 granodiorite. Anatectic granites and associated migmatizing veins are absent, therefore suggesting that D2 pre-dates the ~1.84–1.82 Ga metamorphic event in the Southern Svecofennian Arc Complex (SSAC. D2 structuresin the Kuovila area are suggested to correlate with the early structures with associated axial planar

  11. Measuring lifting forces in rock climbing: effect of hold size and fingertip structure.

    Science.gov (United States)

    Bourne, Roger; Halaki, Mark; Vanwanseele, Benedicte; Clarke, Jillian

    2011-02-01

    This study investigates the hypothesis that shallow edge lifting force in high-level rock climbers is more strongly related to fingertip soft tissue anatomy than to absolute strength or strength to body mass ratio. Fifteen experienced climbers performed repeated maximal single hand lifting exercises on rectangular sandstone edges of depth 2.8, 4.3, 5.8, 7.3, and 12.5 mm while standing on a force measurement platform. Fingertip soft tissue dimensions were assessed by ultrasound imaging. Shallow edge (2.8 and 4.3 mm) lifting force, in newtons or body mass normalized, was uncorrelated with deep edge (12.5 mm) lifting force (r rock contact area on very shallow edges, and thus increase the limit of force production. The study also confirmed previous assumptions of left/right force symmetry in climbers.

  12. Resedimented salt deposits

    Energy Technology Data Exchange (ETDEWEB)

    Slaczka, A.; Kolasa, K. (Jagiellonian Univ., Krakow (Poland))

    1988-08-01

    Carparthian foredeep's Wieliczka salt mine, unique gravity deposits were lately distinguished. They are mainly built of salt particles and blocks with a small admixture of fragments of Miocene marls and Carpathian rocks, deposited on precipitated salt. The pattern of sediment distribution is similar to a submarine fan. Gravels are dominant in the upper part and sands in lower levels, creating a series of lobes. Coarse-grained deposits are represented by disorganized, self-supported conglomerates passing into matrix-supported ones, locally with gradation, and pebbly sandstones consisting of salt grains and scattered boulder-size clasts. The latter may show in the upper part of a single bed as indistinct cross-bedding and parallel lamination. These sediments are interpreted as debris-flow and high-density turbidity current deposits. Salt sandstones (saltstones) which build a lower part of the fan often show Bouma sequences and are interpreted as turbidity-current deposits. The fan deposits are covered by a thick series of debrites (olistostromes) which consist of clay matrix with salt grains and boulders. The latter as represented by huge (up to 100,000 m{sup 3}) salt blocks, fragments of Miocene marls and Carpathian rocks. These salt debrites represent slumps and debris-flow deposits. The material for resedimented deposits was derived from the southern part of the salt basin and from the adjacent, advancing Carpathian orogen. The authors believe the distinct coarsening-upward sequence of the series is the result of progressive intensification of tectonic movements with paroxysm during the sedimentation of salt debrites (about 15 Ma).

  13. Two dialkylammonium salts of 2-amino-4-nitrobenzoic acid: crystal structures and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    James L. Wardell

    2016-12-01

    Full Text Available The crystal structures of two ammonium salts of 2-amino-4-nitrobenzoic acid are described, namely dimethylazanium 2-amino-4-nitrobenzoate, C2H8N+·C7H5N2O4−, (I, and dibutylazanium 2-amino-4-nitrobenzoate, C8H20N+·C7H5N2O4−, (II. The asymmetric unit of (I comprises a single cation and a single anion. In the anion, small twists are noted for the carboxylate and nitro groups from the ring to which they are connected, as indicated by the dihedral angles of 11.45 (13 and 3.71 (15°, respectively; the dihedral angle between the substituents is 7.9 (2°. The asymmetric unit of (II comprises two independent pairs of cations and anions. In the cations, different conformations are noted in the side chains in that three chains have an all-trans [(+-antiperiplanar] conformation, while one has a distinctive kink resulting in a (+-synclinal conformation. The anions, again, exhibit twists with the dihedral angles between the carboxylate and nitro groups and the ring being 12.73 (6 and 4.30 (10°, respectively, for the first anion and 8.1 (4 and 12.6 (3°, respectively, for the second. The difference between anions in (I and (II is that in the anions of (II, the terminal groups are conrotatory, forming dihedral angles of 17.02 (8 and 19.0 (5°, respectively. In each independent anion of (I and (II, an intramolecular amino-N—H...O(carboxylate hydrogen bond is formed. In the crystal of (I, anions are linked into a jagged supramolecular chain by charge-assisted amine-N—H...O(carboxylate hydrogen bonds and these are connected into layers via charge-assisted ammonium-N—H...O(carboxylate hydrogen bonds. The resulting layers stack along the a axis, being connected by nitro-N—O...π(arene and methyl-C—H...O(nitro interactions. In the crystal of (II, the anions are connected into four-ion aggregates by charge-assisted amino-N—H...O(carboxylate hydrogen bonding. The formation of ammonium-N—H...O(carboxylate hydrogen bonds, involving

  14. Evolution of crystalline target rocks and impactites in the chesapeake bay impact structure, ICDP-USGS eyreville B core

    Science.gov (United States)

    Horton, J. Wright; Kunk, M.J.; Belkin, H.E.; Aleinikoff, J.N.; Jackson, J.C.; Chou, I.-Ming

    2009-01-01

    The 1766-m-deep Eyreville B core from the late Eocene Chesapeake Bay impact structure includes, in ascending order, a lower basement-derived section of schist and pegmatitic granite with impact breccia dikes, polymict impact breccias, and cataclas tic gneiss blocks overlain by suevites and clast-rich impact melt rocks, sand with an amphibolite block and lithic boulders, and a 275-m-thick granite slab overlain by crater-fill sediments and postimpact strata. Graphite-rich cataclasite marks a detachment fault atop the lower basement-derived section. Overlying impactites consist mainly of basement-derived clasts and impact melt particles, and coastalplain sediment clasts are underrepresented. Shocked quartz is common, and coesite and reidite are confirmed by Raman spectra. Silicate glasses have textures indicating immiscible melts at quench, and they are partly altered to smectite. Chrome spinel, baddeleyite, and corundum in silicate glass indicate high-temperature crystallization under silica undersaturation. Clast-rich impact melt rocks contain ??- cristobalite and monoclinic tridymite. The impactites record an upward transition from slumped ground surge to melt-rich fallback from the ejecta plume. Basement-derived rocks include amphibolite-facies schists, greenschist(?)-facies quartz-feldspar gneiss blocks and subgreenschist-facies shale and siltstone clasts in polymict impact breccias, the amphibolite block, and the granite slab. The granite slab, underlying sand, and amphibolite block represent rock avalanches from inward collapse of unshocked bedrock around the transient crater rim. Gneissic and massive granites in the slab yield U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon dates of 615 ?? 7 Ma and 254 ?? 3 Ma, respectively. Postimpact heating was 7lt;~350 ??C in the lower basementderived section based on undisturbed 40Ar/ 39Ar plateau ages of muscovite and sand above the suevite based on 40Ar/39Ar age spectra of detrital microcline. ?? 2009 The

  15. Molecular structures and biological activities of (N)-n-alkylammonium 2-chloro-3-oxido-1,4-naphthoquinone salts

    Science.gov (United States)

    Choudhari, Dinkar; Lande, Dipali N.; Bagade, Aditi; Gejji, Shridhar P.; Chakravarty, Debamitra; Kodam, Kisan M.; Salunke-Gawali, Sunita

    2017-10-01

    Single crystal X-ray structures and vibrational spectra of (N)-n-alkylammonium 2-chloro-3-oxido-1,4-naphthoquinone salts (alkyl = methyl to octyl, CS-1 to CS-8) possessing X-H⋯Y (X = N, C and Ydbnd O, Cl) hydrogen bonding and diverse noncovalent interactions have been characterized. Except for the CS-2 and CS-7 rest of the compounds facilitate π⋯π and Cl⋯π interactions. The compound CS-3 showed the presence of Cl⋯O interactions. Electronic structure and spectral characteristics of obtained are in consonance with the density functional theory. These complexes showed remarkable antiproliferative and antifungal activities.

  16. Synthesis, crystal structure, spectral characterization and fluorescence studies of salts of α-mangostin with APIs

    Science.gov (United States)

    Satyanarayana Reddy, J.; Ravikumar, N.; Gaddamanugu, Gopikrishna; Naresh, K. N.; Rajan, S. S.; Anand Solomon, K.

    2013-05-01

    α-Mangostin is a naturally occurring oxygenated xanthonoid isolated from the mangosteen tree (Garcinia mangostana). We report the molecular salts of α-mangostin with the active pharmaceutical ingredients (APIs) metformin (anti-diabetic) and piperazine (anti-helminthic) obtained by solvent assisted grinding method as well as solution crystallization method based on the ΔpKa criterion. The synergistic pharmaceutically active α-mangostin-metformin molecular salt and α-mangostin-hemipiperazine ethanol solvate were characterized by the single crystal X-ray diffraction (SCXRD), vibrational spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The fluorescence properties of the molecular salts are obtained by fluorescence spectroscopy. The molecules in both the crystal forms are stabilized by N+sbnd H⋯N, Osbnd H⋯O-, N+sbnd H⋯O and N+sbnd H⋯O-, Osbnd H⋯O hydrogen bonding interactions. In the FT-IR spectra characteristic peaks are observed for the protonated amine (sbnd NH2+) group piperazinium dication (sbnd NH+) respectively indicating formation salts.

  17. Hydrogen bond mediated stabilization of the salt bridge structure for the glycine dimer anion

    NARCIS (Netherlands)

    Heiles, S.; Cooper, R.J.; Berden, G.; Oomens, J.; Williams, E.R.

    2015-01-01

    The formation of a salt bridge in deprotonated glycine dimer anions in a solvent-free environment is investigated using both infrared multiple photon dissociation spectroscopy between 600 and 1800 cm(-1) and theory. The zwitterionic and nonzwitterionic forms of glycine in this complex are computed

  18. Salicylic Acid Alleviates the Adverse Effects of Salt Stress on Dianthus superbus (Caryophyllaceae by Activating Photosynthesis, Protecting Morphological Structure, and Enhancing the Antioxidant System

    Directory of Open Access Journals (Sweden)

    Xiaohua Ma

    2017-04-01

    Full Text Available Salt stress critically affects the physiological processes and morphological structure of plants, resulting in reduced plant growth. Salicylic acid (SA is an important signal molecule that mitigates the adverse effects of salt stress on plants. Large pink Dianthus superbus L. (Caryophyllaceae usually exhibit salt-tolerant traits under natural conditions. To further clarify the salt-tolerance level of D. superbus and the regulating mechanism of exogenous SA on the growth of D. superbus under different salt stresses, we conducted a pot experiment to examine the biomass, photosynthetic parameters, stomatal structure, chloroplast ultrastructure, reactive oxygen species (ROS concentrations, and antioxidant activities of D. superbus young shoots under 0.3, 0.6, and 0.9% NaCl conditions, with and without 0.5 mM SA. D. superbus exhibited reduced growth rate, decreased net photosynthetic rate (Pn, increased relative electric conductivity (REC and malondialdehyde (MDA contents, and poorly developed stomata and chloroplasts under 0.6 and 0.9% salt stress. However, exogenously SA effectively improved the growth, photosynthesis, antioxidant enzyme activity, and stoma and chloroplast development of D. superbus. However, when the plants were grown under severe salt stress (0.9% NaCl condition, there was no significant difference in the plant growth and physiological responses between SA-treated and non-SA-treated plants. Therefore, our research suggests that exogenous SA can effectively counteract the adverse effect of moderate salt stress on D. superbus growth and development.

  19. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-01

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  20. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network.

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-14

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  1. In-situ analysis of strain localization related to structural heterogeneities of carbonate rocks

    Directory of Open Access Journals (Sweden)

    Dimanov A.

    2010-06-01

    Full Text Available The technique of Digital Image Correlation (DIC has been applied to study the deformation of porous carbonate rocks subjected to uniaxial compression tests. The tests have been performed at two different scales: on cylinders of 10 cm high compressed with a standard press with digital images recorded by optical microscopy at a global and local scale and on smaller parallelepiped samples deformed inside a scanning electron microscope (SEM. The development of localization at different scales is thus recorded as well as the damage and compaction mechanisms in relation with the microstructural heterogeneities.

  2. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  3. Permanent Seismically Induced Displacement of Rock-Founded Structures Computed by the Newmark Program

    Science.gov (United States)

    2009-02-01

    26/1980 SAGO South - Surface 300 534_h4ss_295a.dat 5.5 14 0.0615 -0.09 4.96 -9.26 1.500 -1.698 31.735 40.546 3.683 1.745 4.619 1.276 Rock WUS H2...295 XX-SS-09 Hollister-04 1/26/1980 SAGO South - Surface 301 535_h4ss_0upa.dat 5.5 14 0.0305 -0.053 3.27 -3.38 0.529 -0.388 42.260 25.143 1.477 1.764...1.692 0.026 Rock WUS V UP XX-SS-09 Hollister-04 1/26/1980 SAGO South - Surface 94 302 536_pgpk_0nsa.dat 5.0 176 0.1499 -0.157 8.04 -8.03 0.541 -0.496

  4. Morphomechanical and structural changes induced by ROCK inhibitor in breast cancer cells.

    Science.gov (United States)

    Cascione, Mariafrancesca; De Matteis, Valeria; Toma, Chiara Cristina; Pellegrino, Paolo; Leporatti, Stefano; Rinaldi, Rosaria

    2017-11-15

    The EMT phenomenon is based on tumour progression. The cells lose their physiologic phenotype and assumed a mesenchymal phenotype characterized by an increased migratory capacity, invasiveness and high resistance to apoptosis. In this process, RHO family regulates the activation or suppression of ROCK (Rho-associated coiled-coil containing protein kinase) which in turn regulates the cytoskeleton dynamics. However, while the biochemical mechanisms are widely investigated, a comprehensive and careful estimation of biomechanical changes has not been extensively addressed. In this work, we used a strong ROCK inhibitor, Y-27632, to evaluate the effects of inhibition on living breast cancer epithelial cells by a biomechanical approach. Atomic Force Microscopy (AFM) was used to estimate changes of cellular elasticity, quantified by Young's modulus parameter. The morphometric alterations were analyzed by AFM topographies and Confocal Laser Scanning Microscopy (CLSM). Our study revealed a significant modification in the Young's modulus after treatment, especially as regards cytoskeletal region. Our evidences suggest that the use of Y-27632 enhanced the cell rigidity, preventing cell migration and arrested the metastasization process representing a potential powerful factor for cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Constraints on structural evolution from correlations between hydraulic properties and P-wave velocities during brittle faulting of rocks

    Science.gov (United States)

    Ahrens, Benedikt; Duda, Mandy; Renner, Jörg

    2017-04-01

    One of the key challenges in geophysics concerns the derivation of structure and state of rocks and rock formations from constraints on the spatial distribution of their physical properties, as gained from laboratory experiments, borehole logging, and surveys at the surface covering scales from centimeters to kilometers. The use of information from the propagation of elastic waves constitutes the most common approach to derive the structure and state of rocks, if direct information on in-situ properties is limited (e.g., through boreholes) or inaccessible. Furthermore, the determination of hydraulic rock properties serves the dual purpose of constraining structure and providing the basis for predictions of the behavior of a system of interest during continued fluid injection or production, as associated with, e.g., exploitation of hydrocarbon reservoirs, operation of subsurface liquid-waste repositories, or geothermal energy provision. In-situ, wave observations potentially provide better coverage of rock volumes (in space and time) than hydraulic investigations and thus constraints on correlations between elastic and hydraulic properties bear the potential to improve subsurface characterization. In our laboratory study, we continuously monitored hydraulic properties and elastic wave velocities of porous Wilkeson sandstone samples during conventional triaxial deformation. Confining pressures applied in the tests cover the range from below to above the critical pressure for crack closure to control the state of pre-existing cracks. Hydraulic properties were determined using the oscillatory pore-pressure method owing to its benefits regarding continuous and highly resolved monitoring of permeability and specific storage capacity during deformation and even imminent localized failure. The magnitude of the deformation-associated variations in the monitored physical properties strongly depends on initial microstructure and degree of hydrostatically induced crack closure

  6. Heritage stones and their deterioration in rock-cut monuments in India

    Science.gov (United States)

    Sharma, Vinod K.

    2017-04-01

    India is dotted with thousands of rock- cut monuments of considerable antiquity having artwork of global importance. It is evident from the location of many of these monuments that knowledge of viable selection of site, geotechnical considerations and amenability to sculptures' chisel was vital for construction of rock-cut monuments and sculptures. These rock-cut structures also represent significant achievements of geotechnical and structural engineering and craftsmanship of contemporary period. The paper deals with some of the sites where natural rock-mass exposures were used to hew the monuments and highlight the deterioration owing to geological and climatic conditions. The Kailash temple in Ellora and Ajanta rock-cut caves are among the greatest architectural feats which owe their grandeur to amenability and consistency of basalt of Deccan Volcanic Province from which it is hewn. The Kailash Temple was created through a single, huge top-down excavation 100 feet deep down into the volcanic basaltic cliff rock. These ancient rock cut structures are amazing achievements of structural engineering and craftsmanship. The lava flows are nearly horizontal, competent rock medium facilitated the chiseling for the sculptures. The deterioration of these basalts are seen where the amygdule, vesicles and opening in rock discontinuity had the medium of construction or excavation. The monolithic rock- cut monuments of Mahabalipuram temples are constructed in the form of rathas or chriot and adjoining caves by excavating solid charnockite/granites. The large rock exposures are excavated and cut to perfection with wall decorations and sculptured art. The charnockites are the strongest and the most durable rock, yet quite amenable to fine dressing. These monolithic monuments in charnockite and are cut out of the hillock. The 7th Century monuments now exhibit somewhat rough surface probably due to weathering effect of salt laden winds from the sea side and alteration of feldspars

  7. Composition, Structural Evolution and the Related Property Variations in Preparation of Mixed Cesium/Ammonium Acidic Salts of Heteropolyacids

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-11-01

    Full Text Available The composition, structural evolution and the related property variations of mixed cesium/ammonium acidic salts of heteropolyacids were investigated in detail by tracking and analyzing the initial precipitates, evaporation residues and the calcined products in their preparation process. Results show that V cannot completely enter the heteropolyanions in the initial precipitates when the Cs+ added amount is low, and the increase in Cs+ adding amount improves the substitution of V for Mo in the heteropolyanions. Both the initial precipitates and the evaporation residues are mixtures of cesium and ammonium salts of heteropolyacids before calcination. Thermal treatment causes the decomposition of the ammonium salts and the formation of single-phase solid solutions from mechanical mixtures. The calcined products of the initial precipitates and the evaporation residues vary greatly in textural properties. The determinants of the catalytic performance for the oxidation of methacrolein to methacrylic acid are acidity and specific surface area of the compounds. The increase in specific surface area mainly improves the conversion of methacrolein, but not the selectivity of methacrylic acid. Insufficient acidity caused by high Cs+ content in the compounds is responsible for the low selectivity.

  8. Deformation of Sedimentary Rock Across the San Andreas Fault Zone: Mesoscale and Microscale Structures Displayed in Core From SAFOD

    Science.gov (United States)

    Chester, J. S.; Chester, F. M.; Kirschner, D. L.; Almeida, R.; Evans, J. P.; Guillemette, R. N.; Hickman, S.; Zoback, M.; Ellsworth, W.

    2007-12-01

    Sedimentary rocks captured in cores taken at the San Andreas Fault Observatory at Depth (SAFOD) provide an unparalleled sampling of deformation in the transition zone between creeping and locked segments of a major transform fault at 2.5-3.1 km vertical depth. These samples provide the unique opportunity to study deformation processes and the development of brittle structures within porous and granular rocks that have been subjected to variable loading rates and chemically reactive fluids while residing at the top of the seismogenic zone. The samples provide a transect from relatively undeformed host rock through highly fractured and sheared rock, and capture the two prominent zones of active, aseismic slip. Core recovery was almost complete. Wrap-around 1:1 map tracings of the outer surfaces of all cores characterize the lithology and mesoscale deformation. Cores from 3056-3067 m and 3141-3153 m measured depth (MD) sample moderately deformed rock at the western boundary of the fault zone. The cores display massive to finely laminated, pebbly arkosic sandstones with lesser amounts of fine-grained sandstone and siltstone. Numerous shear fractures and cm-thick cataclastic shear zones form a conjugate geometry indicating contraction at high angles to the San Andreas fault. Both intervals display minor faults that juxtapose different lithologies consistent with meters or greater of slip. Fracture density is variable but tends to increase with proximity to the minor faults. Cross-cutting relationships between shear fractures and cataclastic zones indicate a general progression from early faulting along thicker shear zones to later, more localized slip within shear zones and along fractures. Microstructures provide ample evidence for densification of the sandstones through grain-scale fracture and crushing, as well as fluid assisted processes of crack-sealing, dissolution-precipitation, and alteration-neocrystallization. Grain-scale features are consistent with these

  9. 3-D models and structural analysis of rock avalanches: the study of the deformation process to better understand the propagation mechanism

    OpenAIRE

    Longchamp, Céline; Abellan, Antonio; Jaboyedoff, Michel; Manzella, Irene

    2016-01-01

    Rock avalanches are extremely destructive and uncontrollable events that involve a great volume of material (> 106 m3) and several complex processes, and they are difficult to witness. For this reason the study of these phenomena using analog modeling and the accurate analysis of deposit structures and features of laboratory data and historic events become of great importance in the understanding of their behavior.The main objective of this research is to analyze rock avalan...

  10. 3-D models and structural analysis of analogue rock avalanche deposits: a kinematic analysis of the propagation mechanism

    Science.gov (United States)

    Longchamp, C.; Abellan, A.; Jaboyedoff, M.; Manzella, I.

    2015-11-01

    Rock avalanches are extremely destructive and uncontrollable events that involve a great volume of material (> 106 m3), several complex processes and they are difficult to witness. For this reason the study of these phenomena using analogue modelling and the accurate analysis of deposit structures and features of laboratory data and historic events become of great importance in the understanding of their behavior. The main objective of this research is to analyze rock avalanche dynamics by means of a detailed structural analysis of the deposits coming from data of 3-D measurements of mass movements of different magnitudes, from decimeter level scale laboratory experiments to well-studied rock avalanches of several square kilometers magnitude. Laboratory experiments were performed on a tilting plane on which a certain amount of a well-defined granular material is released, propagates and finally stops on a horizontal surface. The 3-D geometrical model of the deposit is then obtained using either a scan made with a 3-D digitizer (Konica Minolta vivid 9i) either using a photogrammetric method called Structure-from-Motion (SfM) which requires taking several pictures from different point of view of the object to be modeled. In order to emphasize and better detect the fault structures present in the deposits, we applied a median filter with different moving windows sizes (from 3 × 3 to 9 × 9 nearest neighbors) to the 3-D datasets and a gradient operator along the direction of propagation. The application of these filters on the datasets results in: (1) a precise mapping of the longitudinal and transversal displacement features observed at the surface of the deposits; and (2) a more accurate interpretation of the relative movements along the deposit (i.e. normal, strike-slip, inverse faults) by using cross-sections. Results shows how the use of filtering techniques reveal disguised features in the original point cloud and that similar displacement patterns are

  11. Molecular dynamics simulations of the surface tension and structure of salt solutions and clusters.

    Science.gov (United States)

    Sun, Lu; Li, Xin; Hede, Thomas; Tu, Yaoquan; Leck, Caroline; Ågren, Hans

    2012-03-15

    Sodium halides, which are abundant in sea salt aerosols, affect the optical properties of aerosols and are active in heterogeneous reactions that cause ozone depletion and acid rain problems. Interfacial properties, including surface tension and halide anion distributions, are crucial issues in the study of the aerosols. We present results from molecular dynamics simulations of water solutions and clusters containing sodium halides with the interatomic interactions described by a conventional force field. The simulations reproduce experimental observations that sodium halides increase the surface tension with respect to pure water and that iodide anions reach the outermost layer of water clusters or solutions. It is found that the van der Waals interactions have an impact on the distribution of the halide anions and that a conventional force field with optimized parameters can model the surface tension of the salt solutions with reasonable accuracy. © 2012 American Chemical Society

  12. Conductivity and phase structure of blend based proton polymeric electrolytes. Pt. 2; Ammonium salts complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowska, A. (Inst. of Solid State Technology, Warsaw Univ. of Technology (Poland)); Wieczorek, W. (Inst. of Solid State Technology, Warsaw Univ. of Technology (Poland))

    1994-01-01

    The new class of highly conductive ambient temperature polymeric electrolytes based on complexes of ammonium salts with poly(ethylene oxide)-polymethacrylate or -polyacrylate blends is presented. An increase in ambient temperature conductivity in comparison with pristine poly(ethylene oxide) based electrolytes was achieved by suppression of the polymer crystallinity. The highest values of conductivity were obtained for samples doped with NH[sub 4]SCN and exceeded 10[sup -5] S cm[sup -1] at room temperature. (orig.)

  13. Crystal structure, DFT study, hirshfeld surface and PIXEL energy calculations of benzimidazolium and hexadecylaminium hydrogen maleate salts

    Science.gov (United States)

    Padmavathy, R.; Karthikeyan, N.; Sathya, D.; Jagan, R.; Kumar, R. Mohan; Sivakumar, K.

    2017-05-01

    Two new organic dicarboxylate salts, namely Benzimidazolium hydrogen maleate (BHM) (1) and Hexadecylaminium hydrogen maleate (HDHM) (2) have been prepared and characterized by single crystal X-ray diffraction, FT-IR and TG/DTA analysis. The crystal structures of both the compounds are stabilized by intramolecular Osbnd H⋯O and intermolecular Nsbnd H⋯O,Csbnd H⋯O hydrogen bonds. The supramolecular structure of the salts consists of various ring motifs generating diverse 2D and 3D architectures. The structural parameters were correlated with computed geometrical parameters obtained from DFT/B3LYP quantum chemical calculations using 6-31++g(d,p) basis set. The experimentally determined vibrational frequencies were matched with theoretically achieved FTIR modes and the complete vibrational assignments were done based on PED calculations. The TG/DTA studies reveal the thermal stability of the title compounds. Molecular electrostatic potential mapping were drawn to understand the chemical reactivity based on their charge distribution. The Frontier Molecular orbitals and other related molecular energies were evaluated using the same theoretical calculations. Hirshfeld surface analysis and its associated fingerprint plots were visualised to make clear signs on entity of intermolecular contacts and their impact on crystal packing. The intermolecular and lattice energies of the compounds were studied using PIXELC method to elucidate the quantitative information on interactions appeared between the molecules.

  14. Study of borehole plugging in bedded salt domes by earth melting technology

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.L.

    1975-06-01

    The intent of this program is to define the most viable Melted In situ Rock salt Plug (MIRP) System options, these options being addressed primarily from the downhole subsystem perspective, with a conventional drill rig as the basis for the surface part of the MIRP System. Preliminary experiments had indicated that it is possible to backfill the open penetrations in the domed salt deposits with a melted in situ rocksalt plug such that in time the melted rock salt plug effectively duplicates the parent virgin salt. The programmatic assumption for the requirement of duplicating the virgin salt with a MIRP provides the basis for this study. A system functional analysis was performed to establish the requirements for the performance of the overall MIRP System. A similar functional analysis was conducted for the salt plug that would be formed by the MIRP System. Based on the analyses of the material, thermal, and structural behavior of the salt plug, the requirements for the formation of an acceptable salt plug were determined. From the functional analysis a determination was made of the operation of the hardware for the downhole portion of the MIRP System. From that perspective several design concepts were formulated. For these design concepts a technology roadmap was developed. The pertinent aspects, results, conclusions and recommendations of the above are summarized in the sections that follow.

  15. SALT, HISTORY AND CULTURE IN THE WESTERN GRASSLANDS ...

    African Journals Online (AJOL)

    Dean SPGS NAU

    salt in addition to other economic activities like pottery and sugar- cane alcohol for the flourishing Congo River market. Rock and vegetable salt from Mbosi country ... producer of salt gave the Kanta as tax one gourd a year (Ochieng. 1992: 839; Webster et al 1992: 795; Laya 1992: 472).Salt production was also carried out in ...

