WorldWideScience

Sample records for robust calculation principle

  1. Robust design principles for reducing variation in functional performance

    DEFF Research Database (Denmark)

    Christensen, Martin Ebro; Howard, Thomas J.

    2016-01-01

    This paper identifies, describes and classifies a comprehensive collection of variation reduction principles (VRP) that can be used to increase the robustness of a product and reduce its variation in functional performance. Performance variation has a negative effect on the reliability and percei......This paper identifies, describes and classifies a comprehensive collection of variation reduction principles (VRP) that can be used to increase the robustness of a product and reduce its variation in functional performance. Performance variation has a negative effect on the reliability...... and perceived quality of a product and efforts should be made to minimise it. The design principles are identified by a systematic decomposition of the Taguchi Transfer Function in combination with the use of existing literature and the authors’ experience. The paper presents 15 principles and describes...... their advantages and disadvantages along with example cases. Subsequently, the principles are classified based on their applicability in the various development and production stages. The VRP are to be added to existing robust design methodologies, helping the designer to think beyond robust design tool and method...

  2. Design principles for robust oscillatory behavior.

    Science.gov (United States)

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  3. GPU based acceleration of first principles calculation

    International Nuclear Information System (INIS)

    Tomono, H; Tsumuraya, K; Aoki, M; Iitaka, T

    2010-01-01

    We present a Graphics Processing Unit (GPU) accelerated simulations of first principles electronic structure calculations. The FFT, which is the most time-consuming part, is about 10 times accelerated. As the result, the total computation time of a first principles calculation is reduced to 15 percent of that of the CPU.

  4. An introduction to heat transfer principles and calculations

    CERN Document Server

    Ede, A J; Ower, E

    1967-01-01

    An Introduction to Heat Transfer Principles and Calculations is an introductory text to the principles and calculations of heat transfer. The theory underlying heat transfer is described, and the principal results and formulae are presented. Available techniques for obtaining rapid, approximate solutions to complicated problems are also considered. This book is comprised of 12 chapters and begins with a brief account of some of the concepts, methods, nomenclature, and other relevant information about heat transfer. The reader is then introduced to radiation, conduction, convection, and boiling

  5. The robust corrective action priority-an improved approach for selecting competing corrective actions in FMEA based on principle of robust design

    Science.gov (United States)

    Sutrisno, Agung; Gunawan, Indra; Vanany, Iwan

    2017-11-01

    In spite of being integral part in risk - based quality improvement effort, studies improving quality of selection of corrective action priority using FMEA technique are still limited in literature. If any, none is considering robustness and risk in selecting competing improvement initiatives. This study proposed a theoretical model to select risk - based competing corrective action by considering robustness and risk of competing corrective actions. We incorporated the principle of robust design in counting the preference score among corrective action candidates. Along with considering cost and benefit of competing corrective actions, we also incorporate the risk and robustness of corrective actions. An example is provided to represent the applicability of the proposed model.

  6. First-principles calculation on dilute magnetic alloys in zinc blend crystal structure

    International Nuclear Information System (INIS)

    Ullah, Hamid; Inayat, Kalsoom; Khan, S.A; Mohammad, S.; Ali, A.; Alahmed, Z.A.; Reshak, A.H.

    2015-01-01

    Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic alloys in zinc blende structure. The first-principles study is carried out on Mn doped III–V semiconductors. The calculated band structures, electronic properties and magnetic properties of Ga 1−x Mn x X (X=P, As) compounds reveal that Ga 0.75 Mn 0.25 P is half metallic turned to be metallic with increasing x to 0.5 and 0.75, whereas substitute P by As cause to maintain the half-metallicity nature in both of Ga 0.75 Mn 0.25 As and Ga 0.5 Mn 0.5 As and tune Ga 0.25 Mn 0.75 As to be metallic. Calculated total magnetic moments and the robustness of half-metallicity of Ga 0.75 Mn 0.25 P, Ga 0.75 Mn 0.25 As and Ga 0.5 Mn 0.5 As with respect to the variation in lattice parameters are also discussed. The predicted theoretical evidence shows that some Mn-doped III–V semiconductors can be effectively used in spintronic devices

  7. A note on weighted premium calculation principles

    NARCIS (Netherlands)

    Kaluszka, M.; Laeven, R.J.A.; Okolewski, A.

    2012-01-01

    A prominent problem in actuarial science is to determine premium calculation principles that satisfy certain criteria. Goovaerts et al. [Goovaerts, M. J., De Vylder, F., Haezendonck, J., 1984. Insurance Premiums: Theory and Applications. North-Holland, Amsterdam, p. 84] establish an optimality-type

  8. First-principles calculation on dilute magnetic alloys in zinc blend crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Hamid, E-mail: hamidullah@yahoo.com [Department of Physics, Government Post Graduate Jahanzeb College, Saidu Sharif Swat (Pakistan); Inayat, Kalsoom [Department of Physics, Government Post Graduate Jahanzeb College, Saidu Sharif Swat (Pakistan); Khan, S.A; Mohammad, S. [Department of Physics, Materials Modeling Laboratory, Hazara University, Mansehra 21300 (Pakistan); Ali, A. [Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do 356-706 (Korea, Republic of); Alahmed, Z.A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)

    2015-07-01

    Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic alloys in zinc blende structure. The first-principles study is carried out on Mn doped III–V semiconductors. The calculated band structures, electronic properties and magnetic properties of Ga{sub 1−x}Mn{sub x}X (X=P, As) compounds reveal that Ga{sub 0.75}Mn{sub 0.25}P is half metallic turned to be metallic with increasing x to 0.5 and 0.75, whereas substitute P by As cause to maintain the half-metallicity nature in both of Ga{sub 0.75}Mn{sub 0.25}As and Ga{sub 0.5}Mn{sub 0.5}As and tune Ga{sub 0.25}Mn{sub 0.75}As to be metallic. Calculated total magnetic moments and the robustness of half-metallicity of Ga{sub 0.75}Mn{sub 0.25}P, Ga{sub 0.75}Mn{sub 0.25}As and Ga{sub 0.5}Mn{sub 0.5}As with respect to the variation in lattice parameters are also discussed. The predicted theoretical evidence shows that some Mn-doped III–V semiconductors can be effectively used in spintronic devices.

  9. First-principle calculations of the structural, electronic ...

    Indian Academy of Sciences (India)

    First-principle calculations were performed to study the structural, electronic, thermodynamic and thermal properties of ... functional theory (DFT) combined with the quasi-harmonic .... is consistent with Vegard's law which assumes that the lat- tice constant varies .... reflects a charge-transfer effect which is due to the different.

  10. First-principles calculations of novel materials

    Science.gov (United States)

    Sun, Jifeng

    Computational material simulation is becoming more and more important as a branch of material science. Depending on the scale of the systems, there are many simulation methods, i.e. first-principles calculation (or ab-initio), molecular dynamics, mesoscale methods and continuum methods. Among them, first-principles calculation, which involves density functional theory (DFT) and based on quantum mechanics, has become to be a reliable tool in condensed matter physics. DFT is a single-electron approximation in solving the many-body problems. Intrinsically speaking, both DFT and ab-initio belong to the first-principles calculation since the theoretical background of ab-initio is Hartree-Fock (HF) approximation and both are aimed at solving the Schrodinger equation of the many-body system using the self-consistent field (SCF) method and calculating the ground state properties. The difference is that DFT introduces parameters either from experiments or from other molecular dynamic (MD) calculations to approximate the expressions of the exchange-correlation terms. The exchange term is accurately calculated but the correlation term is neglected in HF. In this dissertation, DFT based first-principles calculations were performed for all the novel materials and interesting materials introduced. Specifically, the DFT theory together with the rationale behind related properties (e.g. electronic, optical, defect, thermoelectric, magnetic) are introduced in Chapter 2. Starting from Chapter 3 to Chapter 5, several representative materials were studied. In particular, a new semiconducting oxytelluride, Ba2TeO is studied in Chapter 3. Our calculations indicate a direct semiconducting character with a band gap value of 2.43 eV, which agrees well with the optical experiment (˜ 2.93 eV). Moreover, the optical and defects properties of Ba2TeO are also systematically investigated with a view to understanding its potential as an optoelectronic or transparent conducting material. We find

  11. Self-organization principles result in robust control of flexible manufacturing systems

    DEFF Research Database (Denmark)

    Nature shows us in our daily life how robust, flexible and optimal self-organized modular constructions work in complex physical, chemical and biological systems, which successfully adapt to new and unexpected situations. A promising strategy is therefore to use such self-organization and pattern...... problems with several autonomous robots and several targets are considered as model of flexible manufacturing systems. Each manufacturing target has to be served in a given time interval by one and only one robot and the total working costs have to be minimized (or total winnings maximized). A specifically...... constructed dynamical system approach (coupled selection equations) is used which is based on pattern formation principles and results in fault resistant and robust behaviour. An important feature is that this type of control also guarantees feasiblitiy of the assignment solutions. In previous work...

  12. First-principle calculations of structural, electronic, optical, elastic ...

    Indian Academy of Sciences (India)

    S CHEDDADI

    2017-11-28

    Nov 28, 2017 ... First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite ... The Kohn–Sham equations were solved using the ... RMTKmax = 7 was used for all the investigated systems,.

  13. Thermodynamic assessment of the Sn–Sr system supported by first-principles calculations

    International Nuclear Information System (INIS)

    Zhao, Jingrui; Du, Yong; Zhang, Lijun; Wang, Aijun; Zhou, Liangcai; Zhao, Dongdong; Liang, Jianlie

    2012-01-01

    Highlights: ► All the literature data of Sn–Sr system is critically reviewed. ► First-principles calculation of enthalpy of formation is carried out for each compound. ► Thermodynamic parameters for Sn–Sr system are obtained by CALPHAD method. ► A hybrid approach of CALPHAD and first-principles calculations is recommended. - Abstract: A hybrid approach of CALPHAD and first-principles calculations was employed to perform a thermodynamic modeling of the Sn–Sr system. The experimental phase diagram and thermodynamic data available in the literature were critically reviewed. The enthalpies of formation for the 6 stoichiometric compounds (i.e. Sr 2 Sn, Sr 5 Sn 3 , SrSn, Sr 3 Sn 5 , SrSn 3 and SrSn 4 ) at 0 K were computed by means of first-principles calculations. These data were used as the experimental values in the optimization module PARROT in the subsequent CALPHAD assessment to provide thermodynamic parameters with sound physical meaning. A set of self-consistent thermodynamic parameters was finally obtained by considering reliable literature data and the first-principles computed results. Comprehensive comparisons between the calculated and measured quantities indicate that all the reliable experimental information can be satisfactorily accounted for by the present thermodynamic description.

  14. Demand of Insurance under the Cost-of-Capital Premium Calculation Principle

    Directory of Open Access Journals (Sweden)

    Michael Merz

    2014-06-01

    Full Text Available We study the optimal insurance design problem. This is a risk sharing problem between an insured and an insurer. The main novelty in this paper is that we study this optimization problem under a risk-adjusted premium calculation principle for the insurance cover. This risk-adjusted premium calculation principle uses the cost-of-capital approach as it is suggested (and used by the regulator and the insurance industry.

  15. Forecast of Piezoelectric Properties of Crystalline Materials from First Principles Calculation

    International Nuclear Information System (INIS)

    Zheng Yanqing; Shi Erwei; Chen Jianjun; Zhang Tao; Song Lixin

    2006-01-01

    In this paper, forecast of piezoelectric tensors are presented. Piezo crystals including quartz, quartz-like crystals, known and novel crystals of langasite-type structure are treated with density-functional perturb theory (DFPT) using plane-wave pseudopotentials method, within the local density approximation (LDA) to the exchange-correlation functional. Compared with experimental results, the ab initio calculation results have quantitative or semi-quantitative accuracy. It is shown that first principles calculation opens a door to the search and design of new piezoelectric material. Further application of first principles calculation to forecast the whole piezoelectric properties are also discussed

  16. First-principles calculations of mobility

    Science.gov (United States)

    Krishnaswamy, Karthik

    First-principles calculations can be a powerful predictive tool for studying, modeling and understanding the fundamental scattering mechanisms impacting carrier transport in materials. In the past, calculations have provided important qualitative insights, but numerical accuracy has been limited due to computational challenges. In this talk, we will discuss some of the challenges involved in calculating electron-phonon scattering and carrier mobility, and outline approaches to overcome them. Topics will include the limitations of models for electron-phonon interaction, the importance of grid sampling, and the use of Gaussian smearing to replace energy-conserving delta functions. Using prototypical examples of oxides that are of technological importance-SrTiO3, BaSnO3, Ga2O3, and WO3-we will demonstrate computational approaches to overcome these challenges and improve the accuracy. One approach that leads to a distinct improvement in the accuracy is the use of analytic functions for the band dispersion, which allows for an exact solution of the energy-conserving delta function. For select cases, we also discuss direct quantitative comparisons with experimental results. The computational approaches and methodologies discussed in the talk are general and applicable to other materials, and greatly improve the numerical accuracy of the calculated transport properties, such as carrier mobility, conductivity and Seebeck coefficient. This work was performed in collaboration with B. Himmetoglu, Y. Kang, W. Wang, A. Janotti and C. G. Van de Walle, and supported by the LEAST Center, the ONR EXEDE MURI, and NSF.

  17. Thermodynamic modeling of the Sc-Zn system coupled with first-principles calculation

    Directory of Open Access Journals (Sweden)

    Tang C.

    2012-01-01

    Full Text Available The Sc-Zn system has been critically reviewed and assessed by means of CALPHAD (CALculation of PHAse Diagram approach. By means of first-principles calculation, the enthalpies of formation at 0 K for the ScZn, ScZn2, Sc17Zn58, Sc3Zn17 and ScZn12 have been computed with the desire to assist thermodynamic modeling. A set of self-consistent thermodynamic parameters for the Sc-Zn system is then obtained. The calculated phase diagram and thermodynamic properties agree well with the experimental data and first-principles calculations, respectively.

  18. Introductory review on `Flying Triangulation': a motion-robust optical 3D measurement principle

    Science.gov (United States)

    Ettl, Svenja

    2015-04-01

    'Flying Triangulation' (FlyTri) is a recently developed principle which allows for a motion-robust optical 3D measurement of rough surfaces. It combines a simple sensor with sophisticated algorithms: a single-shot sensor acquires 2D camera images. From each camera image, a 3D profile is generated. The series of 3D profiles generated are aligned to one another by algorithms, without relying on any external tracking device. It delivers real-time feedback of the measurement process which enables an all-around measurement of objects. The principle has great potential for small-space acquisition environments, such as the measurement of the interior of a car, and motion-sensitive measurement tasks, such as the intraoral measurement of teeth. This article gives an overview of the basic ideas and applications of FlyTri. The main challenges and their solutions are discussed. Measurement examples are also given to demonstrate the potential of the measurement principle.

  19. Defects in boron carbide: First-principles calculations and CALPHAD modeling

    International Nuclear Information System (INIS)

    Saengdeejing, Arkapol; Saal, James E.; Manga, Venkateswara Rao; Liu Zikui

    2012-01-01

    The energetics of defects in B 4+x C boron carbide and β-boron are studied through first-principles calculations, the supercell phonon approach and the Debye–Grüneisen model. It is found that suitable sublattice models for β-boron and B 4+x C are B 101 (B,C) 4 and B 11 (B,C) (B,C,Va) (B,Va) (B,C,Va), respectively. The thermodynamic properties of B 4+x C, β-boron, liquid and graphite are modeled using the CALPHAD approach based on the thermochemical data from first-principles calculations and experimental phase equilibrium data in the literature. The concentrations of various defects are then predicted as a function of carbon composition and temperature.

  20. First principles calculations of structural, electronic and thermal ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 5. First principles calculations of structural, electronic and thermal properties of lead chalcogenides PbS, PbSe and PbTe compounds. N Boukhris H Meradji S Amara Korba S Drablia S Ghemid F El Haj Hassan. Volume 37 Issue 5 August 2014 pp 1159-1166 ...

  1. Robust control of chaos in Chua's circuit based on internal model principle

    International Nuclear Information System (INIS)

    Lee, Keum W.; Singh, Sahjendra N.

    2007-01-01

    The paper treats the question of robust control of chaos in Chua's circuit based on the internal model principle. The Chua's diode has polynomial non-linearity and it is assumed that the parameters of the circuit are not known. A robust control law for the asymptotic regulation of the output (node voltage) along constant and sinusoidal reference trajectories is derived. For the derivation of the control law, the non-linear regulator equations are solved to obtain a manifold in the state space on which the output error is zero and an internal model of the k-fold exosystem (k = 3 here) is constructed. Then a feedback control law using the optimal control theory or pole placement technique for the stabilization of the augmented system including the Chua's circuit and the internal model is derived. In the closed-loop system, robust output node voltage trajectory tracking of sinusoidal and constant reference trajectories are accomplished and in the steady state, the remaining state variables converge to periodic and constant trajectories, respectively. Simulation results are presented which show that in the closed-loop system, asymptotic trajectory control, disturbance rejection and suppression of chaotic motion in spite of uncertainties in the system are accomplished

  2. Adsorption of organic molecules on mineral surfaces studied by first-principle calculations: A review.

    Science.gov (United States)

    Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping

    2018-04-09

    First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.

  3. The first principle calculation of two-dimensional Dirac materials

    Science.gov (United States)

    Lu, Jin

    2017-12-01

    As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.

  4. Robust volume calculations for Constructive Solid Geometry (CSG) components in Monte Carlo transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Millman, D. L. [Dept. of Computer Science, Univ. of North Carolina at Chapel Hill (United States); Griesheimer, D. P.; Nease, B. R. [Bechtel Marine Propulsion Corporation, Bertis Atomic Power Laboratory (United States); Snoeyink, J. [Dept. of Computer Science, Univ. of North Carolina at Chapel Hill (United States)

    2012-07-01

    In this paper we consider a new generalized algorithm for the efficient calculation of component object volumes given their equivalent constructive solid geometry (CSG) definition. The new method relies on domain decomposition to recursively subdivide the original component into smaller pieces with volumes that can be computed analytically or stochastically, if needed. Unlike simpler brute-force approaches, the proposed decomposition scheme is guaranteed to be robust and accurate to within a user-defined tolerance. The new algorithm is also fully general and can handle any valid CSG component definition, without the need for additional input from the user. The new technique has been specifically optimized to calculate volumes of component definitions commonly found in models used for Monte Carlo particle transport simulations for criticality safety and reactor analysis applications. However, the algorithm can be easily extended to any application which uses CSG representations for component objects. The paper provides a complete description of the novel volume calculation algorithm, along with a discussion of the conjectured error bounds on volumes calculated within the method. In addition, numerical results comparing the new algorithm with a standard stochastic volume calculation algorithm are presented for a series of problems spanning a range of representative component sizes and complexities. (authors)

  5. Robust volume calculations for Constructive Solid Geometry (CSG) components in Monte Carlo transport calculations

    International Nuclear Information System (INIS)

    Millman, D. L.; Griesheimer, D. P.; Nease, B. R.; Snoeyink, J.

    2012-01-01

    In this paper we consider a new generalized algorithm for the efficient calculation of component object volumes given their equivalent constructive solid geometry (CSG) definition. The new method relies on domain decomposition to recursively subdivide the original component into smaller pieces with volumes that can be computed analytically or stochastically, if needed. Unlike simpler brute-force approaches, the proposed decomposition scheme is guaranteed to be robust and accurate to within a user-defined tolerance. The new algorithm is also fully general and can handle any valid CSG component definition, without the need for additional input from the user. The new technique has been specifically optimized to calculate volumes of component definitions commonly found in models used for Monte Carlo particle transport simulations for criticality safety and reactor analysis applications. However, the algorithm can be easily extended to any application which uses CSG representations for component objects. The paper provides a complete description of the novel volume calculation algorithm, along with a discussion of the conjectured error bounds on volumes calculated within the method. In addition, numerical results comparing the new algorithm with a standard stochastic volume calculation algorithm are presented for a series of problems spanning a range of representative component sizes and complexities. (authors)

  6. Anisotropic elastic and thermal properties of titanium borides by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang; Gao, Yimin [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Xiao, Bing [Department of Physics and Quantum Theory Group, School of Science and Engineering, Tulane University, New Orleans, LA 70118 (United States); Li, Yefei, E-mail: yefeili@126.com [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Guoliang [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-12-05

    Highlights: •Elastic properties of titanium borides are calculated by first principles calculation. •Thermodynamical stability of titanium borides is analyzed. •Heat capacity and thermal expansion coefficient for titanium borides are calculated and compared. •Grüneisen parameters of titanium borides are calculated. -- Abstract: The anisotropic elastic and thermal expansions of the titanium borides (TiB{sub 2}, Ti{sub 3}B{sub 4}, TiB{sub P}nma and TiB{sub F}m3{sup ¯}m) are calculated from first-principles using density functional theory. All borides show different anisotropic elastic properties; the bulk, shear and Young’s moduli are consistent with those determined experimentally. The temperature dependence of thermal expansions is mainly caused by the restoration of thermal energy due to phonon excitations at low temperature. When the temperature is higher than 500 K, the volumetric coefficient is increased linearly by increasing temperature. Meanwhile, the heat capacities of titanium borides are obtained based on the knowledge of thermal expansion coefficient and the elasticity, the calculations are in good agreement with the experiments.

  7. Prospects for first-principle calculations of scintillator properties

    International Nuclear Information System (INIS)

    Derenzo, Stephen E.; Weber, Marvin J.

    1999-01-01

    Several scintillation processes can be modeled from first principles using quantum chemistry cluster calculations and recently available high-performance computers. These processes include the formation of excitons and trapping centers, the diffusion of ionization energy (electrons and holes) through a host crystal, and the efficient capture of these carriers by an activator atom to form a luminous, non-quenched excited state. As examples of such calculations, results are presented for (1) hole transport in the known scintillator host crystal CsI, (2) hole trapping in the non-scintillator PbF 2 , (3) hole transport in the experimentally unexplored PbF 4 , and (4) the electronic nature of excited states of CsI : Tl and CsI : Na

  8. Principle of a 'retro reflecting' or 'backfire' LH antenna. A robust efficiently cooled launching structure for LH waves in reactor grade plasmas

    International Nuclear Information System (INIS)

    Bibet, Ph.; Litaudon, X.; Moreau, D.

    1994-01-01

    Up to now, lower hybrid current drive launchers have been made of waveguide arrays. To extrapolate present techniques despite the thermal power load and the mechanical stress, it is necessary to develop an advanced launcher concept which is simpler and more robust. To simplify the antennas between RF vacuum windows and plasma, studies have been carried, for example, the hyperguide for JET, the toroidal oversized waveguide for JT-60U and the poloidal mode converter for Tore Supra. For plasma-facing components, it has been proposed to use diffraction through rod arrays although this suffers from bad coupling per pass. Here a new concept is given which seems to be robust, and should leave enough space for efficient water cooling. The front part near plasma can be easily replaced by remote handling. Its principle is explained, and the description is made. The coupling properties of the proposed structure have been studied by using the SWAN code, and good agreement between the SWAN calculation and the coupling measurement performed at Tore Supra has been reported previously. (K.I.)

  9. Structural stability of diffusion barriers in thermoelectric SbTe: From first-principles calculations to experimental results

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Hsuan; Cheng, Chun-Hu; Chiou, Shan-Haw; Huang, Chiung-Hui; Liu, Chia-Mei; Lin, Yu-Li; Chao, Wen-Hsuan; Yang, Ping-Hsing; Chang, Chun-Yen; Cheng, Chin-Pao

    2014-01-01

    Highlights: • The diffusion behavior was originated from high-vapor-pressure Te atom. • Te out-diffusion is main driving force to cause inter-diffusion effect. • Mid-band Ta and TaN with favored ohmic-like contact showed small diffusion tail. • Strong Ta-N bonding and high total energy suppressed interfacial layer formation. -- Abstract: This study involved developing robust diffusion barrier for n-type antimony telluride (SbTe) thermoelectric devices. Compared to conventional Ni barrier, the mid-band metals of Ta and TaN with favored ohmic-like contact exhibited smaller diffusion tail because of structurally stable interface on SbTe, which have been supported by first-principles calculations and demonstrated by experimental results. Furthermore, the TaN barrier has strong ionic Ta–N bonding and a high total energy of −4.7 eV/atom that could effectively suppress the formation of SbTe-compounds interfacial layer

  10. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    Science.gov (United States)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  11. First-principles calculation of the magnetic properties of paramagnetic fcc iron

    International Nuclear Information System (INIS)

    Johnson, D.D.; Gyorffy, B.L.; Pinski, F.J.; Staunton, J.; Stocks, G.M.

    1985-01-01

    Using the disordered local moment picture of itinerant magnetism, we present calculations of the temperature and volume dependence of the magnetic moment and spin-spin correlations for fcc Fe in the paramagnetic state. These calculations are based on the parameter-free, first principles approach of local spin density functional theory and the coherent potential approximation is used to treat the disorder associated with the random orientation of the local moments

  12. Parallelization for first principles electronic state calculation program

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Oguchi, Tamio.

    1997-03-01

    In this report we study the parallelization for First principles electronic state calculation program. The target machines are NEC SX-4 for shared memory type parallelization and FUJITSU VPP300 for distributed memory type parallelization. The features of each parallel machine are surveyed, and the parallelization methods suitable for each are proposed. It is shown that 1.60 times acceleration is achieved with 2 CPU parallelization by SX-4 and 4.97 times acceleration is achieved with 12 PE parallelization by VPP 300. (author)

  13. Pressure induced structural phase transition of OsB2: First-principles calculations

    International Nuclear Information System (INIS)

    Ren Fengzhu; Wang Yuanxu; Lo, V.C.

    2010-01-01

    Orthorhombic OsB 2 was synthesized at 1000 deg. C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2 . An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3 /mmc structure (high-pressure phase) is stable for OsB 2 . We expect the phase transition can be further confirmed by the experimental work. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure Pressure induced structural phase transition from the orthorhombic structure to the hexagonal one for OsB 2 takes place under 10.8 GPa (0 K), 10.35 GPa (300, 1000 K) by the first-principles predictions.

  14. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental

  15. First principles calculation of two dimensional antimony and antimony arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K. [Department. of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)

    2016-05-23

    This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.

  16. Robust control of chaos in Chua's circuit based on internal model principle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keum W. [Department of Electrical and Computer Engineering, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154-4026 (United States); Singh, Sahjendra N. [Department of Electrical and Computer Engineering, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV, 89154-4026 (United States)]. E-mail: sahaj@ee.unlv.edu

    2007-03-15

    The paper treats the question of robust control of chaos in Chua's circuit based on the internal model principle. The Chua's diode has polynomial non-linearity and it is assumed that the parameters of the circuit are not known. A robust control law for the asymptotic regulation of the output (node voltage) along constant and sinusoidal reference trajectories is derived. For the derivation of the control law, the non-linear regulator equations are solved to obtain a manifold in the state space on which the output error is zero and an internal model of the k-fold exosystem (k = 3 here) is constructed. Then a feedback control law using the optimal control theory or pole placement technique for the stabilization of the augmented system including the Chua's circuit and the internal model is derived. In the closed-loop system, robust output node voltage trajectory tracking of sinusoidal and constant reference trajectories are accomplished and in the steady state, the remaining state variables converge to periodic and constant trajectories, respectively. Simulation results are presented which show that in the closed-loop system, asymptotic trajectory control, disturbance rejection and suppression of chaotic motion in spite of uncertainties in the system are accomplished.

  17. Quantum-mechanical calculation of H on Ni(001) using a model potential based on first-principles calculations

    DEFF Research Database (Denmark)

    Mattsson, T.R.; Wahnström, G.; Bengtsson, L.

    1997-01-01

    First-principles density-functional calculations of hydrogen adsorption on the Ni (001) surface have been performed in order to get a better understanding of adsorption and diffusion of hydrogen on metal surfaces. We find good agreement with experiments for the adsorption energy, binding distance...

  18. First principles calculations for interaction of tyrosine with (ZnO)3 cluster

    Science.gov (United States)

    Singh, Satvinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    First Principles Calculations have been performed to study interactions of Phenol ring of Tyrosine (C6H5OH) with (ZnO)3 atomic cluster. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/C6H5OH have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations. The compatibility of the results with previous studies has been presented here.

  19. Calculations of thermodynamic properties of PuO2 by the first-principles and lattice vibration

    International Nuclear Information System (INIS)

    Minamoto, Satoshi; Kato, Masato; Konashi, Kenji; Kawazoe, Yoshiyuki

    2009-01-01

    Plutonium dioxide (PuO 2 ) is a key compound of mixed oxide fuel (MOX fuel). To predict the thermal properties of PuO 2 at high temperature, it is important to understand the properties of MOX fuel. In this study, thermodynamic properties of PuO 2 were evaluated by coupling of first-principles and lattice dynamics calculation. Cohesive energy was estimated from first-principles calculations, and the contribution of lattice vibration to total energy was evaluated by phonon calculations. Thermodynamic properties such as volume thermal expansion, bulk modulus and specific heat of PuO 2 were investigated up to 1500 K

  20. Thermal conductivities of phosphorene allotropes from first-principles calculations: a comparative study

    OpenAIRE

    Zhang, J.; Liu, H. J.; Cheng, L.; Wei, J.; Liang, J. H.; Fan, D. D.; Jiang, P. H.; Shi, J.

    2017-01-01

    Phosphorene has attracted tremendous interest recently due to its intriguing electronic properties. However, the thermal transport properties of phosphorene, especially for its allotropes, are still not well-understood. In this work, we calculate the thermal conductivities of five phosphorene allotropes ({\\alpha}-, \\b{eta}-, {\\gamma}-, {\\delta}- and {\\zeta}-phase) by using phonon Boltzmann transport theory combined with first-principles calculations. It is found that the {\\alpha}-phosphorene ...

  1. First Principles Calculations for X-ray Resonant Spectra and Elastic Properties

    International Nuclear Information System (INIS)

    Yongbin Lee

    2006-01-01

    In this thesis, we discuss applications of first principles methods to x-ray resonant spectra and elastic properties calculation. We start with brief reviews about theoretical background of first principles methods, such as density functional theory, local density approximation (LDA), LDA+U, and the linear augmented plane wave (LAPW) method to solve Kohn-Sham equations. After that we discuss x-ray resonant scattering (XRMS), x-ray magnetic circular dichroism (XMCD) and the branching problem in the heavy rare earths Ledges. In the last chapter we discuss the elastic properties of the second hardest material AlMgB 14

  2. Thermodynamic modeling of the Co–Hf system supported by key experiments and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xingxu [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu, Shuhong, E-mail: shhliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German Cooperation Group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Cheng, Kaiming; Tang, Ying [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Ou, Pengfei [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Nash, Philip [Thermal Processing Technology Center, Illinois Institute of Technology (IIT), 10 West 32nd Street, Chicago, IL 60616 (United States); Sundman, Bo [INSTN, CEA Saclay, 91191 Gif-Sur-Yvette Cedex (France); Du, Yong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Sino-German Cooperation Group “Microstructure in Al alloys”, Central South University, Changsha, Hunan 410083 (China); Zheng, Feng [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2015-05-20

    Highlights: • Heat contents of Co{sub 2}Hf and CoHf{sub 2} were measured by drop calorimetry. • Enthalpy of formation for Co{sub 23}Hf{sub 6} was computed via first-principles calculations. • Co–Hf system was assessed by means of CALPHAD approach. • Order–disorder model is used to describe B2 (CoHf) and A2 (βHf). • Glass forming range of the Co–Hf amorphous alloys was predicted. - Abstract: Phase equilibria and thermodynamic properties of the Co–Hf system were investigated via calorimetric measurements, first-principles calculations and thermodynamic modeling. Heat contents of Co{sub 2}Hf and CoHf{sub 2} were measured by drop calorimetry from 300 to 1200 °C. The enthalpy of formation for Co{sub 23}Hf{sub 6} at 0 K was computed via first-principles calculations. Based on the experimental measurements and first-principles calculations from the present work and the literature, the Co–Hf system was assessed by means of CALPHAD (CALculation of PHAse Diagram) approach. The excess Gibbs energy of solution phases was modeled with Redlich–Kister polynomial. Sublattice models were employed to describe the homogeneity ranges of Co{sub 2}Hf, CoHf and CoHf{sub 2}. The order–disorder transition between B2 (CoHf) and A2 (βHf) phases was taken into account in the current optimization. Using the optimized parameters, glass forming range (GFR) of the Co–Hf amorphous alloys was predicted to be 15–75 at.% Hf, which is in satisfactory agreement with the experimental observation.

  3. Robust Reliability or reliable robustness? - Integrated consideration of robustness and reliability aspects

    DEFF Research Database (Denmark)

    Kemmler, S.; Eifler, Tobias; Bertsche, B.

    2015-01-01

    products are and vice versa. For a comprehensive understanding and to use existing synergies between both domains, this paper discusses the basic principles of Reliability- and Robust Design theory. The development of a comprehensive model will enable an integrated consideration of both domains...

  4. Anomalous doping effect in black phosphorene from first-principles calculations

    OpenAIRE

    Yu, Weiyang; Zhu, Zhili; Niu, Chun-Yao; Li, Chong; Cho, Jun-Hyung; Jia, Yu

    2014-01-01

    Using first-principles density functional theory calculations, we investigate the geometries, electronic structures, and thermodynamic stabilities of substitutionally doped phosphorene sheets with group III, IV, V, and VI elements. We find that the electronic properties of phosphorene are drastically modified by the number of valence electrons in dopant atoms. The dopants with even number of valence electrons enable the doped phosphorenes to have a metallic feature, while the dopants with odd...

  5. Half-metallic ferromagnetism with low magnetic moment in zinc-blende TiBi from first-principles calculations

    International Nuclear Information System (INIS)

    Chen, Zhi-Yuan; Xu, Bin; Gao, G.Y.

    2013-01-01

    The structural, electronic and magnetic properties of zinc-blende TiBi are investigated by using the first-principles full-potential linearized augmented plane-wave method. It is found that zinc-blende TiBi exhibits half-metallic ferromagnetism with the energy gap of 1.39 eV in the minority-spin channel. The calculated total magnetic moment of 1.00 µ B per formula unit mainly originates from the Ti atom. We also show that the half-metallicity of zinc-blende TiBi can be maintained up to 3% compression and 5% expansion of lattice constant with respect to the equilibrium lattice, and zinc-blende TiBi is still half-metallic when the spin–orbit coupling is considered. The robust half-metallicity and low magnetic moment make zinc-blende TiBi a potential candidate for spintronic applications. - Highlights: • Half-metallic ferromagnetism in zinc-blende TiBi. • Zinc-blende TiBi has low magnetic moment of 1.00 µ B /f.u. • Spin–orbit coupling does not destroy the half-metallicity of zinc-blende TiBi

  6. Calculation of propellant gas pressure by simple extended corresponding state principle

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2016-04-01

    Full Text Available The virial equation can well describe gas state at high temperature and pressure, but the difficulties in virial coefficient calculation limit the use of virial equation. Simple extended corresponding state principle (SE-CSP is introduced in virial equation. Based on a corresponding state equation, including three characteristic parameters, an extended parameter is introduced to describe the second virial coefficient expressions of main products of propellant gas. The modified SE-CSP second virial coefficient expression was extrapolated based on the virial coefficients experimental temperature, and the second virial coefficients obtained are in good agreement with the experimental data at a low temperature and the theoretical values at high temperature. The maximum pressure in the closed bomb test was calculated with modified SE-CSP virial coefficient expressions with the calculated error of less than 2%, and the error was smaller than the result calculated with the reported values under the same calculation conditions. The modified SE-CSP virial coefficient expression provides a convenient and efficient method for practical virial coefficient calculation without resorting to complicated molecular model design and integral calculation.

  7. First-principles calculations on Mg/Al2CO interfaces

    International Nuclear Information System (INIS)

    Wang, F.; Li, K.; Zhou, N.G.

    2013-01-01

    The electronic structure, work of adhesion, and interfacial energy of the Mg(0 0 0 2)/Al 2 CO(0 0 0 1) interface were studied with the first-principles calculations to clarify the heterogeneous nucleation potential of Al 2 CO particles in Mg melt. AlO-terminated Al 2 CO(0 0 0 1) slabs with seven atomic layers were adopted for interfacial model geometries. Results show that the “Over O” stacking interface is more stable than the “Over Al” stacking interface due to the larger interfacial adhesion and stronger mixed ionic/metallic bond formed across the interface. The calculated interfacial energies of Mg/Al 2 CO depend on the value of Δμ Al + Δμ C , proving Al 2 CO particles can exist stably in Mg–Al alloys melt and become effective nucleation substrate for α-Mg grain under certain conditions. The above calculation and corresponding analysis provide strong theoretical support to the Al 2 CO nucleus hypothesis from interfacial atomic structure and atomic bonding energy considerations.

  8. Whether FeTe is superconductor: Insights from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Huang, GuiQin, E-mail: huangguiqin@njnu.edu.cn; Zhu, XingFeng

    2013-09-15

    Highlights: • The ground state of FeTe is in the double stripe antiferromagnetic phase. • The nesting of electron and hole at the Fermi surface is not present in FeTe. • The spin–lattice interaction can lead to the phonon softening. • The electron–phonon coupling constant λ is enhanced due to spin–phonon coupling. • Whether FeTe can be superconductor? Some discussions are made. -- Abstract: We present a first-principles pseudopotential study on the electronic structure, phonon structure and the electron–phonon interaction of stoichiometric FeTe in both the nonmagnetic and double stripe antiferromagnetic phases. Our electronic structure calculations show that the nesting effect of Fermi surface is not present in stoichiometric FeTe after considering the magnetic interaction. Comparing the phonon behavior in the double stripe antiferromagnetic phase with that in the nonmagnetic phase, we find that the spin–lattice interaction can lead to the phonon softening and increase electron–phonon coupling constant λ by about 33%, which is similar to other iron-based superconductors in the single stripe antiferromagnetic phase. We suggest that the phonon softening may have no clear contact with the specific magnetic order in the ground state. Finally, we make some discussion about whether FeTe can be superconductor combining our first-principles calculations.

  9. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations

    DEFF Research Database (Denmark)

    Hellmann, A.; Baerends, E.J.; Biczysko, M.

    2006-01-01

    . Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully......Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state...... for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations...

  10. First-principles calculations of a high-pressure synthesized compound PtC

    International Nuclear Information System (INIS)

    Li Linyan; Yu Wen; Jin Changqing

    2005-01-01

    The first-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that platinum carbide has a zinc-blende ground-state phase at zero pressure and that the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt structure is determined to be 52 GPa. Furthermore, our calculation shows the possibility that the PtC experimentally synthesized under high pressure conditions might undergo a transition from rock-salt to zinc-blende structure after a pressure quench to ambient conditions

  11. Robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming.

    Science.gov (United States)

    Baran, Richard; Northen, Trent R

    2013-10-15

    Untargeted metabolite profiling using liquid chromatography and mass spectrometry coupled via electrospray ionization is a powerful tool for the discovery of novel natural products, metabolic capabilities, and biomarkers. However, the elucidation of the identities of uncharacterized metabolites from spectral features remains challenging. A critical step in the metabolite identification workflow is the assignment of redundant spectral features (adducts, fragments, multimers) and calculation of the underlying chemical formula. Inspection of the data by experts using computational tools solving partial problems (e.g., chemical formula calculation for individual ions) can be performed to disambiguate alternative solutions and provide reliable results. However, manual curation is tedious and not readily scalable or standardized. Here we describe an automated procedure for the robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming optimization (RAMSI). Chemical rules among related ions are expressed as linear constraints and both the spectra interpretation and chemical formula calculation are performed in a single optimization step. This approach is unbiased in that it does not require predefined sets of neutral losses and positive and negative polarity spectra can be combined in a single optimization. The procedure was evaluated with 30 experimental mass spectra and was found to effectively identify the protonated or deprotonated molecule ([M + H](+) or [M - H](-)) while being robust to the presence of background ions. RAMSI provides a much-needed standardized tool for interpreting ions for subsequent identification in untargeted metabolomics workflows.

  12. Calculations of thermodynamic properties of PuO{sub 2} by the first-principles and lattice vibration

    Energy Technology Data Exchange (ETDEWEB)

    Minamoto, Satoshi [Energy and Industrial Systems Department, ITOCHU Techno-Solutions Corporation, Kasumigaseki 3-chome, Chiyoda-ku, Tokyo 100-6080 (Japan)], E-mail: satoshi.minamoto@ctc-g.co.jp; Kato, Masato [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan); Konashi, Kenji [Institute for Materials Research, Tohoku University, 2145-2 Narita-chou, Oarai-chou, Ibaraki 311-1313 (Japan); Kawazoe, Yoshiyuki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2009-03-15

    Plutonium dioxide (PuO{sub 2}) is a key compound of mixed oxide fuel (MOX fuel). To predict the thermal properties of PuO{sub 2} at high temperature, it is important to understand the properties of MOX fuel. In this study, thermodynamic properties of PuO{sub 2} were evaluated by coupling of first-principles and lattice dynamics calculation. Cohesive energy was estimated from first-principles calculations, and the contribution of lattice vibration to total energy was evaluated by phonon calculations. Thermodynamic properties such as volume thermal expansion, bulk modulus and specific heat of PuO{sub 2} were investigated up to 1500 K.

  13. Study on atomic and electronic structures of ceramic materials using spectroscopy, microscopy, and first principles calculation

    International Nuclear Information System (INIS)

    Mizoguchi, Teruyasu

    2011-01-01

    In this review, following two topics are introduced: 1) experimental and theoretical electron energy loss (EEL) near edge structures (ELNES) and X-ray absorption near edge structures (XANES), and 2) atomic and electronic structure analysis of ceramic interface by combing spectroscopy, microscopy, and first principles calculation. In the ELNES/XANES calculation, it is concluded that inclusion of core-hole effect in the calculation is essential. By combining high energy resolution observation and theoretical calculation, detailed analysis of the electronic structure is achieved. In addition, overlap population (OP) diagram is used to interpret the spectrum. In the case of AlN, sharp and intense first peak of N-K edge is found to reflect narrow dispersion of the conduction band bottom. By applying ELNES and the OP diagram to Cu/Al 2 O 3 heterointerface, it is revealed that intensity of prepeak in O-K edge is inverse proportional to interface strength. The relationships between atomic structure and defect energetics at SrTiO 3 grain boundary are also investigated, and reveal that the formation behavior of Ti vacancy is sensitive to the structural distortion. In addition, by using state-of-the-art spectroscopy, microscopy, and first principles calculations, atomic scale visualization of fluorine dopant in LaFeOAs and first principles calculation of HfO 2 phase transformation are demonstrated. (author)

  14. Optimal auxiliary Hamiltonians for truncated boson-space calculations by means of a maximal-decoupling variational principle

    International Nuclear Information System (INIS)

    Li, C.

    1991-01-01

    A new method based on a maximal-decoupling variational principle is proposed to treat the Pauli-principle constraints for calculations of nuclear collective motion in a truncated boson space. The viability of the method is demonstrated through an application to the multipole form of boson Hamiltonians for the single-j and nondegenerate multi-j pairing interactions. While these boson Hamiltonians are Hermitian and contain only one- and two-boson terms, they are also the worst case for truncated boson-space calculations because they are not amenable to any boson truncations at all. By using auxiliary Hamiltonians optimally determined by the maximal-decoupling variational principle, however, truncations in the boson space become feasible and even yield reasonably accurate results. The method proposed here may thus be useful for doing realistic calculations of nuclear collective motion as well as for obtaining a viable interacting-boson-model type of boson Hamiltonian from the shell model

  15. First-principles calculations of bulk and interfacial thermodynamic properties for fcc-based Al-Sc alloys

    International Nuclear Information System (INIS)

    Asta, M.; Foiles, S.M.; Quong, A.A.

    1998-01-01

    The configurational thermodynamic properties of fcc-based Al-Sc alloys and coherent Al/Al 3 Sc interphase-boundary interfaces have been calculated from first principles. The computational approach used in this study combines the results of pseudopotential total-energy calculations with a cluster-expansion description of the alloy energetics. Bulk and interface configurational-thermodynamic properties are computed using a low-temperature-expansion technique. Calculated values of the {100} and {111} Al/Al 3 Sc interfacial energies at zero temperature are, respectively, 192 and 226mJ/m 2 . The temperature dependence of the calculated interfacial free energies is found to be very weak for {100} and more appreciable for {111} orientations; the primary effect of configurational disordering at finite temperature is to reduce the degree of crystallographic anisotropy associated with calculated interfacial free energies. The first-principles-computed solid-solubility limits for Sc in bulk fcc Al are found to be underestimated significantly in comparison with experimental measurements. It is argued that this discrepancy can be largely attributed to nonconfigurational contributions to the entropy which have been neglected in the present thermodynamic calculations. copyright 1998 The American Physical Society

  16. Accelerating the discovery of hidden two-dimensional magnets using machine learning and first principle calculations

    Science.gov (United States)

    Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke

    2018-02-01

    Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.

  17. The elastic and thermodynamic properties of ZrMo2 from first principles calculations

    International Nuclear Information System (INIS)

    Liu, Xian-Kun; Zhou, Wei; Zheng, Zhou; Peng, Shu-Ming

    2014-01-01

    Highlights: • Elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are calculated by first principles. • Mechanical stability is testified from elastic constants at zero pressure. • Phonon scattering of ZrMo 2 under different temperature are obtained. - Abstract: The elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are investigated by first-principles calculations based on pseudopotential plane-wave density functional theory (DFT) within the generalized gradient approximation (GGA) and quasi-harmonic Debye model. The calculated lattice parameters are in good agreement with the available experimental data. The calculated elastic constants of ZrMo 2 increase monotonically with increasing pressure, and the relationship between the elastic constants and pressure show that ZrMo 2 satisfies the mechanical stability criteria under applied pressure (0–65 GPa). The related mechanical properties such as bulk modulus (B), shear modulus (G), Young’s modulus (E), and Poisson’s ratio (v) are also studied for polycrystalline of ZrMo 2 . The calculated B/G value shows that ZrMo 2 behaves in a ductile manner, and higher pressure can significantly improve the ductility of ZrMo 2 . The pressure and temperature dependencies of the relative volume, the bulk modulus, the elastic constants, the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameters are obtained and discussed by the quasi-harmonic Debye model in the ranges of 0–1800 K and 0–65 GPa

  18. Calculation of propellant gas pressure by simple extended corresponding state principle

    OpenAIRE

    Bin Xu; San-jiu Ying; Xin Liao

    2016-01-01

    The virial equation can well describe gas state at high temperature and pressure, but the difficulties in virial coefficient calculation limit the use of virial equation. Simple extended corresponding state principle (SE-CSP) is introduced in virial equation. Based on a corresponding state equation, including three characteristic parameters, an extended parameter is introduced to describe the second virial coefficient expressions of main products of propellant gas. The modified SE-CSP second ...

  19. Thermodynamics and elastic properties of Ir from first-principle calculations

    International Nuclear Information System (INIS)

    Li Qiang; Huang Duohui; Cao Qilong; Wang Fanhou

    2013-01-01

    Within the framework of the quasiharmonic approximation, the thermodynamics and elastic properties, including phonon dispersion curves, equation of state, linear thermal expansion coefficient and temperature-dependent entropy, enthalpy, heat capacity, elastic constants, bulk modulus, shear modulus, Young's modulus of Ir have been studied using first-principles projector-augmented wave method. The results revealed that the predicted phonon dispersion curves of Ir are in agreement with the experimental measurements by neutron diffractions. Considering the thermal electronic contribution to Helmholtz free energy, the calculated entropy, enthalpy, heat capacity and linear thermal expansion co- efficient from the first-principle are consistent well with the experimental data. At 2600 K, the electronic heat capacity accounts for 17% of the total heat capacity at constant pressure, thus the thermal electronic contribution to Helmholtz free energy is very important. The predicted elastic constants, bulk modulus, shear modulus and Young's modulus at room temperature are also in agreement with the available measurements and increase with the increasing temperature. (authors)

  20. Pressure induced structural phase transition of OsB 2: First-principles calculations

    Science.gov (United States)

    Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.

    2010-04-01

    Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.

  1. First principles calculation of material properties of group IV elements and III-V compounds

    Science.gov (United States)

    Malone, Brad Dean

    This thesis presents first principles calculations on the properties of group IV elements and group III-V compounds. It includes investigations into what structure a material is likely to form in, and given that structure, what are its electronic, optical, and lattice dynamical properties as well as what are the properties of defects that might be introduced into the sample. The thesis is divided as follows: • Chapter 1 contains some of the conceptual foundations used in the present work. These involve the major approximations which allow us to approach the problem of systems with huge numbers of interacting electrons and atomic cores. • Then, in Chapter 2, we discuss one of the major limitations to the DFT formalism introduced in Chapter 1, namely its inability to predict the quasiparticle spectra of materials and in particular the band gap of a semiconductor. We introduce a Green's function approach to the electron self-energy Sigma known as the GW approximation and use it to compute the quasiparticle band structures of a number of group IV and III-V semiconductors. • In Chapter 3 we present a first-principles study of a number of high-pressure metastable phases of Si with tetrahedral bonding. The phases studied include all experimentally determined phases that result from decompression from the metallic beta-Sn phase, specifically the BC8 (Si-III), hexagonal diamond (Si-IV), and R8 (Si-XII). In addition to these, we also study the hypothetical ST12 structure found upon decompression from beta-Sn in germanium. • Our attention is then turned to the first principles calculations of optical properties in Chapter 4. The Bethe-Salpeter equation is then solved to obtain the optical spectrum of this material including electron-hole interactions. The calculated optical spectrum is compared with experimental data for other forms of silicon commonly used in photovoltaic devices, namely the cubic, polycrystalline, and amorphous forms. • In Chapter 5 we present

  2. Magnetic materials at finite temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    International Nuclear Information System (INIS)

    Eisenbach, Markus; Perera, Meewanage Dilina N.; Landau, David P; Nicholson, Don M.; Yin, Junqi; Brown, Greg

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.

  3. Organizing principles underlying microorganism's growth-robustness trade-off.

    Science.gov (United States)

    Bolli, Alessandro; Salvador, Armindo

    2014-10-01

    Growth Robustness Reciprocity (GRR) is an intriguing microbial manifestation: the impairment of microorganism's growth enhances their ability to resist acute stresses, and vice-versa. This is caused by regulatory interactions that determine higher expression of protection mechanisms in response to low growth rates. But because such regulatory mechanisms are species-specific, GRR must result from convergent evolution. Why does natural selection favor such an outcome? We used mathematical models of optimal cellular resource allocation to identify the general principles underlying GRR. Non-linear optimization allowed to predict allocation patterns of biosynthetic resources (ribosomes devoted to the synthesis of each cell component) that maximize growth. These models predict the down-regulation of stress defenses under high substrate availabilities and low stress levels. Under these conditions, stress tolerance ensues from growth-related damage dilution: the higher the substrate availability, the fastest the dilution of damaged proteins by newly synthesized proteins, the lower the accumulation of damaged components into the cell. In turn, under low substrate availability growth is too slow for effective damage dilution, and the expression of the defenses up to some optimal level then increases growth. As a consequence, slow-growing cells are pre-adapted to withstand acute stresses. Therefore, the observed negative correlation between growth and stress tolerance can be explained as a consequence of optimal resource allocation for maximal growth. We acknowledge fellowship SFRH/BPD/90065/2012 and grants PEst-C/SAU/LA0001/2013-2014 and FCOMP-01-0124-FEDER-020978 financed by FEDER through the "Programa Operacional Factores de Competitividade, COMPETE" and by national funds through "FCT, Fundação para a Ciência e a Tecnologia" (project PTDC/QUI-BIQ/119657/2010). Copyright © 2014. Published by Elsevier Inc.

  4. Robustness of Structural Systems

    DEFF Research Database (Denmark)

    Canisius, T.D.G.; Sørensen, John Dalsgaard; Baker, J.W.

    2007-01-01

    The importance of robustness as a property of structural systems has been recognised following several structural failures, such as that at Ronan Point in 1968,where the consequenceswere deemed unacceptable relative to the initiating damage. A variety of research efforts in the past decades have...... attempted to quantify aspects of robustness such as redundancy and identify design principles that can improve robustness. This paper outlines the progress of recent work by the Joint Committee on Structural Safety (JCSS) to develop comprehensive guidance on assessing and providing robustness in structural...... systems. Guidance is provided regarding the assessment of robustness in a framework that considers potential hazards to the system, vulnerability of system components, and failure consequences. Several proposed methods for quantifying robustness are reviewed, and guidelines for robust design...

  5. Elastic and thermal properties of silicon compounds from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Haijun; Zhu, H.J. [Yancheng Institute of Technology (China). School of Materials Engineering; Cheng, W.H. [Yancheng Institute of Technology (China). Dept. of Light Chemical Engineering; Xie, L.H. [Sichuan Normal Univ., Chengdu (China). Inst. of Solid State Physics and School of Physics and Electronic Engineering

    2016-11-01

    The structural and elastic properties of V-Si (V{sub 3}Si, VSi{sub 2}, V{sub 5}Si{sub 3}, and V{sub 6}Si{sub 5}) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grueneisen parameter, and Debye temperature of V-Si compounds have been calculated.

  6. Robust adaptive synchronization of general dynamical networks ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Robust ... A robust adaptive synchronization scheme for these general complex networks with multiple delays and uncertainties is established and raised by employing the robust adaptive control principle and the Lyapunov stability theory. We choose ...

  7. Half-metallic ferromagnetism in Fe-doped Zn3P2 from first-principles calculations

    International Nuclear Information System (INIS)

    Jaiganesh, G.; Jaya, S. Mathi

    2014-01-01

    Using the first-principles calculations based on the density functional theory, we have studied the magnetism and electronic structure of Fe-doped Zinc Phosphide (Zn 3 P 2 ). Our results show that the half-metallic ground state and ferromagnetic stability for the small Fe concentrations considered in our study. The stability of the doped material has been studied by calculating the heat of formation and analyzing the minimum total energies in nonmagnetic and ferromagnetic phases. A large value of the magnetic moment is obtained from our calculations and our calculation suggests that the Fe-doped Zn 3 P 2 may be a useful material in semiconductor spintronics

  8. Absolute Hydration Free Energy of Proton from First Principles Electronic Structure Calculations

    International Nuclear Information System (INIS)

    Zhan, Chang-Guo; Dixon, David A.

    2001-01-01

    The absolute hydration free energy of the proton, DGhyd298(H+), is one of the fundamental quantities for the thermodynamics of aqueous systems. Its exact value remains unknown despite extensive experimental and computational efforts. We report a first-principles determination of DGhyd298(H+) by using the latest developments in electronic structure theory and massively parallel computers. DGhyd298(H+) is accurately predicted to be -262.4 kcal/mol based on high-level, first-principles solvation-included electronic structure calculations. The absolute hydration free energies of other cations can be obtained by using appropriate available thermodynamic data in combination with this value. The high accuracy of the predicted absolute hydration free energy of proton is confirmed by applying the same protocol to predict DGhyd298(Li+)

  9. Anomalous doping effect in black phosphorene using first-principles calculations.

    Science.gov (United States)

    Yu, Weiyang; Zhu, Zhili; Niu, Chun-Yao; Li, Chong; Cho, Jun-Hyung; Jia, Yu

    2015-07-07

    Using first-principles density functional theory calculations, we investigate the geometries, electronic structures, and thermodynamic stabilities of substitutionally doped phosphorene sheets with group III, IV, V, and VI elements. We find that the electronic properties of phosphorene are drastically modified by the number of valence electrons in dopant atoms. The dopants with an even number of valence electrons enable the doped phosphorenes to have a metallic feature, while the dopants with an odd number of valence electrons retain a semiconducting feature. This even-odd oscillating behavior is attributed to the peculiar bonding characteristics of phosphorene and the strong hybridization of sp orbitals between dopants and phosphorene. Furthermore, the calculated formation energies of various substitutional dopants in phosphorene show that such doped systems can be thermodynamically stable. These results propose an intriguing route to tune the transport properties of electronic and photoelectronic devices based on phosphorene.

  10. First principles calculation of thermodynamic properties of NaAlSi ternary

    International Nuclear Information System (INIS)

    Qin Jining; Lu Weijie; Zhang Di; Fan Tongxiang

    2012-01-01

    PbFCl-type NaAlSi ternary is a corrosion compound found in aluminum, which is used as a sealing material in sodium sulfur battery. To understand and control the corrosion process, it is important to predict its quantitative properties. In this study, a first-principles calculation has been carried out to calculate its equilibrium lattice parameters, bulk modulus and pressure derivative of bulk modulus by both all-electron full-potential linear augmented plane wave scheme and pseudopotential plane wave scheme within the generalized gradient approximation. The theoretical results show good agreement with the available experimental data. The thermodynamic properties, including the specific heat capacity and entropy with pressure up to 9 GPa, have been investigated for the first time by coupling of density functional perturbation theory and quasiharmonic approximation. The volume and linear thermal expansion coefficients were estimated and the results show that the linear thermal expansion on c-axis is nearly twice as large as that on a-axis within the calculated temperature.

