WorldWideScience

Sample records for robust accelerating structure

  1. Robustness of Structures

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Vrouwenvelder, A.C.W.M.; Sørensen, John Dalsgaard

    2011-01-01

    In 2005, the Joint Committee on Structural Safety (JCSS) together with Working Commission (WC) 1 of the International Association of Bridge and Structural Engineering (IABSE) organized a workshop on robustness of structures. Two important decisions resulted from this workshop, namely...... ‘COST TU0601: Robustness of Structures’ was initiated in February 2007, aiming to provide a platform for exchanging and promoting research in the area of structural robustness and to provide a basic framework, together with methods, strategies and guidelines enhancing robustness of structures...... the development of a joint European project on structural robustness under the COST (European Cooperation in Science and Technology) programme and the decision to develop a more elaborate document on structural robustness in collaboration between experts from the JCSS and the IABSE. Accordingly, a project titled...

  2. Robustness of structures

    DEFF Research Database (Denmark)

    Vrouwenvelder, T.; Sørensen, John Dalsgaard

    2009-01-01

    After the collapse of the World Trade Centre towers in 2001 and a number of collapses of structural systems in the beginning of the century, robustness of structural systems has gained renewed interest. Despite many significant theoretical, methodical and technological advances, structural...... of robustness for structural design such requirements are not substantiated in more detail, nor have the engineering profession been able to agree on an interpretation of robustness which facilitates for its uantification. A European COST action TU 601 on ‘Robustness of structures' has started in 2007...... by a group of members of the CSS. This paper describes the ongoing work in this action, with emphasis on the development of a theoretical and risk based quantification and optimization procedure on the one side and a practical pre-normative guideline on the other....

  3. Robustness of Structural Systems

    DEFF Research Database (Denmark)

    Canisius, T.D.G.; Sørensen, John Dalsgaard; Baker, J.W.

    2007-01-01

    The importance of robustness as a property of structural systems has been recognised following several structural failures, such as that at Ronan Point in 1968,where the consequenceswere deemed unacceptable relative to the initiating damage. A variety of research efforts in the past decades have...... attempted to quantify aspects of robustness such as redundancy and identify design principles that can improve robustness. This paper outlines the progress of recent work by the Joint Committee on Structural Safety (JCSS) to develop comprehensive guidance on assessing and providing robustness in structural...... systems. Guidance is provided regarding the assessment of robustness in a framework that considers potential hazards to the system, vulnerability of system components, and failure consequences. Several proposed methods for quantifying robustness are reviewed, and guidelines for robust design...

  4. Robustness of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    This paper describes the background of the robustness requirements implemented in the Danish Code of Practice for Safety of Structures and in the Danish National Annex to the Eurocode 0, see (DS-INF 146, 2003), (DS 409, 2006), (EN 1990 DK NA, 2007) and (Sørensen and Christensen, 2006). More...... frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new structures essential....... According to Danish design rules robustness shall be documented for all structures in high consequence class. The design procedure to document sufficient robustness consists of: 1) Review of loads and possible failure modes / scenarios and determination of acceptable collapse extent; 2) Review...

  5. Robustness Analyses of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Hald, Frederik

    2013-01-01

    The robustness of structural systems has obtained a renewed interest arising from a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures, many mo...... with respect to robustness of timber structures and will discuss the consequences of such robustness issues related to the future development of timber structures.......The robustness of structural systems has obtained a renewed interest arising from a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures, many...... modern building codes consider the need for the robustness of structures and provide strategies and methods to obtain robustness. Therefore, a structural engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper summaries issues...

  6. Robustness Assessment of Spatial Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning

    2012-01-01

    Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures many modern buildi...... to robustness of spatial timber structures and will discuss the consequences of such robustness issues related to the future development of timber structures.......Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures many modern building...... codes consider the need for robustness of structures and provide strategies and methods to obtain robustness. Therefore a structural engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper summaries issues with respect...

  7. Robustness Analysis of Timber Truss Structure

    DEFF Research Database (Denmark)

    Rajčić, Vlatka; Čizmar, Dean; Kirkegaard, Poul Henning

    2010-01-01

    The present paper discusses robustness of structures in general and the robustness requirements given in the codes. Robustness of timber structures is also an issues as this is closely related to Working group 3 (Robustness of systems) of the COST E55 project. Finally, an example of a robustness...... evaluation of a widespan timber truss structure is presented. This structure was built few years ago near Zagreb and has a span of 45m. Reliability analysis of the main members and the system is conducted and based on this a robustness analysis is preformed....

  8. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    Ammazzalorso, F; Jelen, U; Bednarz, T

    2014-01-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  9. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    Science.gov (United States)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  10. Robustness Evaluation of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2009-01-01

    Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure.......Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure....

  11. Experimental Studies of W-Band Accelerator Structures at High Field

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Marc E

    2001-02-09

    A high-gradient electron accelerator is desired for high-energy physics research, where frequency scalings of breakdown and trapping of itinerant beamline particles dictates operation of the accelerator at short wavelengths. The first results of design and test of a high-gradient mm-wave linac with an operating frequency at 91.392 GHz (W-band) are presented. A novel approach to particle acceleration is presented employing a planar, dielectric lined waveguide used for particle acceleration. The traveling wave fields in the planar dielectric accelerator (PDA) are analyzed for an idealized structure, along with a circuit equivalent model used for understanding the structure as a microwave circuit. Along with the W-band accelerator structures, other components designed and tested are high power rf windows, high power attenuators, and a high power squeeze-type phase shifter. The design of the accelerator and its components where eased with the aide of numerical simulations using a finite-difference electromagnetic field solver. Manufacturing considerations of the small, delicate mm-wave components and the steps taken to reach a robust fabrication process are detailed. These devices were characterized under low power using a two-port vector network analyzer to verify tune and match, including measurements of the structures' fields using a bead-pull. The measurements are compared with theory throughout. Addition studies of the W-band structures were performed under high power utilizing a 11.424 GHz electron linac as a current source. Test results include W-band power levels of 200 kW, corresponding to fields in the PDA of over 20 MV/m, a higher gradient than any collider. Planar accelerator devices naturally have an rf quadrupole component of the accelerating field. Presented for the first time are the measurements of this effect.

  12. Standing wave accelerating structures

    International Nuclear Information System (INIS)

    Zavadtsev, A.A.; Zverev, B.V.; Sobepin, N.P.

    1984-01-01

    Accelerating ELA structures are considered and chosen for applied purposes of special designation. Accelerating structures with the standing wave are considered most effective for small size ELA. Designs and results of experimental investigation of two new accelerating structures are described. These are structures of the ''ring'' type with a decreased number of excitinq oscillation types and strucuture with transverse rods with a twice smaller transverse size as compared with the biperiodical structure with internal connection resonators. The accelerating biperiodical structures of the conventional type by the fact that the whole structure is not a linear chain of connected resonators, but a ring one. Model tests have shown that the homogeneous structure with transverse rods (STR) at the frequency of 2.8 GHz in the regime of the standing wave has an effective shunt resistance equalling 23 MOhm/m. It is shown that the small transverse size of biperiodic STR makes its application in logging linear electron accelerators

  13. Robustness of Long Span Reciprocal Timber Structures

    DEFF Research Database (Denmark)

    Balfroid, Nathalie; Kirkegaard, Poul Henning

    2011-01-01

    engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper makes a discussion of such robustness issues related to the future development of reciprocal timber structures. The paper concludes that these kind of structures can have...... a potential as long span timber structures in real projects if they are carefully designed with respect to the overall robustness strategies.......Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. The interest has also been facilitated due to recently severe structural failures...

  14. Robustness Analysis of Typologies of Reciprocal Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Parigi, Dario

    2013-01-01

    to the future development of typologies of reciprocal timber structures. The paper concludes that these kinds of structures can have a potential as long span timber structures in real projects if they are carefully designed with respect to the overall robustness strategies.......Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures many modern building...... codes consider the need for robustness in structures and provides strategies and methods to obtain robustness. Therefore a structural engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper outlines robustness issues related...

  15. Danish Requirements for Robustness of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Christensen, H. H.

    2006-01-01

    . This paper describes the background of the revised robustness requirements implemented in the Danish Code of Practice for Safety of Structures in 2003 [1, 2, 3]. According to the Danish design rules robustness shall be documented for all structures where consequences of failure are serious. This paper...... describes the background of the design procedure in the Danish codes, which shall be followed in order to document sufficient robustness in the following steps: Step 1: review of loads and possible failure modes/scenarios and determination of acceptable collapse extent. Step 2: review of the structural...

  16. Framework for Robustness Assessment of Timber Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for the design and analysis of robustness of timber structures. This is actualized by a more4 frequent use of advanced types of timber structures with limited redundancy and serious consequences in the case of failure. Combined with increased requirements...... to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new structures essential. Further, the collapse of the Ballerup Super Arena, the bad Reichenhall Ice-Arena and a number of other structural systems during the last 10 years has...... increased the interest in robustness. Typically, modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, although the importance of robustness for structural design is widely recognized, the code requirements...

  17. Multiperiodic accelerator structures for linear particle accelerators

    International Nuclear Information System (INIS)

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  18. Robustness and structure of complex networks

    Science.gov (United States)

    Shao, Shuai

    This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks

  19. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Schroeder, Carl B.

    1999-01-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  20. Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures

    International Nuclear Information System (INIS)

    Fischer, Richard P.; Gold, Steven H.

    2016-01-01

    The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements in the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.

  1. A Robust Controller Structure for Pico-Satellite Applications

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Green, Martin; Kristensen, Mads

    This paper describes the development of a robust controller structure for use in pico-satellite missions. The structure relies on unknown disturbance estimation and use of robust control theory to implement a system that is robust to both unmodeled disturbances and parameter uncertainties. As one...

  2. Robustness Issues for Design of Innovative Timber Structures

    DEFF Research Database (Denmark)

    Hald, Frederik; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2013-01-01

    Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious conse-quences in case of failure. The present paper summaries issues with respect to robustness of timber structures. Two different...... large span timber structures are analyzed and based on these analyses the paper presents guidelines for the future development of innovative timber struc-tures which are robust with respect to design and execution errors, unforeseen degradation and other potential hazards....

  3. Accelerator structure for a charged particle linear accelerator working in standing wave mode

    International Nuclear Information System (INIS)

    Tran, D.T.; Tronc, Dominique.