  16. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive...... diagnostic tool. We show that the observation of generic one-dimensional signatures in photoemission spectra of the valence band close to the Fermi level can be strongly affected by surface effects. Especially, great care must be exercised taking evidence for an unusual one-dimensional many-body state...

  17. Soluble salts: their incidence on the protection of metallic structures by paint coatings

    Directory of Open Access Journals (Sweden)

    Morcillo, M.

    2003-12-01

    Full Text Available The presence of soluble salts at the metal/paint interface is known to have a detrimental effect on the integrity of most paint systems. Though this is a long-standing problem, it has recently come to receive greater attention from the protective coatings industry. In the paper the following points are reviewed: degradation mechanisms of the metal/paint system, the role of the metallic substrate, the nature, origin and detection of soluble salts, expected levels of soluble salts in practice, critical thresholds of soluble salts and risk levels for premature failures, role of the type and thickness of paint systems and exposure conditions, and prevention measures. The author presents an overview of the subject, making reference to the related research that has been carried out by him and his coworkers over the last 16 years.

    Es un hecho conocido que la presencia de sales solubles en la intercara metal/pintura tiene un efecto negativo sobre la mayoría de los sistemas de pintura. Aunque se trata de un problema conocido desde hace tiempo, ha sido recientemente cuando ha recibido una gran atención por parte de la industria de recubrimientos protectores. En el presente trabajo se revisan los siguientes aspectos: mecanismos de degradación del sistema metal/pintura, el papel que juega el substrato metálico, la naturaleza, origen y detección de las sales solubles, niveles esperados de sales solubles en la práctica, niveles críticos de sales solubles y niveles de riesgo de fallo prematuro del sistema de pintura, papel que juega el tipo y espesor del sistema de pintura, el ambiente de exposición y las medidas de prevención. El autor presenta una revisión del tema, haciendo referencia a los trabajos de investigación que ha llevado a cabo, junto con su grupo de investigación, durante los últimos 16 años.

  18. Synthesis of a new quaternary phosphonium salt: NMR study of the conformational structure and dynamics.

    Science.gov (United States)

    Aganova, Oksana V; Galiullina, Leysan F; Aganov, Albert V; Shtyrlin, Nikita V; Pugachev, Mikhail V; Strel'nik, Alexey D; Koshkin, Sergey A; Shtyrlin, Yurii G; Klochkov, Vladimir V

    2016-04-01

    A novel phosphonium salt based on pyridoxine was synthesized. Conformational analysis of the compound in solution was performed using dynamic NMR experiments and calculations. The obtained results revealed some differences in the conformational transitions and the energy parameters of the conformational exchange of the studied compound in comparison to previously reported data for other phosphorus-containing pyridoxine derivatives. It was shown that increasing the substituent at the C-11 carbon leads to greater differences in the populations of stable states and the corresponding equilibrium energies. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Evolutionary consequences of microhabitat: population-genetic structuring in kelp- vs. rock-associated chitons.

    Science.gov (United States)

    Nikula, R; Spencer, H G; Waters, J M

    2011-12-01

    Rafting has long been invoked as a key marine dispersal mechanism, but biologists have thus far produced little genetic evidence to support this hypothesis. We hypothesize that coastal species associated with buoyant seaweeds should experience enhanced population connectivity owing to rafting. In particular, invertebrates strongly associated with the buoyant bull-kelp Durvillaea antarctica might be expected to have lower levels of population-genetic differentiation than taxa mainly exploiting nonbuoyant substrates. We undertook a comparative genetic study of two codistributed, congeneric chiton species, assessing population connectivity at scales of 61-516 km, using ≥ 186 polymorphic AFLP loci per species. Consistent with predictions, population-genetic differentiation was weaker in the kelp-associated Sypharochiton sinclairi than in the rock-associated S. pelliserpentis. Additionally, while we found a significant positive correlation between genetic and oceanographic distances in both chiton species, the correlation was stronger in S. pelliserpentis (R(2) = 0.28) than in S. sinclairi (R(2) = 0.18). These data support the hypothesis that epifaunal taxa can experience enhanced population-genetic connectivity as a result of their rafting ability. © 2011 Blackwell Publishing Ltd.

  20. Exhumation of the Meliata high-pressure rocks (Western Carpathians: Petrological and structural records in blueschists

    Directory of Open Access Journals (Sweden)

    Faryad Shah Wali

    1999-06-01

    Full Text Available The Meliata unit, situated in the SE part of the Western Carpathians, represents an accretionary complex assembled during the closure of the Triassic-Jurassic Meliata oceanic basin. Blueschists, ophiolites and very low-grade metamorphosed sedimentary rocks are imbricated in a tectonic zone between the Gemericum and the Silica nappe. Petrological and microstructural analyses indicate a single progressive deformation coincident with prograde metamorphism at blueschist facies conditions. The foliation is defined by preferred orientation of mica, blue amphibole and rarely also by Na-pyroxene. The exhumation path is documented by ductite deformation, formed at blueschist-greenschist facies boundary and at greenschist facies conditions. The E-W directed thrust faults which are parallel to the foliation seem to be responsible for exhumation of the blueschists. Later stages of deformation in phyllites are documented by shear bands that crosscut the blueschist facies foliation. Low-temperature Cretaceous nappe tectonics resulted in brittle deformation and used mostly the older tectonic systems that formed at blueschist-greenschist facies conditions

  1. Geology of the north end of the Salt Valley Anticline, Grand County, Utah

    Science.gov (United States)

    Gard, Leonard Meade

    1976-01-01

    This report describes the geology and hydrology of a portion of the Salt Valley anticline lying north of Moab, Utah, that is being studied as a potential site for underground storage of nuclear waste in salt. Selection of this area was based on recommendations made in an earlier appraisal of the potential of Paradox basin salt deposits for such use. Part of sec. 5, T. 23 S., R. 20 E. has been selected as a site for subsurface investigation as a potential repository for radioactive waste. This site has easy access to transportation, is on public land, is isolated from human habitation, is not visible from Arches National Park, and the salt body lies within about 800 feet (244 m) of the surface. Further exploration should include investigation of possible ground water in the caprock and physical exploration of the salt body to identify a thick bed of salt for use as a storage zone that can be isolated from the shaly interbeds that possibly contain quantities of hydrocarbons. Salt Valley anticline, a northwest-trending diapiric structure, consists of Mesozoic sedimentary rocks arched over a thick core of salt of the Paradox Member of the Middle Pennsylvanian Hermosa Formation. Salt began to migrate to form and/or develop this structure shortly after it was deposited, probably in response to faulting. This migration caused upwelling of the salt creating a linear positive area. This positive area, in turn, caused increased deposition of sediments in adjacent areas which further enhanced salt migration. Not until late Jurassic time had flowage of the salt slowed sufficiently to allow sediments of the Morrison and younger formations to be deposited across the salt welt. A thick cap of insoluble residue was formed on top of the salt diapir as a result of salt dissolution through time. The crest of the anticline is breached; it collapsed in two stages during the Tertiary Period. The first stage was graben collapse during the early Tertiary; the second stage occurred after

  2. An approach to better understanding of salt weathering on stone monuments - the "petraSalt" research project

    Science.gov (United States)

    Heinrichs, K.; Azzam, R.

    2012-04-01

    Salt weathering is known as a major cause of damage on stone monuments. However, processes and mechanisms of salt weathering still can not be explained satisfactorily. From the expertś point of view, better understanding of salt weathering deserves further comprehensive in-situ investigation jointly addressing active salt weathering processes and controlling factors. The 'petraSalt' research project takes this approach. The rock-cut monuments of Petra / Jordan were selected for studies, since stone type and spectra of monument exposure regimes, environmental influences, salt loading and weathering damage are representative for many stone monuments worldwide. The project aims at real-time / real-scale weathering models that depict characteristic interdependencies between stone properties, monument exposure regimes, environmental influences, salt loading and salt weathering damage. These models are expected to allow reliable rating and interpretation of aggressiveness and damage potential of the salt weathering regimes considering their variability under range of lithology, monument exposure scenarios, environmental conditions and time. The methodological approach systematically combines assessment of weathering damage (type, extent, spatial distribution and progression of damage), assessment of monument exposure characteristics and environmental influences acting on the monuments (monument orientation / geometry, lithology, rain impact, water run-off, rising humidity, wind impact, insolation, heating-cooling and drying-wetting behaviour, etc.), engineering geological studies (structural discontinuities and related failure processes) and investigation of salt loading (type, concentration, spatial distribution and origin of salt, salt crystallization / dissolution, phase transitions, etc.). Besides established methods, very innovative technologies are applied in the course of investigation such as high-resolution 3D terrestrial laser scanning (TLS) and wireless

  3. An application of LOTEM around salt dome near Houston, Texas

    Science.gov (United States)

    Paembonan, Andri Yadi; Arjwech, Rungroj; Davydycheva, Sofia; Smirnov, Maxim; Strack, Kurt M.

    2017-07-01

    A salt dome is an important large geologic structure for hydrocarbon exploration. It may seal a porous reservoir of rocks that form petroleum reservoirs. Several techniques such as seismic, gravity, and electromagnetic including magnetotelluric have successfully yielded salt dome interpretation. Seismic has difficulties seeing through the salt because the seismic energy gets trapped by the salt due to its high velocity. Gravity and electromagnetics are more ideal methods. Long Offset Transient Electromagnetic (LOTEM) and Focused Source Electromagnetic (FSEM) were tested over a salt dome near Houston, Texas. LOTEM data were recorded at several stations with varying offset, and the FSEM tests were also made at some receiver locations near a suspected salt overhang. The data were processed using KMS's processing software: First, for assurance, including calibration and header checking; then transmitter and receiver data are merged and microseismic data is separated; Finally, data analysis and processing follows. LOTEM processing leads to inversion or in the FSEM case 3D modeling. Various 3D models verify the sensitivity under the salt dome. In addition, the processing was conducted pre-stack, stack, and post-stack. After pre-stacking, the noise was reduced, but showed the ringing effect due to a low-pass filter. Stacking and post-stacking with applying recursive average could reduce the Gibbs effect and produce smooth data.

  4. Diversity, genetic structure and evidence of outcrossing in British populations of the rock fern Adiantum capillus-veneris using microsatellites.

    Science.gov (United States)

    Pryor, K V; Young, J E; Rumsey, F J; Edwards, K J; Bruford, M W; Rogers, H J

    2001-08-01

    Microsatellites were isolated and a marker system was developed in the fern Adiantum capillus-veneris. Polymorphic markers were then used to study the genetic diversity and structure of populations within the UK and Ireland where this species grows at the northern edge of its range, requiring a specific rock habitat and limited to a few scattered populations. Three dinucleotide loci detected a high level of diversity (23 alleles and 28 multilocus genotypes) across the UK and Ireland, with nearly all variation partitioned among rather than within populations. Of 17 populations represented by multiple samples, all except four were monomorphic. Heterozygosity was detected in three populations, all within Glamorgan, Wales (UK), showing evidence of outcrossing. We make inferences on the factors determining the observed levels and patterns of genetic variation and the possible evolutionary history of the populations.

  5. Synthesis and structure-activity analysis of new phosphonium salts with potent activity against African trypanosomes.

    Science.gov (United States)

    Taladriz, Andrea; Healy, Alan; Flores Pérez, Eddysson J; Herrero García, Vanessa; Ríos Martínez, Carlos; Alkhaldi, Abdulsalam A M; Eze, Anthonius A; Kaiser, Marcel; de Koning, Harry P; Chana, Antonio; Dardonville, Christophe

    2012-03-22

    A series of 73 bisphosphonium salts and 10 monophosphonium salt derivatives were synthesized and tested in vitro against several wild type and resistant lines of Trypanosoma brucei (T. b. rhodesiense STIB900, T. b. brucei strain 427, TbAT1-KO, and TbB48). More than half of the compounds tested showed a submicromolar EC(50) against these parasites. The compounds did not display any cross-resistance to existing diamidine therapies, such as pentamidine. In most cases, the compounds displayed a good selectivity index versus human cell lines. None of the known T. b. brucei drug transporters were required for trypanocidal activity, although some of the bisphosphonium compounds inhibited the low affinity pentamidine transporter. It was found that phosphonium drugs act slowly to clear a trypanosome population but that only a short exposure time is needed for irreversible damage to the cells. A comparative molecular field analysis model (CoMFA) was generated to gain insights into the SAR of this class of compounds, identifying key features for trypanocidal activity.

  6. Geological Feasibility of Underground Oil Storage in Jintan Salt Mine of China

    Directory of Open Access Journals (Sweden)

    Xilin Shi

    2017-01-01

    Full Text Available A number of large underground oil storage spaces will be constructed in deep salt mines in China in the coming years. According to the general geological survey, the first salt cavern oil storage base of China is planned to be built in Jintan salt mine. In this research, the geological feasibility of the salt mine for oil storage is identified in detail as follows. (1 The characteristics of regional structure, strata sediment, and impermeable layer distribution of Jintan salt mine were evaluated and analyzed. (2 The tightness of cap rock was evaluated in reviews of macroscopic geology and microscopic measuring. (3 According to the geological characteristics of Jintan salt mine, the specific targeted formation for building underground oil storage was chosen, and the sealing of nonsalt interlayers was evaluated. (4 Based on the sonar measuring results of the salt caverns, the characteristics of solution mining salt caverns were analyzed. In addition, the preferred way of underground oil storage construction was determined. (5 Finally, the results of closed well observation in solution mining salt caverns were assessed. The research results indicated that Jintan salt mine has the basic geological conditions for building large-scale underground oil storage.

  7. Spatio-temporal structure and influence of environmental parameters on the Tipuloidea (Insecta: Diptera) assemblage of Neotropical salt marshes

    Science.gov (United States)

    Rodrigues, Lucas; Carrasco, Daiane; Proietti, Maíra

    2017-10-01

    Estuaries and salt marshes are important coastal ecosystems that present unique characteristics in terms of nutrient cycling, salinity, habitats, flora and fauna. Despite their ecological importance, there is scarce knowledge on the occupation, distribution and ecology of insects, including Tipuloidea, in these environments. This study aimed to evaluate the composition, seasonality and effect of abiotic factors on the abundance, diversity and structure of a Tipuloidea assemblage at the Patos Lagoon salt marshes, located at the south of the Neotropical region. We sampled crane-flies from three zones along the estuary by installing two Malaise traps at the low and high vegetation strata of each zone. Sampling was conducted uninterruptedly every fifteen days between August/2015 and July/2016, and collected insects were identified morphologically based on specific literature. 5248 crane-flies were identified covering six species and twenty-five morphospecies. Abundance and frenquency of occurrence of species revealed a gap in the presence of constant species at the middle estuary. Dicranomyia, Gonomyia, Teucholabis and Zelandotipula species were additional (accessory) species only in the upper estuary, while Symplecta cana only in the lower estuary. This shows that different species prefer distinct points along the estuary. Higher abundance of crane-flies was correlated with elevated temperature and humidity. Symplecta pilipes was an exception, presenting increase in abundance under lower temperatures. Seasonal change in Tipuloidea species composition was observed, with higher evenness of Dicranomyia, Geranomyia, Rhipidia domestica and Symplecta cana (15-20%) during summer, and dominance of Symplecta pilipes in winter (80%). The gap at the middle estuary can possibly be due to stress caused by large fluctuations in salinity in the zone. In addition, the seasonal differences can have significant ecological consequences such as the modification of the Tipuloid species

  8. Rock type discrimination and structural analysis with LANDSAT and Seasat data: San Rafael swell, Utah

    Science.gov (United States)

    Stewart, H. E.; Blom, R.; Abrams, M.; Daily, M.

    1980-01-01

    Satellite synthetic aperture radar (SAR) images is evaluated in terms of its geologic applications. The benchmark to which the SAR images are compared is LANDSAT, used both for structural and lithologic interpretations.

  9. Crystal and molecular structures of sixteen charge-assisted hydrogen bond-mediated diisopropylammonium salts from different carboxylic acids

    Science.gov (United States)

    Lin, Zhihao; Hu, Kaikai; Jin, Shouwen; Ding, Aihua; Wang, Yining; Dong, Lingfeng; Gao, Xingjun; Wang, Daqi

    2017-10-01

    salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the sixteen investigated crystals the NH groups in the diisopropylamine are protonated when the carboxylic acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted Nsbnd H⋯O hydrogen bond formation between the ammonium and the deprotonated COOH groups. Except the Nsbnd H⋯O hydrogen bond, the Osbnd H⋯O hydrogen bonds (charge assisted or neutral) were also found at the salts 6, 8, 9, 10, 12, 13, 14, 15, and 16. Further analysis of the crystal packing of the salts indicated that a different family of additional CHsbnd O/CH2sbnd O/CH3sbnd O, CH-π/CH3-π, CH3-Cπ, N-π, and π-π associations contribute to the stabilization and expansion of the total structures. For the coexistence of the various weak interactions these structures adopted homo or hetero supramolecular synthons or both.

  10. Salt structures and vertical axis rotations; a case study in the Barbastro-Balaguer anticline, Southern Pyrenees.

    Science.gov (United States)

    Pueyo, Emilio L.; Oliván, Carlota; Soto, Ruth; Rodríguez-Pintó, Adriana; Santolaria, Pablo; Luzón, Aránzazu; Casas, Antonio M.; Ayala, Conxi

    2017-04-01

    Vertical axis rotations are common in all deformation settings. At larger scales, for example in fold and thrust belts, they are usually related to differential shortening along strike and this may be caused by a number of reasons (interplay of plate boundaries, sedimentary wedges, detachment level distribution, etc.). At smaller scales, local stress fields, interference of non-coaxial deformation phases, development of non-cylindrical structures, etc. may play an important role to accommodate significant magnitudes of rotation. Apart from their implication in the truly 4D understanding of geological structures, the occurrence of vertical axis rotation usually precludes the application of most 3D restoration techniques and thus, increases the uncertainty in any 3D reconstruction. Salt structures may form in different geological settings, but focusing on compressive regimes, very little is known about the relation between their geometry and kinematics and their ability to accommodate vertical axis rotations (i.e. local or regional lateral gradients of shortening). The Barbastro-Balaguer anticline (BBA) is the southernmost structure of the Central Pyrenees. It is a large detachment fold spreading more than 150 km along the front. In contrast to most frontal Pyrenean structures, the BBA is detached in Priabonian evaporites and was folded during Oligocene times as witnessed by well exposed growth strata. Along strike changes in the fold axis trend may reach 50°, an overall the anticline displays a convex shape towards the foreland (south). A residual Bouguer anomaly map based on a densely sampled gravimetric surveying (10.000 stations) has helped delineating a heterogeneous distribution of the Eocene detachment level in the subsurface. In this contribution we explore the interplay between vertical axis rotations, detachment level distribution and the fold geometry (structural trend and style based on hundreds of data). Seventy paleomagnetic sites evenly and densely

  11. Use of complementary cation and anion heavy-atom salt derivatives to solve the structure of cytochrome P450 46A1

    Energy Technology Data Exchange (ETDEWEB)

    White, Mark Andrew, E-mail: white@xray.utmb.edu [Sealy Center for Structural and Molecular Biophysics, UTMB Galveston, TX 77555 (United States); Department of Biochemistry and Molecular Biology, UTMB Galveston, TX 77555 (United States); Mast, Natalia [Department of Pharmacology and Toxicology, UTMB Galveston, TX 77555 (United States); Bjorkhem, Ingemar [Department of Clinical Chemistry, Karolinska Institute, S-141 88 Huddinge (Sweden); Johnson, Eric F. [Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037 (United States); Stout, C. David [Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 (United States); Pikuleva, Irina A. [Department of Pharmacology and Toxicology, UTMB Galveston, TX 77555 (United States); Sealy Center for Structural and Molecular Biophysics, UTMB Galveston, TX 77555 (United States)

    2008-05-01

    Crystallization and analysis of the MIRAS heavy-atom structure solution of human cytochrome P450 46A1 using NaI and CsCl quick soaks. Human cytochrome P450 46A1 (CYP46A1) is one of the key enzymes in cholesterol homeostasis in the brain. The crystallization and heavy-atom structure solution of an active truncated CYP46A1 in complex with the high-affinity substrate analogue cholesterol-3-sulfate (CH-3S) is reported. The 2.6 Å structure of CYP46A1–CH-3S was solved using both anion and cation heavy-atom salts. In addition to the native anomalous signal from the haem iron, an NaI anion halide salt derivative and a complementary CsCl alkali-metal cation salt derivative were used. The general implications of the use of halide and alkali-metal quick soaks are discussed. The importance of using isoionic strength buffers, the titration of heavy-atom salts into different ionic species and the role of concentration are considered. It was observed that cation/anion-binding sites will occasionally overlap, which could negatively impact upon mixed RbBr soaks used for multiple anomalous scatterer MAD (MMAD). The use of complementary cation and anion heavy-atom salt derivatives is a convenient and powerful tool for MIR(AS) structure solution.

  12. Real-time monitoring and structural control of a wind turbine using a rocking system

    DEFF Research Database (Denmark)

    Caterino, Nicola; Spizzuoco, Mariacristina; Georgakis, Christos T.

    2016-01-01

    . A special control algorithm has been properly designed to drive MR dampers. It requires the tower is equipped with sensors for measurement of displacements and stresses. The real-time monitoring of the tower response is needed in order to make the SA system works in the sense of mitigating the structural...

  13. The Jettencave, Southern Harz Mountains, Germany: Geophysical observations and a structural model of a shallow cave in gypsum/anhydrite-bearing rocks

    Science.gov (United States)

    Kaufmann, Georg; Romanov, Douchko

    2017-12-01

    Gypsum and anhydrite are soluble rocks, where fissures and bedding partings can be enlarged with time by the dissolution of the mineral species through water. The selective enlargement results in sub-surface voids acting as preferential flow path for the drainage of the rock. With time, larger cavities develop, and a network of cave passages can evolve. If the enlarged cave voids are not too deep under the surface, geophysical measurements can be used to detect, identify and trace these structures. We have used gravity measurements (GRAV), electrical resistivity imaging (ERI), self-potential measurements (SP), electrical conductivity measurements (EC), and ground-penetrating radar (GPR) above the cave Jettenhöhle, a cave located in the southern Harz Mountains in Germany. The Jettencave is developed in the Hauptanhydrit formation of the Permian Zechstein sequence, characterised by large breakdown rooms and an exposed water table. The overburden of the cave is only around 10-15 m, and dolomitic rocks are located in close vicinity. We present results from our geophysical surveys in vicinity of the cave. We are able to identify the cave geometry from GRAV, ERI, and GPR measurements, which distinguish the local lithology of the Permian Zechstein rocks in the area. From the ERI and EC measurements, we derive information on the void volume in the soluble rocks. We finally present a three-dimensional structural model of the Jettencave and its surroundings, based on our geophysical results and the hydrological interpretation.

  14. Fluid-rock interactions in seismic faults : implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China

    NARCIS (Netherlands)

    Duan, Qingbao; Yang, Xiaosong; Ma, Shengli; Chen, J.|info:eu-repo/dai/nl/370819071; Chen, Jinyu

    2016-01-01

    We describe the structural features and mineralogical and geochemical compositions of the fault rocks recovered from boreholes at the Golden River site on the Yingxiu–Beichuan fault, which activated and slipped along a 240 km-long main surface rupture zone during the 2008 Wenchuan earthquake. The

  15. History Leaves Salts Behind

    Science.gov (United States)

    2004-01-01

    These plots, or spectra, show that a rock dubbed 'McKittrick' near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, has higher concentrations of sulfur and bromine than a nearby patch of soil nicknamed 'Tarmac.' These data were taken by Opportunity's alpha particle X-ray spectrometer, which uses curium-244 to assess the elemental composition of rocks and soil. Only portions of the targets' full spectra are shown to highlight the significant differences in elemental concentrations between 'McKittrick' and 'Tarmac.' Intensities are plotted on a logarithmic scale.A nearby rock named Guadalupe similarly has extremely high concentrations of sulfur, but very little bromine. This 'element fractionation' typically occurs when a watery brine slowly evaporates and various salt compounds are precipitated in sequence.

  16. Use of Complementary Cation And Anion Heavy Atom-Atom Salt Derivatives to Solve the Structure of Cytochrome P450 46a1

    Energy Technology Data Exchange (ETDEWEB)

    White, M.A.; Mast, N.; Bjorkhem, I.; Johnson, E.F.; Stout, C.D.; Pikuleva, I.A.

    2009-05-26

    Human cytochrome P450 46A1 (CYP46A1) is one of the key enzymes in cholesterol homeostasis in the brain. The crystallization and heavy-atom structure solution of an active truncated CYP46A1 in complex with the high-affinity substrate analogue cholesterol-3-sulfate (CH-3S) is reported. The 2.6 {angstrom} structure of CYP46A1-CH-3S was solved using both anion and cation heavy-atom salts. In addition to the native anomalous signal from the haem iron, an NaI anion halide salt derivative and a complementary CsCl alkali-metal cation salt derivative were used. The general implications of the use of halide and alkali-metal quick soaks are discussed. The importance of using isoionic strength buffers, the titration of heavy-atom salts into different ionic species and the role of concentration are considered. It was observed that cation/anion-binding sites will occasionally overlap, which could negatively impact upon mixed RbBr soaks used for multiple anomalous scatterer MAD (MMAD). The use of complementary cation and anion heavy-atom salt derivatives is a convenient and powerful tool for MIR(AS) structure solution.

  17. Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices

    KAUST Repository

    Hanrath, Tobias

    2009-10-27

    We investigated the influence of processing conditions, nanocrystal/substrate interactions and solvent evaporation rate on the ordering of strongly interacting nanocrystals by synergistically combining electron microscopy and synchrotron-based small-angle X-ray scattering analysis. Spin-cast PbSe nanocrystal films exhibited submicrometer-sized supracrystals with face-centered cubic symmetry and (001)s planes aligned parallel to the substrate. The ordering of drop-cast lead salt nanocrystal films was sensitive to the nature of the substrate and solvent evaporation dynamics. Nanocrystal films drop-cast on rough indium tin oxide substrates were polycrystalline with small grain size and low degree of orientation with respect to the substrate, whereas films drop-cast on flat Si substrates formed highly ordered face-centered cubic supracrystals with close-packed (111)s planes parallel to the substrate. The spatial coherence of nanocrystal films drop-cast in the presence of saturated solvent vapor was significantly improved compared to films drop-cast in a dry environment. Solvent vapor annealing was demonstrated as a postdeposition technique to modify the ordering of nanocrystals in the thin film. Octane vapor significantly improved the long-range order and degree of orientation of initially disordered or polycrystalline nanocrystal assemblies. Exposure to 1,2-ethanedithiol vapor caused partial displacement of surface bound oleic acid ligands and drastically degraded the degree of order in the nanocrystal assembly. © 2009 American Chemical Society.

  18. Synthesis, crystal structure and biological activity of 2-hydroxyethylammonium salt of p-aminobenzoic acid.

    Directory of Open Access Journals (Sweden)

    Manuela E Crisan

    Full Text Available p-Aminobenzoic acid (pABA plays important roles in a wide variety of metabolic processes. Herein we report the synthesis, theoretical calculations, crystallographic investigation, and in vitro determination of the biological activity and phytotoxicity of the pABA salt, 2-hydroxyethylammonium p-aminobenzoate (HEA-pABA. The ability of neutral and anionic forms of pABA to interact with TIR1 pocket was investigated by calculation of molecular electrostatic potential maps on the accessible surface area, docking experiments, Molecular Dynamics and Quantum Mechanics/Molecular Mechanics calculations. The docking study of the folate precursor pABA, its anionic form and natural auxin (indole-3-acetic acid, IAA with the auxin receptor TIR1 revealed a similar binding mode in the active site. The phytotoxic evaluation of HEA-pABA, pABA and 2-hydroxyethylamine (HEA was performed on the model plant Arabidopsis thaliana ecotype Col 0 at five different concentrations. HEA-pABA and pABA acted as potential auxin-like regulators of root development in Arabidopsis thaliana (0.1 and 0.2 mM and displayed an agravitropic root response at high concentration (2 mM. This study suggests that HEA-pABA and pABA might be considered as potential new regulators of plant growth.