  11. Magnetism, microstructure and First Principles calculations of atomized and annealed Ni3Al

    International Nuclear Information System (INIS)

    García-Escorial, A.; Crespo, P.; Hernando, A.; Lieblich, M.; Marín, P.; Velasco, V.; Ynduráin, F.

    2014-01-01

    Highlights: • The microstructure and order of as-atomized Ni 3 Al powder change with annealing. • The change of the magnetic properties shows the influence of the chemical order. • First Principles calculations show the effect of the density of states to the order. - Abstract: In this work Ni 3 Al powder particles obtained by atomization were characterized magnetically and microstructurally in as-atomized state and after annealing. Upon annealing the X-ray diffraction patterns show a noticeable increase of the signal of the ordered phase γ′-Ni 3 Al, L1 2 , phase and the microstructure evolves from a lamellar and dendrite to a large grain microstructure. The Curie temperature of the as-atomized powder particles is 85 K and decreases after annealing down to 50 K. First Principles calculations were carried out to correlate the experimental observations with local order of Ni and Al atoms and illustrate the importance of the local order in the density of states at the Fermi level, showing how the magnetic moment depends on the Ni and Al atomic position

  12. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  13. First-principles calculations, experimental study, and thermodynamic modeling of the Al-Co-Cr system.

    Directory of Open Access Journals (Sweden)

    Xuan L Liu

    Full Text Available The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT and phase-equilibria experiments that led to X-ray diffraction (XRD and electron probe micro-analysis (EPMA measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS calculations predict a large bcc-A2 (disordered/B2 (ordered miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.

  14. Adsorption of methanol molecule on graphene: Experimental results and first-principles calculations

    Science.gov (United States)

    Zhao, X. W.; Tian, Y. L.; Yue, W. W.; Chen, M. N.; Hu, G. C.; Ren, J. F.; Yuan, X. B.

    2018-04-01

    Adsorption properties of methanol molecule on graphene surface are studied both theoretically and experimentally. The adsorption geometrical structures, adsorption energies, band structures, density of states and the effective masses are obtained by means of first-principles calculations. It is found that the electronic characteristics and conductivity of graphene are sensitive to the methanol molecule adsorption. After adsorption of methanol molecule, bandgap appears. With the increasing of the adsorption distance, the bandgap, adsorption energy and effective mass of the adsorption system decreased, hence the resistivity of the system decreases gradually, these results are consistent with the experimental results. All these calculations and experiments indicate that the graphene-based sensors have a wide range of applications in detecting particular molecules.

  15. Elastic properties of cubic perovskite BaRuO{sub 3} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Han Deming; Liu Xiaojuan; Lv Shuhui; Li Hongping [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian, E-mail: jmeng@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-08-01

    We present first-principles investigations on the structural and elastic properties of the cubic perovskite BaRuO{sub 3} using density-functional theory within both local density approximation (LDA) and generalized gradient approximation (GGA). Basic physical properties, such as lattice constant, shear modulus, elastic constants (C{sub ij}) are calculated. The calculated energy band structures show that the cubic perovskite BaRuO{sub 3} is metallic. We have also predicted the Young's modulus (Y), Poisson's ratio ({upsilon}), and Anisotropy factor (A).

  16. Prediction of thermodynamic properties of solute elements in Si solutions using first-principles calculations

    International Nuclear Information System (INIS)

    Iwata, K.; Matsumiya, T.; Sawada, H.; Kawakami, K.

    2003-01-01

    The method is presented to predict the activity coefficients and the interaction parameters of the solute elements in infinite dilute Si solutions by the use of first-principles calculations based on density functional theory. In this method, the regular solution model is assumed. The calculated activity coefficients in solid Si are converted to those in molten Si by the use of the solid-liquid partition coefficients. Furthermore, the interaction parameters in solid Si solutions are calculated and compared with reported experimental values of those in liquid Si solutions. The results show that the calculated activity coefficients and interaction parameters of Al, Fe, Ti and Pb in Si solutions are in good agreement with the tendency of the experiments. However, the calculations have some quantitative discrepancy from the experiments. It is expected that consideration of the excess entropy would reduce this discrepancy

  17. Robust and efficient handling of yield surface discontinuities in elasto-plastic finite element calculations

    DEFF Research Database (Denmark)

    Clausen, Johan Christian; Damkilde, Lars; Andersen, Lars Vabbersgaard

    2015-01-01

    Purpose – The purpose of this paper is to present several methods on how to deal with yield surface discontinuities. The explicit formulations, first presented by Koiter (1953), result in multisingular constitutive matrices which can cause numerical problems in elasto-plastic finite element...... documented in the literature all present “easy” calculation examples, e.g. low friction angles and few elements. The amendments presented in this paper result in robust elasto-plastic computations, making the solution of “hard” problems possible without introducing approximations in the yield surfaces...... calculations. These problems, however, are not documented in previous literature. In this paper an amendment to the Koiter formulation of the constitutive matrices for stress points located on discontinuities is proposed. Design/methodology/approach – First, a review of existing methods of handling yield...

  18. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili

    2014-06-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  19. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili; Wang, Rui; Wu, Xiaozhi; Gan, Liyong; Wei, Qunyi

    2014-01-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  20. Symmetric geometric transfer matrix partial volume correction for PET imaging: principle, validation and robustness

    Science.gov (United States)

    Sattarivand, Mike; Kusano, Maggie; Poon, Ian; Caldwell, Curtis

    2012-11-01

    Limited spatial resolution of positron emission tomography (PET) often requires partial volume correction (PVC) to improve the accuracy of quantitative PET studies. Conventional region-based PVC methods use co-registered high resolution anatomical images (e.g. computed tomography (CT) or magnetic resonance images) to identify regions of interest. Spill-over between regions is accounted for by calculating regional spread functions (RSFs) in a geometric transfer matrix (GTM) framework. This paper describes a new analytically derived symmetric GTM (sGTM) method that relies on spill-over between RSFs rather than between regions. It is shown that the sGTM is mathematically equivalent to Labbe's method; however it is a region-based method rather than a voxel-based method and it avoids handling large matrices. The sGTM method was validated using two three-dimensional (3D) digital phantoms and one physical phantom. A 3D digital sphere phantom with sphere diameters ranging from 5 to 30 mm and a sphere-to-background uptake ratio of 3-to-1 was used. A 3D digital brain phantom was used with four different anatomical regions and a background region with different activities assigned to each region. A physical sphere phantom with the same geometry and uptake as the digital sphere phantom was manufactured and PET-CT images were acquired. Using these three phantoms, the performance of the sGTM method was assessed against that of the GTM method in terms of accuracy, precision, noise propagation and robustness. The robustness was assessed by applying mis-registration errors and errors in estimates of PET point spread function (PSF). In all three phantoms, the results showed that the sGTM method has accuracy similar to that of the GTM method and within 5%. However, the sGTM method showed better precision and noise propagation than the GTM method, especially for spheres smaller than 13 mm. Moreover, the sGTM method was more robust than the GTM method when mis-registration errors or

  1. Symmetric geometric transfer matrix partial volume correction for PET imaging: principle, validation and robustness

    International Nuclear Information System (INIS)

    Sattarivand, Mike; Caldwell, Curtis; Kusano, Maggie; Poon, Ian

    2012-01-01

    Limited spatial resolution of positron emission tomography (PET) often requires partial volume correction (PVC) to improve the accuracy of quantitative PET studies. Conventional region-based PVC methods use co-registered high resolution anatomical images (e.g. computed tomography (CT) or magnetic resonance images) to identify regions of interest. Spill-over between regions is accounted for by calculating regional spread functions (RSFs) in a geometric transfer matrix (GTM) framework. This paper describes a new analytically derived symmetric GTM (sGTM) method that relies on spill-over between RSFs rather than between regions. It is shown that the sGTM is mathematically equivalent to Labbe's method; however it is a region-based method rather than a voxel-based method and it avoids handling large matrices. The sGTM method was validated using two three-dimensional (3D) digital phantoms and one physical phantom. A 3D digital sphere phantom with sphere diameters ranging from 5 to 30 mm and a sphere-to-background uptake ratio of 3-to-1 was used. A 3D digital brain phantom was used with four different anatomical regions and a background region with different activities assigned to each region. A physical sphere phantom with the same geometry and uptake as the digital sphere phantom was manufactured and PET-CT images were acquired. Using these three phantoms, the performance of the sGTM method was assessed against that of the GTM method in terms of accuracy, precision, noise propagation and robustness. The robustness was assessed by applying mis-registration errors and errors in estimates of PET point spread function (PSF). In all three phantoms, the results showed that the sGTM method has accuracy similar to that of the GTM method and within 5%. However, the sGTM method showed better precision and noise propagation than the GTM method, especially for spheres smaller than 13 mm. Moreover, the sGTM method was more robust than the GTM method when mis-registration errors or

  2. First-principles calculations on thermodynamic properties of BaTiO3 rhombohedral phase.

    Science.gov (United States)

    Bandura, Andrei V; Evarestov, Robert A

    2012-07-05

    The calculations based on the linear combination of atomic orbitals have been performed for the low-temperature phase of BaTiO(3) crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange-correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO(3) rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first-principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory. Copyright © 2012 Wiley Periodicals, Inc.

  3. Application of maximum values for radiation exposure and principles for the calculation of radiation doses

    International Nuclear Information System (INIS)

    2007-08-01

    The guide presents the definitions of equivalent dose and effective dose, the principles for calculating these doses, and instructions for applying their maximum values. The limits (Annual Limit on Intake and Derived Air Concentration) derived from dose limits are also presented for the purpose of monitoring exposure to internal radiation. The calculation of radiation doses caused to a patient from medical research and treatment involving exposure to ionizing radiation is beyond the scope of this ST Guide

  4. Applying Robust Design in an Industrial Context

    DEFF Research Database (Denmark)

    Christensen, Martin Ebro

    mechanical architectures. Furthermore a set of 15 robust design principles for reducing the variation in functional performance is compiled in a format directly supporting the work of the design engineer. With these foundational methods in place, the existing tools, methods and KPIs of Robust Design...

  5. Managerial Accounting Principles and Cost Calculation Used by Economic Entities in the Coal Mining Industry

    OpenAIRE

    Boca (Rakos) Ileana – Sorina; Vatasoiu Cristian Ionel

    2011-01-01

    Considering the specialized work in managerial accounting, this paper aims to show which cost calculation principles are actually applied in the coal mining industry today. The methodology used in this scientific approach is of qualitative nature, using the following methods: direct observation and interview.

  6. Magnetism, microstructure and First Principles calculations of atomized and annealed Ni{sub 3}Al

    Energy Technology Data Exchange (ETDEWEB)

    García-Escorial, A., E-mail: age@cenim.csic.es [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Crespo, P.; Hernando, A. [Instituto de Magnetismo Aplicado, IMA-UCM, P.O. Box 155, 28230 Madrid (Spain); Lieblich, M. [CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Marín, P.; Velasco, V. [Instituto de Magnetismo Aplicado, IMA-UCM, P.O. Box 155, 28230 Madrid (Spain); Ynduráin, F. [Dpto. de Física de la Materia Condensada, UAM, Cantoblanco, 28049 Madrid (Spain)

    2014-12-05

    Highlights: • The microstructure and order of as-atomized Ni{sub 3}Al powder change with annealing. • The change of the magnetic properties shows the influence of the chemical order. • First Principles calculations show the effect of the density of states to the order. - Abstract: In this work Ni{sub 3}Al powder particles obtained by atomization were characterized magnetically and microstructurally in as-atomized state and after annealing. Upon annealing the X-ray diffraction patterns show a noticeable increase of the signal of the ordered phase γ′-Ni{sub 3}Al, L1{sub 2}, phase and the microstructure evolves from a lamellar and dendrite to a large grain microstructure. The Curie temperature of the as-atomized powder particles is 85 K and decreases after annealing down to 50 K. First Principles calculations were carried out to correlate the experimental observations with local order of Ni and Al atoms and illustrate the importance of the local order in the density of states at the Fermi level, showing how the magnetic moment depends on the Ni and Al atomic position.

  7. Electronic Structure of Cu(tmdt2 Studied with First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Kiyoyuki Terakura

    2012-08-01

    Full Text Available We have studied the electronic structure of Cu(tmdt2, a material related to single-component molecular conductors, by first-principles calculations. The total energy calculations for several different magnetic configurations show that there is strong antiferromagnetic (AFM exchange coupling along the crystal a-axis. The electronic structures are analyzed in terms of the molecular orbitals near the Fermi level of isolated Cu(tmdt2 molecule. This analysis reveals that the system is characterized by the half-filled pdσ(− band whose intermolecular hopping integrals have strong one-dimensionality along the crystal a-axis. As the exchange splitting of the band is larger than the band width, the basic mechanism of the AFM exchange coupling is the superexchange. It will also be shown that two more ligand orbitals which are fairly insensitive to magnetism are located near the Fermi level. Because of the presence of these orbitals, the present calculation predicts that Cu(tmdt2 is metallic even in its AFM state, being inconsistent with the available experiment. Some comments will be made on the difference between Cu(tmdt2 and Cu(dmdt2.

  8. Atomic partial charges on CH{sub 3}NH{sub 3}PbI{sub 3} from first-principles electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Madjet, Mohamed E., E-mail: mmadjet@qf.org.qa; El-Mellouhi, Fedwa; Carignano, Marcelo A.; Berdiyorov, Golibjon R. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P. O. Box 5825, Doha (Qatar)

    2016-04-28

    We calculated the partial charges in methylammonium (MA) lead-iodide perovskite CH{sub 3}NH{sub 3}PbI{sub 3} in its different crystalline phases using different first-principles electronic charge partitioning approaches, including the Bader, ChelpG, and density-derived electrostatic and chemical (DDEC) schemes. Among the three charge partitioning methods, the DDEC approach provides chemically intuitive and reliable atomic charges for this material, which consists of a mixture of transition metals, halide ions, and organic molecules. The DDEC charges are also found to be robust against the use of hybrid functionals and/or upon inclusion of spin–orbit coupling or dispersive interactions. We calculated explicitly the atomic charges with a special focus on the dipole moment of the MA molecules within the perovskite structure. The value of the dipole moment of the MA is reduced with respect to the isolated molecule due to charge redistribution involving the inorganic cage. DDEC charges and dipole moment of the organic part remain nearly unchanged upon its rotation within the octahedral cavities. Our findings will be of both fundamental and practical importance, as the accurate and consistent determination of the atomic charges is important in order to understand the average equilibrium distribution of the electrons and to help in the development of force fields for larger scale atomistic simulations to describe static, dynamic, and thermodynamic properties of the material.

  9. Kendall-Theil Robust Line (KTRLine--version 1.0)-A Visual Basic Program for Calculating and Graphing Robust Nonparametric Estimates of Linear-Regression Coefficients Between Two Continuous Variables

    Science.gov (United States)

    Granato, Gregory E.

    2006-01-01

    The Kendall-Theil Robust Line software (KTRLine-version 1.0) is a Visual Basic program that may be used with the Microsoft Windows operating system to calculate parameters for robust, nonparametric estimates of linear-regression coefficients between two continuous variables. The KTRLine software was developed by the U.S. Geological Survey, in cooperation with the Federal Highway Administration, for use in stochastic data modeling with local, regional, and national hydrologic data sets to develop planning-level estimates of potential effects of highway runoff on the quality of receiving waters. The Kendall-Theil robust line was selected because this robust nonparametric method is resistant to the effects of outliers and nonnormality in residuals that commonly characterize hydrologic data sets. The slope of the line is calculated as the median of all possible pairwise slopes between points. The intercept is calculated so that the line will run through the median of input data. A single-line model or a multisegment model may be specified. The program was developed to provide regression equations with an error component for stochastic data generation because nonparametric multisegment regression tools are not available with the software that is commonly used to develop regression models. The Kendall-Theil robust line is a median line and, therefore, may underestimate total mass, volume, or loads unless the error component or a bias correction factor is incorporated into the estimate. Regression statistics such as the median error, the median absolute deviation, the prediction error sum of squares, the root mean square error, the confidence interval for the slope, and the bias correction factor for median estimates are calculated by use of nonparametric methods. These statistics, however, may be used to formulate estimates of mass, volume, or total loads. The program is used to read a two- or three-column tab-delimited input file with variable names in the first row and

  10. Electronic and optical properties of new multifunctional materials via half-substituted hematite: First principles calculations

    KAUST Repository

    Yang, Hua; Mi, Wenbo; Bai, Haili; Cheng, Yingchun

    2012-01-01

    Electronic structure and optical properties of α-FeMO 3 systems (M = Sc, Ti, V, Cr, Cu, Cd or In) have been investigated using first principles calculations. All of the FeMO 3 systems have a large net magnetic moment. The ground state of pure α-Fe 2

  11. Simple Algorithms to Calculate Asymptotic Null Distributions of Robust Tests in Case-Control Genetic Association Studies in R

    Directory of Open Access Journals (Sweden)

    Wing Kam Fung

    2010-02-01

    Full Text Available The case-control study is an important design for testing association between genetic markers and a disease. The Cochran-Armitage trend test (CATT is one of the most commonly used statistics for the analysis of case-control genetic association studies. The asymptotically optimal CATT can be used when the underlying genetic model (mode of inheritance is known. However, for most complex diseases, the underlying genetic models are unknown. Thus, tests robust to genetic model misspecification are preferable to the model-dependant CATT. Two robust tests, MAX3 and the genetic model selection (GMS, were recently proposed. Their asymptotic null distributions are often obtained by Monte-Carlo simulations, because they either have not been fully studied or involve multiple integrations. In this article, we study how components of each robust statistic are correlated, and find a linear dependence among the components. Using this new finding, we propose simple algorithms to calculate asymptotic null distributions for MAX3 and GMS, which greatly reduce the computing intensity. Furthermore, we have developed the R package Rassoc implementing the proposed algorithms to calculate the empirical and asymptotic p values for MAX3 and GMS as well as other commonly used tests in case-control association studies. For illustration, Rassoc is applied to the analysis of case-control data of 17 most significant SNPs reported in four genome-wide association studies.

  12. First Principles Calculations of Oxygen Adsorption on the UN(001) Surface

    International Nuclear Information System (INIS)

    Zhukovskii, Yuri F.; Bocharov, Dmitry; Kotomin, Eugene Alexej; Evarestov, Robert; Bandura, A.V.

    2009-01-01

    Fabrication, handling and disposal of nuclear fuel materials require comprehensive knowledge of their surface morphology and reactivity. Due to unavoidable contact with air components (even at low partial pressures), UN samples contain considerable amount of oxygen impurities affecting fuel properties. In this study we focus on reactivity of the energetically most stable (001) substrate of uranium nitride towards the atomic oxygen as one of initial stages for further UN oxidation. The basic properties of O atoms adsorbed on the UN(001) surface are simulated here combining the two first principles calculation methods based on the plane wave basis set and that of the localized orbitals.

  13. Stability, electronic and thermodynamic properties of aluminene from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Junhui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Yu, Niannian [School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Xue, Kanhao, E-mail: xkh@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Miao, Xiangshui [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2017-07-01

    Highlights: • We have predicted two NEW stable phases of atomic layer aluminum, buckled and 8-Pmmn aluminene. • We have revealed the electronic structures and bonding characteristics of aluminene. • Thermodynamic properties of aluminene were investigated based on phonon properties. - Abstract: Using first-principles calculations based on density functional theory (DFT), we have investigated the structure stability and electronic properties of both buckled and 8-Pmmn phase aluminene. Phonon dispersion analysis reveals that the buckled and 8-Pmmn aluminene are dynamically stable. The band structure shows that both the buckled and 8-Pmmn aluminene exhibit metallic behavior. Finally, the thermodynamic properties are investigated based on phonon properties.

  14. Stability, electronic and thermodynamic properties of aluminene from first-principles calculations

    International Nuclear Information System (INIS)

    Yuan, Junhui; Yu, Niannian; Xue, Kanhao; Miao, Xiangshui

    2017-01-01

    Highlights: • We have predicted two NEW stable phases of atomic layer aluminum, buckled and 8-Pmmn aluminene. • We have revealed the electronic structures and bonding characteristics of aluminene. • Thermodynamic properties of aluminene were investigated based on phonon properties. - Abstract: Using first-principles calculations based on density functional theory (DFT), we have investigated the structure stability and electronic properties of both buckled and 8-Pmmn phase aluminene. Phonon dispersion analysis reveals that the buckled and 8-Pmmn aluminene are dynamically stable. The band structure shows that both the buckled and 8-Pmmn aluminene exhibit metallic behavior. Finally, the thermodynamic properties are investigated based on phonon properties.

  15. Lattice dynamics and thermal conductivity of lithium fluoride via first-principles calculations

    Science.gov (United States)

    Liang, Ting; Chen, Wen-Qi; Hu, Cui-E.; Chen, Xiang-Rong; Chen, Qi-Feng

    2018-04-01

    The lattice thermal conductivity of lithium fluoride (LiF) is accurately computed from a first-principles approach based on an iterative solution of the Boltzmann transport equation. Real-space finite-difference supercell approach is employed to generate the second- and third-order interatomic force constants. The related physical quantities of LiF are calculated by the second- and third- order potential interactions at 30 K-1000 K. The calculated lattice thermal conductivity 13.89 W/(m K) for LiF at room temperature agrees well with the experimental value, demonstrating that the parameter-free approach can furnish precise descriptions of the lattice thermal conductivity for this material. Besides, the Born effective charges, dielectric constants and phonon spectrum of LiF accord well with the existing data. The lattice thermal conductivities for the iterative solution of BTE are also presented.

  16. Thermal conductivities of phosphorene allotropes from first-principles calculations: a comparative study.

    Science.gov (United States)

    Zhang, J; Liu, H J; Cheng, L; Wei, J; Liang, J H; Fan, D D; Jiang, P H; Shi, J

    2017-07-04

    Phosphorene has attracted tremendous interest recently due to its intriguing electronic properties. However, the thermal transport properties of phosphorene, especially for its allotropes, are still not well-understood. In this work, we calculate the thermal conductivities of five phosphorene allotropes (α-, β-, γ-, δ- and ζ-phase) by using phonon Boltzmann transport theory combined with first-principles calculations. It is found that the α-phosphorene exhibits considerable anisotropic thermal transport, while it is less obvious in the other four phosphorene allotropes. The highest thermal conductivity is found in the β-phosphorene, followed by the δ-, γ- and ζ-phase. The much lower thermal conductivity of the ζ-phase can be attributed to its relatively complex atomic configuration. It is expected that the rich thermal transport properties of phosphorene allotropes can have potential applications in the thermoelectrics and thermal management.

  17. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jiafeng; Si, M. S., E-mail: sims@lzu.edu.cn; Yang, D. Z.; Zhang, Z. Y.; Xue, D. S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2014-08-21

    Based on first-principles calculations, we present a quantum confinement mechanism for the band gaps of blue phosphorene nanoribbons (BPNRs) as a function of their widths. The BPNRs considered have either armchair or zigzag shaped edges on both sides with hydrogen saturation. Both the two types of nanoribbons are shown to be indirect semiconductors. An enhanced energy gap of around 1 eV can be realized when the ribbon's width decreases to ∼10 Å. The underlying physics is ascribed to the quantum confinement effect. More importantly, the parameters to describe quantum confinement are obtained by fitting the calculated band gaps with respect to their widths. The results show that the quantum confinement in armchair nanoribbons is stronger than that in zigzag ones. This study provides an efficient approach to tune the band gap in BPNRs.

  18. Robustness Metrics: How Are They Calculated, When Should They Be Used and Why Do They Give Different Results?

    Science.gov (United States)

    McPhail, C.; Maier, H. R.; Kwakkel, J. H.; Giuliani, M.; Castelletti, A.; Westra, S.

    2018-02-01

    Robustness is being used increasingly for decision analysis in relation to deep uncertainty and many metrics have been proposed for its quantification. Recent studies have shown that the application of different robustness metrics can result in different rankings of decision alternatives, but there has been little discussion of what potential causes for this might be. To shed some light on this issue, we present a unifying framework for the calculation of robustness metrics, which assists with understanding how robustness metrics work, when they should be used, and why they sometimes disagree. The framework categorizes the suitability of metrics to a decision-maker based on (1) the decision-context (i.e., the suitability of using absolute performance or regret), (2) the decision-maker's preferred level of risk aversion, and (3) the decision-maker's preference toward maximizing performance, minimizing variance, or some higher-order moment. This article also introduces a conceptual framework describing when relative robustness values of decision alternatives obtained using different metrics are likely to agree and disagree. This is used as a measure of how "stable" the ranking of decision alternatives is when determined using different robustness metrics. The framework is tested on three case studies, including water supply augmentation in Adelaide, Australia, the operation of a multipurpose regulated lake in Italy, and flood protection for a hypothetical river based on a reach of the river Rhine in the Netherlands. The proposed conceptual framework is confirmed by the case study results, providing insight into the reasons for disagreements between rankings obtained using different robustness metrics.

  19. Dispersion-corrected first-principles calculation of terahertz vibration, and evidence for weak hydrogen bond formation

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa

    2013-03-01

    A weak hydrogen bond (WHB) such as CH-O is very important for the structure, function, and dynamics in a chemical and biological system WHB stretching vibration is in a terahertz (THz) frequency region Very recently, the reasonable performance of dispersion-corrected first-principles to WHB has been proven. In this lecture, we report dispersion-corrected first-principles calculation of the vibrational absorption of some organic crystals, and low-temperature THz spectral measurement, in order to clarify WHB stretching vibration. The THz frequency calculation of a WHB crystal has extremely improved by dispersion correction. Moreover, the discrepancy in frequency between an experiment and calculation and is 10 1/cm or less. Dispersion correction is especially effective for intermolecular mode. The very sharp peak appearing at 4 K is assigned to the intermolecular translational mode that corresponds to WHB stretching vibration. It is difficult to detect and control the WHB formation in a crystal because the binding energy is very small. With the help of the latest intense development of experimental and theoretical technique and its careful use, we reveal solid-state WHB stretching vibration as evidence for the WHB formation that differs in respective WHB networks The research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 22550003).

  20. First-principles calculation of the structural stability of 6d transition metals

    International Nuclear Information System (INIS)

    Oestlin, A.; Vitos, L.

    2011-01-01

    The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.

  1. First-principle calculation of refractive indices of BAlN and BGaN

    KAUST Repository

    Alqatari, Feras; Li, Kuang-Hui; Liu, Kaikai; Li, Xiaohang

    2018-01-01

    The refractive indices of BAlN and BGaN ternary alloys are being investigated using first-principle calculation. The hybrid density functional theory is applied to determine the refractive indices of different alloys. A peculiar bowing effect in the static refractive indices and crossovers of different refractive index curves are found. We speculate that the explanation to these phenomena lies in the interband transitions of electrons where each band bows at a different rate from the other. An average of these bowing effects may result in the bowing of refractive indices.

  2. First-principle calculation of refractive indices of BAlN and BGaN

    KAUST Repository

    Alqatari, Feras

    2018-03-27

    The refractive indices of BAlN and BGaN ternary alloys are being investigated using first-principle calculation. The hybrid density functional theory is applied to determine the refractive indices of different alloys. A peculiar bowing effect in the static refractive indices and crossovers of different refractive index curves are found. We speculate that the explanation to these phenomena lies in the interband transitions of electrons where each band bows at a different rate from the other. An average of these bowing effects may result in the bowing of refractive indices.

  3. First-principle calculations on the structural and electronic properties of hard C11N4

    International Nuclear Information System (INIS)

    Li, Dongxu; Shi, Jiancheng; Lai, Mengling; Li, Rongkai; Yu, Dongli

    2014-01-01

    A graphite-like C 11 N 4 model was built by stacking graphene and a C 3 N 4 triazine layer and simulated by first principle calculations, which transfers to a diamond-like structure under high pressure. The structural, mechanical, and electronic properties of both materials were calculated. The elastic constants of both materials satisfy the Born-criterion. Furthermore, no imaginary frequencies were observed in phonon calculations. The diamond-like C 11 N 4 is semiconducting and consists of polyhedral and hollow C–N cages. The Vickers hardness of diamond-like C 11 N 4 was calculated to be 58 GPa. The phase transformation from graphite-like to diamond-like C 11 N 4 is proposed to occur at approximately 27.2 GPa based on the pressure-dependent enthalpy

  4. Density functional theory and pseudopotentials: A panacea for calculating properties of materials

    International Nuclear Information System (INIS)

    Cohen, M.L.; Lawrence Berkeley Lab., CA

    1995-09-01

    Although the microscopic view of solids is still evolving, for a large class of materials one can construct a useful first-principles or ''Standard Model'' of solids which is sufficiently robust to explain and predict many physical properties. Both electronic and structural properties can be studied and the results of the first-principles calculations can be used to predict new materials, formulate empirical theories and simple formulae to compute material parameters, and explain trends. A discussion of the microscopic approach, applications, and empirical theories is given here, and some recent results on nanotubes, hard materials, and fullerenes are presented

  5. Universal Huygens's principle of synchronization and coordination in the DNA and cell molecules

    International Nuclear Information System (INIS)

    Gareev, F.A.; Gareeva, G.F.

    2001-01-01

    commensurability is displayed in phenomena in different branches of science. All material objects (micro- and macro systems) that are described by standing waves know all about each other. Each object is the scaled one of the other and it is not possible to say which is more 'fundamental'. In this work we have demonstrated that the structure of DNA and cell molecules can be calculated with some structure of a hydrogen atom. The inter-atomic distances in cell molecules are quantized according to the quantization rule of the fractional Hall effect. Therefore, we can conclude that the structure of DNA and cell molecules can be established from the analysis of hydrogen spectra using the quantization rule of the Hall effect and vice versa. The bridge between the structure of a hydrogen atom, cell molecules and the Hall effect exists. It is very surprising that there are phenomena in Nature that are really described by simple rational relations. Only the fundamental conservation law of energy-momentum is responsible for this harmonic movement. We are now able to calculate and predict the structure of a cell molecule, and we invite people for cooperation. The Huygens principle of synchronization became a fruitful inter disciplinary science of general laws of self-organized processes in different branches of physics. It is intriguing to speculate that many questions can be now formulated as a result of universality of the Huygens synchronization principle independent of substance, fields, matter, and interactions for micro- and macro systems. Information concerning important details of an ecosystem's evolution is contained in frequency spectra. Therefore matter turns out to be a form of organized information. The Universe was arranged according to number, harmony and perfect forms. A new concept in evolution is robustness. One suggests simulating evolution of complex organisms constrained by the sole requirement of robustness in their expression patterns. Robustness in biophysics is

  6. Nanoparticle shapes by using Wulff constructions and first-principles calculations

    Directory of Open Access Journals (Sweden)

    Georgios D. Barmparis

    2015-02-01

    Full Text Available Background: The majority of complex and advanced materials contain nanoparticles. The properties of these materials depend crucially on the size and shape of these nanoparticles. Wulff construction offers a simple method of predicting the equilibrium shape of nanoparticles given the surface energies of the material.Results: We review the mathematical formulation and the main applications of Wulff construction during the last two decades. We then focus to three recent extensions: active sites of metal nanoparticles for heterogeneous catalysis, ligand-protected nanoparticles generated as colloidal suspensions and nanoparticles of complex metal hydrides for hydrogen storage.Conclusion: Wulff construction, in particular when linked to first-principles calculations, is a powerful tool for the analysis and prediction of the shapes of nanoparticles and tailor the properties of shape-inducing species.

  7. First-principles calculation on electronic properties of zinc oxide by zinc–air system

    Directory of Open Access Journals (Sweden)

    Ahmad Azmin Mohamad

    2017-07-01

    Full Text Available First-principles calculations are performed to study the electronic properties of zinc oxide (ZnO formed on an anode after discharging a Zn–air system. Prior to calculation, the ZnO is characterised by X-ray diffraction using Rietveld refinement. Diffracted patterns proved the formation of single phase ZnO, while Rietveld analysis shows that the ZnO has a hexagonal wurtzite structure with lattice parameters, a = 3.244 and c = 5.199 Å. Geometry optimisation of the hexagonal wurtzite structure of the ZnO is performed using various exchange–correlation energy functionals. The local density approximation functional method is used to explain the structure, electronic band structure and density of state properties of hexagonal ZnO. The calculated energy band gap was 0.75 eV while the density of states reveals that the O 2p (the top valence band and Zn 4s (the bottom conduction band states domination.

  8. First-principles cluster variation calculations of tetragonal-cubic transition in ZrO2

    International Nuclear Information System (INIS)

    Mohri, Tetsuo; Chen, Ying; Kiyokane, Naoya

    2013-01-01

    Highlights: ► Cluster variation method is extended to study displacive transition. ► Electronic structure total energy calculations are performed on ZrO2. ► Tetragonal-cubic transition is studied within the framework of order -disorder transition. -- Abstract: It is attempted to extend the basic idea of continuous displacement cluster variation method (CDCVM) to the study of a displacive phase transition. As a preliminary study, we focus on cubic to tetragonal transition in ZrO 2 in which oxygen atoms on the cubic lattice are displaced alternatively in the opposite direction (upward and downward) along the tetragonal axis. Within the CDCVM, displaced atoms are regarded as different atomic species, and two distinguished atoms, A-oxygen (upward shifting) and B-oxygen (downward shifting), are introduced in the description of the free energy. FLAPW electronic structure total energy calculations are performed to extract effective interaction energies among displaced oxygen atoms, and by combing them with CDCVM, the transition temperature is calculated from the first-principles

  9. First-principles calculations of BC{sub 4}N nanostructures: stability and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, A.; Azevedo, S. [Universidade Federal da Paraiba, CCEN, Departamento de Fisica, Joao Pessoa, PB (Brazil); Machado, M. [Universidade Federal de Pelotas, Departamento de Fisica, Pelotas, RS (Brazil); Kaschny, J.R. [Instituto Federal da Bahia-Campus Vitoria da Conquista, Vitoria da Conquista, BA (Brazil)

    2012-07-15

    In this work, we apply first-principles methods to investigate the stability and electronic structure of BC{sub 4}N nanostructures which were constructed from hexagonal graphite layers where substitutional nitrogen and boron atoms are placed at specific sites. These layers were rolled up to form zigzag and armchair nanotubes, with diameters varying from 7 to 12 A, or cut and bent to form nanocones, with 60 and 120 disclination angles. The calculation results indicate that the most stable structures are the ones which maximize the number of B-N and C-C bonds. It is found that the zigzag nanotubes are more stable than the armchair ones, where the strain energy decreases with increasing tube diameter D, following a 1/D {sup 2} law. The results show that the 60 disclination nanocones are the most stable ones. Additionally, the calculated electronic properties indicate a semiconducting behavior for all calculated structures, which is intermediate to the typical behaviors found for hexagonal boron nitride and graphene. (orig.)

  10. Analysis of calculating methods for failure distribution function based on maximal entropy principle

    International Nuclear Information System (INIS)

    Guo Chunying; Lin Yuangen; Jiang Meng; Wu Changli

    2009-01-01

    The computation of invalidation distribution functions of electronic devices when exposed in gamma rays is discussed here. First, the possible devices failure distribution models are determined through the tests of statistical hypotheses using the test data. The results show that: the devices' failure distribution can obey multi-distributions when the test data is few. In order to decide the optimum failure distribution model, the maximal entropy principle is used and the elementary failure models are determined. Then, the Bootstrap estimation method is used to simulate the intervals estimation of the mean and the standard deviation. On the basis of this, the maximal entropy principle is used again and the simulated annealing method is applied to find the optimum values of the mean and the standard deviation. Accordingly, the electronic devices' optimum failure distributions are finally determined and the survival probabilities are calculated. (authors)

  11. Site-specific electronic structure analysis by channeling EELS and first-principles calculations.

    Science.gov (United States)

    Tatsumi, Kazuyoshi; Muto, Shunsuke; Yamamoto, Yu; Ikeno, Hirokazu; Yoshioka, Satoru; Tanaka, Isao

    2006-01-01

    Site-specific electronic structures were investigated by electron energy loss spectroscopy (EELS) under electron channeling conditions. The Al-K and Mn-L(2,3) electron energy loss near-edge structure (ELNES) of, respectively, NiAl2O4 and Mn3O4 were measured. Deconvolution of the raw spectra with the instrumental resolution function restored the blunt and hidden fine features, which allowed us to interpret the experimental spectral features by comparing with theoretical spectra obtained by first-principles calculations. The present method successfully revealed the electronic structures specific to the differently coordinated cationic sites.

  12. Mapping energetics of atom probe evaporation events through first principles calculations.

    Science.gov (United States)

    Peralta, Joaquín; Broderick, Scott R; Rajan, Krishna

    2013-09-01

    The purpose of this work is to use atomistic modeling to determine accurate inputs into the atom probe tomography (APT) reconstruction process. One of these inputs is evaporation field; however, a challenge occurs because single ions and dimers have different evaporation fields. We have calculated the evaporation field of Al and Sc ions and Al-Al and Al-Sc dimers from an L1₂-Al₃Sc surface using ab initio calculations and with a high electric field applied to the surface. The evaporation field is defined as the electric field at which the energy barrier size is calculated as zero, corresponding to the minimum field that atoms from the surface can break their bonds and evaporate from the surface. The evaporation field of the surface atoms are ranked from least to greatest as: Al-Al dimer, Al ion, Sc ion, and Al-Sc dimer. The first principles results were compared with experimental data in the form of an ion evaporation map, which maps multi-ion evaporations. From the ion evaporation map of L1₂-Al₃Sc, we extract relative evaporation fields and identify that an Al-Al dimer has a lower evaporation field than an Al-Sc dimer. Additionally, comparatively an Al-Al surface dimer is more likely to evaporate as a dimer, while an Al-Sc surface dimer is more likely to evaporate as single ions. These conclusions from the experiment agree with the ab initio calculations, validating the use of this approach for modeling APT energetics. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Aqueous Stability of Alkali Superionic Conductors from First-Principles Calculations

    International Nuclear Information System (INIS)

    Radhakrishnan, Balachandran; Ong, Shyue Ping

    2016-01-01

    Ceramic alkali superionic conductor solid electrolytes (SICEs) play a prominent role in the development of rechargeable alkali-ion batteries, ranging from replacement of organic electrolytes to being used as separators in aqueous batteries. The aqueous stability of SICEs is an important property in determining their applicability in various roles. In this work, we analyze the aqueous stability of twelve well-known Li-ion and Na-ion SICEs using Pourbaix diagrams constructed from first-principles calculations. We also introduce a quantitative free-energy measure to compare the aqueous stability of SICEs under different environments. Our results show that though oxides are, in general, more stable in aqueous environments than sulfides and halide-containing chemistries, the cations present play a crucial role in determining whether solid phases are formed within the voltage and pH ranges of interest.

  14. First principle calculations of effective exchange integrals: Comparison between SR (BS) and MR computational results

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Kizashi [Institute for Nano Science Design Center, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan and TOYOTA Physical and Chemical Research Institute, Nagakute, Aichi, 480-1192 (Japan); Nishihara, Satomichi; Saito, Toru; Yamanaka, Shusuke; Kitagawa, Yasutaka; Kawakami, Takashi; Yamada, Satoru; Isobe, Hiroshi; Okumura, Mitsutaka [Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)

    2015-01-22

    First principle calculations of effective exchange integrals (J) in the Heisenberg model for diradical species were performed by both symmetry-adapted (SA) multi-reference (MR) and broken-symmetry (BS) single reference (SR) methods. Mukherjee-type (Mk) state specific (SS) MR coupled-cluster (CC) calculations by the use of natural orbital (NO) references of ROHF, UHF, UDFT and CASSCF solutions were carried out to elucidate J values for di- and poly-radical species. Spin-unrestricted Hartree Fock (UHF) based coupled-cluster (CC) computations were also performed to these species. Comparison between UHF-NO(UNO)-MkMRCC and BS UHF-CC computational results indicated that spin-contamination of UHF-CC solutions still remains at the SD level. In order to eliminate the spin contamination, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed corrected the error to yield good agreement with MkMRCC in energy. The CC double with spin-unrestricted Brueckner's orbital (UBD) was furthermore employed for these species, showing that spin-contamination involved in UHF solutions is largely suppressed, and therefore AP scheme for UBCCD removed easily the rest of spin-contamination. We also performed spin-unrestricted pure- and hybrid-density functional theory (UDFT) calculations of diradical and polyradical species. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid (H) UDFT. HUDFT calculations followed by AP, HUDFT(AP), yielded the S-T gaps that were qualitatively in good agreement with those of MkMRCCSD, UHF-CC(AP) and UB-CC(AP). Thus a systematic comparison among MkMRCCSD, UCC(AP) UBD(AP) and UDFT(AP) was performed concerning with the first principle calculations of J values in di- and poly-radical species. It was found that BS (AP) methods reproduce MkMRCCSD results, indicating their applicability to large exchange coupled systems.

  15. Assessing climate change-robustness of protected area management plans-The case of Germany.

    Science.gov (United States)

    Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L

    2017-01-01

    Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning.

  16. Assessing climate change-robustness of protected area management plans—The case of Germany

    Science.gov (United States)

    Geyer, Juliane; Kreft, Stefan; Jeltsch, Florian; Ibisch, Pierre L.

    2017-01-01

    Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning. PMID:28982187

  17. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-01-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within...... regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding...

  18. SU-E-T-191: First Principle Calculation of Quantum Yield in Photodynamic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abolfath, R; Guo, F; Chen, Z; Nath, R [Yale New Haven Hospital, New Haven, CT (United States)

    2014-06-01

    Purpose: We present a first-principle method to calculate the spin transfer efficiency in oxygen induced by any photon fields especially in MeV energy range. The optical pumping is mediated through photosensitizers, e.g., porphyrin and/or ensemble of quantum dots. Methods: Under normal conditions, oxygen molecules are in the relatively non-reactive triplet state. In the presence of certain photosensitizer compounds such as porphyrins, electromagnetic radiation of specific wavelengths can excite oxygen to highly reactive singlet state. With selective uptake of photosensitizers by certain malignant cells, photon irradiation of phosensitized tumors can lead to selective killing of cancer cells. This is the basis of photodynamic therapy (PDT). Despite several attempts, PDT has not been clinically successful except in limited superficial cancers. Many parameters such as photon energy, conjugation with quantum dots etc. can be potentially combined with PDT in order to extend the role of PDT in cancer management. The key quantity for this optimization is the spin transfer efficiency in oxygen by any photon field. The first principle calculation model presented here, is an attempt to fill this need. We employ stochastic density matrix description of the quantum jumps and the rate equation methods in quantum optics based on Markov/Poisson processes and calculate time evolution of the population of the optically pumped singlet oxygen. Results: The results demonstrate the feasibility of our model in showing the dependence of the optical yield in generating spin-singlet oxygen on the experimental conditions. The adjustable variables can be tuned to maximize the population of the singlet oxygen hence the efficacy of the photodynamic therapy. Conclusion: The present model can be employed to fit and analyze the experimental data and possibly to assist researchers in optimizing the experimental conditions in photodynamic therapy.

  19. Timing robustness in the budding and fission yeast cell cycles.

    KAUST Repository

    Mangla, Karan; Dill, David L; Horowitz, Mark A

    2010-01-01

    Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness

  20. Robust processing of mining subsidence monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Mingzhong, Wang; Guogang, Huang [Pingdingshan Mining Bureau (China); Yunjia, Wang; Guogangli, [China Univ. of Mining and Technology, Xuzhou (China)

    1997-12-31

    Since China began to do research on mining subsidence in 1950s, more than one thousand lines have been observed. Yet, monitoring data sometimes contain quite a lot of outliers because of the limit of observation and geological mining conditions. In China, nowdays, the method of processing mining subsidence monitoring data is based on the principle of the least square method. It is possible to produce lower accuracy, less reliability, or even errors. For reason given above, the authors, according to Chinese actual situation, have done some research work on the robust processing of mining subsidence monitoring data in respect of how to get prediction parameters. The authors have derived related formulas, designed some computational programmes, done a great quantity of actual calculation and simulation, and achieved good results. (orig.)

  1. Robust processing of mining subsidence monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Wang Mingzhong; Huang Guogang [Pingdingshan Mining Bureau (China); Wang Yunjia; Guogangli [China Univ. of Mining and Technology, Xuzhou (China)

    1996-12-31

    Since China began to do research on mining subsidence in 1950s, more than one thousand lines have been observed. Yet, monitoring data sometimes contain quite a lot of outliers because of the limit of observation and geological mining conditions. In China, nowdays, the method of processing mining subsidence monitoring data is based on the principle of the least square method. It is possible to produce lower accuracy, less reliability, or even errors. For reason given above, the authors, according to Chinese actual situation, have done some research work on the robust processing of mining subsidence monitoring data in respect of how to get prediction parameters. The authors have derived related formulas, designed some computational programmes, done a great quantity of actual calculation and simulation, and achieved good results. (orig.)

  2. Robust data reconciliation and outlier detection with swarm intelligence in a thermal reactor power calculation

    Energy Technology Data Exchange (ETDEWEB)

    Valdetaro, Eduardo Damianik, E-mail: valdtar@eletronuclear.gov.br [ELETRONUCLEAR - ELETROBRAS, Angra dos Reis, RJ (Brazil). Angra 2 Operating Dept.; Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Schirru, Roberto, E-mail: schirru@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    In Nuclear power plants, Data Reconciliation (DR) and Gross Errors Detection (GED) are techniques of increasing interest and are primarily used to keep mass and energy balance into account, which brings outcomes as a direct and indirect financial benefits. Data reconciliation is formulated by a constrained minimization problem, where the constraints correspond to energy and mass balance model. Statistical methods are used combined with the minimization of quadratic error form. Solving nonlinear optimization problem using conventional methods can be troublesome, because a multimodal function with differentiated solutions introduces some difficulties to search an optimal solution. Many techniques were developed to solve Data Reconciliation and Outlier Detection, some of them use, for example, Quadratic Programming, Lagrange Multipliers, Mixed-Integer Non Linear Programming and others use evolutionary algorithms like Genetic Algorithms (GA) and recently the use of the Particle Swarm Optimization (PSO) showed to be a potential tool as a global optimization algorithm when applied to data reconciliation. Robust Statistics is also increasing in interest and it is being used when measured data are contaminated by random errors and one can not assume the error is normally distributed, situation which reflects real problems situation. The aim of this work is to present a brief comparison between the classical data reconciliation technique and the robust data reconciliation and gross error detection with swarm intelligence procedure in calculating the thermal reactor power for a simplified heat circuit diagram of a steam turbine plant using real data obtained from Angra 2 Nuclear power plant. The main objective is to test the potential of the robust DR and GED method in a integrated framework using swarm intelligence and the three part redescending estimator of Hampel when applied to a real process condition. The results evaluate the potential use of the robust technique in

  3. Robust data reconciliation and outlier detection with swarm intelligence in a thermal reactor power calculation

    International Nuclear Information System (INIS)

    Valdetaro, Eduardo Damianik; Coordenacao dos Programas de Pos-Graduacao de Engenharia; Schirru, Roberto

    2011-01-01

    In Nuclear power plants, Data Reconciliation (DR) and Gross Errors Detection (GED) are techniques of increasing interest and are primarily used to keep mass and energy balance into account, which brings outcomes as a direct and indirect financial benefits. Data reconciliation is formulated by a constrained minimization problem, where the constraints correspond to energy and mass balance model. Statistical methods are used combined with the minimization of quadratic error form. Solving nonlinear optimization problem using conventional methods can be troublesome, because a multimodal function with differentiated solutions introduces some difficulties to search an optimal solution. Many techniques were developed to solve Data Reconciliation and Outlier Detection, some of them use, for example, Quadratic Programming, Lagrange Multipliers, Mixed-Integer Non Linear Programming and others use evolutionary algorithms like Genetic Algorithms (GA) and recently the use of the Particle Swarm Optimization (PSO) showed to be a potential tool as a global optimization algorithm when applied to data reconciliation. Robust Statistics is also increasing in interest and it is being used when measured data are contaminated by random errors and one can not assume the error is normally distributed, situation which reflects real problems situation. The aim of this work is to present a brief comparison between the classical data reconciliation technique and the robust data reconciliation and gross error detection with swarm intelligence procedure in calculating the thermal reactor power for a simplified heat circuit diagram of a steam turbine plant using real data obtained from Angra 2 Nuclear power plant. The main objective is to test the potential of the robust DR and GED method in a integrated framework using swarm intelligence and the three part redescending estimator of Hampel when applied to a real process condition. The results evaluate the potential use of the robust technique in

  4. Electrical properties of improper ferroelectrics from first principles

    Science.gov (United States)

    Stengel, Massimiliano; Fennie, Craig J.; Ghosez, Philippe

    2012-09-01

    We study the interplay of structural and polar distortions in hexagonal YMnO3 and short-period PbTiO3/SrTiO3 (PTO/STO) superlattices by means of first-principles calculations at constrained electric displacement field D. We find that in YMnO3 the tilts of the oxygen polyhedra produce a robustly polar ground state, which persists at any choice of the electrical boundary conditions. Conversely, in PTO/STO the antiferrodistortive instabilities alone do not break inversion symmetry, and open-circuit boundary conditions restore a nonpolar state. We suggest that this qualitative difference naturally provides a route to rationalizing the concept of “improper ferroelectricity” from the point of view of first-principles theory. We discuss the implications of our arguments for the design of novel multiferroic materials with enhanced functionalities and for the symmetry analysis of the phase transitions.

  5. On the calculation of principle curvatures of the left-ventricular surfaces.

    Science.gov (United States)

    Claus, Piet; Choi, Hon Fai; D'hooge, Jan; Rademakers, Frank E

    2008-01-01

    A local description of the shape of the left ventricle is relevant in assessing the process of adverse ventricular remodeling, associated with most cardiac pathologies, and in monitoring reverse remodeling by therapy. To quantify local shape of the left ventricle, one can calculate the curvature of its epicardial or endocardial surface. The 3D geometry of the heart and especially the ventricles, can typically be described using finite element meshes. From a mathematical point of view these meshes provide a local parametrization of the surface in the 3-dimensional space. We discuss the analytic derivation of the principle curvatures of the left-ventricular surfaces given their smooth finite-element meshes and apply this derivation to assess the regional shape of the normal porcine left ventricle.

  6. Phase Transition and Thermodynamics of Ruthenium Diboride via First-Principles Calculations

    International Nuclear Information System (INIS)

    Fen, Luo; Yan, Cheng; Xiang-Rong, Chen; Guang-Fu, Ji

    2009-01-01

    The pressure induced phase transitions of RuB 2 from the OsB 2 -type structure to the ReB 2 -type structure are investigated by first-principles calculations based on the plane-wave basis set with the generalized gradient approximation for exchange and correlation. It is found that the phase transition occurs at 18.6 GPa. We predict the phase transition from the OsB 2 -type RuB 2 to the ReB 2 -type RuB 2 at high temperatures for the first time. The dependences of the heat capacity, thermal expansion coefficient, and the Grüneisen parameter on pressure and temperature for OsB 2 -type RuB 2 and ReB 2 -type RuB 2 are also investigated

  7. Structural, electronic and elastic properties of potassium hexatitanate crystal from first-principles calculations

    International Nuclear Information System (INIS)

    Hua Manyu; Li Yimin; Long Chunguang; Li Xia

    2012-01-01

    The structural, electronic and elastic properties of potassium hexatitanate (K 2 Ti 6 O 13 ) whisker were investigated using first-principles calculations. The calculated cell parameters of K 2 Ti 6 O 13 including lattice constants and atomic positions are in good agreement with the experimental data. The obtained formation enthalpy (-61.1535 eV/atom) and cohesive energy (-137.4502 eV/atom) are both negative, showing its high structural stability. Further analysis of the electronic structures shows that the potassium hexatitanate is a wide-band semiconductor. Within K 2 Ti 6 O 13 crystal, the Ti---O bonding interactions are stronger than that of K---O, while no apparent K---Ti bonding interactions can be observed. The structural stability of K 2 Ti 6 O 13 was closely associated with the covalent bond interactions between Ti (d) and O (p) orbits. Further calculations on elastic properties show that K 2 Ti 6 O 13 is a high stiffness and brittle material with small anisotropy in shear and compression.

  8. A different method for calculation of the deflection angle of light passing close to a massive object by Fermat’s principle

    Energy Technology Data Exchange (ETDEWEB)

    Akkus, Harun, E-mail: physicisthakkus@gmail.com

    2013-12-15

    We introduce a method for calculating the amount of deflection angle of light passing close to a massive object. It is based on Fermat’s principle. The varying refractive index of medium around the massive object is obtained from the Buckingham pi-theorem. Highlights: •A different and simpler method for the calculation of deflection angle of light. •Not a curved space, only 2-D Euclidean space. •Getting a varying refractive index from the Buckingham pi-theorem. •Obtaining the some results of general relativity from Fermat’s principle.

  9. A different method for calculation of the deflection angle of light passing close to a massive object by Fermat’s principle

    International Nuclear Information System (INIS)

    Akkus, Harun

    2013-01-01

    We introduce a method for calculating the amount of deflection angle of light passing close to a massive object. It is based on Fermat’s principle. The varying refractive index of medium around the massive object is obtained from the Buckingham pi-theorem. Highlights: •A different and simpler method for the calculation of deflection angle of light. •Not a curved space, only 2-D Euclidean space. •Getting a varying refractive index from the Buckingham pi-theorem. •Obtaining the some results of general relativity from Fermat’s principle

  10. First principles calculations of interstitial and lamellar rhenium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Soto, G., E-mail: gerardo@cnyn.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico); Tiznado, H.; Reyes, A.; Cruz, W. de la [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The possible structures of rhenium nitride as a function of composition are analyzed. Black-Right-Pointing-Pointer The alloying energy is favorable for rhenium nitride in lamellar arrangements. Black-Right-Pointing-Pointer The structures produced by magnetron sputtering are metastable variations. Black-Right-Pointing-Pointer The structures produced by high-pressure high-temperature are stable configurations. Black-Right-Pointing-Pointer The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re{sub 3}N and Re{sub 2}N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials

  11. First principles calculations of interstitial and lamellar rhenium nitrides

    International Nuclear Information System (INIS)

    Soto, G.; Tiznado, H.; Reyes, A.; Cruz, W. de la

    2012-01-01

    Highlights: ► The possible structures of rhenium nitride as a function of composition are analyzed. ► The alloying energy is favorable for rhenium nitride in lamellar arrangements. ► The structures produced by magnetron sputtering are metastable variations. ► The structures produced by high-pressure high-temperature are stable configurations. ► The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re 3 N and Re 2 N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials within binary nitride chemistry.

  12. Improved techniques for outgoing wave variational principle calculations of converged state-to-state transition probabilities for chemical reactions

    Science.gov (United States)

    Mielke, Steven L.; Truhlar, Donald G.; Schwenke, David W.

    1991-01-01

    Improved techniques and well-optimized basis sets are presented for application of the outgoing wave variational principle to calculate converged quantum mechanical reaction probabilities. They are illustrated with calculations for the reactions D + H2 yields HD + H with total angular momentum J = 3 and F + H2 yields HF + H with J = 0 and 3. The optimization involves the choice of distortion potential, the grid for calculating half-integrated Green's functions, the placement, width, and number of primitive distributed Gaussians, and the computationally most efficient partition between dynamically adapted and primitive basis functions. Benchmark calculations with 224-1064 channels are presented.

  13. Towards quantitative accuracy in first-principles transport calculations: The GW method applied to alkane/gold junctions

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer

    2011-01-01

    -electron interactions are described by th=e many-body GW approximation. The conductance follows an exponential length dependence: Gn = Gc exp(-βn). The main difference from standard density functional theory (DFT) calculations is a significant reduction of the contact conductance, Gc, due to an improved alignment......The calculation of the electronic conductance of nanoscale junctions from first principles is a long-standing problem in the field of charge transport. Here we demonstrate excellent agreement with experiments for the transport properties of the gold/alkanediamine benchmark system when electron...

  14. Functional principles of registry-based service discovery

    NARCIS (Netherlands)

    Sundramoorthy, V.; Tan, C.; Hartel, P.H.; Hartog, den J.I.; Scholten, J.