    1977-01-01

    Charged particle accelerators generally include a pre-grouping or pre-accelerating structure associated with the accelerator structure itself. But pre-grouping or pre-accelerating structures of known type (Patent application No. 70 39261 for example) present electric and dimensional characteristics that rule them out for accelerators working at high frequencies (C or X bands for example), since the distance separating the interaction spaces becomes very small in this case. The accelerator structure mentioned in this invention can be used to advantage for such accelerators [fr

  4. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  5. Dynamics and acceleration in linear structures

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-06-01

    Basic methods of linear acceleration are reviewed. Both cases of non relativistic and ultra relativistic particles are considered. Induction linac, radiofrequency quadrupole are mentioned. Fundamental parameters of accelerating structures are recalled; they are transit time factor, shunt impedance, quality factor and stored energy, phase velocity and group velocity, filling time, space harmonics in loaded waveguides. Energy gain in linear accelerating structures is considered through standing wave structures and travelling wave structures. Then particle dynamics in linear accelerators is studied: longitudinal motion, transverse motion and dynamics in RFQ

  6. Accelerator structure work for NLC

    International Nuclear Information System (INIS)

    Miller, R.H.; Adolphsen, C.; Bane, K.L.F.; Deruyter, H.; Farkas, Z.D.; Hoag, H.A.; Holtkamp, N.; Lavine, T.; Loew, G.A.; Nelson, E.M.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Thompson, K.A.; Vlieks, A.; Wang, J.W.; Wilson, P.B.; Gluckstern, R.; Ko, K.; Kroll, N.; California Univ., San Diego, La Jolla, CA

    1992-07-01

    The NLC design achieves high luminosity with multiple bunches in each RF pulse. Acceleration of a train of bunches without emittance growth requires control of long range dipole wakefields. SLAC is pursuing a structure design which suppresses the effect of wakefields by varying the physical dimensions of successive cells of the disk-loaded traveling wave structure in a manner which spreads the frequencies of the higher mode while retaining the synchronism between the electrons and the accelerating mode. The wakefields of structures incorporating higher mode detuning have been measured at the Accelerator Test Facility at Argonne. Mechanical design and brazing techniques which avoid getting brazing alloy into the interior of the accelerator are being studied. A test facility for high-power testing of these structures is complete and high power testing has begun

  7. Robust Structured Control Design via LMI Optimization

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure for discrete-time robust structured control design. Parameter-dependent nonconvex conditions for stabilizable and induced L2-norm performance controllers are solved by an iterative linear matrix inequalities (LMI) optimization. A wide class of controller...... structures including decentralized of any order, fixed-order dynamic output feedback, static output feedback can be designed robust to polytopic uncertainties. Stability is proven by a parameter-dependent Lyapunov function. Numerical examples on robust stability margins shows that the proposed procedure can...

  8. Robustness Evaluation of Timber Structures with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Cizmar, D.

    2009-01-01

    Robustness of structural systems has received a renewed interest resulting from the more frequent use of advanced types of structures with limited redundancy and serious consequences in the case of failure.......Robustness of structural systems has received a renewed interest resulting from the more frequent use of advanced types of structures with limited redundancy and serious consequences in the case of failure....

  9. Robustness Analysis of a Timber Structure with Ductile Behaviour in Compression

    DEFF Research Database (Denmark)

    Čizmar, Dean; Sørensen, John Dalsgaard; Kirkegaard, Poul Henning

    2011-01-01

    This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness assessment. The complex timber structure with a large number of failure modes...... material ductility of timber is taken into account. The robustness is expressed and evaluated by a robustness index....

  10. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  11. Low-velocity superconducting accelerating structures

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1990-01-01

    The present paper reviews the status of RF superconductivity as applied to low-velocity accelerating properties. Heavy-ion accelerators must accelerate efficiently particles which travel at a velocity much smaller than that of light particles, whose velocity changes along accelerator, and also different particles which have different velocity profiles. Heavy-ion superconducting accelerators operate at frequencies which are lower than high-energy superconducting accelerators. The present paper first discusses the basic features of heavy-ion superconducting structures and linacs. Design choices are then addressed focusing on structure geometry, materials, frequency, phase control, and focusing. The report also gives an outline of the status of superconducting booster projects currently under way at the Argonne National Laboratory, SUNY Stony Brook, Weizmann Institute, University of Washington, Florida State, Saclay, Kansas State, Daresbury, Japanese Atomic Energy Research Institute, Legnaro, Bombay, Sao Paulo, ANU (Canberra), and Munich. Recent developments and future prospects are also described. (N.K.) 68 refs

  12. The fabrication of millimeter-wavelength accelerating structures

    International Nuclear Information System (INIS)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.

    1996-11-01

    There is a growing interest in the development of high gradient (≥ 1 GeV/m) accelerating structures. The need for high gradient acceleration based on current microwave technology requires the structures to be operated in the millimeter wavelength. Fabrication of accelerating structures at millimeter scale with sub-micron tolerances poses great challenges. The accelerating structures impose strict requirements on surface smoothness and finish to suppress field emission and multipactor effects. Various fabrication techniques based on conventional machining and micromachining have been evaluated and tested. These will be discussed and measurement results presented

  13. Traveling Wave Accelerating Structure for a Superconducting Accelerator

    CERN Document Server

    Kanareykin, Alex; Solyak, Nikolay

    2005-01-01

    We are presenting a superconducting traveling wave accelerating structure (STWA) concept, which may prove to be of crucial importance to the International Linear Collider. Compared to the existing design of a TESLA cavity, the traveling wave structure can provide ~20-40% higher accelerating gradient for the same aperture and the same peak surface magnetic RF field. The recently achieved SC structure gradient of 35 MV/m can be increased up to ~50 MV/m with the new STWA structure design. The STWA structure is supposed to be installed into the superconducting resonance ring and is fed by the two couplers with appropriate phase advance to excite a traveling wave inside the structure. The system requires two independent tuners to be able to adjust the cavity and feedback waveguide frequencies and hence to reduce the unwanted backward wave. In this presentation we discuss the structure design, optimization of the parameters, tuning requirements and plans for further development.

  14. Recent technological developments in accelerating structures

    International Nuclear Information System (INIS)

    Yamazaki, Y.

    1992-01-01

    A variety of high-β accelerating structures for both proton and electron accelerators are reviewed from modern points of view. Both standing-and traveling-wave structures are discussed. Beam stability is one of the most important factors which must be taken into account regarding modern accelerators in which the beam intensity is an issue. (Author) 3 figs., 3 tabs., 60 refs

  15. Prototyping high-gradient mm-wave accelerating structures

    International Nuclear Information System (INIS)

    Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; Neilson, Jeffrey; Tantawi, Sami

    2017-01-01

    We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value of 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.

  16. Heavy ion accelerating structure

    International Nuclear Information System (INIS)

    Pottier, Jacques.

    1977-01-01

    The heavy ion accelerating structure concerned in this invention is of the kind that have a resonance cavity inside which are located at least two longitudinal conducting supports electrically connected to the cavity by one of their ends in such a way that they are in quarter-wavelength resonance and in phase opposition. Slide tubes are electrically connected alternatively to one or the other of the two supports, they being electrically connected respectively to one or the other end of the side wall of the cavity. The feature of the structure is that it includes two pairs of supports symmetrically placed with respect to the centre line of the cavity, the supports of one pair fitted overhanging being placed symmetrically with respect to the centre line of the cavity, each slide tube being connected to the two supports of one pair. These support are connected to the slide wall of the cavity by an insulator located at their electrically free end. The accelerator structure composed of several structures placed end to end, the last one of which is fed by a high frequency field of adjustable amplitude and phase, enables a heavy ion linear accelerator to be built [fr

  17. Progress Toward NLC/GLC Prototype Accelerator Structures

    International Nuclear Information System (INIS)

    Wang, J

    2004-01-01

    The accelerator structure groups for NLC (Next Linear Collider) and GLC (Global Linear Colliders) have successfully collaborated on the research and development of a major series of advanced accelerator structures based on room-temperature technology at X-band frequency. The progress in design, simulation, microwave measurement and high gradient tests are summarized in this paper. The recent effort in design and fabrication of the accelerator structure prototype for the main linac is presented in detail including HOM (High Order Mode) suppression and design of HOM couplers and fundamental mode couplers, optimized accelerator cavities as well as plans for future structures

  18. Progress toward NLC / GLC prototype accelerator structures

    CERN Document Server

    Wang, J W; Arkan, T; Baboi, N; Boffo, C; Bowden, G B; Burke, D L; Carter, H; Chan, J; Cornuelle, J; Döbert, Steffen; Dolgashev, Valery A; Finley, D; Gonin, I; Higashi, Y; Higo, T; Jones, R M; Khabiboulline, T; Kume, T; Lewandowski, J; Li, Z; Miller, R H; Mishra, S; Morozumi, Y; Nantista, C; Pearson, C; Romanov, G; Ruth, Ronald D; Solyak, N; Tantawi, S; Toge, N; Ueno, K; Wilson, P B; Xiao, L

    2004-01-01

    The accelerator structure groups for NLC (Next Linear Collider) and GLC (Global Linear Colliders) have successfully collaborated on the research and development of a major series of advanced accelerator structures based on room-temperature technology at X-band frequency. The progress in design, simulation, microwave measurement and high gradient tests are summarized in this paper. The recent effort in design and fabrication of the accelerator structure prototype for the main linac is presented in detail including HOM (High Order Mode) suppression and couplers, fundamental mode couplers, optimized accelerator cavities as well as plans for future structures. We emphasize techniques to reduce the field on the surface of the copper structures (in order to achieve high accelerating gradients), limit the dipole wakefields (to relax alignment tolerance and prevent a beam break up instability) and improve shunt impedance (to reduce the RF power required).

  19. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  20. ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS

    International Nuclear Information System (INIS)

    Nelson, S; Poole, B; Caporaso, G

    2007-01-01

    Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam

  1. Dielectric-Lined High-Gradient Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS

  2. Dielectric-Lined High-Gradient Accelerator Structure

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field (∼2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 (micro)s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10 5 RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS operating at 30

  3. Structural Robustness Evaluation of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Bontempi, Franco

    2010-01-01

    in the framework of a safe design: it depends on different factors, like exposure, vulnerability and robustness. Particularly, the requirement of structural vulnerability and robustness are discussed in this paper and a numerical application is presented, in order to evaluate the effects of a ship collision...

  4. Design of the detuned accelerator structure

    International Nuclear Information System (INIS)

    Wang, J.W.; Nelson, E.M.

    1993-05-01

    This is a summary of the design procedure for the detuned accelerator structure for SLAC's Next Linear Collider (NLC) program. The 11.424 GHz accelerating mode of each cavity must be synchronous with the beam. The distribution of the disk thicknesses and lowest synchronous dipole mode frequencies of the cavities in the structure is Gaussian in order to reduce the effect of wake fields. The finite element field solver YAP calculated the accelerating mode frequency and the lowest synchronous dipole mode frequency for various cavity diameters, aperture diameters and disk thicknesses. Polynomial 3-parameter fits are used to calculate the dimensions for a 1.8 m detuned structure. The program SUPERFISH was used to calculate the shunt impedances, quality factors and group velocities. The RF parameters of the section like filling time, attenuation factor, accelerating gradient and maximum surface field along the section are evaluated. Error estimates will be discussed and comparisons with conventional constant gradient and constant impedance structures will be presented

  5. A Probabilistic Approach for Robustness Evaluation of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    of Structures and a probabilistic modelling of the timber material proposed in the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS). Due to the framework in the Danish Code the timber structure has to be evaluated with respect to the following criteria where at least one shall...... to criteria a) and b) the timber frame structure has one column with a reliability index a bit lower than an assumed target level. By removal three columns one by one no significant extensive failure of the entire structure or significant parts of it are obatined. Therefore the structure can be considered......A probabilistic based robustness analysis has been performed for a glulam frame structure supporting the roof over the main court in a Norwegian sports centre. The robustness analysis is based on the framework for robustness analysis introduced in the Danish Code of Practice for the Safety...