  19. Synthesis, crystal structure and biological activity of 2-hydroxyethylammonium salt of p-aminobenzoic acid.

    Science.gov (United States)

    Crisan, Manuela E; Bourosh, Paulina; Maffei, Massimo E; Forni, Alessandra; Pieraccini, Stefano; Sironi, Maurizio; Chumakov, Yurii M

    2014-01-01

    p-Aminobenzoic acid (pABA) plays important roles in a wide variety of metabolic processes. Herein we report the synthesis, theoretical calculations, crystallographic investigation, and in vitro determination of the biological activity and phytotoxicity of the pABA salt, 2-hydroxyethylammonium p-aminobenzoate (HEA-pABA). The ability of neutral and anionic forms of pABA to interact with TIR1 pocket was investigated by calculation of molecular electrostatic potential maps on the accessible surface area, docking experiments, Molecular Dynamics and Quantum Mechanics/Molecular Mechanics calculations. The docking study of the folate precursor pABA, its anionic form and natural auxin (indole-3-acetic acid, IAA) with the auxin receptor TIR1 revealed a similar binding mode in the active site. The phytotoxic evaluation of HEA-pABA, pABA and 2-hydroxyethylamine (HEA) was performed on the model plant Arabidopsis thaliana ecotype Col 0 at five different concentrations. HEA-pABA and pABA acted as potential auxin-like regulators of root development in Arabidopsis thaliana (0.1 and 0.2 mM) and displayed an agravitropic root response at high concentration (2 mM). This study suggests that HEA-pABA and pABA might be considered as potential new regulators of plant growth.

  20. Crystal structures of triazine-3-thione derivatives by reaction with copper and cobalt salts.

    Science.gov (United States)

    López-Torres, Elena; Mendiola, Maria Antonia; Pastor, César J

    2006-04-03

    The reaction of 5-methoxy-5,6-diphenyl-4,5-dihydro-2H-[1,2,4]triazine-3-thione L1H2OCH3 with copper(II) chloride leads to the formation of an organic molecule L2 containing two triazine rings linked by a new S-S bond. A binuclear copper(II) complex, 1, containing L1 is also isolated. The reaction of L1H2OCH3 with copper(I) chloride yields a hexanuclear cluster of copper(I), 2, in which the copper atoms form a distorted octahedron with the ligand L1 acting as an NS chelate and sulfur bridge, giving to the copper ion a trigonal geometry by one N and two S atoms. In any reaction of the disulfide L2 with metal salts, complexes containing this molecule are isolated. Reactions with copper(I) and copper(II) chloride and nickel(II) and cadmium(II) nitrate produce the S-S bond cleavage, giving complexes containing the triazine L1 behaving as the NS anion, which show spectroscopic characteristics identical with those formed by reaction with L1H2OCH3. However, the reaction with cobalt(II) nitrate gives a low-spin octahedral cobalt(III) complex, in which an asymmetric rupture of the disulfide L2 has been produced, giving an unexpected complex with a new ligand and keeping the S-S bond.

  1. Meta-omic analyses of Baltic Sea cyanobacteria: diversity, community structure and salt acclimation.

    Science.gov (United States)

    Celepli, Narin; Sundh, John; Ekman, Martin; Dupont, Chris L; Yooseph, Shibu; Bergman, Birgitta; Ininbergs, Karolina

    2017-02-01

    Cyanobacteria are important phytoplankton in the Baltic Sea, an estuarine-like environment with pronounced north to south gradients in salinity and nutrient concentrations. Here, we present a metagenomic and -transcriptomic survey, with subsequent analyses targeting the genetic identity, phylogenetic diversity, and spatial distribution of Baltic Sea cyanobacteria. The cyanobacterial community constituted close to 12% of the microbial population sampled during a pre-bloom period (June-July 2009). The community was dominated by unicellular picocyanobacteria, specifically a few highly abundant taxa (Synechococcus and Cyanobium) with a long tail of low abundance representatives, and local peaks of bloom-forming heterocystous taxa. Cyanobacteria in the Baltic Sea differed genetically from those in adjacent limnic and marine waters as well as from cultivated and sequenced picocyanobacterial strains. Diversity peaked at brackish salinities 3.5-16 psu, with low N:P ratios. A shift in community composition from brackish to marine strains was accompanied by a change in the repertoire and expression of genes involved in salt acclimation. Overall, the pre-bloom cyanobacterial population was more genetically diverse, widespread and abundant than previously documented, with unicellular picocyanobacteria being the most abundant clade along the entire Baltic Sea salinity gradient. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock

    Directory of Open Access Journals (Sweden)

    Dhiraj ePaul

    2016-01-01

    Full Text Available Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world created in the basalt rocks. Although culture-dependent studies have been reported, the comprehensive understanding of microbial community composition and structure of Lonar Lake remain obscure. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet near consistent community composition. The predominance of bacterial phyla Proteobacteria (30% followed by Actinobacteria (24%, Firmicutes (11% and Cyanobacteria (5% was observed. Bacterial phylum Bacteroidetes (1.12%, BD1-5 (0.5%, Nitrospirae (0.41% and Verrucomicrobia (0.28% were detected as relatively minor populations in Lonar Lake ecosystem. Within Proteobacteria, Gammaproteobacteria represented the most abundant population (21-47% among all the sediments and as a minor population in water samples. Bacterial members Proteobacteria and Firmicutes were present significantly higher (p≥0.05 in sediment samples, whereas members of Actinobacteria, Candidate_division_TM7 and Cyanobacteria (p≥0.05 were significantly abundant in water samples. It was noted that compared to other hypersaline soda lakes, Lonar Lake samples formed one distinct cluster, suggesting a different microbial community composition and structure. The present study reports for the first time the different composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. Having better insight of community structure of this Lake ecosystem could be useful in understanding the microbial role in the geochemical cycle for future functional exploration of the unique hypersaline Lonar Lake.

  3. The Baltic Basin: structure, properties of reservoir rocks, and capacity for geological storage of CO2

    Directory of Open Access Journals (Sweden)

    Vaher, Rein

    2009-12-01

    Full Text Available Baltic countries are located in the limits of the Baltic sedimentary basin, a 700 km long and 500 km wide synclinal structure. The axis of the syneclise plunges to the southwest. In Poland the Precambrian basement occurs at a depth of 5 km. The Baltic Basin includes the Neoproterozoic Ediacaran (Vendian at the base and all Phanerozoic systems. Two aquifers, the lower Devonian and Cambrian reservoirs, meet the basic requirements for CO2 storage. The porosity and permeability of sandstone decrease with depth. The average porosity of Cambrian sandstone at depths of 80–800, 800–1800, and 1800–2300 m is 18.6, 14.2, and 5.5%, respectively. The average permeability is, respectively, 311, 251, and 12 mD. Devonian sandstone has an average porosity of 26% and permeability in the range of 0.5–2 D. Prospective Cambrian structural traps occur only in Latvia. The 16 largest ones have CO2 storage capacity in the range of 2–74 Mt, with total capacity exceeding 400 Mt. The structural trapping is not an option for Lithuania as the uplifts there are too small. Another option is utilization of CO2 for enhanced oil recovery (EOR. The estimated total EOR net volume of CO2 (part of CO2 remaining in the formation in Lithuania is 5.6 Mt. Solubility and mineral trapping are a long-term option. The calculated total solubility trapping capacity of the Cambrian reservoir is as high as 11 Gt of CO2 within the area of the supercritical state of carbon dioxide.

  4. A method of estimating the contents of components, structural and physical-mechanical properties of rocks

    Science.gov (United States)

    Kurmankozhayeva, A. A.; Azhibekova, A. S.

    2017-10-01

    The method for estimation of the mean value and the mode of the property becomes important with increasing the depth growth of mining operations and the complexity degree of excavation sites, the growth of number of cases, when geological information volume representing the level of values of structural and physical-mechanical properties is insufficient. The reliability of estimates is achieved through the involvement of different characteristics of the studied property. The developed method is based on calculation of prediction estimates of the mean value and the mode, which allow providing the accuracy of the estimates with incomplete information, and when the type of the studied property distribution is unknown.

  5. Mechanical and hydrological characterization of the near-field surrounding excavations in a geologic salt formation

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Clifford L. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-09-01

    The technical basis for salt disposal of nuclear waste resides in salt’s favorable physical, mechanical and hydrological characteristics. Undisturbed salt formations are impermeable. Upon mining, the salt formation experiences damage in the near-field rock proximal to the mined opening and salt permeability increases dramatically. The volume of rock that has been altered by such damage is called the disturbed rock zone (DRZ).

  6. Structurization of the Aral region soil by polycomplexes of humic acids salts

    Directory of Open Access Journals (Sweden)

    S. Tazhibaeva

    2012-12-01

    Full Text Available Structuring action of a sodium humate, polyethyleneimine and them complexes on the Aral region soil is investigated. It is shown that a sodium humate possess the big structuring action, rather than polyethyleneimine, however the effect of structurization increases at use of complexes a sodium humate – polyethyleneimine. Increase in structuring ability at introduction in soil of a mix the sodium-polymer humate is proved by occurrence of electrostatic contacts between amino groups of polyethyleneimine and carboxyl groups of a humate of sodium.

  7. Deformation mechanisms and melt nano-structures in experimentally deformed olivine-orthopyroxene rocks with low melt fractions

    NARCIS (Netherlands)

    Kloe, P.A. de

    2001-01-01

    The major part of the Earth’s upper mantle is thought to be solid, with some regions in the mantle where the rocks contain a small melt fraction These partially molten rocks are associated with important geological processes such as magma production beneath mid-oceanic ridges and may also play an

  8. Structural and Textural Characteristics of Selected Copper-Bearing Rocks as One of the Elements Aiding in the Assessment of Gasogeodynamic Hazard

    Science.gov (United States)

    Pajdak, Anna; Kudasik, Mateusz

    2017-06-01

    The characteristics of copper-bearing rocks that include the structural and textural parameters are an important factor determining a possible gas accumulation in those rocks. In September 2009, in the Rudna copper mine in Poland, an outburst of gases and dolomite occurred. The analysis of the outburst mass showed that one of the main causes of the outburst was the different structural properties such as high porosity and presence of gas in the pores. This paper presents data from the structural analysis of dolomite from the Polkowice-Sieroszowice copper mine and the Rudna copper mine. Seven rock samples from various areas of the mines were tested by the following methods: mercury porosimetry (MIP), low pressure gas adsorption (LPNA), scanning electron microscopy (SEM), computed microtomography (micro-CT). The SEM analyses of the rock samples allowed pores of various sizes and shapes to the observed. The porosity (MIP) of the dolomite changed in the range of 3-15%. The total micro and mesopore volume (LPNA) was from 0.002 cm3/g to 0.005 cm3/g. The macropore volume (MIP) was from 0.01 cm3/g to 0.06 cm3/g and the mean macropore diameter was from 0.09 μm to 0.18 μm. The dolomite samples varied in the surface area (LPNA) (0.7-1.5 m2/g) and the pore distribution. The structure of dolomite determines the possibility of the occurrence of gasogeodynamic phenomena and hence it is urgent that research be conducted into its changeability. To better understand the gasogeodynamic processes in copper-bearing rocks, it is necessary to constantly monitor and analyse in detail those areas that have different structural properties.

  9. Syntheses, structure and properties of Alkaline-earth metal salts of 4 ...

    Indian Academy of Sciences (India)

    ions, resulting in the formation of extended structures. This was well demonstrated for alkaline-earths by link- ... reactions of alkaline-earth carbonates with 4-npaH to structurally characterize the products. The results are ... few days were collected by filtration in ∼60% yield. The use of calcium carbonate, strontium carbonate.

  10. Physical Properties Data for Rock Salt

    Science.gov (United States)

    1981-01-01

    0-4 CC 0ca 00 O U)C . 0 -. ’d .4’ CO )4 0q CO COC 0 0 0Q 0-CO4CC CC CO. Cd 0 4J r- 4J. cc. cc0 4J. C -. S O X O to tn. edO Ul-H ceC COO CO COO C C...perfect as evidenced by the strong temperature dependence of reflectance in the exciton region and the And. tedecrcoappearance of spin- orbit split

  11. Environmental consequences of the Retsof Salt Mine roof collapse

    Science.gov (United States)

    Yager, Richard M.

    2013-01-01

    In 1994, the largest salt mine in North America, which had been in operation for more than 100 years, catastrophically flooded when the mine ceiling collapsed. In addition to causing the loss of the mine and the mineral resources it provided, this event formed sinkholes, caused widespread subsidence to land, caused structures to crack and subside, and changed stream flow and erosion patterns. Subsequent flooding of the mine drained overlying aquifers, changed the groundwater salinity distribution (rendering domestic wells unusable), and allowed locally present natural gas to enter dwellings through water wells. Investigations including exploratory drilling, hydrologic and water-quality monitoring, geologic and geophysical studies, and numerical simulation of groundwater flow, salinity, and subsidence have been effective tools in understanding the environmental consequences of the mine collapse and informing decisions about management of those consequences for the future. Salt mines are generally dry, but are susceptible to leaks and can become flooded if groundwater from overlying aquifers or surface water finds a way downward into the mined cavity through hundreds of feet of rock. With its potential to flood the entire mine cavity, groundwater is a constant source of concern for mine operators. The problem is compounded by the viscous nature of salt and the fact that salt mines commonly lie beneath water-bearing aquifers. Salt (for example halite or potash) deforms and “creeps” into the mined openings over time spans that range from years to centuries. This movement of salt can destabilize the overlying rock layers and lead to their eventual sagging and collapse, creating permeable pathways for leakage of water and depressions or openings at land surface, such as sinkholes. Salt is also highly soluble in water; therefore, whenever water begins to flow into a salt mine, the channels through which it flows increase in diameter as the surrounding salt dissolves

  12. INNER SALTS

    Science.gov (United States)

    been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a...Products that have been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a mesomeric inner salt . (Author)...Novel phosphonium and phosphorane compounds ere prepared by a variety of m hods from triphenylphosphine and methylene bromide. Products that have

  13. Density-dependent groundwater flow and dissolution potential along a salt diapir in the Transylvanian Basin, Romania

    Science.gov (United States)

    Zechner, Eric; Danchiv, Alex; Dresmann, Horst; Mocuţa, Marius; Huggenberger, Peter; Scheidler, Stefan; Wiesmeier, Stefan; Popa, Iulian; Zlibut, Alexandru; Zamfirescu, Florian

    2016-04-01

    Salt diapirs and the surrounding sediments are often involved in a variety of human activities, such as salt mining, exploration and storage of hydrocarbons, and also storage of radioactive waste material. The presence of highly soluble evaporitic rocks, a complex tectonic setting related to salt diapirsm, and human activities can lead to significant environmental problems, e.g. land subsidence, sinkhole development, salt cavern collapse, and contamination of water resources with brines. In the Transylvanian town of Ocna Mures. rock salt of a near-surface diapir has been explored since the Roman ages in open excavations, and up to the 20th century in galleries and with solution mining. Most recently, in 2010 a sudden collapse in the adjacent Quaternary unconsolidated sediments led to the formation of a 70-90m wide salt lake with a max. depth of 23m. Over the last 3 years a Romanian-Swiss research project has led to the development of 3D geological and hydrogeological information systems in order to improve knowledge on possible hazards related to uncontrolled salt dissolution. One aspect which has been investigated is the possibility of density-driven flow along permeable subvertical zones next to the salt dome, and the potential for subsaturated groundwater to dissolve the upper sides of the diapir. Structural 3D models of the salt diapir, the adjacent basin sediments, and the mining galleries, led to the development of 2D numerical vertical density-dependent models of flow and transport along the diapir. Results show that (1) increased rock permeability due to diapirsm, regional tectonic thrusting and previous dissolution, and (2) more permeable sandstone layers within the adjacent basin sediments may lead to freshwater intrusion towards the top of the diapir, and, therefore, to increased potential for salt dissolution.

  14. Hydrogeologic Framework of the Salt Basin, New Mexico and Texas

    Science.gov (United States)

    Ritchie, A. B.; Phillips, F. M.

    2010-12-01

    The Salt Basin is a closed drainage basin located in southeastern New Mexico (Otero, Chaves, and Eddy Counties), and northwestern Texas (Hudspeth, Culberson, Jeff Davis, and Presidio Counties), which can be divided into a northern and a southern system. Since the 1950s, extensive groundwater withdrawals have been associated with agricultural irrigation in the Dell City, Texas region, just south of the New Mexico-Texas border. Currently, there are three major applications over the appropriations of groundwater in the Salt Basin. Despite these factors, relatively little is known about the recharge rates and storage capacity of the basin, and the estimates that do exist are highly variable. The Salt Basin groundwater system was declared by the New Mexico State Engineer during 2002 in an attempt to regulate and control growing interest in the groundwater resources of the basin. In order to help guide long-term management strategies, a conceptual model of groundwater flow in the Salt Basin was developed by reconstructing the tectonic forcings that have affected the basin during its formation, and identifying the depositional environments that formed and the resultant distribution of facies. The tectonic history of the Salt Basin can be divided into four main periods: a) Pennsylvanian-to-Early Permian, b) Mid-to-Late Permian, c) Late Cretaceous, and d) Tertiary-to-Quaternary. Pennsylvanian-to-Permian structural features affected deposition throughout the Permian, resulting in three distinct hydrogeologic facies: basin, shelf-margin, and shelf. Permian shelf facies rocks form the primary aquifer within the northern Salt Basin, although minor aquifers occur in Cretaceous rocks and Tertiary-to-Quaternary alluvium. Subsequent tectonic activity during the Late Cretaceous resulted in the re-activation of many of the earlier structures. Tertiary-to-Quaternary Basin-and-Range extension produced the current physiographic form of the basin.

  15. Quantitative structure-interplanar spacing models based on montmorillonite modified with quaternary alkylammonium salts

    Science.gov (United States)

    Grigorev, V. Yu.; Grigoreva, L. D.; Salimov, I. E.

    2017-08-01

    Models of the quantitative structure-property relationship (QSPR) between the structure of 19 alkylammonium cations and the basal distances ( d 001) of Na+ montmorillonite modified with these cations are created. Seven descriptors characterizing intermolecular interaction, including new fractal descriptors, are used to describe the structure of the compounds. It is shown that equations obtained via multiple linear regression have good statistical characteristics, and the calculated d 001 values agree with the results from experimental studies. The quantitative contribution from hydrogen bonds to the formation of interplanar spacing in Na+ montmorillonite is found by analyzing the QSPR models.

  16. Recreating Rocks

    DEFF Research Database (Denmark)

    Posth, Nicole R

    2008-01-01

    Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers.......Nicole Posth and colleagues spent a month touring South African rock formations in their quest to understand the origin of ancient iron and silicate layers....

  17. Thermo-mechanical modelling of cyclic gas storage applications in salt caverns

    Science.gov (United States)

    Böttcher, Norbert; Watanabe, Norihiro; Görke, Uwe-Jens; Kolditz, Olaf; Nagel, Thomas

    2016-04-01

    Due to the growing importance of renewable energy sources it becomes more and more necessary to investigate energy storage potentials. One major way to store energy is the power-to-gas concept. Excessive electrical energy can be used either to produce hydrogen or methane by electrolysis or methanation or to compress air, respectively. Those produced gases can then be stored in artificial salt caverns, which are constructed in large salt formations by solution mining. In combination with renewable energy sources, the power-to-gas concept is subjected to fluctuations. Compression and expansion of the storage gases lead to temperature differences within the salt rock. The variations can advance several metres into the host rock, influencing its material behaviour, inducing thermal stresses and altering the creep response. To investigate the temperature influence on the cavern capacity, we have developed a numerical model to simulate the thermo-mechanical behaviour of salt caverns during cyclic gas storage. The model considers the thermodynamic behaviour of the stored gases as well as the heat transport and the temperature dependent material properties of the host rock. Therefore, we utilized well-known constitutive thermo-visco-plastic material models, implemented into the open source-scientific software OpenGeoSys. Both thermal and mechanical processes are solved using a finite element approach, connected via a staggered coupling scheme. The model allows the assessment of the structural safety as well as the convergence of the salt caverns.

  18. Estimation of groundwater flow directions and the tensor of hydraulic conductivity in crystalline massif rocks using information from surface structural geology and mining exploration boreholes

    Science.gov (United States)

    Florez, C.; Romero, M. A.; Ramirez, M. I.; Monsalve, G.

    2013-05-01

    In the elaboration of a hydrogeological conceptual model in regions of mining exploration where there is significant presence of crystalline massif rocks., the influence of physical and geometrical properties of rock discontinuities must be evaluated. We present the results of a structural analysis of rock discontinuities in a region of the Central Cordillera of Colombia (The upper and middle Bermellon Basin) in order to establish its hydrogeological characteristics for the improvement of the conceptual hydrogeological model for the region. The geology of the study area consists of schists with quartz and mica and porphyritic rocks, in a region of high slopes with a nearly 10 m thick weathered layer. The main objective of this research is to infer the preferential flow directions of groundwater and to estimate the tensor of potential hydraulic conductivity by using surface information and avoiding the use of wells and packer tests. The first step of our methodology is an analysis of drainage directions to detect patterns of structural controls in the run-off; after a field campaign of structural data recollection, where we compile information of strike, dip, continuity, spacing, roughness, aperture and frequency, we built equal area hydro-structural polar diagrams that indicate the potential directions for groundwater flow. These results are confronted with records of Rock Quality Designation (RQD) that have been systematically taken from several mining exploration boreholes in the area of study. By using all this information we estimate the potential tensor of hydraulic conductivity from a cubic law, obtaining the three principal directions with conductivities of the order of 10-5 and 10-6 m/s; the more conductive joint family has a NE strike with a nearly vertical dip.

  19. Investigation of genetic structure between deep and shallow populations of the southern Rock Lobster, Jasus edwardsii in Tasmania, Australia.

    Directory of Open Access Journals (Sweden)

    Erin M J Morgan

    Full Text Available The southern rock lobster, Jasus edwardsii, shows clear phenotypic differences between shallow water (red coloured and deeper water (pale coloured individuals. Translocations of individuals from deeper water to shallower waters are currently being trialled as a management strategy to facilitate a phenotypic change from lower value pale colouration, common in deeper waters, to the higher value red colouration found in shallow waters. Although panmixia across the J. edwardsii range has been long assumed, it is critical to assess the genetic variability of the species to ensure that the level of population connectivity is appropriately understood and translocations do not have unintended consequences. Eight microsatellite loci were used to investigate genetic differentiation between six sites (three shallow, three deep across southern Tasmania, Australia, and one from New Zealand. Based on analyses the assumption of panmixia was rejected, revealing small levels of genetic differentiation across southern Tasmania, significant levels of differentiation between Tasmania and New Zealand, and high levels of asymmetric gene flow in an easterly direction from Tasmania into New Zealand. These results suggest that translocation among Tasmanian populations are not likely to be problematic, however, a re-consideration of panmictic stock structure for this species is necessary.

  20. Formation of an Anti-Core–Shell Structure in Layered Oxide Cathodes for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hanlei [Materials; amp, Department; NorthEast; Omenya, Fredrick [NorthEast; Whittingham, M. Stanley [NorthEast; Wang, Chongmin [Environmental; Zhou, Guangwen [Materials; amp, Department; NorthEast

    2017-10-20

    The layered → rock-salt phase transformation in the layered dioxide cathodes for Li-ion batteries is believed to result in a “core-shell” structure of the primary particles, in which the core region maintains as the layered phase while the surface region undergoes the phase transformation to the rock-salt phase. Using transmission electron microscopy, here we demonstrate the formation of an “anti-core-shell” structure in cycled primary particles with a formula of LiNi0.80Co0.15Al0.05O2, in which the surface and subsurface regions remain as the layered structure while the rock-salt phase forms as domains in the bulk with a thin layer of the spinel phase between the rock-salt core and the skin of the layered phase. Formation of this anti-core-shell structure is attributed to the oxygen loss at the surface that drives the migration of oxygen from the bulk to the surface, thereby resulting in localized areas of significantly reduced oxygen levels in the bulk of the particle, which subsequently undergoes the phase transformation to the rock-salt domains. The formation of the anti-core-shell rock-salt domains is responsible for the reduced capacity, discharge voltage and ionic conductivity in cycled cathode.

  1. Marine ecoregion and Deepwater Horizon oil spill affect recruitment and population structure of a salt marsh snail

    Science.gov (United States)

    Pennings, Steven C.; Zengel, Scott; Oehrig, Jacob; Alber, Merryl; Bishop, T. Dale; Deis, Donald R.; Devlin, Donna; Hughes, A. Randall; Hutchens, John J.; Kiehn, Whitney M.; McFarlin, Caroline R.; Montague, Clay L.; Powers, Sean P.; Proffitt, C. Edward; Rutherford, Nicolle; Stagg, Camille L.; Walters, Keith

    2016-01-01

    Marine species with planktonic larvae often have high spatial and temporal variation in recruitment that leads to subsequent variation in the ecology of benthic adults. Using a combination of published and unpublished data, we compared the population structure of the salt marsh snail, Littoraria irrorata, between the South Atlantic Bight and the Gulf Coast of the United States to infer geographic differences in recruitment and to test the hypothesis that the Deepwater Horizon oil spill led to widespread recruitment failure of L. irrorata in Louisiana in 2010. Size-frequency distributions in both ecoregions were bimodal, with troughs in the distributions consistent with a transition from sub-adults to adults at ~13 mm in shell length as reported in the literature; however, adult snails reached larger sizes in the Gulf Coast. The ratio of sub-adults to adults was 1.5–2 times greater in the South Atlantic Bight than the Gulf Coast, consistent with higher recruitment rates in the South Atlantic Bight. Higher recruitment rates in the South Atlantic Bight could contribute to higher snail densities and reduced adult growth in this region. The ratio of sub-adults to adults in Louisiana was lower in 2011 than in previous years, and began to recover in 2012–2014, consistent with widespread recruitment failure in 2010, when large expanses of spilled oil were present in coastal waters. Our results reveal an important difference in the ecology of a key salt marsh invertebrate between the two ecoregions, and also suggest that the Deepwater Horizon oil spill may have caused widespread recruitment failure in this species and perhaps others with similar planktonic larval stages.

  2. Stress and subsidy effects of seagrass wrack duration, frequency, and magnitude on salt marsh community structure.

    Science.gov (United States)

    Hanley, Torrance C; Kimbro, David L; Hughes, Anne Randall

    2017-07-01

    Environmental perturbations can strongly affect community processes and ecosystem functions by acting primarily as a subsidy that increases productivity, a stress that decreases productivity, or both, with the predominant effect potentially shifting from subsidy to stress as the overall intensity of the perturbation increases. While perturbations are often considered along a single axis of intensity, they consist of multiple components (e.g., magnitude, frequency, and duration) that may not have equivalent stress and/or subsidy effects. Thus, different combinations of perturbation components may elicit community and ecosystem responses that differ in strength and/or direction (i.e., stress or subsidy) even if they reflect a similar overall perturbation intensity. To assess the independent and interactive effects of perturbation components, we experimentally manipulated the magnitude, frequency, and duration of wrack deposition, a common stress-subsidy in a variety of coastal systems. The effects of wrack perturbation on salt marsh community and ecosystem properties were assessed both in the short-term (at the end of a 12-week experimental manipulation) and long-term (6 months after the end of the experiment). In the short-term, plants and associated benthic invertebrates exhibited primarily stress-based responses to wrack perturbation. The extent of these stress effects on density of the dominant plant Spartina alterniflora, total plant percent cover, invertebrate abundance, and sediment oxygen availability were largely determined by perturbation duration. Yet, higher nitrogen content of Spartina, which indicates a subsidy effect of wrack, was influenced primarily by perturbation magnitude in the short-term. In the longer term, perturbation magnitude determined the extent of both stress and subsidy effects of wrack perturbation, with lower subordinate plant percent cover and snail density, and higher Spartina nitrogen content in high wrack biomass treatments

  3. Preparation and X-ray structures of complexes of 18-membered crown ethers with polyfunctional guests: Urea and (O-alkyliso)uronium salts

    NARCIS (Netherlands)

    Uiterwijk, Jos W.H.M.; van Hummel, G.J.; Harkema, Sybolt; Aarts, Veronika M.L.J.; Daasvatn, Kari; Geevers, Jan; den Hertog, H.J.; Reinhoudt, David

    1988-01-01

    The preparation and X-ray structure determinations of six complexes of urea and (O-n-butyliso)uronium salts with crown ethers are presented. Urea forms isostructural 5:1 adducts with 18-crown-6 (1) and aza-18-crown-6 (2), in which two urea molecules are each hydrogen bonded to two neighbouring

  4. Structural observations and U-Pb mineral ages from igneous rocks at the Archaean-Palaeoproterozoic boundary in the Salahmi Schist Belt, central Finland: constraints on tectonic evolution

    Directory of Open Access Journals (Sweden)

    Pietikäinen, K.