    2005-01-01

    As Service Discovery Protocols (SDP) are becoming increasingly important for ubiquitous computing, they must behave according to predefined principles. We present the functional Principles of Service Discovery for robust, registry-based service discovery. A methodology to guarantee adherence to

  15. First principles calculation of L21+A2 coherent equilibria in the Fe-Al-Ti system

    International Nuclear Information System (INIS)

    Alonso, Paula R.; Gargano, Pablo H.; Ramirez-Caballero, Gustavo E.; Balbuena, Perla B.; Rubiolo, Gerardo H.

    2009-01-01

    By combining first-principles density functional total energy calculations and statistical mechanics the ground state and the phase equilibria at finite temperatures of the ternary system Fe-Al-Ti have been investigated. Total energy calculations have been performed by means of the Wien 2k code to establish the ground state energetic. A cluster expansion method was therewith used to describe solid solutions. At several chosen finite temperatures the cluster variation method in the irregular tetrahedron approximation was employed in order to calculate the iron rich ternary bcc equilibria. It is confirmed that there are two kinds of phase separations of the bcc phase, A2+L2 1 and B2+L2 1 .

  16. BaTiO3-based nanolayers and nanotubes: first-principles calculations.

    Science.gov (United States)

    Evarestov, Robert A; Bandura, Andrei V; Kuruch, Dmitrii D

    2013-01-30

    The first-principles calculations using hybrid exchange-correlation functional and localized atomic basis set are performed for BaTiO(3) (BTO) nanolayers and nanotubes (NTs) with the structure optimization. Both the cubic and the ferroelectric BTO phases are used for the nanolayers and NTs modeling. It follows from the calculations that nanolayers of the different ferroelectric BTO phases have the practically identical surface energies and are more stable than nanolayers of the cubic phase. Thin nanosheets composed of three or more dense layers of (0 1 0) and (0 1 1[overline]) faces preserve the ferroelectric displacements inherent to the initial bulk phase. The structure and stability of BTO single-wall NTs depends on the original bulk crystal phase and a wall thickness. The majority of the considered NTs with the low formation and strain energies has the mirror plane perpendicular to the tube axis and therefore cannot exhibit ferroelectricity. The NTs folded from (0 1 1[overline]) layers may show antiferroelectric arrangement of Ti-O bonds. Comparison of stability of the BTO-based and SrTiO(3)-based NTs shows that the former are more stable than the latter. Copyright © 2012 Wiley Periodicals, Inc.

  17. Mechanical properties of layered oxysulfide CaZnOS from first principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhi-Jun [Department of Physics, Dongguk University, Pildong-ro, Choong-gu, Seoul, 100-715 (Korea, Republic of); Feng, Ang [Key Laboratory of Transparent Opto-Functional Inorganic Materials of Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai, 200050 (China); Zhang, Shao-Lin; Zhang, Wei-Bin [Department of Physics, Dongguk University, Pildong-ro, Choong-gu, Seoul, 100-715 (Korea, Republic of); Yang, Woochul, E-mail: wyang@dongguk.edu [Department of Physics, Dongguk University, Pildong-ro, Choong-gu, Seoul, 100-715 (Korea, Republic of)

    2016-06-15

    Elastic and tensile properties of mixed-anion oxysulfide CaZnOS have been theoretically investigated by first principle method of density functional theory (DFT). Elastic constants were obtained by stress–strain relationships, and bulk structure parameters including bulk modulus, shear modulus, as well as Poisson's ratio were then calculated using Voigt-Reuses-Hill (VRH) approximation. The results of shear anisotropic factors, compressibility anisotropic factor and directional Young's modulus showed that CaZnOS is almost elastically isotropic in {001} planes and maintains elastic anisotropy in {100} or {010} planes. Chemical bond anisotropy shown by Mulliken atomic charges and bond overlap populations is responsible for the elastic anisotropy behavior aforementioned. Moreover, theoretical uniaxial and biaxial tensile results showed the crystal collapsed at strain more than 12%, except in the biaxial extension where CaZnOS collapsed at strain of 7%. - Highlights: • Elastic and theoretical tensile properties of CaZnOS have been investigated by first principle method. • CaZnOS is elastically isotropic in {001} planes and maintains elastic anisotropy in {100} or {010} planes. • Mulliken atomic charges and bond overlap populations are responsible for the elastic anisotropy behavior.

  18. Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations

    Science.gov (United States)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    2018-04-01

    Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally efficient continuum solvation methodologies. We develop a model for the double layer of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the potential of zero charge and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the nonlinear electrochemical soft-sphere solvation model which both captures the capacitance features observed experimentally and serves as a general-purpose continuum solvation model.

  19. Thermodynamic description of the Al-Cu-Yb ternary system supported by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Huang G.

    2016-01-01

    Full Text Available Phase relationships of the ternary Al-Cu-Yb system have been assessed using a combination of CALPHAD method and first principles calculations. A self-consistent thermodynamic parameter was established based on the experimental and theoretical information. Most of the binary intermetallic phases, except Al3Yb, Al2Yb, Cu2Yb and Cu5Yb, were assumed to be zero solubility in the ternary system. Based on the experimental data, eight ternary intermetallic compounds were taken into consideration in this system. Among them, three were treated as line compounds with large homogeneity ranges for Al and Cu. The others were treated as stoichiometric compounds. The calculated phase diagrams were in agreement with available experimental and theoretical data.

  20. Structural and electronic properties of LaPd2As2 superconductor: First-principle calculations

    Science.gov (United States)

    Singh, Birender; Kumar, Pradeep

    2017-05-01

    In present work we have studied electronic and structural properties of superconducting LaPd2As2 compound having collapsed tetragonal structure using first-principle calculations. The band structure calculations show that the LaPd2As2 is metallic consistent with the reported experimental observation, and the density of states plots clearly shows that at the Fermi level major contribution to density of states arises from Pd 4d and As 4p states, unlike the Fe-based superconductors where major contribution at the Fermi level comes from Fe 3d states. The estimated value of electron-phonon coupling is found to be 0.37, which gives the upper bound of superconducting transition temperature of 5K, suggesting the conventional nature of this superconductor.

  1. First-principles real-space tight-binding LMTO calculation of electronic structures for atomic clusters

    International Nuclear Information System (INIS)

    Xie, Z.L.; Dy, K.S.; Wu, S.Y.

    1997-01-01

    A real-space scheme has been developed for a first-principles calculation of electronic structures and total energies of atomic clusters. The scheme is based on the combination of the tight-binding linear muffin-tin orbital (TBLMTO) method and the method of real-space Green close-quote s function. With this approach, the local electronic density of states can be conveniently determined from the real-space Green close-quote s function. Furthermore, the full electron density of a cluster can be directly calculated in real space. The scheme has been shown to be very efficient due to the incorporation of the method of real-space Green close-quote s function and Delley close-quote s method of evaluating multicenter integrals. copyright 1996 The American Physical Society

  2. First-principles calculations of the electronic and structural properties of GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Castaño-González, E.-E. [Universidad del Norte, Grupo de Investigación en Física Aplicada, Departamento de Física (Colombia); Seña, N. [Universidad Nacional de Colombia-Colombia, Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones (Colombia); Mendoza-Estrada, V.; González-Hernández, R., E-mail: rhernandezj@uninorte.edu.co [Universidad del Norte, Grupo de Investigación en Física Aplicada, Departamento de Física (Colombia); Dussan, A. [Universidad Nacional de Colombia-Colombia, Departamento de Física, Grupo de Materiales Nanoestructurados y sus Aplicaciones (Colombia); Mesa, F., E-mail: fredy.mesa@urosario.edu.co [Universidad del Rosario, Grupo NanoTech, Facultad de Ciencias Naturales y Matemáticas (Colombia)

    2016-10-15

    In this paper, we carried out first-principles calculations in order to investigate the structural and electronic properties of the binary compound gallium antimonide (GaSb). This theoretical study was carried out using the Density Functional Theory within the plane-wave pseudopotential method. The effects of exchange and correlation (XC) were treated using the functional Local Density Approximation (LDA), generalized gradient approximation (GGA): Perdew–Burke–Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol), Perdew-Wang91 (PW91), revised Perdew–Burke–Ernzerhof (rPBE), Armiento–Mattson 2005 (AM05) and meta-generalized gradient approximation (meta-GGA): Tao–Perdew–Staroverov–Scuseria (TPSS) and revised Tao–Perdew–Staroverov–Scuseria (RTPSS) and modified Becke-Johnson (MBJ). We calculated the densities of state (DOS) and band structure with different XC potentials identified and compared them with the theoretical and experimental results reported in the literature. It was discovered that functional: LDA, PBEsol, AM05 and RTPSS provide the best results to calculate the lattice parameters (a) and bulk modulus (B{sub 0}); while for the cohesive energy (E{sub coh}), functional: AM05, RTPSS and PW91 are closer to the values obtained experimentally. The MBJ, Rtpss and AM05 values found for the band gap energy is slightly underestimated with those values reported experimentally.

  3. Elasticity, electronic properties and hardness of MoC investigated by first principles calculations

    International Nuclear Information System (INIS)

    Liu, YangZhen; Jiang, YeHua; Feng, Jing; Zhou, Rong

    2013-01-01

    The crystal structure, cohesive energy, formation enthalpy, mechanical anisotropy, electronic properties and hardness of α−MoC, β−MoC and γ−MoC are investigated by the first-principles calculations. The elastic constants and the bulk moduli, shear moduli, Young's moduli are calculated. The Young's modulus values of α−MoC, β−MoC and γ−MoC are 395.6 GPa, 551.2 GPa and 399.5 GPa, respectively. The surface constructions of Young's moduli identify the mechanical anisotropy of molybdenum carbide, and the results show that anisotropy of α−MoC is stronger than others. The electronic structure indicates that the bonding behaviors of MoC are the combinations of covalent and metallic bonds. The hardness of β−MoC is obviously higher than those of α−MoC and γ−MoC

  4. Analysis of electron-positron momentum spectra of metallic alloys as supported by first-principles calculations

    OpenAIRE

    Folegati, P.; Makkonen, I.; Ferragut, R.; Puska, Martti J.

    2007-01-01

    Electron-positron momentum distributions measured by the coincidence Doppler broadening method can be used in the chemical analysis of the annihilation environment, typically a vacancy-impurity complex in a solid. In the present work, we study possibilities for a quantitative analysis, i.e., for distinguishing the average numbers of different atomic species around the defect. First-principles electronic structure calculations self-consistently determining electron and positron densities and i...

  5. First -principles calculations of the crystal structure, electronic structure, and thermodynamic stability of Be(BH4)2

    NARCIS (Netherlands)

    van Setten, Michiel J.; de Wijs, Gilles A.; Brocks, G.

    2008-01-01

    Alanates and boranates are intensively studied because of their potential use as hydrogen storage materials. In this paper, we present a first-principles study of the electronic structure and the energetics of beryllium boranate BeBH42. From total energy calculations, we show that—in contrast to the

  6. SU-E-T-287: Robustness Study of Passive-Scattering Proton Therapy in Lung: Is Range and Setup Uncertainty Calculation On the Initial CT Enough to Predict the Plan Robustness?

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X; Dormer, J; Kenton, O; Liu, H; Simone, C; Solberg, T; Lin, L [University of Pennsylvania, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Plan robustness of the passive-scattering proton therapy treatment of lung tumors has been studied previously using combined uncertainties of 3.5% in CT number and 3 mm geometric shifts. In this study, we investigate whether this method is sufficient to predict proton plan robustness by comparing to plans performed on weekly verification CT scans. Methods: Ten lung cancer patients treated with passive-scattering proton therapy were randomly selected. All plans were prescribed 6660cGy in 37 fractions. Each initial plan was calculated using +/− 3.5% range and +/− 0.3cm setup uncertainty in x, y and z directions in Eclipse TPS(Method-A). Throughout the treatment course, patients received weekly verification CT scans to assess the daily treatment variation(Method-B). After contours and imaging registrations are verified by the physician, the initial plan with the same beamline and compensator was mapped into the verification CT. Dose volume histograms (DVH) were evaluated for robustness study. Results: Differences are observed between method A and B in terms of iCTV coverage and lung dose. Method-A shows all the iCTV D95 are within +/− 1% difference, while 20% of cases fall outside +/−1% range in Method-B. In the worst case scenario(WCS), the iCTV D95 is reduced by 2.5%. All lung V5 and V20 are within +/−5% in Method-A while 15% of V5 and 10% of V20 fall outside of +/−5% in Method-B. In the WCS, Lung V5 increased by 15% and V20 increased by 9%. Method A and B show good agreement with regard to cord maximum and Esophagus mean dose. Conclusion: This study suggests that using range and setup uncertainty calculation (+/−3.5% and +/−3mm) may not be sufficient to predict the WCS. In the absence of regular verification scans, expanding the conventional uncertainty parameters(e.g., to +/−3.5% and +/−4mm) may be needed to better reflect plan actual robustness.

  7. Nano-sized graphene flakes: insights from experimental synthesis and first principles calculations.

    Science.gov (United States)

    Lin, Pin-Chun; Chen, Yi-Rui; Hsu, Kuei-Ting; Lin, Tzu-Neng; Tung, Kuo-Lun; Shen, Ji-Lin; Liu, Wei-Ren

    2017-03-01

    In this study, we proposed a cost-effective method for preparing graphene nano-flakes (GNFs) derived from carbon nanotubes (CNTs) via three steps (pressing, homogenization and sonication exfoliation processes). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), laser scattering, as well as ultraviolet-visible and photoluminescence (PL) measurements were carried out. The results indicated that the size of as-synthesized GNFs was approximately 40-50 nm. Furthermore, we also used first principles calculations to understand the transformation from CNTs to GNFs from the viewpoints of the edge formation energies of GNFs in different shapes and sizes. The corresponding photoluminescence measurements of GNFs were carried out in this work.

  8. First principles calculation on the adsorption of water on lithium-montmorillonite (Li-MMT)

    International Nuclear Information System (INIS)

    Wungu, Triati Dewi Kencana; Agusta, Mohammad Kemal; Saputro, Adhitya Gandaryus; Kasai, Hideaki; Dipojono, Hermawan Kresno

    2012-01-01

    The interaction of water molecules and lithium-montmorillonite (Li-MMT) is theoretically investigated using density functional theory (DFT) based first principles calculation. The mechanism of water adsorption at two different water concentrations on Li-MMT as well as their structural and electronic properties are investigated. It is found that the adsorption stability in Li-MMT is higher in higher water concentration. It is also found that an adsorbed water molecule on Li-MMT causes the Li to protrude from the MMT surface, so it is expected that Li may be mobile on H 2 O/Li-MMT.

  9. First principles calculation on the adsorption of water on lithium-montmorillonite (Li-MMT).

    Science.gov (United States)

    Wungu, Triati Dewi Kencana; Agusta, Mohammad Kemal; Saputro, Adhitya Gandaryus; Dipojono, Hermawan Kresno; Kasai, Hideaki

    2012-11-28

    The interaction of water molecules and lithium-montmorillonite (Li-MMT) is theoretically investigated using density functional theory (DFT) based first principles calculation. The mechanism of water adsorption at two different water concentrations on Li-MMT as well as their structural and electronic properties are investigated. It is found that the adsorption stability in Li-MMT is higher in higher water concentration. It is also found that an adsorbed water molecule on Li-MMT causes the Li to protrude from the MMT surface, so it is expected that Li may be mobile on H(2)O/Li-MMT.

  10. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance

  11. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance.

  12. An Overview of the Adaptive Robust DFT

    Directory of Open Access Journals (Sweden)

    Djurović Igor

    2010-01-01

    Full Text Available Abstract This paper overviews basic principles and applications of the robust DFT (RDFT approach, which is used for robust processing of frequency-modulated (FM signals embedded in non-Gaussian heavy-tailed noise. In particular, we concentrate on the spectral analysis and filtering of signals corrupted by impulsive distortions using adaptive and nonadaptive robust estimators. Several adaptive estimators of location parameter are considered, and it is shown that their application is preferable with respect to non-adaptive counterparts. This fact is demonstrated by efficiency comparison of adaptive and nonadaptive RDFT methods for different noise environments.

  13. First-principles calculation of electronic energy level alignment at electrochemical interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Yavar T.; Payami, Mahmoud, E-mail: mpayami@aeoi.org.ir

    2017-08-01

    Highlights: • Using DFT calculation, level shifts of TiO{sub 2} and ZnO at the interfaces with MeCN and DMF are determined. • Level shifts are obtained using potential difference between the surfaces of asymmetric slabs. • Solvent molecules give an up-shift to the levels that varies with coverage. • MD simulations show that at room temperatures the surface is not fully covered by the solvent molecules. - Abstract: Energy level alignment at solid–solvent interfaces is an important step in determining the properties of electrochemical systems. The positions of conduction and valence band edges of a semiconductor are affected by its environment. In this study, using first-principles DFT calculation, we have determined the level shifts of the semiconductors TiO{sub 2} and ZnO at the interfaces with MeCN and DMF solvent molecules. The level shifts of semiconductor are obtained using the potential difference between the clean and exposed surfaces of asymmetric slabs. In this work, neglecting the effects of present ions in the electrolyte solution, we have shown that the solvent molecules give rise to an up-shift for the levels, and the amount of this shift varies with coverage. It is also shown that the shapes of density of states do not change sensibly near the gap. Molecular dynamics simulations of the interface have shown that at room temperatures the semiconductor surface is not fully covered by the solvent molecules, and one must use intermediate values in an static calculations.

  14. Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations

    KAUST Repository

    Moon, Juhyuk

    2012-06-04

    The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.

  15. Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations

    KAUST Repository

    Moon, Juhyuk; Yoon, Seyoon; Wentzcovitch, Renata M.; Clark, Simon M.; Monteiro, Paulo J.M.

    2012-01-01

    The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.

  16. Achieving robust interchangeability of test assets in ATE systems

    CERN Document Server

    Oblad, R P

    1999-01-01

    This paper identities the key issues that have made if so difficult to achieve asset interchangeability. Several of the historical attempts to solve the problem of asset interchangeability are described, along with an analysis of the reasons that they did not achieve the expected results. Specific topics that are covered are SCPI, VXIplug&play, IVI, ATLAS, and Measurement Subsystems. Principles associated with the ownership of interfaces will be outlined. Finally, a set of rules and principles will be discussed that must be applied to achieve robust asset interchangeability. Robust is defined as interchangeability that can be "guaranteed" without testing all TPSs against the modified test system. (9 refs).

  17. Reliability evaluation of thermophysical properties from first-principles calculations.

    Science.gov (United States)

    Palumbo, Mauro; Fries, Suzana G; Dal Corso, Andrea; Kürmann, Fritz; Hickel, Tilmann; Neugebauer, Jürg

    2014-08-20

    Thermophysical properties, such as heat capacity, bulk modulus and thermal expansion, are of great importance for many technological applications and are traditionally determined experimentally. With the rapid development of computational methods, however, first-principles computed temperature-dependent data are nowadays accessible. We evaluate various computational realizations of such data in comparison to the experimental scatter. The work is focussed on the impact of different first-principles codes (QUANTUM ESPRESSO and VASP), pseudopotentials (ultrasoft and projector augmented wave) as well as phonon determination methods (linear response and direct force constant method) on these properties. Based on the analysis of data for two pure elements, Cr and Ni, consequences for the reliability of temperature-dependent first-principles data in computational thermodynamics are discussed.

  18. Robust glint detection through homography normalization

    DEFF Research Database (Denmark)

    Hansen, Dan Witzner; Roholm, Lars; García Ferreiros, Iván

    2014-01-01

    A novel normalization principle for robust glint detection is presented. The method is based on geometric properties of corneal reflections and allows for simple and effective detection of glints even in the presence of several spurious and identically appearing reflections. The method is tested...

  19. Pyridinium based ionic liquids. N-Butyl-3-methyl-pyridinium dicyanoamide: Thermochemical measurement and first-principles calculations

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Heintz, Andreas

    2011-01-01

    The standard molar enthalpy of formation Δ f H m o (l) of the ionic liquid N-butyl-3-methylpyridinium dicyanamide has been determined at 298.15 K by means of combustion calorimetry. Vaporization of the ionic liquid into the nitrogen stream in order to obtain vaporization enthalpy has been attempted, but no vaporization was achieved. First-principles calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. The combination of traditional combustion calorimetry with modern high-level quantum-chemical calculations allows estimation of the molar enthalpy of vaporization of the ionic liquid under study.

  20. First Principles Study of Electronic and Magnetic Properties of Co-Doped Armchair Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Biao Li

    2015-01-01

    Full Text Available Using the first principles calculations, we have studied the atomic and electronic structures of single Co atom incorporated with divacancy in armchair graphene nanoribbon (AGNR. Our calculated results show that the Co atom embedded in AGNR gives rise to significant impacts on the band structures and the FM spin configuration is the ground state. The presence of the Co doping could introduce magnetic properties. The calculated results revealed the arising of spin gapless semiconductor characteristics with doping near the edge in both ferromagnetic (FM and antiferromagnetic (AFM magnetic configurations, suggesting the robustness for potential application of spintronics. Moreover, the electronic structures of the Co-doped AGNRs are strongly dependent on the doping sites and the edge configurations.

  1. Effects of hydrogen on Mn-doped GaN: A first principles calculation

    International Nuclear Information System (INIS)

    Wu, M.S.; Xu, B.; Liu, G.; Lei, X.L.; Ouyang, C.Y.

    2013-01-01

    First-principles calculations based on spin density functional theory are performed to study the effects of H on the structural, electronic and magnetic properties of the Mn-doped GaN dilute magnetic semiconductors. Our results show that the interstitial H atom prefers to bond with N atom rather than Mn atom, which means that H favors to form the N–H complex rather than Mn–H complex in the Mn-doped GaN. After introducing one H atom in the system, the total magnetic moment of the Mn-doped GaN increases by 25%, from 4.0μ B to 5.0μ B . The physics mechanism of the increase of magnetic moment after hydrogenation in Mn-doped GaN is discussed

  2. Machine learning assisted first-principles calculation of multicomponent solid solutions: estimation of interface energy in Ni-based superalloys

    Science.gov (United States)

    Chandran, Mahesh; Lee, S. C.; Shim, Jae-Hyeok

    2018-02-01

    A disordered configuration of atoms in a multicomponent solid solution presents a computational challenge for first-principles calculations using density functional theory (DFT). The challenge is in identifying the few probable (low energy) configurations from a large configurational space before DFT calculation can be performed. The search for these probable configurations is possible if the configurational energy E({\\boldsymbol{σ }}) can be calculated accurately and rapidly (with a negligibly small computational cost). In this paper, we demonstrate such a possibility by constructing a machine learning (ML) model for E({\\boldsymbol{σ }}) trained with DFT-calculated energies. The feature vector for the ML model is formed by concatenating histograms of pair and triplet (only equilateral triangle) correlation functions, {g}(2)(r) and {g}(3)(r,r,r), respectively. These functions are a quantitative ‘fingerprint’ of the spatial arrangement of atoms, familiar in the field of amorphous materials and liquids. The ML model is used to generate an accurate distribution P(E({\\boldsymbol{σ }})) by rapidly spanning a large number of configurations. The P(E) contains full configurational information of the solid solution and can be selectively sampled to choose a few configurations for targeted DFT calculations. This new framework is employed to estimate (100) interface energy ({σ }{{IE}}) between γ and γ \\prime at 700 °C in Alloy 617, a Ni-based superalloy, with composition reduced to five components. The estimated {σ }{{IE}} ≈ 25.95 mJ m-2 is in good agreement with the value inferred by the precipitation model fit to experimental data. The proposed new ML-based ab initio framework can be applied to calculate the parameters and properties of alloys with any number of components, thus widening the reach of first-principles calculation to realistic compositions of industrially relevant materials and alloys.

  3. The Effect of Indium Concentration on the Structure and Properties of Zirconium Based Intermetallics: First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Fuda Guo

    2016-01-01

    Full Text Available The phase stability, mechanical, electronic, and thermodynamic properties of In-Zr compounds have been explored using the first-principles calculation based on density functional theory (DFT. The calculated formation enthalpies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristics and there is a common hybridization between In-p and Zr-d states near the Fermi level. Elastic properties have been taken into consideration. The calculated results on the ratio of the bulk to shear modulus (B/G validate that InZr3 has the strongest deformation resistance. The increase of indium content results in the breakout of a linear decrease of the bulk modulus and Young’s modulus. The calculated theoretical hardness of α-In3Zr is higher than the other In-Zr compounds.

  4. First-principle calculations on the structural and electronic properties of hard C{sub 11}N{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongxu, E-mail: lidongxu@hqu.edu.cn [College of Materials Science and Engineering, Huaqiao University, Xiamen 361021 (China); Shi, Jiancheng; Lai, Mengling; Li, Rongkai [College of Materials Science and Engineering, Huaqiao University, Xiamen 361021 (China); Yu, Dongli [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2014-09-15

    A graphite-like C{sub 11}N{sub 4} model was built by stacking graphene and a C{sub 3}N{sub 4} triazine layer and simulated by first principle calculations, which transfers to a diamond-like structure under high pressure. The structural, mechanical, and electronic properties of both materials were calculated. The elastic constants of both materials satisfy the Born-criterion. Furthermore, no imaginary frequencies were observed in phonon calculations. The diamond-like C{sub 11}N{sub 4} is semiconducting and consists of polyhedral and hollow C–N cages. The Vickers hardness of diamond-like C{sub 11}N{sub 4} was calculated to be 58 GPa. The phase transformation from graphite-like to diamond-like C{sub 11}N{sub 4} is proposed to occur at approximately 27.2 GPa based on the pressure-dependent enthalpy.

  5. Electrical conductivity in oxygen-deficient phases of tantalum pentoxide from first-principles calculations

    International Nuclear Information System (INIS)

    Bondi, Robert J.; Desjarlais, Michael P.; Thompson, Aidan P.; Brennecka, Geoff L.; Marinella, Matthew J.

    2013-01-01

    We apply first-principles density-functional theory (DFT) calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula to predict electrical conductivity in Ta 2 O x (0 ≤ x ≤ 5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (V O n ; n = 0,1+,2+). In the crystalline phase, our DFT calculations suggest that V O 0 prefers equatorial O sites, while V O 1+ and V O 2+ are energetically preferred in the O cap sites of TaO 7 polyhedra. Our calculations of DC conductivity at 300 K agree well with experimental measurements taken on Ta 2 O x thin films (0.18 ≤ x ≤ 4.72) and bulk Ta 2 O 5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta 2 O 5 electronic structure provide further theoretical basis to substantiate V O 0 as a donor dopant in Ta 2 O 5 . Furthermore, this dopant-like behavior is specific to the neutral case and not observed in either the 1+ or 2+ oxidation states, which suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for V O n in Ta 2 O 5

  6. Ab-initio study on the absorption spectrum of color change sapphire based on first-principles calculations with considering lattice relaxation-effect

    Science.gov (United States)

    Novita, Mega; Nagoshi, Hikari; Sudo, Akiho; Ogasawara, Kazuyoshi

    2018-01-01

    In this study, we performed an investigation on α-Al2O3: V3+ material, or the so-called color change sapphire, based on first-principles calculations without referring to any experimental parameter. The molecular orbital (MO) structure was estimated by the one-electron MO calculations using the discrete variational-Xα (DV-Xα) method. Next, the absorption spectra were estimated by the many-electron calculations using the discrete variational multi-electron (DVME) method. The effect of lattice relaxation on the crystal structures was estimated based on the first-principles band structure calculations. We performed geometry optimizations on the pure α-Al2O3 and with the impurity V3+ ion using Cambridge Serial Total Energy Package (CASTEP) code. The effect of energy corrections such as configuration dependence correction and correlation correction was also investigated in detail. The results revealed that the structural change on the α-Al2O3: V3+ resulted from the geometry optimization improved the calculated absorption spectra. By a combination of both the lattice relaxation-effect and the energy correction-effect improve the agreement to the experiment fact.

  7. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3

    Science.gov (United States)

    Mubarak, A. A.; Al-Omari, Saleh

    2015-05-01

    We present first-principles calculations of the structural, elastic, electronic, magnetic and optical properties for RbFeF3 and RbNiF3. The full-potential linear augmented plan wave (FP-LAPW) method within the density functional theory was utilized to perform the present calculations. We employed the generalized gradient approximation as exchange-correlation potential. It was found that the calculated analytical lattice parameters agree with previous studies. The analysis of elastic constants showed that the present compounds are elastically stable and anisotropic. Moreover, both compounds are classified as a ductile compound. The calculations of the band structure and density functional theory revealed that the RbFeF3 compound has a half-metallic behavior while the RbNiF3 compound has a semiconductor behavior with indirect (M-Γ) band gap. The ferromagnetic behavior was studied for both compounds. The optical properties were calculated for the radiation of up to 40 eV. A beneficial optics technology is predicted as revealed from the optical spectra.

  8. Polar phonons in β-Ga2O3 studied by IR reflectance spectroscopy and first-principle calculations

    Science.gov (United States)

    Azuhata, Takashi; Shimada, Kazuhiro

    2017-08-01

    IR reflectance spectra of β-Ga2O3 are measured in the range from 400 to 1100 cm-1 using the (\\bar{2}01) and (010) planes for pure transverse Au- and Bu-mode phonons, respectively. The spectra measured using the (010) plane depend remarkably on the polarization direction of the incident light because of the monoclinic symmetry. Reflectance spectra simulated using parameters obtained from first-principle calculations are in good agreement with the experimental spectra. By adjusting the calculated phonon parameters so as to reproduce the experimental spectra, the polar phonon parameters were determined for six modes above 400 cm-1.

  9. Different dynamic behaviors of the dissociation and recombination reactions in a model calculation of polyethylene by first-principles steered molecular dynamics simulation

    International Nuclear Information System (INIS)

    Higuchi, Yuji; Ishikawa, Takeshi; Ozawa, Nobuki; Chazeau, Laurent; Cavaillé, Jean-Yves; Kubo, Momoji

    2015-01-01

    Highlights: • We study the different dynamics of dissociation and recombination processes. • Hydrogen at the chain ends collides each other in the recombination process. • Dissociation and recombination processes take different pathway. - Abstract: We investigate the different dynamics of the stress-induced dissociation and recombination reactions in a model of polyethylene by a first-principles molecular dynamics simulation at the B3LYP/6-31g(d) level. The dissociation under external forces acting on the chemical reaction site at 300 K follows the same pathway as the one calculated by the static first-principles method because it has a similar activation barrier to that of the static first-principles calculation. On the other hand, in the recombination process, thermal fluctuations causes collisions between hydrogen atoms at the chain ends. Furthermore, when external forces do not directly act on the chemical reaction site, two different dissociation processes are observed. On the other hand, recombination process is not observed due to rarely contact of the radical carbon. These results indicate that dissociation and recombination dynamics are very different, showing the importance of the dynamic calculation.

  10. Quantum Action Principle with Generalized Uncertainty Principle

    OpenAIRE

    Gu, Jie

    2013-01-01

    One of the common features in all promising candidates of quantum gravity is the existence of a minimal length scale, which naturally emerges with a generalized uncertainty principle, or equivalently a modified commutation relation. Schwinger's quantum action principle was modified to incorporate this modification, and was applied to the calculation of the kernel of a free particle, partly recovering the result previously studied using path integral.

  11. First-principles calculations of GaN:Gd nanowires: Carbon-dopants-induced room-temperature ferromagnetism

    Directory of Open Access Journals (Sweden)

    Ruikuan Xie

    2017-11-01

    Full Text Available First-principle calculations of the electronic structure and magnetic interaction of C-Gd co-doped GaN nanowires have been performed. The room-temperature ferromagnetism in GaN:Gd nanowires is observed after the substitution of N atoms by C atoms. A p-d coupling is considered as the reason of the observed ferromagnetism. The striking feature is that such coupling is effected greatly by the position where the C atoms dope in. As the C-Gd distance increases this coupling decreases and the system won’t gain enough energy to stabilize the ferromagnetism.

  12. First-principles calculations of the elastic constants of the cubic, orthorhombic and hexagonal phases of BaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nyawere, P.W.O., E-mail: otienop98@yahoo.ca [Computational Materials Science Group, Department of Physics, University of Eldoret, P.O. Box 1125-30100 Eldoret (Kenya); Department of Computing, Kabarak University, P.O. - Private Bag - 20157 Kabarak (Kenya); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Makau, N.W., E-mail: wanimak@yahoo.com [Computational Materials Science Group, Department of Physics, University of Eldoret, P.O. Box 1125-30100 Eldoret (Kenya); Amolo, G.O., E-mail: georgeamolo862@gmail.com [Computational Materials Science Group, Department of Physics, University of Eldoret, P.O. Box 1125-30100 Eldoret (Kenya)

    2014-02-01

    All the elastic constants of cubic, orthorhombic and hexagonal phases of BaF{sub 2} have been calculated using first principles methods. We have employed density-functional theory within generalized gradient approximation (GGA) using a plane-wave pseudopotentials method and a plane-wave basis set. The calculated elastic constant values for a cubic phase compare well with recent theoretical and experimental calculations. The bulk modulus derived from the elastic constant calculations of orthorhombic phase of BaF{sub 2} is 94.5 GPa and those of hexagonal phase is 161 GPa. These values are in good agreement with experimental data available. Stability of these phases of BaF{sub 2} is also estimated in different crystallographic directions.

  13. Near-infrared radiation absorption properties of covellite (CuS using first-principles calculations

    Directory of Open Access Journals (Sweden)

    Lihua Xiao

    2016-08-01

    Full Text Available First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR absorption of covellite (CuS. The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS as a NIR absorbing material. Our results show that covellite (CuS exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.

  14. First principles and phonon calculations of ZrCo and ZrCo-H systems

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Majumder, C.

    2012-01-01

    The intermetallic ZrCo is a potential material for the storage and release of hydrogen isotopes because of its high gravimetric capacity and its low hydrogen equilibrium pressure. This intermetallic is a proposed material for the safe storage, supply and delivery of hydrogen isotope in the ITER project. To investigate the suitability of ZrCo as a getter material for the storage of hydrogen isotope it is essential to know in detail the structure-property relationships in both ZrCo and its hydride. Hence, in this study, we have investigated the structural, electronic, vibrational and thermodynamic properties of ZrCo and ZrCoH 3 using the first principles and phonon calculations

  15. The first-principles calculations for the elastic properties of Zr2Al under compression

    International Nuclear Information System (INIS)

    Yuan Xiaoli; Wei Dongqing; Chen Xiangrong; Zhang Qingming; Gong Zizheng

    2011-01-01

    Graphical abstract: The calculated elastic constants C ij as a function of pressure P. Display Omitted Research highlights: → It is found that the five independent elastic constants increase monotonically with pressure. C 11 and C 33 vary rapidly as pressure increases, C 13 and C 12 becomes moderate. However, C 44 increases comparatively slowly with pressure. Figure shows excellent satisfaction of the calculated elastic constants of Zr 2 Al to these equations and hence in our calculation, the Zr 2 Al is mechanically stable at pressure up to 100 GPa. - Abstract: The first-principles calculations were applied to investigate the structural, elastic constants of Zr 2 Al alloy with increasing pressure. These properties are based on the plane wave pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for exchange and correlation. The result of the heat of formation of Zr 2 Al crystal investigated is in excellent consistent with results from other study. The anisotropy, the shear modulus, and Young's modulus for the ideal polycrystalline Zr 2 Al are also studied. It is found that (higher) pressure can significantly improve the ductility of Zr 2 Al. Moreover, the elastic constants of Zr 2 Al increase monotonically and the anisotropies decrease with the increasing pressure. Finally, it is observed that Zr d electrons are mainly contributed to the density of states at the Fermi level.

  16. Mechanical, electronic, chemical bonding and optical properties of cubic BaHfO3: First-principles calculations

    International Nuclear Information System (INIS)

    Liu Qijun; Liu Zhengtang; Feng Liping; Tian Hao

    2010-01-01

    We have performed ab-initio total energy calculations using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT) to study structural parameters, mechanical, electronic, chemical bonding and optical properties of cubic BaHfO 3 . The calculated lattice parameter and independent elastic constants are in good agreement with previous theoretical and experimental work. The bulk, shear and Young's modulus, Poisson coefficient, compressibility and Lame constants are obtained using Voigt-Reuss-Hill method and the Debye temperature is estimated using Debye-Grueneisen model, which are consistent with previous results. Electronic and chemical bonding properties have been studied from the calculations of band structure, density of states and charge densities. Furthermore, in order to clarify the mechanism of optical transitions of cubic BaHfO 3 , the complex dielectric function, refractive index, extinction coefficient, reflectivity, absorption efficient, loss function and complex conductivity function are calculated. Then, we have explained the origins of spectral peaks on the basis of the theory of crystal-field and molecular-orbital bonding.

  17. Robust-mode analysis of hydrodynamic flows

    Science.gov (United States)

    Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.

    2017-04-01

    The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.

  18. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    International Nuclear Information System (INIS)

    Li, Zi; Zhang, Shen; Kang, Wei; Wang, Cong; Zhang, Ping

    2016-01-01

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N 2 molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electron density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.

  19. Electrical conductivity in oxygen-deficient phases of tantalum pentoxide from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bondi, Robert J., E-mail: rjbondi@sandia.gov; Desjarlais, Michael P.; Thompson, Aidan P.; Brennecka, Geoff L.; Marinella, Matthew J. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2013-11-28

    We apply first-principles density-functional theory (DFT) calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula to predict electrical conductivity in Ta{sub 2}O{sub x} (0 ≤ x ≤ 5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (V{sub O}{sup n}; n = 0,1+,2+). In the crystalline phase, our DFT calculations suggest that V{sub O}{sup 0} prefers equatorial O sites, while V{sub O}{sup 1+} and V{sub O}{sup 2+} are energetically preferred in the O cap sites of TaO{sub 7} polyhedra. Our calculations of DC conductivity at 300 K agree well with experimental measurements taken on Ta{sub 2}O{sub x} thin films (0.18 ≤ x ≤ 4.72) and bulk Ta{sub 2}O{sub 5} powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta{sub 2}O{sub 5} electronic structure provide further theoretical basis to substantiate V{sub O}{sup 0} as a donor dopant in Ta{sub 2}O{sub 5}. Furthermore, this dopant-like behavior is specific to the neutral case and not observed in either the 1+ or 2+ oxidation states, which suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for V{sub O}{sup n} in Ta{sub 2}O{sub 5}.

  20. First-principles thermodynamic calculations of diffusion characteristics of impurities in γ-iron

    International Nuclear Information System (INIS)

    Tsuru, T.; Kaji, Y.

    2013-01-01

    Because solute impurities have an effect on embrittlement through segregation under irradiation, solute stability and the influence of irradiation on the diffusion characteristics of impurities become prominent due to several acceleration effects of high irradiance circumstances in irradiated materials. In this study, the diffusion characteristics of several impurities in non-magnetic fcc iron are investigated using first-principles density functional theory (DFT) calculations. In accordance with classical diffusion and transition state theories, we nonempirically evaluated the contribution to properties of the binding energy between vacancy and each impurity and the migration enthalpy. The migration energy was calculated using the nudged elastic band method with DFT. The vacancy formation energy, including the entropic contributions to free energies in γ-iron, was evaluated by considering vibrational phonon frequencies based on frozen phonons employing the harmonic approximation for the lattice dynamics. Consequently, we confirmed that the binding energy between large-radius impurities and vacancies is larger than that with an equivalent size of the solvent element, and that the migration enthalpies of these impurities are quite small compared with self diffusion. This finding may indicate that the electronic binding states at the saddle point have a large influence on the migration of impurities

  1. Robust motion artefact resistant circuit for calculation of Mean Arterial Pressure from pulse transit time.

    Science.gov (United States)

    Bhattacharya, Tinish; Gupta, Ankesh; Singh, Salam ThoiThoi; Roy, Sitikantha; Prasad, Anamika

    2017-07-01

    Cuff-less and non-invasive methods of Blood Pressure (BP) monitoring have faced a lot of challenges like stability, noise, motion artefact and requirement for calibration. These factors are the major reasons why such devices do not get approval from the medical community easily. One such method is calculating Blood Pressure indirectly from pulse transit time (PTT) obtained from electrocardiogram (ECG) and Photoplethysmogram (PPG). In this paper we have proposed two novel analog signal conditioning circuits for ECG and PPG that increase stability, remove motion artefacts, remove the sinusoidal wavering of the ECG baseline due to respiration and provide consistent digital pulses corresponding to blood pulses/heart-beat. We have combined these two systems to obtain the PTT and then correlated it with the Mean Arterial Pressure (MAP). The aim was to perform major part of the processing in analog domain to decrease processing load over microcontroller so as to reduce cost and make it simple and robust. We have found from our experiments that the proposed circuits can calculate the Heart Rate (HR) with a maximum error of ~3.0% and MAP with a maximum error of ~2.4% at rest and ~4.6% in motion.

  2. Intra- and inter-atomic optical transitions of Fe, Co, and Ni ferrocyanides studied using first-principles many-electron calculations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Shinta, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp; Sawada, Yuki; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Onoe, Jun, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp [Department of Materials, Physics and Energy Engineering, Graduated School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Kameyama, Tatsuya; Torimoto, Tsukasa [Department of Crystalline Materials Science, Graduated School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Inaba, Yusuke; Takahashi, Hideharu; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-16 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-06-21

    We have investigated the electronic structures and optical properties of Fe, Co, and Ni ferrocyanide nanoparticles using first-principles relativistic many-electron calculations. The overall features of the theoretical absorption spectra for Fe, Ni, and Co ferrocyanides calculated using a first-principles many-electron method well reproduced the experimental one. The origins of the experimental absorption spectra were clarified by performing a configuration analysis based on the many-electron wave functions. For Fe ferrocyanide, the experimental absorption peaks originated from not only the charge-transfer transitions from Fe{sup 2+} to Fe{sup 3+} but also the 3d-3d intra-transitions of Fe{sup 3+} ions. In addition, the spin crossover transition of Fe{sup 3+} predicted by the many-electron calculations was about 0.24 eV. For Co ferrocyanide, the experimental absorption peaks were mainly attributed to the 3d-3d intra-transitions of Fe{sup 2+} ions. In contrast to the Fe and Co ferrocyanides, Ni ferrocyanide showed that the absorption peaks originated from the 3d-3d intra-transitions of Ni{sup 3+} ions in a low-energy region, while from both the 3d-3d intra-transitions of Fe{sup 2+} ions and the charge-transfer transitions from Fe{sup 2+} to Ni{sup 3+} in a high-energy region. These results were quite different from those of density-functional theory (DFT) calculations. The discrepancy between the results of DFT calculations and those of many-electron calculations suggested that the intra- and inter-atomic transitions of transition metal ions are significantly affected by the many-body effects of strongly correlated 3d electrons.

  3. Accurate line intensities of methane from first-principles calculations

    Science.gov (United States)

    Nikitin, Andrei V.; Rey, Michael; Tyuterev, Vladimir G.

    2017-10-01

    In this work, we report first-principle theoretical predictions of methane spectral line intensities that are competitive with (and complementary to) the best laboratory measurements. A detailed comparison with the most accurate data shows that discrepancies in integrated polyad intensities are in the range of 0.4%-2.3%. This corresponds to estimations of the best available accuracy in laboratory Fourier Transform spectra measurements for this quantity. For relatively isolated strong lines the individual intensity deviations are in the same range. A comparison with the most precise laser measurements of the multiplet intensities in the 2ν3 band gives an agreement within the experimental error margins (about 1%). This is achieved for the first time for five-atomic molecules. In the Supplementary Material we provide the lists of theoretical intensities at 269 K for over 5000 strongest transitions in the range below 6166 cm-1. The advantage of the described method is that this offers a possibility to generate fully assigned exhaustive line lists at various temperature conditions. Extensive calculations up to 12,000 cm-1 including high-T predictions will be made freely available through the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru) that contains ab initio born line lists and provides a user-friendly graphical interface for a fast simulation of the absorption cross-sections and radiance.

  4. First-principles calculations of the II-VI semiconductor β-HgS: Metal or semiconductor

    International Nuclear Information System (INIS)

    Delin, A.

    2002-06-01

    Relativistic all-electron full-potential first-principles calculations have been performed in order to study the symmetry of the energy levels around the valence band maximum in the zinc blende II-VI semiconductors β-HgS, HgSe, and HgTe. It is demonstrated that in general, an inverted band-structure does not necessarily lead to a zero fundamental energy gap for systems with zinc blende symmetry. Specifically, β-HgS is found to have at the same time an inverted band structure, and a small, slightly indirect, fundamental energy gap. Possibly, the energy levels around the valence band maximum order differently in each of these systems. (author)

  5. Piezoelectric, Mechanical and Acoustic Properties of KNaNbOF5 from First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Han Han

    2015-12-01

    Full Text Available Recently, a noncentrosymmetric crystal, KNaNbOF5, has attracted attention due to its potential to present piezoelectric properties. Although α- and β-KNaNbOF5 are similar in their stoichiometries, their structural frameworks, and their synthetic routes, the two phases exhibit very different properties. This paper presents, from first-principles calculations, comparative studies of the structural, electronic, piezoelectric, and elastic properties of the α and the β phase of the material. Based on the Christoffel equation, the slowness surface of the acoustic waves is obtained to describe its acoustic prosperities. These results may benefit further applications of KNaNbOF5.

  6. Electronic structures of N- and C-doped NiO from first-principles calculations

    International Nuclear Information System (INIS)

    Long, Run; English, Niall J.; Mooney, Damian A.

    2010-01-01

    The large intrinsic band gap of NiO has hindered severely its potential application under visible-light irradiation. In this Letter, we have performed first-principles calculations on the electronic properties of N- and C-doped NiO to ascertain if its band gap may be narrowed theoretically. It was found that impurity bands driven by N 2p or C 2p states appear in the band gap of NiO and that some of these locate at the conduction band minimum, which leads to a significant band gap narrowing. Our results show that N-doped NiO may serve as a potential photocatalyst relative to C-doped NiO, due to the presence of some recombination centres in C-doped NiO.

  7. A different method for calculation of the deflection angle of light passing close to a massive object by Fermat's principle

    Science.gov (United States)

    Akkus, Harun

    2013-12-01

    We introduce a method for calculating the amount of deflection angle of light passing close to a massive object. It is based on Fermat's principle. The varying refractive index of medium around the massive object is obtained from the Buckingham pi-theorem.

  8. First-principles X-ray absorption dose calculation for time-dependent mass and optical density.

    Science.gov (United States)

    Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P

    2018-05-01

    A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

  9. Ammonia synthesis from first principles calculations

    DEFF Research Database (Denmark)

    Honkala, Johanna Karoliina; Hellman, Anders; Remediakis, Ioannis

    2005-01-01

    . When the size distribution of ruthenium particles measured by transmission electron microscopy was used as the [ink between the catalyst material and the theoretical treatment, the calculated rate was within a factor of 3 to 20 of the experimental rate. This offers hope for computer-based methods......The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinet...

  10. Thermopower switching by magnetic field: first-principles calculations

    DEFF Research Database (Denmark)

    Maslyuk, Volodymyr V.; Achilles, Steven; Sandratskii, Leonid

    2013-01-01

    We present first-principles studies of the thermopower of the organometallic V4Bz5 molecule attached between Co electrodes with noncollinear magnetization directions. Different regimes in the formation of the noncollinear magnetic state of the molecule lead to a remarkable nonmonotonous dependence...

  11. First-principles calculations of a half-metallic ferromagnet zinc blende Zn1−xVxTe

    International Nuclear Information System (INIS)

    El Amine Monir, M.; Baltache, H.; Khenata, R.; Murtaza, G.; Azam, Sikander; Bouhemadou, A.; Al-Douri, Y.; Bin Omran, S.; Ali, Roshan

    2015-01-01

    First-principles calculations have been used to study the structural, elastic, electronic, magnetic and thermal properties of zinc blende Zn 1−x V x Te for x=0, 0.25, 0.50, 0.75 and 1 using the full-potential linearized augmented plane wave method (FP-LAPW) based on spin-polarized density functional theory (DFT). The electronic exchange-correlation potential is approached using the spin generalized gradient approximation (spin-GGA). The structural properties of the Zn 1−x V x Te alloys (x=0, 0.25, 0.50, 0.75 and 1) are given for the lattice constants and the bulk moduli and their pressure derivatives. The elastic constants C 11 , C 12 and C 44 are calculated using numerical first-principles calculations implemented in the WIEN2k package. An analysis of the band structures and the densities of states reveals that Zn 0.50 V 0.50 Te and Zn 0.75 V 0.25 Te exhibit a half-metallic character, while Zn 0.25 V 0.75 Te is nearly half-metallic. The band structure calculations are used to estimate the spin-polarized splitting energies Δ x (d) and Δ x (pd) produced by the V(3d)-doped and s(p)–d exchange constants N 0α (conduction band) and N 0β (valence band). The p–d hybridization reduces the magnetic moment of V from its atomic charge value of 3µ B and creates small local magnetic moments on the nonmagnetic Zn and Te sites. Finally, we present the thermal effect on the macroscopic properties of these alloys, such as the thermal expansion coefficient, heat capacity and Debye temperature, based on the quasi-harmonic Debye model. - Highlights: • Some physical properties of Vanadium doped ZnTe have been investigated. • Structural parameters for the parent compounds compare well with the available data. • The elastic and thermal properties are studied for the first time

  12. Defining robustness protocols: a method to include and evaluate robustness in clinical plans

    International Nuclear Information System (INIS)

    McGowan, S E; Albertini, F; Lomax, A J; Thomas, S J

    2015-01-01

    We aim to define a site-specific robustness protocol to be used during the clinical plan evaluation process. Plan robustness of 16 skull base IMPT plans to systematic range and random set-up errors have been retrospectively and systematically analysed. This was determined by calculating the error-bar dose distribution (ebDD) for all the plans and by defining some metrics used to define protocols aiding the plan assessment. Additionally, an example of how to clinically use the defined robustness database is given whereby a plan with sub-optimal brainstem robustness was identified. The advantage of using different beam arrangements to improve the plan robustness was analysed. Using the ebDD it was found range errors had a smaller effect on dose distribution than the corresponding set-up error in a single fraction, and that organs at risk were most robust to the range errors, whereas the target was more robust to set-up errors. A database was created to aid planners in terms of plan robustness aims in these volumes. This resulted in the definition of site-specific robustness protocols. The use of robustness constraints allowed for the identification of a specific patient that may have benefited from a treatment of greater individuality. A new beam arrangement showed to be preferential when balancing conformality and robustness for this case. The ebDD and error-bar volume histogram proved effective in analysing plan robustness. The process of retrospective analysis could be used to establish site-specific robustness planning protocols in proton therapy. These protocols allow the planner to determine plans that, although delivering a dosimetrically adequate dose distribution, have resulted in sub-optimal robustness to these uncertainties. For these cases the use of different beam start conditions may improve the plan robustness to set-up and range uncertainties. (paper)

  13. Defining robustness protocols: a method to include and evaluate robustness in clinical plans

    Science.gov (United States)

    McGowan, S. E.; Albertini, F.; Thomas, S. J.; Lomax, A. J.

    2015-04-01

    We aim to define a site-specific robustness protocol to be used during the clinical plan evaluation process. Plan robustness of 16 skull base IMPT plans to systematic range and random set-up errors have been retrospectively and systematically analysed. This was determined by calculating the error-bar dose distribution (ebDD) for all the plans and by defining some metrics used to define protocols aiding the plan assessment. Additionally, an example of how to clinically use the defined robustness database is given whereby a plan with sub-optimal brainstem robustness was identified. The advantage of using different beam arrangements to improve the plan robustness was analysed. Using the ebDD it was found range errors had a smaller effect on dose distribution than the corresponding set-up error in a single fraction, and that organs at risk were most robust to the range errors, whereas the target was more robust to set-up errors. A database was created to aid planners in terms of plan robustness aims in these volumes. This resulted in the definition of site-specific robustness protocols. The use of robustness constraints allowed for the identification of a specific patient that may have benefited from a treatment of greater individuality. A new beam arrangement showed to be preferential when balancing conformality and robustness for this case. The ebDD and error-bar volume histogram proved effective in analysing plan robustness. The process of retrospective analysis could be used to establish site-specific robustness planning protocols in proton therapy. These protocols allow the planner to determine plans that, although delivering a dosimetrically adequate dose distribution, have resulted in sub-optimal robustness to these uncertainties. For these cases the use of different beam start conditions may improve the plan robustness to set-up and range uncertainties.

  14. First-principles calculations of the thermodynamic properties of transuranium elements in a molten salt medium

    International Nuclear Information System (INIS)

    Noh, Seunghyo; Kwak, Dohyun; Lee, Juseung; Kang, Joonhee; Han, Byungchan

    2014-01-01

    We utilized first-principles density-functional-theory (DFT) calculations to evaluate the thermodynamic feasibility of a pyroprocessing methodology for reducing the volume of high-level radioactive materials and recycling spent nuclear fuels. The thermodynamic properties of transuranium elements (Pu, Np and Cm) were obtained in electrochemical equilibrium with a LiCl-KCl molten salt as ionic phases and as adsorbates on a W(110) surface. To accomplish the goal, we rigorously calculated the double layer interface structures on an atomic resolution, on the thermodynamically most stable configurations on W(110) surfaces and the chemical activities of the transuranium elements for various coverages of those elements. Our results indicated that the electrodeposition process was very sensitive to the atomic level structures of Cl ions at the double-layer interface. Our studies are easily expandable to general electrochemical applications involving strong redox reactions of transition metals in non-aqueous solutions.

  15. Study of phase equilibrium of Pu2O3-PuO2 system by the first-principles calculation and CALPHAD approach

    International Nuclear Information System (INIS)

    Minamoto, Satoshi; Kato, Masato; Konashi, Kenji

    2010-01-01

    A combination of a first-principles calculation, lattice dynamics and CALPHAD (CALculation of PHAse Diagrams) modeling is proven as a powerful tool so as to evaluate the Gibbs free energy and a phase equilibrium between compounds including large amount of vacancies. In this work, non-stoichiometric PuO 2-x (dioxide) and Pu 2 O 3 (sesquioxide) has been studied. An electron cohesive energy was evaluated from a first-principles calculations to estimate total energy of the compounds and a vacancy formation energy, and the theory of statistical mechanics was applied to evaluate enthalpy/entropy change due to oxygen vacancies for the non-stoichiometry of the PuO 2 (i.e. PuO 2-x ). Then a vacancy-vacancy interaction energy was determined by fitting to the experimental data of a quantity of non-stoichiometry of the PuO 2 compounds as a function of oxygen potentials at large deviation from stoichiometry. The resulting Gibbs free energy yields phase boundary between the phases with good agreement with to the experimental data.

  16. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle

    Science.gov (United States)

    Albert, Julian; Hader, Kilian; Engel, Volker

    2017-12-01

    It is commonly assumed that the time-dependent electron flux calculated within the Born-Oppenheimer (BO) approximation vanishes. This is not necessarily true if the flux is directly determined from the continuity equation obeyed by the electron density. This finding is illustrated for a one-dimensional model of coupled electronic-nuclear dynamics. There, the BO flux is in perfect agreement with the one calculated from a solution of the time-dependent Schrödinger equation for the coupled motion. A reflection principle is derived where the nuclear BO flux is mapped onto the electronic flux.

  17. First-principle calculations of optical properties of monolayer arsenene and antimonene allotropes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuanfeng; Peng, Bo; Zhang, Hao; Zhang, Rongjun; Zhu, Heyuan [Shanghai Ultra-precision Optical Manufacturing Engineering Research Center and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Shao, Hezhu [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-04-15

    Recently a stable monolayer of antimony in buckled honeycomb structure called antimonene was successfully grown on 3D topological insulator Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3}, which displays novel semiconducting properties. By first-principle calculations, we systematically investigate the electronic and optical properties of α- and β-allotropes of monolayer arsenene/antimonene. The obtained electronic structures reveal that the direct band gap of α-arsenene/antimonene is much smaller than the indirect band gap of their β-counterpart, respectively. Significant absorption is observed in α-antimonene, which can be used as a broad saturable absorber. For β-arsenene/antimonene, the reflectivity is low and the absorption is negligible in the visible region when the polarization along the out-plane direction, indicating that β-arsenene/antimonene are polarizationally transparent materials. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. [Mo2(CN)11]:5- A detailed description of ligand-field spectra and magnetic properties by first-principles calculations.