  6. High Gradient Performance of NLC/GLC X-Band Accelerating Structures

    CERN Document Server

    Döbert, Steffen; Boffo, Cristian; Bowden, Gordon B; Burke, David; Carter, Harry; Chan, Jose; Dolgashev, Valery A; Frisch, Josef; Funahashi, Y; Gonin, Ivan V; Hayano, Hitoshi; Higashi, Norio; Higashi, Yasuo; Higo, Toshiyasu; Jobe, R Keith; Jones, Roger M; Kawamata, H; Khabiboulline, Timergali N; Kirby, Robert; Kume, T; Lewandowski, James R; Li, Zenghai; McCormick, Douglas; Miller, Roger H; Mishra, Shekhar; Morozumi, Yuichi; Nantista, Christopher D; Nelson, Janice; Pearson, Chris; Romanov, Gennady; Ross, Marc; Schultz, David; Smith, Tonee; Solyak, Nikolay; Tacku Arkan, Tug; Takata, Koji; Takatomi, Toshikazu; Tantawi, Sami G; Toge, Nobu; Ueno, K; Wang, Juwen W; Watanabe, Y

    2005-01-01

    During the past five years, there has been an concerted effort at FNAL, KEK and SLAC to develop accelerator structures that meet the high gradient performance requirements for the Next Linear Collider (NLC) and Global Linear Collider (GLC) initiatives. The structure that resulted is a 60-cm-long, traveling-wave design with low group velocity (< 4% c) and a 150 degree phase advance per cell. It has an average iris size that produces an acceptable short-range wakefield in the linacs, and dipole mode damping and detuning that adequately suppresses the long-range wakefield. More than eight such structures have operated over 1000 hours at a 60 Hz pulse rate at the design gradient (65 MV/m) and pulse length (400 ns), and have reached breakdown rate levels below the limit for the linear collider. Moreover, the structures are robust in that the breakdown rates continue to decrease over time, and if the structures are briefly exposed to air, the rates recover to their low values within a few days. This paper pr...

  7. Reliability and Robustness Evaluation of Timber Structures

    DEFF Research Database (Denmark)

    Cizmar, Dean; Sørensen, John Dalsgaard; Kirkegaard, Poul Henning

    In the last few decades there have been intensely research concerning reliability of timber structures. This is primarily because there is an increased focus on society on sustainability and environmental aspects. Modern timber as a building material is also being competitive compared to concrete...... and steel. However, reliability models applied to timber were always related to individual components but not the systems. as any real structure is a complex system, system behaviour must be of a particular interest. In the chapter 1 of this document an overview of stochastic models for strength and loads...... (deterministic, probabilistic and risk based approaches) of the robustness are given. Chapter 3 deals more detailed with the robustness of timber structures....

  8. Advanced accelerator and mm-wave structure research at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-22

    This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.

  9. Accelerating and focusing structures for PIGMI

    International Nuclear Information System (INIS)

    Swenson, D.A.; Bush, E.D. Jr.; Holsinger, R.F.; Manca, J.J.; Saito, N.; Stovall, J.E.

    1977-01-01

    The National Cancer Institute is supporting a program of accelerator development at the Los Alamos Scientific Laboratory aimed at the extension of proton linac technologies to produce the most suitable Pion Generator for Medical Irradiations (PIGMI). An optimized design of a pion generator suitable for a radiotherapy program at a major medical center has been established, consisting of a 250-keV injector, followed by a 35-meter-long drift-tube linac that accelerates the proton beam to 150 MeV, and an 85-meter-long coupled-cavity linac that accelerates the beam to its final energy of 650 MeV, where the average beam current of 100 microamperes impinges on one or more targets producing abundant quantities of π - mesons for radiotherapeutic applications. A number of extensions to proton linac technology are being pursued under the PIGMI program at LASL. A discussion is given of recent developments in three areas relevant to the acceleration and focusing of proton beams, namely, the alternating phase focused (APF) linac structure, the disk and washer linac structure, and small permanent magnet quadrupole lenses. The APF linac structure is being developed for the acceleration and focusing role from the injection energy of 250 keV to a few MeV, where a transition is made to a permanent magnet quadrupole focused linac structure. The disk and washer linac structure is under consideration for the high velocity portion of the design

  10. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  11. Multi-Mode Cavity Accelerator Structure

    International Nuclear Information System (INIS)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-01-01

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10"-"7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise Δ T. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_s_u_r"m"a"x< 260 MV/m and pulsed surface heating Δ T"m"a"x< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power - as compared with operation at the same acceleration gradient using only the fundamental mode.

  12. Vacuum design for the disk-and-washer accelerator structure

    International Nuclear Information System (INIS)

    Ruhe, J.R.; Hansborough, L.D.

    1982-02-01

    The disk-and-washer (DAW) accelerator structure is being developed for several applications. Because of its complicated geometry and newness, vacuum calculations for the DAW accelerator structure are not yet formalized. The applicable vacuum equations for this structure are presented and correlations for it have been made with the vacuum data from the Clinton P. Anderson Meson Physics Facility side-coupled accelerator structure. A calculation is presented for the DAW structure proposed for the Pion Generator for Medical Irradiations (PIGMI) accelerator

  13. Robustness Evaluation of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; čizmar, D.

    2010-01-01

    The present paper outlines results from working group 3 (WG3) in the EU COST Action E55 – ‘Modelling of the performance of timber structures’. The objectives of the project are related to the three main research activities: the identification and modelling of relevant load and environmental...... exposure scenarios, the improvement of knowledge concerning the behaviour of timber structural elements and the development of a generic framework for the assessment of the life-cycle vulnerability and robustness of timber structures....

  14. A hybrid dielectric and iris loaded periodic accelerating structure

    International Nuclear Information System (INIS)

    Zou, P.; Xiao, L.; Sun, X.; Gai, W.

    2001-01-01

    One disadvantage of conventional iris-loaded accelerating structures is the high ratio of the peak surface electric field to the peak axial electric field useful for accelerating a beam. Typically this ratio E s /E a ≥ 2. The high surface electric field relative to the accelerating gradient may prove to be a limitation for realizing technologies for very high gradient accelerators. In this paper, we present a scheme that uses a hybrid dielectric and iris loaded periodic structure to reduce E s /E a to near unity, while the shunt impedance per unit length r and the quality factor Q compare favorably with conventional metallic structures. The analysis based on MAFIA simulations of such structures shows that we can lower the peak surface electric field close to the accelerating gradient while maintaining high acceleration efficiency as measured by r/Q. Numerical examples of X-band hybrid accelerating structures are given

  15. Accelerated convergence and robust asymptotic regression of the Gumbel scale parameter for gapped sequence alignment

    International Nuclear Information System (INIS)

    Park, Yonil; Sheetlin, Sergey; Spouge, John L

    2005-01-01

    Searches through biological databases provide the primary motivation for studying sequence alignment statistics. Other motivations include physical models of annealing processes or mathematical similarities to, e.g., first-passage percolation and interacting particle systems. Here, we investigate sequence alignment statistics, partly to explore two general mathematical methods. First, we model the global alignment of random sequences heuristically with Markov additive processes. In sequence alignment, the heuristic suggests a numerical acceleration scheme for simulating an important asymptotic parameter (the Gumbel scale parameter λ). The heuristic might apply to similar mathematical theories. Second, we extract the asymptotic parameter λ from simulation data with the statistical technique of robust regression. Robust regression is admirably suited to 'asymptotic regression' and deserves to be better known for it

  16. Ultrasound Instrumentation for Beam Diagnostics and Accelerating Structures Control

    CERN Document Server

    Moiseev, V I

    2005-01-01

    Sensitive elements and electronics for ultrasound measurements at conducting walls of beam pipes and accelerating structures are described. Noise protected instrumentation provides ultrasound spectra analysis in a wide frequency range up to 5 MHz.In circular accelerators, ultrasound fields in conducting walls of beam pipe represent the space-time characteristics of circulating beams. In accelerating structures, real high power operation modes of structure can be studied by outer ultrasound monitors. The experimental results at KSRS accelerators are discussed.

  17. Robustness Analysis of a Wide-Span Timber Structure with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Cizmar, D.

    2010-01-01

    This paper considers robustness evaluation of a wide span timber truss structure where the ductile behavior is taken into account. The robustness analysis is based on a structural reliability framework used on a simplified mechanical system modelling a timber truss system. A measure of ductile...... behaviour is introduced and for different values of this measure the robustness indices are estimated. The results indicate that the robustness of a timber truss system can be increased by taking the ductile behavior into....

  18. Analysis of beam acceleration and instability on TWRR accelerator structure in PNC by beam-cavity interaction

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Shin`ichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-07-01

    It is important for high current accelerators to estimate the contribution of the space charge effect to keep the beam off its beak up (BBU). The CW electron linac is designed in order to study BBU experimentally. The design is primary on the consideration which type of accelerator structure is suitable to reduce the BBU threshold, and how to observe and control BBU when it appears. The contribution of beam charge for the acceleration characteristics is surveyed by means of the comparison between traveling wave and standing wave structures in this report. At first, the characteristics of both traveling wave and standing wave structures are calculated analytically and the conversion efficiency and accelerator gain are presented. The merits and drawbacks are also mentioned concerning with unit accelerator length. Next, the choice of RF frequency on energy conversion is mentioned as independent matter of the types of accelerator structure. After that, the characteristics of TWRR are described as the advanced accelerator structure compared with above structures. The effect of longitudinal induced field is estimated by means of the loss parameter. The result from the analysis shows that the unit accelerator length is 1 m to get high conversion ratio from RF to beam power and that the BBU for transverse component is small. Therefore, total BBU is expected small in the accelerator, for transverse BBU is already expected small in previous reports. (author)

  19. Resonant coupling applied to superconducting accelerator structures

    International Nuclear Information System (INIS)

    Potter, James M.; Krawczyk, Frank L.

    2013-01-01

    The concept of resonant coupling and the benefits that accrue from its application is well known in the world of room temperature coupled cavity linacs. Design studies show that it can be applied successfully between sections of conventional elliptical superconducting coupled cavity accelerator structures and internally to structures with spoked cavity resonators. The coupling mechanisms can be designed without creating problems with high field regions or multipactoring. The application of resonant coupling to superconducting accelerators eliminates the need for complex cryogenic mechanical tuners and reduces the time needed to bring a superconducting accelerator into operation.

  20. Robust structural optimization using Gauss-type quadrature formula

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Seo, Ki Seog; Chen, Shikui; Chen, Wei

    2009-01-01

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the Tensor Product Quadrature (TPQ) formula and the Univariate Dimension Reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

  1. Robust structural optimization using Gauss-type quadrature formula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Seo, Ki Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Chen, Shikui; Chen, Wei [Northwestern University, Illinois (United States)

    2009-07-01

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the Tensor Product Quadrature (TPQ) formula and the Univariate Dimension Reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

  2. Robust Structural Optimization Using Gauss-type Quadrature Formula

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hoon; Seo, Ki Seog; Chen, Shikui; Chen, Wei [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-08-15

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the tensor product quadrature (TPQ) formula and the univariate dimension reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty.