    1999-06-01

    Full Text Available The study area in Vieremä, central Finland, contains part of Archaean-Palaeoproterozoic boundary. In the east, the area comprises Archaean gneiss and the Salahmi Schist Belt. The rocks of the schist belt are turbiditic metagreywackes, with well-preserved depositional structures, occurring as Proterozoic wedge-shaped blocks, and staurolite schists, the latter representing higher-strained and metamorphosed equivalents of the metagreywackes. In the west of the area there is an Archaean gneiss block, containing strongly elongated structures, and deformed Svecofennian supracrustal rocks, which are cut by deformed granitoids. These are juxtaposed with the schist belt. The boundaries of these tectonometamorphic blocks are narrow, highly strained mylonites and thrust zones. The metamorphic grade of the supracrustal rocks increases from east to west, the increase being stepwise across the mylonitic block boundaries. The rocks are more deformed from east to west with younger structures overprinting. In the staurolite schists of the Salahmi Schist Belt, the most prominent structure is a lineation (L2 that overprints the bedding and axial plane foliation. In Sorronmäki quarry, at the western boundary of the schist belt, this Palaeoproterozoic lineation dominates all the structures in tonalite gneiss, which gives a U-Pb age of 2731±6 Ma. Southeast of the quarry, at the same boundary, the Salahmi schists have been overturned towards the northeast, suggesting that the Archaean gneiss at Sorronmäki has been thrust towards the northeast over these rocks. In the western part of the study area, the Leppikangas granodiorite that intrudes the Svecofennian supracrustal rocks gives a U-Pb age of 1891+6 Ma. In the granodiorite, a strong lineation formed by the intersection of two foliations, which maybe L2 is associated with thrusting towards the northeast. The monazite age of the Archaean Sorronmäki gneiss is 1817+3 Ma, and the titanite age of the Svecofennian

  5. Genesis of Tuzla salt basin

    Science.gov (United States)

    Sušić, Amir; Baraković, Amir; Komatina, Snezana

    2017-04-01

    Salt is condition for the survival of the human race, and holds a special place in the exploitation of mineral resources. It is the only mineral raw material used in direct feeding, and therefore has its own specialty. Salt is a crystalline mineral that is found in seawater, as well as in underground areas where it is formed by deposition of salt sediments. Occurrences of salt water near Tuzla and Gornja Tuzla have been known since the time of the Romans as "ad salinas". The name itself connects Bosnia with its richness in salt, because the word barefoot, which is preserved in a north-Albanian dialect, means a place where boiling salted water are obtained. At the time of the Bosnian kings, these regions are named Soli, which is in connection with occurences of saline sources. Geological studies of rock salt in the area of Tuzla basin are practically began after the annexation of Bosnia and Herzegovina by the Austro-Hungarian Empire, in the period from 1878 to 1918. Geological field work was conducted K. Paul, H. Hefer, E. Tietze and F. Katzer. Monomineral deposit of rock salt Tetima is made of halite and anhydrite mixed with marl belt, while the bay of salt in Tuzla is polymineral and contains a considerable amount of thenardite (Na2SO4) and rare minerals: nortupit, nahkolit, bradleit, probertit, glauberite and others. Both salt deposits were created as a product of chemical sedimentation in the lower Miocene Badenian sediments. The main objective of this paper is to show the genesis of the deposits and the spatial and genetic connection. In addition, genesis of geological research in the areas of Tuzla basin will be presented.

  6. Art Rocks with Rock Art!

    Science.gov (United States)

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  7. Evaluation of the Influence of Salt Treatment on the Structure of ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    First, the physical method consists of the pyrolysis of the precursor material and gasification of the resulting char in steam or carbon dioxide. The formation of the porous structure is achieved by elimination of a large amount of internal carbon mass. High porosity carbons can be obtained only at a high degree of char burn off.

  8. Evaluation of the quality, thermal maturity and distribution of potential source rocks in the Danish part of the Norwegian-Danish Basin

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H.I.; Nielsen, L.H.; Bojesen-Koefoed, J.A.; Mathiesen, A.; Kristensen, L.; Dalhoff, F. (Geological Survey of Denmark and Greenland, Copenhagen (Denmark))

    2008-11-15

    The results of hydrocarbon exploration in the Norwegian-Danish Basin in northern Denmark over the past 70 years have been largely disappointing. Although the principal components of a viable petroleum system are in place, the existence of effective source rocks has been questioned. This bulletin presents an evaluation of the quality, extent and thermal maturity of potential source rocks within the Palaeozoic-Mesozoic succession of the Danish part of the Norwegian-Danish Basin. A range of potential source rocks are documented, of which those in the Jurassic lowermost Cretaceous are judged the most promising. Over much of the basin, these Mesozoic source rocks have experienced insufficient burial to have produced hydrocarbons--the source rocks are regionally immature or only marginally mature. Local hydrocarbon kitchens with mature source rocks may be present in the centre of the basin, however, associated with salt structures and minor grabens. (au)

  9. Rock Physics

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2017-01-01

    Rock physics is the discipline linking petrophysical properties as derived from borehole data to surface based geophysical exploration data. It can involve interpretation of both elastic wave propagation and electrical conductivity, but in this chapter focus is on elasticity. Rock physics is based...... on continuum mechanics, and the theory of elasticity developed for statics becomes the key to petrophysical interpretation of velocity of elastic waves. In practice, rock physics involves interpretation of well logs including vertical seismic profiling (VSP) and analysis of core samples. The results...

  10. Salt and divalent cations affect the flexible nature of the natural beaded chromatin structure

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Griffith, J

    1977-01-01

    A natural chromatin containing simian virus 40 (SV40) DNA and histone has been used to examine changes in chromatin structure caused by various physical and chemical treatments. We find that histone H1 depleted chromatin is more compact in solutions of 0.15M NaCl or 2 mM MgCl2 than in 0.01 M NaCl...

  11. Ionic Conductivity and Assembled Structures of Imidazolium Salt-Based Block Copolymers with Thermoresponsive Segments

    OpenAIRE

    Kazuhiro Nakabayashi; Yu Sato; Yuta Isawa; Chen-Tsyr Lo; Hideharu Mori

    2017-01-01

    Ionic liquid-based block copolymers composed of ionic (solubility tunable)–nonionic (water-soluble and thermoresponsive) segments were synthesized to explore the relationship between ionic conductivity and assembled structures. Three block copolymers, comprising poly(N-vinylimidazolium bromide) (poly(NVI-Br)) as a hydrophilic poly(ionic liquid) segment and thermoresponsive poly(N-isopropylacrylamide) (poly(NIPAM)), having different compositions, were initially prepared by RAFT polymerization....

  12. Syn-depositional deformation of the late Zechstein evaporites on the Friesland Platform capturing the early life of a salt giant

    Science.gov (United States)

    Raith, Alexander; Urai, Janos L.

    2017-04-01

    It is often thought that the deposition of the Zechstein of NE Netherlands took place in a tectonically quiet environment and experienced complex deformation later. While early deformation structures were mostly overprinted by later salt flow, we focused on the Friesland platform, which was only weakly affected by later salt tectonics. In this study, we analyzed the present structures and deformation history with the help of 3D seismic and well data. Results show that the ZIII AC stringer contains (i) a regional network of thicker zones (TZ), and (ii) a network of zones where the stringers are absent, interpreted as ruptures formed by salt flow. These ruptures in many cases mark a clear vertical shift of the sub-horizontal stringer. Mapping of the base salt and top salt reflectors shows that the ruptures often coincide with faults at base Zechstein level, and that the thickness of the post-stringer rock salt layers is thicker where the stringers are lower, while the total salt thickness is relatively constant. We interpret these structures as evidence for movement on the faults at base salt, during Zechstein times, suggesting that late Zechstein deposition was syn-tectonic. Spatial correlation of TZ and these syn-depositional depressions also indicate syn-depositional or very early development of thickening in the ZIII-AC stringer. They are interpreted to reflect the interaction of anhydrite dewatering pathways and dissolution of salt below fracture systems in the stringer localized by the active shear zones in the salt.

  13. Long Term Analysis of Deformations in Salt Mines: Kłodawa Salt Mine Case Study, Central Poland

    Science.gov (United States)

    Cała, Marek; Tajduś, Antoni; Andrusikiewicz, Wacław; Kowalski, Michał; Kolano, Malwina; Stopkowicz, Agnieszka; Cyran, Katarzyna; Jakóbczyk, Joanna

    2017-09-01

    Located in central Poland, the Kłodawa salt dome is 26 km long and about 2 km wide. Exploitation of the dome started in 1956, currently rock salt extraction is carried out in 7 mining fields and the 12 mining levels at the depth from 322 to 625 meters below sea level (m.b.s.l.). It is planned to maintain the mining activity till 2052 and extend rock salt extraction to deeper levels. The dome is characterised by complex geological structure resulted from halokinetic and tectonic processes. Projection of the 3D numerical analysis took into account the following factors: mine working distribution within the Kłodawa mine (about 1000 rooms, 350 km of galleries), complex geological structure of the salt dome, complicated structure and geometry of mine workings and distinction in rocks mechanical properties e.g. rock salt and anhydrite. Analysis of past mine workings deformation and prediction of future rock mass behaviour was divided into four stages: building of the 3D model (state of mine workings in year 2014), model extension of the future mine workings planned for extraction in years 2015-2052, the 3D model calibration and stability analysis of all mine workings. The 3D numerical model of Kłodawa salt mine included extracted and planned mine workings in 7 mining fields and 14 mining levels (about 2000 mine workings). The dimensions of the model were 4200 m × 4700 m × 1200 m what was simulated by 33 million elements. The 3D model was calibrated on the grounds of convergence measurements and laboratory tests. Stability assessment of mine workings was based on analysis of the strength/stress ratio and vertical stress. The strength/stress ratio analysis enabled to indicate endangered area in mine workings and can be defined as the factor of safety. Mine workings in state close to collapse are indicated by the strength/stress ratio equals 1. Analysis of the vertical stress in mine workings produced the estimation of current state of stress in comparison to initial

  14. 4D modeling of salt-sediment interactions during diapir evolution

    Energy Technology Data Exchange (ETDEWEB)

    Callot, J.P.; Rondon, D.; Letouzey, J. [IFP, Rueil Malmaison (France); Krajewski, P. [Gaz de France-PEG, Lingen (Germany); Rigollet, C. [Gaz de France, St. Denis la Plaine (France)

    2007-09-13

    We performed sand/silicon models imaged with X-ray tomography and reconstructed by 3D geomodelling for the study of (1) the interaction between host rock and salt diapir during diapir growth, and (2) the evolution of intra salt brittle rocks during diapir ascent. X-ray tomography is a non destructive imaging technique which allows us to follow the 4D evolution of the analogue model. Salt is modelled by Newtonian silicone putty and the internal rock layer, as well as the sedimentary host rock, by a granular Mohr-Coulomb material, generally coryndon. The analogue models are then compared to natural examples, the evolution of which is obtained through 3D restoration of the structures. (1) A 4D evolutionary scenario for a salt diapir development was originally proposed by Trusheim (1960) and discussed later on by Vendeville (1999) among others (Ge et al., 1997; Zirngast et al., 1996). This scenario is reproduced through analogue models to test the relative importance of (1) extensional tectonics, (2) sediment progradations, and (3) source layer depletion and rim-syncline touchdown, in the evolution of a diapir. The comparison of our results with the restored natural analogue shows that the main parameter remains (1) the rim-syncline touchdown and (2) the unloading of the diapir due to erosion. The latter accounts for a drop in strength necessary to allow for the flank rotation and down building of the diapir. Extensional stresses and sediment progradations will also amplify the halokinesis. (2) Salt diapirs from the Middle East or in Southern Permian Basin petroleum province show exotic blocks at outcrop and in salt mines, known as 'stringers' in subsurface data, usually composed of anhydrite, dolomite, marls or carbonates. These stringers, which constitute major structures inside the salt diapir, can reach a few km in size and originate from pre-existing brittle rock layers embedded in the salt layer. Stringers of the Ara carbonate within the Precambrian

  15. Crystal Structures of Two 1,4-Diamino-1,2,4-triazolium Salts

    Directory of Open Access Journals (Sweden)

    Gerhard Laus

    2016-01-01

    Full Text Available Bis(1,4-diamino-1,2,4-triazolium sulfate (1 was obtained from the corresponding chloride by ion metathesis using Ag2SO4. Further metathesis with barium 5,5′-azotetrazolate yielded bis(1,4-diamino-1,2,4-triazolium 5,5′-azotetrazolate (2. Numerous NH···N and NH···O interactions were identified in the crystal structures of 1 and 2. Both compounds undergo exothermal decomposition upon heating.

  16. First principles calculations of the ground state properties and structural phase transformation in YN

    CERN Document Server

    Mancera, L; Takeuchi, N

    2003-01-01

    We have studied the structural and electronic properties of YN in rock salt (sodium chloride), caesium chloride, zinc blende and wurtzite structures using first-principles total energy calculations. Rock salt is the calculated ground state structure with a = 4.93 A, B sub 0 = 157 GPa. The experimental lattice constant is a = 4.877 A. There is an additional local minimum in the wurtzite structure with total energy 0.28 eV/unit cell higher. At high pressure (approx 138 GPa), our calculations predict a phase transformation from a NaCl to a CsCl structure.

  17. Inferred vs realized patterns of gene flow: an analysis of population structure in the Andros Island Rock Iguana.

    Directory of Open Access Journals (Sweden)

    Giuliano Colosimo

    Full Text Available Ecological data, the primary source of information on patterns and rates of migration, can be integrated with genetic data to more accurately describe the realized connectivity between geographically isolated demes. In this paper we implement this approach and discuss its implications for managing populations of the endangered Andros Island Rock Iguana, Cyclura cychlura cychlura. This iguana is endemic to Andros, a highly fragmented landmass of large islands and smaller cays. Field observations suggest that geographically isolated demes were panmictic due to high, inferred rates of gene flow. We expand on these observations using 16 polymorphic microsatellites to investigate the genetic structure and rates of gene flow from 188 Andros Iguanas collected across 23 island sites. Bayesian clustering of specimens assigned individuals to three distinct genotypic clusters. An analysis of molecular variance (AMOVA indicates that allele frequency differences are responsible for a significant portion of the genetic variance across the three defined clusters (Fst =  0.117, p<<0.01. These clusters are associated with larger islands and satellite cays isolated by broad water channels with strong currents. These findings imply that broad water channels present greater obstacles to gene flow than was inferred from field observation alone. Additionally, rates of gene flow were indirectly estimated using BAYESASS 3.0. The proportion of individuals originating from within each identified cluster varied from 94.5 to 98.7%, providing further support for local isolation. Our assessment reveals a major disparity between inferred and realized gene flow. We discuss our results in a conservation perspective for species inhabiting highly fragmented landscapes.

  18. Use of overburden rocks from open-pit coal mines and waste coals of Western Siberia for ceramic brick production with a defect-free structure

    Science.gov (United States)

    Stolboushkin, A. Yu; Ivanov, A. I.; Storozhenko, G. I.; Syromyasov, V. A.; Akst, D. V.

    2017-09-01

    The rational technology for the production of ceramic bricks with a defect-free structure from coal mining and processing wastes was developed. The results of comparison of physical and mechanical properties and the structure of ceramic bricks manufactured from overburden rocks and waste coal with traditional for semi-dry pressing mass preparation and according to the developed method are given. It was established that a homogeneous, defect-free brick texture obtained from overburden rocks of open-pit mines and waste coal improves the quality of ceramic wall materials produced by the method of compression molding by more than 1.5 times compared to the brick with a traditional mass preparation.

  19. Engineering aspects of the salt diapirs; Aspectos de engenharia do diapirismo de sal

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Ricardo Garske [Petroleo Brasileiro S.A. (PETROBRAS/CENPES), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento

    2012-07-01

    From the viewpoint of drilling and well bore integrity, salt presents new significant challenges of geomechanical nature. Saline rocks have a characteristic feature of deforming slowly over time, phenomenon known as creep. Salt bodies affect present geomechanical environment by change of the local stress state. This is due mainly by the fact that salt is not able to withstand deviatoric stresses. In particular, changes in stresses can happen in the vicinity of salt bodies which are of enough magnitude to affect the fracture gradient and well bore stability, the salt-sediment interface region being the one which concentrates the majority of drilling difficulties. During the drilling of an evaporitic section in an oil well, the accumulated strain over a time period can be enough to restrain the passing of the drilling column and even stuck it in an irretrievable way. After the well has been cased, the salt creep can manifest undesirably causing, in some situations, constraints to passing tools along the casing or even causing its rupture by collapse. In order to address this issue, this work seeks to assess how saline structures affect the present geomechanics environment through changes in the local state of stresses, in addition to the consequences to well bore drilling arising from this modified stress state inside and close to the salt. A historic summary is also presented concerning operational problems in well bore drilling in regions influenced by salt movement. (author)

  20. Structural and Thermal Adaptations in Polyaniline Emeraldine Salt Composites with Ferrous Oxalate

    Science.gov (United States)

    Bhardwaj, Ekta; Prasher, Sangeeta; Kumar, Mukesh; Kaur, Updesh; Sahni, Manju

    2017-02-01

    We report on the modifications induced in the structural, optical and electrical properties of polyaniline onto the ferrous oxalate composites of the polymer. Fourier transform infrared spectra, x-ray diffraction patterns and digital thermal analysis studies have been employed to associate the modifications induced in the polymer due to the enhanced dopant concentration. The studies revealed that the cation dopant may bond with the lone pair of N- of the polymer, making the polymer stretched and crystalline. The polymer has been greatly influenced at the maximum dopant concentration. It seems that the dopant has modified the initial conformation of the polymer, whereas the main chain has remained unchanged. The thermal studies also indicate that the polymer has been stabilized to a greater extent on doping.

  1. Rock doughnut and pothole structures of the Clarens Fm. Sandstone in the Karoo Basin, South Africa: Possible links to Lower Jurassic fluid seepage

    Science.gov (United States)

    Grab, Stefan; Svensen, Henrik

    2011-08-01

    South Africa has a wealth of sandstone landforms, yet many of these have not been examined in detail to expand knowledge on their morphology and process origins. Here we present data on primary morphological statistics, rock hardness, surface roughness and petrographic investigations of rock doughnuts and associated pothole structures in Golden Gate Highlands National Park (GGHNP) and in the Witkop III complex, with the aim of using such data and field observations to argue their likely origins. Schmidt hammer R-values indicate consistently harder doughnut rims (mean = 48.7; n = 150) than the enclosed potholes (mean = 37.8; n = 150) and surrounding sandstone platform (mean = 39.7; n = 250). The petrography of Clarens Fm. Sandstone shows that the typical whitish sandstone is affected by intense chemical weathering. Pothole rims and the irregular reddish crust typical of the Witkop III outcrops show a secondary cementation by microcrystalline silica. Although preservation of old land surfaces is difficult to prove, small and circular pipe structures filled with calcite-cemented sand are present locally surrounding the Witkop III hydrothermal complex, and represent conduits for fluidized sand. Based on the morphologies of the Witkop III summit with the associated potholes and pipes, we hypothesize that they are remnants of morphologies created by Jurassic fluid seepage, with a superimposed and secondary silica cementation. Given that fluidization structures evidently occur in Clarens Fm. Sandstone, as is the case at Witkop, such mechanisms could possibly have contributed to the observed rock doughnut structures elsewhere on Clarens Fm. Sandstones, such as at the GGHNP where the rock doughnut morphological attributes are typical to landforms originating from fluid venting.

  2. Seasonal changes in community composition and trophic structure of fish populations of five salt marshes along the Essex coastline, United Kingdom

    Science.gov (United States)

    Green, Benjamin C.; Smith, David J.; Earley, Sarah E.; Hepburn, Leanne J.; Underwood, Graham J. C.

    2009-11-01

    European intertidal salt marshes are important nursery sites for juvenile fish and crustaceans. Due to the increasing threat of habitat loss, the seasonal changes of salt marsh fish communities need to be understood in order to appreciate the ecological and economic importance of the saltmarsh habitat. This study was the first in Great Britain to investigate the seasonal changes of salt marsh fish communities and the variation in community structure between closely located marsh habitats. Between February 2007 and March 2008, five marshes on three estuaries of the Essex coastline were sampled using flume nets to block off intertidal creeks at high tide. Fourteen fish species were caught. The community overall was dominated by three species that made up 91.6% of the total catch: the common goby Pomatoschistus microps (46.2% of the total catch), juvenile herring Clupea harengus (24.3%), and juvenile and larval sea bass Dicentrarchus labrax (21.2%). Cluster analysis demonstrated clear seasonal patterns, with some community structures unique to specific marshes or estuaries. The marsh fish community shifts from a highly diverse community during spring, to a community dominated by D. labrax and P. microps in autumn, and low diversity during winter months. Gravimetric stomach content analysis of fish community identified three main trophic guilds; macroinvertivores, planktivores and omnivores. The macroinvertivore feeding guild contained D. labrax and P. microps, the two most frequently occurring species. This investigation demonstrates the importance of British salt marshes as nursery habitats for commercial fish species.

  3. Double salt crystal structure of hexasodium hemiundecahydrogen α-hexamolybdoplatinate(IV heminonahydrogen α-hexamolybdoplatinate(IV nonacosahydrate: dihydrogen disordered-mixture double salt

    Directory of Open Access Journals (Sweden)

    Hea-Chung Joo

    2015-10-01

    Full Text Available The title double salt containing two distinct, differently protonated hexamolybdoplatinate(IV polyanions, Na6[H5.5α-PtMo6O24][H4.5α-PtMo6O24]·29H2O, has been synthesized by a hydrothermal reaction at ca pH 1.80. The positions of the H atoms in the polyanions were established from difference Fourier maps and confirmed by the interpolyanion hydrogen bonds, bond-distance elongation, and bond-valence sum (BVS calculations. The fractional numbers of H atoms in each polyanion are required for charge balance and in order to avoid unrealistically short H...H distances in the interpolyanion hydrogen bonds. Considering the disorder, the refined formula of the title polyanion, {[H5.5α-PtMo6O24]; polyanion (A and [H4.5α-PtMo6O24]; polyanion (B}6−, can be rewritten as a set of real formula, viz. {[H6α-PtMo6O24]; polyanion (A. [H4α-PtMo6O24]; polyanion (B}6− and {[H5α-PtMo6O24]; polyanion (A. [H5α-PtMo6O24]; polyanion (B}6−. The polyanion pairs both form dimers of the same formula, viz. {[H10α-Pt2Mo12O48]}6− connected by seven interpolyanion O—H...O hydrogen bonds.

  4. Study on the Reinforcement Measures and Control Effect of the Surrounding Rock Stability Based on the Shield Tunneling Under Overpass Structure

    Directory of Open Access Journals (Sweden)

    Qian-cheng Fang

    2016-04-01

    Full Text Available To study the stability of surrounding rocks for shield tunneling under overpass structures and the safety of existing bridge structures, a practical example of the method was cited through a shield tunneling project under the overpass structure between K1+110 and K1+700 on Line 2 of Shenyang Subway, China. The sub-area reinforcement was proposed according to surrounding rock deformation characteristics during shield tunnel excavation. The bridge foundation (i.e., the clear spacing to the shield tunnel is less than 2 m was reinforced by steel support, the bridge foundation (the clear spacing is about 2~7m used “jet grouting pile” reinforcement, whereas the bridge foundation (the clear spacing is greater than 7 m did not adopt any reinforcement measures for the moment. For this study, the mean value and material heterogeneity models were established to evaluate the reinforcement effect from several aspects, such as surrounding rock deformation, plastic zone development, and safety factor. The simulation results were consistent with those of field monitoring. After reinforcement, the maximum deformation values of the surrounding rock were reduced by 4.9%, 12.2%, and 48.46%, and the maximum values of surface subsidence were decreased by 5.6%, 72.2%, and 88.64%. By contrast, the overall safety factor was increased by 4.1%, 55.46%, and 55.46%. This study posited that this reinforcement method can be adopted to solve tunnel construction problems in engineering-geological conditions effectively. References for evaluating similar projects are provided.

  5. Thermodynamics and structure of inclusion compounds of tauro- and glyco-conjugated bile salts and beta-cyclodextrin

    DEFF Research Database (Denmark)

    Holm, Rene; Shi, Wei; Andersen Hartvig, Rune

    2009-01-01

    The interaction between natural beta-cyclodextrin and bile salts common in rat, dog and man, taurocholate, tauro-beta-muricholate, taurodeoxycholate, taurochenodeoxycholate, glycocholate, glycodeoxycholate and glycochenodeoxycholate, was studied using isothermal titration calorimetry, and the str......The interaction between natural beta-cyclodextrin and bile salts common in rat, dog and man, taurocholate, tauro-beta-muricholate, taurodeoxycholate, taurochenodeoxycholate, glycocholate, glycodeoxycholate and glycochenodeoxycholate, was studied using isothermal titration calorimetry...

  6. Source rock

    Directory of Open Access Journals (Sweden)

    Abubakr F. Makky

    2014-03-01

    Full Text Available West Beni Suef Concession is located at the western part of Beni Suef Basin which is a relatively under-explored basin and lies about 150 km south of Cairo. The major goal of this study is to evaluate the source rock by using different techniques as Rock-Eval pyrolysis, Vitrinite reflectance (%Ro, and well log data of some Cretaceous sequences including Abu Roash (E, F and G members, Kharita and Betty formations. The BasinMod 1D program is used in this study to construct the burial history and calculate the levels of thermal maturity of the Fayoum-1X well based on calibration of measured %Ro and Tmax against calculated %Ro model. The calculated Total Organic Carbon (TOC content from well log data compared with the measured TOC from the Rock-Eval pyrolysis in Fayoum-1X well is shown to match against the shale source rock but gives high values against the limestone source rock. For that, a new model is derived from well log data to calculate accurately the TOC content against the limestone source rock in the study area. The organic matter existing in Abu Roash (F member is fair to excellent and capable of generating a significant amount of hydrocarbons (oil prone produced from (mixed type I/II kerogen. The generation potential of kerogen in Abu Roash (E and G members and Betty formations is ranging from poor to fair, and generating hydrocarbons of oil and gas prone (mixed type II/III kerogen. Eventually, kerogen (type III of Kharita Formation has poor to very good generation potential and mainly produces gas. Thermal maturation of the measured %Ro, calculated %Ro model, Tmax and Production index (PI indicates that Abu Roash (F member exciting in the onset of oil generation, whereas Abu Roash (E and G members, Kharita and Betty formations entered the peak of oil generation.

  7. Scattering from Rock and Rock Outcrops

    Science.gov (United States)

    2015-09-30

    Scattering from Rock and Rock Outcrops Derek R. Olson The Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State...In terms of target detection and classification, scattering from exposed rock on the seafloor, (i.e., individual rocks and rock outcrops) presents...levels, and other statistical measures of acoustic scattering from rocks and rock outcrops is therefore critical. Unfortunately (and curiously

  8. Granular Salt Summary: Reconsolidation Principles and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stuehrenberg, Dieter

    2014-07-01

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  9. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...... sediments, the diapir extruded an overhang. Using the asymmetric Klodawa Salt Structure (KSS) in central Poland as a prototype, a series of analogue models were carried out to investigate the evolution history and salt supply driven by asymmetric differential loading. During extension of the model, a daipir...