    Science.gov (United States)

    Hendrickx, Marc F A; Clima, S; Chibotaru, L F; Ceulemans, A

    2005-10-06

    An ab initio multiconfigurational approach has been used to calculate the ligand-field spectrum and magnetic properties of the title cyano-bridged dinuclear molybdenum complex. The rather large magnetic coupling parameter J for a single cyano bridge, as derived experimentally for this complex by susceptibility measurements, is confirmed to a high degree of accuracy by our CASPT2 calculations. Its electronic structure is rationalized in terms of spin-spin coupling between the two constituent hexacyano-monomolybdate complexes. An in-depth analysis on the basis of Anderson's kinetic exchange theory provides a qualitative picture of the calculated CASSCF antiferromagnetic ground-state eigenvector in the Mo dimer. Dynamic electron correlations as incorporated into our first-principles calculations by means of the CASPT2 method are essential to obtain quantitative agreement between theory and experiment.

  19. The structural, elastic, electronic and dynamical properties of chalcopyrite semiconductor BeGeAs{sub 2} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, Yasemin Oe. [Gazi University Teknikokullar, Department of Physics, Faculty of Sciences, Ankara (Turkey); Evecen, Meryem; Aldirmaz, Emine [Amasya University, Department of Physics, Faculty of Arts and Sciences, Amasya (Turkey)

    2017-01-15

    First-principles calculations for the structural, elastic, electronic and vibrational properties of BeGeAs{sub 2} with chalcopyrite structure have been reported in the frame work of the density functional theory. The calculated ground state properties are in good agreement with the available data. By considering the electronic band structure and electronic density of states calculation, it is found that this compound is a semiconductor which confirmed the previous work. Single-crystal elastic constants and related properties such as Young's modulus, Poisson ratio, shear modulus and bulk modulus have been predicted using the stress-finite strain technique. It can be seen from the calculated elastic constants that this compound is mechanically stable in the chalcopyrite structure. Pressure dependences of elastic constants and band gap are also reported. Finally, the phonon dispersion curves and total and partial density of states were calculated and discussed. The calculated phonon frequencies BeGeAs{sub 2} are positive, indicating the dynamical stability of the studied compound. (orig.)

  20. New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring.

    Science.gov (United States)

    van Gastel, Mark; Stuijk, Sander; de Haan, Gerard

    2016-12-07

    Finger-oximeters are ubiquitously used for patient monitoring in hospitals worldwide. Recently, remote measurement of arterial blood oxygenation (SpO 2 ) with a camera has been demonstrated. Both contact and remote measurements, however, require the subject to remain static for accurate SpO 2 values. This is due to the use of the common ratio-of-ratios measurement principle that measures the relative pulsatility at different wavelengths. Since the amplitudes are small, they are easily corrupted by motion-induced variations. We introduce a new principle that allows accurate remote measurements even during significant subject motion. We demonstrate the main advantage of the principle, i.e. that the optimal signature remains the same even when the SNR of the PPG signal drops significantly due to motion or limited measurement area. The evaluation uses recordings with breath-holding events, which induce hypoxemia in healthy moving subjects. The events lead to clinically relevant SpO 2 levels in the range 80-100%. The new principle is shown to greatly outperform current remote ratio-of-ratios based methods. The mean-absolute SpO 2 -error (MAE) is about 2 percentage-points during head movements, where the benchmark method shows a MAE of 24 percentage-points. Consequently, we claim ours to be the first method to reliably measure SpO 2 remotely during significant subject motion.

  1. First principles calculations for analysis martensitic transformations

    International Nuclear Information System (INIS)

    Harmon, B.N.; Zhao, G.L.; Ho, K.M.; Chan, C.T.; Ye, Y.Y.; Ding, Y.; Zhang, B.L.

    1993-01-01

    The change in crystal energy is calculated for atomic displacements corresponding to phonons, elastic shears, and lattice transformations. Anomalies in the phonon dispersion curves of NiAl and NiTi are analyzed and recent calculations for TiPd alloys are presented

  2. A first principle calculation of anisotropic elastic, mechanical and electronic properties of TiB

    Science.gov (United States)

    Zhang, Junqin; Zhao, Bin; Ma, Huihui; Wei, Qun; Yang, Yintang

    2018-04-01

    The structural, mechanical and electronic properties of the NaCl-type structure TiB are theoretically calculated based on the first principles. The density of states of TiB shows obvious density peaks at -0.70eV. Furthermore, there exists a pseudogap at 0.71eV to the right of the Fermi level. The calculated structural and mechanical parameters (i.e., bulk modulus, shear modulus, Young's modulus, Poisson's ratio and universal elastic anisotropy index) were in good agreement both with the previously reported experimental values and theoretical results at zero pressure. The mechanical stability criterion proves that TiB at zero pressure is mechanistically stable and exhibits ductility. The universal anisotropic index and the 3D graphics of Young's modulus are also given in this paper, which indicates that TiB is anisotropy under zero pressure. Moreover, the effects of applied pressures on the structural, mechanical and anisotropic elastic of TiB were studied in the range from 0 to 100GPa. It was found that ductility and anisotropy of TiB were enhanced with the increase of pressure.

  3. Charge mechanism analysis of lithium ion secondary battery. X-ray absorption spectroscopy and first-principles calculations

    International Nuclear Information System (INIS)

    Kubobuchi, Kei; Imai, Hideto

    2015-01-01

    Redox reaction behaviors of a lithium ion secondary battery were investigated by K-edge in-situ XANES and L-edge XANES measurements combined with ab initio XANES simulation. During the charge process, the shape of K-edge XANES spectra was found to change, suggesting contribution of Mn 3d electron to charge and discharge. The detailed analysis based on first-principles electronic structure calculation and ab initio XANES simulation, however, indicated that valence change of Mn is little and rather O largely contribute to the reaction. (author)

  4. Adsorption configuration of magnesium on wurtzite gallium nitride surface using first-principles calculations

    International Nuclear Information System (INIS)

    Yan Han; Gan Zhiyin; Song Xiaohui; Chen Zhaohui; Xu Jingping; Liu Sheng

    2009-01-01

    First-principles calculations of magnesium adsorption at the Ga-terminated and N-terminated {0 0 0 1} basal plane wurtzite gallium nitride surfaces have been carried out to explain the atomic-scale insight into the initial adsorption processes of magnesium doping in gallium nitride. The results reveal that magnesium adsorption on N-terminated surfaces is preferred than that on Ga-terminated surfaces. Furthermore, the surface diffusivity of magnesium atom on the N-terminated surface is much lower than that on the Ga-terminated surface, which is due to both the larger average adsorption energies and the lower adsorption distance on N-terminated surface than that on Ga-terminated surface. The results indicate that the p-type doping on the Ga-terminated surface will be better distributed than that on the N-terminated surface.

  5. Phase equilibrium of PuO2-x - Pu2O3 based on first-principles calculations and configurational entropy change

    International Nuclear Information System (INIS)

    Minamoto, Satoshi; Kato, Masato; Konashi, Kenji

    2011-01-01

    Combination of an oxygen vacancy formation energy calculated using first-principles approach and the configurational entropy change treated within the framework of statistical mechanics gives an expression of the Gibbs free energy at large deviation from stoichiometry of plutonium oxide PuO 2 . An oxygen vacancy formation energy 4.20 eV derived from our previously first-principles calculation was used to evaluate the Gibbs free energy change due to oxygen vacancies in the crystal. The oxygen partial pressures then can be evaluated from the change of the free energy with two fitting parameters (a vacancy-vacancy interaction energy and vibration entropy change due to induced vacancies). Derived thermodynamic expression for the free energy based on the SGTE thermodynamic data for the stoichiometric PuO 2 and the Pu 2 O 3 compounds was further incorporated into the CALPHAD modeling, then phase equilibrium between the stoichiometric Pu 2 O 3 and non-stoichiometric PuO 2-x were reproduced.

  6. Elastic properties and electronic structure of WS{sub 2} under pressure from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Civil Aviation Flight Univ. of China, Guanghan (China). Dept. of Physics; Zeng, Zhao-Yi [Chongqing Normal Univ., Chongqing (China). College of Physics and Electronic Engineering; Liang, Ting; Tang, Mei; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics

    2017-07-01

    The influence of pressure on the elastic and mechanical properties of the hexagonal transition-metal dichalcogenide WS{sub 2} is investigated using the first-principles calculations. With the increase in pressure, the lattice parameters and the volume of WS{sub 2} decrease, which is exactly in agreement with the available experimental data and other calculated results. The elastic constants C{sub ij}, bulk modulus B, shear modulus G, Young's modulus E, and Poisson's ratio σ of WS{sub 2} also increase with pressure. At last, for the first time, the band gaps of energy, the partial density of states, and the total density of states under three different pressures are obtained and analysed. It is found that the band gap of WS{sub 2} decreases from 0.843 to 0 eV when the external pressure varies from 0 to 20 GPa, which implies that WS{sub 2} may transform from semiconductors to semimetal phase at a pressure about 20 GPa.

  7. The electronic structures and ferromagnetism of Fe-doped GaSb: The first-principle calculation study

    Science.gov (United States)

    Lin, Xue-ling; Niu, Cao-ping; Pan, Feng-chun; Chen, Huan-ming; Wang, Xu-ming

    2017-09-01

    The electronic structures and the magnetic properties of Fe doped GaSb have been investigated by the first-principles calculation based on the framework of the generalized gradient approximation (GGA) and GGA+U schemes. The calculated results indicated that Fe atoms tend to form the anti-ferromagnetic (AFM) coupling with the nearest-neighbor positions preferentially. Compared with the anti-ferromagnetic coupling, the ferromagnetic interactions occurred at the second nearest-neighbor and third nearest-neighbor sites have a bigger superiority energetically. The effect of strong electron correlation at Fe-d orbit taking on the magnetic properties predicted by GGA+U approach demonstrated that the ferromagnetic (FM) coupling between the Fe ions is even stronger in consideration of the strong electron correlation effect. The ferromagnetism in Fe doped GaSb system predicted by our investigation implied that the doping of Fe into GaSb can be as a vital routine for manufacturing the FM semiconductors with higher Curie temperature.

  8. The effect of boron concentration on the structure and elastic properties of Ru-Ir alloys: first-principles calculations

    Science.gov (United States)

    Li, Xiaolong; Zhou, Zhaobo; Hu, Riming; Zhou, Xiaolong; Yu, Jie; Liu, Manmen

    2018-04-01

    The Phase stability, electronic structure, elastic properties and hardness of Ru-Ir alloys with different B concentration were investigated by first principles calculations. The calculated formation enthaplies and cohesive energies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristic and Ru-Ir-B alloys were composed of the Ru-B and Ir-B covalent bond. The elastic properties were calculated, which included bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and hardness. The calculated results reveal that the plastic of Ru-Ir-B alloys increase with the increase of the content of B atoms, but the hardness of Ru-Ir-B alloys have no substantial progress with the increase of the content of B atoms. However, it is interesting that the hardness of the Ru-Ir-B compound was improved obviously as the B content was higher than 18 atoms because of a phase structure transition.

  9. Robust MST-Based Clustering Algorithm.

    Science.gov (United States)

    Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing

    2018-06-01

    Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.

  10. First-principles calculations of electronic and optical properties of aluminum-doped β-Ga2O3 with intrinsic defects

    Directory of Open Access Journals (Sweden)

    Xiaofan Ma

    Full Text Available In this manuscript, the effects of intrinsic defects on the electronic and optical properties of aluminum-doped β-Ga2O3 are investigated with first-principles calculations. Four types of defect complexes have been considered: AlGa2O3VO (Al-doped β-Ga2O3 with O vacancy, AlGa2O3VGa (Al-doped β-Ga2O3 with Ga vacancy, AlGa2O3Gai (Al-doped β-Ga2O3 with Ga interstitial and AlGa2O3Oi (Al-doped β-Ga2O3 with O interstitial. The calculation results show that the incorporation of Al into β-Ga2O3 leads to the tendency of forming O interstitial defects. And the bandgap of AlGa2O3 is 4.975 eV, which is a little larger than that of intrinsic β-Ga2O3. When O vacancies exist, a defect energy level is introduced to the forbidden band as a deep donor level, while no defective energy levels occur in the forbidden band with O interstitials. After Al-doped, a slightly blue-shift appears in the intrinsic absorption edge, and an additional absorption peak occurs with O vacancy located in 3.69 eV. Keywords: First-principle calculation, Intrinsic defects, Bandgap, Absorption peak

  11. Effects of Al substitution in Nd2Fe17 studied by first-principles calculations

    International Nuclear Information System (INIS)

    Huang, M.; Ching, W.Y.

    1994-01-01

    We have studied the effect of Al substitution in Nd 2 Fe 17 compound by means of first-principles calculations. We first obtain the site-decomposed potentials for Fe from self-consistent calculation on Y 2 Fe 17 and the atomiclike potentials in the crystalline environment for Al and Nd. Calculations are carried out for a single Al substituting one Fe at four different Fe sites (6c), (9d), (18f ), and (18h), two Al substituting two Fe (18h), and four Al substituting three Fe (18h) and one Fe (18f ). Our results show that the Al moment is oppositely polarized to Fe. The average moment per Fe atom actually increases for Al substituting Fe (18h) and Fe (18f ) is about the same for Al substituting Fe (6c), and is drastically reduced when replacing Fe (9d). Experimentally, Al is shown to be excluded from the (9d) sites because of the small Wigner--Seitz volume. When two Fe atoms are replaced by two Al atoms, the total moment is only slightly less than when only one Fe atom is replaced, and the M s per Fe site actually increases, in agreement with the Moessbauer data. These results are analyzed in terms of the local atomic geometry and the charge transfer effect from the neighboring Fe to Al

  12. First principles calculation of mixing enthalpy of β-Ti with transition elements

    International Nuclear Information System (INIS)

    Chandran, Mahesh; Subramanian, P.R.; Gigliotti, Michael F.

    2013-01-01

    Highlights: ► Compares the accuracy of SQS with parametric method to determine ΔH for binary alloys which has not been done before. ► Trends in ΔH for β-Ti–X alloys where X is 3d-, 4d- and 5d-transition series are presented. ► The design space for new β-Ti alloys is determined by combining ΔH with Hume-Rothery rules. - Abstract: The mixing enthalpy ΔH mix (x) of body-centered cubic (BCC) β-Ti with transition elements was calculated using first-principles methods based on density functional theory (DFT). The solid solution effect was treated by two different approaches, viz. special quasi-random structures (SQS) and the parametric method. The SQS-N method uses direct DFT to calculate energy of structures containing N atoms which approximate the correlation of an ideal solid solution up to some distance, whereas the parametric method employs a polynomial representation for ΔH mix (x) and the coefficients are calculated using DFT. Comparison of the two methods shows fair agreement for most alloys though differences as high as 40% can also be seen among some of the alloys. The trends in ΔF mix (x), obtained by adding entropy contribution from ideal solution model to ΔH mix (x) for 3d-, 4d- and 5d-transition series were analyzed in terms of e/a, the ratio of number of valence electrons to atoms. The early transition elements, between Group 4–7, was found to have very small ΔF mix (x) over a wide range of concentration. Stability of the alloys is analyzed by combining ΔF mix (x) with Hume-Rothery rules.

  13. A Framework to Analyze the Robustness of Social-ecological Systems from an Institutional Perspective

    Directory of Open Access Journals (Sweden)

    John M. Anderies

    2004-06-01

    Full Text Available What makes social-ecological systems (SESs robust? In this paper, we look at the institutional configurations that affect the interactions among resources, resource users, public infrastructure providers, and public infrastructures. We propose a framework that helps identify potential vulnerabilities of SESs to disturbances. All the links between components of this framework can fail and thereby reduce the robustness of the system. We posit that the link between resource users and public infrastructure providers is a key variable affecting the robustness of SESs that has frequently been ignored in the past. We illustrate the problems caused by a disruption in this link. We then briefly describe the design principles originally developed for robust common-pool resource institutions, because they appear to be a good starting point for the development of design principles for more general SESs and do include the link between resource users and public infrastructure providers.

  14. Robust Utility Maximization Under Convex Portfolio Constraints

    International Nuclear Information System (INIS)

    Matoussi, Anis; Mezghani, Hanen; Mnif, Mohamed

    2015-01-01

    We study a robust maximization problem from terminal wealth and consumption under a convex constraints on the portfolio. We state the existence and the uniqueness of the consumption–investment strategy by studying the associated quadratic backward stochastic differential equation. We characterize the optimal control by using the duality method and deriving a dynamic maximum principle

  15. Ising-type anisotropy and spin state transitions in GdBaCo2O5.5 from first-principles calculations

    International Nuclear Information System (INIS)

    Pardo, V.; Baldomir, D.; Castro, J.; Iglesias, M.; Arias, J.E.

    2007-01-01

    Ising-type behaviour of GdBaCo 2 O 5.5 is analyzed from first principles calculations of the electronic structure of the material. The variations in its magnetic anisotropy properties in the different possible magnetic configurations is analyzed. A possible metallic phase is studied and an analysis of the electronic structure of the Co 3+ ions in that phase is presented

  16. Stability, electronic structures, and mechanical properties of Fe–Mn–Al system from first-principles calculations

    International Nuclear Information System (INIS)

    Liu Ya-Hui; Chong Xiao-Yu; Jiang Ye-Hua; Feng Jing

    2017-01-01

    The stability, electronic structures, and mechanical properties of the Fe–Mn–Al system were determined by first-principles calculations. The formation enthalpy and cohesive energy of these Fe–Mn–Al alloys are negative and show that the alloys are thermodynamically stable. Fe 3 Al, with the lowest formation enthalpy, is the most stable compound in the Fe–Mn–Al system. The partial density of states, total density of states, and electron density distribution maps of the Fe– Mn–Al alloys were analyzed. The bonding characteristics of these Fe–Mn–Al alloys are mainly combinations of covalent bonding and metallic bonds. The stress-strain method and Voigt–Reuss–Hill approximation were used to calculate the elastic constants and moduli, respectively. Fe 2.5 Mn 0.5 Al has the highest bulk modulus, 234.5 GPa. Fe 1.5 Mn 1.5 Al has the highest shear modulus and Young’s modulus, with values of 98.8 GPa and 259.2 GPa, respectively. These Fe–Mn–Al alloys display disparate anisotropies due to the calculated different shape of the three-dimensional curved surface of the Young’s modulus and anisotropic index. Moreover, the anisotropic sound velocities and Debye temperatures of these Fe–Mn–Al alloys were explored. (paper)

  17. Point defects in hexagonal germanium carbide monolayer: A first-principles calculation

    International Nuclear Information System (INIS)

    Ersan, Fatih; Gökçe, Aytaç Gürhan; Aktürk, Ethem

    2016-01-01

    Highlights: • Semiconductor GeC turns into metal by introducing a carbon vacancy. • Semiconductor GeC becomes half-metal by a single Ge vacancy. • Band gap value of GeC system can be tuned in the range of 0.308–1.738 eV by antisite or Stone–Wales defects. - Abstract: On the basis of first-principles plane-wave calculations, we investigated the electronic and magnetic properties of various point defects including single Ge and C vacancies, Ge + C divacancy, Ge↔C antisites and the Stone–Wales (SW) defects in a GeC monolayer. We found that various periodic vacancy defects in GeC single layer give rise to crucial effects on the electronic and magnetic properties. The band gaps of GeC monolayer vary significantly from 0.308 eV to 1.738 eV due to the presence of antisites and Stone–Wales defects. While nonmagnetic ground state of semiconducting GeC turns into metal by introducing a carbon vacancy, it becomes half-metal by a single Ge vacancy with high magnetization (4 μ_B) value per supercell. All the vacancy types have zero net magnetic moments, except single Ge vacancy.

  18. Point defects in hexagonal germanium carbide monolayer: A first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Ersan, Fatih [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Gökçe, Aytaç Gürhan [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Department of Physics, Dokuz Eylül University, 35160 İzmir (Turkey); Aktürk, Ethem, E-mail: ethem.akturk@adu.edu.tr [Department of Physics, Adnan Menderes University, 09100 Aydın (Turkey); Nanotechnology Application and Research Center, Adnan Menderes University, 09100 Aydın (Turkey)

    2016-12-15

    Highlights: • Semiconductor GeC turns into metal by introducing a carbon vacancy. • Semiconductor GeC becomes half-metal by a single Ge vacancy. • Band gap value of GeC system can be tuned in the range of 0.308–1.738 eV by antisite or Stone–Wales defects. - Abstract: On the basis of first-principles plane-wave calculations, we investigated the electronic and magnetic properties of various point defects including single Ge and C vacancies, Ge + C divacancy, Ge↔C antisites and the Stone–Wales (SW) defects in a GeC monolayer. We found that various periodic vacancy defects in GeC single layer give rise to crucial effects on the electronic and magnetic properties. The band gaps of GeC monolayer vary significantly from 0.308 eV to 1.738 eV due to the presence of antisites and Stone–Wales defects. While nonmagnetic ground state of semiconducting GeC turns into metal by introducing a carbon vacancy, it becomes half-metal by a single Ge vacancy with high magnetization (4 μ{sub B}) value per supercell. All the vacancy types have zero net magnetic moments, except single Ge vacancy.

  19. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    Science.gov (United States)

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  20. Formation of solid solutions of gallium in Fe–Cr and Fe–Co alloys: Mössbauer studies and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Serikov, V.V. [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation); Kleinerman, N.M., E-mail: kleinerman@imp.uran.ru [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation); Vershinin, A.V.; Mushnikov, N.V.; Protasov, A.V.; Stashkova, L.A. [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation); Gorbatov, O.I. [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation); Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE - 100 44 Stockholm (Sweden); Ruban, A.V. [Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE - 100 44 Stockholm (Sweden); Gornostyrev, Yu.N. [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation)

    2014-11-25

    Highlights: • Structure features of the formation of quasibinary solid solutions Fe–Co–Ga and Fe–Cr–Ga are found. • The first-principles calculation of mixing and solubility energies for Ga in an Fe–X alloy are given. • Ga handicaps the processes of phase separation in the Fe–Cr system and ordering in the Fe–Co system. • Preference of Ga entering in the neighborhood of a second element can help study multielement alloys. - Abstract: Investigation of Ga influence on the structure of Fe–Cr and Fe–Co alloys was performed with the use of Mössbauer spectroscopy and X-ray diffraction methods. The experimental results are compared with results of first-principles calculations of the mixing and solubility energies for Ga in an Fe–X (X = Co, Cr) alloy both in ferromagnetic and paramagnetic states. It is shown that Ga mainly goes into the solid solutions of the base alloys. In the alloys of the Fe–Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The results of the first-principles calculations testify in favor of a preferable dissolution of Ga in the FeCo regions of a multicomponent structure rather than FeCr regions, both types of regions being in the ferromagnetic state at the temperature of annealing. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to enter the nearest surroundings of iron atoms, thus forming binary Fe–Ga regions (or phases)

  1. Hybrid variational principles and synthesis method for finite element neutron transport calculations

    International Nuclear Information System (INIS)

    Ackroyd, R.T.; Nanneh, M.M.

    1990-01-01

    A family of hybrid variational principles is derived using a generalised least squares method. Neutron conservation is automatically satisfied for the hybrid principles employing two trial functions. No interfaces or reflection conditions need to be imposed on the independent even-parity trial function. For some hybrid principles a single trial function can be employed by relating one parity trial function to the other, using one of the parity transport equation in relaxed form. For other hybrid principles the trial functions can be employed sequentially. Synthesis of transport solutions, starting with the diffusion theory approximation, has been used as a way of reducing the scale of the computation that arises with established finite element methods for neutron transport. (author)

  2. Use of the Le Chatelier principle in calculating the uniform flux in channels formed by packed rods

    International Nuclear Information System (INIS)

    Skrebkov, G.P.; Lozhkin, S.N.

    1986-01-01

    A method is proposed for calculating the hydrodynamics of a uniform flow in channels with a cross section of complex form. The method takes into account the anisotropy of the momentum transfer. The anisotropy coefficient of the momentum transfer is determined by using the Le Chatelier principle in a virtual process of transition to the kinematic structure of a uniform flux in equilibrium with a specified set of external conditions which include the channel geometry, wall roughness, and the value of the piezometric gradient

  3. SU-E-J-136: Investigation Into Robustness of Stopping Power Calculated by DECT and SECT for Proton Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J [University of Adelaide, Adelaide, SA (Australia); Penfold, S [University of Adelaide, Adelaide, SA (Australia); Royal Adelaide Hospital, Adelaide, SA (Australia)

    2015-06-15

    Purpose: To investigate the robustness of dual energy CT (DECT) and single energy CT (SECT) proton stopping power calibration techniques and quantify the associated errors when imaging a phantom differing in chemical composition to that used during stopping power calibration. Methods: The CIRS tissue substitute phantom was scanned in a CT-simulator at 90kV and 140kV. This image set was used to generate a DECT proton SPR calibration based on a relationship between effective atomic number and mean excitation energy. A SECT proton SPR calibration based only on Hounsfield units (HUs) was also generated. DECT and SECT scans of a second phantom of known density and chemical composition were performed. The SPR of the second phantom was calculated with the DECT approach (SPR-DECT),the SECT approach (SPR-SECT) and finally the known density and chemical composition of the phantom (SPR-ref). The DECT and SECT image sets were imported into the Pinnacle{sup 3} research release of proton therapy treatment planning. The difference in dose when exposed to a common pencil beam distribution was investigated. Results: SPR-DECT was found to be in better agreement with SPR-ref than SPR- SECT. The mean difference in SPR for all materials was 0.51% for DECT and 6.89% for SECT. With the exception of Teflon, SPR-DECT was found to agree with SPR-ref to within 1%. Significant differences in calculated dose were found when using the DECT image set or the SECT image set. Conclusion: The DECT calibration technique was found to be more robust to situations in which the physical properties of the test materials differed from the materials used during SPR calibration. Furthermore, it was demonstrated that the DECT and SECT SPR calibration techniques can Result in significantly different calculated dose distributions.

  4. First-principles study of mechanical, exchange interactions and the robustness in Co{sub 2}MnSi full Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Akriche, A., E-mail: akricheahmed@gmail.com [Laboratoire de Microscope Electronique et Sciences des Matériaux, Université d’Oran des Sciences et de la Technologie-USTO, Mohamed Boudiaf, Faculté de physique, Département de Génie Physique, Oran (Algeria); Bouafia, H. [Laboratoire de Génie Physique, Université Ibn-Khaldoun, Tiaret 14000 (Algeria); Hiadsi, S. [Laboratoire de Microscope Electronique et Sciences des Matériaux, Université d’Oran des Sciences et de la Technologie-USTO, Mohamed Boudiaf, Faculté de physique, Département de Génie Physique, Oran (Algeria); Abidri, B. [Laboratoire des Matériaux Magnétiques, Université Djillali Liabés, Sidi Bel-Abbes (Algeria); Sahli, B. [Laboratoire de Génie Physique, Université Ibn-Khaldoun, Tiaret 14000 (Algeria); Elchikh, M.; Timaoui, M.A.; Djebour, B. [Laboratoire de Microscope Electronique et Sciences des Matériaux, Université d’Oran des Sciences et de la Technologie-USTO, Mohamed Boudiaf, Faculté de physique, Département de Génie Physique, Oran (Algeria)

    2017-01-15

    In this work we report the results of ab-initio studies of structural, mechanical, electronic and magnetic properties of Co based Co{sub 2}MnSi Heusler compound in stoichiometric composition. All of which are accurately calculated by the full-potential (FP-LMTO) program combined with the spin polarized generalized gradient approximation in the density functional formalism (DFT). The total energy calculations clearly favor the ferromagnetic ground state. The lattice parameter, elastic constants and their related parameters were also evaluated and compared to experimental and theoretical values whenever possible. In this paper, the electronic properties are treated with GGA+U approach. The magnetic exchange constants temperature has been calculated using a mean field-approximation (MFA). The half-metal to metal transition was observed around 40 GPa. Increasing pressure has no impact on the total magnetic moment or the overall shape of the band structure that indicates the robustness of the electronic structure of this system. - Highlights: • In this work, we have studied some physical properties of Co{sub 2}MnSi Heusler compound. • The exchange-correlation energy is treated within GGA and (GGA+U) approximation. • The electronic band structure shows that Co{sub 2}MnSi is a half-metallic compound.

  5. Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations

    Science.gov (United States)

    Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.

    2017-02-01

    Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with

  6. First principles calculations of thermal conductivity with out of equilibrium molecular dynamics simulations

    Science.gov (United States)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    The prediction of the thermal properties of solids and liquids is central to numerous problems in condensed matter physics and materials science, including the study of thermal management of opto-electronic and energy conversion devices. We present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at non equilibrium conditions. Our formulation is based on a generalization of the approach to equilibrium technique, using sinusoidal temperature gradients, and it only requires calculations of first principles trajectories and atomic forces. We discuss results and computational requirements for a representative, simple oxide, MgO, and compare with experiments and data obtained with classical potentials. This work was supported by MICCoM as part of the Computational Materials Science Program funded by the U.S. Department of Energy (DOE), Office of Science , Basic Energy Sciences (BES), Materials Sciences and Engineering Division under Grant DOE/BES 5J-30.

  7. The base rate principle and the fairness principle in social judgment.

    Science.gov (United States)

    Cao, Jack; Banaji, Mahzarin R

    2016-07-05

    Meet Jonathan and Elizabeth. One person is a doctor and the other is a nurse. Who is the doctor? When nothing else is known, the base rate principle favors Jonathan to be the doctor and the fairness principle favors both individuals equally. However, when individuating facts reveal who is actually the doctor, base rates and fairness become irrelevant, as the facts make the correct answer clear. In three experiments, explicit and implicit beliefs were measured before and after individuating facts were learned. These facts were either stereotypic (e.g., Jonathan is the doctor, Elizabeth is the nurse) or counterstereotypic (e.g., Elizabeth is the doctor, Jonathan is the nurse). Results showed that before individuating facts were learned, explicit beliefs followed the fairness principle, whereas implicit beliefs followed the base rate principle. After individuating facts were learned, explicit beliefs correctly aligned with stereotypic and counterstereotypic facts. Implicit beliefs, however, were immune to counterstereotypic facts and continued to follow the base rate principle. Having established the robustness and generality of these results, a fourth experiment verified that gender stereotypes played a causal role: when both individuals were male, explicit and implicit beliefs alike correctly converged with individuating facts. Taken together, these experiments demonstrate that explicit beliefs uphold fairness and incorporate obvious and relevant facts, but implicit beliefs uphold base rates and appear relatively impervious to counterstereotypic facts.

  8. 31 CFR 205.27 - How are Interest Calculation Costs calculated?

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false How are Interest Calculation Costs calculated? 205.27 Section 205.27 Money and Finance: Treasury Regulations Relating to Money and Finance... this subpart A, other than Interest Calculation Costs, are subject to the procedures and principles of...

  9. Structural electronic and mechanical properties of YM2 (M=Mn, Fe, Co) laves phase compounds: First principle calculations analyzed with datamining approach

    Science.gov (United States)

    Saidi, F.; Sebaa, N.; Mahmoudi, A.; Aourag, H.; Merad, G.; Dergal, M.

    2018-06-01

    We performed first-principle calculations to investigate structural, phase stability, electronic and mechanical properties for the Laves phases YM2 (M = Mn, Fe, Co) with C15, C14 and C36 structures. We used the density functional theory within the framework of both pseudo-potentials and plane wave basis using VASP (Vienna Ab Initio Software Package). The calculated equilibrium structural parameters are in accordance with available theoretical values. Mechanical properties were calculated, discussed, and analyzed with data mining approach in terms of structure stability. The results reveal that YCo2 is harder than YFe2 and YMn2.

  10. Modeling of amorphous SiCxO6/5 by classical molecular dynamics and first principles calculations

    Science.gov (United States)

    Liao, Ningbo; Zhang, Miao; Zhou, Hongming; Xue, Wei

    2017-02-01

    Polymer-derived silicon oxycarbide (SiCO) presents excellent performance for high temperature and lithium-ion battery applications. Current experiments have provided some information on nano-structure of SiCO, while it is very challenging for experiments to take further insight into the molecular structure and its relationship with properties of materials. In this work, molecular dynamics (MD) based on empirical potential and first principle calculation were combined to investigate amorphous SiCxO6/5 ceramics. The amorphous structures of SiCO containing silicon-centered mix bond tetrahedrons and free carbon were successfully reproduced. The calculated radial distribution, angular distribution and Young’s modulus were validated by current experimental data, and more details on molecular structure were discussed. The change in the slope of Young’s modulus is related to the glass transition temperature of the material. The proposed modeling approach can be used to predict the properties of SiCO with different compositions.

  11. Phase stability, electronic structure and equation of state of cubic TcN from first-principles calculations

    International Nuclear Information System (INIS)

    Song, T.; Ma, Q.; Sun, X.W.; Liu, Z.J.; Fu, Z.J.; Wei, X.P.; Wang, T.; Tian, J.H.

    2016-01-01

    The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model. - Highlights: • The phase transition pressure and electronic band structure for cubic TcN are determined. • Particular attention is paid to investigate the equation of state parameters for cubic TcN. • The thermodynamic properties up to 80 GPa and 3000 K are successfully predicted.

  12. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles

    International Nuclear Information System (INIS)

    Choo, R.T.C.; Szekely, J.; David, S.A.

    1992-01-01

    By combining a mathematical model of the welding arc and of the weld pool, calculations are presented here to describe the free surface temperature of weld pools for spot welding operations. The novel aspects of the treatment include the calculation of the heat and current fluxes falling on the free weld pool surface from first principles, a realistic allowance for heat losses due to vaporization, and a realistic allowance for the temperature dependence of the surface tension. The most important finding reported in this article is that the free surface temperature of weld pools appears to be limited by Marangoni convection, rather than heat losses due to vaporization. Furthermore, it was found that once thermocapillary flow can produce high enough surface velocities (>25 cm/s), the precise nature of the relationship between temperature and surface tension will become less important

  13. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3

    International Nuclear Information System (INIS)

    Mubarak, A.A.; Al-Omari, Saleh

    2015-01-01

    We present first-principles calculations of the structural, elastic, electronic, magnetic and optical properties for RbFeF 3 and RbNiF 3 . The full-potential linear augmented plan wave (FP-LAPW) method within the density functional theory was utilized to perform the present calculations. We employed the generalized gradient approximation as exchange-correlation potential. It was found that the calculated analytical lattice parameters agree with previous studies. The analysis of elastic constants showed that the present compounds are elastically stable and anisotropic. Moreover, both compounds are classified as a ductile compound. The calculations of the band structure and density functional theory revealed that the RbFeF 3 compound has a half-metallic behavior while the RbNiF 3 compound has a semiconductor behavior with indirect (M–Γ) band gap. The ferromagnetic behavior was studied for both compounds. The optical properties were calculated for the radiation of up to 40 eV. A beneficial optics technology is predicted as revealed from the optical spectra. - Highlights: • RbFeF 3 and RbNiCl 3 compounds are elastically stable. • RbFeF 3 and RbNiCl 3 compounds are classified as a ductile compound. • The RbFeF 3 compound has a half-metallic behavior while the RbNiF 3 compound has a semiconductor behavior. • The optical properties were calculated for the radiation of up to 40 eV

  14. First-principles calculation of the structural, electronic, elastic, and optical properties of sulfur-doping ε -GaSe crystal

    International Nuclear Information System (INIS)

    Huang Chang-Bao; Wu Hai-Xin; Ni You-Bao; Wang Zhen-You; Qi Ming; Zhang Chun-Li

    2016-01-01

    The structural, electronic, mechanical properties, and frequency-dependent refractive indexes of GaSe 1–x S x (x = 0, 0.25, and 1) are studied by using the first-principles pseudopotential method within density functional theory. The calculated results demonstrate the relationships between intralayer structure and elastic modulus in GaSe 1–x S x (x = 0, 0.25, and 1). Doping of ε -GaSe with S strengthens the Ga– X bonds and increases its elastic moduli of C 11 and C 66 . Born effective charge analysis provides an explanation for the modification of cleavage properties about the doping of ε -GaSe with S. The calculated results of band gaps suggest that the distance between intralayer atom and substitution of S Se , rather than interlayer force, is a key factor influencing the electronic exciton energy of the layer semiconductor. The calculated refractive indexes indicate that the doping of ε -GaSe with S reduces its refractive index and increases its birefringence. (paper)

  15. A survey of variational principles

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1993-01-01

    The survey of variational principles has ranged widely from its starting point in the Lagrange multiplier to optimisation principles. In an age of digital computation, these classic methods can be adapted to improve such calculations. We emphasize particularly the advantage of basing finite element methods on variational principles, especially if, as maximum and minimum principles, these can provide bounds and hence estimates of accuracy. The non-symmetric (and hence stationary rather than extremum principles) are seen however to play a significant role in optimisation theory. (Orig./A.B.)

  16. Calculations of proton-binding thermodynamics in proteins.

    Science.gov (United States)

    Beroza, P; Case, D A

    1998-01-01

    Computational models of proton binding can range from the chemically complex and statistically simple (as in the quantum calculations) to the chemically simple and statistically complex. Much progress has been made in the multiple-site titration problem. Calculations have improved with the inclusion of more flexibility in regard to both the geometry of the proton binding and the larger scale protein motions associated with titration. This article concentrated on the principles of current calculations, but did not attempt to survey their quantitative performance. This is (1) because such comparisons are given in the cited papers and (2) because continued developments in understanding conformational flexibility and interaction energies will be needed to develop robust methods with strong predictive power. Nevertheless, the advances achieved over the past few years should not be underestimated: serious calculations of protonation behavior and its coupling to conformational change can now be confidently pursued against a backdrop of increasing understanding of the strengths and limitations of such models. It is hoped that such theoretical advances will also spur renewed experimental interest in measuring both overall titration curves and individual pKa values or pKa shifts. Exploration of the shapes of individual titration curves (as measured by Hill coefficients and other parameters) would also be useful in assessing the accuracy of computations and in drawing connections to functional behavior.

  17. An Intercompany Perspective on Biopharmaceutical Drug Product Robustness Studies.

    Science.gov (United States)

    Morar-Mitrica, Sorina; Adams, Monica L; Crotts, George; Wurth, Christine; Ihnat, Peter M; Tabish, Tanvir; Antochshuk, Valentyn; DiLuzio, Willow; Dix, Daniel B; Fernandez, Jason E; Gupta, Kapil; Fleming, Michael S; He, Bing; Kranz, James K; Liu, Dingjiang; Narasimhan, Chakravarthy; Routhier, Eric; Taylor, Katherine D; Truong, Nobel; Stokes, Elaine S E

    2018-02-01

    The Biophorum Development Group (BPDG) is an industry-wide consortium enabling networking and sharing of best practices for the development of biopharmaceuticals. To gain a better understanding of current industry approaches for establishing biopharmaceutical drug product (DP) robustness, the BPDG-Formulation Point Share group conducted an intercompany collaboration exercise, which included a bench-marking survey and extensive group discussions around the scope, design, and execution of robustness studies. The results of this industry collaboration revealed several key common themes: (1) overall DP robustness is defined by both the formulation and the manufacturing process robustness; (2) robustness integrates the principles of quality by design (QbD); (3) DP robustness is an important factor in setting critical quality attribute control strategies and commercial specifications; (4) most companies employ robustness studies, along with prior knowledge, risk assessments, and statistics, to develop the DP design space; (5) studies are tailored to commercial development needs and the practices of each company. Three case studies further illustrate how a robustness study design for a biopharmaceutical DP balances experimental complexity, statistical power, scientific understanding, and risk assessment to provide the desired product and process knowledge. The BPDG-Formulation Point Share discusses identified industry challenges with regard to biopharmaceutical DP robustness and presents some recommendations for best practices. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Two-level Robust Measurement Fusion Kalman Filter for Clustering Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; QI Wen-Juan; DENG Zi-Li

    2014-01-01

    This paper investigates the distributed fusion Kalman filtering over clustering sensor networks. The sensor network is partitioned as clusters by the nearest neighbor rule and each cluster consists of sensing nodes and cluster-head. Using the minimax robust estimation principle, based on the worst-case conservative system with the conservative upper bounds of noise variances, two-level robust measurement fusion Kalman filter is presented for the clustering sensor network systems with uncertain noise variances. It can significantly reduce the communication load and save energy when the number of sensors is very large. A Lyapunov equation approach for the robustness analysis is presented, by which the robustness of the local and fused Kalman filters is proved. The concept of the robust accuracy is presented, and the robust accuracy relations among the local and fused robust Kalman filters are proved. It is proved that the robust accuracy of the two-level weighted measurement fuser is equal to that of the global centralized robust fuser and is higher than those of each local robust filter and each local weighted measurement fuser. A simulation example shows the correctness and effectiveness of the proposed results.

  19. Multipole moments of water molecules in clusters and ice Ih from first principles calculations

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1999-01-01

    We have calculated molecular multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader close-quote s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. copyright 1999 American Institute of Physics

  20. Dynamical instability, strong anharmonicity and electron-phonon coupling in KOs2O6: First-principles calculations

    Science.gov (United States)

    Wang, Wei; Sun, Jiafa; Li, Bin; He, Junqi

    2017-09-01

    First-principles pseudopotential calculations on phonon and electronic properties of β -pyrochlore superconductor KOs2O6 are performed. The imaginary soft-phonon modes with a special double-well potential for the lowest Eu(1) mode and the second lowest T1u(1) mode are reported, which indicates the dynamical instability in KOs2O6. However, the double wells are too small to induce a structural phase transformation in KOs2O6. The strong anharmonicity especially for K T2g(1) phonon mode is got, which is approved to be from the strong electron-phonon coupling that supports the superconductivity in KOs2O6.

  1. Mechanical, electronic, and optical properties of β-B{sub 6}O. First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ruike; Ma, Shaowei; Wei, Qun [Xidian Univ., Shaanxi (China). School of Physics and Optoelectronic Engineering; Du, Zheng [National Supercomputing Center in Shenzhen, Shenzhen (China)

    2017-07-01

    The mechanical, electronic, and optical properties of β-B{sub 6}O are calculated by first-principles. The structural optimization and all properties are calculated by the method of generalized gradient approximation - Perdew, Burke and Ernzerhof (PBE). The hardness of β-B{sub 6}O is 39 GPa under a pressure of 0 GPa, which indicates that it belongs to a hard material. The band gap is indirect with a value of 1.836 eV, showing that β-B{sub 6}O is a semiconductor. The research of the electron localization function shows that the bonds of β-B{sub 6}O are covalent bonds, which can increase the stability of the compound. The phonon dispersion curves present the dynamical stability of β-B{sub 6}O under pressures of 0 and 50 GPa. The optical properties of β-B{sub 6}O are also calculated. In the energy range from 0 to 18 eV, β-B{sub 6}O presents high reflectivity; it has a strong absorption in the energy range from 3 to 18 eV. The refractive index results show that light propagates through the β-B{sub 6}O in a difficult manner in the energy range from 6.9 to 16.5 eV. In addition, the energy of the plasma frequency for β-B{sub 6}O is 16.6 eV and the peak value of the loss function is 13.6. These properties provide the basis for the development and application of β-B{sub 6}O.

  2. Engineering Robustness of Microbial Cell Factories.

    Science.gov (United States)

    Gong, Zhiwei; Nielsen, Jens; Zhou, Yongjin J

    2017-10-01

    Metabolic engineering and synthetic biology offer great prospects in developing microbial cell factories capable of converting renewable feedstocks into fuels, chemicals, food ingredients, and pharmaceuticals. However, prohibitively low production rate and mass concentration remain the major hurdles in industrial processes even though the biosynthetic pathways are comprehensively optimized. These limitations are caused by a variety of factors unamenable for host cell survival, such as harsh industrial conditions, fermentation inhibitors from biomass hydrolysates, and toxic compounds including metabolic intermediates and valuable target products. Therefore, engineered microbes with robust phenotypes is essential for achieving higher yield and productivity. In this review, the recent advances in engineering robustness and tolerance of cell factories is described to cope with these issues and briefly introduce novel strategies with great potential to enhance the robustness of cell factories, including metabolic pathway balancing, transporter engineering, and adaptive laboratory evolution. This review also highlights the integration of advanced systems and synthetic biology principles toward engineering the harmony of overall cell function, more than the specific pathways or enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Robust Model Predictive Control of a Wind Turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2012-01-01

    In this work the problem of robust model predictive control (robust MPC) of a wind turbine in the full load region is considered. A minimax robust MPC approach is used to tackle the problem. Nonlinear dynamics of the wind turbine are derived by combining blade element momentum (BEM) theory...... of the uncertain system is employed and a norm-bounded uncertainty model is used to formulate a minimax model predictive control. The resulting optimization problem is simplified by semidefinite relaxation and the controller obtained is applied on a full complexity, high fidelity wind turbine model. Finally...... and first principle modeling of the turbine flexible structure. Thereafter the nonlinear model is linearized using Taylor series expansion around system operating points. Operating points are determined by effective wind speed and an extended Kalman filter (EKF) is employed to estimate this. In addition...

  4. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts

    DEFF Research Database (Denmark)

    Jones, Glenn; Jakobsen, Jon Geest; Shim, Signe Sarah

    2008-01-01

    This paper presents a detailed analysis of the steam reforming process front first-principles calculations, supported by insight from experimental investigations. In the present work we employ recently recognised scaling relationships for adsorption energies of simple molecules adsorbed at pure...... metal Surfaces to develop an overview of the steam reforming process catalyzed by a range of transition metal surfaces. By combining scaling relationships with thermodynamic and kinetic analysis, we show that it is possible to determine the reactivity trends of the pure metals for methane steam...... in situ TEM measurements under a hydrogen atmosphere. The overall agreement between theory and experiment (at 773 K, 1 bar pressure and 10% conversion) is found to be excellent with Ru and Rh being the most active pure transition metals for methane steam reforming, while Ni, Ir, Pt, and Pd...

  5. First-principles calculation of the polarization-dependent force driving the Eg mode in bismuth under optical excitation.

    Science.gov (United States)

    Murray, Eamonn; Fahy, Stephen

    2014-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c-axis is absorbed in bismuth, the distribution of excited electrons and holes breaks the three-fold rotational symmetry and leads to a net force on the atoms in the direction perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting transverse and longitudinal forces experienced by the atoms. Using the measured, temperature-dependent rate of decay of the transverse force[2], we predict the approximate amplitude of induced atomic motion in the Eg mode as a function of temperature and optical fluence. This work is supported by Science Foundation Ireland and a Marie Curie International Incoming Fellowship.

  6. THERMODYNAMIC MODELING AND FIRST-PRINCIPLES CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P; Abrikosov, I; Burton, B; Fries, S; Grimvall, G; Kaufman, L; Korzhavyi, P; Manga, R; Ohno, M; Pisch, A; Scott, A; Zhang, W

    2005-12-15

    The increased application of quantum mechanical-based methodologies to the study of alloy stability has required a re-assessment of the field. The focus is mainly on inorganic materials in the solid state. In a first part, after a brief overview of the so-called ab initio methods with their approximations, constraints, and limitations, recommendations are made for a good usage of first-principles codes with a set of qualifiers. Examples are given to illustrate the power and the limitations of ab initio codes. However, despite the ''success'' of these methodologies, thermodynamics of complex multi-component alloys, as used in engineering applications, requires a more versatile approach presently afforded within CALPHAD. Hence, in a second part, the links that presently exist between ab initio methodologies, experiments, and CALPHAD approach are examined with illustrations. Finally, the issues of dynamical instability and of the role of lattice vibrations that still constitute the subject of ample discussions within the CALPHAD community are revisited in the light of the current knowledge with a set of recommendations.

  7. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  8. First-principles calculation for the effect of hydrogen atoms on the mobility of a screw dislocation in BCC iron

    International Nuclear Information System (INIS)

    Itakura, Mitsuhiro; Kaburaki, Hideo; Yamaguchi, Masatake; Endo, Tatsuro; Higuchi, Kenji; Ogata, Shigenobu; Kimizuka, Hajime

    2012-01-01

    Effect of hydrogen atoms on the mobility of a screw dislocation in BCC iron has been evaluated using the first-principles calculation. The stable position of a hydrogen atom is found to be near the screw dislocation core and inside the core respectively when the dislocation is at the easy-core or hard-core configuration in BCC iron. The intrinsically unstable hard-core configuration of the screw dislocation is stabilized when a hydrogen atom is trapped inside the core. On the basis of this first-principles result, an elastic string model of a dislocation is developed to predict the kink motion in the presence of a hydrogen atom. It is found that a double-kink formation is facilitated when a hydrogen atom is located near a dislocation line, however, a kink motion is retarded when a hydrogen atom is behind the kink. (author)

  9. All-phosphorus flexible devices with non-collinear electrodes: a first principles study.

    Science.gov (United States)

    Li, Junjun; Ruan, Lufeng; Wu, Zewen; Zhang, Guiling; Wang, Yin

    2018-03-07

    With the continuous expansion of the family of two-dimensional (2D) materials, flexible electronics based on 2D materials have quickly emerged. Theoretically, predicting the transport properties of the flexible devices made up of 2D materials using first principles is of great importance. Using density functional theory combined with the non-equilibrium Green's function formalism, we calculated the transport properties of all-phosphorus flexible devices with non-collinear electrodes, and the results predicted that the device with compressed metallic phosphorene electrodes sandwiching a P-type semiconducting phosphorene shows a better and robust conducting behavior against the bending of the semiconducting region when the angle between the two electrodes is less than 45°, which indicates that this system is very promising for flexible electronics. The calculation of a quantum transport system with non-collinear electrodes demonstrated in this work will provide more interesting information on mesoscopic material systems and related devices.

  10. Lattice structures and electronic properties of MO/MoSe2 interface from first-principles calculations

    Science.gov (United States)

    Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min

    2015-02-01

    Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.

  11. First-principles calculation on the thermodynamic and elastic properties of precipitations in Al-Cu alloys

    Science.gov (United States)

    Sun, Dongqiang; Wang, Yongxin; Zhang, Xinyi; Zhang, Minyu; Niu, Yanfei

    2016-12-01

    First-principles calculations based on density functional theory was used to investigate the structural, thermodynamic and elastic properties of precipitations, θ″, θ‧ and θ, in Al-Cu alloys. The values of lattice constants accord with experimental results well. The structural stability of θ is the best, followed by θ‧ and θ″. In addition, due to the highest bulk modulus, shear modulus and Young's modulus, θ possesses the best reinforcement effect in precipitation hardening process considered only from mechanical properties of perfect crystal. According to the values of B/G, Poisson's ratio and C11-C12, θ‧ has the worst ductility, while θ″ has the best ductility, the ductility of θ is in the middle. The ideal tensile strength of θ″, θ‧ and θ calculated along [100] and [001] directions are 20.87 GPa, 23.11 GPa and 24.70 GPa respectively. The analysis of electronic structure suggests that three precipitations all exhibit metallic character, and number of bonding electrons and bonding strength are the nature of different thermodynamic and elastic properties for θ″, θ‧ and θ.

  12. First-principles calculations of the interaction between hydrogen and 3d alloying atom in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenguan, E-mail: liuwenguan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Qian, Yuan; Zhang, Dongxun [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Liu, Wei, E-mail: liuwei@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Han [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-10-15

    Knowledge of the behavior of hydrogen (H) in Ni-based alloy is essential for the prediction of Tritium behavior in Molten Salt Reactor. First-principles calculations were performed to investigate the interaction between H and 3d transition metal (TM) alloying atom in Ni-based alloy. H prefers the octahedral interstitial site to the tetrahedral interstitial site energetically. Most of the 3d TM elements (except Zn) attract H. The attraction to H in the Ni–TM–H system can be mainly attributed to the differences in electronegativity. With the large electronegativity, H and Ni gain electrons from the other TM elements, resulting in the enhanced Ni–H bonds which are the source of the attraction to H in the Ni–TM–H system. The obviously covalent-like Cr–H and Co–H bindings are also beneficial to the attraction to H. On the other hand, the repulsion to H in the Ni–Zn–H system is due to the stable electronic configuration of Zn. We mainly utilize the results calculated in 32-atom supercell which corresponds to the case of a relatively high concentration of hydrogen. Our results are in good agreement with the experimental ones.

  13. Study of phase equilibrium of Pu{sub 2}O{sub 3}-PuO{sub 2} system by the first-principles calculation and CALPHAD approach

    Energy Technology Data Exchange (ETDEWEB)

    Minamoto, Satoshi [ITOCHU Techno-Solutions Corporation, Kasumigaseki 3, Chiyoda-ku, Tokyo, Energy and Industrial Systems Department (Japan); Kato, Masato [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Konashi, Kenji, E-mail: satoshi.minamoto@ctc-g.co.jp, E-mail: masato.kato@jaea.go.jp, E-mail: konashi@imr.tohoku-u.ac.jp [Institute for Materials Research, Tohoku University, Oarai-chou, Ibaraki (Japan)

    2010-03-15

    A combination of a first-principles calculation, lattice dynamics and CALPHAD (CALculation of PHAse Diagrams) modeling is proven as a powerful tool so as to evaluate the Gibbs free energy and a phase equilibrium between compounds including large amount of vacancies. In this work, non-stoichiometric PuO{sub 2-x} (dioxide) and Pu{sub 2}O{sub 3} (sesquioxide) has been studied. An electron cohesive energy was evaluated from a first-principles calculations to estimate total energy of the compounds and a vacancy formation energy, and the theory of statistical mechanics was applied to evaluate enthalpy/entropy change due to oxygen vacancies for the non-stoichiometry of the PuO{sub 2} (i.e. PuO{sub 2-x}). Then a vacancy-vacancy interaction energy was determined by fitting to the experimental data of a quantity of non-stoichiometry of the PuO{sub 2} compounds as a function of oxygen potentials at large deviation from stoichiometry. The resulting Gibbs free energy yields phase boundary between the phases with good agreement with to the experimental data.

  14. On the possible role of robustness in the evolution of infectious diseases

    Science.gov (United States)

    Ogbunugafor, C. Brandon; Pease, James B.; Turner, Paul E.

    2010-06-01

    Robustness describes the capacity for a biological system to remain canalized despite perturbation. Genetic robustness affords maintenance of phenotype despite mutational input, necessarily involving the role of epistasis. Environmental robustness is phenotypic constancy in the face of environmental variation, where epistasis may be uninvolved. Here we discuss genetic and environmental robustness, from the standpoint of infectious disease evolution, and suggest that robustness may be a unifying principle for understanding how different disease agents evolve. We focus especially on viruses with RNA genomes due to their importance in the evolution of emerging diseases and as model systems to test robustness theory. We present new data on adaptive constraints for a model RNA virus challenged to evolve in response to UV radiation. We also draw attention to other infectious disease systems where robustness theory may prove useful for bridging evolutionary biology and biomedicine, especially the evolution of antibiotic resistance in bacteria, immune evasion by influenza, and malaria parasite infections.

  15. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    Science.gov (United States)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  16. Carbon Footprint Calculations: An Application of Chemical Principles

    Science.gov (United States)

    Treptow, Richard S.

    2010-01-01

    Topics commonly taught in a general chemistry course can be used to calculate the quantity of carbon dioxide emitted into the atmosphere by various human activities. Each calculation begins with the balanced chemical equation for the reaction that produces the CO[subscript 2] gas. Stoichiometry, thermochemistry, the ideal gas law, and dimensional…

  17. Imidazolium based ionic liquids. 1-Ethanol-3-methyl-imidazolium dicyanoamide: Thermochemical measurement and first-principles calculations

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Zaitsau, Dzmitry H.; Verevkin, Sergey P.; Heintz, Andreas

    2011-01-01

    Highlights: → We studied the ionic liquid 1-ethanol-3-methylimidazolium dicyanamide. → Combustion calorimetry was used to derive enthalpy of formation in the liquid state. → Composite G3(MP2) method used to compute enthalpy of formation in the gaseous phase. → Enthalpy of vaporization was derived as the difference. → The liquid phase enthalpy of formation presumably obey the group additivity rules. - Abstract: The standard molar enthalpy of formation Δ f H m o (l) of the ionic liquid 1-ethanol-3-methylimidazolium dicyanamide has been determined at 298.15 K by means of combustion calorimetry. First-principles calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the composite G3(MP2) method. The combination of combustion calorimetry with the high-level quantum-chemical calculations allows to estimate the molar enthalpy of vaporization of the ionic liquid under study. It has been established, that the liquid phase enthalpy of formation of this ionic liquid presumably obeys the group additivity rules.