  3. Robust Structural Optimization Using Gauss-type Quadrature Formula

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Seo, Ki Seog; Chen, Shikui; Chen, Wei

    2009-01-01

    In robust design, the mean and variance of design performance are frequently used to measure the design performance and its robustness under uncertainties. In this paper, we present the Gauss-type quadrature formula as a rigorous method for mean and variance estimation involving arbitrary input distributions and further extend its use to robust design optimization. One dimensional Gauss-type quadrature formula are constructed from the input probability distributions and utilized in the construction of multidimensional quadrature formula such as the tensor product quadrature (TPQ) formula and the univariate dimension reduction (UDR) method. To improve the efficiency of using it for robust design optimization, a semi-analytic design sensitivity analysis with respect to the statistical moments is proposed. The proposed approach is applied to a simple bench mark problems and robust topology optimization of structures considering various types of uncertainty

  4. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    Science.gov (United States)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  5. The structural robustness of multiprocessor computing system

    Directory of Open Access Journals (Sweden)

    N. Andronaty

    1996-03-01

    Full Text Available The model of the multiprocessor computing system on the base of transputers which permits to resolve the question of valuation of a structural robustness (viability, survivability is described.

  6. Brazing techniques for side-coupled electron accelerator structures

    International Nuclear Information System (INIS)

    Hansborough, L.D.; Clark, W.L.; DePaula, R.A.; Martinez, F.A.; Roybal, P.L.; Wilkerson, L.C.; Young, L.M.

    1986-01-01

    The collaboration between the Los Alamos National Laboratory and the National Bureau of Standards (NBS), started in 1979, has led to the development of an advanced c-w microtron accelerator design. The four 2380-MHz NBS accelerating structures, containing a total of 184 accelerating cavities, have been fabricated and delivered. New fabrication methods, coupled with refinements of hydrogen-furnace brazing techniques described in this paper, allow efficient production of side-coupled structures. Success with the NBS RTM led to Los Alamos efforts on similar 2450-MHz accelerators for the microtron accelerator operated by the Nuclear Physics Department of the University of Illinois. Two accelerators (each with 17 cavities) have been fabricated; in 1986, a 45-cavity accelerator is being fabricated by private industry with some assistance from Los Alamos. Further private industry experience and refinement of the described fabrication techniques may allow future accelerators of this type to be completely fabricated by private industry

  7. Accelerator structure development for NLC

    International Nuclear Information System (INIS)

    Hoag, H.A.; Deruyter, H.; Pearson, C.; Ruth, R.D.; Wang, J.W.; Schaefer, J.

    1993-04-01

    In the program of work directed towards the development of an X-Band Next Linear Collider accelerator structure, two different test accelerator sections have been completed, and a third is being fabricated. The first is a simple 30-cell constant-impedance section in which no special attention was given to surface finish, pumping, and alignment. The second is an 86-cell section in which the cells were precision diamond-turned by Texas Instruments Inc. The structure has internal water-cooling and vacuum pumping manifolds. Some design details are given for the third section, which is a 206-cell structure with cavities dimensioned to give a Gaussian distribution of dipole mode frequencies. It has conventional-machining surface finishes and external water and pumping manifolds. Component design, fabrication, and assembly brazing are described for the first two experimental sections

  8. Design of an X-band accelerating structure using a newly developed structural optimization procedure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaoxia [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Fang, Wencheng; Gu, Qiang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhao, Zhentang, E-mail: zhaozhentang@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-05-11

    An X-band high gradient accelerating structure is a challenging technology for implementation in advanced electron linear accelerator facilities. The present work discusses the design of an X-band accelerating structure for dedicated application to a compact hard X-ray free electron laser facility at the Shanghai Institute of Applied Physics, and numerous design optimizations are conducted with consideration for radio frequency (RF) breakdown, RF efficiency, short-range wakefields, and dipole/quadrupole field modes, to ensure good beam quality and a high accelerating gradient. The designed X-band accelerating structure is a constant gradient structure with a 4π/5 operating mode and input and output dual-feed couplers in a racetrack shape. The design process employs a newly developed effective optimization procedure for optimization of the X-band accelerating structure. In addition, the specific design of couplers providing high beam quality by eliminating dipole field components and reducing quadrupole field components is discussed in detail.

  9. Guaranteeing robustness of structural condition monitoring to environmental variability

    Science.gov (United States)

    Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François

    2017-01-01

    Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28

  10. High-performance computing in accelerating structure design and analysis

    International Nuclear Information System (INIS)

    Li Zenghai; Folwell, Nathan; Ge Lixin; Guetz, Adam; Ivanov, Valentin; Kowalski, Marc; Lee, Lie-Quan; Ng, Cho-Kuen; Schussman, Greg; Stingelin, Lukas; Uplenchwar, Ravindra; Wolf, Michael; Xiao, Liling; Ko, Kwok

    2006-01-01

    Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability. While numerical modeling has been quite standard in accelerator R and D, designing the NLC accelerating structure required a new simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured grids and utilizing high-performance computing to provide an advanced tool for modeling structures at accuracies and scales previously not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high-performance computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level (single cell optimization), or on the scale of an entire structure (beam heating and long-range wakefields)

  11. Robust sliding-window reconstruction for Accelerating the acquisition of MR fingerprinting.

    Science.gov (United States)

    Cao, Xiaozhi; Liao, Congyu; Wang, Zhixing; Chen, Ying; Ye, Huihui; He, Hongjian; Zhong, Jianhui

    2017-10-01

    To develop a method for accelerated and robust MR fingerprinting (MRF) with improved image reconstruction and parameter matching processes. A sliding-window (SW) strategy was applied to MRF, in which signal and dictionary matching was conducted between fingerprints consisting of mixed-contrast image series reconstructed from consecutive data frames segmented by a sliding window, and a precalculated mixed-contrast dictionary. The effectiveness and performance of this new method, dubbed SW-MRF, was evaluated in both phantom and in vivo. Error quantifications were conducted on results obtained with various settings of SW reconstruction parameters. Compared with the original MRF strategy, the results of both phantom and in vivo experiments demonstrate that the proposed SW-MRF strategy either provided similar accuracy with reduced acquisition time, or improved accuracy with equal acquisition time. Parametric maps of T 1 , T 2 , and proton density of comparable quality could be achieved with a two-fold or more reduction in acquisition time. The effect of sliding-window width on dictionary sensitivity was also estimated. The novel SW-MRF recovers high quality image frames from highly undersampled MRF data, which enables more robust dictionary matching with reduced numbers of data frames. This time efficiency may facilitate MRF applications in time-critical clinical settings. Magn Reson Med 78:1579-1588, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Robustness and modular structure in networks

    DEFF Research Database (Denmark)

    Bagrow, James P.; Lehmann, Sune; Ahn, Yong-Yeol

    2015-01-01

    -12]. Many complex systems, from power grids and the Internet to the brain and society [13-15], can be modeled using modular networks comprised of small, densely connected groups of nodes [16, 17]. These modules often overlap, with network elements belonging to multiple modules [18, 19]. Yet existing work...... on robustness has not considered the role of overlapping, modular structure. Here we study the robustness of these systems to the failure of elements. We show analytically and empirically that it is possible for the modules themselves to become uncoupled or non-overlapping well before the network disintegrates....... If overlapping modular organization plays a role in overall functionality, networks may be far more vulnerable than predicted by conventional percolation theory....

  13. RF Accelerating Structure for the Muon Cooling Experiment

    International Nuclear Information System (INIS)

    Corlett, J.; Green, M.; Li, D.; Holtkamp, N.; Moretti, A.; Kirk, H. G.; Palmer, R. B.; Zhao, Y.; Summers, D.

    1999-01-01

    The ionization cooling of muons requires longitudinal acceleration of the muons after scattering in a hydrogen target. In order to maximize the accelerating voltage, they propose using linear accelerating structures with cells bounded by thin beryllium metal foils. this produces an on-axis field equivalent to the maximum surface field, whereas with beam-pipes the accelerating field is approximately half that of the peak surface field in the cavity. The muons interact only weakly with the thin foils. A π/2 interleaved cavity structure has been chosen, with alternate cells coupled together externally, and the two groups of cells fed in quadrature. At present they are considering an operating temperature of 77K to gain a factor of at least two in Q-value over room temperature. They will describe the design of the π/2 interleaved cavity structure, design of an alternative π-mode open structure, preliminary experimental results from a low-power test cavity, and plans for high-power testing

  14. A New Damped and Tapered Accelerating Structure for CLIC

    CERN Document Server

    Raguin, J Y; Syratchev, I V; Wilson, Ian H; Wuensch, Walter

    2002-01-01

    The main performance limits when designing accelerating structures for the Compact Linear Collider (CLIC) for an average accelerating gradient above 100 MV/m are electrical breakdown and material fatigue caused by pulsed surface heating. In addition, for stable beam operation, the structures should have low short-range transverse wakefields and much-reduced transverse and longitudinal long-range wakefields. Two damped and tapered accelerating structures have been designed. The first has an accelerating gradient of 112 MV/m with the surface electrical field limited to 300 MV/m and the maximum temperature increase limited to 100°C. The second, with an accelerating gradient of 150 MV/m, has a peak surface electrical field of 392 MV/m and a maximum temperature increase of 167°C. Innovations to the cell and damping waveguide geometry and to the tapering of the structures are presented, and possible further improvements are proposed.

  15. Required performance to the concrete structure of the accelerator facilities

    International Nuclear Information System (INIS)

    Irie, Masaaki; Yoshioka, Masakazu; Miyahara, Masanobu

    2006-01-01

    As for the accelerator facility, there is many a thing which is constructed as underground concrete structure from viewpoint such as cover of radiation and stability of the structure. Required performance to the concrete structure of the accelerator facility is the same as the general social infrastructure, but it has been possessed the feature where target performance differs largely. As for the body sentence, expressing the difference of the performance which is required from the concrete structure of the social infrastructure and the accelerator facility, construction management of the concrete structure which it plans from order of the accelerator engineering works facility, reaches to the design, supervision and operation it is something which expresses the method of thinking. In addition, in the future of material structural analysis of the concrete which uses the neutron accelerator concerning view it showed. (author)

  16. Robust structural design against self-excited vibrations

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2013-01-01

    This book studies methods for a robust design of rotors against self-excited vibrations. The occurrence of self-excited vibrations in engineering applications if often unwanted and in many cases difficult to model. Thinking of complex systems such as machines with many components and mechanical contacts, it is important to have guidelines for design so that the functionality is robust against small imperfections. This book discusses the question on how to design a structure such that unwanted self-excited vibrations do not occur. It shows theoretically and practically that the old design rule to avoid multiple eigenvalues points toward the right direction and have optimized structures accordingly. This extends results for the well-known flutter problem in which equations of motion with constant coefficients occur to the case of a linear conservative system with arbitrary time periodic perturbations.

  17. High Field Studies for CLIC Accelerating Structures Development

    CERN Document Server

    Profatilova, I

    2017-01-01

    Compact Linear Collider RF structures need to be able to achieve the very high average accelerating gradient of 100 MV/m. One of the main challenges in reaching such high accelerating gradients is to avoid vacuum electrical breakdown within CLIC accelerating structures. Accelerating structure tests are carried out in the klystron-based test stands known as the XBoxes. In order to investigate vacuum breakdown phenomena and its statistical characteristics in a simpler system and get results in a faster way, pulsed dc systems have been developed at CERN. To acquire sufficient breakdown data in a reasonable period of time, high repetition rate pulse generators are used in the systems for breakdown studies, so-called pulsed dc system. This paper describes the pulsed dc systems and the two high repetition rate circuits, which produce high-voltage pulses for it, available at CERN.