  10. Preparation and Crystal Structure of 5-Azido-3-nitro-1H-1,2,4-triazole, Its Methyl Derivative and Potassium Salt

    Directory of Open Access Journals (Sweden)

    Thomas M. Klapötke

    2012-04-01

    Full Text Available 5-Azido-3-nitro-1H-1,2,4-triazole, its methyl derivative and potassium salt were synthesized and characterized by various spectroscopic methods. The crystal structures were determined by low temperature single crystal X-ray diffraction. The interactions between the molecules or ions were analyzed and discussed. Furthermore, all compounds were tested according to BAM (Bundesanstalt für Materialforschung und -prüfung methods.

  11. Measurement of nucleosomal structural stability distribution along individual giant native chromatin fibers at different salt concentrations using a microfluidic channel with microstructures.

    Science.gov (United States)

    Mori, Hiroki; Okeyo, Kennedy O; Washizu, Masao; Oana, Hidehiro

    2017-10-12

    Identifying the distribution of the higher-order structure of chromatin-a complex of DNA and proteins-along genomic DNA can clarify the mechanisms underlying cell development and differentiation, including gene regulation. However, genome-wide analysis of this distribution at the single-cell level remains an outstanding challenge. Here, we report a new method for investigating changes in and the distribution of higher-order structures along native chromatin fibers-ranging over 100 μm in length-relative to changes in salt concentration. To this end, we developed a microfluidic platform that enabled us to isolate chromatin fibers from single cells and tether them to microstructures in a microfluidic channel without fragmentation. The fibers were then exposed to varying concentrations of salt solution under microscopic observation. As a result, the fibers were non-uniformly elongated by up to 2-3 times along the fiber axis as salt concentration was increased from 0 to 3 M, suggesting that chromosome structural stability is non-uniformly distributed along chromatin fibers in their native form. Thus, our system enables direct microscopic analysis of individual chromatin fibers from single cells, which can provide insights into epigenetic mechanisms of cell development, cell differentiation, and carcinogenesis. This article is protected by copyright. All rights reserved.

  12. Intellektuaalne rock

    Index Scriptorium Estoniae

    2007-01-01

    Briti laulja-helilooja ja näitleja Toyah Willcox ning Bill Rieflin ansamblist R.E.M. ja Pat Mastelotto King Krimsonist esinevad koos ansamblitega The Humans ja Tuner 25. okt. Tallinnas Rock Cafés ja 27. okt Tartu Jaani kirikus

  13. Igneous Rocks

    Science.gov (United States)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  14. Salt cookbook

    CERN Document Server

    Saha, Anirban

    2015-01-01

    If you are a professional associated with system and infrastructure management, looking at automated infrastructure and deployments, then this book is for you. No prior experience of Salt is required.

  15. The first data on paleomagnetism of Palaeoproterozoic rocks of the Serpovidny structure (the Kola region, northeastern Baltic Shield

    Directory of Open Access Journals (Sweden)

    Matyushkin A. V.

    2016-03-01

    Full Text Available The orientation of natural magnetization vector components in amphibolites and amphibole schists (magnetite up to 10 % coincides with that of the modern magnetic field vector. Different orientations have been discovered only in quartzitic gneiss (magnetite ≤ 2 % and regressively changed chlorite-amphibole schist. The palaeopole position determined for these rocks corresponds on the apparent pole wander path to ages of 1.95 Ga and ~1.80 Ga, respectively

  16. Population genetic structure of the rock outcrop species Encholirium spectabile (Bromeliaceae): The role of pollination vs. seed dispersal and evolutionary implications.

    Science.gov (United States)

    Gonçalves-Oliveira, Rodrigo C; Wöhrmann, Tina; Benko-Iseppon, Ana M; Krapp, Florian; Alves, Marccus; Wanderley, Maria das Graças L; Weising, Kurt

    2017-06-01

    Inselbergs are terrestrial, island-like rock outcrop environments that present a highly adapted flora. The epilithic bromeliad Encholirium spectabile is a dominant species on inselbergs in the Caatinga of northeastern Brazil. We conducted a population genetic analysis to test whether the substantial phenotypic diversity of E. spectabile could be explained by limited gene flow among populations and to assess the relative impact of pollen vs. seed dispersal on the genetic structure of the species. Nuclear and chloroplast microsatellite markers were used to genotype E. spectabile individuals from 20 rock outcrop locations, representing four geographic regions: northern Espinhaço Range, Borborema Plateau, southwestern Caatinga and southeastern Caatinga. F-statistics, structure, and other tools were applied to evaluate the genetic makeup of populations. Considerable levels of genetic diversity were revealed. Genetic structuring among populations was stronger on the plastid as compared with the nuclear level, indicating higher gene flow via bat pollination as compared with seed dispersal by wind. structure and AMOVA analyses of the nuclear data suggested a high genetic differentiation between two groups, one containing all populations from the southeastern Caatinga and the other one comprising all remaining samples. The strong genetic differentiation between southeastern Caatinga and the remaining regions may indicate the occurrence of a cryptic species in E. spectabile. The unique genetic composition of each inselberg population suggests in situ conservation as the most appropriate protection measure for this plant lineage. © 2017 Botanical Society of America.

  17. Crystal structures of model lithium halides in bulk phase and in clusters

    Science.gov (United States)

    Lanaro, G.; Patey, G. N.

    2017-04-01

    We employ lattice energy calculations and molecular dynamics simulations to compare the stability of wurtzite and rock salt crystal structures of four lithium halides (LiF, LiCl, LiBr, and LiI) modeled using the Tosi-Fumi and Joung-Cheatham potentials, which are models frequently used in simulation studies. Both infinite crystals and finite clusters are considered. For the Tosi-Fumi model, we find that all four salts prefer the wurtzite structure both at 0 K and at finite temperatures, in disagreement with experiments, where rock salt is the stable structure and wurtzite exists as a metastable state. For Joung-Cheatham potentials, rock salt is more stable for LiF and LiCl, but the wurtzite structure is preferred by LiBr and LiI. It is clear that the available lithium halide force fields need improvement to bring them into better accord with the experiment. Finite-size clusters that are more stable as rock salt in the bulk phase tend to solidify as small rock salt crystals. However, small clusters of salts that prefer the wurtzite structure as bulk crystals tend to form structures that have hexagonal motifs, but are not finite-size wurtzite crystals. We show that small wurtzite structures are unstable due to the presence of a dipole and rearrange into more stable, size-dependent structures. We also show that entropic contributions can act in favor of the wurtzite structure at higher temperatures. The possible relevance of our results for simulation studies of crystal nucleation from melts and/or aqueous solutions is discussed.

  18. Structural Peculiarities of Ion-Conductive Organic-Inorganic Polymer Composites Based on Aliphatic Epoxy Resin and Salt of Lithium Perchlorate

    Science.gov (United States)

    Matkovska, Liubov; Iurzhenko, Maksym; Mamunya, Yevgen; Tkachenko, Igor; Demchenko, Valeriy; Synyuk, Volodymyr; Shadrin, Andriy; Boiteux, Gisele

    2017-06-01

    The article is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of organic-inorganic polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. On the one hand, the results showed that the introduction of LiClO4 salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li+ ion and ligand. On the other hand, the appearance of amorphous microinclusions, probably of inorganic nature, was also found.

  19. Geometrical versus rheological transient creep closure in a salt cavern

    Science.gov (United States)

    Bérest, Pierre; Karimi-Jafari, Mehdi; Brouard, Benoît

    2017-11-01

    An in-situ test performed in a brine-filled cavern proves that, when brine pressure decreases rapidly, the creep closure rate increases drastically. Conversely, a rapid pressure increase leads to ;reverse; creep closure: cavern volume increases, even when, at cavern depth, fluid pressure is lower than geostatic pressure. It is tempting to explain these two phenomena by transient salt creep, a characteristic feature of salt rheological behavior commonly observed during laboratory creep tests. In fact, computations performed on an idealized cylindrical cavern excavated from a Norton-Hoff rock mass (a constitutive law that includes no transient component) prove that these two phenomena are, at least partly, of a structural nature: their origin is in the slow redistribution of stresses following any pressure change.

  20. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites

    Directory of Open Access Journals (Sweden)

    Hofmann Alan F

    2010-05-01

    Full Text Available Abstract Background Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense. Results While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. Conclusions The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites

  1. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites

    Science.gov (United States)

    2010-01-01

    Background Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense). Results While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax) have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old) showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. Conclusions The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites preserved in arid climates

  2. Crystal structures and hydrogen bonding in the anhydrous tryptaminium salts of the isomeric (2,4-dichlorophenoxyacetic and (3,5-dichlorophenoxyacetic acids

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2015-06-01

    Full Text Available The anhydrous salts of 2-(1H-indol-3-ylethanamine (tryptamine with isomeric (2,4-dichlorophenoxyacetic acid (2,4-D and (3,5-dichlorophenoxyacetic (3,5-D, both C10H13N2+·C8H5Cl2O3− [(I and (II, respectively], have been determined and their one-dimensional hydrogen-bonded polymeric structures are described. In the crystal of (I, the aminium H atoms are involved in three separate inter-species N—H...O hydrogen-bonding interactions, two with carboxylate O-atom acceptors and the third in an asymmetric three-centre bidentate carboxylate O,O′ chelate [graph set R12(4]. The indole H atom forms an N—H...Ocarboxylate hydrogen bond, extending the chain structure along the b-axis direction. In (II, two of the three aminium H atoms are also involved in N—H...Ocarboxylate hydrogen bonds similar to (I but with the third, a three-centre asymmetric interaction with carboxylate and phenoxy O atoms is found [graph set R12(5]. The chain polymeric extension is also along b. There are no π–π ring interactions in either of the structures. The aminium side-chain conformations differ significantly between the two structures, reflecting the conformational ambivalence of the tryptaminium cation, as found also in the benzoate salts.

  3. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada

    Science.gov (United States)

    Caine, Jonathan S.; Bruhn, R.L.; Forster, C.B.

    2010-01-01

    Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.

  4. Characterization of Geologic Structures and Host Rock Properties Relevant to the Hydrogeology of the Standard Mine in Elk Basin, Gunnison County, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn

    2010-01-01

    The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.

  5. Determination of Structural Requirements of N-Substituted Tetrahydro-β-Carboline Imidazolium Salt Derivatives Using in Silico Approaches for Designing MEK-1 Inhibitors.

    Science.gov (United States)

    Liang, Jingwei; Wang, Mingyang; Li, Xinyang; He, Xin; Cao, Chong; Meng, Fanhao

    2017-06-19

    Novel N-substituted tetrahydro-β-carboline imidazolium salt derivatives proved to have potent antitumor activity in past research. The Topomer CoMFA and CoMSIA function in Sybyl-X 2.0 software was applied for the identification of important features of N-substituted tetrahydro-β-carboline-imidazolium salt derivative moieties. In the case of Topomer CoMFA, all the compounds were split into two fragments which were used to generate a 3D invariant representation, the statistical results of the Topomer CoMFA model: q² value of 0.700; r² value of 0.954; with 5 optimum components. The database alignment was utilized for building the CoMSIA model, and the CoMSIA model had q² and r² values of 0.615 and 0.897, with 4 optimum components. Target fishing of the PharmMapper platform was utilised for finding potential targets, the human mitogen-activated protein kinase 1 (MEK-1) was found to be the primary potential target for the three compounds with the fit scores of 6.288, 5.741, and 6.721. The molecular docking technique of MOE 2015 was carried out to identify the interactions of amino acids surrounding the ligand, and correlating QASR contour maps were used to identify structural requirements of N-substituted tetrahydro-β-carboline imidazolium salt moieties. Molecular dynamics and simulation studies proved that the target protein was stable for 0.8-5 ns. The pivotal moieties of N-substituted tetrahydro-β-carboline imidazolium salt derivatives and its potential targets were verified by the QASR study, PharmMapper, and the molecular docking study which would be helpful to design novel MEK-1 inhibitors for anticancer drugs.

  6. Determination of Structural Requirements of N-Substituted Tetrahydro-β-Carboline Imidazolium Salt Derivatives Using in Silico Approaches for Designing MEK-1 Inhibitors

    Directory of Open Access Journals (Sweden)

    Jingwei Liang

    2017-06-01

    Full Text Available Novel N-substituted tetrahydro-β-carboline imidazolium salt derivatives proved to have potent antitumor activity in past research. The Topomer CoMFA and CoMSIA function in Sybyl-X 2.0 software was applied for the identification of important features of N-substituted tetrahydro-β-carboline-imidazolium salt derivative moieties. In the case of Topomer CoMFA, all the compounds were split into two fragments which were used to generate a 3D invariant representation, the statistical results of the Topomer CoMFA model: q2 value of 0.700; r2 value of 0.954; with 5 optimum components. The database alignment was utilized for building the CoMSIA model, and the CoMSIA model had q2 and r2 values of 0.615 and 0.897, with 4 optimum components. Target fishing of the PharmMapper platform was utilised for finding potential targets, the human mitogen-activated protein kinase 1 (MEK-1 was found to be the primary potential target for the three compounds with the fit scores of 6.288, 5.741, and 6.721. The molecular docking technique of MOE 2015 was carried out to identify the interactions of amino acids surrounding the ligand, and correlating QASR contour maps were used to identify structural requirements of N-substituted tetrahydro-β-carboline imidazolium salt moieties. Molecular dynamics and simulation studies proved that the target protein was stable for 0.8–5 ns. The pivotal moieties of N-substituted tetrahydro-β-carboline imidazolium salt derivatives and its potential targets were verified by the QASR study, PharmMapper, and the molecular docking study which would be helpful to design novel MEK-1 inhibitors for anticancer drugs.

  7. Synthesis and crystal structure of a new pyridinium bromide salt: 4-methyl-1-(3-phenoxypropylpyridinium bromide

    Directory of Open Access Journals (Sweden)

    Musa A. Said

    2017-12-01

    Full Text Available In the cation of the title molecular salt, C15H18NO+·Br−, the pyridinium and phenyl rings are inclined to one another by 11.80 (8°. In the crystal, the Br− anion is linked to the cation by a C—H...Br hydrogen bond. The cations stack along the b-axis direction and are linked by further C—H...Br interactions, and offset π–π interactions [intercentroid distances = 3.5733 (19 and 3.8457 (19 Å], forming slabs parallel to the ab plane. The effects of the C—H...X− interaction on the NMR signals of the ortho- and meta-pyridinium protons in a series of related ionic liquids, viz. 4-methyl-1-(4-phenoxybutylpyridin-1-ium salts, are reported and discussed.

  8. Synthesis and crystal structure of a chiral aromatic amine chloride salt (C8H12N)Cl

    Science.gov (United States)

    Ben Salah, A. M.; Naїli, H.; Mhiri, T.; Bataille, T.

    2015-12-01

    The new organic chloride salt incorporating an aromatic primary amine with a chiral functional group, (S)-α-methylbenzylammonium), has been synthesized by slow evaporation method at room temperature. The crystals are trigonal with non-centrosymmetric sp. gr. R3. The crystal packing is determined by N-H···Cl hydrogen bonds and C-H···π interactions between the aromatic rings of the organic moieties, resulting in supramolecular architecture.

  9. 3-D models and structural analysis of rock avalanches: the study of the deformation process to better understand the propagation mechanism

    Science.gov (United States)

    Longchamp, Céline; Abellan, Antonio; Jaboyedoff, Michel; Manzella, Irene

    2016-09-01

    Rock avalanches are extremely destructive and uncontrollable events that involve a great volume of material (> 106 m3) and several complex processes, and they are difficult to witness. For this reason the study of these phenomena using analog modeling and the accurate analysis of deposit structures and features of laboratory data and historic events become of great importance in the understanding of their behavior.The main objective of this research is to analyze rock avalanche dynamics and deformation process by means of a detailed structural analysis of the deposits coming from data of 3-D measurements of mass movements of different magnitudes, from decimeter level scale laboratory experiments to well-studied rock avalanches of several square kilometers' magnitude.Laboratory experiments were performed on a tilting plane on which a certain amount of a well-defined granular material is released, propagates and finally stops on a horizontal surface. The 3-D geometrical model of the deposit is then obtained using either a scan made with a 3-D digitizer (Konica Minolta VIVID 9i) or a photogrammetric method called structure from motion (SfM), which requires taking several pictures from different point of view of the object to be modeled.In order to emphasize and better detect the fault structures present in the deposits, we applied a median filter with different moving window sizes (from 3 × 3 to 9 × 9 nearest neighbors) to the 3-D datasets and a gradient operator along the direction of propagation.The application of these filters on the datasets results in (1) a precise mapping of the longitudinal and transversal displacement features observed at the surface of the deposits and (2) a more accurate interpretation of the relative movements along the deposit (i.e., normal, strike-slip, inverse faults) by using cross sections. Results show how the use of filtering techniques reveals disguised features in the original point cloud and that similar displacement patterns

  10. Salt tectonics in Santos Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, David G.; Nielsen, Malene; Raven, Madeleine [Maersk Oil and Gas, Copenhagen (Denmark); Menezes, Paulo [Maersk Oil and Gas, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    From Albian to end Cretaceous times, the inboard part of the Santos Basin in Brazil was affected by extension as salt flowed basinwards under the effect of gravity. Salt rollers, flip-flop salt diapirs and the famous Albian Gap were all formed by this process. Outboard of these extensional structures, contraction was taken up in a wide zone of thickened salt where salt collected. The overburden was carried on top of the salt as it flowed down-dip, with up to 40 km of translation recorded in Albian strata. (author)

  11. Molecular salts of 2,6-dihydroxybenzoic acid (2,6-DHB) with N-heterocycles: Crystal structures, spectral properties and Hirshfeld surface analysis

    Science.gov (United States)

    Solomon, K. Anand; Blacque, Olivier; Venkatnarayan, Ramanathan

    2017-04-01

    In the present study, two molecular complexes of 2,6-DHB with pharmaceutically active nutraceuticals i.e. nicotinic acid (NA) and nicotinamide (NIC) have been synthesized and preliminarily characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and FT-IR spectroscopy. Finally the crystal structures were solved by single crystal X-ray diffraction and the structures were analyzed in terms of supramolecular interactions. The salt 1 crystallizes in the monoclinic space group Cc, with a = 10.1503(1) Å, b = 12.3821(1) Å, c = 9.5291(1) Å, β = 94.343(1)°, V = 1194.20(2) Å3, Z = 4. The salt 2 crystallizes in monoclinic space group P21/n, with a = 7.0098 (1) Å, b = 12.5495 (1) Å, c = 13.4048 (1) Å, β = 92.746 (1)°, V = 1177.86 (2) Å3, Z = 4. The molecular packing of both salts are stabilized by N+-H⋯O-, O-H⋯O-, N-H⋯O and O-H⋯O hydrogen bonding interactions. DFT calculations substantiate the features of crystal structures. The Hirshfeld surfaces and the associated 2D fingerprint plots were investigated which revealed that more than two-third of close contacts were associated with relatively weak H⋯H, C⋯H and H⋯C interactions. The use of 3-D Hirshfeld surfaces in combination with 2-D fingerprint plots revealed that these weak interactions play major role in molecular crystal packing.

  12. Microbial Community Structure Responses to Long-Term Acid-Mine Drainage Contamination in a Coastal Salt Marsh

    Science.gov (United States)

    Moreau, J. W.; Zierenberg, R. A.; Banfield, J. F.

    2004-12-01

    Constructed wetlands for in situ bioremediation of metals and acid mine drainage (AMD) require the activity of sulfate-reducing bacteria (SRB) to sequester dissolved metals into metal-sulfide precipitates (e.g. Webb et al. 1998). Factors such as low pH and high dissolved [Cu] will constrain the growth of SRB (Sani et al. 2001). Unintentional stimulation of the growth of sulfuric acid-generating microbes, such as Thiomicrospira, would also decrease bioremediation efficiency. Few studies of natural wetlands under long-term forcing by AMD and metals have been performed. We characterized the microbial diversity, mineralogy and geochemistry of a contaminated salt marsh at the Richmond Field Station along the East San Francisco Bay. For over 50 years, this marsh has received pH ˜2, metal-rich groundwaters from near-surface pyrite tailings and paint and explosives manufacturers. Sediment cores (30-40 cm long) were taken from contaminated sites with pH ˜2 and ˜8. Whole-sediment analyses showed As, Cd, Cu, Se, Zn, and Pb are present at 100s of ppm (URS Corp. 2001). ICP-AES analyses of pore waters showed 10-50 ppb As. All cores contained fine-grained black muds and exhibited a noticeable sulfide odor. Transmission electron microscope studies of marsh sediments support the sequestration of metals into aggregates of nanocrystalline sulfides. Isotopic analyses of pore-water sulfate taken at several depths within cores of AMD pool (SMR-1) and tidal slough sediments (SM148-1) at pHs 2-3 and 7-8, respectively, all yielded significant negative δ 34S values (-25 to -35 ‰ ) consistent with bacterial sulfate reduction. However, values of the upper 10 cm of SMR-1 are roughly 10 ‰ heavier than seawater and support a significant contribution of dissolved sulfate from direct oxidation of pyrite tailings. 16S gene clone libraries revealed significantly different microbial community structures in cores SMR-1 and SM148-1. Roughly 40% of the library from SMR-1 consisted of

  13. Rock-avalanche and ocean-resurge deposits in the late Eocene Chesapeake Bay impact structure: Evidence from the ICDP-USGS Eyreville cores, Virginia, USA

    Science.gov (United States)

    Gohn, G.S.; Powars, D.S.; Dypvik, H.; Edwards, L.E.

    2009-01-01

    An unusually thick section of sedimentary breccias dominated by target-sediment clasts is a distinctive feature of the late Eocene Chesapeake Bay impact structure. A cored 1766-m-deep section recovered from the central part of this marine-target structure by the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) drilling project contains 678 m of these breccias and associated sediments and an intervening 275-m-thick granite slab. Two sedimentary breccia units consist almost entirely of Cretaceous nonmarine sediments derived from the lower part of the target sediment layer. These sediments are present as coherent clasts and as autoclastic matrix between the clasts. Primary (Cretaceous) sedimentary structures are well preserved in some clasts, and liquefaction and fluidization structures produced at the site of deposition occur in the clasts and matrix. These sedimentary breccias are interpreted as one or more rock avalanches from the upper part of the transient-cavity wall. The little-deformed, unshocked granite slab probably was transported as part of an extremely large slide or avalanche. Water-saturated Cretaceous quartz sand below the slab was transported into the seafloor crater prior to, or concurrently with, the granite slab. Two sedimentary breccia units consist of polymict diamictons that contain cobbles, boulders, and blocks of Cretaceous nonmarine target sediments and less common shocked-rock and melt ejecta in an unsorted, unstratified, muddy, fossiliferous, glauconitic quartz matrix. Much of the matrix material was derived from Upper Cretaceous and Paleogene marine target sediments. These units are interpreted as the deposits of debris flows initiated by the resurge of ocean water into the seafloor crater. Interlayering of avalanche and debris-flow units indicates a partial temporal overlap of the earlier avalanche and later resurge processes. A thin unit of stratified turbidite deposits and overlying laminated

  14. The stabilization of the rock mass of the wieliczka salt mine through the backfilling of the witos chamber with the use of injection methods / Stabilizacji górotworu kopalni soli "wieliczka" poprzez likwidację komór "witos" z zastosowaniem metod iniekcji

    Science.gov (United States)

    D'Obyrn, Kajetan

    2012-10-01

    The Wieliczka Salt Mine is the most famous and the most visited mining industry monument in the world and it requires modern methods to ensure rock mass stability and tourists' security. Both for conservation and tourism organization reasons, the group of Warszawa-Wisla-Budryk-Lebzeltern-Upper Witos Chambers (Photo. 1, 2. 3) located the Kazanów mid-level at a depth of 117 m underground is extremely important. Discontinuous deformation occurring in this Chamber complex was eliminated by comprehensive securing work with anchor housing, but their final securing and stability is conditioned by further backfilling and sealing the Witos Chambers situated directly beneath. In the 1940s and 1950s, the Witos Chamber was backfilled with slag from the mine boilerhouse. However, slags with 80% compressibility are not backfilling material which would ensure the stability of the rock mass. The chambers were exploited in the early nineteenth century in the Spizit salts of the central part of the layered deposit. The condition of the Upper Witos, Wisla, Warszawa, Budryk, and Lebzeltern Chambers is generally good. The western part if the Lebzeltern Chamber (Fig. 1), which was threatened with collapse, was backfilled with sand. In all the chambers of the Witos complex, local deformation of ceiling rock of varying intensity is observed as well as significant destruction of the side walls of pillars between chambers. No hydrogeological phenomena are observed in the chambers. It has been attempted to solve the problem of stability of the rock mass in this region of the mine by extracting the slag and backfilling with sand, erecting concrete supporting pillars, backfilling the voids with sand, anchoring the ceiling and the side walls, the use of the pillar housing. The methods have either not been applied or have been proved insufficient to properly protect the excavation situated above. In order to select the optimal securing method, a geomechanical analysis was conducted in order to

  15. Geothermal gradients and ground water circulation in fissured and karstic rocks: The role played by the structure of the permeable network

    Science.gov (United States)

    Drogue, C.

    1985-12-01

    In fissured and karstic rocks the general movement of underground waters (forced convection) can modify geothermic gradients. This depends both on the discontinuous structure (channels and fissures) and on hydrodynamic conditions which can vary with the weather, e.g. during the recharging of reserviors in rainy periods. An experimental analysis has been carried out in the broken and karstified Mesozoic limestone in the South of France, on shallow boreholes (60 m) grouped in a closely-spaced network. Nearly a hundred thermal loggings have been measured in the homothermic zone below 25 m. The gradients in dry periods, varying from one drilling to another, are between 0.01 and 0.03°C m -1 for an average thermal conductivity of rock of 2.56 Wm -1 °C -1. During recharging of the aquifer by rain, the gradients do not change in some drillings. This always occurs in those which cut through networks of slightly karstified fissures with low hydraulic conductivity. The slow circulation allows the water to be in thermal quasi-equilibrium with the rock. In other drillings, however, recharging causes local and sometimes very significant modifications of the gradients. Disturbances are temporary and appear directly over well-developed karstic channels which rapidly draw down the infiltrated cold water to the bottom. Thermal profiles, either stable or disturbed, can be surveyed simultaneously in drillings situated at least 10 m from each other. The position and nature of the karstic channels in which the forced convection is most active can be identified through observations by videologging and flow velocity tests.

  16. An analysis of fracture trace patterns in areas of flat-lying sedimentary rocks for the detection of buried geologic structure. [Kansas and Texas

    Science.gov (United States)

    Podwysocki, M. H.

    1974-01-01

    Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.

  17. How Do Changes to the Railroad Causeway in Utah's Great Salt Lake Affect Water and Salt Flow?

    Directory of Open Access Journals (Sweden)

    James S White

    Full Text Available Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah's Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey's Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses.

  18. How Do Changes to the Railroad Causeway in Utah's Great Salt Lake Affect Water and Salt Flow?

    Science.gov (United States)

    White, James S; Null, Sarah E; Tarboton, David G

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah's Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey's Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses.

  19. Triassic salt sheets of Mezzouna, Central Tunisia: New comments on Late Cretaceous halokinesis and geodynamic evolution of the northern African margin

    Science.gov (United States)

    Dhahri, Ferid; Boukadi, Noureddine

    2017-05-01

    Two discrete Triassic salt sheets have been discovered within the Coniacian-Santonian series near the salt wall of Mezzouna, central Tunisia. The structure and the lithology of these sheets suggest two halokinetic episodes giving respectively 1) Triassic evaporitic rocks flows over a sloped basin floor resulting in probable salt glacier, and 2) redeposition of erosional debris from the nearby salt wall of Mezzouna, transported and then deposited next to the wall. This finding is used to precise the halokinetic events and the geodynamic evolution of the northern African margin near the Pelagian block between southeastern Tunisia and Tripolitania during Late Cretaceous. A discussion of the halokinesis-related structures is also attempted with emphasize of their genetic mechanisms and temporal development as inferred from geological mapping and new field data.