  18. Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China); Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Beijing 102249 (China); Chen, Changfeng, E-mail: chen_c_f@163.com [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China); Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Beijing 102249 (China); Yu, Haobo [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China); Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/gas Facilities, China University of Petroleum (Beijing), Beijing 102249 (China); Lu, Guiwu [Department of Materials Science and Engineering, China University of Petroleum (Beijing), Beijing 102249 (China)

    2017-01-15

    Highlights: • The structures of water compact layer on Pt(111) at different temperature were calculated. • The feature of chemical bond between water molecules and Pt (111) surface was discussed with temperature increased. • Temperature dependence of electrical strengths and capacitances of compact layer on Pt (111) surface was calculated. - Abstract: Formation of the double-layer electric field and capacitance of the water-metal interface is of significant interest in physicochemical processes. In this study, we perform first- principles molecular dynamics simulations on the water/Pt(111) interface to investigate the temperature dependence of the compact layer electric field and capacitance based on the calculated charge densities. On the Pt (111) surface, water molecules form ice-like structures that exhibit more disorder along the height direction with increasing temperature. The O−H bonds of more water molecules point toward the Pt surface to form Pt−H covalent bonds with increasing temperature, which weaken the corresponding O−H bonds. In addition, our calculated capacitance at 300 K is 15.2 mF/cm{sup 2}, which is in good agreement with the experimental results. As the temperature increases from 10 to 450 K, the field strength and capacitance of the compact layer on Pt (111) first increase and then decrease slightly, which is significant for understanding the water/Pt interface from atomic level.

  19. Quantification of uncertainty in first-principles predicted mechanical properties of solids: Application to solid ion conductors

    Science.gov (United States)

    Ahmad, Zeeshan; Viswanathan, Venkatasubramanian

    2016-08-01

    Computationally-guided material discovery is being increasingly employed using a descriptor-based screening through the calculation of a few properties of interest. A precise understanding of the uncertainty associated with first-principles density functional theory calculated property values is important for the success of descriptor-based screening. The Bayesian error estimation approach has been built in to several recently developed exchange-correlation functionals, which allows an estimate of the uncertainty associated with properties related to the ground state energy, for example, adsorption energies. Here, we propose a robust and computationally efficient method for quantifying uncertainty in mechanical properties, which depend on the derivatives of the energy. The procedure involves calculating energies around the equilibrium cell volume with different strains and fitting the obtained energies to the corresponding energy-strain relationship. At each strain, we use instead of a single energy, an ensemble of energies, giving us an ensemble of fits and thereby, an ensemble of mechanical properties associated with each fit, whose spread can be used to quantify its uncertainty. The generation of ensemble of energies is only a post-processing step involving a perturbation of parameters of the exchange-correlation functional and solving for the energy non-self-consistently. The proposed method is computationally efficient and provides a more robust uncertainty estimate compared to the approach of self-consistent calculations employing several different exchange-correlation functionals. We demonstrate the method by calculating the uncertainty bounds for several materials belonging to different classes and having different structures using the developed method. We show that the calculated uncertainty bounds the property values obtained using three different GGA functionals: PBE, PBEsol, and RPBE. Finally, we apply the approach to calculate the uncertainty

  20. Role of anion doping on electronic structure and magnetism of GdN by first principles calculations

    KAUST Repository

    Zhang, Xuejing; Mi, Wenbo; Guo, Zaibing; Cheng, Yingchun; Chen, Guifeng; Bai, Haili

    2014-01-01

    We have investigated the electronic structure and magnetism of anion doped GdN1-yXy (X = B, C, O, F, P, S and As) systems by first-principles calculations based on density functional theory. GdN 1-yXy systems doped by O, C, F, P, and S atoms are more stable than those doped by B and As atoms because of relatively high binding energies. The anion doping and the N defect states modify the density of states at the Fermi level, resulting in a decrease in spin polarization and a slight increase in the magnetic moment at the Gd and N sites. © 2014 The Royal Society of Chemistry.

  1. Specific heat of MgB2 in a one- and a two-band model from first-principles calculations

    International Nuclear Information System (INIS)

    Golubov, A.A.; Dolgov, O.V.; Jepsen, O.; Kong, Y.; Andersen, O.K.; Gibson, B.J.; Ahn, K.; Kremer, R.K.; Kortus, J.

    2002-01-01

    The heat capacity anomaly at the transition to superconductivity of the layered superconductor MgB 2 is compared to first-principles calculations with the Coulomb repulsion, μ*, as the only parameter which is fixed to give the measured T c . We solve the Eliashberg equations for both an isotropic one-band model and a two-band model with different superconducting gaps on the π-band anσd-band Fermi surfaces. The agreement with experiments is considerably better for the two-band model than for the one-band model. (author)

  2. Phase equilibrium of PuO{sub 2-x} - Pu{sub 2}O{sub 3} based on first-principles calculations and configurational entropy change

    Energy Technology Data Exchange (ETDEWEB)

    Minamoto, Satoshi, E-mail: satoshi.minamoto@ctc-g.co.jp [ITOCHU Techno-Solutions Corporation, Kasumigaseki, 2-5, Kasumigaseki 3-chome, Chiyoda-ku, Tokyo 100-6080 (Japan); Kato, Masato [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Konashi, Kenji [Institute for Materials Research, Tohoku University, Oarai-chou, Ibaraki (Japan)

    2011-05-31

    Combination of an oxygen vacancy formation energy calculated using first-principles approach and the configurational entropy change treated within the framework of statistical mechanics gives an expression of the Gibbs free energy at large deviation from stoichiometry of plutonium oxide PuO{sub 2}. An oxygen vacancy formation energy 4.20 eV derived from our previously first-principles calculation was used to evaluate the Gibbs free energy change due to oxygen vacancies in the crystal. The oxygen partial pressures then can be evaluated from the change of the free energy with two fitting parameters (a vacancy-vacancy interaction energy and vibration entropy change due to induced vacancies). Derived thermodynamic expression for the free energy based on the SGTE thermodynamic data for the stoichiometric PuO{sub 2} and the Pu{sub 2}O{sub 3} compounds was further incorporated into the CALPHAD modeling, then phase equilibrium between the stoichiometric Pu{sub 2}O{sub 3} and non-stoichiometric PuO{sub 2-x} were reproduced.

  3. A survey of variational principles

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1993-01-01

    In this article survey of variational principles has been given. Variational principles play a significant role in mathematical theory with emphasis on the physical aspects. There are two principals used i.e. to represent the equation of the system in a succinct way and to enable a particular computation in the system to be carried out with greater accuracy. The survey of variational principles has ranged widely from its starting point in the Lagrange multiplier to optimisation principles. In an age of digital computation, these classic methods can be adapted to improve such calculations. We emphasize particularly the advantage of basic finite element methods on variational principles. (A.B.)

  4. First-principles calculations of a half-metallic ferromagnet zinc blende Zn{sub 1−x}V{sub x}Te

    Energy Technology Data Exchange (ETDEWEB)

    El Amine Monir, M.; Baltache, H. [Laboratoire de Physique Quantique de la Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique de la Modélisation Mathématique (LPQ3M), Université de Mascara, 29000 (Algeria); Murtaza, G. [Materials Modeling Laboratory, Department of Physics, Islamia College University, Peshawar (Pakistan); Azam, Sikander [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Bouhemadou, A. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University Setif 1, 19000 Setif (Algeria); Al-Douri, Y. [Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Bin Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Ali, Roshan [Materials Modeling Lab, Department of Physics, Post Graduate Jahanzeb College, Swat (Pakistan)

    2015-03-15

    First-principles calculations have been used to study the structural, elastic, electronic, magnetic and thermal properties of zinc blende Zn{sub 1−x}V{sub x}Te for x=0, 0.25, 0.50, 0.75 and 1 using the full-potential linearized augmented plane wave method (FP-LAPW) based on spin-polarized density functional theory (DFT). The electronic exchange-correlation potential is approached using the spin generalized gradient approximation (spin-GGA). The structural properties of the Zn{sub 1−x}V{sub x}Te alloys (x=0, 0.25, 0.50, 0.75 and 1) are given for the lattice constants and the bulk moduli and their pressure derivatives. The elastic constants C{sub 11}, C{sub 12} and C{sub 44} are calculated using numerical first-principles calculations implemented in the WIEN2k package. An analysis of the band structures and the densities of states reveals that Zn{sub 0.50}V{sub 0.50}Te and Zn{sub 0.75}V{sub 0.25}Te exhibit a half-metallic character, while Zn{sub 0.25}V{sub 0.75}Te is nearly half-metallic. The band structure calculations are used to estimate the spin-polarized splitting energies Δ{sub x}(d) and Δ{sub x}(pd) produced by the V(3d)-doped and s(p)–d exchange constants N{sub 0α} (conduction band) and N{sub 0β} (valence band). The p–d hybridization reduces the magnetic moment of V from its atomic charge value of 3µ{sub B} and creates small local magnetic moments on the nonmagnetic Zn and Te sites. Finally, we present the thermal effect on the macroscopic properties of these alloys, such as the thermal expansion coefficient, heat capacity and Debye temperature, based on the quasi-harmonic Debye model. - Highlights: • Some physical properties of Vanadium doped ZnTe have been investigated. • Structural parameters for the parent compounds compare well with the available data. • The elastic and thermal properties are studied for the first time.

  5. Financial Sector Assessment Program : Malaysia - IOSCO Objectives and Principles of Securities Regulation

    OpenAIRE

    World Bank; International Monetary Fund

    2013-01-01

    The Securities Commission Malaysia (SC), as the supervisor of the capital markets, has developed a robust supervisory framework that exhibits high levels of implementation of the International Organization of Securities Commissions Objectives and Principles of Securities Regulation (IOSCO Principles) in most areas. The SC's independence will be buttressed by some changes to the legal provi...

  6. Site preference and phase stability of Ti doping Ni–Mn–Ga shape memory alloys from first-principles calculations

    International Nuclear Information System (INIS)

    Gao, Zhiyong; Chen, Baishu; Meng, Xianglong; Cai, Wei

    2013-01-01

    Highlights: •Site preference and phase stability of NiMnGaTi are studied by first-principles. •The Ti atoms prefer to occupy the Ga sites in the Ni 2 MnGa austenitic phase. •The phase stability becomes worse when Ga is replaced by Ti. •The phase stability is discussed based on the densities of states. -- Abstract: The effects of Ti content on martensitic transformation and phase stability of Ni 50 Mn 25 Ga 25−x Ti x shape memory alloys were investigated from first-principles calculations based on density functional theory. The formation energy results indicate that the added Ti preferentially occupies the Ga sites in Ni 2 MnGa alloy due to the lowest formation energy. The total energy difference between austenite and martensite increases with Ti alloying, being relevant to the experimentally reported changes in martensitic transformation temperature. The phase stability of Ni 50 Mn 25 Ga 25−x Ti x austenite decreases with increasing Ti content, which results from the reduced Ni 3d–Mn 3d hybridization when Ga is replaced by Ti

  7. Hydrogen storage on graphene: First-principle calculations

    NARCIS (Netherlands)

    Boukhvalov, D.W.; Katsnelson, M.I.; Lichtenstein, A.I.

    2007-01-01

    Density functional calculations of electronic structure, total energy, structural distortions, and magnetism for hydrogenated single-layer, bilayer, and multi-layer graphene are performed. It is found that hydrogen-induced magnetism can survives only at very low concentrations of hydrogen

  8. Principle of natural and artificial radioactive series equivalency

    International Nuclear Information System (INIS)

    Vasilyeva, A.N.; Starkov, O.V.

    2001-01-01

    In the present paper one approach used under development of radioactive waste management conception is under consideration. This approach is based on the principle of natural and artificial radioactive series radiotoxic equivalency. The radioactivity of natural and artificial radioactive series has been calculated for 10 9 - years period. The toxicity evaluation for natural and artificial series has also been made. The correlation between natural radioactive series and their predecessors - actinides produced in thermal and fast reactors - has been considered. It has been shown that systematized reactor series data had great scientific significance and the principle of differential calculation of radiotoxicity was necessary to realize long-lived radioactive waste and uranium and thorium ore radiotoxicity equivalency conception. The calculations show that the execution of equivalency principle is possible for uranium series (4n+2, 4n+1). It is a problem for thorium. series. This principle is impracticable for neptunium series. (author)

  9. Electronic and optical properties of new multifunctional materials via half-substituted hematite: First principles calculations

    KAUST Repository

    Yang, Hua

    2012-01-01

    Electronic structure and optical properties of α-FeMO 3 systems (M = Sc, Ti, V, Cr, Cu, Cd or In) have been investigated using first principles calculations. All of the FeMO 3 systems have a large net magnetic moment. The ground state of pure α-Fe 2O 3 is an antiferromagnetic insulator. For M = Cu or Cd, the systems are half-metallic. Strong absorption in the visible region can be observed in the Cu and Cd-doped systems. Systems with M = Sc, Ti, V, Cr or In are not half-metallic and are insulators. The strongest peaks shift toward shorter wavelengths in the absorption spectra. It is concluded that transition metal doping can modify the electronic structure and optical properties of α-FeMO 3 systems. This journal is © 2012 The Royal Society of Chemistry.

  10. A perfect wetting of Mg monolayer on Ag(111) under atomic scale investigation: First principles calculations, scanning tunneling microscopy, and Auger spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Migaou, Amani; Guiltat, Mathilde; Payen, Kevin; Landa, Georges; Hémeryck, Anne, E-mail: anne.hemeryck@laas.fr [LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse (France); Sarpi, Brice; Daineche, Rachid; Vizzini, Sébastien [Aix Marseille University, IM2NP, Fac Sci St. Jérôme, F-13397 Marseille (France)

    2016-05-21

    First principles calculations, scanning tunneling microscopy, and Auger spectroscopy experiments of the adsorption of Mg on Ag(111) substrate are conducted. This detailed study reveals that an atomic scale controlled deposition of a metallic Mg monolayer perfectly wets the silver substrate without any alloy formation at the interface at room temperature. A liquid-like behavior of the Mg species on the Ag substrate is highlighted as no dot formation is observed when coverage increases. Finally a layer-by-layer growth mode of Mg on Ag(111) can be predicted, thanks to density functional theory calculations as observed experimentally.

  11. First principles calculations for liquids and solids using maximally localized Wannier functions

    Science.gov (United States)

    Swartz, Charles W., VI

    The field of condensed matter computational physics has seen an explosion of applicability over the last 50+ years. Since the very first calculations with ENIAC and MANIAC the field has continued to pushed the boundaries of what is possible; from the first large-scale molecular dynamics simulation, to the implementation of Density Functional Theory and large scale Car-Parrinello molecular dynamics, to million-core turbulence calculations by Standford. These milestones represent not only technological advances but theoretical breakthroughs and algorithmic improvements as well. The work in this thesis was completed in the hopes of furthering such advancement, even by a small fraction. Here we will focus mainly on the calculation of electronic and structural properties of solids and liquids, where we shall implement a wide range of novel approaches that are both computational efficient and physically enlightening. To this end we routinely will work with maximally localized Wannier functions (MLWFs) which have recently seen a revival in mainstream scientific literature. MLWFs present us with interesting opportunity to calculate a localized orbital within the planewave formalism of atomistic simulations. Such a localization will prove to be invaluable in the construction of layer-based superlattice models, linear scaling hybrid functional schemes and model quasiparticle calculations. In the first application of MLWF we will look at modeling functional piezoelectricity in superlattices. Based on the locality principle of insulating superlattices, we apply the method of Wu et al to the piezoelectric strains of individual layers under iifixed displacement field. For a superlattice of arbitrary stacking sequence an accurate model is acquired for predicting piezoelectricity. By applying the model in the superlattices where ferroelectric and antiferrodistortive modes are in competition, functional piezoelectricity can be achieved. A strong nonlinear effect is observed and can

  12. A first principles calculations of structural, electronic, magnetic and dynamical properties of mononitrides FeN and CoN

    International Nuclear Information System (INIS)

    Soni, Himadri R.; Mankad, Venu; Gupta, Sanjeev K.; Jha, Prafulla K.

    2012-01-01

    Highlights: ► We present spin dependent bandstructure, structural and magnetic moment of FeN/CoN. ► The PDC, PHDOS, spin effect on phonons suggests ZB is preferred at ambient pressure. ► Spin calculation offers an opportunity to understand the role of spin on phonons. - Abstract: Using first principles density functional theoretical calculations, the present paper reports a systematic nonspin and spin polarized total energy calculations of the lattice dynamical and a number of other properties such as band structure, structural and magnetic moment of two mononitrides FeN and CoN. The phonon dispersion curves and phonon density of states in the case of FeN and CoN have been determined for the first time and discussed. The structural and dynamical calculations suggest that the zinc blende structure is preferred at ambient pressure for both compounds. The rocksalt FeN has a nonzero magnetic moment while for FeN in zinc blende phase, it is either zero or very small. The zinc blende phase for both compounds is nonmagnetic. The spin calculation offers an intensive opportunity to understand the role of spin on the phonon properties of two mononitrides. Majority of the modes are sensitive to the effect of spin due to the modification of lattice constant. In this work we reveal that spin modifies the interionic interactions and local structure and leads to a flexible lattice which can be used for the functional materials design.

  13. High-performance thermal sensitive W-doped VO{sub 2}(B) thin film and its identification by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Dongyun; Xiong, Ping; Chen, Lanli [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Shi, Siqi, E-mail: sqshi@shu.edu.cn [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Ishaq, Ahmad [National Center for Physics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Luo, Hongjie [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Gao, Yanfeng, E-mail: yfgao@shu.edu.cn [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China)

    2017-03-01

    Graphical abstract: VO{sub 2}(B) thin films with high TCR and suitable resistance were first achieved by W doping. The mechanism for performance improvement was studied by first-principles calculations. The two-dimensional octahedral structure of VO{sub 2}(B) favors the strain control with W-doping for achieving a large TCR, which overcomes the contradiction between the high conductivity and large TCR generated by dopants in VO{sub 2}(M). - Highlights: • High performance W-doped VO{sub 2}(B) thin films were first achieved by co-sputtering. • Mechanism for performance improvement was studied by first-principles calculations. • The two-dimensional octahedral structure of VO{sub 2} (B) favors the strain control. • Achieved VO{sub 2} films possess high thermal sensitivity (TCR: −3.9%/K & R{sub 0}: 32.7 kΩ). - Abstract: VO{sub 2}(B) is currently a preferred phase structure for the application as bolometer material, which, however, suffers from low temperature-coefficient-of-resistance (TCR) values and large resistances. Here we present the combined experimental and first-principles calculations study on both doped and undoped VO{sub 2}(B) thin films enabling us to attain high TCR (−3.9%/k) and suitable square-resistance (32.7 kΩ) by controlled W doping employing the widely used magnetron sputtering technique. The TCR value is 50% larger than reported ones at the similar resistance. The underlying microscopic mechanism for the performance improvement was studied and results indicated that the introduction of extra electrons and the variation in the band structure resulting from the incorporation of W{sup 6+} ions in the VO{sub 2}(B) crystal lattice contribute to the enhancement of the electronic conductivity. Moreover, the special two-dimensional octahedral structure of monoclinic (C2/m) B-phase VO{sub 2} favors the strain control with W-doping for achieving a large TCR, which overcomes the analogous predicament between the high conductivity and large TCR

  14. Review of high pressure phases of calcium by first-principles calculations

    Science.gov (United States)

    Ishikawa, T.; Nagara, H.; Suzuki, N.; Tsuchiya, J.; Tsuchiya, T.

    2010-03-01

    We review high pressure phases of calcium which have obtained by recent experimental and first-principles studies. In this study, we investigated the face-centered cubic (fcc) structure, the body-centered cubic (bcc) structure, the simple cubic (sc) structure, a tetragonal P43212 [Ishikawa T et al. 2008 Phys. Rev. B 77 020101(R)], an orthorhombic Cmca [Ishikawa T et al. 2008 Phys. Rev. B 77 020101(R)], an orthorhombic Cmcm [Teweldeberhan A M and Bonev S A 2008 Phys. Rev. B 78 140101(R)], an orthorhombic Pnma [Yao Y et al. 2008 Phys. Rev. B 78 054506] and a tetragonal I4/mcm(00) [Arapan S et al. 2008 Proc. Natl. Acad. Sci. USA 105 20627]. We compared the enthalpies among the structures up to 200 GPa and theoretically determined the phase diagram of calcium. The sequence of the structural transitions is fcc (0- 3.5 GPa) → bcc (3.5 - 35.7 GPa) → Cmcm (35.7- 52GPa) → P43212 (52-109 GPa) → Cmca (109-117.4GPa) → Pnma (117.4-134.6GPa) → I4/mcm(00) (134.6 GPa -). The sc phase is experimentally observed in the pressure range from 32 to 113 GPa but, in our calculation, there is no pressure region where the sc phase is the most stable. In addition, we found that the enthalpy of the hexagonal close-packed (hcp) structure is lower than that of I4/mcm(00) above 495 GPa.

  15. Robustness of public choice models of voting behavior

    Directory of Open Access Journals (Sweden)

    Mihai UNGUREANU

    2013-05-01

    Full Text Available Modern economics modeling practice involves highly unrealistic assumptions. Since testing such models is not always an easy enterprise, researchers face the problem of determining whether a result is dependent (or not on the unrealistic details of the model. A solution for this problem is conducting robustness analysis. In its classical form, robustness analysis is a non-empirical method of confirmation – it raises our trust in a given result by implying it with from several different models. In this paper I argue that robustness analysis could be thought as a method of post-empirical failure. This form of robustness analysis involves assigning guilt for the empirical failure to a certain part of the model. Starting from this notion of robustness, I analyze a case of empirical failure from public choice theory or the economic approach of politics. Using the fundamental methodological principles of neoclassical economics, the first model of voting behavior implied that almost no one would vote. This was clearly an empirical failure. Public choice scholars faced the problem of either restraining the domain of their discipline or giving up to some of their neoclassical methodological features. The second solution was chosen and several different models of voting behavior were built. I will treat these models as a case for performing robustness analysis and I will determine which assumption from the original model is guilty for the empirical failure.

  16. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis

    OpenAIRE

    Ong, Shyue Ping; Richards, William Davidson; Jain, Anubhav; Hautier, Geoffroy; Kocher, Michael; Cholia, Shreyas; Gunter, Dan; Chevrier, Vincent L.; Persson, Kristin A.; Ceder, Gerbrand

    2012-01-01

    We present the Python Materials Genomics (pymatgen) library, a robust, open-source Python library for materials analysis. A key enabler in high-throughput computational materials science efforts is a robust set of software tools to perform initial setup for the calculations (e.g., generation of structures and necessary input files) and post-calculation analysis to derive useful material properties from raw calculated data. The pymatgen library aims to meet these needs by (1) defining core Pyt...

  17. Structural, mechanical and electronic properties of OsTM and TMOs{sub 2} (TM = Ti, Zr and Hf): First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi-Jun, E-mail: qijunliu@home.swjtu.edu.cn [Bond and Band Engineering Group, Institute of High Temperature and High Pressure Physics, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhang, Ning-Chao; Liu, Fu-Sheng [Bond and Band Engineering Group, Institute of High Temperature and High Pressure Physics, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liu, Zheng-Tang [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072 (China)

    2014-03-15

    Highlights: • OsTM and TMOs{sub 2} compounds have no superhard character. • These compounds are mechanically stable and behave in ductile manner. • OsTM has a mixture of covalent-ionic and metallic character. -- Abstract: The first-principles calculations have been performed to study the structural, elastic, mechanical and electronic properties of cubic OsTM (TM = Ti, Zr, and Hf) and hexagonal TMOs{sub 2} compounds. The calculated structural parameters are in good agreement with the available experimental data. To the best of our knowledge, the elastic constants of OsTM and TMOs{sub 2} compounds have been obtained for the first time. The calculated elastic and mechanical properties show that these compounds have no superhard character. These compounds are mechanically stable and behave in ductile manner. The electronic band structures and densities of states of OsTM and TMOs{sub 2} compounds have been analysed. OsTM has a mixture of covalent-ionic and metallic character, and TMOs{sub 2} has strong metallic nature.

  18. First-principles calculations of vacancy effects on structural and electronic properties of TiCx and TiNx

    International Nuclear Information System (INIS)

    Dridi, Z.; Bouhafs, B.; Ruterana, P.; Aourag, H.

    2002-01-01

    First-principles calculations have been used to study the effect of vacancies on the structural and electronic properties in substoichiometric TiC x and TiN x . The effect of vacancies on equilibrium volumes, bulk moduli, electronic band structures and density of states of the substoichiometric phases was studied using a full-potential linear augmented plane-wave method. A model structure of eight-atom supercells with ordered vacancies within the carbon and nitrogen sublattices is used. We find that the lattice parameters of the studied stoichiometries in both TiC x and TiN x are smaller than that of ideal stoichiometric TiC and TiN. Our results for the variation of the lattice parameters and the bulk moduli for TiC x are found to be in good agreement with experiment. The variation of the energy gaps with the atomic concentration ratio shows that these compounds present the same trends. Results for TiC x are compared to a recent full-potential calculation with relaxed 16-atom supercells

  19. 两种渐消滤波与自适应抗差滤波的综合比较分析%Comparison of Two Fading Filters and Adaptively Robust Filter

    Institute of Scientific and Technical Information of China (English)

    杨元喜; 高为广

    2007-01-01

    Two kinds of fading filters and their principles are introduced. An adaptive robust filter is given with corresponding principle. The basic abilities of the fading filters and adaptively robust filter in controlling the influences of the kinematic model errors are analyzed. A practical example is given. The results of the fading filter and adaptively robust filter are compared and analyzed.

  20. Site preference and elastic properties of ternary alloying additions in B2 YAg alloys by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yurong, E-mail: winwyr@126.com [College of Electromechanical Engineering, Hunan University of Science and Technology, Xiantang 411201 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China); Xu Longshan [Department of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China)

    2012-09-15

    First-principles calculations were preformed to study the site preference behavior and elastic properties of 3d (Ti-Cu) transition-metal elements in B2 ductility YAg alloy. In YAg, Ti is found to occupy the Y sublattice whereas V, Cr, Co, Fe, Ni and Cu tend to substitute for Ag sublattice. Due to the addition of 3d transition metals, the lattice parameters of YAg is decreased in the order: Vcalculated elastic constants show that Cr, Fe, Co and Cu can improve the ductility of YAg alloy, and Fe is the most effective element to improve the ductility of YAg, while Ti, Ni and V alloying elements can reduce the ductility of YAg alloy, especially, V transforms ductile into brittle for YAg alloy. In addition, both V and Ni alloying elements can increase the hardness of YAg alloy, and Y{sub 8}Ag{sub 7}V is harder than Y{sub 8}Ag{sub 7}Ni.

  1. Significance and principles of the calculation of the effective dose equivalent for radiological protection of personnel and patients

    International Nuclear Information System (INIS)

    Drexler, G.; Williams, G.

    1985-01-01

    The application of the effective dose equivalent, Hsub(E), concept for radiological protection assessments of occupationally exposed persons is justifiable by the practicability thus achieved with regard to the limiting principles. Nevertheless, it would be proper logic to further use as the basic limiting quantity the real physical dose equivalent of homogeneous whole-body exposure, and for inhomogeneous whole-body irradiation the Hsub(E) value, calculated by means of the concept of the effective dose equivalent. For then the required concepts, models and calculations would not be connected with a basic radiation protection quantity. Application of the effective dose equivalent for radiation protection assessments for patients is misleading and is not practical with regard to assessing an individual or collective radiation risk of patients. The quantity of expected harm would be better suited to this purpose. There is no need to express the radiation risk by a dose quantity, which means careless handling of good information. (orig./WU) [de

  2. Robustness of holonomic quantum gates

    International Nuclear Information System (INIS)

    Solinas, P.; Zanardi, P.; Zanghi, N.

    2005-01-01

    Full text: If the driving field fluctuates during the quantum evolution this produces errors in the applied operator. The holonomic (and geometrical) quantum gates are believed to be robust against some kind of noise. Because of the geometrical dependence of the holonomic operators can be robust against this kind of noise; in fact if the fluctuations are fast enough they cancel out leaving the final operator unchanged. I present the numerical studies of holonomic quantum gates subject to this parametric noise, the fidelity of the noise and ideal evolution is calculated for different noise correlation times. The holonomic quantum gates seem robust not only for fast fluctuating fields but also for slow fluctuating fields. These results can be explained as due to the geometrical feature of the holonomic operator: for fast fluctuating fields the fluctuations are canceled out, for slow fluctuating fields the fluctuations do not perturb the loop in the parameter space. (author)

  3. Rigorous force field optimization principles based on statistical distance minimization

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas, E-mail: vlcekl1@ornl.gov [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States); Joint Institute for Computational Sciences, University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6173 (United States); Chialvo, Ariel A. [Chemical Sciences Division, Geochemistry & Interfacial Sciences Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110 (United States)

    2015-10-14

    We use the concept of statistical distance to define a measure of distinguishability between a pair of statistical mechanical systems, i.e., a model and its target, and show that its minimization leads to general convergence of the model’s static measurable properties to those of the target. We exploit this feature to define a rigorous basis for the development of accurate and robust effective molecular force fields that are inherently compatible with coarse-grained experimental data. The new model optimization principles and their efficient implementation are illustrated through selected examples, whose outcome demonstrates the higher robustness and predictive accuracy of the approach compared to other currently used methods, such as force matching and relative entropy minimization. We also discuss relations between the newly developed principles and established thermodynamic concepts, which include the Gibbs-Bogoliubov inequality and the thermodynamic length.

  4. Strong enhancement of piezoelectric constants in ScxAl1−xN: First-principles calculations

    Directory of Open Access Journals (Sweden)

    Hiroyoshi Momida

    2016-06-01

    Full Text Available We theoretically investigate the piezoelectricity of ScxAl1−xN in the entire range of x by first-principles calculations. We find that the piezoelectric constants of wurtzite-type ScxAl1−xN significantly enhance as x increases from 0 to 0.75. However, the energy stability analyses between structure phases show that the cubic-type phases become more stable than the wurtzite-type phases at x of approximately 0.5 and higher, interfering with the ability of wurtzite-type ScxAl1−xN to realize the maximum piezoelectricity. Moreover, our study on element combination dependences on piezoelectricity in A0.5B0.5N (A = Sc, Y, La and B = Al, Ga, In indicates that Sc, Y, and La have the strongest effect on the enhancement of piezoelectric constants in AlN, GaN, and InN, respectively.

  5. Timing robustness in the budding and fission yeast cell cycles.

    KAUST Repository

    Mangla, Karan

    2010-02-01

    Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness to variations in timing that result from noise and different environmental conditions. We checked previously published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by constructing Boolean models and analyzing them using model-checking software for the property of speed independence. Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional, providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for generating testable hypotheses and can focus attention on aspects of a model that may need refinement.

  6. First principles calculation of point defects and mobility degradation in bulk AlSb for radiation detection application

    International Nuclear Information System (INIS)

    Lordi, V; Aberg, D; Erhart, P; Wu, K J

    2007-01-01

    The development of high resolution, room temperature semiconductor radiation detectors requires the introduction of materials with increased carrier mobility-lifetime (μτ) product, while having a band gap in the 1.4-2.2 eV range. AlSb is a promising material for this application. However, systematic improvements in the material quality are necessary to achieve an adequate μτ product. We are using a combination of simulation and experiment to develop a fundamental understanding of the factors which affect detector material quality. First principles calculations are used to study the microscopic mechanisms of mobility degradation from point defects and to calculate the intrinsic limit of mobility from phonon scattering. We use density functional theory (DFT) to calculate the formation energies of native and impurity point defects, to determine their equilibrium concentrations as a function of temperature and charge state. Perturbation theory via the Born approximation is coupled with Boltzmann transport theory to calculate the contribution toward mobility degradation of each type of point defect, using DFT-computed carrier scattering rates. A comparison is made to measured carrier concentrations and mobilities from AlSb crystals grown in our lab. We find our predictions in good quantitative agreement with experiment, allowing optimized annealing conditions to be deduced. A major result is the determination of oxygen impurity as a severe mobility killer, despite the ability of oxygen to compensation dope AlSb and reduce the net carrier concentration. In this case, increased resistivity is not a good indicator of improved material performance, due to the concomitant sharp reduction in μτ

  7. Structural, electronic, elastic and thermal properties of Li{sub 2}AgSb. First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ji-Hong [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Longdong Univ., Qingyang (China). College of Physics and Electronic Engineering; Zhu, Xu-Hui [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Laboratory of High Energy Density Physics and Technology of Ministry of Education; Ji, Guang-Fu [Chinese Academy of Engineering Physics, Mianyang (China). National Key Laboratory of Shock Wave and Detonation Physics

    2015-07-01

    Based on the first-principles density functional theory calculations combined with the quasi-harmonic Debye model, the pressure dependencies of the structural, elastic, electronic and thermal properties of Li{sub 2}AgSb were systematically investigated. The calculated lattice parameters and unit cell volume of Li{sub 2}AgSb at the ground state were in good agreement with the available experimental data. The obtained elastic constants, the bulk modulus and the shear modulus revealed that Li{sub 2}AgSb is mechanically stable and behaves in a ductile manner under the applied pressure. The elasticity-relevant properties, the Young's modulus and the Poisson's ratio showed that pressure can enhance the stiffness of Li{sub 2}AgSb and that Li{sub 2}AgSb is mechanically stable up to 20 GPa. The characteristics of the band structure and the partial density of states of Li{sub 2}AgSb were analysed, showing that Li{sub 2}AgSb is a semiconductor with a direct band gap of 217 meV at 0 GPa and that the increasing pressure can make the band structure of Li{sub 2}AgSb become an indirect one. Studies have shown that, unlike temperature, pressure has little effect on the heat capacity and the thermal expansion coefficient of Li{sub 2}AgSb.

  8. Robust Economic Control Decision Method of Uncertain System on Urban Domestic Water Supply.

    Science.gov (United States)

    Li, Kebai; Ma, Tianyi; Wei, Guo

    2018-03-31

    As China quickly urbanizes, urban domestic water generally presents the circumstances of both rising tendency and seasonal cycle fluctuation. A robust economic control decision method for dynamic uncertain systems is proposed in this paper. It is developed based on the internal model principle and pole allocation method, and it is applied to an urban domestic water supply system with rising tendency and seasonal cycle fluctuation. To achieve this goal, first a multiplicative model is used to describe the urban domestic water demand. Then, a capital stock and a labor stock are selected as the state vector, and the investment and labor are designed as the control vector. Next, the compensator subsystem is devised in light of the internal model principle. Finally, by using the state feedback control strategy and pole allocation method, the multivariable robust economic control decision method is implemented. The implementation with this model can accomplish the urban domestic water supply control goal, with the robustness for the variation of parameters. The methodology presented in this study may be applied to the water management system in other parts of the world, provided all data used in this study are available. The robust control decision method in this paper is also applicable to deal with tracking control problems as well as stabilization control problems of other general dynamic uncertain systems.

  9. Theoretical investigations on the α-LiAlO{sub 2} properties via first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Sheng-Gui [Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu (China); Gao, Tao, E-mail: gaotao@scu.edu.cn [Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu, 610064 (China); Li, Shi-Chang; Ma, Xi-Jun; Shen, Yan-Hong [Institute of Atomic and Molecular Physics, Sichuan University, 610065, Chengdu (China); Lu, Tie-Cheng, E-mail: lutiecheng@scu.edu.cn [Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu, 610064 (China); College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China)

    2016-12-15

    Highlights: • Our calculation indicates that the α-LiAlO{sub 2} is an indirect band gap insulator of 6.319 eV. • The mechanical properties of α-LiAlO{sub 2} are predicted. • The complete phonon frequencies of α-LiAlO{sub 2} at gamma point for the infrared and Raman modes are assigned which to distinguish the α-LiAlO{sub 2} and γ-LiAlO{sub 2} in ITER and in MCFC. - Abstract: The physical properties including the structural, electronic, mechanical, lattice dynamical and thermodynamic properties of α-LiAlO{sub 2} are investigated using first-principles calculation. It is found that α-LiAlO{sub 2} is an insulator with an indirect gap of 6.319 eV according to band structure and density of states. The elastic constants are obtained and the results indicate that α-LiAlO{sub 2} is mechanically stable. The mechanical properties including bulk modulus (B), shear modulus (G), Young’s modulus (E), Poisson’s ratio (υ) are predicted with the value of 147.0 GPa, 105.2 GPa, 254.8 GPa and 0.211, respectively. The phonon dispersion curves and the phonon density of states are also calculated. The calculated phonon frequencies for the Raman-active and the infrared-active modes considering the LO-TO splitting are assigned. The two Raman active frequencies are 407.0 cm{sup −1} of E{sub g} mode and 628.8 cm{sup −1} of A{sub 1g} mode, and show satisfactory agreement with experiment. The thermodynamic functions such as ΔF, ΔE, C{sub V} and S is predicted by using the phonon density of states. These results provide valuable information for further insight into the properties of α-LiAlO{sub 2} in atomic scales, which is strategically important in ITER and in molten carbonate fuel cells (MCFC).

  10. Construction of the Al-Ni-Si phase diagram over the whole composition and temperature ranges: thermodynamic modeling supported by key experiments and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Wei; Du Yong; Wang Jiong; Zhang Wei-Wei [State Key Lab. of Powder Metallurgy, Central South Univ., Changsha (China); Hu Rong-Xiang; Nash, P. [Thermal Processing Technology Center, Illinois Inst. of Tech., Chicago (United States); Lu Xiao-Gang [Thermo-Calc AB, Stockholm Technology Park, Stockholm (Sweden)

    2008-06-15

    An extensive thermodynamic investigation of the Al-Ni-Si system is carried out via an integrated approach of calculation of phase diagrams, first-principles calculations, and key experiments. Eighteen decisive alloys are prepared in order to verify the existence of the previously reported ternary compounds and to provide new phase equilibrium data. Phase compositions, microstructure, and phase transition temperatures are determined using the combined techniques of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray analysis, and differential thermal analysis. The order/disorder transition between disordered bccA2 and ordered bccB2 phases as well as that between disordered fccA1 and ordered L1{sub 2} phase are described using a two-sublattice model. A self-consistent parameter set is finally obtained by considering the huge amount of experimental data including 13 vertical sections and 5 isothermal sections from both the literature and the present experiments. Almost all of the reliable phase diagram data can be well described by the present modeling. The reliability of the calculated thermodynamic properties for ternary phases is verified through enthalpy measurement employing drop calorimetry and first-principles calculations. The thermodynamic parameters obtained can also successfully predict most of the thermodynamic properties and describe the solidification path for the selected as-cast alloy Al{sub 6}Ni{sub 55}Si{sub 39}. (orig.)

  11. Review of high pressure phases of calcium by first-principles calculations

    International Nuclear Information System (INIS)

    Ishikawa, T; Tsuchiya, T; Nagara, H; Suzuki, N; Tsuchiya, J

    2010-01-01

    We review high pressure phases of calcium which have obtained by recent experimental and first-principles studies. In this study, we investigated the face-centered cubic (fcc) structure, the body-centered cubic (bcc) structure, the simple cubic (sc) structure, a tetragonal P4 3 2 1 2 [Ishikawa T et al. 2008 Phys. Rev. B 77 020101(R)], an orthorhombic Cmca [Ishikawa T et al. 2008 Phys. Rev. B 77 020101(R)], an orthorhombic Cmcm [Teweldeberhan A M and Bonev S A 2008 Phys. Rev. B 78 140101(R)], an orthorhombic Pnma [Yao Y et al. 2008 Phys. Rev. B 78 054506] and a tetragonal I4/mcm [Arapan S et al. 2008 Proc. Natl. Acad. Sci. USA 105 20627]. We compared the enthalpies among the structures up to 200 GPa and theoretically determined the phase diagram of calcium. The sequence of the structural transitions is fcc (0- 3.5 GPa) → bcc (3.5 - 35.7 GPa) → Cmcm (35.7- 52GPa) → P4 3 2 1 2 (52-109 GPa) → Cmca (109-117.4GPa) → Pnma (117.4-134.6GPa) → I4mcm(134.6 GPa -). The sc phase is experimentally observed in the pressure range from 32 to 113 GPa but, in our calculation, there is no pressure region where the sc phase is the most stable. In addition, we found that the enthalpy of the hexagonal close-packed (hcp) structure is lower than that of I4/mcm above 495 GPa.

  12. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yong; Evans, James W. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA and Ames Laboratory—U.S. Department of Energy, Iowa State University, Ames, Iowa 50011 (United States)

    2015-10-28

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C{sub 6}-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ∼0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. This in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001)

  13. ROBUST CYLINDER FITTING IN THREE-DIMENSIONAL POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    A. Nurunnabi

    2017-05-01

    Full Text Available This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD. Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete data, as street poles for example are only scanned from the road. Moreover, existence of outliers is common. Outliers may occur as random or systematic errors, and may be scattered and/or clustered. In this paper, we present a statistically robust cylinder fitting algorithm for PCD that combines Robust Principal Component Analysis (RPCA with robust regression. Robust principal components as obtained by RPCA allow estimating cylinder directions more accurately, and an existing efficient circle fitting algorithm following robust regression principles, properly fit cylinder. We demonstrate the performance of the proposed method on artificial and real PCD. Results show that the proposed method provides more accurate and robust results: (i in the presence of noise and high percentage of outliers, (ii for incomplete as well as complete data, (iii for small and large number of points, and (iv for different sizes of radius. On 1000 simulated quarter cylinders of 1m radius with 10% outliers a PCA based method fit cylinders with a radius of on average 3.63 meter (m; the proposed method on the other hand fit cylinders of on average 1.02 m radius. The algorithm has potential in applications such as fitting cylindrical (e.g., light and traffic poles, diameter at breast height estimation for trees, and building and bridge information modelling.

  14. EPR parameters of E centers inν-SiO2 from first-principles calculations

    International Nuclear Information System (INIS)

    Giacomazzi, Luigi; Martin-Samos, L.; Boukenter, A.; Ouerdane, Y.; Girard, S.; Richard, N.

    2014-01-01

    A first-principles investigation of E' centers in vitreous silica (ν-SiO 2 ) based on calculations of the electron paramagnetic resonance (EPR) parameters is presented. The EPR parameters are obtained by exploiting the gauge including projector augmented wave method as implemented in the QUANTUM-ESPRESSO package. First, we analyze the EPR parameters of a large number of Si 2 dimers. The g tensor of the Si 2 dimers is shown to possess an average rhombic symmetry and larger g principal values with respect to those observed, e.g., for the E 'γ center in silica. Furthermore, the g principal values clearly show a linear trend with the Si-Si dimer length. Our results suggest that the Si 2 dimers could correspond to an unidentified paramagnetic center, though occasionally the calculated g principal values of the Si 2 dimer might be compatible with those found experimentally for the E' δ center. Next, we generate non dimer configurations by a procedure involving structural relaxations in the subsequent positively charged states. In particular, puckered, un-puckered, doubly puckered, and forward-oriented configurations are generated. The distributions of the calculated EPR parameters of the puckered and un-puckered configurations further support the assignment of the E' γ center to an unpaired spin localized at a threefold coordinated silicon dangling bond. Moreover, by analyzing Fermi contacts and g tensors of the puckered and forward-oriented configurations, we suggest the assignment of the E' α center to the latter type of configurations. This work also suggests that the differences in the EPR parameters of E' α and E' γ centers mainly arise from the strained geometry of the silicon dangling bond. In the forward-oriented configurations, one Si-O bond is about 0.2 Angstroms longer than the remaining two, whereas in the silicon dangling bond of the puckered and un-puckered configurations, all three bonds have a length of ≅1

  15. Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization

    Science.gov (United States)

    Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao

    2015-11-01

    Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV , which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.

  16. Structural studies of TiC1−xOx solid solution by Rietveld refinement and first-principles calculations

    International Nuclear Information System (INIS)

    Jiang, Bo; Hou, Na; Huang, Shanyan; Zhou, Gege; Hou, Jungang; Cao, Zhanmin; Zhu, Hongmin

    2013-01-01

    The lattice parameters, structural stability and electronic structure of titanium oxycarbides (TiC 1−x O x , 0≤x≤1) solid solution were investigated by Rietveld refinement and first-principles calculations. Series of TiC 1−x O x were precisely synthesized by sintering process under the vacuum. Rietveld refinement results of XRD patterns show the properties of continuous solid solution in TiC 1−x O x over the whole composition range. The lattice parameters vary from 0.4324 nm to 0.4194 nm decreasing with increasing oxygen concentration. Results of first-principles calculations reveal that the disorder C/O structure is stable than the order C/O structure. Further investigations of the vacancy in Ti 1−Va (C 1−x O x ) 1−Va solid solution present that the structure of vacancy segregated in TiO-part is more stable than the disorder C/O structure, which can be ascribed to the Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy via the analysis of the electron density difference plots and PDOS. - Graphical abstract: XRD of series of titanium oxycarbides (TiC 1−x O x , 0≤x≤1) solid solution prepared by adjusting the proportion of TiO in the starting material. Highlights: • Titanium oxycarbides were obtained by sintering TiO and TiC under carefully controlled conditions. • Rietveld refinement results show continuous solid solution with FCC structure in TiC 1−x O x . • The disorder C/O structure is stable than the order C/O structure. • Introduction of vacancy segregated in TiO-part is more stable than disorder C/O structure. • Ti–Ti bond across O-vacancy and the charge redistributed around Ti-vacancy enhance structural stability

  17. Deformation Modes and Anisotropy of Anti-Perovskite Ti3AN (A = Al, In and Tl from First-Principle Calculations

    Directory of Open Access Journals (Sweden)

    Kuankuan Chen

    2017-03-01

    Full Text Available Deformation modes were studied for Ti3AN (A = Al, In and Tl by applying strain to the materials using first-principle calculations. The states of the bonds changed during the deformation process, and the Ti-N bonds remained structurally stable under deformation. The elastic anisotropy, electronic structures, hardness, and minimum thermal conductivity of anti-perovskite Ti3AN were investigated using the pseudo potential plane-wave method based on density functional theory. We found that the anisotropy of Ti3InN was significantly larger than that of Ti3AlN and Ti3TlN. All three compounds were mechanically stable. The band structures of the three compounds revealed that they were conductors. The minimum thermal conductivities at high temperature in the propagation directions of [100], [110], and [111] were calculated by the acoustic wave velocity, which indicated that the thermal conductivity was also anisotropic. It is indicated that Ti3InN is a good thermal barrier material.

  18. Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations.

    Science.gov (United States)

    Ozoliņš, Vidvuds; Zhou, Fei; Asta, Mark

    2013-05-21

    Electrochemical supercapacitors (ECs) have important applications in areas wherethe need for fast charging rates and high energy density intersect, including in hybrid and electric vehicles, consumer electronics, solar cell based devices, and other technologies. In contrast to carbon-based supercapacitors, where energy is stored in the electrochemical double-layer at the electrode/electrolyte interface, ECs involve reversible faradaic ion intercalation into the electrode material. However, this intercalation does not lead to phase change. As a result, ECs can be charged and discharged for thousands of cycles without loss of capacity. ECs based on hydrous ruthenia, RuO2·xH2O, exhibit some of the highest specific capacitances attained in real devices. Although RuO2 is too expensive for widespread practical use, chemists have long used it as a model material for investigating the fundamental mechanisms of electrochemical supercapacitance and heterogeneous catalysis. In this Account, we discuss progress in first-principles density-functional theory (DFT) based studies of the electronic structure, thermodynamics, and kinetics of hydrous and anhydrous RuO2. We find that DFT correctly reproduces the metallic character of the RuO2 band structure. In addition, electron-proton double-insertion into bulk RuO2 leads to the formation of a polar covalent O-H bond with a fractional increase of the Ru charge in delocalized d-band states by only 0.3 electrons. This is in slight conflict with the common assumption of a Ru valence change from Ru(4+) to Ru(3+). Using the prototype electrostatic ground state (PEGS) search method, we predict a crystalline RuOOH compound with a formation energy of only 0.15 eV per proton. The calculated voltage for the onset of bulk proton insertion in the dilute limit is only 0.1 V with respect to the reversible hydrogen electrode (RHE), in reasonable agreement with the 0.4 V threshold for a large diffusion-limited contribution measured experimentally

  19. Photoabsorption in sodium clusters: first principles configuration interaction calculations

    Science.gov (United States)

    Priya, Pradip Kumar; Rai, Deepak Kumar; Shukla, Alok

    2017-05-01

    We present systematic and comprehensive correlated-electron calculations of the linear photoabsorption spectra of small neutral closed- and open-shell sodium clusters (Nan, n = 2 - 6), as well as closed-shell cation clusters (Nan+, n = 3, 5). We have employed the configuration interaction (CI) methodology at the full CI (FCI) and quadruple CI (QCI) levels to compute the ground, and the low-lying excited states of the clusters. For most clusters, besides the minimum energy structures, we also consider their energetically close isomers. The photoabsorption spectra were computed under the electric-dipole approximation, employing the dipole-matrix elements connecting the ground state with the excited states of each isomer. Our calculations were tested rigorously for convergence with respect to the basis set, as well as with respect to the size of the active orbital space employed in the CI calculations. These calculations reveal that as far as electron-correlation effects are concerned, core excitations play an important role in determining the optimized ground state geometries of various clusters, thereby requiring all-electron correlated calculations. But, when it comes to low-lying optical excitations, only valence electron correlation effects play an important role, and excellent agreement with the experimental results is obtained within the frozen-core approximation. For the case of Na6, the largest cluster studied in this work, we also discuss the possibility of occurrence of plasmonic resonance in the optical absorption spectrum. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70728-3

  20. Implementation of corporate governance principles in Romania

    Directory of Open Access Journals (Sweden)

    Ramona Iulia Țarțavulea (Dieaconescu

    2014-12-01

    Full Text Available The paper aims to conduct a study regarding the manner in which corporate governance principles are applied in Romania, in both public and private sector. In the first part of the paper, the corporate governance principles are presented as they are defined in Romania, in comparison with the main international sources of interest in the domain (OECD corporate governance principles, UE legal framework. The corporate governance (CG principles refer to issues regarding board composition, transparency of scope, objectives and policies; they define the relations between directors and managers, shareholders and stakeholders. The research methodology is based on both fundamental research and empirical study on the implementation of corporate governance principles in companies from Romania. The main instrument of research is a corporate governance index, calculated based on a framework proposed by the author. The corporate governance principles are transposed in criteria that compose the framework for the CG index. The results of the study consist of scores for each CG principles and calculation of CG index for seven companies selected from the public and private sector in Romania. The results are analyzed and discussed in order to formulate general and particular recommendations. The main conclusion of this study is that that a legal framework in the area of corporate governance regulation is needed in Romania. I consider that the main CG principles should be enforced by developing a mandatory legal framework.

  1. Emergence of robustness in networks of networks

    Science.gov (United States)

    Roth, Kevin; Morone, Flaviano; Min, Byungjoon; Makse, Hernán A.

    2017-06-01

    A model of interdependent networks of networks (NONs) was introduced recently [Proc. Natl. Acad. Sci. (USA) 114, 3849 (2017), 10.1073/pnas.1620808114] in the context of brain activation to identify the neural collective influencers in the brain NON. Here we investigate the emergence of robustness in such a model, and we develop an approach to derive an exact expression for the random percolation transition in Erdös-Rényi NONs of this kind. Analytical calculations are in agreement with numerical simulations, and highlight the robustness of the NON against random node failures, which thus presents a new robust universality class of NONs. The key aspect of this robust NON model is that a node can be activated even if it does not belong to the giant mutually connected component, thus allowing the NON to be built from below the percolation threshold, which is not possible in previous models of interdependent networks. Interestingly, the phase diagram of the model unveils particular patterns of interconnectivity for which the NON is most vulnerable, thereby marking the boundary above which the robustness of the system improves with increasing dependency connections.

  2. New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring

    OpenAIRE

    Mark van Gastel; Sander Stuijk; Gerard de Haan

    2016-01-01

    Finger-oximeters are ubiquitously used for patient monitoring in hospitals worldwide. Recently, remote measurement of arterial blood oxygenation (SpO2) with a camera has been demonstrated. Both contact and remote measurements, however, require the subject to remain static for accurate SpO2 values. This is due to the use of the common ratio-of-ratios measurement principle that measures the relative pulsatility at different wavelengths. Since the amplitudes are small, they are easily corrupted ...

  3. A first-principles approach to finite temperature elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Wang, J J; Zhang, H; Manga, V R; Shang, S L; Chen, L-Q; Liu, Z-K [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-06-09

    A first-principles approach to calculating the elastic stiffness coefficients at finite temperatures was proposed. It is based on the assumption that the temperature dependence of elastic stiffness coefficients mainly results from volume change as a function of temperature; it combines the first-principles calculations of elastic constants at 0 K and the first-principles phonon theory of thermal expansion. Its applications to elastic constants of Al, Cu, Ni, Mo, Ta, NiAl, and Ni{sub 3}Al from 0 K up to their respective melting points show excellent agreement between the predicted values and existing experimental measurements.

  4. A first-principles approach to finite temperature elastic constants

    International Nuclear Information System (INIS)

    Wang, Y; Wang, J J; Zhang, H; Manga, V R; Shang, S L; Chen, L-Q; Liu, Z-K

    2010-01-01

    A first-principles approach to calculating the elastic stiffness coefficients at finite temperatures was proposed. It is based on the assumption that the temperature dependence of elastic stiffness coefficients mainly results from volume change as a function of temperature; it combines the first-principles calculations of elastic constants at 0 K and the first-principles phonon theory of thermal expansion. Its applications to elastic constants of Al, Cu, Ni, Mo, Ta, NiAl, and Ni 3 Al from 0 K up to their respective melting points show excellent agreement between the predicted values and existing experimental measurements.

  5. Density functional studies: First principles and semiempirical calculations of clusters and surfaces

    International Nuclear Information System (INIS)

    Sinnott, S.B.

    1993-01-01

    In the research presented here, various theoretical electronic structure techniques are utilized to analyze widely different systems from silicon clusters to transition metal solids and surfaces. For the silicon clusters, first principles density functional methods are used to investigate Si N for N = 2-8. The goal is to understand the different types of bonding that can occur in such small clusters where the coordination of the atoms differs substantially from that of the stable bulk tetrahedral bonding. Such uncoordinated structures can provide a good test of more approximate theories that can be used eventually to model silicon surfaces, of obvious technological importance. For the transition metal systems, non-self-consistent electronic structure methods are used to provide an understanding of the driving force for surface relaxations. An in-depth analysis of the results is presented and the physical basis of surface relaxation within the theory is discussed. In addition, the limitations inherent in calculations of metal surface relaxation are addressed. Finally, in an effort to increase understanding of approximate methods, a novel non-self-consistent density functional electronic structure method is developed that is ∼1000 times faster computationally than more sophisticated methods. This new method is tested for a variety of systems including diatomics, mixed clusters, surfaces and bulk lattices. The strengths and weaknesses of the new theory are discussed in detail, leading to greater understanding of non-self-consistent density functional theories as a whole

  6. Quantum effect enhanced magnetism of C-doped phosphorene nanoribbons: first-principles calculations.

    Science.gov (United States)

    Cai, Xiaolin; Niu, Chunyao; He, Yuan-Yao; Wang, Jianjun; Zhu, Zhili; Zhang, Liwei; Jia, Yu

    2017-10-25

    Manipulating magnetism of low-dimensional materials is of great importance for their practical applications. Here, using first-principles calculations, we report a systematic investigation of the magnetic properties of C-doped H saturated zigzag phosphorene nanoribbons (H-ZPNRs), which are rather different from those of 2D periodic systems due to the quantum size effect. First of all, we observed a greatly enhanced magnetic moment locating mainly on the C atom and also slightly on its surrounding P atoms. Our results also indicated a strong dependence of the magnetic moment of the C atom on its location, which decays from the edge to the center site of the nanoribbons with an odd-even oscillating behavior originating from Friedel oscillation in low-dimensional materials. As for the C atom on a specific location, its magnetic moment decreases gradually with increasing width of H-ZPNRs, degenerating to the 2D case. What is more, we found that both the magnitude and the oscillating behavior of the magnetic moment on the C atom can be tuned by the edge saturation atoms. In addition, the case of two C atoms co-doping H-ZPNRs was also studied, showing non-magnetic (NM), ferromagnetic (FM) and antiferromagnetic (AFM) states depending on the locations of the two C atoms. Our findings suggest a plausible route for manipulating magnetism of the sp element doped H-ZPNRs, which are expected to have potential applications in spintronics.

  7. Gyro precession and Mach's principle

    International Nuclear Information System (INIS)

    Eby, P.