  18. Accelerated Electron-Beam Formation with a High Capture Coefficient in a Parallel Coupled Accelerating Structure

    Science.gov (United States)

    Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.

    2018-01-01

    An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.

  19. The grating as an accelerating structure

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1991-02-01

    This report considers the use of a diffraction grating as an accelerating structure for charged particle beams. We examine the functional dependence of the electromagnetic fields above the surface of a grating. Calculations are made of the strength of the accelerating modes for structures with π and 2π phase advance per period and for incident waves polarized with either the E or H vector along the grooves of the grating. We consider examples of using gratings in a laser linac and in a grating lens. We also briefly examine previous results published about this subject. 36 refs

  20. Rippled plasma wall accelerating structures

    International Nuclear Information System (INIS)

    Cavenago, M.

    1992-01-01

    A concept to form a hot, pulsed, inhomogeneous plasma and to use it as a linac structure is presented. The plasma spatial distribution is controlled by an external magnetic field and by the location of thermionic emitters; microwave ECR heating at frequency ω 1 favours plasma build up and reduces plasma resistivity. A shorter microwave pulse with frequency ω 2 ≠ ω 1 excites a longitudinal mode. An expression for the maximum attainable accelerating field is found. A linearized theory of accelerating modes is given. (Author) 6 refs., 3 figs

  1. Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure

    International Nuclear Information System (INIS)

    Soong, Ken; Peralta, E.A.; Byer, R.L.; Colby, E.

    2011-01-01

    A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry, as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a

  2. Dielectric laser acceleration of non-relativistic electrons at a photonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, John

    2013-08-29

    This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in

  3. Comparison of high group velocity accelerating structures

    International Nuclear Information System (INIS)

    Farkas, Z.D.; Wilson, P.B.

    1987-02-01

    It is well known that waveguides with no perturbations have phase velocities greater than the velocity of light c. If the waveguide dimensions are chosen so that the phase velocity is only moderately greater than c, only small perturbations are required to reduce the phase velocity to be synchronous with a high energy particle bunch. Such a lightly loaded accelerator structure will have smaller longitudinal and transverse wake potentials and hence will lead to lower emittance growth in an accelerated beam. Since these structures are lightly loaded, their group velocities are only slightly less than c and not in the order of 0.01c, as is the case for the standard disk-loaded structures. To ascertain that the peak and average power requirements for these structures are not prohibitive, we examine the elastance and the Q for several traveling wave structures: phase slip structures, bellows-like structures, and lightly loaded disk-loaded structures

  4. Travelling wave accelerating structure design for TESLA positron injector linac

    CERN Document Server

    Jin, K; Zhou, F; Flöttmann, K

    2000-01-01

    A modified cup-like TW accelerating structure for TESLA Positron Pre-Accelerator (PPA) is designed by optimizing the structure geometry and by changing the iris thickness cell by cell in a section . This structure has high shunt-impedance and a large iris radius to meet with the requirements of high gradient and large transverse acceptance. The beam dynamics in the structure with the optimum solenoid focus field are studied. A satisfactory positron beam transmission and the beam performance at the PPA output have been obtained. In this paper the accelerating structure design is described in detail and the results are presented.

  5. Robust pattern decoding in shape-coded structured light

    Science.gov (United States)

    Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai

    2017-09-01

    Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.

  6. Performance testing of the LUEhR-40M structure with an accelerated beam

    International Nuclear Information System (INIS)

    Vakhrushin, Yu.P.; Voznyuk, V.N.; Nikolaev, V.M.; Ryabtsov, A.V.; Smirnov, V.L.; Terent'ev, V.V.

    1988-01-01

    The results of experimental investigation of the prototype of the accelerating structure of the therapeutic linear accelerator of the LUEhR-40M model with an accelerating beam are presented. The accelerating structure is the standing wave biperiodic structure with inner coupling cells of 1.6 m length. The design energy of accelerated electrons equalling 20 MeV (during single electron beam passage through an accelerating structure) is obtained. 60 % of accelerated particles are accumulated in the energy interval of (20±1) MeV at 20 mA pulse current and at 3.6 MW SHF-power at the structure input

  7. Design and fabrication of a continuous wave electron accelerating structure

    International Nuclear Information System (INIS)

    Takahashi, Jiro

    1997-01-01

    The Physics Institute of Sao Paulo University, SP, Brazil is fabricating a 31 MeV cw racetrack microtron (RTM) designed for nuclear physics research. This is a two-stage microtron that includes a 1.93 MeV injector linac feeding a five-turn microtron booster. After 28 turns, the main microtron delivers a 31 MeV continuous electron beam. The objective of this work is the development and fabrication of an advanced, beta=l, cw accelerating structure for the main microtron. The accelerating structure will be a side-coupled structure (SCS). We have chosen this kind of cavity, because it presents good vacuum properties, allows operation at higher accelerating electric fields and has a shunt impedance better than 81 MQ/m, with a high coupling factor ( 3 - 5%). The engineering design is the Los Alamos one. There will be two tuning plungers placed at both ends of the accelerating structure. They automatically and quickly compensate for the variation in the resonance frequency caused by changes in the structure temperature. Our design represents an advanced accelerating structure with the optimum SCS properties coexisting with the plunger's good tuning properties. (author)

  8. Wakefield monitor development for CLIC accelerating structure

    CERN Document Server

    Peauger, F; Girardot, P; Andersson, A; Riddone, G; Samoshkin, A; Solodko, A; Zennaro, R; Ruber, R

    2010-01-01

    Abstract To achieve high luminosity in CLIC, the accelerating structures must be aligned to an accuracy of 5 μm with respect to the beam trajectory. Position detectors called Wakefield Monitors (WFM) are integrated to the structure for a beam based alignment. This paper describes the requirements of such monitors. Detailed RF design and electromagnetic simulations of the WFM itself are presented. In particular, time domain computations are performed and an evaluation of the resolution is done for two higher order modes at 18 and 24 GHz. The mechanical design of a prototype accelerating structure with WFM is also presented as well as the fabrication status of three complete structures. The objective is to implement two of them in CTF3 at CERN for a feasibility demonstration with beam and high power rf.

  9. Robustness of structures- A report on a joint European project

    NARCIS (Netherlands)

    Faber, M.H.; Vrouwenvelder, A.C.W.M.; Sørensen, J.D.; Chryssanthopoulos, M.K.; Narasimhan, H.

    2011-01-01

    In 2005, the Joint Committee on Structural Safety (JCSS) together with Working Commission (WC) 1 of the International Association of Bridge and Structural Engineering (IABSE) organized a workshop on robustness of structures. Two important decisions resulted from this workshop, namely the development

  10. Experimental demonstration of dielectric structure based two beam acceleration

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-01-01

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented

  11. Experimental demonstration of dielectric structure based two beam acceleration.

    Energy Technology Data Exchange (ETDEWEB)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-11-28

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented.

  12. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Edward L. Ginzton Lab.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  13. Tuning of Clic accelerating structure prototypes at CERN

    CERN Document Server

    Shi, J; Olyunin, A; Wuensch, W

    2010-01-01

    An RF measurement system has been set up at CERN for use in the X-band accelerating structure development program of the CLIC study. Using the system, S-parameters are measured and the field distribution is obtained automatically using a bead-pull technique. The corrections for tuning the structure are calculated from an initial measurement and cell-by-cell tuning is applied to obtain the correct phase advance and minimum reflection at the operation frequency. The detailed tuning procedure is presented and explained along with an example of measurement and tuning of CLIC accelerating structure prototypes.

  14. Conceptual design of an L-band recirculating superconducting traveling wave accelerating structure for ILC

    International Nuclear Information System (INIS)

    Avrakhov, P.; Kanareykin, A.; Liu, Z.; Kazakov, S.; KEK, Tsukuba; Solyak, N.; Yakovlev, V.; Gai, W.

    2007-01-01

    With this paper, we propose the conceptual design of a traveling wave accelerating structure for a superconducting accelerator. The overall goal is to study a traveling wave (TW) superconducting (SC) accelerating structure for ILC that allows an increased accelerating gradient and, therefore reduction of the length of the collider. The conceptual studies were performed in order to optimize the acceleration structure design by minimizing the surface fields inside the cavity of the structure, to make the design compatible with existing technology, and to determine the maximum achievable gain in the accelerating gradient. The proposed solution considers RF feedback system redirecting the accelerating wave that passed through the superconducting traveling wave acceleration (STWA) section back to the input of the accelerating structure. The STWA structure has more cells per unit length than a TESLA structure but provides an accelerating gradient higher than a TESLA structure, consequently reducing the cost. In this paper, the STWA cell shape optimization, coupler cell design and feedback waveguide solution are considered. We also discuss the field flatness in the superconducting TW structure, the HOM modes and multipactor performance have been studied as well. The proposed TW structure design gives an overall 46% gain over the SW ILC structure if the 10 m long TW structure is employed

  15. Coupler tuning for constant gradient travelling wave accelerating structures

    International Nuclear Information System (INIS)

    Guo Xingkun; Ma Yanyun; Wang Xiulong

    2013-01-01

    The method of the coupler tuning for the constant gradient traveling wave accelerating structure was described and the formula of coupling coefficient p was deduced on the basis of analyzing the existing methods for the constant impedance traveling wave accelerating structures and coupling-cavity chain equivalent circuits. The method and formula were validated by the simulation result by CST and experiment data. (authors)

  16. Particle acceleration and shock wave structure

    International Nuclear Information System (INIS)

    DRURY, L.O'C.

    1989-01-01

    A significant determinant in the large-scale structure and evolution of strong collisionless shocks under astrophysical conditions is probably the acceleration of charged particles. The reaction of these particles on the dynamical structure of the shock wave is discussed both theoretically and in the light of recent numerical calculations. Astrophysical implications for the evolution of supernova remnants, are considered. (author). 15 refs

  17. Simulation and design of the photonic crystal microwave accelerating structure

    International Nuclear Information System (INIS)

    Song Ruiying; Wu Congfeng; He Xiaodong; Dong Sai

    2007-01-01

    The authors have derived the global band gaps for general two-dimensional (2D) photonic crystal microwave accelerating structures formed by square or triangular arrays of metal posts. A coordinate-space, finite-difference code was used to calculate the complete dispersion curves for the lattices. The fundamental and higher frequency global photonic band gaps were determined numerically. The structure formed by triangular arrays of metal posts with a missing rod at the center has advantages of higher-order-modes (HOM) suppression and main mode restriction under the condition of a/b<0.2. The relationship between the RF properties and the geometrical parameters have been studied for the 9.37 GHz photonic crystal accelerating structure. The Rs, Q, Rs/Q of the new structure may be comparable to the disk-loaded accelerating structure. (authors)

  18. Robustness Analysis of Big Span Glulam Truss Structure

    DEFF Research Database (Denmark)

    Rajčié, V.; čizmar, D.; Kirkegaard, Poul Henning

    2010-01-01

    (Eurocode 0 &1, Probabilistic model code etc.) Based on a project of big span glulam truss structure, build in Croatia few years ago, a probabilistic model is made with four failure elements. Reliability analysis of components is conducted and based on this a robustness analysis is preformed. It can...