  20. STRUCTURE OF SALT GLANDS OF PLUMBAGINACEAE. REDISCOVERING OLD FINDINGS OF THE 19th CENTURY: ‘METTENIUS’ OR ‘LICOPOLI’ ORGANS?

    Directory of Open Access Journals (Sweden)

    Marius Nicusor GRIGORE

    2016-12-01

    Full Text Available Salt (chalk glands of Plumbaginaceae represent interesting structures involved in the excretion of calcium carbonate outside plants’ organs, especially on leaves surfaces. These chalk-glands, nominated by some authors as ‘Licopoli’ or ‘Mettenius’ organs are also very important from taxonomical point of view. Their structure has been a matter of debate for decades and a historical analysis reveals that there are still some inconsistencies regarding the contributions of earlier botanists in discovering and describing chalk-glands. The present work tries to provide a picture of historical progress recorded in the 19th century related to investigation of these structures, focusing especially on the two important names usually mentioned in relation to them: Mettenius and Licopoli. In this respect, several useful clarifications are made, with emphasis on the role played by the two botanists in the stimulation of research interest for these glands among the generations of botanists to come.

  1. Frutexites-like structures formed by iron oxidizing biofilms in the continental subsurface (Äspö Hard Rock Laboratory, Sweden.

    Directory of Open Access Journals (Sweden)

    Christine Heim

    Full Text Available Stromatolitic iron-rich structures have been reported from many ancient environments and are often described as Frutexites, a cryptic microfossil. Although microbial formation of such structures is likely, a clear relation to a microbial precursor is lacking so far. Here we report recent iron oxidizing biofilms which resemble the ancient Frutexites structures. The living Frutexites-like biofilms were sampled at 160 m depth in the Äspö Hard Rock Laboratory in Sweden. Investigations using microscopy, 454 pyrosequencing, FISH, Raman spectroscopy, biomarker and trace element analysis allowed a detailed view of the structural components of the mineralized biofilm. The most abundant bacterial groups were involved in nitrogen and iron cycling. Furthermore, Archaea are widely distributed in the Frutexites-like biofilm, even though their functional role remains unclear. Biomarker analysis revealed abundant sterols in the biofilm most likely from algal and fungal origins. Our results indicate that the Frutexites-like biofilm was built up by a complex microbial community. The functional role of each community member in the formation of the dendritic structures, as well as their potential relation to fossil Frutexites remains under investigation.

  2. Quantitative-qualitative characteristics of salt deposit in Tuzla basin

    Science.gov (United States)

    Susic, Amir; Barakovic, Amir; Smailhodzic, Hrustem

    2017-04-01

    In the northeastern part of Bosnia and Herzegovina, on the southern slopes of the mountain Majevica, in Tuzla basin, within salt-bearing formation known as the "strip series," deposits of rock salt are present. Tuzla rock salt deposit is made of sodium salt halite (NaCl) and thenardite (Na2SO4) that were deposited in five series of salt each separated by dolomite, clay-marl sediments. The deposit has an irregular oval shape, with a short axis length of 600-900 m and longer, about 2500 m. It covers an area of approximately 2 km2. The main objective of this paper is to present for both deposits their morphological characteristics, mineralogical characteristics, litofacial characteristics of sediments and lithostratigraphic column, hydrogeological characteristics, tectonics and salt reserves through quality, classification, categorization and calculation.

  3. Heavy Metals Contamination of Table Salt Consumed in Iran

    Science.gov (United States)

    Cheraghali, Abdol Majid; Kobarfard, Farzad; Faeizy, Noroldin

    2010-01-01

    Lead, cadmium, mercury and arsenic are the most important heavy metals which may cause health risks following consumption of contaminated foods. Table salt is one the mostly used food additive with unique place in food consumption. Although purified table salt is expected to have lower level of contamination, some Iranians still prefer to use rock salt. Use of rock salt for food purposes has been banned by Iranian health authorities. In this study, heavy metal contamination of table salt consumed in Iran has been investigated. One hundred samples of rock and refined table salts were analyzed using atomic absorption spectrophotometeric methods for the presence of toxic heavy metals. The mean concentration of tested tracer metals including Cd, Pb, Hg and As was 0.024, 0.438, 0.021 and 0.094 μg/g, respectively. The concentrations of tested heavy metals were well below the maximum levels set by Codex. However, no statistically significant difference was found between contamination of rock salt and refined salt to heavy metals. PMID:24363718

  4. Effect of hydrostatic pressure on the structural, elastic and electronic ...

    Indian Academy of Sciences (India)

    The results showed a phase transition pressure from the zinc blende to rock-salt phase at around 1.56 Mbar, which is in good agreement with the theoretical data reported in the literature. Keywords. Hydrostatic pressure effect; structural, elastic and electronic properties; (B3) boron phosphide. PACS Nos 45.10.Ab; 62.20.

  5. Pharmaceutical salts and cocrystals involving amino acids: a brief structural overview of the state-of-art.

    Science.gov (United States)

    Tilborg, Anaëlle; Norberg, Bernadette; Wouters, Johan

    2014-03-03

    Salification of new drug substances in order to improve physico-chemical or solid-state properties (e.g. dissolution rate or solubility, appropriate workup process, storage for further industrial and marketing development) is a well-accepted procedure. Amino acids, like aspartic acid, lysine or arginine take a great part in this process and are implicated in several different formulations of therapeutic agent families, including antibiotics (amoxicillin from beta lactam class or cephalexin from cephalosporin class), NSAIDs (ketoprofen, ibuprofen and naproxen from profen family, acetylsalicylic acid) or antiarrhythmic agents (e.g. ajmaline). Even if more than a half of known pharmaceutical molecules possess a salifiable moiety, what can be done for new potential drug entity that cannot be improved by transformation into a salt? In this context, after a brief review of pharmaceutical salts on the market and the implication of amino acids in these formulations, we focus on the advantage of using amino acids even when the target compound is not salifiable by exploiting their zwitterionic potentialities for cocrystal edification. We summarize here a series of new examples coming from literature to support the advantages of broadening the application of amino acids in formulation for new drug substances improvement research for non-salifiable molecules. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Salt deformation mechanism and gas accumulation in the Transylvanian Basin, Romania

    Science.gov (United States)

    Pene, Constantin; Floroiu, Alina

    2017-04-01

    The Transylvanian Basin is the main producer of hydrocarbon gases in Romania. The first gas field (Sarmasel) has been discovered in 1909, untill now more than 129 gas structures being identified and exploited. The aim of this paper is to investigate the causes that created zones with different intensity of the diapirism in relation with the methane generation and accumulation. The Badenian salt movement had different intensities in the Transylvanian Basin. In the central part there are salt pillows, salt layers and piercement of salt. In this zone the salt is not outcropping and its flow produced only the doming of the overlying deposits. In the eastern and western parts of the basin salt flow determined an intensively deformation of the overlying rocks and the formation of the salt diapirs and salt wall growth. In these areas the salt even outcrops within a few sectors. The following mechanisms could be implied in the Badenian salt flow: salt buoyancy, differential sediment loading, flexural buckling of the overburden and drag by overburden. To evaluate which mechanism dominates in the Badenian salt flow in the Transylvanian Basin a simple model has been used considering an elastic plate overlying a viscous fluid. In this model the viscous fluid is the layer of Badenian salt and the elastic plate is represented by the overburden composed of Upper Miocene and Pliocene deposits. The vertical pressure gradient was calculated considering a constant density of overburden (2500 kg/m3) in correlation with the different sedimentary rates of the Upper Badenian (450 m/Ma), Sarmatian (150 m/Ma) and Pliocene (80 m/Ma). The initial salt thickness was variable, less than 300 m south of Mureş River and more than 500 m in the other zones of the basin. The amplitude and the wavelength of folding as well as the others parameters, like the thickness of the overburden and of the salt encountered in the apex of the structures as well as in the adjacent synclines have been measured on

  7. Paleomagnetism of Permian rocks of the Subpolar Urals, Kozhim River: To the history of evolution of the thrust structures in the Subpolar Urals

    Science.gov (United States)

    Iosifidi, A. G.; Popov, V. V.

    2017-09-01

    The collections of Permian rocks from sections of the Kozhim River (Asselian, Kungurian, and Ufimian stages) and the Kama River (Ufimian and Kazanian stages) are studied. The paleomagnetic directions determined on the studied structures closely agree with the existing data for the Subpolar Urals and Russian Platform (RP). In the Middle Permian red clays of the Kama River region, the paleomagnetic pole N/n = 28/51, Φ = 47° N, Λ = 168° E, dp = 3°, and dm = 5° is obtained. The analysis of the existing paleomagnetic determinations for the Early and Middle Permian of the Russian and Siberian platforms and Kazakhstan blocks (KBs) is carried out. For the Subpolar Ural sections, the estimates are obtained for the local rotations during the collision of the Uralian structures with the Russian and Siberian platforms and KBs. The amplitudes of the horizontal displacements of the studied structures are, on average, 170 ± 15 km per Middle Permian. The scenario describing the evolution of the horizontal rotations of the structures of Subpolar Urals is suggested.

  8. Geologic columns for the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure: Impactites and crystalline rocks, 1766 to 1096 m depth

    Science.gov (United States)

    Horton, J. Wright; Gibson, R.L.; Reimold, W.U.; Wittmann, A.; Gohn, G.S.; Edwards, L.E.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766-1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551-1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397-1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371-1096 m) includes gneissic biotite granite, fine- and medium-to-coarse-grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater. ?? 2009 The Geological Society of America.

  9. SEM observation of grain boundary structures in quartz-iron oxide rocks deformed at intermediate metamorphic conditions

    Directory of Open Access Journals (Sweden)

    Leonardo Lagoeiro

    2011-09-01

    Full Text Available Several studies have demonstrated the effect of a second phase on the distribution of fluid phase and dissolution of quartz grains. However, as most observations came from aggregates deformed under hydrostatic stress conditions and mica-bearing quartz rocks, 3-D distribution of pores on quartz-quartz (QQB and quartz-hematite boundaries (QHB has been studied. Several fracture surfaces oriented according to finite strain ellipsoid were analyzed. The pore distribution characterizes the porosity and grain shape as highly anisotropic, which results from the nature and orientation of boundaries. QHB have physical/chemical properties very different from QQB, once the hematite plates have strong effect on wetting behavior of fluid, likewise micas in quartzites. They are pore-free flat surfaces, normal to compression direction, suggesting that they were once wetted with a continuous fluid film acting as faster diffusion pathway. At QQB, the pores are faceted, isolated, close to its edges reflecting the crystallographic control and an interconnected network of fluid along grain junctions. The QQB facing the extension direction are sites of fluid concentration. As consequence, the anisotropic dissolution and grain growth were responsible for the formation of hematite plates and tabular quartz grains significantly contributing for the generation of the foliation observed in the studied rocks.Muitos estudos têm demonstrado o efeito de uma segunda fase sobre a distribuição de fase fluida e dissolução de grãos de quartzo. Entretanto, como a maioria das observações vêm de agregados deformados sob condições de tensão hidrostática e em rochas quartzosas ricas em mica, a distribuição 3D de poros e bordas quartzo-quartzo (BQQ e quartzo-hematita (BQH tem sido estudada. Várias superfícies de fraturas orientadas segundo o elipsóide de deformação finita foram analisadas. A distribuição dos poros caracteriza a porosidade e a forma dos grãos como

  10. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 7. Baseline rock properties-basalt

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    This volume, Y/OWI/TM-36/7 Baseline Rock Properties--Basalt, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This report contains an evaluation of the results of a literature survey to define the rock mass properties of a generic basalt, which could be considered as a geological medium for storing radioactive waste. The general formation and structure of basaltic rocks is described. This is followed by specific descriptions and rock property data for the Dresser Basalt, the Amchitka Island Basalt, the Nevada Test Site Basalt and the Columbia River Group Basalt. Engineering judgment has been used to derive the rock mass properties of a typical basalt from the relevant intact rock property data and the geological information pertaining to structural defects, such as joints and faults.

  11. Characteristics of the Lithology, Fault-Related Rocks and Fault Zone Structures in TCDP Hole-A

    Directory of Open Access Journals (Sweden)

    Sheng-Rong Song

    2007-01-01

    Full Text Available The main objective of the Taiwan Chelungpu-fault Drilling Project (TCDP was to conduct an in-depth probe into a fault zone of recent major activity so as to gain a better understanding of and more insight into the physical, mechanical and chemical properties involved. By the end of 2004, with the completion of the drilling of Hole-A, cuttings from 0 to 431.34 m and cores from a 431.34- to 2003.26-m depth had been obtained. Stratigraphically, the Pliocene to Pleistocene Cholan Formation is found from the surface to a 1029-m depth and is predominantly composed of sandstone and sandstone-siltstone alternations with weak to intense bioturbation. The Pliocene Chinshui Formation is observed from a depth of 1029- to 1303-m and predominantly consists of siltstone with weak bioturbation. From 1303- to 1712-m down there is the late Miocene to early Pliocene Kueichulin Formation which is predominantly composed of massive sandstone with minor siltstone. Below 1712 m, the Formation again resembles the younger Cholan Formation with mollusca-rich, thick, layered shale and heavy bioturbated sandstone. Four types of fault-related rocks are identified in the cores. They are the fault breccia, gouges, foliated and non-foliated cataclasites and pseudotachylytes. At least six major fault zones are found in the cores: FZ1111, FZ1153, FZ1220, FZ1580, FZ1712, and FZ1812. Among these, FZ1111 most probably corresponds to the slip surface of the Chi-Chi earthquake, the Chelungpu fault, while FZ1712 very likely represents the Sanyi fault.

  12. Fold-structure analysis of paleozoic rocks in the Variscan Harz Mountains (Lautenthal, Central Germany) based on laserscanning and 3D modelling

    Science.gov (United States)

    Wagner, Bianca; Leiss, Bernd; Stöpler, Ralf; Zahnow, Fabian

    2017-04-01

    Folded paleozoic sedimentary rocks of Upper Devonian to Lower Carboniferous age are very well exposed in the abandoned chert quarry of Lautenthal in the western Harz Mountains. The outcrop represents typical structures of the Rhenohercynian thrust and fold belt of the Variscan orogen and therefore allows quantitative studies for the understanding of e.g. fold mechanisms and the amount of shortening. The sequence is composed of alternating beds of cherts, shales and tuffites, which show varying thicknesses, undulating and thinning out of certain layers. Irregularly occurring lenses of greywackes are interpreted as sedimentary intrusions. The compressive deformation style is expressed by different similar and parallel fold structures at varying scales as well as small-scale reverse faults and triangle structures. An accurate mapping of the outcrop in the classical way is very challenging due to distant and unconnected outcrop parts with differing elevations and orientations. Furthermore, the visibility is limited because of nearby trees, diffuse vegetation cover and no available total view. Therefore, we used a FARO 120 3D laserscanner and Trimble GNSS device to generate a referenced and drawn to scale point cloud of the complete quarry. Based on the point cloud a geometric 3D model of prominent horizons and structural features of various sizes was constructed. Thereafter, we analyzed the structures in matters of orientation and deformation mechanisms. Finally, we applied a retrodeformation algorithm on the model to restore the original sedimentary sequence and to calculate shortening including the amount of pressure solution. Only digital mapping allows such a time-saving, accurate and especially complete 3D survey of this excellent study object. We demonstrated that such 3D-models enable spatial correlations with other complex structures cropping out in the area. Moreover, we confirmed that a structural upscaling to the 100 to 1000 m scale is much easier and much

  13. CERN Rocks

    CERN Multimedia

    2004-01-01

    The 15th CERN Hardronic Festival took place on 17 July on the terrace of Rest 3 (Prévessin). Over 1000 people, from CERN and other International Organizations, came to enjoy the warm summer night, and to watch the best of the World's High Energy music. Jazz, rock, pop, country, metal, blues, funk and punk blasted out from 9 bands from the CERN Musiclub and Jazz club, alternating on two stages in a non-stop show.  The night reached its hottest point when The Canettes Blues Band got everybody dancing to sixties R&B tunes (pictured). Meanwhile, the bars and food vans were working at full capacity, under the expert management of the CERN Softball club, who were at the same time running a Softball tournament in the adjacent "Higgs Field". The Hardronic Festival is the main yearly CERN music event, and it is organized with the support of the Staff Association and the CERN Administration.

  14. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway, 1987-98

    Science.gov (United States)

    Loving, Brian L.; Miller, Craig W.; Waddell, Kidd M.

    2000-01-01

    The Southern Pacific Transportation Company completed a rock-fill causeway across Great Salt Lake in 1959. The effect of the causeway was to change the water and salt balance of Great Salt Lake by creating two separate but interconnected parts of the lake, with more than 95 percent of freshwater surface inflow entering the lake south of the causeway.The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of the causeway that divides the lake into south and north parts. The conveyance properties of the causeway consist of two 15-foot-wide culverts, a 290-foot-wide breach, and permeable rock-fill material.

  15. Syntheses, crystal structures and characterization of nitrogen-rich salts based on bis (1H-tetrazol-5-yl) methanone oxime

    Science.gov (United States)

    Lin, Xinyu; Guo, Weiming; Zhang, Tianhe; Huang, Jingru; Tong, Yi; Zhang, Tonglai

    2017-08-01

    Two nitrogen-rich energetic salts (NH4)2(bto) (1) and (NH3OH)2(bto)·H2O (2) [H2bto = Bis (1H-tetrazol-5-yl) methanone oxime] were synthesized by an improved method in which water was used as solvent. These compounds were characterized by FT-IR spectroscopy, elemental analysis and single crystal X-ray diffraction. Their crystal structures were confirmed to belong to monoclinic system with space group P21 for 1 and Pc for 2, respectively. The detailed thermal behaviours were investigated by using differential scanning calorimetry (DSC) and thermogravimetric method (TG) (decomposition temperature >250 °C). The enthalpies of formation were calculated through the experimental values of combustion enthalpy. In addition, the sensitivities toward impact and friction were tested with standard methods, and those results indicated that two compounds are all insensitive (impact >40 J and friction >360 N). In short, both of the compounds show potential usages as energetic materials. The improved process opens a door for exploring nitrogen-rich salts based on Bis (1H-tetrazol-5-yl) methanone oxime.

  16. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study

    Science.gov (United States)

    Manga, Venkateswara Rao; Swinteck, Nichlas; Bringuier, Stefan; Lucas, Pierre; Deymier, Pierre; Muralidharan, Krishna

    2016-03-01

    Molten mixtures of network-forming covalently bonded ZnCl2 and network-modifying ionically bonded NaCl and KCl salts are investigated as high-temperature heat transfer fluids for concentrating solar power plants. Specifically, using molecular dynamics simulations, the interplay between the extent of the network structure, composition, and the transport properties (viscosity, thermal conductivity, and diffusion) of ZnCl2-NaCl-KCl molten salts is characterized. The Stokes-Einstein/Eyring relationship is found to break down in these network-forming liquids at high concentrations of ZnCl2 (>63 mol. %), while the Eyring relationship is seen with increasing KCl concentration. Further, the network modification due to the addition of K ions leads to formation of non-bridging terminal Cl ions, which in turn lead to a positive temperature dependence of thermal conductivity in these melts. This new understanding of transport in these ternary liquids enables the identification of appropriate concentrations of the network formers and network modifiers to design heat transfer fluids with desired transport properties for concentrating solar power plants.

  17. Crystal structure of 5-amino-4H-1,2,4-triazol-1-ium pyrazine-2-carboxylate: an unexpected salt arising from the decarboxylation of both precursors

    Directory of Open Access Journals (Sweden)

    José A. Fernandes

    2015-07-01

    Full Text Available Both the 3-amino-2H,4H-1,2,4-triazolium cation and the pyrazine-2-carboxylate anion in the title salt, C2H5N4+·C5H3N2O2−, were formed by an unexpected decarboxylation reaction, from 5-amino-1H-1,2,4-triazole-3-carboxylic acid and pyrazine-2,3-dicarboxylic acid, respectively. The dihedral angle between the pyrazine ring (r.m.s. deviation = 0.008 Å and the carboxylate group in the anion is 3.7 (3°. The extended structure of the salt contains a supramolecular zigzag tape in which cations and anions are engaged in strong and highly directional N—H...N,O hydrogen bonds, forming R22(8 and R22(9 graph-set motifs. The packing between the tapes is mediated by π–π stacking interactions between the triazole and pyrazine rings.

  18. Multiphase CFD modelling of water evaporation and salt precipitation in micro-pores

    NARCIS (Netherlands)

    Twerda, A.; O’Mahoney, T.S.D.; Velthuis, J.F.M.

    2014-01-01

    The precipitation of salt in porous reservoir rocks is an impairment to gas production, particularly in mature fields. Mitigation is typically achieved with regular water washes which dissolve the deposited salt and transport it in the water phase. However, since the process of salt precipitation is

  19. Thermally induced rock stress increment and rock reinforcement response

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [KMS Hakala Oy, Nokia (Finland); Stroem, J.; Nujiten, G.; Uotinen, L. [Rockplan, Helsinki (Finland); Siren, T.; Suikkanen, J.

    2014-07-15

    This report describes a detailed study of the effect of thermal heating by the spent nuclear fuel containers on the in situ rock stress, any potential rock failure, and associated rock reinforcement strategies for the Olkiluoto underground repository. The modelling approach and input data are presented together repository layout diagrams. The numerical codes used to establish the effects of heating on the in situ stress field are outlined, together with the rock mass parameters, in situ stress values, radiogenic temperatures and reinforcement structures. This is followed by a study of the temperature and stress evolution during the repository's operational period and the effect of the heating on the reinforcement structures. It is found that, during excavation, the maximum principal stress is concentrated at the transition areas where the profile changes and that, due to the heating from the deposition of spent nuclear fuel, the maximum principal stress rises significantly in the tunnel arch area of NW/SW oriented central tunnels. However, it is predicted that the rock's crack damage (CD, short term strength) value of 99 MPa will not be exceeded anywhere within the model. Loads onto the reinforcement structures will come from damaged and loosened rock which is assumed in the modelling as a free rock wedge - but this is very much a worst case scenario because there is no guarantee that rock cracking would form a free rock block. The structural capacity of the reinforcement structures is described and it is predicted that the current quantity of the rock reinforcement is strong enough to provide a stable tunnel opening during the peak of the long term stress state, with damage predicted on the sprayed concrete liner. However, the long term stability and safety can be improved through the implementation of the principles of the Observational Method. The effect of ventilation is also considered and an additional study of the radiogenic heating effect on the

  20. Energy consumption of engineering structures: Bascule bridge, lift bridge, fresh water and salt water parting, pedestrian subway, and an operating position. Energieverbruik van kunstwerken: Klapbrug, hefbrug, zoet-zoutscheidingen, voetgangerstunnel, bedienpost

    Energy Technology Data Exchange (ETDEWEB)

    Loois, G.; Hoekstra, K.J.

    1993-11-01

    In this third sub-section study insight is gained in the energy consumption of engineering structures in several Dutch places: a bascule bridge in Den Helder, a lift bridge in Son, a pedestrian subway in Haarlem, a fresh water/salt water parting with movable wall gates and a pumping station in the Kreekraksluizen (locks), a fresh water/salt water parting with bubble screen in Terneuzen, and the service station of the Kreekraksluizen. The data are compiled on the basis of the components of the engineering structures and estimations of the operational time, as well as on the basis of detailed and periodic measurements. 20 figs., 12 tabs.

  1. The coordination complex structures and hydrogen bonding in the three-dimensional alkaline earth metal salts (Mg, Ca, Sr and Ba) of (4-aminophenyl)arsonic acid.

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D

    2017-01-01

    (4-Aminophenyl)arsonic acid (p-arsanilic acid) is used as an antihelminth in veterinary applications and was earlier used in the monosodium salt dihydrate form as the antisyphilitic drug atoxyl. Examples of complexes with this acid are rare. The structures of the alkaline earth metal (Mg, Ca, Sr and Ba) complexes with (4-aminophenyl)arsonic acid (p-arsanilic acid) have been determined, viz. hexaaquamagnesium bis[hydrogen (4-aminophenyl)arsonate] tetrahydrate, [Mg(H2O)6](C6H7AsNO3)·4H2O, (I), catena-poly[[[diaquacalcium]-bis[μ2-hydrogen (4-aminophenyl)arsonato-κ(2)O:O']-[diaquacalcium]-bis[μ2-hydrogen (4-aminophenyl)arsonato-κ(2)O:O

  2. Synthetic and structural study of the coordination chemistry of a peri-backbone-supported phosphino-phosphonium salt.

    Science.gov (United States)

    Ray, Matthew J; Bühl, Michael; Taylor, Laurence J; Athukorala Arachchige, Kasun S; Slawin, Alexandra M Z; Kilian, Petr

    2014-08-18

    Coordination chemistry of an acenaphthene peri-backbone-supported phosphino-phosphonium chloride (1) was investigated, revealing three distinct modes of reactivity. The reaction of 1 with Mo(CO)4(nor) gives the Mo(0) complex [(1)Mo(CO)4Cl] (2), in which the ligand 1 exhibits monodentate coordination through the phosphine donor and the P-P bond is retained. PtCl2(cod) reacts with the chloride and triflate salts of 1 to form a mononuclear complex [(1Cl)PtCl2] (3) and a binuclear complex [((1Cl)PtCl)2][2TfO] (4), respectively. In both of these complexes, the platinum center adds across the P-P bond, and subsequent chloride transfer to the phosphenium center results in phosphine-chlorophosphine bidentate coordination. [((1)PdCl)2] (5) was isolated from the reaction of 1 and Pd2(dba)3 (dba = dibenzylideneacetone). Oxidative addition to palladium(0) results in a heteroleptic phosphine bridging phosphide coordination to the Pd(II) center. In addition, reaction of 1 with BH3·SMe2 leads to the bis(borane) adduct of the corresponding mixed tertiary/secondary phosphine (6), with BH3 acting as both a reducing agent and a Lewis acid. The new compounds were fully characterized, including X-ray diffraction. The ligand properties of 1 and related bonding issues are discussed with help of DFT computations.

  3. Rollerjaw Rock Crusher

    Science.gov (United States)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  4. Aespoe Hard Rock Laboratory. The use of focused ion beams for structural characterisation of bentonite. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Wegden, Marie; Kristiansson, Per (Division of Nuclear Physics, Lund Inst. of Technology (Sweden)); Svensson, Daniel; Sjoeland, Anders (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2009-07-01

    Bentonite clay is planned to be used in the KBS-3 concept for future nuclear high level waste (HLW) repository in Sweden. In the concept the spent nuclear fuel is placed in an iron insert, which is encapsulated in a copper canister. The copper canister is embedded in compacted bentonite and deposited at 500 m depth in granite bedrock. The compacted bentonite will act as a buffer material, giving mechanical support for the copper canister, reducing water movements and capturing potentially escaping radionuclides. Bentonite contains high amounts of smectite minerals (most common is montmorillonite), which are swelling clay minerals. The smectite minerals are layered and have the ability to store water in its structure. This is done by intercalating water between the layers and expanding the interlayer distance. The exceptional swelling capacity makes bentonite a suitable buffer material that works as a sealant and barrier. Heterogeneity in the material, compaction and in swelling may result in porosity, both on the nano- and micrometre scale. This may affect the permeability of the clay and may mediate the transport of radionuclides, cations and corrosion products. The aim of this work is to investigate the feasibility of using common ion beam techniques for structural characterisation of bentonite, including studying the mineral composition and the coarse porosity. The analytical techniques used were scanning transmission ion microscopy (STIM), particle-induced X-ray emission (PIXE) and elastic p-p scattering, performed at the Lund Nuclear Microprobe. On-axis STIM analysis was performed in order to measure and map the areal mass density of the sample. Since it was impossible to differentiate an increase in thickness from an area of higher mass density, as well as discerning depth variations, the STIM analysis was also performed in tomographic mode, in an attempt to obtain 3D structural information. The tomographic reconstruction showed that the bentonite had an

  5. On the role of salt formation and structural similarity of co-formers in co-amorphous drug delivery systems

    DEFF Research Database (Denmark)

    Wu, Wenqi; Löbmann, Korbinian; Rades, Thomas

    2018-01-01

    solubility. However, little is known about the importance of the overall structure of the co-former. In this study, the structurally related amino acids arginine (basic) and citrulline (neutral) were chosen together with four model drugs (acidic furosemide and nitrofurantoin; basic cimetidine and mebendazole...