    1979-01-01

    The precession of a gyroscope is calculated in a nonrelativistic theory due to Barbour which satisfies Mach's principle. It is shown that the theory predicts both the geodetic and motional precession of general relativity to within factors of order 1. The significance of the gyro experiment is discussed from the point of view of metric theories of gravity and this is contrasted with its significance from the point of view of Mach's principle. (author)

  8. First-Principles Calculation of Lithium Adsorption and Diffusion on Silicene

    International Nuclear Information System (INIS)

    Huang Juan; Chen Hong-Jin; Wu Mu-Sheng; Liu Gang; Ouyang Chu-Ying; Xu Bo

    2013-01-01

    The adsorption and diffusion of lithium on silicene are studied by using the first-principles method. It is found that the adsorption energy of Li adsorbing on silicene is significantly larger than that of Li adsorbing on graphene. With the increasing concentration of adsorbed Li atoms, the adsorption energy also increases. The diffusion barrier of Li on silicene is relatively low, which is insensitive to the concentration of adsorbed atoms

  9. Pressure dependence of effective Coulomb interaction parameters in BaFe2As2 by first-principle calculation

    Science.gov (United States)

    Aghajani, M.; Hadipour, H.; Akhavan, M.

    2018-05-01

    Pressure dependence of the onsite Coulomb interactions of the BaFe2As2 has been studied by employing the constrained random phase approximation within first-principle calculations. Analyzing total and projected density of states, a pseudogap is found for dxy band at the energy roughly 0.25 eV higher than the Fermi level. Also, by applying pressure the spectral weight of the dxy orbital vanishes while other orbitals remain metallic. The different screening channels, as discussed in four different models, affect significantly on the Hubbard U while the Hund J remains almost unchanged. The average onsite bare and partially and fully screened Coulomb interactions increase with different rates upon compression. These different rates can be explained by competition between the electronic screening and reduction of bond lengths.

  10. Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na3OBr and Na4OI2

    International Nuclear Information System (INIS)

    Wang, Yonggang; Wen, Ting; Park, Changyong; Kenney-Benson, Curtis; Pravica, Michael; Zhao, Yusheng; Yang, Wenge

    2016-01-01

    The structure stability under high pressure and thermal expansion behavior of Na 3 OBr and Na 4 OI 2 , two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temperature. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na 3 OBr and Na 4 OI 2 , respectively. The cubic Na 3 OBr structure and tetragonal Na 4 OI 2 with intergrowth K 2 NiF 4 structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure, Na 4 OI 2 exhibits nearly isotropic compressibility. Negative thermal expansion was observed at low temperature range (20–80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressure structure stability was examined and confirmed by first-principles calculations among various possible polymorphisms qualitatively. The results provide in-depth understanding of the negative thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications

  11. First-principles calculation of the structure and electronic properties of Fe-substituted Bi2Ti2O7

    Science.gov (United States)

    Huang, Jin-Dou; Zhang, Zhenyi; Lin, Feng; Dong, Bin

    2017-12-01

    We performed first-principles calculations to investigate the formation energy, geometry structure, and electronic property of Fe-doped Bi2Ti2O7 systems with different Fe doping content. The calculated formation energies indicate that the substitutional configurations of Fe-doping Bi2Ti2O7 are easy to obtain under O-rich growth condition, but their thermodynamic stability decreases with the increase of Fe content. The calculated spin-resolved density of states and band structures indicate that the introduction of Fe into Bi2Ti2O7 brings high spin polarization. The spin-down impurity levels in Fe x Bi2-x Ti2O7 and spin-up impurity levels in Fe x Bi2Ti2-x O7 systems locate in the bottom of conduction band and narrow the band gap significantly, thus leading to the absorption of visible light. Interestingly, the impurity states in Fe x Bi2-x Ti2O7 are the efficient separation center of photogenerated electron and hole, and less affected by Fe doping content, in comparison, the levels of impurity band in Fe x Bi2Ti2-x O7 systems are largely effected by the Fe doping content, and high Fe doping content is the key factor to improve the separating rate of photogenerated electron and hole.

  12. Computation of robustly stabilizing PID controllers for interval systems.

    Science.gov (United States)

    Matušů, Radek; Prokop, Roman

    2016-01-01

    The paper is focused on the computation of all possible robustly stabilizing Proportional-Integral-Derivative (PID) controllers for plants with interval uncertainty. The main idea of the proposed method is based on Tan's (et al.) technique for calculation of (nominally) stabilizing PI and PID controllers or robustly stabilizing PI controllers by means of plotting the stability boundary locus in either P-I plane or P-I-D space. Refinement of the existing method by consideration of 16 segment plants instead of 16 Kharitonov plants provides an elegant and efficient tool for finding all robustly stabilizing PID controllers for an interval system. The validity and relatively effortless application of presented theoretical concepts are demonstrated through a computation and simulation example in which the uncertain mathematical model of an experimental oblique wing aircraft is robustly stabilized.

  13. Robustness Metrics: Consolidating the multiple approaches to quantify Robustness

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Eifler, Tobias; Howard, Thomas J.

    2016-01-01

    robustness metrics; 3) Functional expectancy and dispersion robustness metrics; and 4) Probability of conformance robustness metrics. The goal was to give a comprehensive overview of robustness metrics and guidance to scholars and practitioners to understand the different types of robustness metrics...

  14. Reversal of the lattice structure in SrCoOx epitaxial thin films studied by real-time optical spectroscopy and first-principles calculations

    OpenAIRE

    Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S. S. Ambrose; Cooper, Valentino R.; Rabe, Karin M.; Lee, Ho Nyung

    2013-01-01

    Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoOx (x = 2.5 - 3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases, i.e. the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator tran...

  15. Physical Premium Principle: A New Way for Insurance Pricing

    Science.gov (United States)

    Darooneh, Amir H.

    2005-03-01

    In our previous work we suggested a way for computing the non-life insurance premium. The probable surplus of the insurer company assumed to be distributed according to the canonical ensemble theory. The Esscher premium principle appeared as its special case. The difference between our method and traditional principles for premium calculation was shown by simulation. Here we construct a theoretical foundation for the main assumption in our method, in this respect we present a new (physical) definition for the economic equilibrium. This approach let us to apply the maximum entropy principle in the economic systems. We also extend our method to deal with the problem of premium calculation for correlated risk categories. Like the Buhlman economic premium principle our method considers the effect of the market on the premium but in a different way.

  16. First-principles calculations of vacancy formation in In-free photovoltaic semiconductor Cu2ZnSnSe4

    International Nuclear Information System (INIS)

    Maeda, Tsuyoshi; Nakamura, Satoshi; Wada, Takahiro

    2011-01-01

    To quantitatively evaluate the formation energies of Cu, Zn, Sn, and Se vacancies in kesterite-type Cu 2 ZnSnSe 4 (CZTSe), first-principles pseudopotential calculations using plane-wave basis functions were performed. The formation energies of neutral Cu, Zn, Sn and Se vacancies were calculated as a function of the atomic chemical potentials of constituent elements. The obtained results were as follows: (1) the formation energy of Cu vacancy was generally smaller than those of the other Zn, Sn and Se vacancies, (2) under the Cu-poor and Zn-rich condition, the formation energy of Cu vacancy was particularly low, (3) the formation energy of Zn vacancy greatly depended on the chemical potentials of the constituent elements and under the Zn-poor and Se-rich condition, the formation energy of Zn vacancy was smaller than that of Cu vacancy, and (4) the formation energy of Sn vacancy did not greatly depend on the chemical potentials of the constituent elements and was much larger than those of Cu, Zn, and Se vacancies. These results indicate that Cu vacancy is easily formed under Cu-poor and Zn-rich conditions, but Zn vacancy is easily formed under the Zn-poor and Se-rich conditions.

  17. First-principles calculations of orientation dependence of Si thermal oxidation based on Si emission model

    Science.gov (United States)

    Nagura, Takuya; Kawachi, Shingo; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Kageshima, Hiroyuki; Endoh, Tetsuo; Shiraishi, Kenji

    2018-04-01

    It is expected that the off-state leakage current of MOSFETs can be reduced by employing vertical body channel MOSFETs (V-MOSFETs). However, in fabricating these devices, the structure of the Si pillars sometimes cannot be maintained during oxidation, since Si atoms sometimes disappear from the Si/oxide interface (Si missing). Thus, in this study, we used first-principles calculations based on the density functional theory, and investigated the Si emission behavior at the various interfaces on the basis of the Si emission model including its atomistic structure and dependence on Si crystal orientation. The results show that the order in which Si atoms are more likely to be emitted during thermal oxidation is (111) > (110) > (310) > (100). Moreover, the emission of Si atoms is enhanced as the compressive strain increases. Therefore, the emission of Si atoms occurs more easily in V-MOSFETs than in planar MOSFETs. To reduce Si missing in V-MOSFETs, oxidation processes that induce less strain, such as wet or pyrogenic oxidation, are necessary.

  18. Application of the principle of similarity fluid mechanics

    International Nuclear Information System (INIS)

    Hendricks, R.C.; Sengers, J.V.

    1979-01-01

    Possible applications of the principle of similarity to fluid mechanics is described and illustrated. In correlating thermophysical properties of fluids, the similarity principle transcends the traditional corresponding states principle. In fluid mechanics the similarity principle is useful in correlating flow processes that can be modeled adequately with one independent variable (i.e., one-dimensional flows). In this paper we explore the concept of transforming the conservation equations by combining similarity principles for thermophysical properties with those for fluid flow. We illustrate the usefulness of the procedure by applying such a transformation to calculate two phase critical mass flow through a nozzle

  19. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    Science.gov (United States)

    Ford, Denise Christine

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities---hydrogen, oxygen, nitrogen, and carbon---in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I present the beginning of a model to describe magnetic

  20. Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Denise Christine [Northwestern Univ., Evanston, IL (United States)

    2013-03-01

    Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 <-> HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe. Density functional theory was applied to calculate the properties of common processing impurities – hydrogen, oxygen, nitrogen, and carbon – in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities. Finally, I

  1. Robustness Metrics : How Are They Calculated, When Should They Be Used and Why Do They Give Different Results?

    NARCIS (Netherlands)

    McPhail, C.; Maier, H. R.; Kwakkel, J.H.; Giuliani, M; Castelletti, A; Westra, S.

    2018-01-01

    Robustness is being used increasingly for decision analysis in relation to deep uncertainty and many metrics have been proposed for its quantification. Recent studies have shown that the application of different robustness metrics can result in different rankings of decision alternatives, but

  2. Model construction and superconductivity analysis of organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta) based on first-principles band calculation

    Science.gov (United States)

    Aizawa, H.; Kuroki, K.; Yasuzuka, S.; Yamada, J.

    2012-11-01

    We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ-B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of Tc is qualitatively consistent with the experimental observation.

  3. Model construction and superconductivity analysis of organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta) based on first-principles band calculation

    International Nuclear Information System (INIS)

    Aizawa, H; Kuroki, K; Yasuzuka, S; Yamada, J

    2012-01-01

    We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP) 2 MF 6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ–B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of T c is qualitatively consistent with the experimental observation. (paper)

  4. The electronic properties of phosphorus-doped GaN nanowires from first-principle calculations

    International Nuclear Information System (INIS)

    Fu, Nannan; Li, Enling; Cui, Zhen; Ma, Deming; Wang, Wei; Zhang, Yulong; Song, Sha; Lin, Jie

    2014-01-01

    Highlights: • The P impurities tend to enrich at the surface of GaN nanowires. • The lattice parameters of GaN nanowires are changed by the P impurity. • Donor impurity level appears when the P impurity substitutes for the Ga atom. • The band gap decreases slightly when the P impurity substitutes for the N atom. - Abstract: The electronic properties of phosphorus-doped unsaturated and saturated gallium nitride (GaN) nanowires have been investigated from first-principles using the ultrasoft pseudopotential method. The results of these calculations indicate that the P impurities are enriched at the surface of gallium nitride nanowires, and that the structural symmetry of GaN nanowires is broken due to changes in the lattice parameters. When the P impurity substitutes for the Ga atom, the width of band gap increases at the Γ point, a donor impurity level appears in the band gap, and the P impurity and adjacent N atoms exists covalent interaction. Moreover, when the P impurity substitutes for the N atom, the width of the band gap decreases slightly at the Γ point, there is no obvious impurity level in the band gap, and P–Ga covalent bonds are formed, including those composed of ionic bonds. These conclusions indicate that the incorporation of P impurities can improve the field emission performance of GaN nanowires, which is consistent with the experimental results

  5. The electronic properties of phosphorus-doped GaN nanowires from first-principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Nannan; Li, Enling, E-mail: Lienling@xaut.edu.cn; Cui, Zhen; Ma, Deming; Wang, Wei; Zhang, Yulong; Song, Sha; Lin, Jie

    2014-05-01

    Highlights: • The P impurities tend to enrich at the surface of GaN nanowires. • The lattice parameters of GaN nanowires are changed by the P impurity. • Donor impurity level appears when the P impurity substitutes for the Ga atom. • The band gap decreases slightly when the P impurity substitutes for the N atom. - Abstract: The electronic properties of phosphorus-doped unsaturated and saturated gallium nitride (GaN) nanowires have been investigated from first-principles using the ultrasoft pseudopotential method. The results of these calculations indicate that the P impurities are enriched at the surface of gallium nitride nanowires, and that the structural symmetry of GaN nanowires is broken due to changes in the lattice parameters. When the P impurity substitutes for the Ga atom, the width of band gap increases at the Γ point, a donor impurity level appears in the band gap, and the P impurity and adjacent N atoms exists covalent interaction. Moreover, when the P impurity substitutes for the N atom, the width of the band gap decreases slightly at the Γ point, there is no obvious impurity level in the band gap, and P–Ga covalent bonds are formed, including those composed of ionic bonds. These conclusions indicate that the incorporation of P impurities can improve the field emission performance of GaN nanowires, which is consistent with the experimental results.

  6. Piezoelectricity in K1−xNaxNbO3: First-principles calculation

    International Nuclear Information System (INIS)

    Li Qiang; Zhang Rui; Lv Tian-Quan; Zheng Li-Mei

    2015-01-01

    The piezoelectric properties of K 1−x Na x NbO 3 are studied by using first-principles calculations within virtual crystal approximation. To understand the critical factors for the high piezoelectric response in K 1−x Na x NbO 3 , the total energy, piezoelectric coefficient, elastic property, density of state, Born effective charge, and energy barrier on polarization rotation paths are systematically investigated. The morphotropic phase boundary in K 1−x Na x NbO 3 is predicted to occur at x = 0.521, which is in good agreement with the available experimental data. At the morphotropic phase boundary, the longitudinal piezoelectric coefficient d 33 of orthorhombic K 0.5 Na 0.5 NbO 3 reaches a maximum value. The rotated maximum of is found to be along the 50° direction away from the spontaneous polarization (close to the [001] direction). The moderate bulk and shear modulus are conducive to improving the piezoelectric response. By analyzing the energy barrier on polarization rotation paths, it is found that the polarization rotation of orthorhombic K 0.5 Na 0.5 NbO 3 becomes easier compared with orthorhombic KNbO 3 , which proves that the high piezoelectric response is attributed to the flattening of the free energy at compositions close to the morphotropic phase boundary. (paper)

  7. Understanding the stable boron clusters: A bond model and first-principles calculations based on high-throughput screening

    International Nuclear Information System (INIS)

    Xu, Shao-Gang; Liao, Ji-Hai; Zhao, Yu-Jun; Yang, Xiao-Bao

    2015-01-01

    The unique electronic property induced diversified structure of boron (B) cluster has attracted much interest from experimentalists and theorists. B 30–40 were reported to be planar fragments of triangular lattice with proper concentrations of vacancies recently. Here, we have performed high-throughput screening for possible B clusters through the first-principles calculations, including various shapes and distributions of vacancies. As a result, we have determined the structures of B n clusters with n = 30–51 and found a stable planar cluster of B 49 with a double-hexagon vacancy. Considering the 8-electron rule and the electron delocalization, a concise model for the distribution of the 2c–2e and 3c–2e bonds has been proposed to explain the stability of B planar clusters, as well as the reported B cages

  8. Anisotropic thermal expansion of SnSe from first-principles calculations based on Grüneisen's theory.

    Science.gov (United States)

    Liu, Gang; Zhou, Jian; Wang, Hui

    2017-06-14

    Based on Grüneisen's theory, the elastic properties and thermal expansion of bulk SnSe with the Pnma phase are investigated by using first-principles calculations. Our numerical results indicate that the linear thermal expansion coefficient along the a direction is smaller than the one along the b direction, while the one along the c direction shows a significant negative value, even at high temperature. The numerical results are in good accordance with experimental results. In addition, generalized and macroscopic Grüneisen parameters are also presented. It is also found that SnSe possesses negative Possion's ratio. The contributions of different phonon modes to NTE along the c direction are investigated, and it is found that the two modes which make the most important contributions to NTE are transverse vibrations perpendicular to the c direction. Finally, we analyze the relation of elastic constants to negative thermal expansion, and demonstrate that negative thermal expansion can also occur even with all positive macroscopic Grüneisen parameters.

  9. First-principles calculations of the electronic, vibrational, and elastic properties of the magnetic laminate Mn2GaC

    International Nuclear Information System (INIS)

    Thore, A.; Dahlqvist, M.; Alling, B.; Rosén, J.

    2014-01-01

    In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn 2 GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants, the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn 2 GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M 2 AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.

  10. Exploring the low friction of diamond-like carbon films in carbon dioxide atmosphere by experiments and first-principles calculations

    Science.gov (United States)

    Huo, Lei; Wang, Shunhua; Pu, Jibin; Sun, Junhui; Lu, Zhibin; Ju, Pengfei; Wang, Liping

    2018-04-01

    The friction behavior and the mechanism of DLC films in CO2 atmosphere are rarely explored, which is a significant obstacle for the potential practical application of DLC films in primarily CO2 environment. Here, the experiments and first-principles calculations are performed to simultaneously investigate this theme. We find that DLC films in CO2 atmosphere exhibit astoundingly low friction coefficient compared with in ambient air and vacuum atmospheres. The XPS and Raman spectrums demonstrate the possibly activation of CO2 molecule in the shearing interfaces, which may be critical for the low friction of DLC films in CO2 atmosphere. The calculated results reveal that the lactone groups can easily form during the horizontally chemisorption of CO2 molecule on the DLC surface, which is energetic and is a favorable process under the interfacial stress. Because of the presence of the lone-pairs of the lactone group, the lactone-terminated surfaces appear to be responsible for the low friction of DLC films in CO2 atmosphere. The studies may open up the possibility for DLC films usage in Mars applications.

  11. First–principle calculation of the elastic, band structure, electronic states, and optical properties of Cu–doped ZnS nanolayers

    Energy Technology Data Exchange (ETDEWEB)

    Lahiji, Mohammadreza Askaripour, E-mail: m.a.lahijiii@gmail.com [Department of applied mathematics, Astaneh Ashrafieh Branch, Islamic Azad University, Astaneh Ashrafieh (Iran, Islamic Republic of); Ziabari, Ali Abdolahzadeh, E-mail: ali.abd.ziabari@gmail.com [Nano Research Lab, Lahijan Branch, Islamic Azad University, P.O. Box: 1616, Lahijan (Iran, Islamic Republic of)

    2016-11-15

    The structural, elastic, electronic, and optical properties of undoped and Cu–doped ZnS nanostructured layers have been studied in the zincblende (ZB) phase, by first–principle approach. Density functional theory (DFT) has been employed to calculate the fundamental properties of the layers using full–potential linearized augmented plane–wave (FPLAPW) method. Mechanical analysis revealed that the bulk modulus increases with the increase of Cu content. Cu doping was found to reduce the band gap value of the material. In addition, DOS effective mass of the electrons and heavy holes was evaluated. Adding Cu caused the decrement/increment of transmission/reflectance of nanolayers in the UV–vis region. The substitution by Cu increased the intensity of the peaks, and a slight red shift was observed in the absorption peak. Moreover, the static dielectric constant, and static refractive index increased with Cu content. The optical conductivity also followed a similar trend to that of the dielectric constants. Energy loss function of the modeled compounds was also evaluated. All calculated parameters were compared with the available experimental and other theoretical results.

  12. The traveltime holographic principle

    Science.gov (United States)

    Huang, Yunsong; Schuster, Gerard T.

    2015-01-01

    Fermat's interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat's interferometric principle. We denote this principle as the `traveltime holographic principle', by analogy with the holographic principle in cosmology where information in a volume is encoded on the region's boundary.

  13. Progress in classical and quantum variational principles

    International Nuclear Information System (INIS)

    Gray, C G; Karl, G; Novikov, V A

    2004-01-01

    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The reciprocal Maupertuis principle is the classical limit of Schroedinger's variational principle of wave mechanics and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems. '... the most beautiful and important discovery of Mechanics.' Lagrange to Maupertuis (November 1756)

  14. Theoretical prediction of the electronic transport properties of the Al-Cu alloys based on the first-principle calculation and Boltzmann transport equation

    Science.gov (United States)

    Choi, Garam; Lee, Won Bo

    Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.

  15. First principle calculations for improving desorption temperature in ...

    Indian Academy of Sciences (India)

    5Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat 10000, Morocco. 6Hassan II Academy of Science and Technology, Rabat 10000, Morocco. 7Institut Néel, CNRS-UJF, 38042 Grenoble cedex 9, France. MS received 26 June 2013; revised 25 December 2013. Abstract. Using ab initio calculations, we predict ...

  16. Comparative first-principles calculations of the electronic, optical, elastic and thermodynamic properties of XCaF{sub 3} (X = K, Rb, Cs) cubic perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li; Wang, Y.-J. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Nan' an District, Chongqing 400065 (China); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Liu, D.-X.; Ma, C.-G. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Nan' an District, Chongqing 400065 (China); Brik, M.G., E-mail: mikhail.brik@ut.ee [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Nan' an District, Chongqing 400065 (China); Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411 (Estonia); Institute of Physics, Jan Długosz University, Armii Krajowej 13/15, PL-42200 Częstochowa (Poland); Suchocki, A. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road, Nan' an District, Chongqing 400065 (China); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Physics, Kazimierz Wielki University, Weyssenhoffa 11, 85-072 Bydgoszcz (Poland); Piasecki, M. [Institute of Physics, Jan Długosz University, Armii Krajowej 13/15, PL-42200 Częstochowa (Poland); Reshak, A.H. [New Technologies – Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)

    2017-02-15

    Three fluoroperovskites with the general formula XCaF{sub 3} (X = K, Rb, Cs) have been systematically studied using the first-principles methods. The structural, electronic, optical, elastic and thermodynamic properties of these three compounds were calculated at the ambient and elevated hydrostatic pressure. Variation of all these properties with pressure was analyzed; it was shown that the structural and elastic constants change linearly with increased pressure, whereas the calculated band gaps follow the quadratic dependence on pressure. Influence of the first cation variation (K – Rb – Cs) on these properties was discussed. Elastic anisotropy (directional dependence of the Young moduli) of these compounds was modeled and analyzed for the first time. - Highlights: • Three cubic perovskites XCaF{sub 3} (X = K, Rb, Cs) were studied by ab initio methods. • Systematic variation of physical properties with the first cation change was traced. • Pressure effects on physical properties were calculated and modeled. • Debye temperature and Grüneisen constant for all materials were calculated for the first time. • Elastic anisotropy was visualized by plotting Young moduli directional dependences.

  17. Physical Premium Principle: A New Way for Insurance Pricing

    Directory of Open Access Journals (Sweden)

    Amir H. Darooneh

    2005-02-01

    Full Text Available Abstract: In our previous work we suggested a way for computing the non-life insurance premium. The probable surplus of the insurer company assumed to be distributed according to the canonical ensemble theory. The Esscher premium principle appeared as its special case. The difference between our method and traditional principles for premium calculation was shown by simulation. Here we construct a theoretical foundation for the main assumption in our method, in this respect we present a new (physical definition for the economic equilibrium. This approach let us to apply the maximum entropy principle in the economic systems. We also extend our method to deal with the problem of premium calculation for correlated risk categories. Like the Buhlman economic premium principle our method considers the effect of the market on the premium but in a different way.

  18. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1970-04-01

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  19. Taking into account of the Pauli principle in the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1979-01-01

    The effect of an exact account taken of the Pauli principle and correlations in ground states in calculations in the framework of the quasiparticle-phonon model of a nucleus has been studied. It is elucidated when it is possible to use the random phase approximation (RPA) and when the Pauli principle should be exactly taken into account. It has been shown that in the quasiparticle-phonon model of a nucleus one may perform calculations with a precise account of the Pauli principle. In most of the problems calculations can be carried out with RPA-phonons

  20. Newton-Gauss Algorithm of Robust Weighted Total Least Squares Model

    Directory of Open Access Journals (Sweden)

    WANG Bin

    2015-06-01

    Full Text Available Based on the Newton-Gauss iterative algorithm of weighted total least squares (WTLS, a robust WTLS (RWTLS model is presented. The model utilizes the standardized residuals to construct the weight factor function and the square root of the variance component estimator with robustness is obtained by introducing the median method. Therefore, the robustness in both the observation and structure spaces can be simultaneously achieved. To obtain standardized residuals, the linearly approximate cofactor propagation law is employed to derive the expression of the cofactor matrix of WTLS residuals. The iterative calculation steps for RWTLS are also described. The experiment indicates that the model proposed in this paper exhibits satisfactory robustness for gross errors handling problem of WTLS, the obtained parameters have no significant difference with the results of WTLS without gross errors. Therefore, it is superior to the robust weighted total least squares model directly constructed with residuals.

  1. Robust quasi NID current and flux control of an induction motor for position control

    NARCIS (Netherlands)

    van Duijnhoven, M.; Blachuta, M.J.

    1999-01-01

    In the paper, a new control design method called Dynamic Contraction method is applied to the flux and quadrature current robust control of an induction motor operated using the field orientation principle. The resulting input-output decoupled and linearized drive is then used for time-optimal

  2. Fermat's principle and nonlinear traveltime tomography

    International Nuclear Information System (INIS)

    Berryman, J.G.; Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012)

    1989-01-01

    Fermat's principle shows that a definite convex set of feasible slowness models, depending only on the traveltime data, exists for the fully nonlinear traveltime inversion problem. In a new iterative reconstruction algorithm, the minimum number of nonfeasible ray paths is used as a figure of merit to determine the optimum size of the model correction at each step. The numerical results show that the new algorithm is robust, stable, and produces very good reconstructions even for high contrast materials where standard methods tend to diverge

  3. First principles calculations of optical properties of the armchair SiC nanoribbons with O, F and H termination

    Science.gov (United States)

    Lu, Dao-Bang; Song, Yu-Ling

    2018-03-01

    Based on density functional theory, we perform first-principles investigations to study the optical properties of the O-, F- and H-terminated SiC nanoribbons with armchair edges (ASiCNRs). By irradiating with an external electromagnetic field, we calculate the dielectric function, reflection spectra, energy loss coefficient and the real part of the conductance. It is demonstrated that the optical constants are sensitive to the low-energy range, different terminal atoms do not make much difference in the shape of the curves of the optical constants for the same-width ASiCNR, and the optical constants of wider nanoribbons usually have higher peaks than that of the narrower ones in low energy range. We hope that our study helps in experimental technology of fabricating high-quality SiC-based nanoscale photoelectric device.

  4. Magnetic and electronic properties of Cu1-xFexO from first principles calculations

    KAUST Repository

    Yang, Hua; Cheng, Yingchun; Chen, Guifeng; Mi, Wenbo; Bai, Haili

    2013-01-01

    Magnetic and electronic properties of Cu1-xFexO systems with x = 6.25% and 12.5% have been investigated using first principles calculations. The ground state of CuO is an antiferromagnetic insulator. At x = 6.25%, Cu1-xFexO systems with Fe on 2 and 4 substitution positions are half-metallic due to the strong hybridization among Fe, the nearest O and Cu atoms, which may come from the double exchange coupling between Fe2+-O2--Cu2+. At x = 12.5%, Cu 1-xFexO system with Fe on 9-11 position has a strong spin polarization near the Fermi level and the system energy is lowest when the doped two Fe atoms form ferromagnetic configuration. This indicates the two doped Fe atoms prefer to form ferromagnetic configuration in Fe2+-O 2--Cu2+-O2--Fe2+ chains. While in the Fe on 7-11 position, the spin-down Fe-11 3d states have a large spin polarization near the Fermi level when the two doped Fe atoms form antiferromagnetic configuration. It is concluded that the transition metal doping can modify the magnetism and electronic structures of Cu 1-xFexO systems. This journal is © The Royal Society of Chemistry 2013.

  5. Neuromorphic Configurable Architecture for Robust Motion Estimation

    Directory of Open Access Journals (Sweden)

    Guillermo Botella

    2008-01-01

    Full Text Available The robustness of the human visual system recovering motion estimation in almost any visual situation is enviable, performing enormous calculation tasks continuously, robustly, efficiently, and effortlessly. There is obviously a great deal we can learn from our own visual system. Currently, there are several optical flow algorithms, although none of them deals efficiently with noise, illumination changes, second-order motion, occlusions, and so on. The main contribution of this work is the efficient implementation of a biologically inspired motion algorithm that borrows nature templates as inspiration in the design of architectures and makes use of a specific model of human visual motion perception: Multichannel Gradient Model (McGM. This novel customizable architecture of a neuromorphic robust optical flow can be constructed with FPGA or ASIC device using properties of the cortical motion pathway, constituting a useful framework for building future complex bioinspired systems running in real time with high computational complexity. This work includes the resource usage and performance data, and the comparison with actual systems. This hardware has many application fields like object recognition, navigation, or tracking in difficult environments due to its bioinspired and robustness properties.

  6. Human perception and the uncertainty principle

    International Nuclear Information System (INIS)

    Harney, R.C.

    1976-01-01

    The concept of the uncertainty principle that position and momentum cannot be simultaneously specified to arbitrary accuracy is somewhat difficult to reconcile with experience. This note describes order-of-magnitude calculations which quantify the inadequacy of human perception with regards to direct observation of the breakdown of the trajectory concept implied by the uncertainty principle. Even with the best optical microscope, human vision is inadequate by three orders of magnitude. 1 figure

  7. Tension and robustness in multitasking cellular networks.

    Directory of Open Access Journals (Sweden)

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  8. Crystal structure of Earth's inner core: A first-principles study

    Science.gov (United States)

    Moustafa, S. G.; Schultz, A. J.; Zurek, E.; Kofke, D. A.

    2017-12-01

    Since the detection of the Earth's solid inner core (IC) by Lehmann in 1936, its composition and crystal structure (which are essential to understand Earth's evolution) have been controversial. While seismological measurements (e.g. PREM) can give a robust estimation of the density, pressure, and elasticity of the IC, they cannot be directly used to determine its composition and/or crystal structure. Experimentally, reaching the extreme IC conditions ( 330 GPa and 6000 K) and getting reliable measurements is very challenging. First-principles calculations provide a viable alternative that can work as a powerful investigative tool. Although several attempts have been made to assess phase stability at IC conditions computationally, they often use a low level of theory for electronic structure (e.g., classical force-field), adopt approximate methods (e.g., quasiharmonic approximation, fixed hcp-c/a), or do not consider finite-size effects. The study of phase stability using accurate first-principles methods is hampered in part by the difficulty of computing the free energy (FE), the central thermodynamic quantity that determines stability, while including anharmonic and finite-size effects. Additional difficulty related to the IC in particular is introduced by the dynamical instability of one of the IC candidate structures (bcc) at low temperature. Recently [1-3], we introduced a novel method (denoted as "harmonically mapped averaging", or HMA) to efficiently measure anharmonic properties (e.g. FE, pressure, elastic modulus) by molecular simulation, yielding orders of magnitude CPU speedup compared to conventional methods. We have applied this method to the hcp candidate phase of iron at the IC conditions, obtaining first-principles anharmonic FE values with unprecedented accuracy and precision [4]. We have now completed and report HMA calculations to assess the phase stability of all IC candidate phases (fcc/hcp/bcc). This knowledge is the prerequisite for

  9. Mechanical, electronic and thermal properties of Cu{sub 5}Zr and Cu{sub 5}Hf by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Guohui [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, Xinyu, E-mail: xyzhang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Qin, Jiaqian, E-mail: jiaqianqin@gmail.com [Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330 (Thailand); Ning, Jinliang; Zhang, Suhong; Ma, Mingzhen; Liu, Riping [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2015-08-15

    Highlights: • The mechanical and fundamental thermal data of Cu{sub 5}Zr and Cu{sub 5}Hf are determined. • The technologically important elastic anisotropy is obtained and discussed according to its industrial applications. • The brittle/ductile and bonding nature of Cu{sub 5}Zr and Cu{sub 5}Hf are analyzed in details. - Abstract: The structural, elastic, electronic and thermodynamic properties of Cu{sub 5}Zr and Cu{sub 5}Hf compounds are investigated by first-principles calculations combined with the quasi-harmonic Debye model. The calculated lattice parameters of cubic AuBe{sub 5}-type Cu{sub 5}Zr and Cu{sub 5}Hf agree well with available experimental and other theoretical results and the formation enthalpy calculations show that AuBe{sub 5}-type Cu{sub 5}Hf is more energetically stable than the competing hexagonal CaCu{sub 5}-type phase. The mechanical properties such as mechanical stabilities, anisotropy character, ductility (estimated from the value of B/G, Poisson’s ratio υ and Cauchy pressures C{sub 12}–C{sub 44}) and thermodynamic properties such as volume change under temperature and pressure (V/V{sub 0}), heat capacity (C{sub v}), Debye temperature (Θ), thermal expansion coefficient (α) of AuBe{sub 5}-type Cu{sub 5}Zr and Cu{sub 5}Hf are calculated together. Cu{sub 5}Hf has better performances than Cu{sub 5}Zr with higher hardness and better resistance to fracture which are rationalized from the calculated electronic structure (including density of states, charge density distributions, Mulliken’s population analysis) and we find that all ionic, covalent and metallic components exist in bonding of Cu{sub 5}Zr and Cu{sub 5}Hf but the covalent bonding in Cu{sub 5}Hf is stronger.

  10. Radioactive cloud dose calculations

    International Nuclear Information System (INIS)

    Healy, J.W.

    1984-01-01

    Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available

  11. Robustness analysis of a green chemistry-based model for the classification of silver nanoparticles synthesis processes

    Science.gov (United States)

    This paper proposes a robustness analysis based on Multiple Criteria Decision Aiding (MCDA). The ensuing model was used to assess the implementation of green chemistry principles in the synthesis of silver nanoparticles. Its recommendations were also compared to an earlier develo...

  12. Investigation of iron adsorption on composite transition metal carbides in steel by first-principles calculation

    Science.gov (United States)

    Xiong, Hui-Hui; Gan, Lei; Tong, Zhi-Fang; Zhang, Heng-Hua; Zhou, Yang

    2018-05-01

    The nucleation potential of transition metal (TM) carbides formed in steel can be predicted by the behavior of iron adsorption on their surface. Therefore, Fe adsorption on the (001) surface of (A1-xmx)C (A = Nb, Ti, m = Mo, V) was investigated by the first-principles method to reveal the initialization of Fe nucleation. The Mulliken population and partial density of state (PDOS) were also calculated and analyzed in this work. The results show that Fe adsorption depends on the composition and configuration of the composite carbides. The adsorption energy (Wads) of Fe on most of (A1-xmx)C is larger than that of Fe on pure TiC or NbC. The maximum Wads is found for Fe on (Nb0.5Mo0.5)C complex carbide, indicating that this carbide has the high nucleation capacity at early stage. The Fe adsorption could be improved by the segregation of Cr and Mn atoms on the surfaces of (Nb0.5Mo0.5)C and (Ti0.5Mo0.5)C. The PDOS analysis of (Cr, Mn)-doped systems further explains the strong interactions between Fe and Cr or Mn atoms.

  13. First-principles calculations of structural, elastic, and electronic properties of trigonal ZnSnO{sub 3} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi-Jun, E-mail: qijunliu@home.swjtu.edu.cn [School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Qin, Han; Jiao, Zhen; Liu, Fu-Sheng [School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Liu, Zheng-Tang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China)

    2016-09-01

    First-principles calculations of the structural, elastic, mechanical and electronic properties of ilmenite-type ZnSnO{sub 3} under pressure have been investigated in the present paper. Our calculated lattice constants at zero pressure are in agreement with the published theoretical and experimental data. The elastic constants at zero and high pressure have been obtained, which are used to discuss the mechanical stability of ilmenite-type ZnSnO{sub 3}. The mechanical properties such as bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio under pressure have been studied. Electronic properties show that ilmenite-type ZnSnO{sub 3} is shown to be a direct bandgap of 1.063 (GGA-PW91)/3.977 (PBE0) eV. The bandgap increases with the increasing pressure. Moreover, the partial density of states has been analyzed to explain the increased bandgap. - Highlights: • Physical properties of ilmenite-type ZnSnO{sub 3} under pressure have been investigated. • Ilmenite-type ZnSnO{sub 3} behaves in a ductile manner. • Ilmenite-type ZnSnO{sub 3} is a direct bandgap compound with 3.977 eV. • Bandgap of Ilmenite-type ZnSnO{sub 3} increases with the increasing pressure.

  14. Unravelling the fundamentals of thermal and chemical expansion of BaCeO3 from first principles phonon calculations.

    Science.gov (United States)

    Løken, Andreas; Haugsrud, Reidar; Bjørheim, Tor S

    2016-11-16

    Differentiating chemical and thermal expansion is virtually impossible to achieve experimentally. While thermal expansion stems from a softening of the phonon spectra, chemical expansion depends on the chemical composition of the material. In the present contribution, we, for the first time, completely decouple thermal and chemical expansion through first principles phonon calculations on BaCeO 3 , providing new fundamental insights to lattice expansion. We assess the influence of defects on thermal expansion, and how this in turn affects the interpretation of chemical expansion and defect thermodynamics. The calculations reveal that the linear thermal expansion coefficient is lowered by the introduction of oxygen vacancies being 10.6 × 10 -6 K -1 at 300 K relative to 12.2 × 10 -6 K -1 for both the protonated and defect-free bulk lattice. We further demonstrate that the chemical expansion coefficient upon hydration varies with temperature, ranging from 0.070 to 0.115 per mole oxygen vacancy. Ultimately, we find that, due to differences in the thermal expansion coefficients under dry and wet conditions, the chemical expansion coefficients determined experimentally are grossly underestimated - around 55% lower in the case of 10 mol% acceptor doped BaCeO 3 . Lastly, we evaluate the effect of these volume changes on the vibrational thermodynamics.

  15. Robust design optimization using the price of robustness, robust least squares and regularization methods

    Science.gov (United States)

    Bukhari, Hassan J.

    2017-12-01

    In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.

  16. Information about robustness, reliability and safety in early design phases

    DEFF Research Database (Denmark)

    Marini, Vinicius Kaster

    methods, and an industrial case to assess how the use of information about robustness, reliability and safety as practised by current methods influences concept development. Current methods cannot be used in early design phases due to their dependence on detailed design information for the identification...... alternatives. This prompts designers to reuse working principles that are inherently flawed, as they are liable to disturbances, failures and hazards. To address this issue, an approach based upon individual records of early design issues consists of comparing failures and benefits from prior working...... principles, before making a decision, and improving the more suitable alternatives through this feedback. Workshops were conducted with design practitioners to evaluate the potential of the approach and to simulate decision-making and gain feedback on a proof-of-concept basis. The evaluation has demonstrated...

  17. First-principle study of nanostructures of functionalized graphene

    Indian Academy of Sciences (India)

    We present first-principle calculations of 2D nanostructures of graphene functionalized with hydrogen and fluorine, respectively, in chair conformation. The partial density of states, band structure, binding energy and transverse displacement of C atoms due to functionalization (buckling) have been calculated within the ...

  18. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model

    International Nuclear Information System (INIS)

    Ganeshan, S.; Hector, L.G.; Liu, Z.-K.

    2011-01-01

    Research highlights: → Implemented the eight frequency model for impurity diffusion in hexagonal metals. → Model inputs were energetics/vibrational properties from first princples. → Predicted diffusion coefficients for Al, Ca, Zn and Sn impurity diffusion in Mg. → Successful prediction of partial correlation factors and jump frequencies. → Good agreement between calculated and experimental results. - Abstract: Diffusion in dilute Mg-X alloys, where X denotes Al, Zn, Sn and Ca impurities, was investigated with first-principles density functional theory in the local density approximation. Impurity diffusion coefficients were computed as a function of temperature using the 8-frequency model which provided the relevant impurity and solvent (Mg) jump frequencies and correlation factors. Minimum energy pathways for impurity diffusion and associated saddle point structures were computed with the climbing image nudged elastic band method. Vibrational properties were obtained with the supercell (direct) method for lattice dynamics. Calculated diffusion coefficients were compared with available experimental data. For diffusion between basal planes, we find D Mg-Ca > D Mg-Zn > D Mg-Sn > D Mg-Al, where D is the diffusion coefficient. For diffusion within a basal plane, the same trend holds except that D Mg-Zn overlaps with D Mg-Al at high temperatures and D Mg-Sn at low temperatures. These trends were explored with charge density contours in selected planes of each Mg-X alloy, the variation of the activation energy for diffusion with the atomic radius of each impurity and the electronic density of states. The theoretical methodology developed herein can be applied to impurity diffusion in other hexagonal materials.

  19. A methodology to aid in the design of naval steels: Linking first principles calculations to mesoscale modeling

    International Nuclear Information System (INIS)

    Spanos, G.; Geltmacher, A.B.; Lewis, A.C.; Bingert, J.F.; Mehl, M.; Papaconstantopoulos, D.; Mishin, Y.; Gupta, A.; Matic, P.

    2007-01-01

    This paper provides a brief overview of a multidisciplinary effort at the Naval Research Laboratory aimed at developing a computationally-based methodology to assist in the design of advanced Naval steels. This program uses multiple computational techniques ranging from the atomistic length scale to continuum response. First-principles electronic structure calculations using density functional theory were employed, semi-empirical angular dependent potentials were developed based on the embedded atom method, and these potentials were used as input into Monte-Carlo and molecular dynamics simulations. Experimental techniques have also been applied to a super-austenitic stainless steel (AL6XN) to provide experimental input, guidance, verification, and enhancements to the models. These experimental methods include optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction, and serial sectioning in conjunction with computer-based three-dimensional reconstruction and quantitative analyses. The experimental results are also used as critical input into mesoscale finite element models of materials response

  20. Robust optimum design with maximum entropy method; Saidai entropy ho mochiita robust sei saitekika sekkeiho

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, K; Egashira, Y; Watanabe, G [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Vehicle and unit performance change according to not only external causes represented by the environment such as temperature or weather, but also internal causes which are dispersion of component characteristics and manufacturing processes or aged deteriorations. We developed the design method to estimate thus performance distributions with maximum entropy method and to calculate specifications with high performance robustness using Fuzzy theory. This paper describes the details of these methods and examples applied to power window system. 3 refs., 7 figs., 4 tabs.

  1. RSRP: A Robust Secure Routing Protocol in MANET

    Directory of Open Access Journals (Sweden)

    Sinha Ditipriya

    2014-05-01

    Full Text Available In this paper, we propose a novel algorithm RSRP to build a robust secure routing protocol in mobile ad-hoc networks (MANETs. This algorithm is based on some basic schemes such as RSA_CRT for encryption and decryption of messages; CRT for safety key generation, Shamir’s secret sharing principle for generation of secure routes. Those routes which are free from any malicious node and which belong to the set of disjoint routes between a source-destination pair are considered as probable routes. Shamir’s secret sharing principle is applied on those probable routes to obtain secure routes. Finally, most trustworthy and stable route is selected among those secure routes. Selection of the final route depends on some criteria of the nodes present in a route e.g.: battery power, mobility and trust value. In addition, complexity of key generation is reduced to a large extent by using RSA-CRT instead of RSA. In turn, the routing becomes less expensive and most secure and robust one. Performance of this routing protocol is then compared with non-secure routing protocols (AODV and DSR, secure routing scheme using secret sharing, security routing protocol using ZRP and SEAD depending on basic characteristics of these protocols. All such comparisons show that RSRP shows better performance in terms of computational cost, end-to-end delay and packet dropping in presence of malicious nodes in the MANET, keeping the overhead in terms of control packets same as other secure routing protocols.

  2. Diffusion in thorium carbide: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, 1025, Buenos Aires (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM–CNEA, Av. General Paz 1499, 1650, San Martín, Buenos Aires (Argentina)

    2015-12-15

    The prediction of the behavior of Th compounds under irradiation is an important issue for the upcoming Generation-IV nuclear reactors. The study of self-diffusion and hetero-diffusion is a central key to fulfill this goal. As a first approach, we obtained, by means of first-principles methods, migration and activation energies of Th and C atoms self-diffusion and diffusion of He atoms in ThC. We also calculate diffusion coefficients as a function of temperature. - Highlights: • Diffusion in thorium carbide by means of first-principles calculations is studied. • The most favorable migration event is a C atom moving through a C-vacancy aided path. • Calculated C atoms diffusion coefficients agree very well with the experimental data. • For He, the energetically most favorable migration path is through Th-vacancies.

  3. The traveltime holographic principle

    KAUST Repository

    Huang, Y.; Schuster, Gerard T.

    2014-01-01

    Fermat's interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat's interferometric principle. We denote this principle as the ‘traveltime holographic principle’, by analogy with the holographic principle in cosmology where information in a volume is encoded on the region's boundary.

  4. The traveltime holographic principle

    KAUST Repository

    Huang, Y.

    2014-11-06

    Fermat\\'s interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat\\'s interferometric principle. We denote this principle as the ‘traveltime holographic principle’, by analogy with the holographic principle in cosmology where information in a volume is encoded on the region\\'s boundary.

  5. Elastic, electronic properties and intra-atomic bonding in orthorhombic and tetragonal polymorphs of BaZn2As2 from first-principles calculations

    International Nuclear Information System (INIS)

    Shein, I.R.; Ivanovskii, A.L.

    2014-01-01

    Highlights: • α and β polymorphs of BaZn 2 As 2 as a parent phase of the new DMSs are examined. • Structural, elastic, electronic properties are evaluated from first principles. • Inter-atomic bonding picture is discussed. -- Abstract: Very recently, on the example of hole- and spin-doped BaZn 2 As 2 , quite an unexpected area of potential applications of 122-like phases was proposed as a promising platform for searching the new diluted magnetic semiconductors (DMSs) (2013; K. Zhao, et al, Nature Commun. 4:1442). Herein, by means of the first-principles calculations, we have examined in detail the basic structural, elastic, electronic properties and the peculiarities of the inter-atomic bonding in α and β polymorphs of 122-like BaZn 2 As 2 – a parent phase of the new DMSs. Our characterization of these materials covers the optimized structural parameters, the main elastic parameters (elastic constants, bulk, shear, and Young’s moduli, Poisson’s ratio, anisotropy indexes, and Pugh’s criterion), as well as electronic bands and densities of electronic states

  6. Structural, mechanical, and electronic properties of TaB2, TaB, IrB2, and IrB: First-principle calculations

    International Nuclear Information System (INIS)

    Zhao Wenjie; Wang Yuanxu

    2009-01-01

    First-principle calculations were performed to investigate the structural, elastic, and electronic properties of TaB 2 , TaB, IrB 2 , and IrB. The calculated equilibrium structural parameters, shear modulus, and Young's modulus of TaB 2 are well consistent with the available experimental data, and TaB 2 with P6/mmm space group has stronger directional bonding between ions than WB 2 , OsB 2 , IrN 2 , and PtN 2 . For TaB 2 , the hexagonal P6/mmm structure is more stable than the orthorhombic Pmmn one, while for IrB 2 the orthorhombic Pmmn structure is the most stable one. The high shear modulus of P6/mmm phase TaB 2 is mainly due to the strong covalent π-bonding of B-hexagon in the (0001) plane. Such a B-hexagon network can strongly resist against an applied [112-bar0] (0001) shear deformation. Correlation between the hardness and the elastic constants of TaB 2 was discussed. The band structure shows that P6/mmm phase TaB 2 and Pmmn phase IrB 2 are both metallic. The calculations show that both TaB and IrB are elastically stable with the hexagonal P6 3 /mmc structure. - Elastic constant c 44 of TaB 2 is calculated to be 235 GPa. This value is exceptionally high, exceeding those of WB 2 , OsB 2 , WB 4 , OsN 2 , IrN 2 , and PtN 2 .

  7. First principle calculations of charge ordering in manganites

    International Nuclear Information System (INIS)

    Baldomir, D.; Pardo, V.; Castro, J.; Iglesias, M.; Arias, J.E.; Rivas, J.

    2007-01-01

    Electronic structure calculations were performed on the compound La 0.5 Ca 0.5 MnO 3 to study the relationship between the magnetic ordering, the charge ordering and the geometry of the compound. Charge ordering is intimately related to the magnetic ordering. An antiferromagnetic ordering induces charge disproportionation via a Jahn-Teller distortion. A full disproportionation in Mn 3+ /Mn 4+ occurs for the experimental geometry and allows to predict the experimentally found antiferromagnetic insulating state

  8. Robust and accurate multi-view reconstruction by prioritized matching

    DEFF Research Database (Denmark)

    Ylimaki, Markus; Kannala, Juho; Holappa, Jukka

    2012-01-01

    a prioritized matching method which expands the most promising seeds first. The output of the method is a three-dimensional point cloud. Unlike previous correspondence growing approaches our method allows to use the best-first matching principle in the generic multi-view stereo setting with arbitrary number...... of input images. Our experiments show that matching the most promising seeds first provides very robust point cloud reconstructions efficiently with just a single expansion step. A comparison to the current state-of-the-art shows that our method produces reconstructions of similar quality but significantly...

  9. Application of the robust design concept for fuel loading pattern

    International Nuclear Information System (INIS)

    Endo, Tomohiro; Ohori, Kazuma; Yamamoto, Akio

    2011-01-01

    Application of the robust design concept for fuel loading pattern design is proposed as a new approach to improve the prediction accuracy of core characteristics. The robust design is a design concept that establishes a resistant (robust) system for perturbations or noises, by properly setting design variables. In order to apply the concept of robust design to fuel loading pattern design, we focus on a theoretical approach based on the higher order perturbation method. This approach indicates that the eigenvalue separation is one of the effective indices to measure the robustness of a designed fuel loading pattern. In order to verify the effectiveness of the eigenvalue separation as an index of robustness, numerical analysis is carried out for typical 3-loop PWR cores, and we evaluated the correlation between the eigenvalue separation and the variation of relative assembly power due to the perturbation of the cross section. The numerical results show that the variation of relative power decreases as the eigenvalue separation increases; thus, it is confirmed that the eigenvalue separation is an effective index of robustness. Based on the eigenvalue separation of a fuel loading pattern, we discuss design guidelines of a fuel loading pattern to improve the robustness. For example, if each fuel assembly has independent uncertainty on its cross section, the robustness of the core can be enhanced by increasing the relative power at the center of the core. The proposed guidelines will be useful to design a loading pattern that has robustness for uncertainties due to cross section, calculation method, and so on. (author)

  10. ROBUST: an interactive FORTRAN-77 package for exploratory data analysis using parametric, ROBUST and nonparametric location and scale estimates, data transformations, normality tests, and outlier assessment

    Science.gov (United States)

    Rock, N. M. S.

    ROBUST calculates 53 statistics, plus significance levels for 6 hypothesis tests, on each of up to 52 variables. These together allow the following properties of the data distribution for each variable to be examined in detail: (1) Location. Three means (arithmetic, geometric, harmonic) are calculated, together with the midrange and 19 high-performance robust L-, M-, and W-estimates of location (combined, adaptive, trimmed estimates, etc.) (2) Scale. The standard deviation is calculated along with the H-spread/2 (≈ semi-interquartile range), the mean and median absolute deviations from both mean and median, and a biweight scale estimator. The 23 location and 6 scale estimators programmed cover all possible degrees of robustness. (3) Normality: Distributions are tested against the null hypothesis that they are normal, using the 3rd (√ h1) and 4th ( b 2) moments, Geary's ratio (mean deviation/standard deviation), Filliben's probability plot correlation coefficient, and a more robust test based on the biweight scale estimator. These statistics collectively are sensitive to most usual departures from normality. (4) Presence of outliers. The maximum and minimum values are assessed individually or jointly using Grubbs' maximum Studentized residuals, Harvey's and Dixon's criteria, and the Studentized range. For a single input variable, outliers can be either winsorized or eliminated and all estimates recalculated iteratively as desired. The following data-transformations also can be applied: linear, log 10, generalized Box Cox power (including log, reciprocal, and square root), exponentiation, and standardization. For more than one variable, all results are tabulated in a single run of ROBUST. Further options are incorporated to assess ratios (of two variables) as well as discrete variables, and be concerned with missing data. Cumulative S-plots (for assessing normality graphically) also can be generated. The mutual consistency or inconsistency of all these measures

  11. N–Mg dual-acceptor co-doping in CuCrO{sub 2} studied by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying, E-mail: 1080071@hnust.edu.cn [School of Physics, Hunan University of Science and Technology, Xiangtan 411201 (China); Nie, Guo-Zheng [School of Physics, Hunan University of Science and Technology, Xiangtan 411201 (China); Zou, Daifeng [School of Physics, Hunan University of Science and Technology, Xiangtan 411201 (China); Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055 (China); Tang, Jing-Wu [School of Physics, Hunan University of Science and Technology, Xiangtan 411201 (China); Ao, Zhimin, E-mail: Zhimin.Ao@gdut.edu.cn [Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-11-25

    In this paper, N–Mg dual-acceptor co-doping in CuCrO{sub 2} is investigated by first-principles calculations. The electronic structure and formation energies of Mg substituting Cr-site, N substituting O-site, and co-doping of both Mg on Cr-site and N on O-site in CuCrO{sub 2} are calculated. It is found that the structure with N and Mg codoped at the nearest sites has the lowest energy due to a modest attractive interaction between the two dopants. Compared with single N or Mg doped CuCrO{sub 2}, the N–Mg codoped CuCrO{sub 2} has a lower formation energy and shallower transition level. In addition, the total density of states (DOS) analysis shows that more hole states appear above the Fermi level and higher DOS for N–Mg co-doping is obtained in the N–Mg codoped CuCrO{sub 2}, which is good to enhance the p-type conductivity in CuCrO{sub 2}. - Highlights: • N–Mg dual-acceptor co-doping in CuCrO{sub 2} is investigated. • N–Mg complex has a lower formation energy and shallower transition level. • More hole states appear above the Fermi level for N–Mg co-doping. • N–Mg co-doping in CuCrO{sub 2} can be expected to have more stable p-type conductivity.

  12. A robust cooperative spectrum sensing scheme based on Dempster-Shafer theory and trustworthiness degree calculation in cognitive radio networks

    Science.gov (United States)

    Wang, Jinlong; Feng, Shuo; Wu, Qihui; Zheng, Xueqiang; Xu, Yuhua; Ding, Guoru

    2014-12-01

    Cognitive radio (CR) is a promising technology that brings about remarkable improvement in spectrum utilization. To tackle the hidden terminal problem, cooperative spectrum sensing (CSS) which benefits from the spatial diversity has been studied extensively. Since CSS is vulnerable to the attacks initiated by malicious secondary users (SUs), several secure CSS schemes based on Dempster-Shafer theory have been proposed. However, the existing works only utilize the current difference of SUs, such as the difference in SNR or similarity degree, to evaluate the trustworthiness of each SU. As the current difference is only one-sided and sometimes inaccurate, the statistical information contained in each SU's historical behavior should not be overlooked. In this article, we propose a robust CSS scheme based on Dempster-Shafer theory and trustworthiness degree calculation. It is carried out in four successive steps, which are basic probability assignment (BPA), trustworthiness degree calculation, selection and adjustment of BPA, and combination by Dempster-Shafer rule, respectively. Our proposed scheme evaluates the trustworthiness degree of SUs from both current difference aspect and historical behavior aspect and exploits Dempster-Shafer theory's potential to establish a `soft update' approach for the reputation value maintenance. It can not only differentiate malicious SUs from honest ones based on their historical behaviors but also reserve the current difference for each SU to achieve a better real-time performance. Abundant simulation results have validated that the proposed scheme outperforms the existing ones under the impact of different attack patterns and different number of malicious SUs.

  13. Once a Utilitarian, Consistently a Utilitarian? Examining Principledness in Moral Judgment via the Robustness of Individual Differences.

    Science.gov (United States)

    Helzer, Erik G; Fleeson, William; Furr, R Michael; Meindl, Peter; Barranti, Maxwell

    2017-08-01

    Although individual differences in the application of moral principles, such as utilitarianism, have been documented, so too have powerful context effects-effects that raise doubts about the durability of people's moral principles. In this article, we examine the robustness of individual differences in moral judgment by examining them across time and across different decision contexts. In Study 1, consistency in utilitarian judgment of 122 adult participants was examined over two different survey sessions. In Studies 2A and 2B, large samples (Ns = 130 and 327, respectively) of adult participants made a series of 32 moral judgments across eight different contexts that are known to affect utilitarian endorsement. Contrary to some contemporary theorizing, our results reveal a strong degree of consistency in moral judgment. Across time and experimental manipulations of context, individuals maintained their relative standing on utilitarianism, and aggregated moral decisions reached levels of near-perfect consistency. Results support the view that on at least one dimension (utilitarianism), people's moral judgments are robustly consistent, with context effects tailoring the application of principles to the particulars of any given moral judgment. © 2016 Wiley Periodicals, Inc.