  19. High frequency single mode traveling wave structure for particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyan, M.I.; Danielyan, V.A.; Grigoryan, B.A.; Grigoryan, A.H. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Tsakanian, A.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Technische Universität Darmstadt, Institut TEMF, 64289 Darmstadt (Germany); Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Vardanyan, A.S.; Zakaryan, S.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia)

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM{sub 01} mode in a metallic tube with internally coated low conductive thin layer are examined.

  20. Unified 1.9...4.0 MeV linear accelerators with interchangeable accelerating structures for customs inspection

    International Nuclear Information System (INIS)

    Budtov, A.A.; Klinov, A.P.; Krestianinov, A.S.

    2004-01-01

    A series of compact linear electron accelerators for 1.9, 2.5 and 4.0 MeV equipped with a local radiation shielding has been designed and constructed in the NPK LUTS, the D.V.Efremov Institute (NIIEFA). The accelerators are intended for mobile facilities used for customs inspection of large-scale containers. Results of optimizing calculations of irradiator parameters and electron dynamics, verified under accelerators testing, are presented in the report. The main design approaches allowing the construction of unified accelerators with interchangeable accelerating structures for energies in the range of 1.9...4.0 MeV are also given

  1. Robust photometric stereo using structural light sources

    Science.gov (United States)

    Han, Tian-Qi; Cheng, Yue; Shen, Hui-Liang; Du, Xin

    2014-05-01

    We propose a robust photometric stereo method by using structural arrangement of light sources. In the arrangement, light sources are positioned on a planar grid and form a set of collinear combinations. The shadow pixels are detected by adaptive thresholding. The specular highlight and diffuse pixels are distinguished according to their intensity deviations of the collinear combinations, thanks to the special arrangement of light sources. The highlight detection problem is cast as a pattern classification problem and is solved using support vector machine classifiers. Considering the possible misclassification of highlight pixels, the ℓ1 regularization is further employed in normal map estimation. Experimental results on both synthetic and real-world scenes verify that the proposed method can robustly recover the surface normal maps in the case of heavy specular reflection and outperforms the state-of-the-art techniques.

  2. High power testing oa ANL X-band dielectric-loaded accelerating structures

    International Nuclear Information System (INIS)

    Power, J. G.; Gai, W.; Jing, C.; Konecny, R.; Gold, S. H.; Kinkead, A. K.

    2002-01-01

    In the second phase of a program to develop a compact accelerator based on a dielectric-loaded accelerating structure, we have conducted high power tests on a traveling-wave and a standing-wave prototype. Indications are that the traveling-wave structure achieved an accelerating gradient of 3-5 MV/m before the input coupling window failed, while the standing wave structure was poorly matched at high power due to contamination of copper residue on its coupling window. To solve both of these problems, a new method for coupling RF into the structures has been developed. The new couplers and the rest of the modular structure are currently under construction and will be tested at the Naval Research Laboratory shortly

  3. Design study of double-layer beam trajectory accelerator based on the Rhodotron structure

    Energy Technology Data Exchange (ETDEWEB)

    Jabbari, Iraj, E-mail: i_jabbari@ast.ui.ac.ir [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 8174673441 (Iran, Islamic Republic of); Poursaleh, Ali Mohammad [Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 8174673441 (Iran, Islamic Republic of); Central Iran Research Complex, NSTRI, Yazd (Iran, Islamic Republic of); Khalafi, Hossein [Central Iran Research Complex, NSTRI, Yazd (Iran, Islamic Republic of)

    2016-08-21

    In this paper, the conceptual design of a new structure of industrial electron accelerator based on the Rhodotron accelerator is presented and its properties are compared with those of Rhodotron-TT200 accelerator. The main goal of this study was to reduce the power of RF system of accelerator at the same output electron beam energy. The main difference between the new accelerator structure with the Rhodotron accelerator is the length of the coaxial cavity that is equal to the wavelength at the resonant frequency. Also two sets of bending magnets were used around the acceleration cavity in two layers. In the new structure, the beam crosses several times in the coaxial cavity by the bending magnets around the cavity at the first layer and then is transferred to the second layer using the central bending magnet. The acceleration process in the second layer is similar to the first layer. Hence, the energy of the electron beam will be doubled. The electrical power consumption of the RF system and magnet system were calculated and simulated for the new accelerator structure and TT200. Comparing the calculated and simulated results of the TT200 with those of experimental results revealed good agreement. The results showed that the overall electrical power consumption of the new accelerator structure was less than that of the TT200 at the same energy and power of the electron beam. As such, the electrical efficiency of the new structure was improved.

  4. Robust Learning of Fixed-Structure Bayesian Networks

    OpenAIRE

    Diakonikolas, Ilias; Kane, Daniel; Stewart, Alistair

    2016-01-01

    We investigate the problem of learning Bayesian networks in an agnostic model where an $\\epsilon$-fraction of the samples are adversarially corrupted. Our agnostic learning model is similar to -- in fact, stronger than -- Huber's contamination model in robust statistics. In this work, we study the fully observable Bernoulli case where the structure of the network is given. Even in this basic setting, previous learning algorithms either run in exponential time or lose dimension-dependent facto...

  5. Diamond coating in accelerator structure

    International Nuclear Information System (INIS)

    Lin, X.E.

    1998-08-01

    The future accelerators with 1 GeV/m gradient will give rise to hundreds of degrees instantaneous temperature rise on the copper surface. Due to its extraordinary thermal and electric properties, diamond coating on the surface is suggested to remedy this problem. Multi-layer structure, with the promise of even more temperature reduction, is also discussed, and a proof of principle experiment is being carried out

  6. High Gradient Accelerating Structures for Carbon Therapy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Faillace, L.; Goel, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.; Plastun, A.; Savin, E.

    2016-05-01

    Carbon therapy is the most promising among techniques for cancer treatment, as it has demonstrated significant improvements in clinical efficiency and reduced toxicity profiles in multiple types of cancer through much better localization of dose to the tumor volume. RadiaBeam, in collaboration with Argonne National Laboratory, are developing an ultra-high gradient linear accelerator, Advanced Compact Carbon Ion Linac (ACCIL), for the delivery of ion-beams with end-energies up to 450 MeV/u for 12C6+ ions and 250 MeV for protons. In this paper, we present a thorough comparison of standing and travelling wave designs for high gradient S-Band accelerating structures operating with ions at varying velocities, relative to the speed of light, in the range 0.3-0.7. In this paper we will compare these types of accelerating structures in terms of RF, beam dynamics and thermo-mechanical performance.

  7. Development of small C-band standing-wave accelerator structure

    International Nuclear Information System (INIS)

    Miura, S.; Takahashi, A.; Hisanaga, N.; Sekido, H.; Yoshizumi, A.

    2000-01-01

    We have newly developed a compact C-band (5712 MHz) standing-wave accelerator for the medical product/waste sterilization applications. The accelerator consists of an electron gun operating at 25 kV DC followed by a single-cell pre-buncher and 3-cell buncher section, and 11-cell of the side-coupled standing-wave accelerating structure. The total length including the electron gun is about 600 mm. The first high-power test was performed in March 2000, where the accelerator successively generated the electron beam of 9 MeV energy and 160 mA peak-current at 3.8 MW RF input power. Mitsubishi Heavy Industry starts to serve the sterilization systems using C-band accelerator reported here, and also supplies the accelerator components for the medical oncology applications. (author)

  8. Reliability-Based Robust Design Optimization of Structures Considering Uncertainty in Design Variables

    Directory of Open Access Journals (Sweden)

    Shujuan Wang

    2015-01-01

    Full Text Available This paper investigates the structural design optimization to cover both the reliability and robustness under uncertainty in design variables. The main objective is to improve the efficiency of the optimization process. To address this problem, a hybrid reliability-based robust design optimization (RRDO method is proposed. Prior to the design optimization, the Sobol sensitivity analysis is used for selecting key design variables and providing response variance as well, resulting in significantly reduced computational complexity. The single-loop algorithm is employed to guarantee the structural reliability, allowing fast optimization process. In the case of robust design, the weighting factor balances the response performance and variance with respect to the uncertainty in design variables. The main contribution of this paper is that the proposed method applies the RRDO strategy with the usage of global approximation and the Sobol sensitivity analysis, leading to the reduced computational cost. A structural example is given to illustrate the performance of the proposed method.

  9. Robust stability analysis of large power systems using the structured singular value theory

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, R.; Sarmiento, H. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Messina, A.R. [Cinvestav, Graduate Program in Electrical Engineering, Guadalajara, Jalisco (Mexico)

    2005-07-01

    This paper examines the application of structured singular value (SSV) theory to analyse robust stability of complex power systems with respect to a set of structured uncertainties. Based on SSV theory and the frequency sweep method, techniques for robust analysis of large-scale power systems are developed. The main interest is focused on determining robust stability for varying operating conditions and uncertainties in the structure of the power system. The applicability of the proposed techniques is verified through simulation studies on a large-scale power system. In particular, results for the system are considered for a wide range of uncertainties of operating conditions. Specifically, the developed technique is used to estimate the effect of variations in the parameters of a major system inter-tie on the nominal stability of a critical inter-area mode. (Author)

  10. Reliability based Robustness of Timber Structures through NDT Data Updating

    DEFF Research Database (Denmark)

    Sousa, Hélder S.; Sørensen, John Dalsgaard; Kirkegaard, Poul Henning

    2011-01-01

    This work presents a framework for reliability-based assessment of timber structures / members using data gathered from non-destructive test results. These results are used for modeling an update of the mechanical characteristics of timber, using Bayesian methods. Results gathered from ultrasound...... of the structure, thus, being possible to evaluate reliability based in time dependent factors, as well to categorize that structure in terms of robustness. For exemplification of the underlined concepts, three different types of structures are studied....

  11. Flow induced vibrations of the CLIC X-Band accelerating structures

    CERN Document Server

    Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre

    2011-01-01

    Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...

  12. Induced activity in accelerator structures, air and water

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport front the activation region to the release point. (18 refs).

  13. Induced activity in accelerator structures, air and water

    International Nuclear Information System (INIS)

    Stevenson, G.R.

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport from the activation region to the release point. (author)

  14. SLAC High Gradient Testing of a KEK X-Band Accelerator Structure

    International Nuclear Information System (INIS)

    Loewen, Rod

    2000-01-01

    The high accelerating gradients required for future linear colliders demands a better study of field emission and RF breakdown in accelerator structures. Changes in structure geometry, vacuum pumping, fabrication methods, and surface finish can all potentially impact the conditioning process, dark current emission, and peak RF power handling capability. Recent tests at SLAC of KEK's ''M2'' travelling wave x-band accelerator section provides an opportunity to investigate some of these effects by comparing its performance to previously high power tested structures at SLAC. In addition to studying ultimate power limitations, this test also demonstrates the use of computer automated conditioning to reach practical, achievable gradients

  15. High gradient tests of SLAC Linear Collider Accelerator Structures

    International Nuclear Information System (INIS)

    Wang, J.W.; Deruyter, H.; Eichner, J.; Fant, K.H.; Hoag, H.A.; Koontz, R.F.; Lavine, T.; Loew, G.A.; Loewen, R.; Menegat, L.