  6. Reaction Rates in Chemically Heterogeneous Rock: Coupled Impact of Structure and Flow Properties Studied by X-ray Microtomography.

    Science.gov (United States)

    Al-Khulaifi, Yousef; Lin, Qingyang; Blunt, Martin J; Bijeljic, Branko

    2017-04-04

    We study dissolution in a chemically heterogeneous medium consisting of two minerals with contrasting initial structure and transport properties. We perform a reactive transport experiment using CO 2 -saturated brine at reservoir conditions in a millimeter-scale composite core composed of Silurian dolomite and Ketton limestone (calcite) arranged in series. We repeatedly image the composite core using X-ray microtomography (XMT) and collect effluent to assess the individual mineral dissolution. The mineral dissolution from image analysis was comparable to that measured from effluent analysis using inductively coupled plasma mass spectrometry (ICP-MS). We find that the ratio of the effective reaction rate of calcite to that of dolomite decreases with time, indicating the influence of dynamic transport effects originating from changes in pore structure coupled with differences in intrinsic reaction rates. Moreover, evolving flow and transport heterogeneity in the initially heterogeneous dolomite is a key determinant in producing a two-stage dissolution in the calcite. The first stage is characterized by a uniform dissolution of the pore space, while the second stage follows a single-channel growth regime. This implies that spatial memory effects in the medium with a heterogeneous flow characteristic (dolomite) can change the dissolution patterns in the medium with a homogeneous flow characteristic (calcite).

  7. Structure of aluminosilicate melts produced from granite rocks for the manufacturing of petrurgical glass-ceramics construction materials

    Directory of Open Access Journals (Sweden)

    Simakin, A. G.

    2001-12-01

    Full Text Available The aluminosilicate melt is a partly ordered phase and is the origin of glass for producing glassceramics and petrurgical materials. They are well extended used as construction materials for pavings and coatings. Its structure can be described in the terms of the aluminosilica tetrahedras coordination so-called Q speciation. The proportions of tetrahedra with different degree of connectivity with others (from totally connected to free has been studied by NMR and IR methods for sodium-silicate melts. Medium range structure can be characterized by the sizes of irreducible rings composed of the aluminosilica tetrahedra. Systematic increase of the four member rings proportion in the sequence of the Ab-An glasses were observed. The water dissolution in sodium-silicate glass affects the Q speciation. Cations network-modifiers positions in the melt structure are important to know since these cations stabilize particular structure configurations. Modification of the distribution of Na coordination in the sodium-silicate glass at water dissolution was determined by NMR spectroscopy. The observed modification of the hydrous aluminosilicate melt structure resulted in the shift of the eutectic composition in the granite system with decreasing of the crystallization field of feldspars. The feldspar growth rates show practically no dependence on the water content in the concentration range 2-4 wt.%. Likewise, the solved water has a little influence on the crystal growth rate of the lithium silicate phase in lithium containing glasses in accordance with estimated enhancing of the diffusion transport.

    Los fundidos de alumino-silicato son una fase parcialmente ordenada. Su estructura puede ser descrita en términos de la coordinación de tetraedros de alúmina-sílice también denominados especies Q. La proporción de tetraedros con diferente grado de conectividad entre si se ha investigado por espectroscopias de RMN e IR en fundidos de silicatos

  8. Pharmacology of novel synthetic stimulants structurally related to the "bath salts" constituent 3,4-methylenedioxypyrovalerone (MDPV).

    Science.gov (United States)

    Marusich, Julie A; Antonazzo, Kateland R; Wiley, Jenny L; Blough, Bruce E; Partilla, John S; Baumann, Michael H

    2014-12-01

    There has been a dramatic rise in the abuse of synthetic cathinones known as "bath salts," including 3,4-methylenedioxypyrovalerone (MDPV), an analog linked to many adverse events. MDPV differs from other synthetic cathinones because it contains a pyrrolidine ring which gives the drug potent actions as an uptake blocker at dopamine and norepinephrine transporters. While MDPV is now illegal, a wave of "second generation" pyrrolidinophenones has appeared on the market, with α-pyrrolidinovalerophenone (α-PVP) being most popular. Here, we sought to compare the in vitro and in vivo pharmacological effects of MDPV and its congeners: α-PVP, α-pyrrolidinobutiophenone (α-PBP), and α-pyrrolidinopropiophenone (α-PPP). We examined effects of test drugs in transporter uptake and release assays using rat brain synaptosomes, then assessed behavioral stimulant effects in mice. We found that α-PVP is a potent uptake blocker at dopamine and norepinephrine transporters, similar to MDPV. α-PBP and α-PPP are also catecholamine transporter blockers but display reduced potency. All of the test drugs are locomotor stimulants, and the rank order of in vivo potency parallels dopamine transporter activity, with MDPV > α-PVP > α-PBP > α-PPP. Motor activation produced by all drugs is reversed by the dopamine receptor antagonist SCH23390. Furthermore, results of a functional observational battery show that all test drugs produce typical stimulant effects at lower doses and some drugs produce bizarre behaviors at higher doses. Taken together, our findings represent the first evidence that second generation analogs of MDPV are catecholamine-selective uptake blockers which may pose risk for addiction and adverse effects in human users. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Can conservation biologists rely on established community structure rules to manage novel systems? ... Not in salt marshes.

    Science.gov (United States)

    Fariña, José M; Silliman, Brian R; Bertness, Mark D

    2009-03-01

    We experimentally examined plant zonation in a previously unstudied Chilean salt marsh system to test the generality of mechanisms generating zonation of plants across intertidal stress gradients. Vertical zonation in this system is striking. The low-lying clonal succulent, Sarcocornia fruticosa, dominates the daily flooded low marsh, while intermediate elevations are dominated by the much taller Spartina densiflora. Irregularly flooded higher elevations are dominated by Schoenoplectus californicus, with the small forb, Selliera radicans, found associated with Schoenoplectus at its base. Transplant studies of all four species into each zone both with and without competition revealed the mechanisms driving these striking patterns in plant segregation. In the regularly flooded low marsh, Sarcocornia and Spartina grow in the zone that they normally dominate and are displaced when reciprocally transplanted between zones with neighbors, but without neighbors they grow well in each other's zone. Thus, interspecific competition alone generates low marsh zonation as in some mediterranean marshes, but differently than most of the Californian marshes where physical stress is the dominant factor. In contrast, mechanisms generating high marsh patterns are similar to New England marshes. Schoenoplectus dies when transplanted to lower elevations with or without neighbors and thus is limited from the low marsh by physical stress, while Selliera grows best associated with Schoenoplectus, which shades and ameliorates potentially limiting desiccation stress. These results reveal that mechanisms driving community organization across environmental stress gradients, while generally similar among systems, cannot be directly extrapolated to unstudied systems. This finding has important implications for ecosystem conservation because it suggests that the mechanistic understanding of pattern generation necessary to manage and restore specific communities in novel habitats cannot rely

  10. Two-dimensional hydrogen-bonded polymers in the crystal structures of the ammonium salts of phenoxyacetic acid, (4-fluorophenoxyacetic acid and (4-chloro-2-methylphenoxyacetic acid

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2014-12-01

    Full Text Available The structures of the ammonium salts of phenoxyacetic acid, NH4+·C8H6O3−, (I, (4-fluorophenoxyacetic acid, NH4+·C8H5FO3−, (II, and the herbicidally active (4-chloro-2-methylphenoxyacetic acid (MCPA, NH4+·C9H8ClO3−·0.5H2O, (III have been determined. All have two-dimensional layered structures based on inter-species ammonium N—H...O hydrogen-bonding associations, which give core substructures consisting primarily of conjoined cyclic motifs. The crystals of (I and (II are isomorphous with the core comprising R12(5, R12(4 and centrosymmetric R42(8 ring motifs, giving two-dimensional layers lying parallel to (100. In (III, the water molecule of solvation lies on a crystallographic twofold rotation axis and bridges two carboxyl O atoms in an R44(12 hydrogen-bonded motif, creating two R43(10 rings, which together with a conjoined centrosymmetric R42(8 ring incorporating both ammonium cations, generate two-dimensional layers lying parallel to (100. No π–π ring associations are present in any of the structures.

  11. Habitat management affects soil chemistry and allochthonous organic inputs mediating microbial structure and exo-enzyme activity in Wadden Sea salt-marsh soils

    Science.gov (United States)

    Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (Δ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus

  12. Effect of autonomic blocking agents and structurally related substances on the “salt arousal of drinking”

    NARCIS (Netherlands)

    Wied, D. de

    The effect of autonomic blocking agents and structurally related substances was studied in rats in which thirst was produced by the administration of a hypertonic sodium chloride solution. Scopolamine, methamphetamine, amphetamine, chlorpromazine, atropine, mecamylamine, hexamethonium, nethalide,

  13. Sulphate rocks as an arena for karst development

    Directory of Open Access Journals (Sweden)

    Andrejchuk V.

    1996-01-01

    Full Text Available The rocks in which karst systems develop are most commonly composed of carbonate sulphate and chloride minerals. The sulphate minerals are quite numerous, but only gypsum and anhydrite form extensive masses in sedimentary sequences. Other minerals, which represent sulphates of K, Mg and Na, normally occur as minor beds (0.1-5.0 m, or as inclusions associated with chloride rocks. However some minerals precipitated in salt-generating basins, such as mirabilite and glauberite (typically formed in the Kara-Bogaz-Gol Gulf, salt lakes of Siberia and in China, form sequences up to 5-10 m thick where karst may develop. Due to the very high solubility of Na -sulphates, karst processes and features occurring in these rocks resemble salt karst. Thus, the term sulphate karst, although not strictly correct, is used mainly to indicate karst developed in gypsum and anhydrite.

  14. Subaerial salt extrusions in Iran as analogues of ice sheets, streams and glaciers

    Science.gov (United States)

    Talbot, Christopher J.; Pohjola, Veijo

    2009-12-01

    Ice (H 20) and salt (halite, NaCl) share many physical properties and resemble each other in hand specimens and subaerial gravity-driven flows. However, while most significant bodies of ice accumulate in cold highlands and gravity-spread where and soon after they form, most significant bodies of salt accumulate in tropical marine basins and have to be buried by > 1 km of other rocks before they flow. Buried salt is driven by differential loading into various categories of piercing structures known as diapirs. Many diapirs extrude onto the surface as sheets of allochthonous (out of place) salt. Thousands of sheets of allochthonous salt have been interpreted in over 35 basins worldwide in the last 25 years, mainly in the toes of passive continental margins and in orogenic belts where some are > 10 3 km 2 in area. Most former salt sheets are now submarine or subsurface but several active examples are beautifully exposed in Iran. These were compared to ice glaciers soon after they were introduced to western science, a comparison that has been neglected since. Here we update this analogy and use modern understanding of flowing ice and salt to examine the similarities and differences that might be mutually beneficial to both fields of study as well as to extraterrestrial scientists. The profiles, internal structures and fabrics in flowing bodies of ice and salt are sensitive gauges of the histories of their budgets of supply and loss. However, whereas snow merely compacts where it accumulates, salt sheets are fed from below by already deformed salt. When salt diapirs first emerge on land they extrude domes that mature to the profiles of viscous fountains that often feed glacier-like flows known as namakiers. After locally exhausting their deep source layers, salt fountains spread to the profiles of viscous droplets normal for ice caps. Ice typically deforms at > 80% (usually > 90%) of its absolute melting temperature while most salt deforms at memories than in ice

  15. Changes in composition, structure and aboveground biomass over seventy-six years (1930-2006) in the Black Rock Forest, Hudson Highlands, southeastern New York state

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, W.S.F. [Black Rock Forest Consortium, Cornwall, NY (United States); Griffin, K.L. [Colombia Univ., Palisades, NY (United States). Lamont-Doherty Earth Observatory; Roth, H. [Barnard College, New York, NY (United States). Dept. of Environmental Science; Turnbull, M.H. [Canterbury Univ., Christchurch (New Zealand). School of Biological Sciences; Whitehead, D. [Landcare Research, Lincoln (New Zealand); Tissue, D.T. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Biology

    2008-04-15

    This study measured changes in tree species composition and structures over a period of 76 years in the Black Rock Forest in southeastern New York. The study used data from periodic forest inventories and long-term plots as well as species-specific allometric equations to estimate aboveground forest biomass (AGB) and carbon content. Sixteen long-term plots were monitored at various forest elevations. Density, basal area, and aboveground biomass were calculated. Allometric regression equations were used to estimate live aboveground tree biomass. Results of the review showed that paper birch, black spruce, and American elm species were extirpated from the forest between the early 1930s and the year 2000. Species that invaded the forest included white poplar, red mulberry, eastern cottonwood, and slippery elm. Red oak and chestnut oaks dominated the forest canopy. The forest understory changed over the period from mixed oak to red maple and black birch. Red oak canopy trees stored carbon at twice the rate of similar-sized canopy trees in the forest. A significant loss of live tree biomass was attributed to canopy tree mortality since 1999. It was concluded that insect outbreaks and droughts are important constraints on long-term biomass growth. 87 refs., 2 tabs., 5 figs.

  16. Geomechanical testing of MRIG-9 core for the potential SPR siting at the Richton salt dome.

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Dennis P.; Broome, Scott Thomas; Bronowski, David R.; Bauer, Stephen J.; Hofer, John H.

    2009-02-01

    A laboratory testing program was developed to examine the mechanical behavior of salt from the Richton salt dome. The resulting information is intended for use in design and evaluation of a proposed Strategic Petroleum Reserve storage facility in that dome. Core obtained from the drill hole MRIG-9 was obtained from the Texas Bureau of Economic Geology. Mechanical properties testing included: (1) acoustic velocity wave measurements; (2) indirect tensile strength tests; (3) unconfined compressive strength tests; (4) ambient temperature quasi-static triaxial compression tests to evaluate dilational stress states at confining pressures of 725, 1450, 2175, and 2900 psi; and (5) confined triaxial creep experiments to evaluate the time-dependent behavior of the salt at axial stress differences of 4000 psi, 3500 psi, 3000 psi, 2175 psi and 2000 psi at 55 C and 4000 psi at 35 C, all at a constant confining pressure of 4000 psi. All comments, inferences, discussions of the Richton characterization and analysis are caveated by the small number of tests. Additional core and testing from a deeper well located at the proposed site is planned. The Richton rock salt is generally inhomogeneous as expressed by the density and velocity measurements with depth. In fact, we treated the salt as two populations, one clean and relatively pure (> 98% halite), the other salt with abundant (at times) anhydrite. The density has been related to the insoluble content. The limited mechanical testing completed has allowed us to conclude that the dilatational criteria are distinct for the halite-rich and other salts, and that the dilation criteria are pressure dependent. The indirect tensile strengths and unconfined compressive strengths determined are consistently lower than other coastal domal salts. The steady-state-only creep model being developed suggests that Richton salt is intermediate in creep resistance when compared to other domal and bedded salts. The results of the study provide only

  17. Quantifying rock's structural fabric: a multi-scale hierarchical approach to natural fracture systems and stochastic modelling

    Science.gov (United States)

    Hardebol, Nico; Bertotti, Giovanni; Weltje, Gert Jan

    2014-05-01

    We propose the description of fracture-fault systems in terms of a multi-scale hierarchical network. In most generic form, such arrangement is referred to as a structural fabric and applicable across the length scale spectrum. The statistical characterisation combines the fracture length and orientation distributions and intersection-termination relationships. The aim is a parameterised description of the network that serves as input in stochastic network simulations that should reproduce the essence of natural fracture networks and encompass its variability. The quality of the stochastically generated fabric is determined by comparison with deterministic descriptions on which the model parameterisation is based. Both the deterministic and stochastic derived fracture network description can serve as input in fluid flow or mechanical simulations that accounts explicitly for the discrete features and the response of the system can be compared. The deterministic description of our current study in the framework of tight gas reservoirs is obtained from coastal pavements that expose a horizontal slice through a fracture-fault network system in fine grained sediments in Yorkshire, UK. Fracture hierarchies have often been described at one observation scale as a two-tier hierarchy in terms of 1st order systematic joints and 2nd order cross-joints. New in our description is the bridging between km-sized faults with notable displacement down to sub-meter scale shear and opening mode fractures. This study utilized a drone to obtain cm-resolution imagery of pavements from ~30m altitude and the large coverage up to 1-km by flying at a ~80m. This unique set of images forms the basis for the digitizing of the fracture-fault pattern and helped determining the nested nature of the network as well as intersection and abutment relationships. Fracture sets were defined from the highest to lowest hierarchical order and probability density functions were defined for the length

  18. Investigation of the effect of additives on the basis of pickling solutions containing iron salts on the structure and strength of fine concrete

    Directory of Open Access Journals (Sweden)

    Lukuttsova Natal’ya Petrovna

    2016-01-01

    Full Text Available The modern tendencies of construction industry development are connected with the use of new high-efficient materials with the application of resource- and energy-saving technologies of their generation. The use of industrial man-made products as the components improving the characteristics of construction products is now a promising field of research. The article presents the results of the use of waste pickling solutions of steel rolling factories, containing salts of iron as nanomodified additives for the products based on cement binder. The effectiveness of the influence of the considered additives on the structure and strength of fine-grained concrete is shown. If using this additive in the amount of 0.32 % from the mass of cement for 28 days of natural hardening, the fine concrete strength is growing by 1.8 times due to additional formation of hydrosilicates, densification of structure and reduction of the total porosity of the cement system by 2 times.

  19. Community Structure of Skin Microbiome of Gulf Killifish, Fundulus grandis, Is Driven by Seasonality and Not Exposure to Oiled Sediments in a Louisiana Salt Marsh.

    Science.gov (United States)

    Larsen, Andrea M; Bullard, Stephen A; Womble, Matthew; Arias, Covadonga R

    2015-08-01

    Mucus of fish skin harbors complex bacterial communities that likely contribute to fish homeostasis. When the equilibrium between the host and its external bacterial symbionts is disrupted, bacterial diversity decreases while opportunistic pathogen prevalence increases, making the onset of pathogenic bacterial infection more likely. Because of that relationship, documenting temporal and spatial microbial community changes may be predictive of fish health status. The 2010 Deepwater Horizon oil spill was a potential stressor to the Gulf of Mexico's coastal ecosystem. Ribosomal intergenic spacer analysis (RISA) and pyrosequencing were used to analyze the bacterial communities (microbiome) associated with the skin and mucus of Gulf killifish (Fundulus grandis) that were collected from oiled and non-oiled salt marsh sites in Barataria Bay, LA. Water samples and fin clips were collected to examine microbiome structure. The microbiome of Gulf killifish was significantly different from that of the surrounding water, mainly attributable to shifts in abundances of Cyanobacteria and Proteobacteria. The Gulf killifish's microbiome was dominated by Gammaproteobacteria, specifically members of Pseudomonas. No significant difference was found between microbiomes of fish collected from oiled and non-oiled sites suggesting little impact of oil contamination on fish bacterial assemblages. Conversely, seasonality significantly influenced microbiome structure. Overall, the high similarity observed between the microbiomes of individual fish observed during this study posits that skin and mucus of Gulf killifish have a resilient core microbiome.

  20. Rocks Can Wow? Yes, Rocks Can Wow!

    Science.gov (United States)

    Hardman, Sally; Luke, Sue

    2016-01-01

    Rocks and fossils appear in the National Curriculum of England science programmes of study for children in year 3 (ages 7-8). A frequently asked question is "How do you make the classification of rocks engaging?" In response to this request from a school, a set of interactive activities was designed and organised by tutors and students…

  1. Mesozoic thermal history and timing of structural events for the Yukon-Tanana Upland, east-central Alaska: 40Ar/39Ar data from metamorphic and plutonic rocks

    Science.gov (United States)

    Dusel-Bacon, C.; Lanphere, M.A.; Sharp, W.D.; Layer, P.W.; Hansen, V.L.

    2002-01-01

    We present new 40Ar/39Ar ages for hornblende, muscovite, and biotite from metamorphic and plutonic rocks from the Yukon-Tanana Upland, Alaska. Integration of our data with published 40Ar/39Ar, kinematic, and metamorphic pressure (P) and temperature (T) data confirms and refines the complex interaction of metamorphism and tectonism proposed for the region. The oldest metamorphic episode(s) postdates Middle Permian magmatism and predates the intrusion of Late Triassic (215-212 Ma) granitoids into the Fortymile River assemblage (Taylor Mountain assemblage of previous papers). In the eastern Eagle quadrangle, rapid and widespread Early Jurassic cooling is indicated by ???188-186 Ma 40Ar/39Ar plateau ages for hornblende from plutons that intrude the Fortymile River assemblage, and for metamorphic minerals from the Fortymile River assemblage and the structurally underlying Nasina assemblage. We interpret these Early Jurassic ages to represent cooling resulting from northwest-directed contraction that emplaced the Fortymile River assemblage onto the Nasina assemblage to the north as well as the Lake George assemblage to the south. This cooling was the final stage of a continuum of subduction-related contraction that produced crustal thickening, intermediate- to high-P metamorphism within both the Fortymile River assemblage and the structurally underlying Lake George assemblage, and Late Triassic and Early Jurassic plutonism in the Fortymile River and Nasina assemblages. Although a few metamorphic samples from the Lake George assemblage yield Jurassic 40Ar/39Ar cooling ages, most yield Early Cretaceous 40Ar/39Ar ages: hornblende ???135-115 Ma, and muscovite and biotite ???110-108 Ma. We interpret the Early Cretaceous metamorphic cooling, in most areas, to have resulted from regional extension and exhumation of the lower plate, previously tectonically thickened during Early Jurassic and older convergence.

  2. The salt stock of the Jura bassin in Ostholstein. A seismologic re-interpretation; Der Salzstock des ostholsteinischen Juratroges. Eine seismische Re-Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Brink, H.J.; Baykulov, M.; Gajewski, D.; Yoon, Mi-Kyung [Hamburg Univ. (Germany). Inst. fuer Geophysik

    2008-10-23

    The developing age of the Permian salt stocks in Schleswig-Holstein (Federal Republic of Germany) reaches from the Trias over the Jura up to the Tertiary period. In the context of the DGMK project 577-1, the reflection-rich salt dome in the East Holstein Jura was investigated seismically by means of the CRS method and speed tomography. These measurements enable the interpretation of a structural style with a substantial tectonically compressive component. Magnetotelluric measurements point to potential natural gas source rocks. The drift of the Permian salt contributes to the contact support of new red sandstone on the pre-salinar layers. Migration ways are opened which contributed to a filling of structurally high new red sandstone reservoirs in small depths.

  3. Infiltration Flow Path Distributions in Unsaturated Rocks

    Science.gov (United States)

    Tokunaga, T. K.; Olson, K. R.; Wan, J.

    2004-12-01

    Spatial distributions of infiltration flow paths through rock formations are complex networks that determine flow velocities, control rates of natural geochemical reactions in the subsurface, as well as rates of contaminant transport to underlying groundwater. Despite these important consequences, distributions of infiltration paths and locally fast seepage rates through rocks are not well understood. Laboratory-based studies on fractured rocks cannot easily be conducted on systems large enough to include sufficient fracture network complexity, so that inferences of field-scale flux distributions cannot be reliably made. Field-based studies to date have permitted quantification of only a small fraction of the flow distribution, typically while imposing extremely high fluxes, and therefore have not allowed comprehensive delineation of flow distributions expected under natural recharge. Based on hydraulic scaling considerations, we hypothesize that unsaturated flow path distributions in rock deposits will be similar to those occurring in fractured rock formations under low overall infiltration rates. Talus rock deposits and mine waste rock piles control flow and transport into their respective underlying groundwaters. All of these reasons motivated infiltration experiments in rock packs. Experiments have been conducted on 4 different rock types and system scales ranging from 1 to 46 rock layers. Our experiments showed that infiltration through rocks conforms to no previously reported behavior in soils, and that flow paths do not progressively converge into fewer and fewer flow paths. Instead, a fundamentally different hydraulic structure develops, having an exponential (geometric) flux distribution, with the characteristic scale determined by the characteristic rock size. Although the phenomena are very different, the evolution of flow path distributions and local seepage rate distributions is predictable based on a statistical mechanical model for energy

  4. Two Organic Cation Salts Containing Tetra(isothiocyanatecobaltate(II: Synthesis, Crystal Structures, Spectroscopic, Optical and Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2017-03-01

    Full Text Available Single crystals of two hybrid organic-inorganic molecular solids, benzyl pyridinium tetra(isothiocyanatecobalt ([BzPy]2[Co(NCS4] (1 and benzyl quinolinium tetra(isothiocyanatecobalt ([BzQl]2[Co(NCS4] (2, were grown using a slow evaporation growth technique at room temperature and their IR, UV-Vis, X-ray crystal structures, luminescence, and magnetism were reported. The crystal structural analysis revealed that two molecular solids crystallize in the monoclinic space group P21/c of 1 and P21/n of 2. The cations form a dimer through weak C–H···π/π···π interactions in 1 and 2, and the adjacent cation (containing N(6 atom in 2 forms a columnar structure through π···π weak interactions between the quinoline and benzene rings, while the anions in 1 form a layer structure via short S···Co interactions. The anions (A and cations (C are arranged alternatively into a column in the sequence of ···A–CC–A–CC–A··· for 1, while the two anions and cationic dimer in 2 form an alliance by the C–H···π, C–H···S and C–H···N hydrogen bonds. A weak S···π interaction was found in 1 and 2. The two molecular solids show a broad fluorescence emission around 400 nm in the solid state at room temperature, and weak antiferromagnetic coupling behavior when the temperature is lowered.

  5. Permeability of WIPP Salt During Damage Evolution and Healing

    Energy Technology Data Exchange (ETDEWEB)

    BODNER,SOL R.; CHAN,KWAI S.; MUNSON,DARRELL E.

    1999-12-03

    The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering.

  6. Challenges of constructing salt cavern gas storage in China

    Science.gov (United States)

    Xia, Yan; Yuan, Guangjie; Ban, Fansheng; Zhuang, Xiaoqian; Li, Jingcui

    2017-11-01

    After more than ten years of research and engineering practice in salt cavern gas storage, the engineering technology of geology, drilling, leaching, completion, operation and monitoring system has been established. With the rapid growth of domestic consumption of natural gas, the requirement of underground gas storage is increasing. Because high-quality rock salt resources about 1000m depth are relatively scarce, the salt cavern gas storages will be built in deep rock salt. According to the current domestic conventional construction technical scheme, construction in deep salt formations will face many problems such as circulating pressure increasing, tubing blockage, deformation failure, higher completion risk and so on, caused by depth and the complex geological conditions. Considering these difficulties, the differences between current technical scheme and the construction scheme of twin well and big hole are analyzed, and the results show that the technical scheme of twin well and big hole have obvious advantages in reducing the circulating pressure loss, tubing blockage and failure risk, and they can be the alternative schemes to solve the technical difficulties of constructing salt cavern gas storages in the deep rock salt.

  7. Rock Slope Design Criteria

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  8. Rock slope design guide.

    Science.gov (United States)

    2011-04-01

    This Manual is intended to provide guidance for the design of rock cut slopes, rockfall catchment, and : rockfall controls. Recommendations presented in this manual are based on research presented in Shakoor : and Admassu (2010) entitled Rock Slop...