  14. Structural and electronic phase transitions of ThS2 from first-principles calculations

    International Nuclear Information System (INIS)

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; Ke, Xuezhi

    2016-01-01

    Performed a systematic study using first-principles methods of the pressure-induced structural and electronic phase transitions in ThS_2, which may play an important role in the next generation nuclear energy fuel technology.

  15. Electronic structure and magnetic properties of quaternary Heusler alloys CoRhMnZ (Z = Al, Ga, Ge and Si) via first-principle calculations

    Energy Technology Data Exchange (ETDEWEB)

    Benkabou, M. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, H. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Département de Physique, Faculté des Sciences, Université Hassiba Benbouali, Chlef 02000 (Algeria); Abdellaoui, A. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, D., E-mail: rachdj@yahoo.fr [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université DjillaliLiabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière, (LPQ3M), Université de Mascara, Mascara 29000 (Algeria); and others

    2015-10-25

    First-principle calculations are performed to predict the electronic structure and elastic and magnetic properties of CoRhMnZ (Z = Al, Ga, Ge and Si) Heusler alloys. The calculations employ the full-potential linearized augmented plane wave. The exchange-correlations are treated within the generalized gradient approximation of Perdew–Burke and Ernzerhof (GGA-PBE). The electronic structure calculations show that these compounds exhibit a gap in the minority states band and are clearly half-metallic ferromagnets, with the exception of the CoRhMnAl and CoRhMnGa, which are simple ferromagnets that are nearly half metallic in nature. The CoRhMnGe and CoRhMnSi compounds and their magnetic moments are in reasonable agreement with the Slater-Pauling rule, which indicates the half metallicity and high spin polarization for these compounds. At the pressure transitions, these compounds undergo a structural phase transition from the Y-type I → Y-type II phase. We have determined the elastic constants C{sub 11}, C{sub 12} and C{sub 44} and their pressure dependence, which have not previously been established experimentally or theoretically. - Highlights: • Based on DFT calculations, CoRhMnZ (Z = Al, Ga, Ge and Si) Heusler alloys were investigated. • The magnetic phase stability was determined from the total energy calculations. • The mechanical properties were investigated.

  16. Robust Model Predictive Control of Networked Control Systems under Input Constraints and Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Deyin Yao

    2014-01-01

    Full Text Available This paper deals with the problem of robust model predictive control (RMPC for a class of linear time-varying systems with constraints and data losses. We take the polytopic uncertainties into account to describe the uncertain systems. First, we design a robust state observer by using the linear matrix inequality (LMI constraints so that the original system state can be tracked. Second, the MPC gain is calculated by minimizing the upper bound of infinite horizon robust performance objective in terms of linear matrix inequality conditions. The method of robust MPC and state observer design is illustrated by a numerical example.

  17. The Uhlenbeck-Ford model: Exact virial coefficients and application as a reference system in fluid-phase free-energy calculations

    Science.gov (United States)

    Paula Leite, Rodolfo; Freitas, Rodrigo; Azevedo, Rodolfo; de Koning, Maurice

    2016-11-01

    The Uhlenbeck-Ford (UF) model was originally proposed for the theoretical study of imperfect gases, given that all its virial coefficients can be evaluated exactly, in principle. Here, in addition to computing the previously unknown coefficients B11 through B13, we assess its applicability as a reference system in fluid-phase free-energy calculations using molecular simulation techniques. Our results demonstrate that, although the UF model itself is too soft, appropriately scaled Uhlenbeck-Ford (sUF) models provide robust reference systems that allow accurate fluid-phase free-energy calculations without the need for an intermediate reference model. Indeed, in addition to the accuracy with which their free energies are known and their convenient scaling properties, the fluid is the only thermodynamically stable phase for a wide range of sUF models. This set of favorable properties may potentially put the sUF fluid-phase reference systems on par with the standard role that harmonic and Einstein solids play as reference systems for solid-phase free-energy calculations.

  18. Perceptual Robust Design

    DEFF Research Database (Denmark)

    Pedersen, Søren Nygaard

    The research presented in this PhD thesis has focused on a perceptual approach to robust design. The results of the research and the original contribution to knowledge is a preliminary framework for understanding, positioning, and applying perceptual robust design. Product quality is a topic...... been presented. Therefore, this study set out to contribute to the understanding and application of perceptual robust design. To achieve this, a state-of-the-art and current practice review was performed. From the review two main research problems were identified. Firstly, a lack of tools...... for perceptual robustness was found to overlap with the optimum for functional robustness and at most approximately 2.2% out of the 14.74% could be ascribed solely to the perceptual robustness optimisation. In conclusion, the thesis have offered a new perspective on robust design by merging robust design...

  19. Robust Sequential Covariance Intersection Fusion Kalman Filtering over Multi-agent Sensor Networks with Measurement Delays and Uncertain Noise Variances

    Institute of Scientific and Technical Information of China (English)

    QI Wen-Juan; ZHANG Peng; DENG Zi-Li

    2014-01-01

    This paper deals with the problem of designing robust sequential covariance intersection (SCI) fusion Kalman filter for the clustering multi-agent sensor network system with measurement delays and uncertain noise variances. The sensor network is partitioned into clusters by the nearest neighbor rule. Using the minimax robust estimation principle, based on the worst-case conservative sensor network system with conservative upper bounds of noise variances, and applying the unbiased linear minimum variance (ULMV) optimal estimation rule, we present the two-layer SCI fusion robust steady-state Kalman filter which can reduce communication and computation burdens and save energy sources, and guarantee that the actual filtering error variances have a less-conservative upper-bound. A Lyapunov equation method for robustness analysis is proposed, by which the robustness of the local and fused Kalman filters is proved. The concept of the robust accuracy is presented and the robust accuracy relations of the local and fused robust Kalman filters are proved. It is proved that the robust accuracy of the global SCI fuser is higher than those of the local SCI fusers and the robust accuracies of all SCI fusers are higher than that of each local robust Kalman filter. A simulation example for a tracking system verifies the robustness and robust accuracy relations.

  20. Babinet principle and diffraction losses in laser resonators

    International Nuclear Information System (INIS)

    Kubarev, V V

    2000-01-01

    A simple analytical technique, based on the Babinet principle, for calculating low diffraction losses of different kinds in stable resonators is described. The technique was verified by comparison with the known numerical and analytical calculations of the losses in specific diffraction problems. (laser applications and other topics in quantum electronics)

  1. Study on the intrinsic defects in ZnO by combing first-principle and thermodynamic calculations

    Science.gov (United States)

    Ma, Changmin; Liu, Tingyu; Chang, Qiuxiang

    2015-11-01

    In this paper, the intrinsic point defects in ZnO crystal have been studied by the approach that integrates first-principles, thermodynamic calculations and the contributions of vibrational entropy. With temperature increasing and oxygen partial pressure decreasing, the formation energies of oxygen vacancy (VO), zinc interstitial (Zni) and zinc anti-site (ZnO) are decreasing, while it increases for zinc vacancy (VZn), oxygen interstitial (Oi) and oxygen anti-site (OZn). They are more sensitive to temperature than oxygen partial pressure. There are two interesting phenomena. First, VO or VZn have the lowest formation energies for whole Fermi level at special environment condition (such as at T = 300K, about PO2 = 10-10atm or T = 1500K, about PO2 = 104atm) and intrinsic p-type doping of ZnO is possible by VZn at these special conditions. Second, VO as donors have lowest formation energy for all Fermi level at high temperature and low oxygen partial pressure (T = 1500K, PO2 = 10-10atm). According to our analysis, the VO could produce n-type doping in ZnO at these special conditions and change p-type ZnO to n-type ZnO at condition from low temperature and high oxygen partial pressure to high temperature and low oxygen partial pressure.

  2. A robust sound perception model suitable for neuromorphic implementation.

    Science.gov (United States)

    Coath, Martin; Sheik, Sadique; Chicca, Elisabetta; Indiveri, Giacomo; Denham, Susan L; Wennekers, Thomas

    2013-01-01

    We have recently demonstrated the emergence of dynamic feature sensitivity through exposure to formative stimuli in a real-time neuromorphic system implementing a hybrid analog/digital network of spiking neurons. This network, inspired by models of auditory processing in mammals, includes several mutually connected layers with distance-dependent transmission delays and learning in the form of spike timing dependent plasticity, which effects stimulus-driven changes in the network connectivity. Here we present results that demonstrate that the network is robust to a range of variations in the stimulus pattern, such as are found in naturalistic stimuli and neural responses. This robustness is a property critical to the development of realistic, electronic neuromorphic systems. We analyze the variability of the response of the network to "noisy" stimuli which allows us to characterize the acuity in information-theoretic terms. This provides an objective basis for the quantitative comparison of networks, their connectivity patterns, and learning strategies, which can inform future design decisions. We also show, using stimuli derived from speech samples, that the principles are robust to other challenges, such as variable presentation rate, that would have to be met by systems deployed in the real world. Finally we demonstrate the potential applicability of the approach to real sounds.

  3. A Robust Sound Perception Model Suitable for Neuromorphic Implementation

    Directory of Open Access Journals (Sweden)

    Martin eCoath

    2014-01-01

    Full Text Available We have recently demonstrated the emergence of dynamic feature sensitivity through exposure to formative stimuli in a real-time neuromorphic system implementing a hybrid analogue/digital network of spiking neurons. This network, inspired by models of auditory processing in mammals, includes several mutually connected layers with distance-dependent transmission delays and learning in the form of spike timing dependent plasticity, which effects stimulus-driven changes in the network connectivity.Here we present results that demonstrate that the network is robust to a range of variations in the stimulus pattern, such as are found in naturalistic stimuli and neural responses. This robustness is a property critical to the development of realistic, electronic neuromorphic systems.We analyse the variability of the response of the network to `noisy' stimuli which allows us to characterize the acuity in information-theoretic terms. This provides an objective basis for the quantitative comparison of networks, their connectivity patterns, and learning strategies, which can inform future design decisions. We also show, using stimuli derived from speech samples, that the principles are robust to other challenges, such as variable presentation rate, that would have to be met by systems deployed in the real world. Finally we demonstrate the potential applicability of the approach to real sounds.

  4. Monte Carlo principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Raeside, D E [Oklahoma Univ., Oklahoma City (USA). Health Sciences Center

    1976-03-01

    The principles underlying the use of Monte Carlo methods are explained, for readers who may not be familiar with the approach. The generation of random numbers is discussed, and the connection between Monte Carlo methods and random numbers is indicated. Outlines of two well established Monte Carlo sampling techniques are given, together with examples illustrating their use. The general techniques for improving the efficiency of Monte Carlo calculations are considered. The literature relevant to the applications of Monte Carlo calculations in medical physics is reviewed.

  5. Risk measurement with equivalent utility principles

    NARCIS (Netherlands)

    Denuit, M.; Dhaene, J.; Goovaerts, M.; Kaas, R.; Laeven, R.

    2006-01-01

    Risk measures have been studied for several decades in the actuarial literature, where they appeared under the guise of premium calculation principles. Risk measures and properties that risk measures should satisfy have recently received considerable attention in the financial mathematics

  6. Cosmological principles. II. Physical principles

    International Nuclear Information System (INIS)

    Harrison, E.R.

    1974-01-01

    The discussion of cosmological principle covers the uniformity principle of the laws of physics, the gravitation and cognizability principles, and the Dirac creation, chaos, and bootstrap principles. (U.S.)

  7. First principles electron-correlated calculations of optical absorption in magnesium clusters★

    Science.gov (United States)

    Shinde, Ravindra; Shukla, Alok

    2017-11-01

    In this paper, we report large-scale configuration interaction (CI) calculations of linear optical absorption spectra of various isomers of magnesium clusters Mgn (n = 2-5), corresponding to valence transitions. Geometry optimization of several low-lying isomers of each cluster was carried out using coupled-cluster singles doubles (CCSD) approach, and these geometries were subsequently employed to perform ground and excited state calculations using either the full-CI (FCI) or the multi-reference singles-doubles configuration interaction (MRSDCI) approach, within the frozen-core approximation. Our calculated photoabsorption spectrum of magnesium dimer (Mg2) is in excellent agreement with the experiments both for peak positions, and intensities. Owing to the sufficiently inclusive electron-correlation effects, these results can serve as benchmarks against which future experiments, as well as calculations performed using other theoretical approaches, can be tested. Supplementary material in the form of one pdf fille available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80356-6.

  8. Reformulation of a stochastic action principle for irregular dynamics

    International Nuclear Information System (INIS)

    Wang, Q.A.; Bangoup, S.; Dzangue, F.; Jeatsa, A.; Tsobnang, F.; Le Mehaute, A.

    2009-01-01

    A stochastic action principle for random dynamics is revisited. Numerical diffusion experiments are carried out to show that the diffusion path probability depends exponentially on the Lagrangian action A=∫ a b Ldt. This result is then used to derive the Shannon measure for path uncertainty. It is shown that the maximum entropy principle and the least action principle of classical mechanics can be unified into δA-bar=0 where the average is calculated over all possible paths of the stochastic motion between two configuration points a and b. It is argued that this action principle and the maximum entropy principle are a consequence of the mechanical equilibrium condition extended to the case of stochastic dynamics.

  9. First-principles calculations of electronic, magnetic and optical properties of HoN doped with TM (Ti, V, Cr, Mn, Co and Ni)

    Science.gov (United States)

    Rouchdi, M.; Salmani, E.; Dehmani, M.; Ez-Zahraouy, H.; Hassanain, N.; Benyoussef, A.; Mzerd, A.

    2018-02-01

    Using the first-principles calculations within the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approximation (CPA), the structural, optical and magnetic properties of rare-earth nitride Ho0.95TM0.05N doped with transition metal (TM) atoms (Ti, V, Cr, Mn, Co and Ni) are investigated as a function the generalized gradient approximation and self-interaction correction (GGA-SIC) approximation. The optical properties are studied in detail by using ab-initio calculations. Using GGA-SIC we have showed that the bandgap value is in good agreement with the experimental value. Using GGA-SIC approximation for HoN, we have obtained a bandgap of 0.9 eV. Some of the dilute magnetic semiconductors (DMS) like Ho0.95TM0.05N under study exhibit a half-metallic behavior, which makes them suitable for spintronic applications. Moreover, the optical absorption spectra confirm the ferromagnetic stability based on the charge state of magnetic impurities.

  10. A robust and fast generic voltage sag detection technique

    DEFF Research Database (Denmark)

    L. Dantas, Joacillo; Lima, Francisco Kleber A.; Branco, Carlos Gustavo C.

    2015-01-01

    In this paper, a fast and robust voltage sag detection algorithm, named VPS2D, is introduced. Using the DSOGI, the algorithm creates a virtual positive sequence voltage and monitories the fundamental voltage component of each phase. After calculating the aggregate value in the o:;3-reference fram...

  11. Synergistic effect of Ti and F co-doping on dehydrogenation properties of MgH2 from first-principles calculations

    International Nuclear Information System (INIS)

    Zhang, J.; Huang, Y.N.; Mao, C.; Peng, P.

    2012-01-01

    Highlights: ► The co-incorporation of Ti and F into MgH 2 lattice is energetically favorable. ► The incorporated Ti and F in MgH 2 preferably generate TiH 2 and MgF 2 , respectively. ► The synergistic effect of Ti and F is superior to that of pure Ti. ► The weakened interactions of Mg–H explain enhanced dehydrogenation properties. - Abstract: The energetic and electronic properties of MgH 2 co-doped with Ti and F are investigated using first-principles calculations based on density functional theory. The calculation results show that incorporation of Ti combined with F atoms into MgH 2 lattice is energetically favorable relative to single incorporation of Ti atom. After dehydrogenation, the co-doped Ti and F in MgH 2 preferably generate TiH 2 and MgF 2 , respectively. Comparatively, the combined effect of Ti and F in improving the dehydrogenation properties of MgH 2 is superior to that of pure Ti. These results provide a reasonable explanation for experimental observations. Analysis of electronic structures suggests the enhanced dehydrogenation properties of doped MgH 2 can be attributed to the weakened bonding interactions between Mg and H due to foreign species doping.

  12. Crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Chen, W. [International Center for New-Structured Materials (ICNSM), Zhejiang University, and Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chen, X.; Liu, H.Y. [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); Ding, Z.H.; Ma, Y.M. [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012 (China); Wang, X.D.; Cao, Q.P. [International Center for New-Structured Materials (ICNSM), Zhejiang University, and Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Zhejiang University, and Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Changes from NaCl-, WC- to anti-NiAs-type structures are for 4d and 5d metal monoborides. Black-Right-Pointing-Pointer Vickers hardnesses of monoborides are relatively low. Black-Right-Pointing-Pointer B-vacancies cause the difference in lattice parameters for IrB and PtB. Black-Right-Pointing-Pointer Nonstoichiometric IrB and PtB phases synthesized. - Abstract: The crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides have been studied by first principles calculations. It is found that NaCl-type ZrB, NbB, MoB, HfB, TaB and WB, WC-type TcB, RuB, ReB, OsB and IrB, and anti-NiAs-type RhB and PdB are thermodynamically stable at zero pressure. They all are metallic. The Vickers hardnesses of these monoborides are relatively low as compared with monocarbides and mononitrides. It is clarified that the presence of B-vacancies is the origin for the difference of lattice parameters between theoretical and experimental results for WC-type IrB and anti-NiAs-type PtB while IrB and PtB with stoichiometry from calculations are revealed to be mechanically unstable and dynamically unstable, respectively.

  13. Crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides: First-principles calculations

    International Nuclear Information System (INIS)

    Wang, Y.; Chen, W.; Chen, X.; Liu, H.Y.; Ding, Z.H.; Ma, Y.M.; Wang, X.D.; Cao, Q.P.; Jiang, J.Z.

    2012-01-01

    Highlights: ► Changes from NaCl-, WC- to anti-NiAs-type structures are for 4d and 5d metal monoborides. ► Vickers hardnesses of monoborides are relatively low. ► B-vacancies cause the difference in lattice parameters for IrB and PtB. ► Nonstoichiometric IrB and PtB phases synthesized. - Abstract: The crystal structures, stability, electronic and elastic properties of 4d and 5d transition metal monoborides have been studied by first principles calculations. It is found that NaCl-type ZrB, NbB, MoB, HfB, TaB and WB, WC-type TcB, RuB, ReB, OsB and IrB, and anti-NiAs-type RhB and PdB are thermodynamically stable at zero pressure. They all are metallic. The Vickers hardnesses of these monoborides are relatively low as compared with monocarbides and mononitrides. It is clarified that the presence of B-vacancies is the origin for the difference of lattice parameters between theoretical and experimental results for WC-type IrB and anti-NiAs-type PtB while IrB and PtB with stoichiometry from calculations are revealed to be mechanically unstable and dynamically unstable, respectively.

  14. Neutrality and robustness in evo-devo: emergence of lateral inhibition.

    Directory of Open Access Journals (Sweden)

    Andreea Munteanu

    2008-11-01

    Full Text Available Embryonic development is defined by the hierarchical dynamical process that translates genetic information (genotype into a spatial gene expression pattern (phenotype providing the positional information for the correct unfolding of the organism. The nature and evolutionary implications of genotype-phenotype mapping still remain key topics in evolutionary developmental biology (evo-devo. We have explored here issues of neutrality, robustness, and diversity in evo-devo by means of a simple model of gene regulatory networks. The small size of the system allowed an exhaustive analysis of the entire fitness landscape and the extent of its neutrality. This analysis shows that evolution leads to a class of robust genetic networks with an expression pattern characteristic of lateral inhibition. This class is a repertoire of distinct implementations of this key developmental process, the diversity of which provides valuable clues about its underlying causal principles.

  15. First-principles calculation on oxygen ion migration in alkaline-earth doped La2GeO5

    International Nuclear Information System (INIS)

    Thuy Linh, Tran Phan; Sakaue, Mamoru; Aspera, Susan Meñez; Alaydrus, Musa; Wungu, Triati Dewi Kencana; Hoang Linh, Nguyen; Kasai, Hideaki; Mohri, Takahiro; Ishihara, Tatsumi

    2014-01-01

    By using first-principles calculations based on the density functional theory, we investigated the doping effects of alkaline-earth metals (Ba, Sr and Ca) in monoclinic lanthanum germanate La 2 GeO 5 on its oxygen ion conduction. Although the lattice parameters of the doped systems changed due to the ionic radii mismatch, the crystal structures remained monoclinic. The contribution of each atomic orbital to electronic densities of states was evaluated from the partial densities of states and partial charge densities. It was confirmed that the materials behaved as ionic crystals comprising of cations of La and dopants and anions of oxygen and covalently formed GeO 4 . The doping effect on the activation barrier for oxygen hopping to the most stable oxygen vacancy site was investigated by the climbing-image nudged elastic band method. By tracing the charge density change during the hopping, it was confirmed that the oxygen motion is governed by covalent interactions. The obtained activation barriers showed excellent quantitative agreements with an experiment for the Ca- and Sr-doped systems in low temperatures as well as the qualitative trend, including the Ba-doped system. (paper)

  16. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1998-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  17. Calculation principles of humid air in a reversed Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    The article presents a calculation method for reversed Brayton cycle that uses humid air as working medium. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. The expansion process differs physically from the compression process, when the water vapour in the humid air begins to condensate. In the thermodynamic equilibrium of the flow, the water vapour pressure in humid air cannot exceed the pressure of saturated water vapour in corresponding temperature. Expansion calculation during operation around the saturation zone is based on a quasistatic expansion, in which the system after the turbine is in thermodynamical equilibrium. The state parameters are at every moment defined by the equation of state, and there is no supercooling in the vapour. Following simplifications are used in the calculations: The system is assumed to be adiabatic. This means that there is no heat transfer to the surroundings. This is a common practice, when the temperature differences are moderate as here; The power of the cooling is omitted. The cooling construction is very dependent on the machine and the distribution of the losses; The flow is assumed to be one-dimensional, steady-state and homogenous. The water vapour condensing in the turbine can cause errors, but the errors are mainly included in the efficiency calculation. (author) 11 refs.

  18. First-principles study on the electronic, optical, and transport properties of monolayer α - and β -GeSe

    Science.gov (United States)

    Xu, Yuanfeng; Zhang, Hao; Shao, Hezhu; Ni, Gang; Li, Jing; Lu, Hongliang; Zhang, Rongjun; Peng, Bo; Zhu, Yongyuan; Zhu, Heyuan; Soukoulis, Costas M.

    2017-12-01

    The extraordinary properties and the novel applications of black phosphorene induce the research interest in the monolayer group-IV monochalcogenides. Here using first-principles calculations, we systematically investigate the electronic, transport, and optical properties of monolayer α - and β -GeSe, revealing a direct band gap of 1.61 eV for monolayer α -GeSe and an indirect band gap of 2.47 eV for monolayer β -GeSe. For monolayer β -GeSe, the electronic/hole transport is anisotropic, with an extremely high electron mobility of 2.93 ×104cm2/Vs along the armchair direction, comparable to that of black phosphorene. Furthermore, for β -GeSe, robust band gaps nearly independent of the applied tensile strain along the armchair direction are observed. Both monolayer α - and β -GeSe exhibit anisotropic optical absorption in the visible spectrum.

  19. A simple and robust method for connecting small-molecule drugs using gene-expression signatures

    Directory of Open Access Journals (Sweden)

    Gant Timothy W

    2008-06-01

    Full Text Available Abstract Background Interaction of a drug or chemical with a biological system can result in a gene-expression profile or signature characteristic of the event. Using a suitably robust algorithm these signatures can potentially be used to connect molecules with similar pharmacological or toxicological properties by gene expression profile. Lamb et al first proposed the Connectivity Map [Lamb et al (2006, Science 313, 1929–1935] to make successful connections among small molecules, genes, and diseases using genomic signatures. Results Here we have built on the principles of the Connectivity Map to present a simpler and more robust method for the construction of reference gene-expression profiles and for the connection scoring scheme, which importantly allows the valuation of statistical significance of all the connections observed. We tested the new method with two randomly generated gene signatures and three experimentally derived gene signatures (for HDAC inhibitors, estrogens, and immunosuppressive drugs, respectively. Our testing with this method indicates that it achieves a higher level of specificity and sensitivity and so advances the original method. Conclusion The method presented here not only offers more principled statistical procedures for testing connections, but more importantly it provides effective safeguard against false connections at the same time achieving increased sensitivity. With its robust performance, the method has potential use in the drug development pipeline for the early recognition of pharmacological and toxicological properties in chemicals and new drug candidates, and also more broadly in other 'omics sciences.

  20. Robustness of the p53 network and biological hackers.

    Science.gov (United States)

    Dartnell, Lewis; Simeonidis, Evangelos; Hubank, Michael; Tsoka, Sophia; Bogle, I David L; Papageorgiou, Lazaros G

    2005-06-06

    The p53 protein interaction network is crucial in regulating the metazoan cell cycle and apoptosis. Here, the robustness of the p53 network is studied by analyzing its degeneration under two modes of attack. Linear Programming is used to calculate average path lengths among proteins and the network diameter as measures of functionality. The p53 network is found to be robust to random loss of nodes, but vulnerable to a targeted attack against its hubs, as a result of its architecture. The significance of the results is considered with respect to mutational knockouts of proteins and the directed attacks mounted by tumour inducing viruses.

  1. CrAs(0 0 1)/AlAs(0 0 1) heterogeneous junction as a spin current diode predicted by first-principles calculations

    International Nuclear Information System (INIS)

    Min, Y.; Yao, K.L.; Liu, Z.L.; Cheng, H.G.; Zhu, S.C.; Gao, G.Y.

    2009-01-01

    We report on first-principles calculations of spin-dependent quantum transport in a CrAs(0 0 1)/AlAs(0 0 1) heterogeneous junction and predict a strong diode effect of charge and spin current. The minority spin current is absolutely inhibited when the bias voltage is applied to the terminals of both CrAs and AlAs. The majority spin current is inhibited when the bias voltage is applied to the terminal of CrAs and 'relaxed' when the bias voltage is applied to the terminal of AlAs. The charge and spin current diode are promising for reprogrammable logic applications in the field of spintronics

  2. Reframing the Principle of Specialisation in Legitimation Code Theory: A Blended Learning Perspective

    Science.gov (United States)

    Owusu-Agyeman, Yaw; Larbi-Siaw, Otu

    2017-01-01

    This study argues that in developing a robust framework for students in a blended learning environment, Structural Alignment (SA) becomes the third principle of specialisation in addition to Epistemic Relation (ER) and Social Relation (SR). We provide an extended code: (ER+/-, SR+/-, SA+/-) that present strong classification and framing to the…

  3. H∞ robust control of load frequency in diesel-battery hybrid electric propulsion ship

    Directory of Open Access Journals (Sweden)

    LI Hongyue

    2017-05-01

    Full Text Available Considering the load frequency fluctuation in the shipboard integrated power system caused by such stochastic uncertainty as wind, wave and current, the battery is adopted here to compensate for the difference between diesel generator output power and ship demand power, and the secondary frequency control is used for the diesel generator to guarantee the power balance in the shipboard integrated power system and suppress the frequency fluctuation. The load frequency control problem is modeled as a state space equation, the robust controller is designed by selecting the appropriate sensitivity function and complementary sensitivity function based on the H∞ mixed sensitivity principle, and the controller is solved by the linear matrix inequality(LMIapproach. The amplitude frequency characteristics denote the reasonability of the designed controller and the design requirement is satisfied by the impact of the impulse signal. The simulation results show that, compared with the classical PI controller, the controller designed by the H∞ robust method can significantly suppress frequency fluctuation under stochastic uncertainty, and improve the power variation of the diesel generator, battery and state of charge(SOC. The robust stability and robust performance of the power system are also advanced.

  4. Electromagnetic design calculation of the control rod drive mechanism

    International Nuclear Information System (INIS)

    Zhu Qirong; Zhu Jingchang

    1991-01-01

    Electromagnetic design calculation of the step-by-step magnetic jacking control rod drive mechanism includes magnetic field force calculation and design calculation of magnetomotive force for three electromagnetic iron and their coilds. The basic principle and method of electromagnetic design calculation had been expounded to take the lift magnet and lift coil for example

  5. CRISTAL V2 Package: Principles and validation domain

    International Nuclear Information System (INIS)

    Gomit, Jean-Michel; Cochet, Bertrand; Leclaire, Nicolas; Carmouze, Coralie; Damian, Frederic; Entringer, Arnaud; Gagnier, Emmanuel

    2017-04-01

    The purpose of this document is to provide a comprehensive and global view of the CRISTAL V2 package. In particular, it sets out the principles of the computational approaches available to the user, through four calculation 'routes': - the 'multigroup Monte Carlo' route, - the 'multigroup deterministic' route, - the 'point-wise Monte Carlo' route, - the 'criticality standard calculation' route. (authors)

  6. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    Science.gov (United States)

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  7. The eXtensible ontology development (XOD) principles and tool implementation to support ontology interoperability.

    Science.gov (United States)

    He, Yongqun; Xiang, Zuoshuang; Zheng, Jie; Lin, Yu; Overton, James A; Ong, Edison

    2018-01-12

    Ontologies are critical to data/metadata and knowledge standardization, sharing, and analysis. With hundreds of biological and biomedical ontologies developed, it has become critical to ensure ontology interoperability and the usage of interoperable ontologies for standardized data representation and integration. The suite of web-based Ontoanimal tools (e.g., Ontofox, Ontorat, and Ontobee) support different aspects of extensible ontology development. By summarizing the common features of Ontoanimal and other similar tools, we identified and proposed an "eXtensible Ontology Development" (XOD) strategy and its associated four principles. These XOD principles reuse existing terms and semantic relations from reliable ontologies, develop and apply well-established ontology design patterns (ODPs), and involve community efforts to support new ontology development, promoting standardized and interoperable data and knowledge representation and integration. The adoption of the XOD strategy, together with robust XOD tool development, will greatly support ontology interoperability and robust ontology applications to support data to be Findable, Accessible, Interoperable and Reusable (i.e., FAIR).

  8. Robust high pressure stability and negative thermal expansion in sodium-rich antiperovskites Na{sub 3}OBr and Na{sub 4}OI{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yonggang, E-mail: yyggwang@gmail.com, E-mail: yangwg@hpstar.ac.cn, E-mail: yusheng.zhao@unlv.edu [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006 (China); High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Wen, Ting [Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006 (China); Park, Changyong; Kenney-Benson, Curtis [High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Pravica, Michael; Zhao, Yusheng, E-mail: yyggwang@gmail.com, E-mail: yangwg@hpstar.ac.cn, E-mail: yusheng.zhao@unlv.edu [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Yang, Wenge, E-mail: yyggwang@gmail.com, E-mail: yangwg@hpstar.ac.cn, E-mail: yusheng.zhao@unlv.edu [High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203 (China)

    2016-01-14

    The structure stability under high pressure and thermal expansion behavior of Na{sub 3}OBr and Na{sub 4}OI{sub 2}, two prototypes of alkali-metal-rich antiperovskites, were investigated by in situ synchrotron X-ray diffraction techniques under high pressure and low temperature. Both are soft materials with bulk modulus of 58.6 GPa and 52.0 GPa for Na{sub 3}OBr and Na{sub 4}OI{sub 2}, respectively. The cubic Na{sub 3}OBr structure and tetragonal Na{sub 4}OI{sub 2} with intergrowth K{sub 2}NiF{sub 4} structure are stable under high pressure up to 23 GPa. Although being a characteristic layered structure, Na{sub 4}OI{sub 2} exhibits nearly isotropic compressibility. Negative thermal expansion was observed at low temperature range (20–80 K) in both transition-metal-free antiperovskites for the first time. The robust high pressure structure stability was examined and confirmed by first-principles calculations among various possible polymorphisms qualitatively. The results provide in-depth understanding of the negative thermal expansion and robust crystal structure stability of these antiperovskite systems and their potential applications.

  9. Robust multivariate analysis

    CERN Document Server

    J Olive, David

    2017-01-01

    This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given.  The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory.   The robust techniques  are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis.  A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with...

  10. Structural, phase stability, electronic, elastic properties and hardness of IrN{sub 2} and zinc blende IrN: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhaobo [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Xiaolong, E-mail: kmzxlong@163.com [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhang, Kunhua [State Key Laboratory of Rare Precious Metals Comprehensive Utilization of New Technologies, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2016-12-15

    First-principle calculations were performed to investigate the structural, phase stability, electronic, elastic properties and hardness of monoclinic structure IrN{sub 2} (m-IrN{sub 2}), orthorhombic structure IrN{sub 2} (o-IrN{sub 2}) and zinc blende structure IrN (ZB IrN). The results show us that only m-IrN{sub 2} is both thermodynamic and dynamic stability. The calculated band structure and density of states (DOS) curves indicate that o-IrN{sub 2} and ZB Ir-N compounds we calculated have metallic behavior while m-IrN{sub 2} has a small band gap of ~0.3 eV, and exist a common hybridization between Ir-5d and N-2p states, which forming covalent bonding between Ir and N atoms. The difference charge density reveals the electron transfer from Ir atom to N atom for three Ir-N compounds, which forming strong directional covalent bonds. Notable, a strong N-N bond appeared in m-IrN{sub 2} and o-IrN{sub 2}. The ratio of bulk to shear modulus (B/G) indicate that three Ir-N compounds we calculated are ductile, and ZB IrN possesses a better ductility than two types IrN{sub 2}. m-IrN{sub 2} has highest Debye temperature (736 K), illustrating it possesses strongest covalent bonding. The hardness of three Ir-N compounds were also calculated, and the results reveal that m-IrN{sub 2} (18.23 GPa) and o-IrN{sub 2} (18.02 GPa) are ultraincompressible while ZB IrN has a negative value, which may be attributed to phase transition at ca. 1.98 GPa.

  11. Colonic transit time and pressure based on Bernoulli's principle.

    Science.gov (United States)

    Uno, Yoshiharu

    2018-01-01

    Variations in the caliber of human large intestinal tract causes changes in pressure and the velocity of its contents, depending on flow volume, gravity, and density, which are all variables of Bernoulli's principle. Therefore, it was hypothesized that constipation and diarrhea can occur due to changes in the colonic transit time (CTT), according to Bernoulli's principle. In addition, it was hypothesized that high amplitude peristaltic contractions (HAPC), which are considered to be involved in defecation in healthy subjects, occur because of cecum pressure based on Bernoulli's principle. A virtual healthy model (VHM), a virtual constipation model and a virtual diarrhea model were set up. For each model, the CTT was decided according to the length of each part of the colon, and then calculating the velocity due to the cecum inflow volume. In the VHM, the pressure change was calculated, then its consistency with HAPC was verified. The CTT changed according to the difference between the cecum inflow volume and the caliber of the intestinal tract, and was inversely proportional to the cecum inflow volume. Compared with VHM, the CTT was prolonged in the virtual constipation model, and shortened in the virtual diarrhea model. The calculated pressure of the VHM and the gradient of the interlocked graph were similar to that of HAPC. The CTT and HAPC can be explained by Bernoulli's principle, and constipation and diarrhea may be fundamentally influenced by flow dynamics.

  12. Effect of contact deformation on contact electrification: a first-principles calculation

    International Nuclear Information System (INIS)

    Zhang, Yuanyue; Shao, Tianmin

    2013-01-01

    The effect of contact deformation on contact electrification of metallic materials was studied by the first-principles method. The results of charge population and the densities of states of the deformed contact models demonstrated that the magnitude of the transferred charge increased with deformation. The mechanism of the effect of deformation was investigated by studying the electronic properties of the deformed surface slabs. The results showed that crystal deformation led to a change in the electrostatic potential of the metal, where the number of nearly free electrons and unoccupied orbitals for charge transfer increased, and their energy barrier decreased. (paper)

  13. Robustness of Structures

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Vrouwenvelder, A.C.W.M.; Sørensen, John Dalsgaard

    2011-01-01

    In 2005, the Joint Committee on Structural Safety (JCSS) together with Working Commission (WC) 1 of the International Association of Bridge and Structural Engineering (IABSE) organized a workshop on robustness of structures. Two important decisions resulted from this workshop, namely...... ‘COST TU0601: Robustness of Structures’ was initiated in February 2007, aiming to provide a platform for exchanging and promoting research in the area of structural robustness and to provide a basic framework, together with methods, strategies and guidelines enhancing robustness of structures...... the development of a joint European project on structural robustness under the COST (European Cooperation in Science and Technology) programme and the decision to develop a more elaborate document on structural robustness in collaboration between experts from the JCSS and the IABSE. Accordingly, a project titled...

  14. Robust Instrumentation[Water treatment for power plant]; Robust Instrumentering

    Energy Technology Data Exchange (ETDEWEB)

    Wik, Anders [Vattenfall Utveckling AB, Stockholm (Sweden)

    2003-08-01

    Cementa Slite Power Station is a heat recovery steam generator (HRSG) with moderate steam data; 3.0 MPa and 420 deg C. The heat is recovered from Cementa, a cement industry, without any usage of auxiliary fuel. The Power station commenced operation in 2001. The layout of the plant is unusual, there are no similar in Sweden and very few world-wide, so the operational experiences are limited. In connection with the commissioning of the power plant a R and D project was identified with the objective to minimise the manpower needed for chemistry management of the plant. The lean chemistry management is based on robust instrumentation and chemical-free water treatment plant. The concept with robust instrumentation consists of the following components; choice of on-line instrumentation with a minimum of O and M and a chemical-free water treatment. The parameters are specific conductivity, cation conductivity, oxygen and pH. In addition to that, two fairly new on-line instruments were included; corrosion monitors and differential pH calculated from specific and cation conductivity. The chemical-free water treatment plant consists of softening, reverse osmosis and electro-deionisation. The operational experience shows that the cycle chemistry is not within the guidelines due to major problems with the operation of the power plant. These problems have made it impossible to reach steady state and thereby not viable to fully verify and validate the concept with robust instrumentation. From readings on the panel of the online analysers some conclusions may be drawn, e.g. the differential pH measurements have fulfilled the expectations. The other on-line analysers have been working satisfactorily apart from contamination with turbine oil, which has been noticed at least twice. The corrosion monitors seem to be working but the lack of trend curves from the mainframe computer system makes it hard to draw any clear conclusions. The chemical-free water treatment has met all

  15. Structural, elastic, and electronic properties of new 211 MAX phase Nb{sub 2}GeC from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Shein, I.R. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation)

    2013-02-01

    Very recently (2012, Phys. Rev Lett., 109, 035502) a new hexagonal (s.g. P63/mmc, Music-Sharp-Sign 194) ternary phase Nb{sub 2}GeC, which belongs to so-called 211-like MAX phases, was discovered. In order to get a systematic insight into the structural, elastic, and electronic properties of Nb{sub 2}GeC, we used two complementary DFT-based first-principles approaches (as implemented in the VASP and Wien2k packages) to calculate the optimized structural parameters, band structure, densities of state, Fermi surface, and a set of elastic parameters: elastic constants (C{sub ij}), bulk modulus (B), compressibility ({beta}), shear modulus (G), Young's modulus (Y), and elastic anisotropy indexes, which were discussed in comparison with available data. Besides, the inter-atomic bonding picture for Nb{sub 2}GeC was discussed using electron density maps and Bader's charge analysis.

  16. Design principles of metal-cutting machine tools

    CERN Document Server

    Koenigsberger, F

    1964-01-01

    Design Principles of Metal-Cutting Machine Tools discusses the fundamentals aspects of machine tool design. The book covers the design consideration of metal-cutting machine, such as static and dynamic stiffness, operational speeds, gearboxes, manual, and automatic control. The text first details the data calculation and the general requirements of the machine tool. Next, the book discusses the design principles, which include stiffness and rigidity of the separate constructional elements and their combined behavior under load, as well as electrical, mechanical, and hydraulic drives for the op

  17. Robust entry guidance using linear covariance-based model predictive control

    Directory of Open Access Journals (Sweden)

    Jianjun Luo

    2017-02-01

    Full Text Available For atmospheric entry vehicles, guidance design can be accomplished by solving an optimal issue using optimal control theories. However, traditional design methods generally focus on the nominal performance and do not include considerations of the robustness in the design process. This paper proposes a linear covariance-based model predictive control method for robust entry guidance design. Firstly, linear covariance analysis is employed to directly incorporate the robustness into the guidance design. The closed-loop covariance with the feedback updated control command is initially formulated to provide the expected errors of the nominal state variables in the presence of uncertainties. Then, the closed-loop covariance is innovatively used as a component of the cost function to guarantee the robustness to reduce its sensitivity to uncertainties. After that, the models predictive control is used to solve the optimal problem, and the control commands (bank angles are calculated. Finally, a series of simulations for different missions have been completed to demonstrate the high performance in precision and the robustness with respect to initial perturbations as well as uncertainties in the entry process. The 3σ confidence region results in the presence of uncertainties which show that the robustness of the guidance has been improved, and the errors of the state variables are decreased by approximately 35%.

  18. Robust Sequential Circuits Design Technique for Low Voltage and High Noise Scenarios

    Directory of Open Access Journals (Sweden)

    Garcia-Leyva Lancelot

    2016-01-01

    In this paper we introduce an innovative input and output data redundancy principle for sequential block circuits, the responsible to keep the state of the system, showing its efficiency in front of other robust technique approaches. The methodology is totally different from the Von Neumann approaches, because element are not replicated N times, but instead, they check the coherence of redundant input data no allowing data propagation in case of discrepancy. This mechanism does not require voting devices.

  19. First-principles calculated decomposition pathways for LiBH4 nanoclusters

    Science.gov (United States)

    Huang, Zhi-Quan; Chen, Wei-Chih; Chuang, Feng-Chuan; Majzoub, Eric H.; Ozoliņš, Vidvuds

    2016-05-01

    We analyze thermodynamic stability and decomposition pathways of LiBH4 nanoclusters using grand-canonical free-energy minimization based on total energies and vibrational frequencies obtained from density-functional theory (DFT) calculations. We consider (LiBH4)n nanoclusters with n = 2 to 12 as reactants, while the possible products include (Li)n, (B)n, (LiB)n, (LiH)n, and Li2BnHn; off-stoichiometric LinBnHm (m ≤ 4n) clusters were considered for n = 2, 3, and 6. Cluster ground-state configurations have been predicted using prototype electrostatic ground-state (PEGS) and genetic algorithm (GA) based structural optimizations. Free-energy calculations show hydrogen release pathways markedly differ from those in bulk LiBH4. While experiments have found that the bulk material decomposes into LiH and B, with Li2B12H12 as a kinetically inhibited intermediate phase, (LiBH4)n nanoclusters with n ≤ 12 are predicted to decompose into mixed LinBn clusters via a series of intermediate clusters of LinBnHm (m ≤ 4n). The calculated pressure-composition isotherms and temperature-pressure isobars exhibit sloping plateaus due to finite size effects on reaction thermodynamics. Generally, decomposition temperatures of free-standing clusters are found to increase with decreasing cluster size due to thermodynamic destabilization of reaction products.

  20. Robust H2/H∞ Control for the Electrohydraulic Steering System of a Four-Wheel Vehicle

    Directory of Open Access Journals (Sweden)

    Min Ye

    2014-01-01

    Full Text Available To shorten the steer diameter and to improve the maneuverability flexibility of a construction vehicle, four wheels’ steering system is presented. This steering system consists of mechanical-electrical-hydraulic assemblies. Its diagram and principle are depicted in detail. Then the mathematical models are derived step by step, including the whole vehicle model and the hydraulic route model. Considering the nonlinear and time-varying uncertainty of the steering system, robust H2/H∞ controller is put forward to guarantee both the system performance and the robust stability. The H∞ norm of the sensitive function from the parameter perturbation of the hydraulic system to the yaw velocity of the vehicle is taken as the evaluating index of the robustness and the H2 norm of the transfer function from the external disturbance to the steering angle of the wheel as the index of linear quadratic Gaussian. The experimental results showed that the proposed scheme was superior to classical PID controller and can guarantee both the control performance and the robustness of the steering system.

  1. Robust power spectral estimation for EEG data.

    Science.gov (United States)

    Melman, Tamar; Victor, Jonathan D

    2016-08-01

    Typical electroencephalogram (EEG) recordings often contain substantial artifact. These artifacts, often large and intermittent, can interfere with quantification of the EEG via its power spectrum. To reduce the impact of artifact, EEG records are typically cleaned by a preprocessing stage that removes individual segments or components of the recording. However, such preprocessing can introduce bias, discard available signal, and be labor-intensive. With this motivation, we present a method that uses robust statistics to reduce dependence on preprocessing by minimizing the effect of large intermittent outliers on the spectral estimates. Using the multitaper method (Thomson, 1982) as a starting point, we replaced the final step of the standard power spectrum calculation with a quantile-based estimator, and the Jackknife approach to confidence intervals with a Bayesian approach. The method is implemented in provided MATLAB modules, which extend the widely used Chronux toolbox. Using both simulated and human data, we show that in the presence of large intermittent outliers, the robust method produces improved estimates of the power spectrum, and that the Bayesian confidence intervals yield close-to-veridical coverage factors. The robust method, as compared to the standard method, is less affected by artifact: inclusion of outliers produces fewer changes in the shape of the power spectrum as well as in the coverage factor. In the presence of large intermittent outliers, the robust method can reduce dependence on data preprocessing as compared to standard methods of spectral estimation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Self-organized control in cooperative robots using a pattern formation principle

    International Nuclear Information System (INIS)

    Starke, Jens; Ellsaesser, Carmen; Fukuda, Toshio

    2011-01-01

    Self-organized modular approaches proved in nature to be robust and optimal and are a promising strategy to control future concepts of flexible and modular manufacturing processes. We show how this can be applied to a model of flexible manufacturing based on time-dependent robot-target assignment problems where robot teams have to serve manufacturing targets such that an objective function is optimized. Feasibility of the self-organized solutions can be guaranteed even for unpredictable situations like sudden changes in the demands or breakdowns of robots. As example an uncrewed space mission is visualized in a simulation where robots build a space station. - Highlights: → Adapting a pattern formation principle to control cooperative robots in a robust way. → Flexible manufacturing systems are modelled by time-dependent assignment problems. → Coupled selection equations guarantee feasibility of solutions. → Solution structure (permutations) is not destroyed by inhomogeneous growth rates. → Example of an uncrewed space mission shows effectivity and robustness.

  3. Lattice cell burnup calculation

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1977-01-01

    Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics

  4. First principle calculations of alkali hydride electronic structures

    International Nuclear Information System (INIS)

    Novakovic, N; Radisavljevic, I; Colognesi, D; Ostojic, S; Ivanovic, N

    2007-01-01

    Electronic structure, volume optimization, bulk moduli, elastic constants, and frequencies of the transversal optical vibrations in LiH, NaH, KH, RbH, and CsH are calculated using the full potential augmented plane wave method, extended with local orbitals, and the full potential linearized augmented plane wave method. The obtained results show some common features in the electronic structure of these compounds, but also clear differences, which cannot be explained using simple empirical trends. The differences are particularly prominent in the electronic distributions and interactions in various crystallographic planes. In the light of these findings we have elaborated some selected experimental results and discussed several theoretical approaches frequently used for the description of various alkali hydride properties

  5. Some Implications of Two Forms of the Generalized Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    Mohammed M. Khalil

    2014-01-01

    Full Text Available Various theories of quantum gravity predict the existence of a minimum length scale, which leads to the modification of the standard uncertainty principle to the Generalized Uncertainty Principle (GUP. In this paper, we study two forms of the GUP and calculate their implications on the energy of the harmonic oscillator and the hydrogen atom more accurately than previous studies. In addition, we show how the GUP modifies the Lorentz force law and the time-energy uncertainty principle.

  6. Applying principles of Design For Assembly to ITER maintenance operations

    International Nuclear Information System (INIS)

    Heemskerk, Cock; de Baar, Marco; Elzendoorn, Ben; Koning, Jarich; Verhoeven, Toon; Vreede, Fred de

    2009-01-01

    In ITER, maintenance operations in the vessel and in the Hot Cell will be largely done by Remote Handling (RH). Remotely performed maintenance actions tend to be more time-costly than actions performed by direct human access. With a human operator in the control loop and adequate situational feedback, a two-armed master slave manipulator system can mimic direct access with dexterous manipulation, tactile feedback and vision. But even then, turnaround times are still very high. Adapting the design for simplified maintenance operations can yield significant time savings. One of the methods known to produce a simpler, more robust design, which is also better suited for handling with robots, is Design For Assembly (DFA). This paper discusses whether and how the principles of DFA can be applied to simplify maintenance operations for ITER. While DFA is normally used with series-production and ITER is a unique product, it is possible to apply the principles of DFA to ITER maintenance operations. Furthermore, DFA's principles can be applied at different abstraction levels. Combining principles of DFA with Virtual Reality leads to new insights and provides additional value.

  7. First principles density functional calculation of magnetic moment and hyperfine fields of dilute transition metal impurities in Gd host

    International Nuclear Information System (INIS)

    Mohanta, S.K.; Mishra, S.N.; Srivastava, S.K.

    2014-01-01

    We present first principles calculations of electronic structure and magnetic properties of dilute transition metal (3d, 4d and 5d) impurities in a Gd host. The calculations have been performed within the density functional theory using the full potential linearized augmented plane wave technique and the GGA+U method. The spin and orbital contributions to the magnetic moment and the hyperfine fields have been computed. We find large magnetic moments for 3d (Ti–Co), 4d (Nb–Ru) and 5d (Ta–Os) impurities with magnitudes significantly different from the values estimated from earlier mean field calculation [J. Magn. Magn. Mater. 320 (2008) e446–e449]. The exchange interaction between the impurity and host Gd moments is found to be positive for early 3d elements (Sc–V) while in all other cases an anti-ferromagnetic coupling is observed. The trends for the magnetic moment and hyperfine field of d-impurities in Gd show qualitative difference with respect to their behavior in Fe, Co and Ni. The calculated total hyperfine field, in most cases, shows excellent agreement with the experimental results. A detailed analysis of the Fermi contact hyperfine field has been made, revealing striking differences for impurities having less or more than half filled d-shell. The impurity induced perturbations in host moments and the change in the global magnetization of the unit cell have also been computed. The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. - Highlights: • Detailed study of transition metal impurities in ferromagnetic Gd has been carried out. • The trends in impurity magnetic moment are qualitatively different from Fe, Co and Ni. • The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. • Experimental trend in a hyperfine field has been reproduced successfully

  8. Modeling of punctual defects in UAL4 from the U-Al system: Combination of CALPHAD method with first principles calculation

    International Nuclear Information System (INIS)

    Kniznik, L; Alonso, P.R; Gargano, P.H; Rubiolo, G.H.

    2012-01-01

    We investigated the point defect structure of oI20 UAl 4 in order to study aluminum diffusion. We performed ab initio calculations within a pseudopotentials method implemented in the Vienna Ab initio Simulation Package (VASP) to obtain point defect formation energies: vacancies (V U and V A l ) and antisites (Al U and U A l). Using a statistical-thermodynamic model we calculated defects concentrations as function of temperature and deviation from stoichiometry. For stoichiometric UAl 4 antisites are the dominant thermal defects. In off-stoichiometric UAl 4 , antisites are the constitutional defects. For U-rich UAl 4 , the thermal defect is called Entre Ramas, where one antisite U atom is replaced by five Al vacancies. For Al-rich UAl 4 , the thermal defect is also an Entre Ramas, where four antisite Al atoms are replaced by five U vacancies. Our first principles results were used to model UAl 4 intermediate phase with a two sublattices Wagner-Schottky model. The Thermocalc data bases previously used were modified, including antisites and vacancies in both sublattices of the UAl 4 intermediate phase: (U,Al,VA) 0.2 : (Al,U,VA) 0.8 . We obtained a consistent thermodynamic database able to reproduce the entire U-Al equilibrium phase diagram (author)

  9. Geomagnetic matching navigation algorithm based on robust estimation

    Science.gov (United States)

    Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan

    2017-08-01

    The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.

  10. Effect of point defects on the electronic density states of SnC nanosheets: First-principles calculations

    Directory of Open Access Journals (Sweden)

    Soleyman Majidi

    Full Text Available In this work, we investigated the electronic and structural properties of various defects including single Sn and C vacancies, double vacancy of the Sn and C atoms, anti-sites, position exchange and the Stone–Wales (SW defects in SnC nanosheets by using density-functional theory (DFT. We found that various vacancy defects in the SnC monolayer can change the electronic and structural properties. Our results show that the SnC is an indirect band gap compound, with the band gap of 2.10 eV. The system turns into metal for both structure of the single Sn and C vacancies. However, for the double vacancy contained Sn and C atoms, the structure remains semiconductor with the direct band gap of 0.37 eV at the G point. We also found that for anti-site defects, the structure remains semiconductor and for the exchange defect, the structure becomes indirect semiconductor with the K-G point and the band gap of 0.74 eV. Finally, the structure of SW defect remains semiconductor with the direct band gap at K point with band gap of 0.54 eV. Keywords: SnC nanosheets, Density-functional theory, First-principles calculations, Electronic density of states, Band gap

  11. Pile Load Capacity – Calculation Methods

    Directory of Open Access Journals (Sweden)

    Wrana Bogumił

    2015-12-01

    Full Text Available The article is a review of the current problems of the foundation pile capacity calculations. The article considers the main principles of pile capacity calculations presented in Eurocode 7 and other methods with adequate explanations. Two main methods are presented: α – method used to calculate the short-term load capacity of piles in cohesive soils and β – method used to calculate the long-term load capacity of piles in both cohesive and cohesionless soils. Moreover, methods based on cone CPTu result are presented as well as the pile capacity problem based on static tests.

  12. The effects of surface bond relaxation on electronic structure of Sb{sub 2}Te{sub 3} nano-films by first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, C., E-mail: canli1983@gmail.com; Zhao, Y. F.; Fu, C. X.; Gong, Y. Y. [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University (China); Chi, B. Q. [College of Modem Science and Technology, Jiliang University, Hangzhou, 310018 (China); Sun, C. Q. [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University (China); School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 (Singapore)

    2014-10-15

    The effects of vertical compressive stress on Sb{sub 2}Te{sub 3} nano-films have been investigated by the first principles calculation, including stability, electronic structure, crystal structure, and bond order. It is found that the band gap of nano-film is sensitive to the stress in Sb{sub 2}Te{sub 3} nano-film and the critical thickness increases under compressive stress. The band gap and band order of Sb{sub 2}Te{sub 3} film has been affected collectively by the surface and internal crystal structures, the contraction ratio between surface bond length of nano-film and the corresponding bond length of bulk decides the band order of Sb{sub 2}Te{sub 3} film.

  13. Calculation of the inter-nuclei separation of HD+

    International Nuclear Information System (INIS)

    Zhu Zhousen; Shi Miangong; Tang Ayou; Yang Baifang; Miao Jingwei

    1993-01-01

    With the Ritz variational principle, the authors calculate the inter nuclei separation of the HD + molecular ion, and introduces a method to calculate the inter nuclei separations of other simple non-symmetry two-atom molecular ions. One way to work out the trial wave function is provided

  14. Mutual Information Based Dynamic Integration of Multiple Feature Streams for Robust Real-Time LVCSR

    Science.gov (United States)

    Sato, Shoei; Kobayashi, Akio; Onoe, Kazuo; Homma, Shinichi; Imai, Toru; Takagi, Tohru; Kobayashi, Tetsunori

    We present a novel method of integrating the likelihoods of multiple feature streams, representing different acoustic aspects, for robust speech recognition. The integration algorithm dynamically calculates a frame-wise stream weight so that a higher weight is given to a stream that is robust to a variety of noisy environments or speaking styles. Such a robust stream is expected to show discriminative ability. A conventional method proposed for the recognition of spoken digits calculates the weights front the entropy of the whole set of HMM states. This paper extends the dynamic weighting to a real-time large-vocabulary continuous speech recognition (LVCSR) system. The proposed weight is calculated in real-time from mutual information between an input stream and active HMM states in a searchs pace without an additional likelihood calculation. Furthermore, the mutual information takes the width of the search space into account by calculating the marginal entropy from the number of active states. In this paper, we integrate three features that are extracted through auditory filters by taking into account the human auditory system's ability to extract amplitude and frequency modulations. Due to this, features representing energy, amplitude drift, and resonant frequency drifts, are integrated. These features are expected to provide complementary clues for speech recognition. Speech recognition experiments on field reports and spontaneous commentary from Japanese broadcast news showed that the proposed method reduced error words by 9.2% in field reports and 4.7% in spontaneous commentaries relative to the best result obtained from a single stream.