    1994-08-01

    This paper describes the current SLAC R ampersand D program to develop room temperature accelerator structures for the Next Linear Collider (NLC). The structures are designed to operate at 11.4 GHz at an accelerating gradient in the range of 50 to 100 MV/m. In the past year a 26 cm constant-impedance traveling-wave section, a 75 cm constant-impedance traveling-wave section, and a 1.8 m traveling-wave section with detuned deflecting modes have been high-power tested. The paper presents a brief description of the RF test setup, the design and manufacturing details of the structures, and a discussion of test results including field emission, RF processing, dark current spectrum and RF breakdown

  16. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  17. Fabrication and Characterization of Woodpile Structures for Direct Laser Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    McGuinness, C.; Colby, E.; England, R.J.; Ng, J.; Noble, R.J.; /SLAC; Peralta, E.; Soong, K.; /Stanford U., Ginzton Lab.; Spencer, J.; Walz, D.; /SLAC; Byer, R.L.; /Stanford U., Ginzton Lab.

    2010-08-26

    An eight and nine layer three dimensional photonic crystal with a defect designed specifically for accelerator applications has been fabricated. The structures were fabricated using a combination of nanofabrication techniques, including low pressure chemical vapor deposition, optical lithography, and chemical mechanical polishing. Limits imposed by the optical lithography set the minimum feature size to 400 nm, corresponding to a structure with a bandgap centered at 4.26 {micro}m. Reflection spectroscopy reveal a peak in reflectivity about the predicted region, and good agreement with simulation is shown. The eight and nine layer structures will be aligned and bonded together to form the complete seventeen layer woodpile accelerator structure.

  18. Structural and robustness properties of smart-city transportation networks

    International Nuclear Information System (INIS)

    Zhang Zhen-Gang; Ding Zhuo; Fan Jing-Fang; Chen Xiao-Song; Meng Jun; Ye Fang-Fu; Ding Yi-Min

    2015-01-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. (rapid communication)

  19. Hiding the weakness: structural robustness using origami design

    Science.gov (United States)

    Liu, Bin; Santangelo, Christian; Cohen, Itai

    2015-03-01

    A non-deformable structure is typically associated with infinitely stiff materials that resist distortion. In this work, we designed a structure with a region that will not deform even though it is made of arbitrarily compliant materials. More specifically, we show that a foldable sheet with a circular hole in the middle can be deformed externally with the internal geometry of the hole unaffected. Instead of strengthening the local stiffness, we fine tune the crease patterns so that all the soft modes that can potentially deform the internal geometry are not accessible through strain on the external boundary. The inner structure is thus protected by the topological mechanics, based on the detailed geometry of how the vertices in the foldable sheet are connected. In this way, we isolate the structural robustness from the mechanical properties of the materials, which introduces an extra degree of freedom for structural design.

  20. Thermo-structural analysis of the rf-induced pulsed surface heating of the CLIC accelerating structures

    CERN Document Server

    Huopana, Jouni Juhani

    2006-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider. The acceleration of the particles is done by RF (Radio Frequency). The surfaces of the RF (radio frequency) accelerating cavities are exposed to high pulsed RF currents which induce cyclic thermal stresses. These cyclic stresses are crucial for the fatigue lifetime of the cavities. To study the fatigue phenomenon properly the induced stresses must be well known. ANSYS FEM simulations were made to study the thermo-structural behaviour of the CLIC accelerating structure in copper zirconium, bimetallic and diamond coated constructions. The simulations showed the existence of high thermal stresses and low stress level shockwaves. It was also shown that the bimetallic structure increases stress values due to the differences in material properties. Diamond coating was found to reduce the thermal stresses.

  1. Development of laboratory acceleration test method for service life prediction of concrete structures

    International Nuclear Information System (INIS)

    Cho, M. S.; Song, Y. C.; Bang, K. S.; Lee, J. S.; Kim, D. K.

    1999-01-01

    Service life prediction of nuclear power plants depends on the application of history of structures, field inspection and test, the development of laboratory acceleration tests, their analysis method and predictive model. In this study, laboratory acceleration test method for service life prediction of concrete structures and application of experimental test results are introduced. This study is concerned with environmental condition of concrete structures and is to develop the acceleration test method for durability factors of concrete structures e.g. carbonation, sulfate attack, freeze-thaw cycles and shrinkage-expansion etc

  2. Wire measurement of impedance of an X-band accelerating structure

    CERN Document Server

    Baboi, N; Dolgashev, V A; Jones, R M; Lewandowski, J R; Tantawi, S G; Wang, J W

    2004-01-01

    Several tens of thousands of accelerator structures will be needed for the next generation of linear collders known as the GLC/NLC (Global Linear Collider/Next Linear Collider). To prevent the beam being driven into a disruptive BBU (Beam Break Up) mode or at the very least, the emittance being signifcantly diluted, it is important to damp down the wakefield left by driving bunches to a manageable level. Manufacturing errors and errors in design need to be measurable and compared with predictions. We develop a circuit model of wire-loaded X-band accelerator structures. This enables the wakefield (the inverse transform of the beam impedance) to be readily computed and compared with the wire measurement. We apply this circuit model to the latest series of accelerating for the GLC/NLC. This circuit model is based upon the single-cell model developed in [1] extended here to complete, multi-cell structures.

  3. A linear accelerator power amplification system for high gradient structure research

    International Nuclear Information System (INIS)

    Haimson, J.; Mecklenburg, B.

    1999-01-01

    The ongoing development of linear collider high power RF sources and pulse compression systems has resulted in substantial progress towards a goal of providing a peak RF power level of approximately 250 MW at the input of the accelerator structure. While the immediate development and the high power testing of specialized waveguide components required for power transmission at these high levels have proceeded expeditiously due to the availability of resonant ring systems, the testing of high gradient accelerator structures at very high power levels, and the investigation of coupler cavity RF breakdown problems have, typically, been curtailed due to the unavailability of suitable 200 to 300 MW RF test facilities. We describe herein a compact, high peak power amplification system based on a dual hybrid bridge configuration that avoids the need for power splitters at the accelerator dual feed couplers, and also provides a convenient interface for installing high gradient accelerator test structures. Design parameters are presented for a proposed power amplification system that makes use of a 75 MW, 1/2 μs flat-top RF source to produce 280 MW, 1/4 μs flat-top power for testing dual feed TW experimental accelerator sections

  4. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees.

    Science.gov (United States)

    Keller, Alexander; Förster, Frank; Müller, Tobias; Dandekar, Thomas; Schultz, Jörg; Wolf, Matthias

    2010-01-15

    In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.

  5. Development and test of a planar R-band accelerating structure

    CERN Document Server

    Merte, R; Peikert, M; Yu, D

    1999-01-01

    Planar accelerating structures, so called muffin tins, are of great interest for new accelerating techniques which are operating at high frequencies. At present the upper frequency limit for high power sources is 29.9855 GHz available at CERN. Therefore a new design of a planar traveling wave constant impedance accelerating structure is presented. A fully engineered 37-cell prototype with an operating frequency of 29.9855 GHz, which is designed for the 2 pi /3-mode, was fabricated by CNC milling technology. The design includes a power coupler, a cavity geometry optimized to compensate the effect of transverse forces, vacuum flanges and beam pipe flanges. Shown are the frequency scan of transmission and reflection measurements compared to numerical simulations with GdfidL. Further, a non resonant bead pull measurement was made to determine and verify the fundamental modes of the structure. The cavity is planned to be powered at the CLIC test stand at CERN. (4 refs).

  6. Theoretical temperature model with experimental validation for CLIC Accelerating Structures

    CERN Document Server

    AUTHOR|(CDS)2126138; Vamvakas, Alex; Alme, Johan

    Micron level stability of the Compact Linear Collider (CLIC) components is one of the main requirements to meet the luminosity goal for the future $48 \\,km$ long underground linear accelerator. The radio frequency (RF) power used for beam acceleration causes heat generation within the aligned structures, resulting in mechanical movements and structural deformations. A dedicated control of the air- and water- cooling system in the tunnel is therefore crucial to improve alignment accuracy. This thesis investigates the thermo-mechanical behavior of the CLIC Accelerating Structure (AS). In CLIC, the AS must be aligned to a precision of $10\\,\\mu m$. The thesis shows that a relatively simple theoretical model can be used within reasonable accuracy to predict the temperature response of an AS as a function of the applied RF power. During failure scenarios or maintenance interventions, the RF power is turned off resulting in no heat dissipation and decrease in the overall temperature of the components. The theoretica...

  7. Contribution to the study of accelerating structure for electrons and respective radiofrequency couplers

    International Nuclear Information System (INIS)

    Franco, M.A.R.

    1991-01-01

    In this work, the experimental results pertaining to the construction and evaluation of a constant gradient accelerating structure and of the radiofrequency couplers are presented. The theoretical methods to determine the initial dimensions of the iris-loaded accelerating structure are presented. The final dimensions have been experimentally determined utilizing four three-cavity sections representing the 4 sup(th), 12 sup(th), 20 sup(th) and 27 sup(th) cavities of the final structure. The diameters of the cavities were corrected for variations of temperature, pressure and humidity. A v sub(p) = c, constant gradient, twelve-cavity prototype of the accelerating structure have been constructed and its principal parameters were experimentally determined according to methods also described in this work. Two prototypes of door-knob type radiofrequency couplers have been constructed and experimental procedures to match and tune the couplers and the accelerating structure were implemented. (author)

  8. Choosing order of operations to accelerate strip structure analysis in parameter range

    Science.gov (United States)

    Kuksenko, S. P.; Akhunov, R. R.; Gazizov, T. R.

    2018-05-01

    The paper considers the issue of using iteration methods in solving the sequence of linear algebraic systems obtained in quasistatic analysis of strip structures with the method of moments. Using the analysis of 4 strip structures, the authors have proved that additional acceleration (up to 2.21 times) of the iterative process can be obtained during the process of solving linear systems repeatedly by means of choosing a proper order of operations and a preconditioner. The obtained results can be used to accelerate the process of computer-aided design of various strip structures. The choice of the order of operations to accelerate the process is quite simple, universal and could be used not only for strip structure analysis but also for a wide range of computational problems.

  9. Impact-induced acceleration by obstacles

    Science.gov (United States)

    Corbin, N. A.; Hanna, J. A.; Royston, W. R.; Singh, H.; Warner, R. B.

    2018-05-01

    We explore a surprising phenomenon in which an obstruction accelerates, rather than decelerates, a moving flexible object. It has been claimed that the right kind of discrete chain falling onto a table falls faster than a free-falling body. We confirm and quantify this effect, reveal its complicated dependence on angle of incidence, and identify multiple operative mechanisms. Prior theories for direct impact onto flat surfaces, which involve a single constitutive parameter, match our data well if we account for a characteristic delay length that must impinge before the onset of excess acceleration. Our measurements provide a robust determination of this parameter. This supports the possibility of modeling such discrete structures as continuous bodies with a complicated constitutive law of impact that includes angle of incidence as an input.