  9. The Rock Cycle

    Science.gov (United States)

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  10. Statistical analysis of determining the filtration heterogeneity of foundation rock mass of hydraulic structures on the example of the boguchanskaya hpp

    Directory of Open Access Journals (Sweden)

    Chernyshev Sergey Nikolaevich

    2016-01-01

    intervals with identical key values in the second position of the code. The boundaries between the drilled wells are held on a Pro forma basis for geological reasons. For example, if the set of values with the largest number lgq, which corresponds to the species with a visually perceptible change when exposed to weathering, has a number 4, the boundaries between the drilled wells will naturally stretch along the roof of the bedrock. If according to the proposed methodology, within the limited element number 4, the interval is flagged with number 3, it can be interpreted as the appearance of the outcrop of other rocks. In this case we need to show the boundary of engineering-geological element with a smaller value of lgq around the 3, than it is inside the engineering-geological element number 4. For each of the obtained groups of values, calculated using known statistical formulas, we calculated the mean value and other statistical estimates that are useful in practice. For example, the geometric mean is an effective in a hydraulic sense evaluation of the specific absorption coefficient of the filter. So the authors proposed a formalized approach to defining the structural elements of the filtration field inhomogeneity of a rock mass of hydraulic structures foundation on the basis of statistical analysis. The article shows how to highlight the engineering-geological elements with the filtration inhomogeneity of rocky soils on the example of the Boguchanskaya HPP on the Angara River.

  11. An engineering rock classification to evaluate seismic rock-fall susceptibility and its application to the Wasatch Front

    Science.gov (United States)

    Harp, E.L.; Noble, M.A.

    1993-01-01

    Investigations of earthquakes world wide show that rock falls are the most abundant type of landslide that is triggered by earthquakes. An engineering classification originally used in tunnel design, known as the rock mass quality designation (Q), was modified for use in rating the susceptibility of rock slopes to seismically-induced failure. Analysis of rock-fall concentrations and Q-values for the 1980 earthquake sequence near Mammoth Lakes, California, defines a well-constrained upper bound that shows the number of rock falls per site decreases rapidly with increasing Q. Because of the similarities of lithology and slope between the Eastern Sierra Nevada Range near Mammoth Lakes and the Wasatch Front near Salt Lake City, Utah, the probabilities derived from analysis of the Mammoth Lakes region were used to predict rock-fall probabilities for rock slopes near Salt Lake City in response to a magnitude 6.0 earthquake. These predicted probabilities were then used to generalize zones of rock-fall susceptibility. -from Authors

  12. From stones to rocks

    Science.gov (United States)

    Mortier, Marie-Astrid; Jean-Leroux, Kathleen; Cirio, Raymond

    2013-04-01

    With the Aquila earthquake in 2009, earthquake prediction is more and more necessary nowadays, and people are waiting for even more accurate data. Earthquake accuracy has increased in recent times mainly thanks to the understanding of how oceanic expansion works and significant development of numerical seismic prediction models. Despite the improvements, the location and the magnitude can't be as accurate as citizen and authorities would like. The basis of anticipating earthquakes requires the understanding of: - The composition of the earth, - The structure of the earth, - The relations and movements between the different parts of the surface of the earth. In order to answer these questions, the Alps are an interesting field for students. This study combines natural curiosity about understanding the predictable part of natural hazard in geology and scientific skills on site: observing and drawing landscape, choosing and reading a representative core drilling, replacing the facts chronologically and considering the age, the length of time and the strength needed. This experience requires students to have an approach of time and space radically different than the one they can consider in a classroom. It also limits their imagination, in a positive way, because they realize that prediction is based on real data and some of former theories have become present paradigms thanks to geologists. On each location the analyzed data include landscape, core drilling and the relation established between them by students. The data is used by the students to understand the meaning, so that the history of the formation of the rocks tells by the rocks can be explained. Until this year, the CBGA's perspective regarding the study of the Alps ground allowed students to build the story of the creation and disappearance of the ocean, which was a concept required by French educational authorities. But not long ago, the authorities changed their scientific expectations. To meet the

  13. Transient convergence and compaction of crushed salt as incorporated in the computer code EMOS

    Energy Technology Data Exchange (ETDEWEB)

    Heijdra, J.J.; Hamilton, L.F.M.; Prij, J.; Slagter, W.

    1995-11-01

    An improved model for description of the transient convergence of cavities in rock salt, together with an improved model for the compaction of crushed salt is introduced. The covergence model is based on solutions of the analytical expressions based on secondary creep for a cylindrical and spherical cavity in rock salt. For the model for compaction of crushed salt the relations based on theoretical micro mechanisms have been fitted to laboratory results. A description is given of how the improved models are incorporated into the program EMOS. (orig.).

  14. New 1:1 and 2:1 salts in the `DL-norvaline-maleic acid' system as an example of assembling various crystal structures from similar supramolecular building blocks.

    Science.gov (United States)

    Arkhipov, Sergey G; Losev, Evgeniy A; Boldyreva, Elena V

    2017-01-01

    Molecular salts and cocrystals of amino acids have potential applications as molecular materials with nonlinear optical, ferroelectric, piezoelectric, and other various target physical properties. The wide choice of amino acids and coformers makes it possible to design various crystal structures. The amino acid-maleic acid system provides a perfect example of a rich variety of crystal structures with different stoichiometries, symmetries and packing motifs built from the molecular building blocks, which are either exactly the same, or differ merely by protonation or as optical isomers. The present paper reports the crystal structures of two new salts of the DL-norvaline-maleic acid system with 1:1 and 2:1 stoichiometries, namely DL-norvalinium hydrogen maleate, C5H12NO2+·C4H3O4-, (I), and DL-norvalinium hydrogen maleate-DL-norvaline, C5H12NO2+·C4H3O4-·C5H11NO2, (II). These are the first examples of molecular salts of DL-norvaline with an organic anion. The crystal structure of (I) has the same C22(12) structure-forming motif which is common for hydrogen maleates of amino acids. The structure of (II) has dimeric cations. Of special interest is that the single crystals of (I) which are originally formed on crystallization from aqueous solution transform into single crystals of (II) if stored in the mother liquor for several hours.

  15. Can Low Water/Rock Hydrothermal Alteration of Impact Materials Explain the Rock Component of the Martian Soil?

    Science.gov (United States)

    Nelson, M. J.; Newsom, H. E.

    2003-01-01

    The martian regolith is a globally homogenized product of chemical and aeolian weathering processes. The soil is thought to consist of a rock component, with lesser amounts of mobile elements (Ca, Na, and K) than a presumed protolith, and a salt or mobile element component enriched in sulfur and chlorine. In this study we consider the contributions of hydrothermal processes to the origin of the rock component of the martian soil.

  16. My Pet Rock

    Science.gov (United States)

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  17. Dipicolinate salt of imidazole: Discovering its structure and properties using different experimental methodologies and quantum chemical investigations

    Science.gov (United States)

    Thirumurugan, R.; Anitha, K.

    2018-03-01

    A novel organic proton transfer complex of imidazolium dipicolinate (ID) has been synthesized and it was grown as single crystals using slow evaporation method. The molecular structure of synthesized compound and vibrational modes of its functional groups were confirmed by (1H and 13C) NMR, FTIR and FT-Raman spectroscopic studies, respectively. Single crystal X-ray diffraction (SCXRD) analysis confirmed the orthorhombic system with noncentrosymmetric (NCS), P212121, space group of grown ID crystal. UV-Vis-NIR spectral study confirmed its high optical transparency within the region of 285-1500 nm. Powder second harmonic generation (SHG) efficiency of ID crystal was confirmed and it was 6.8 times that of KDP crystal. TG-DTA and DSC analysis revealed the higher thermal stability of grown crystal as 249 °C. The dielectric response and mechanical behaviour of grown crystal were studied effectively. Density functional theory calculations were performed to probe the relationship between the structure and its properties including molecular optimization, Mulliken atomic charge distribution, frontier molecular orbital (FMOs) and molecular electrostatic potential map (MEP) analysis and first hyperpolarizability. All these experimental and computational results were discussed in this communication and it endorsed the ID compound as a potential NLO candidate could be employed in optoelectronics device applications in near future.

  18. Radar for salt ultra-high-energy neutrino detector and contribution of W-gluon fusion process to collision of neutrinos against protons

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Masami [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji-shi, Tokyo 192-0397 (Japan)], E-mail: chiba-masami@c.metro-u.ac.jp; Arakawa, Yoko; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa Hachioji-shi, Tokyo 192-0397 (Japan); Chikashige, Yuichi; Ibe, Keisuke; Kon, Tadashi; Shimizu, Yutaka [Faculty of Science and Technology, Seikei University, Musashino-shi, Tokyo 180-8633 (Japan); Taniuchi, Yasuyuki; Utsumi, Michiaki [Department of Applied Science and Energy Engineering, School of Engineering, Tokai University Hiratsuka-shi, Kanagawa 259-1292 (Japan); Fujii, Masatoshi [School of Medicine, Shimane University, Izumo-shi, Shimane 693-8501 (Japan)

    2009-06-01

    Existence of GZK neutrinos (ultra-high-energy neutrinos) has been justified although the flux is estimated to be extremely low. A study of radar method of UHF radio wave was carried out using a 2 MeV electron beam on a rock salt target. Radio wave reflection was reproduced in UHF and the reflection rate was consistent with microwave reflection in X-ray irradiation. Reflected power of radio wave was proportional to a temperature of the rock salt target. A new contribution of W- and Z-gluon fusion processes as well as W and Z exchange were taken into account to calculate cross-sections of UHE neutrinos against nucleons with GRACE. Nucleon structure function of CTEQ6 including low x>10{sup -8} was employed, we obtained 1.5 times larger cross-sections than those without them.

  19. Synthesis, structural characterization and photoluminescent properties of mesoporous ZnO by direct precipitation with lignin-phosphate quaternary ammonium salt

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuan-Ru, E-mail: gyrhit@yahoo.cn [Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040 (China); Yu, Fang-Dan; Fang, Gui-Zhen [Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040 (China); Pan, Qing-Jiang, E-mail: panqj@yahoo.com.cn [Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China)

    2013-03-05

    Highlights: ► Lignin used in the synthesis is recovered from the pulping black liquor. ► After modification, lignin was applied to fabricate ZnO. ► ZnO was prepared by direct precipitation without sintering. ► The synthesized ZnO nanocrystallites show a hexagonal wurtzite structure. ► There are an abundance of mesopores on prepared ZnO. -- Abstract: The surfactant of lignin-phosphate quaternary ammonium salt (LPQAS) has been synthesized from chemical conversion of the alkali lignin that is a byproduct of the pulp industry. Using this lignin-based LPQAS, the wurtzite-structure ZnO crystals with plenty of mesopores can be prepared through one step reaction in aqueous solution. These fine hexagonal ZnO particles have been confirmed by X-ray diffraction (XRD) and their diameters have been calculated to be within 20 and 40 nm using the Debye–Scherrer equation. It is shown from our SEM results that the mole ratio of Zn{sup 2+} and OH{sup −} ions affects the morphology of ZnO. And at a mole ratio of 1:10 for the Zn{sup 2+} and OH{sup −} ions, the flower-like ZnO nanomaterials were obtained. Both TEM and Brunauer–Emmett–Teller (BET) determinations reveal that as-prepared ZnO crystallites contain abundant mesoporous structures. A possible formation mechanism of these mesoporous ZnO crystallites has been proposed in this work. Finally, photoluminescent spectra of the synthesized ZnO were measured at room temperature, exhibiting two characteristic bands of typical ZnO materials at 383 nm (sharp) and in the range of 480–600 nm (broad)

  20. Structure of the products of the reaction of 1-hydroxy-3,3-dialkyl-1-arylphthalanes and their ethers and salts with thiosemicarbazide

    Energy Technology Data Exchange (ETDEWEB)

    Oparin, D.A.; Kondakov, V.I.; Shalygina, V.A.

    1986-09-10

    PMR, UV, and IR spectroscopy was used to study the structure of the reaction of 1-hydroxy-3,3-dialkyl-1-arylphthalanes (Alk = CH/sub 3/, C/sub 2/H/sub 5/, and iso-C/sub 3/H/sub 7/), their methyl ethers and thiosemicarbazide salts. The compounds containing Ar = C/sub 6/H/sub 5/, o-CH/sub 3/C/sub 6/H/sub 4/, m-CH/sub 3/C/sub 6/H/sub 4/, o-CH/sub 3/OC/sub 6/H/sub 4/, m-CH/sub 3/OC/sub 6/H/sub 4/, p-CH/sub 3/OC/sub 6/H/sub 4/, p-C/sub 2/H/sub 5/OC/sub 6/H/sub 4/, p-(CH/sub 3/)/sub 2/NC/sub 6/H/sub 4/, p-ClC/sub 6/H/sub 4/, m-FC/sub 6/H/sub 4/, and 3,4-(CH/sub 3/O)/sub 2/C/sub 6/H/sub 3/ have cyclic 1-thiosemicarbazido-3,3-di-alkyl-1-arylphthalane structure, while the compounds with Ar = 2,4,6-(CH/sub 3/)/sub 2/C/sub 6/H/sub 2/ has the structure of the thiosemicarbazone of the isomeric o-aroylbenzyl alcohol. The cyclic products of the reaction with Ar = o-CH/sub 3/C/sub 6/H/sub 4/ in ethanol undergo opening of the heterocycle to form open-chain isomers.

  1. Identification of the bile salt binding site on ipad from Shigella flexneri and the influence of ligand binding on IpaD structure

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Guragain, Manita; Adam, Philip; Dickenson, Nicholas E.; Patil, Mrinalini; Geisbrecht, Brian V.; Picking, Wendy L.; Picking, William D. (UMKC); (OKLU)

    2012-10-25

    Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nano-machine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices {alpha}3 and {alpha}7, with concomitant movement in the orientation of helix {alpha}7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC-bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.

  2. Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils.

    Science.gov (United States)

    Mueller, Peter; Granse, Dirk; Nolte, Stefanie; Do, Hai Thi; Weingartner, Magdalena; Hoth, Stefan; Jensen, Kai

    2017-07-01

    Tidal wetlands have been increasingly recognized as long-term carbon sinks in recent years. Work on carbon sequestration and decomposition processes in tidal wetlands focused so far mainly on effects of global-change factors such as sea-level rise and increasing temperatures. However, little is known about effects of land use, such as livestock grazing, on organic matter decomposition and ultimately carbon sequestration. The present work aims at understanding the mechanisms by which large herbivores can affect organic matter decomposition in tidal wetlands. This was achieved by studying both direct animal-microbe interactions and indirect animal-plant-microbe interactions in grazed and ungrazed areas of two long-term experimental field sites at the German North Sea coast. We assessed bacterial and fungal gene abundance using quantitative PCR, as well as the activity of microbial exo-enzymes by conducting fluorometric assays. We demonstrate that grazing can have a profound impact on the microbial community structure of tidal wetland soils, by consistently increasing the fungi-to-bacteria ratio by 38-42%, and therefore potentially exerts important control over carbon turnover and sequestration. The observed shift in the microbial community was primarily driven by organic matter source, with higher contributions of recalcitrant autochthonous (terrestrial) vs. easily degradable allochthonous (marine) sources in grazed areas favoring relative fungal abundance. We propose a novel and indirect form of animal-plant-microbe interaction: top-down control of aboveground vegetation structure determines the capacity of allochthonous organic matter trapping during flooding and thus the structure of the microbial community. Furthermore, our data provide the first evidence that grazing slows down microbial exo-enzyme activity and thus decomposition through changes in soil redox chemistry. Activities of enzymes involved in C cycling were reduced by 28-40%, while activities of

  3. Structural and Redox Properties of Vanadium Complexes in Molten Salts of Interest for the Catalytic Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Boghosian, S.; Chrissanthopoulos, A.; Fehrmann, Rasmus

    2000-01-01

    Electronic absorption (UV/VIS) spectra have been obtained at 450 degrees C from V2O5-K2S2O7 molten mixtures in SO2 ( P-SO2 = 0 - 1.2 atm) gas atmospheres. The data are in agreement with the V-V reversible arrow V-IV equilibrium: (VO)(2)O(SO4)(4)(4-)(l) + SO2(g) - 2VO(SO4)(2)(2-)(l) + SO3(g). Sulfur...... dioxide does not coordinate to the V-V complex but starts significantly to coordinate to V-IV for P-SO2 > 0 4 atm in accordance with the equilibrium: VO(SO4)(2)(2-)(l) + SO2(g) reversible arrow VO(SO4)(2)SO22-(l). Furthermore, high temperature Raman spectroscopy has been used to establish the structural...

  4. The Close Relationships between the Crystal Structures of MO and MSO 4 (M = Group 10, 11, or 12 Metal), and the Predicted Structures of AuO and PtSO 4

    KAUST Repository

    Derzsi, Mariana

    2013-08-21

    The structural relations of (and between) late transition metal monoxides, MO, and monosulfates, MSO4, are analyzed. We show that all of these late transition metal oxides, as well as 4d and 5d metal sulfates, crystallize in distorted rock salt lattices and argue that the distortions are driven by collective first- and/or second order Jahn-Teller effects. The collective Jahn-Teller deformations lead either to tetragonal contraction or (seldom) elongation of the rock salt lattice. On the basis of the rock salt representation of the oxides and sulfates, we show that PdO, CuO, and AgO are metrically related and that the 4d and 5d metal sulfates are close to isostructural with their oxides. These observations guide us towards as yet unknown AuO and PtSO4, for which we predict crystal structures from electronic structure calculations. The structural relations of (and between) late transition metal monoxides, MO, and monosulfates, MSO4, are analyzed. We show that all of these late transition metal oxides, as well as 4d and 5d metal sulfates, crystallize in distorted rock salt lattices and argue that the distortions are driven by collective first- and/or second order Jahn-Teller effects, as quantified by the c′/a′ ratio. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Structure and sedimentation of Permo-Triassic and Triassic rocks exposed in small-scale horsts and grabens of pre-Cretaceous age: Dead Sea margin, Jordan

    Science.gov (United States)

    Powell, J. H.; Mohamed, B. Khalil

    1993-08-01

    Small-scale horsts and grabens, formed prior to the deposition of the Lower Cretaceous Kurnub Sandstone, are described for the first time from remote exposures near the eastern shore of the Dead Sea, Jordan. The grabens preserve a sequence of Permo-Triassic and Triassic rocks (Umm Irna and Ma'in Formations), flanked by horsts of Cambrian sandstone (Umm Ishrin Formation). The pre-Cretaceous faults are mostly orientated NNE or ENE, with a maximum vertical displacement of 130 m. Rotation of a joint system, formed during the late Palaeozoic, in the Cambrian sandstone indicates that the horst blocks were rotated anti-clockwise during block faulting. Local and regional stratigraphical evidence suggest that faulting occurred during an extensional tectonic regime in late Jurassic to early Cretaceous times. The horsts and grabens did not affect sedimentation of the basal Kurnub Sandstone and they are preserved without relief below the unconformity, suggesting a period of erosional peneplanation prior to deposition of the fluvial Kurnub Sandstone. The structures probably represent an extension of the Central Naqab-Sinai fault zone which was displaced by sinistral shear along the Dead Sea-Gulf of Aqaba Rift in Tertiary (Neogene) times. Lithofacies sequences in the Umm Irna Formation exposed in the grabens comprise, in ascending sequence, braided to low-sinuosity or meandering fluvial siliciclastic facies, derived from the Arabo-Nubian Shield to the south and south-east. Lithological characteristics, bedforms and pedogenic features suggest a fluctuating, seasonal, semi-arid climate. Transgression of the Tethys Ocean in early Triassic times resulted in deposition of shallow-marine siliciclastics and carbonates (Ma'in Formation) in subtidal to intertidal environments.

  6. The Hydractinia echinata Test-System. III: Structure-Toxicity Relationship Study of Some Azo-, Azo-Anilide, and Diazonium Salt Derivatives

    Directory of Open Access Journals (Sweden)

    Sergiu Adrian Chicu

    2014-07-01

    Full Text Available Structure-toxicity relationships for a series of 75 azo and azo-anilide dyes and five diazonium salts were developed using Hydractinia echinata (H. echinata as model species. In addition, based on these relationships, predictions for 58 other azo-dyes were made. The experimental results showed that the measured effectiveness Mlog(1/MRC50 does not depend on the number of azo groups or the ones corresponding to metobolites, but it is influenced by the number of anilide groups, as well as by the substituents’ positions within molecules. The conformational analysis pointed out the intramolecular hydrogen bonds, especially the simple tautomerization of quinoidic (STOH or aminoidic (STNH2 type. The effectiveness is strongly influenced by the “push-pull” electronic effect, specific to two hydroxy or amino groups separated by an azo moiety (double alternate tautomery, (DAT, to the –COOH or –SO3H groups which are located in ortho or para position with respect to the azo group. The levels of the lipophylic/hydrophilic, electronic and steric equilibriums, pointed out by the Mlog(1/MRC50 values, enabled the calculation of their average values Clog(1/MRC50 (“Köln model”, characteristic to one derivative class (class isotoxicity. The azo group reduction and the hydrolysis of the amido/peptidic group are two concurrent enzymatic reactions, which occur with different reaction rates and mechanisms. The products of the partial biodegradation are aromatic amines. No additive or synergic effects are noticed among them.

  7. Resistance of rocks to crushing during well drilling

    Directory of Open Access Journals (Sweden)

    И. Е. Долгий

    2016-11-01

    Full Text Available The paper presents properties of the rocks according to their resistance to drilling. The effects of differential pressure on the rock drillability and changes in rocks strength depending on the depth of their occurrence and crushing conditions are examined. The interlinkage between technological processes for rock crushing at the borehole bottom and breaking stresses has been analyzed. The interlinkage between the breaking loads and deformations of rocks with account of their structural changes and rate of loading has been assessed. The relevance and applicability of identified regularities between stresses, deformations and differential pressure for solving practical tasks of efficient rock crushing in the course of drilling have been assessed. Issues of providing theoretical evidence for the rock breakage with the rock cutting tools in the bottom-hole conditions have been reviewed. It is proven that the rock destruction effect of drilling depends not only on the value of the breaking load but also on the rate of its application.

  8. Basal Ottawa Limestone, Chattanooga Shale, Floyd Shale, Porters Creek Clay, and Yazoo Clay in parts of Alabama, Mississippi and Tennessee as potential host rocks for underground emplacement of waste

    Energy Technology Data Exchange (ETDEWEB)

    Mellen, F.F.

    1976-02-28

    Impermeable rock units, preferably at least 500 feet thick and lying 1000 to 3000 feet below land surface, were sought in the region consisting roughly of the western /sup 3///sub 5/ths of Tennessee and the northern /sup 3///sub 5/ths of Alabama and Mississippi. All rock sequences, Cambrian through Eocene, were examined in varying detail, except the Cretaceous Selma Chalk and except the diapiric salt. These rocks were studied for their relative impermeable homogeneity, their continuity, their background of structural and seismic stability and their hydrologic associations. The Central Mississippi Ridge of north-central Mississippi is overlain by a long-stable mass of Porters Creek Clay 500-700 feet thick, in an area roughly 50-60 miles wide and about 150 miles long. The Yazoo Clay, where best developed in the west-central and southwest part of Mississippi, is in the 400-500 foot thickness range, but locally exceeds 500 feet. The entire area mapped is underlain by the Louann Salt which has produced many deep-seated salt domes and numerous piercement salt domes. Salt flow has complicated shallow structural geology throughout that area. The Chattanooga Shale rarely exceeds 60 feet in thickness in the region studied and is generally much thinner and is absent in many places. In the lower part of the Middle Ordovician (Ottawa Megagroup), the Murphreesboro and associated dense limestones appear to offer a potential disposal unit 250-400 feet thick, having the advantages of rock competency and freedom from association with prolific aquifers in the overburden or beneath. Other less conspicuous stratigraphic units are reviewed.

  9. A salt bath will keep you going? Euryhalinity tests and genetic structure of caridean shrimps from Iberian rivers.

    Science.gov (United States)

    González-Ortegón, Enrique; Palero, Ferran; Lejeusne, Christophe; Drake, Pilar; Cuesta, Jose A

    2016-01-01

    We assessed the role of euryhalinity and life-history traits on the population genetic structure of the four main caridean shrimp species from the Iberian Peninsula (Atyaephyra desmarestii, Dugastella valentina, Palaemon varians and Palaemon zariquieyi) able to complete their life cycle in freshwater/oligohaline habitats. Seawater exposure experiments indicated that A. desmarestii, D. valentina and P. zariquieyi are more sensitive to high salinity waters than P. varians and confirm the relationship between osmolality regulation and spatial distribution of species. The limited or no survival in seawater could explain the restricted distributions observed in D. valentina and P. zariquieyi, whereas the current A. desmarestii distribution could be due to either past river dynamics and/or human-mediated water transfers. Conversely, the high tolerance of P. varians to a large salinity range (euryhalinity) could explain its capacity to colonize geographically distant estuaries. In agreement with osmoregulation results, the phylogeography patterns of the cytochrome oxidase 1 (Cox 1) gene fragment revealed significant genetic differentiation among river systems whatever the species considered. Atyidae species presented higher nucleotide diversity levels than Palaemonidae species, while isolation-by-distance patterns were only found for the latter. Our results have important implications for the management and conservation of freshwater species, since the inter-catchment connectivity may affect the speciation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Chemical and mineralogical aspects of clay-salt slimes of 'Belaruskali' using for the preparation of nano-structured sorbents of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Maskalchuk, L.; Baklay, A.; Leontieva, T. [Joint Institute for Power and Nuclear Research - Sosny, NAS of Belarus, Minsk, P.O.Box 119, 220109 (Belarus)

    2016-07-01

    n the context of intensive nuclear-power engineering development there is an urgent need to solve a range of technological and environmental challenges associated with generation, treatment and disposal of radioactive waste. In this regards, the problems of radioactive waste safe management and rehabilitation of radioactively contaminated soils in the result of the radiation accidents at the Chernobyl and Fukushima Daiichi NPPs are especially significant. Concerning that, investigation of effective and low cost sorption materials for radionuclides immobilization has a special relevance. In order to solve the above mentioned problems, it is supposed to develop a resource-saving technology for production of multi-purpose nano-structured sorbents of radionuclides ({sup 137}Cs, {sup 90}Sr) with predetermined physicochemical properties based on the waste of potash industry - clay-salt slimes (CSS) of the JSC 'Belaruskali'. The performed research has shown that the CSS samples have a high fixing ability in relation to {sup 137}Cs. The main sorption-active minerals in CSS are illite and montmorillonite. The degree of sorption is 99.6%, K{sub d} is 1.2*10{sup 5} l/kg, RIP(K) is 6343 mmol/kg. The modification of the S-1 sample allows to enlarge the content of sorption-active minerals tentatively in 3.5 times, thereafter RIP(K) for the S-3 sample may be significantly increased. Based on the obtained experimental data, CSS of the JSC 'Belaruskali' can be estimated as a perspective initial material for production of multi-purpose nano-structured sorbents of radionuclides. (authors)

  11. Simulation of rock deformation behavior

    Directory of Open Access Journals (Sweden)

    Я. И. Рудаев

    2016-12-01

    Full Text Available A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

  12. PDC bit selection to drill the Brazilian pre-salt heterogeneous carbonates; Selecao de broca PDC para a perfuracao dos carbonatos heterogeneos do pre-sal brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Araken Dumont Ramos; Tocantins, Joao Pedro Tourinho [Schlumberger, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The well drilling operation to access the oil reserves of the Brazilian pre-salt find their highest challenge in the rock reservoir, which is formed from organic limestone and other sediments, and it can have different heterogeneous features that are hostile to drilling. Those features such as the silica nodules increase the rock formation strength and abrasiveness that together with the PDC bit vibrations generated during the rock cutting reduce the life of the cutting structure to a few meters. Because of these conditions, the development of more stable bits, with very low lateral and torsional vibration levels and with more strength PDC, has been one oil industry challenges to drill the pre-salt limestone with silica. This paper aims to present a dynamic comparative analysis between three PDC bits, called BR1, BR2 and BR3, of different generations, selected to drill a well design in a limestone heterogeneous and homogeneous (without silica nodules). This analysis was performed with dynamic three dimensional finite elements software, which considers the interaction between the bit cutter structure and the rock to be drilled, used to design bits, reamers and BHA (Bottom Hole Assembly). (author)

  13. Angola: source rock control for Lower Congo Coastal and Kwanza Basin petroleum sys