  15. Introduction to calculations of recuperators

    International Nuclear Information System (INIS)

    Dollar, M.

    1977-01-01

    Physical principles of heat transfer between fluid under turbulent flow conditions and a wall of a duct are described. The methods of calculations of heat transfer coefficient and the theory of recuperative heat exchangers are presented. Numerical examples are given to illustrate the theory. (author)

  16. Firm-specific investment, sticky prices and the Taylor principle

    OpenAIRE

    Sveen, Tommy; Weinke, Lutz

    2005-01-01

    According to the Taylor principle a central bank should adjust the nominal interest rate by more than one-for-one in response to changes in current inflation. Most of the existing literature supports the view that by following this simple recommendation a central bank can avoid being a source of unnecessary fluctuations in economic activity. The present paper shows that this conclusion is not robust with respect to the modelling of capital accumulation. We use our insights to discuss the desi...

  17. Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution

    Energy Technology Data Exchange (ETDEWEB)

    Delzanno, G L [Los Alamos National Laboratory; Finn, J M [Los Alamos National Laboratory

    2009-01-01

    Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.

  18. Histomorphometry and cortical robusticity of the adult human femur.

    Science.gov (United States)

    Miszkiewicz, Justyna Jolanta; Mahoney, Patrick

    2018-01-13

    Recent quantitative analyses of human bone microanatomy, as well as theoretical models that propose bone microstructure and gross anatomical associations, have started to reveal insights into biological links that may facilitate remodeling processes. However, relationships between bone size and the underlying cortical bone histology remain largely unexplored. The goal of this study is to determine the extent to which static indicators of bone remodeling and vascularity, measured using histomorphometric techniques, relate to femoral midshaft cortical width and robusticity. Using previously published and new quantitative data from 450 adult human male (n = 233) and female (n = 217) femora, we determine if these aspects of femoral size relate to bone microanatomy. Scaling relationships are explored and interpreted within the context of tissue form and function. Analyses revealed that the area and diameter of Haversian canals and secondary osteons, and densities of secondary osteons and osteocyte lacunae from the sub-periosteal region of the posterior midshaft femur cortex were significantly, but not consistently, associated with femoral size. Cortical width and bone robusticity were correlated with osteocyte lacunae density and scaled with positive allometry. Diameter and area of osteons and Haversian canals decreased as the width of cortex and bone robusticity increased, revealing a negative allometric relationship. These results indicate that microscopic products of cortical bone remodeling and vascularity are linked to femur size. Allometric relationships between more robust human femora with thicker cortical bone and histological products of bone remodeling correspond with principles of bone functional adaptation. Future studies may benefit from exploring scaling relationships between bone histomorphometric data and measurements of bone macrostructure.

  19. Robust Pseudo-Hierarchical Support Vector Clustering

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Sjöstrand, Karl; Olafsdóttir, Hildur

    2007-01-01

    Support vector clustering (SVC) has proven an efficient algorithm for clustering of noisy and high-dimensional data sets, with applications within many fields of research. An inherent problem, however, has been setting the parameters of the SVC algorithm. Using the recent emergence of a method...... for calculating the entire regularization path of the support vector domain description, we propose a fast method for robust pseudo-hierarchical support vector clustering (HSVC). The method is demonstrated to work well on generated data, as well as for detecting ischemic segments from multidimensional myocardial...

  20. System Identification and Resonant Control of Thermoacoustic Engines for Robust Solar Power

    Directory of Open Access Journals (Sweden)

    Boe-Shong Hong

    2015-05-01

    Full Text Available It was found that thermoacoustic solar-power generators with resonant control are more powerful than passive ones. To continue the work, this paper focuses on the synthesis of robustly resonant controllers that guarantee single-mode resonance not only in steady states, but also in transient states when modelling uncertainties happen and working temperature temporally varies. Here the control synthesis is based on the loop shifting and the frequency-domain identification in advance thereof. Frequency-domain identification is performed to modify the mathematical modelling and to identify the most powerful mode, so that the DSP-based feedback controller can online pitch the engine to the most powerful resonant-frequency robustly and accurately. Moreover, this paper develops two control tools, the higher-order van-der-Pol oscillator and the principle of Dynamical Equilibrium, to assist in system identification and feedback synthesis, respectively.

  1. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.

    Science.gov (United States)

    Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan

    2015-05-22

    Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures.

  2. Electronic structures of spinterface for thiophene molecule adsorbed at Co, Fe, and Ni electrode: First principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Linlin; Tian, Yanli; Yuan, Xiaobo; Hu, Guichao; Ren, Junfeng, E-mail: renjf@sdnu.edu.cn

    2016-12-15

    Highlights: • Thiophene molecule could be spin polarized when adsorbed at Co(001), Fe(100), and Ni(111) surfaces. • The biggest spin polarization will be obtained when the thiophene molecule adsorbed at the Fe(100) surface. • The spin polarization is originated from the interfacial orbital hybridizations between the 3d orbital of ferromagnetic electrodes and the 2p orbital of the thiophene molecule. - Abstract: First principles calculations are adopted to study the spin polarization properties of thiophene molecule which adsorbed at the Co, Fe, and Ni electrode surfaces. The density of states, spin-polarized density distributions as well as the differential charge density distributions are obtained. It is found that the p orbital of the thiophene molecule will interact with the d orbital of the ferromagnetic electrodes, which will generate new spin coupling states and lead to obvious spin polarization in the thiophene molecule. Different electrodes induce different spin polarization properties, and in which the Fe electrode will bring the biggest spin polarization of the thiophene molecule. People can selectively and efficiently inject spin polarized electrons into molecules by choosing suitable ferromagnetic electrodes in organic spintronic devices.

  3. First principles total energy calculations of the structural and electronic properties of ScxGa1-xN

    International Nuclear Information System (INIS)

    Moreno-Armenta, Maria Guadalupe; Mancera, Luis; Takeuchi, Noboru

    2003-01-01

    Using first principles total energy calculations within the the full-potential linearized augmented plane wave (FP-LAPW) method, we have investigated the structural and electronic properties of Sc x Ga 1-x N, with Sc concentrations varying from 0% up to 100%. In particular we have studied the relative stability of several configurations of Sc x Ga 1-x N in wurtzite-like structures (the ground state configuration of GaN), or in rocksalt-like structures (the ground state configuration of ScN). It is found that for Sc concentrations less than ∼65%, the favored structure is a wurtzite-like one, while for Sc concentrations greater than ∼65%, the favored structure is a NaCl-like structure. It is also found that for the wurtzite-like crystals, the fundamental gap is large and direct. For the rocksalt crystals the fundamental gap is small and indirect, but with an additional larger direct gap. In agreement with the experiments of Little and Kordesch [Appl. Phys. Lett. 78, 2891 (2001)] we found a decrease of the band gap with the increase of the Sc concentration. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  4. Principles of Stellar Interferometry

    CERN Document Server

    Glindemann, Andreas

    2011-01-01

    Over the last decade, stellar interferometry has developed from a specialist tool to a mainstream observing technique, attracting scientists whose research benefits from milliarcsecond angular resolution. Stellar interferometry has become part of the astronomer’s toolbox, complementing single-telescope observations by providing unique capabilities that will advance astronomical research. This carefully written book is intended to provide a solid understanding of the principles of stellar interferometry to students starting an astronomical research project in this field or to develop instruments and to astronomers using interferometry but who are not interferometrists per se. Illustrated by excellent drawings and calculated graphs the imaging process in stellar interferometers is explained starting from first principles on light propagation and diffraction wave propagation through turbulence is described in detail using Kolmogorov statistics the impact of turbulence on the imaging process is discussed both f...

  5. Inelastic Transport through Molecules: Comparing First-Principles Calculations to Experiments

    DEFF Research Database (Denmark)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2006-01-01

    We present calculations of the elastic and inelastic conductance through three different hydrocarbon molecules connected to gold electrodes. Our method is based on a combination of the nonequilibrium Green's function method with density functional theory. Vibrational effects in these molecular...

  6. Lattice stabilities, mechanical and thermodynamic properties of Al3Tm and Al3Lu intermetallics under high pressure from first-principles calculations

    Science.gov (United States)

    Xu-Dong, Zhang; Wei, Jiang

    2016-02-01

    The effects of high pressure on lattice stability, mechanical and thermodynamic properties of L12 structure Al3Tm and Al3Lu are studied by first-principles calculations within the VASP code. The phonon dispersion curves and density of phonon states are calculated by using the PHONONPY code. Our results agree well with the available experimental and theoretical values. The vibrational properties indicate that Al3Tm and Al3Lu keep their dynamical stabilities in L12 structure up to 100 GPa. The elastic properties and Debye temperatures for Al3Tm and Al3Lu increase with the increase of pressure. The mechanical anisotropic properties are discussed by using anisotropic indices AG, AU, AZ, and the three-dimensional (3D) curved surface of Young’s modulus. The calculated results show that Al3Tm and Al3Lu are both isotropic at 0 GPa and anisotropic under high pressure. In the present work, the sound velocities in different directions for Al3Tm and Al3Lu are also predicted under high pressure. We also calculate the thermodynamic properties and provide the relationships between thermal parameters and temperature/pressure. These results can provide theoretical support for further experimental work and industrial applications. Project supported by the Scientific Technology Plan of the Educational Department of Liaoning Province and Liaoning Innovative Research Team in University, China (Grant No. LT2014004) and the Program for the Young Teacher Cultivation Fund of Shenyang University of Technology, China (Grant No. 005612).

  7. Tunable magnetism in the LaAlO3/SrTiO3 heterostructure: Insights from first-principles calculations

    Science.gov (United States)

    Xue, Yuanbin; Zhao, Jinzhu; Shan, Yueyue; Xu, Hu

    2018-04-01

    By performing first-principles calculations, we explored the origin and controlling methods of magnetism in ideal and oxygen deficient (001) LaAlO3/SrTiO3 (LAO/STO) heterostructures. It was found that the ferromagnetic ordering is the ground state and that the interfacial Ti 3d electrons introduced by the LaO-termination, polar catastrophe and oxygen vacancies can all contribute to the magnetism. With respect to the ways of tuning the magnetic properties, our results show that LaO-terminated films generally carry much stronger magnetic moments than their AlO2-terminated counterparts and that the magnitude of magnetic moments can also be effectively controlled by the LAO film thickness. In addition, oxygen vacancy leads to substantial electronic reconstruction of the interfacial Ti 3d orbitals, which enhances the magnetization and makes the magnetism emerge in thinner polar LAO films. This work offers useful information to facilitate one's understanding of the magnetism and to provide clues to engineer the magnetic behaviors in related oxide heterostructures.

  8. Dosimetry in intrathecal radiogold therapy. 5. Principles of gonad dose calculation

    Energy Technology Data Exchange (ETDEWEB)

    Hliscs, R; Doege, H [Medizinische Akademie, Dresden (German Democratic Republic). Nuklearmedizinische Klinik

    1980-10-01

    Basing on MIRD recommendations the absorbed dose per unit of accumulated activity in the ovaries and testes is calculated when radioactivity is accumulated in the spinal and cerebral liquor space as well as in the liver following instillation of /sup 198/Au colloid for intrathecal therapy of acute leukemia in childhood. The calculations were made for the IAEA standard man as well as for a 100 cm tall child. Besides that the maximum value of ovarian exposure for the child was determined which arises when the ovaries are close to the spinal column.

  9. Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study

    International Nuclear Information System (INIS)

    Zhou, Bi-Cheng; Shang, Shun-Li; Wang, Yi; Liu, Zi-Kui

    2016-01-01

    First-principles calculations based on density functional theory have been used to calculate the temperature-dependent dilute tracer diffusion coefficients for 47 substitutional alloying elements in hexagonal closed packed (hcp) Mg by combining transition state theory and an 8-frequency model. The minimum energy pathways and the saddle point configurations during solute migration are calculated with the climbing image nudged elastic band method. Vibrational properties are obtained using the quasi-harmonic Debye model with inputs from first-principles calculations. An improved generalized gradient approximation of PBEsol is used in the present first-principles calculations, which is able to well describe both vacancy formation energies and vibrational properties. It is found that the solute diffusion coefficients in hcp Mg are roughly inversely proportional to the bulk modulus of the dilute alloys, which reflects the solutes' bonding to Mg. Transition metal elements with d electrons show strong interactions with Mg and have large diffusion activation energies. Correlation effects are not negligible for solutes Ca, Na, Sr, Se, Te, and Y, in which the direct solute migration barriers are much smaller than the solvent (Mg) migration barriers. Calculated diffusion coefficients are in remarkable agreement with available experimental data in the literature.

  10. Principles of meteoritics

    CERN Document Server

    Krinov, E L

    1960-01-01

    Principles of Meteoritics examines the significance of meteorites in relation to cosmogony and to the origin of the planetary system. The book discusses the science of meteoritics and the sources of meteorites. Scientists study the morphology of meteorites to determine their motion in the atmosphere. The scope of such study includes all forms of meteorites, the circumstances of their fall to earth, their motion in the atmosphere, and their orbits in space. Meteoric bodies vary in sizes; in calculating their motion in interplanetary space, astronomers apply the laws of Kepler. In the region of

  11. Robust snapshot interferometric spectropolarimetry.

    Science.gov (United States)

    Kim, Daesuk; Seo, Yoonho; Yoon, Yonghee; Dembele, Vamara; Yoon, Jae Woong; Lee, Kyu Jin; Magnusson, Robert

    2016-05-15

    This Letter describes a Stokes vector measurement method based on a snapshot interferometric common-path spectropolarimeter. The proposed scheme, which employs an interferometric polarization-modulation module, can extract the spectral polarimetric parameters Ψ(k) and Δ(k) of a transmissive anisotropic object by which an accurate Stokes vector can be calculated in the spectral domain. It is inherently strongly robust to the object 3D pose variation, since it is designed distinctly so that the measured object can be placed outside of the interferometric module. Experiments are conducted to verify the feasibility of the proposed system. The proposed snapshot scheme enables us to extract the spectral Stokes vector of a transmissive anisotropic object within tens of msec with high accuracy.

  12. Local electronic structure at organic–metal interface studied by UPS, MAES, and first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, M., E-mail: cmaoki@mail.ecc.u-tokyo.ac.jp; Masuda, S.

    2015-10-01

    Understanding and controlling local electronic structures at organic–metal interfaces are crucial for fabricating novel organic-based electronics, as in the case of heterojunctions in semiconductor devices. Here, we report recent studies of valence electronic states at organic–metal interfaces (especially those near the Fermi level of a metal substrate) by the combined analysis of ultraviolet photoemission spectroscopy (UPS), metastable atom electron spectroscopy (MAES), and first-principles calculations. New electronic states in the HOMO (highest occupied molecular orbital)–LUMO (lowest unoccupied molecular orbital) gap formed at an organic–metal interface are classified as a chemisorption-induced gap state (CIGS) and a complex-based gap state (CBGS). The CIGS is further characterized by an asymptotic feature of the metal wave function in the chemisorbed species. The CIGSs in alkanethiolates on Pt(1 1 1) and C{sub 60} on Pt(1 1 1) can be regarded as damping and propagating types, respectively. The CBGSs in K-doped dibenzopentacene (DBP) are composed of DBP-derived MOs and K sp states and distributed over the complex film. No metallic structures were found in the K{sub 1}DBP and K{sub 3}DBP phases, suggesting that they are Mott–Hubbard insulators due to strong electron correlation. The local electronic structures of a pentacene film bridged by Au electrodes under bias voltages were examined by an FET-like specimen. The pentacene-derived bands were steeply shifted at the positively biased electrode, reflecting the p-type character of the film.

  13. First-principles study of electron transport through monatomic Al and Na wires

    DEFF Research Database (Denmark)

    Kobayashi, Nobuhiko; Brandbyge, Mads; Tsukada, Masaru

    2000-01-01

    We present first-principles calculations of electron transport, in particular, the conduction channels of monatomic Al and Na atom wires bridged between metallic jellium electrodes. The electronic structures are calculated by the first-principles recursion-transfer matrix method, and the conduction...... channels are investigated using the eigenchannel decomposition (ECD) of the conductance, the local density of states (LDOS), and the current density. The ECD is different from the conventional decomposition of atomic orbitals, and the study of decomposed electronic structures is shown to be effective...

  14. Methods for robustness programming

    NARCIS (Netherlands)

    Olieman, N.J.

    2008-01-01

    Robustness of an object is defined as the probability that an object will have properties as required. Robustness Programming (RP) is a mathematical approach for Robustness estimation and Robustness optimisation. An example in the context of designing a food product, is finding the best composition

  15. Accurate first principles calculation of many-body interactions

    International Nuclear Information System (INIS)

    Tawa, G.J.; Moskowitz, J.W.; Schmidt, K.E.

    1991-01-01

    This paper reports on the electronic structure Schrodinger equation that is solved for the van der Waals complexes spin-polarized H 2 and H 3 , and the closed-shell systems He 2 and He 3 by Monte Carlo methods. Two types of calculations are performed, variational Monte Carlo, which gives an upper bound to the eigenvalue of the Schrodinger equation, and Green's function Monte Carlo, which can solve the Schrodinger equation exactly within statistical sampling errors. The simulations are carried out on an ETA-10 supercomputer, and already existing computer codes were extensively modified to ensure highly efficient coding. A major component of the computations was the development of highly optimized many-electron wave functions. The results from the variational Monte Carlo simulations are reported for both the two- and three-body interaction energies

  16. Colonic transit time and pressure based on Bernoulli’s principle

    Science.gov (United States)

    Uno, Yoshiharu

    2018-01-01

    Purpose Variations in the caliber of human large intestinal tract causes changes in pressure and the velocity of its contents, depending on flow volume, gravity, and density, which are all variables of Bernoulli’s principle. Therefore, it was hypothesized that constipation and diarrhea can occur due to changes in the colonic transit time (CTT), according to Bernoulli’s principle. In addition, it was hypothesized that high amplitude peristaltic contractions (HAPC), which are considered to be involved in defecation in healthy subjects, occur because of cecum pressure based on Bernoulli’s principle. Methods A virtual healthy model (VHM), a virtual constipation model and a virtual diarrhea model were set up. For each model, the CTT was decided according to the length of each part of the colon, and then calculating the velocity due to the cecum inflow volume. In the VHM, the pressure change was calculated, then its consistency with HAPC was verified. Results The CTT changed according to the difference between the cecum inflow volume and the caliber of the intestinal tract, and was inversely proportional to the cecum inflow volume. Compared with VHM, the CTT was prolonged in the virtual constipation model, and shortened in the virtual diarrhea model. The calculated pressure of the VHM and the gradient of the interlocked graph were similar to that of HAPC. Conclusion The CTT and HAPC can be explained by Bernoulli’s principle, and constipation and diarrhea may be fundamentally influenced by flow dynamics. PMID:29670388

  17. Module-based analysis of robustness tradeoffs in the heat shock response system.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kurata

    2006-07-01

    Full Text Available Biological systems have evolved complex regulatory mechanisms, even in situations where much simpler designs seem to be sufficient for generating nominal functionality. Using module-based analysis coupled with rigorous mathematical comparisons, we propose that in analogy to control engineering architectures, the complexity of cellular systems and the presence of hierarchical modular structures can be attributed to the necessity of achieving robustness. We employ the Escherichia coli heat shock response system, a strongly conserved cellular mechanism, as an example to explore the design principles of such modular architectures. In the heat shock response system, the sigma-factor sigma32 is a central regulator that integrates multiple feedforward and feedback modules. Each of these modules provides a different type of robustness with its inherent tradeoffs in terms of transient response and efficiency. We demonstrate how the overall architecture of the system balances such tradeoffs. An extensive mathematical exploration nevertheless points to the existence of an array of alternative strategies for the existing heat shock response that could exhibit similar behavior. We therefore deduce that the evolutionary constraints facing the system might have steered its architecture toward one of many robustly functional solutions.

  18. A first-principles study of short range order in Cu-Zn

    International Nuclear Information System (INIS)

    Slutter, M.; Turchi, P.E.A.; Johnson, D.D.; Nicholson, D.M.; Stocks, G.M.; Pinski, F.J.

    1990-01-01

    Recently, measurements of short-range order (SRO) diffuse neutron scattering intensity have been performed on quenched Cu-Zn alloys with 22.4 to 31.1 atomic percent (a/o) Zn, and pair interactions were obtained by inverse Monte Carlo simulation. These results are compared to SRO intensities and effective pair interactions obtained from first-principles electronic structure calculations. The theoretical SRO intensities were calculated with the cluster variation method (CVM) in the tetrahedron-octahedron approximation with first-principles pain interactions as input. More generally, phase stability in the Cu-Zn alloy system is discussed, using ab-initio energetic properties

  19. First-principles calculation of adsorption of shale gas on CaCO3 (100) surfaces.

    Science.gov (United States)

    Luo, Qiang; Pan, Yikun; Guo, Ping; Wang, Zhouhua; Wei, Na; Sun, Pengfei; Liu, Yuxiao

    2017-06-16

    To demonstrate the adsorption strength of shale gas to calcium carbonate in shale matrix, the adsorption of shale gas on CaCO3 (100) surfaces was studied using the first-principles method, which is based on the density functional theory (DFT). The structures and electronic properties of CH4, C2H6, CO2 and N2 molecules were calculated by the generalized gradient approximation (GGA), for a coverage of 1 monolayer (ML). Under the same conditions, the density of states (DOS) of CaCO3 (100) surfaces before and after the adsorption of shale gas molecules at high-symmetry adsorption sites were compared. The results showed that the adsorption energies of CH4, C2H6, CO2 and N2 on CaCO3 (100) surfaces were between 0.2683 eV and -0.7388 eV. When a CH4 molecule was adsorbed at a hollow site and its 2 hydrogen atoms were parallel to the long diagonal (H3) on the CaCO3 (100) surface, it had the most stable adsorption, and the adsorption energy was only -0.4160 eV. The change of adsorption energy of CH4 was no more than 0.0535 eV. Compared with the DOS distribution of CH4 before adsorption, it shifted to the left overall after adsorption. At the same time, the partial density of states (PDOS) curves of CaCO3 (100) surfaces before and after adsorption basically overlapped. This work showed that the adsorption effect of shale gas on calcium carbonate is very weak, and the adsorption is physisorption at the molecular level.

  20. Towards Thermodynamics with Generalized Uncertainty Principle

    International Nuclear Information System (INIS)

    Moussa, Mohamed; Farag Ali, Ahmed

    2014-01-01

    Various frameworks of quantum gravity predict a modification in the Heisenberg uncertainty principle to a so-called generalized uncertainty principle (GUP). Introducing quantum gravity effect makes a considerable change in the density of states inside the volume of the phase space which changes the statistical and thermodynamical properties of any physical system. In this paper we investigate the modification in thermodynamic properties of ideal gases and photon gas. The partition function is calculated and using it we calculated a considerable growth in the thermodynamical functions for these considered systems. The growth may happen due to an additional repulsive force between constitutes of gases which may be due to the existence of GUP, hence predicting a considerable increase in the entropy of the system. Besides, by applying GUP on an ideal gas in a trapped potential, it is found that GUP assumes a minimum measurable value of thermal wavelength of particles which agrees with discrete nature of the space that has been derived in previous studies from the GUP

  1. Detection principles of biological and chemical FET sensors.

    Science.gov (United States)

    Kaisti, Matti

    2017-12-15

    The seminal importance of detecting ions and molecules for point-of-care tests has driven the search for more sensitive, specific, and robust sensors. Electronic detection holds promise for future miniaturized in-situ applications and can be integrated into existing electronic manufacturing processes and technology. The resulting small devices will be inherently well suited for multiplexed and parallel detection. In this review, different field-effect transistor (FET) structures and detection principles are discussed, including label-free and indirect detection mechanisms. The fundamental detection principle governing every potentiometric sensor is introduced, and different state-of-the-art FET sensor structures are reviewed. This is followed by an analysis of electrolyte interfaces and their influence on sensor operation. Finally, the fundamentals of different detection mechanisms are reviewed and some detection schemes are discussed. In the conclusion, current commercial efforts are briefly considered. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. First-principles study of point-defect production in Si and SiC

    International Nuclear Information System (INIS)

    Windl, W.; Lenosky, T.J.; Kress, J.D.; Voter, A.F.

    1998-03-01

    The authors have calculated the displacement-threshold energy E(d) for point-defect production in Si and SiC using empirical potentials, tight-binding, and first-principles methods. They show that -- depending on the knock-on direction -- 64-atom simulation cells can be sufficient to allow a nearly finite-size-effect-free calculation, thus making the use of first-principles methods possible. They use molecular dynamics (MD) techniques and propose the use of a sudden approximation which agrees reasonably well with the MD results for selected directions and which allows estimates of Ed without employing an MD simulation and the use of computationally demanding first-principles methods. Comparing the results with experiment, the authors find the full self-consistent first-principles method in conjunction with the sudden approximation to be a reliable and easy method to predict E d . Furthermore, they have examined the temperature dependence of E d for C in SiC and found it to be negligible

  3. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    International Nuclear Information System (INIS)

    Kaya, Savaş; Kaya, Cemal; Islam, Nazmul

    2016-01-01

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  4. Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Kaya, Cemal, E-mail: kaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas 58140 (Turkey); Islam, Nazmul, E-mail: nazmul.islam786@gmail.com [Theoretical and Computational Chemistry Research Laboratory, Department of Basic Science and Humanities/Chemistry Techno Global-Balurghat, Balurghat, D. Dinajpur 733103 (India)

    2016-03-15

    The maximum hardness (MHP) and minimum polarizability (MPP) principles have been analyzed using the relationship among the lattice energies of ionic compounds with their electronegativities, chemical hardnesses and electrophilicities. Lattice energy, electronegativity, chemical hardness and electrophilicity values of ionic compounds considered in the present study have been calculated using new equations derived by some of the authors in recent years. For 4 simple reactions, the changes of the hardness (Δη), polarizability (Δα) and electrophilicity index (Δω) were calculated. It is shown that the maximum hardness principle is obeyed by all chemical reactions but minimum polarizability principles and minimum electrophilicity principle are not valid for all reactions. We also proposed simple methods to compute the percentage of ionic characters and inter nuclear distances of ionic compounds. Comparative studies with experimental sets of data reveal that the proposed methods of computation of the percentage of ionic characters and inter nuclear distances of ionic compounds are valid.

  5. First-principles study of complex material systems

    Science.gov (United States)

    He, Lixin

    This thesis covers several topics concerning the study of complex materials systems by first-principles methods. It contains four chapters. A brief, introductory motivation of this work will be given in Chapter 1. In Chapter 2, I will give a short overview of the first-principles methods, including density-functional theory (DFT), planewave pseudopotential methods, and the Berry-phase theory of polarization in crystallines insulators. I then discuss in detail the locality and exponential decay properties of Wannier functions and of related quantities such as the density matrix, and their application in linear-scaling algorithms. In Chapter 3, I investigate the interaction of oxygen vacancies and 180° domain walls in tetragonal PbTiO3 using first-principles methods. Our calculations indicate that the oxygen vacancies have a lower formation energy in the domain wall than in the bulk, thereby confirming the tendency of these defects to migrate to, and pin, the domain walls. The pinning energies are reported for each of the three possible orientations of the original Ti--O--Ti bonds, and attempts to model the results with simple continuum models are discussed. CaCu3Ti4O12 (CCTO) has attracted a lot of attention recently because it was found to have an enormous dielectric response over a very wide temperature range. In Chapter 4, I study the electronic and lattice structure, and the lattice dynamical properties, of this system. Our first-principles calculations together with experimental results point towards an extrinsic mechanism as the origin of the unusual dielectric response.

  6. Towards Principles-Based Approaches to Governance of Health-related Research using Personal Data.

    Science.gov (United States)

    Laurie, Graeme; Sethi, Nayha

    2013-01-01

    Technological advances in the quality, availability and linkage potential of health data for research make the need to develop robust and effective information governance mechanisms more pressing than ever before; they also lead us to question the utility of governance devices used hitherto such as consent and anonymisation. This article assesses and advocates a principles-based approach, contrasting this with traditional rule-based approaches, and proposes a model of principled proportionate governance . It is suggested that the approach not only serves as the basis for good governance in contemporary data linkage but also that it provides a platform to assess legal reforms such as the draft Data Protection Regulation.

  7. Towards Principles-Based Approaches to Governance of Health-related Research using Personal Data

    Science.gov (United States)

    Laurie, Graeme; Sethi, Nayha

    2013-01-01

    Technological advances in the quality, availability and linkage potential of health data for research make the need to develop robust and effective information governance mechanisms more pressing than ever before; they also lead us to question the utility of governance devices used hitherto such as consent and anonymisation. This article assesses and advocates a principles-based approach, contrasting this with traditional rule-based approaches, and proposes a model of principled proportionate governance. It is suggested that the approach not only serves as the basis for good governance in contemporary data linkage but also that it provides a platform to assess legal reforms such as the draft Data Protection Regulation. PMID:24416087

  8. Robustness in laying hens

    NARCIS (Netherlands)

    Star, L.

    2008-01-01

    The aim of the project ‘The genetics of robustness in laying hens’ was to investigate nature and regulation of robustness in laying hens under sub-optimal conditions and the possibility to increase robustness by using animal breeding without loss of production. At the start of the project, a robust

  9. Robust and Reversible Audio Watermarking by Modifying Statistical Features in Time Domain

    Directory of Open Access Journals (Sweden)

    Shijun Xiang

    2017-01-01

    Full Text Available Robust and reversible watermarking is a potential technique in many sensitive applications, such as lossless audio or medical image systems. This paper presents a novel robust reversible audio watermarking method by modifying the statistic features in time domain in the way that the histogram of these statistical values is shifted for data hiding. Firstly, the original audio is divided into nonoverlapped equal-sized frames. In each frame, the use of three samples as a group generates a prediction error and a statistical feature value is calculated as the sum of all the prediction errors in the frame. The watermark bits are embedded into the frames by shifting the histogram of the statistical features. The watermark is reversible and robust to common signal processing operations. Experimental results have shown that the proposed method not only is reversible but also achieves satisfactory robustness to MP3 compression of 64 kbps and additive Gaussian noise of 35 dB.

  10. A robust image watermarking in contourlet transform domain

    Science.gov (United States)

    Sharma, Rajat; Gupta, Abhishek Kumar; Singh, Deepak; Verma, Vivek Singh; Bhardwaj, Anuj

    2017-10-01

    A lot of work has been done in the field of image watermarking to overcome the problems of rightful ownership, copyright protection etc. In order to provide a robust solution of such issues, the authors propose a hybrid approach that involves contourlet, lifting wavelet, and discrete cosine transform. The first level coefficients of the original image which are obtained using contourlet transform are further decomposed using one level lifting wavelet transform. After that, these coefficients are modified using discrete cosine transform. Whereas, second level subband of contourlet transform coefficients are used to obtain block wise modification parameter based on edge detection and entropy calculations. Watermark bits are embedded by quantizing the discrete cosine transform coefficient blocks obtained using HL sub-band of first level lifting wavelet transform coefficients. The experimental results reveal that the proposed scheme has high robustness and imperceptibility.

  11. LMI–based robust controller design approach in aircraft multidisciplinary design optimization problem

    Directory of Open Access Journals (Sweden)

    Qinghua Zeng

    2015-07-01

    Full Text Available This article proposes a linear matrix inequality–based robust controller design approach to implement the synchronous design of aircraft control discipline and other disciplines, in which the variation in design parameters is treated as equivalent perturbations. Considering the complicated mapping relationships between the coefficient arrays of aircraft motion model and the aircraft design parameters, the robust controller designed is directly based on the variation in these coefficient arrays so conservative that the multidisciplinary design optimization problem would be too difficult to solve, or even if there is a solution, the robustness of design result is generally poor. Therefore, this article derives the uncertainty model of disciplinary design parameters based on response surface approximation, converts the design problem of the robust controller into a problem of solving a standard linear matrix inequality, and theoretically gives a less conservative design method of the robust controller which is based on the variation in design parameters. Furthermore, the concurrent subspace approach is applied to the multidisciplinary system with this kind of robust controller in the design loop. A multidisciplinary design optimization of a tailless aircraft as example is shown that control discipline can be synchronous optimal design with other discipline, especially this method will greatly reduce the calculated amount of multidisciplinary design optimization and make multidisciplinary design optimization results more robustness of flight performance.

  12. Characterization of the electronic properties of YB{sub 12}, ZrB{sub 12}, and LuB{sub 12} using {sup 11}B NMR and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, B [Institut fuer Physikalische Chemie, Universitaet Wien, Waehringer Strasse 42, 1090 Vienna (Austria); Paluch, S [Institute for Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw (Poland); Zogal, O J [Institute for Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw (Poland); Wolf, W [Materials Design s. a. r. l., 44, avenue F.-A. Bartholdi, 72000 Le Mans (France); Herzig, P [Institut fuer Physikalische Chemie, Universitaet Wien, Waehringer Strasse 42, 1090 Vienna (Austria); Filippov, V B [Institute for Problems of Materials Science, Academy of Sciences of Ukraine, 3 Krzhyzhanovsky street, 03680 Kiev, Ukraine (Ukraine); Shitsevalova, N [Institute for Problems of Materials Science, Academy of Sciences of Ukraine, 3 Krzhyzhanovsky street, 03680 Kiev, Ukraine (Ukraine); Paderno, Y [Institute for Problems of Materials Science, Academy of Sciences of Ukraine, 3 Krzhyzhanovsky street, 03680 Kiev, Ukraine (Ukraine)

    2006-03-01

    Three metallic dodecaborides, YB{sub 12}, ZrB{sub 12} and LuB{sub 12}, have been investigated by electric-field gradient (EFG) measurements at the boron sites using the {sup 11}B nuclear magnetic resonance (NMR) technique and by performing first-principles calculations. The NMR powder spectra reveal patterns typical for a completely asymmetric EFG tensor, i.e., an {eta} parameter close to unity. The absolute values of V{sub zz} (the largest component of the EFG) are determined from the spectra and they range between 11 x 10{sup 20} V m{sup -2} and 11.6 x 10{sup 20} V m{sup -2} with an uncertainty of 0.8 x 10{sup 20} V m{sup -2}, being in very good agreement with the first-principles results. In addition the electronic structure and chemical bonding are analysed from partial densities of states and electron densities.

  13. First-principle calculation of SP 3 hybridization and bonding in ...

    African Journals Online (AJOL)

    electrons in the diamond-structure semiconductor crystals has been calculated for the k = 0 state. This charge density represents the electronic distribution in the direct lattice of the crystals. Normally, the charge density in a condensed matter such as crystals is obtained from extremely complicated functions. However, in this ...

  14. First principles study of α and δ-Pu

    International Nuclear Information System (INIS)

    Chattaraj, Debabrata; Dash, Smruti

    2017-01-01

    The structural and electronic properties of α-and δ-Pu has been investigated using state of the art first principles method. All the calculations have been performed using a plane wave based pseudopotential method under the framework of spin polarized density functional theory. The effect of relativistic spin-orbit interactions on these properties has been investigated. The calculated lattice parameters are found to be within ±1% of the experimental data. The cohesive energy of α-and δ-Pu are calculated to be -3.125 and -3.126 eV/atom. The nature of chemical bonding present in those phases of Pu is depicted by calculated density of states spectra. (author)

  15. Weighing Efficiency-Robustness in Supply Chain Disruption by Multi-Objective Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Tong Shu

    2016-03-01

    Full Text Available This paper investigates various supply chain disruptions in terms of scenario planning, including node disruption and chain disruption; namely, disruptions in distribution centers and disruptions between manufacturing centers and distribution centers. Meanwhile, it also focuses on the simultaneous disruption on one node or a number of nodes, simultaneous disruption in one chain or a number of chains and the corresponding mathematical models and exemplification in relation to numerous manufacturing centers and diverse products. Robustness of the design of the supply chain network is examined by weighing efficiency against robustness during supply chain disruptions. Efficiency is represented by operating cost; robustness is indicated by the expected disruption cost and the weighing issue is calculated by the multi-objective firefly algorithm for consistency in the results. It has been shown that the total cost achieved by the optimal target function is lower than that at the most effective time of supply chains. In other words, the decrease of expected disruption cost by improving robustness in supply chains is greater than the increase of operating cost by reducing efficiency, thus leading to cost advantage. Consequently, by approximating the Pareto Front Chart of weighing between efficiency and robustness, enterprises can choose appropriate efficiency and robustness for their longer-term development.

  16. The nature and principles of the radiation-induced cancerogenesis

    International Nuclear Information System (INIS)

    Lips'ka, A.YI.; Serkyiz, Ya.Yi.

    2004-01-01

    The paper represents the analysis of the authors and literary data concerning the nature and principles of the radiation-induced neoplasms. The mechanisms of the radiation-induced cancerogenesis development are not clear understood. The experimental data altogether do not allow developing the mathematical model of the radiation-induced cancerogenesis at the molecular level. This model has to take into account all necessary indices including radiation factor and the state of the organism. The general principles of the radiation-induced cancerogenesis have been formulated in the present review. It is possible to use these principles in order to predict and calculate the risks of the radiation-induced neoplasms

  17. Robust Proton Pencil Beam Scanning Treatment Planning for Rectal Cancer Radiation Therapy

    International Nuclear Information System (INIS)

    Blanco Kiely, Janid Patricia; White, Benjamin M.

    2016-01-01

    Purpose: To investigate, in a treatment plan design and robustness study, whether proton pencil beam scanning (PBS) has the potential to offer advantages, relative to interfraction uncertainties, over photon volumetric modulated arc therapy (VMAT) in a locally advanced rectal cancer patient population. Methods and Materials: Ten patients received a planning CT scan, followed by an average of 4 weekly offline CT verification CT scans, which were rigidly co-registered to the planning CT. Clinical PBS plans were generated on the planning CT, using a single-field uniform-dose technique with single-posterior and parallel-opposed (LAT) fields geometries. The VMAT plans were generated on the planning CT using 2 6-MV, 220° coplanar arcs. Clinical plans were forward-calculated on verification CTs to assess robustness relative to anatomic changes. Setup errors were assessed by forward-calculating clinical plans with a ±5-mm (left–right, anterior–posterior, superior–inferior) isocenter shift on the planning CT. Differences in clinical target volume and organ at risk dose–volume histogram (DHV) indicators between plans were tested for significance using an appropriate Wilcoxon test (P<.05). Results: Dosimetrically, PBS plans were statistically different from VMAT plans, showing greater organ at risk sparing. However, the bladder was statistically identical among LAT and VMAT plans. The clinical target volume coverage was statistically identical among all plans. The robustness test found that all DVH indicators for PBS and VMAT plans were robust, except the LAT's genitalia (V5, V35). The verification CT plans showed that all DVH indicators were robust. Conclusions: Pencil beam scanning plans were found to be as robust as VMAT plans relative to interfractional changes during treatment when posterior beam angles and appropriate range margins are used. Pencil beam scanning dosimetric gains in the bowel (V15, V20) over VMAT suggest that using PBS to treat rectal cancer

  18. Robust Proton Pencil Beam Scanning Treatment Planning for Rectal Cancer Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Kiely, Janid Patricia, E-mail: jkiely@sas.upenn.edu; White, Benjamin M.

    2016-05-01

    Purpose: To investigate, in a treatment plan design and robustness study, whether proton pencil beam scanning (PBS) has the potential to offer advantages, relative to interfraction uncertainties, over photon volumetric modulated arc therapy (VMAT) in a locally advanced rectal cancer patient population. Methods and Materials: Ten patients received a planning CT scan, followed by an average of 4 weekly offline CT verification CT scans, which were rigidly co-registered to the planning CT. Clinical PBS plans were generated on the planning CT, using a single-field uniform-dose technique with single-posterior and parallel-opposed (LAT) fields geometries. The VMAT plans were generated on the planning CT using 2 6-MV, 220° coplanar arcs. Clinical plans were forward-calculated on verification CTs to assess robustness relative to anatomic changes. Setup errors were assessed by forward-calculating clinical plans with a ±5-mm (left–right, anterior–posterior, superior–inferior) isocenter shift on the planning CT. Differences in clinical target volume and organ at risk dose–volume histogram (DHV) indicators between plans were tested for significance using an appropriate Wilcoxon test (P<.05). Results: Dosimetrically, PBS plans were statistically different from VMAT plans, showing greater organ at risk sparing. However, the bladder was statistically identical among LAT and VMAT plans. The clinical target volume coverage was statistically identical among all plans. The robustness test found that all DVH indicators for PBS and VMAT plans were robust, except the LAT's genitalia (V5, V35). The verification CT plans showed that all DVH indicators were robust. Conclusions: Pencil beam scanning plans were found to be as robust as VMAT plans relative to interfractional changes during treatment when posterior beam angles and appropriate range margins are used. Pencil beam scanning dosimetric gains in the bowel (V15, V20) over VMAT suggest that using PBS to treat rectal

  19. Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations

    Science.gov (United States)

    Yang, Xiao-Yong; Lu, Yong; Zheng, Fa-Wei; Zhang, Ping

    2015-11-01

    Mechanical, electronic, and thermodynamic properties of zirconium carbide have been systematically studied using the ab initio calculations. The calculated equilibrium lattice parameter, bulk modulus, and elastic constants are all well consistent with the experimental data. The electronic band structure indicates that the mixture of C 2p and Zr 4d and 4p orbitals around the Fermi level makes a large covalent contribution to the chemical bonds between the C and Zr atoms. The Bader charge analysis suggests that there are about 1.71 electrons transferred from each Zr atom to its nearest C atom. Therefore, the Zr-C bond displays a mixed ionic/covalent character. The calculated phonon dispersions of ZrC are stable, coinciding with the experimental measurement. A drastic expansion in the volume of ZrC is seen with increasing temperature, while the bulk modulus decreases linearly. Based on the calculated phonon dispersion curves and within the quasi-harmonic approximation, the temperature dependence of the heat capacities is obtained, which gives a good description compared with the available experimental data. Project supported by the National Natural Science Foundation of China (Grant No. 51071032).

  20. Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime

    International Nuclear Information System (INIS)

    Zhao Haixia; Hu Shuangqi; Zhao Ren; Li Huaifan

    2007-01-01

    Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.

  1. How bioethics principles can aid design of electronic health records to accommodate patient granular control.

    Science.gov (United States)

    Meslin, Eric M; Schwartz, Peter H

    2015-01-01

    Ethics should guide the design of electronic health records (EHR), and recognized principles of bioethics can play an important role. This approach was recently adopted by a team of informaticists who are designing and testing a system where patients exert granular control over who views their personal health information. While this method of building ethics in from the start of the design process has significant benefits, questions remain about how useful the application of bioethics principles can be in this process, especially when principles conflict. For instance, while the ethical principle of respect for autonomy supports a robust system of granular control, the principles of beneficence and nonmaleficence counsel restraint due to the danger of patients being harmed by restrictions on provider access to data. Conflict between principles has long been recognized by ethicists and has even motivated attacks on approaches that state and apply principles. In this paper, we show how using ethical principles can help in the design of EHRs by first explaining how ethical principles can and should be used generally, and then by discussing how attention to details in specific cases can show that the tension between principles is not as bad as it initially appeared. We conclude by suggesting ways in which the application of these (and other) principles can add value to the ongoing discussion of patient involvement in their health care. This is a new approach to linking principles to informatics design that we expect will stimulate further interest.

  2. Stability of Cd_1_–_xZn_xO_yS_1_–_y Quaternary Alloys Assessed with First-Principles Calculations

    International Nuclear Information System (INIS)

    Varley, Joel B.; He, Xiaoqing; Rockett, Angus; Lordi, Vincenzo

    2017-01-01

    One route to decreasing the absorption in CdS buffer layers in Cu(In,Ga)Se_2 and Cu_2ZnSn(S,Se)_4 thin-film photovoltaics is by alloying. Here we use first-principles calculations based on hybrid functionals to assess the energetics and stability of quaternary Cd, Zn, O, and S (Cd_1_–_xZn_xO_yS_1_–_y) alloys within a regular solution model. Our results identify that full miscibility of most Cd_1_–_xZn_xO_yS_1_–_y compositions and even binaries like Zn(O,S) is outside typical photovoltaic processing conditions. Finally, the results suggest that the tendency for phase separation of the oxysulfides may drive the nucleation of other phases such as sulfates that have been increasingly observed in oxygenated CdS and ZnS.

  3. A Robust Feedforward Model of the Olfactory System.

    Directory of Open Access Journals (Sweden)

    Yilun Zhang

    2016-04-01

    Full Text Available Most natural odors have sparse molecular composition. This makes the principles of compressed sensing potentially relevant to the structure of the olfactory code. Yet, the largely feedforward organization of the olfactory system precludes reconstruction using standard compressed sensing algorithms. To resolve this problem, recent theoretical work has shown that signal reconstruction could take place as a result of a low dimensional dynamical system converging to one of its attractor states. However, the dynamical aspects of optimization slowed down odor recognition and were also found to be susceptible to noise. Here we describe a feedforward model of the olfactory system that achieves both strong compression and fast reconstruction that is also robust to noise. A key feature of the proposed model is a specific relationship between how odors are represented at the glomeruli stage, which corresponds to a compression, and the connections from glomeruli to third-order neurons (neurons in the olfactory cortex of vertebrates or Kenyon cells in the mushroom body of insects, which in the model corresponds to reconstruction. We show that should this specific relationship hold true, the reconstruction will be both fast and robust to noise, and in particular to the false activation of glomeruli. The predicted connectivity rate from glomeruli to third-order neurons can be tested experimentally.

  4. Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods.

    Science.gov (United States)

    Sevgen, Emre; Giberti, Federico; Sidky, Hythem; Whitmer, Jonathan K; Galli, Giulia; Gygi, Francois; de Pablo, Juan J

    2018-05-14

    We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.

  5. Proteins in vacuo. A more efficient means of calculating ...

    African Journals Online (AJOL)

    given bath gas particle and the protein. Calculations of savg. , though in principle straightforward, are time consuming. In the work presented below, it was investigated whether a more efficient calculation scheme can be employed without sacrificing too much accuracy. In the new scheme, atomic-scale protein surface ...

  6. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    Science.gov (United States)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  7. The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles calculation

    Science.gov (United States)

    Ma, Xia-Xia; Li, Ze-Sheng

    2018-01-01

    Oxygen molecule has a negative effect on perovskite solar cells, which has been investigated experimentally. However, detailed theoretical research is still rare. This study presents a microscopic view to reveal the interaction mechanism between O2 and perovskite based on the first-principles calculation. The results show that O2 is adsorbed on the (100) surface of MAPbI3 perovskite mainly by Van der Waals force. O2 adsorption makes the MAPbI3 surface generate a small number of positive charges, which leads to the increase of the work function of the MAPbI3 surface. This is in agreement with the experimental measurement. And increased work function of MAPbI3 surface is not beneficial to electron transfer from perovskite to electronic extraction layer (such as TiO2). Comparison of the density of states (DOS) of the clean (100) surface and the adsorbed system shows that an in-gap state belonging to O2 appears, which can explain the phenomenon observed from experiments that electron transfers from the surface of perovskite to O2 to form superoxide. The theoretical power conversion efficiency of the system with and without O2 adsorption is evaluated, and it turns out that the power conversion efficiency of the system with O2 adsorption is slightly lower than that of the system without O2 adsorption. This result indicates that avoiding the introduction of O2 molecules between perovskite and electronic extraction layer is beneficial to the perovskite solar cell.

  8. Osseous Frame Index calculations of the early medieval South-West Germany.

    Science.gov (United States)

    Jasch, Isabelle; Langer, Antje; Boley, Moritz; Mumm, Rebekka; Riesenberg, Martin; Mann, Robert; Wahl, Joachim

    2018-05-15

    The proper description of former populations is one of the most difficult tasks in anthropology. Archaeological material is often limited due to fragmented and sometimes poorly preserved bone material resulting in incomplete data. Published skeletal raw data are available from the past, but much of this data is either unavailable or not used for scientific studies. The authors seek to elicit more information about prehistoric times by using this dataset to introduce a new method. The purpose is to provide an approach to reconstruct a former population in respect to robusticity and health status. For this in the pilot study the Body Mass Index (BMI) and Frame Index (FI) of early medieval South-West Germany have been analysed. The FI, in contrast to the BMI, has not yet been used for robusticity analysis utilizing only skeletal remains. As far as we know, this is the first time that the FI has been calculated using archaeological material. Due to unknown soft-tissue thickness we introduce the Osseous Frame Index (OFI). The measured OFI reveals new insights in (pre-)historic populations and allows comparisons with modern reference samples. Our OFI calculations are relatively similar to modern calculations. Males have a higher robusticity than females, slightly increasing during life-time compared to females. These calculations provide a better historical understanding of human body composition.

  9. First-principles investigations of solid solution strengthening in Al alloys

    OpenAIRE

    Ma, Duancheng

    2012-01-01

    Any material properties, in principle, can be reproduced or predicted by performing firstprinciples calculations. Nowadays, however, we are dealing with complex alloy compositions and processes. The complexities cannot be fully described by first-principles, because of the limited computational power. The primary objective of this study is to investigate an important engineering problem, solid solution strengthening, in a simplified manner. The simplified scheme should allow fast and reliable...

  10. New approaches for first-principles modelling of inelastic transport in nanoscale semiconductor devices with thousands of atoms

    DEFF Research Database (Denmark)

    Gunst, Tue; Brandbyge, Mads; Palsgaard, Mattias Lau Nøhr

    2017-01-01

    is in both methods calculated in a post-processing step to a self consistent DFT calculation. The first method is based on first order perturbation theory in the EPC self-energy within the Lowest Order Expansion (LOE) approximation. The method requires calculation of the first-principles EPC in the device......We present two different methods which both enable large-scale first-principles device simulations including electron-phonon coupling (EPC). The methods are based on Density Functional Theory and Nonequilibrium Greens Functions (DFT- NEGF) calculations of electron transport. The inelastic current...

  11. Three-Dimensional Navier-Stokes Calculations Using the Modified Space-Time CESE Method

    Science.gov (United States)

    Chang, Chau-lyan

    2007-01-01

    The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.

  12. Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations

    Science.gov (United States)

    Yu, Sheng; Ran, Shunjie; Zhu, Hao; Eshun, Kwesi; Shi, Chen; Jiang, Kai; Gu, Kunming; Seo, Felix Jaetae; Li, Qiliang

    2018-01-01

    With the advances in two-dimensional (2D) transition metal dichalcogenides (TMDCs) based metal-oxide-semiconductor field-effect transistor (MOSFET), the interface between the semiconductor channel and gate dielectrics has received considerable attention due to its significant impacts on the morphology and charge transport of the devices. In this study, first principle calculations were utilized to investigate the strain effect induced by the interface between crystalline α-Al2O3 (0001)/h-MoS2 monolayer. The results indicate that the 1.3 nm Al2O3 can induce a 0.3% tensile strain on the MoS2 monolayer. The strain monotonically increases with thicker dielectric layers, inducing more significant impact on the properties of MoS2. In addition, the study on temperature effect indicates that the increasing temperature induces monotonic lattice expansion. This study clearly indicates that the dielectric engineering can effectively tune the properties of 2D TMDCs, which is very attractive for nanoelectronics.

  13. First-principles calculation study of mechanism of cation adsorption selectivity of zeolites. A guideline for effective removal of radioactive cesium

    International Nuclear Information System (INIS)

    Nakamura, Hiroki; Okumura, Masahiko; Machida, Masahiko

    2013-01-01

    Zeolites have attracted attention in the reprocessing of radioactive nuclear waste because of their high selective affinity for radioisotopes of Cs. Very recently, their useful properties have been widely utilized in decontamination after the accident at the Fukushima Daiichi Nuclear Power Plants. In this study, we study the high selectivity in the Cs adsorption of zeolites using first-principles calculations and clarify the mechanism of the cation selectivity of zeolites. We obtain energy surfaces on all capture locations for Cs/Na ions inside the micropores of a zeolite, 'mordenite', and find three crucial conditions for the highly ion-selective exchange of Na for Cs: 1) micropores with a radius of ∼3 Å, 2) a moderate Al/Si ratio, and 3) a uniform distribution of Al atoms around each micropore. These insights suggest a guideline for developing zeolites with high Cs selectivity and for enhancing the cation selectivity in more general situations. (author)

  14. Robust Growth Determinants

    OpenAIRE

    Doppelhofer, Gernot; Weeks, Melvyn

    2011-01-01

    This paper investigates the robustness of determinants of economic growth in the presence of model uncertainty, parameter heterogeneity and outliers. The robust model averaging approach introduced in the paper uses a flexible and parsi- monious mixture modeling that allows for fat-tailed errors compared to the normal benchmark case. Applying robust model averaging to growth determinants, the paper finds that eight out of eighteen variables found to be significantly related to economic growth ...

  15. Robust nonlinear control design with application to a marine cooling system

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2012-01-01

    . In this context, we apply a bilinear transformation to obtain a well-posed H-inf problem. The design procedure is applied to a marine cooling system with flow dependent delays and performance of the resulting control design is evaluated through a simulation example where a comparison is made to a linear control......In this paper we consider design of control laws for a class of nonlinear systems with time-varying state delays by use of principles from feedback linearization. To deal with model uncertainties and delay mismatches, a robust linear H-inf controller is designed for the feedback linearized system...

  16. Reversal of the Lattice Structure in SrCoOx Epitaxial Thin Films Studied by Real-Time Optical Spectroscopy and First-Principles Calculations

    Science.gov (United States)

    Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S. S. Ambrose; Cooper, Valentino R.; Rabe, Karin M.; Lee, Ho Nyung

    2013-08-01

    Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoOx (x=2.5-3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases: i.e., the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First-principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator transition, which originate from the modification in the Co valence states and crystallographic structures. More interestingly, the two phases can be reversibly controlled by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides.

  17. First-principles study of thermoelectric properties of CuI

    International Nuclear Information System (INIS)

    Yadav, Manoj K; Sanyal, Biplab

    2014-01-01

    Theoretical investigations of the thermoelectric properties of CuI have been carried out employing first-principles calculations followed by the calculations of transport coefficients based on Boltzmann transport theory. Among the three different phases of CuI, viz. zinc-blende, wurtzite and rock salt, the thermoelectric power factor is found to be the maximum for the rock salt phase. We have analysed the variations of Seebeck coefficients and thermoelectric power factors on the basis of calculated electronic structures near the valence band maxima of these phases. (papers)

  18. Robust classification using mixtures of dependency networks

    DEFF Research Database (Denmark)

    Gámez, José A.; Mateo, Juan L.; Nielsen, Thomas Dyhre

    2008-01-01

    Dependency networks have previously been proposed as alternatives to e.g. Bayesian networks by supporting fast algorithms for automatic learning. Recently dependency networks have also been proposed as classification models, but as with e.g. general probabilistic inference, the reported speed......-ups are often obtained at the expense of accuracy. In this paper we try to address this issue through the use of mixtures of dependency networks. To reduce learning time and improve robustness when dealing with data sparse classes, we outline methods for reusing calculations across mixture components. Finally...

  19. Influence of the Pauli principle on the one-quasiparticle states in odd spherical nuclei

    International Nuclear Information System (INIS)

    Chan Zuy Khuong

    1980-01-01

    The effect of the Pauli principle on the fragmentation of one-quasiparticle states in odd spherical nuclei is studied within the quasiparticle-phonon nuclear model. It is shown that the Pauli principle influences considerably the position and structure of a few low-lying states. The fragmentation of one-quasiparticle states at intermediate and high excitation energies is slightly affected by the Pauli principle, and the calculations can be performed by taking the Pauli principle into account roughly. (author)

  20. Fermat's principle of least time predicts refraction of ant trails at substrate borders.

    Directory of Open Access Journals (Sweden)

    Jan Oettler

    Full Text Available Fermat's principle of least time states that light rays passing through different media follow the fastest (and not the most direct path between two points, leading to refraction at medium borders. Humans intuitively employ this rule, e.g., when a lifeguard has to infer the fastest way to traverse both beach and water to reach a swimmer in need. Here, we tested whether foraging ants also follow Fermat's principle when forced to travel on two surfaces that differentially affected the ants' walking speed. Workers of the little fire ant, Wasmannia auropunctata, established "refracted" pheromone trails to a food source. These trails deviated from the most direct path, but were not different to paths predicted by Fermat's principle. Our results demonstrate a new aspect of decentralized optimization and underline the versatility of the simple yet robust rules governing the self-organization of group-living animals.