  10. Robustness studies in covariance structure modeling - An overview and a meta-analysis

    NARCIS (Netherlands)

    Hoogland, Jeffrey J.; Boomsma, A

    In covariance structure modeling, several estimation methods are available. The robustness of an estimator against specific violations of assumptions can be determined empirically by means of a Monte Carlo study. Many such studies in covariance structure analysis have been published, but the

  11. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies

    International Nuclear Information System (INIS)

    Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.

    1994-03-01

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. Key features of the design include: (1) independent control of acceleration, deceleration and augmentation currents to provide a variety of acceleration-time profiles, (2) a robust support structure to minimized deflection and dampen vibration which could create artifacts in the data interfering with the intended study and (3) a compliant, non-arcing solid armature allowing optimum electrical contact. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Design of the driving armature and the dynamic electromagnetic braking system is based on results of contemporary studies for non-arcing sliding contact of solid armatures. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM and armature design which will accelerate masses of up to 3kg to a maximum of about 3000g o , where g o is acceleration due to gravity

  12. Calculation of coupling factor for the heterogeneous accelerating structure

    International Nuclear Information System (INIS)

    Bian Xiaohao; Chen Huaibi; Zheng Shuxin

    2006-01-01

    The converging part of electron accelerator is designed to converge the phase of injecting electrons, improving the beam quality of the accelerator. It is very crucial to calculate the coupling factor between cavities and to design the geometry structure of the coupling irises. By the E module of code MAFIA, the authors calculate the frequency of every single resonant cavity and the two eigenfrequencies of two-cavitiy line. Then we get the coupling factor between the two cavities. This method can be used to design the geometry structure of the coupling isises between every two cavities. Compared to experiment, the results of the method is very accurate. (authors)

  13. Thermal Hydraulic Design of PWT Accelerating Structures

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan

    2005-01-01

    Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

  14. Optimization of TW accelerating structures for SLED type modes of operation

    International Nuclear Information System (INIS)

    Le Duff, J.

    1984-02-01

    The SLED method was invented at SLAC in order to produce more electron (and positron) energy from the existing klystrons. The LEP injector LINAC, also now is supposed to operate in the SLED-2 mode. At DESY similar developments have been undertaken too, to improve the linac performances. However in all cases the accelerating sections were not initially optimized for such a mode of operation, and in most cases the designers ended with long accelerating sections making a more efficient use of the klystron power, with rectangular pulses, sometimes at the expense of a longer linac. The present study deals with new approaches for designing linacs, and in particular compact linacs, considering from the beginning a pulse compression scheme, where the main feature consists of having an exponential pulse shape instead of rectangular. Moreover a detailed comparison is made between constant impedance and constant gradient travelling wave (TW) accelerating structures. As a matter of fact the constant impedance structure when optimized looks sligthy better than the second one. In addition short structures appear to be more efficient for a given number of RF sources. Consequently linear accelerators can be made more simple and less expensive, and if one allows for higher tolerable accelerating gradients they can be made even compact

  15. Theory of factors limiting high gradient operation of warm accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, Gregory S. [Univ. of Maryland, College Park, MD (United States)

    2014-07-22

    This report consists of two parts. In the first part we describe a study of the heating of microprotrusions on surfaces of accelerating structures. This ;process is believed to lead to breakdown in these structures. Our study revealed that for current accelerator parameters melting should not occur due to space charge limitations of the current emitted by a protrusion. The second part describes a novel concept to develop THz range sources based on harmonic cyclotron masers for driving future colliders. This work was stimulated by a recent request of SLAC to develop high power, high-efficiency sources of sub-THz radiation for future high-gradient accelerators.

  16. X-BAND LINEAR COLLIDER R and D IN ACCELERATING STRUCTURES THROUGH ADVANCED COMPUTING

    International Nuclear Information System (INIS)

    Li, Z

    2004-01-01

    This paper describes a major computational effort that addresses key design issues in the high gradient accelerating structures for the proposed X-band linear collider, GLC/NLC. Supported by the US DOE's Accelerator Simulation Project, SLAC is developing a suite of parallel electromagnetic codes based on unstructured grids for modeling RF structures with higher accuracy and on a scale previously not possible. The new simulation tools have played an important role in the R and D of X-Band accelerating structures, in cell design, wakefield analysis and dark current studies

  17. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Dandekar Thomas

    2010-01-01

    Full Text Available Abstract Background In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. Results This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Conclusions Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. Reviewers This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. Open peer review Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.

  18. Determination of dimensions and theoretical evaluation of the performance of electron accelerator structures

    International Nuclear Information System (INIS)

    Fuhrmann, C.; Setrao, V.A.

    1987-03-01

    A method to calculate the dimensions of a constant gradient disk-loaded structure of a linear accelerator is presented. The method is based on a description of the RF power flux along the structure axis and involves a particular dispersion that includes details of the iris geometry. The dimensions of the v p = c structure and of the buncher section of the CURUMIM linear accelerator, have been determined as an application of the above method. The theoretical performance of the accelerating structure has been evaluated for electron pulse widths ranging from 10 ns to 2 μs and for peak currents up to 10 A. (author) [pt

  19. FDTD method using for electrodynamic simulation of resonator accelerating structures

    International Nuclear Information System (INIS)

    Vorogushin, M.F.; Svistunov, Yu.A.; Chetverikov, I.O.; Malyshev, V.N.; Malyukhov, M.V.

    2000-01-01

    The finite difference method in the time area (FDTD) makes it possible to model both stationary and nonstationary processes, originating by the beam and field interaction. Possibilities of the method by modeling the fields in the resonant accelerating structures are demonstrated. The possibility of considering the transition processes is important besides the solution of the problem on determination of frequencies and distribution in the space of the resonators oscillations proper types. The program presented makes it possible to obtain practical results for modeling accelerating structures on personal computers [ru

  20. Structural and robustness properties of smart-city transportation networks

    Science.gov (United States)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  1. Modeling accelerator structures and RF components

    International Nuclear Information System (INIS)

    Ko, K., Ng, C.K.; Herrmannsfeldt, W.B.

    1993-03-01

    Computer modeling has become an integral part of the design and analysis of accelerator structures RF components. Sophisticated 3D codes, powerful workstations and timely theory support all contributed to this development. We will describe our modeling experience with these resources and discuss their impact on ongoing work at SLAC. Specific examples from R ampersand D on a future linear collide and a proposed e + e - storage ring will be included

  2. The 200 MHz accelerating structure for UNK

    International Nuclear Information System (INIS)

    Katalev, V.V.; Kovalev, S.S.; Kudryavtsev, V.G.; Sulygin, I.I.

    1992-01-01

    To accelerate a high-intensity proton beam, 7 MV and 12 MV RF voltage per turn is required for the first and second rings of the UNK, respectively. The accelerating structure is developed following the modular principle. Each unit consists of two cylinder-shaped single-cell cavities which are fed by their own 850 KW RF power amplifier via a 3 dB hybrid. The first ring of the UNK contains 8 RF units, the second one contains 16 RF units. All RF equipment with the exception of a power amplifiers designed and being manufactured at IHEP. The results of the unit tests made at the lab are described. (author) 7 refs.; 3 figs.; 1 tab

  3. Calculation of coupling factor for double-period accelerating structure

    International Nuclear Information System (INIS)

    Bian Xiaohao; Chen Huaibi; Zheng Shuxin

    2005-01-01

    In the design of the linear accelerating structure, the coupling factor between cavities is a crucial parameter. The error of coupling factor accounts for the electric or magnetic field error mainly. To accurately design the coupling iris, the accurate calculation of coupling factor is essential. The numerical simulation is widely used to calculate the coupling factor now. By using MAFIA code, two methods have been applied to calculate the dispersion characteristics of the single-period structure, one method is to simulate the traveling wave mode by the period boundary condition; another method is to simulate the standing wave mode by the electrical boundary condition. In this work, the authors develop the two methods to calculate the coupling factor of double-period accelerating structure. Compared to experiment, the results for both methods are very similar, and in agreement with measurement within 15% deviation. (authors)

  4. On the application of accelerated molecular dynamics to liquid water simulations.

    Science.gov (United States)

    de Oliveira, César Augusto F; Hamelberg, Donald; McCammon, J Andrew

    2006-11-16

    Our group recently proposed a robust bias potential function that can be used in an efficient all-atom accelerated molecular dynamics (MD) approach to simulate the transition of high energy barriers without any advance knowledge of the potential-energy landscape. The main idea is to modify the potential-energy surface by adding a bias, or boost, potential in regions close to the local minima, such that all transitions rates are increased. By applying the accelerated MD simulation method to liquid water, we observed that this new simulation technique accelerates the molecular motion without losing its microscopic structure and equilibrium properties. Our results showed that the application of a small boost energy on the potential-energy surface significantly reduces the statistical inefficiency of the simulation while keeping all the other calculated properties unchanged. On the other hand, although aggressive acceleration of the dynamics simulation increases the self-diffusion coefficient of water molecules greatly and dramatically reduces the correlation time of the simulation, configurations representative of the true structure of liquid water are poorly sampled. Our results also showed the strength and robustness of this simulation technique, which confirm this approach as a very useful and promising tool to extend the time scale of the all-atom simulations of biological system with explicit solvent models. However, we should keep in mind that there is a compromise between the strength of the boost applied in the simulation and the reproduction of the ensemble average properties.

  5. Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors.

    Science.gov (United States)

    Wu, Xiaodong; Han, Yangyang; Zhang, Xinxing; Lu, Canhui

    2017-07-12

    Flexible and stretchable electronics are highly desirable for next generation devices. However, stretchability and conductivity are fundamentally difficult to combine for conventional conductive composites, which restricts their widespread applications especially as stretchable electronics. Here, we innovatively develop a new class of highly stretchable and robust conductive composites via a simple and scalable structural approach. Briefly, carbon nanotubes are spray-coated onto a self-adhesive rubber film, followed by rolling up the film completely to create a spirally layered structure within the composites. This unique spirally layered structure breaks the typical trade-off between stretchability and conductivity of traditional conductive composites and, more importantly, restrains the generation and propagation of mechanical microcracks in the conductive layer under strain. Benefiting from such structure-induced advantages, the spirally layered composites exhibit high stretchability and flexibility, good conductive stability, and excellent robustness, enabling the composites to serve as highly stretchable conductors (up to 300% strain), versatile sensors for monitoring both subtle and large human activities, and functional threads for wearable electronics. This novel and efficient methodology provides a new design philosophy for manufacturing not only stretchable conductors and sensors but also other stretchable electronics, such as transistors, generators, artificial muscles, etc.

  6. Study on the coaxial couplers for disk and washer loaded accelerating structures

    International Nuclear Information System (INIS)

    Dajkovskij, A.G.; Paramonov, V.V.; Portugalov, Yu.I.; Ryabov, A.D.; Ryabova, T.D.

    1983-01-01

    The paper describes the dispersion and energy properties of the coaxial coupler (CC), which is a promising component for an accelerating system, with the disk and washer (DAW) structure. Resonators, consisting of the DAW structure sections and CC are shown to persist the main advantage of DAW structure, i.e. high stability of the accelerating field distribution. Therewith RF power losses are small. The presence of nonsymetriric modes in the neighbourbood of the operating mode is noted

  7. Random Walk Model for Cell-To-Cell Misalignments in Accelerator Structures

    International Nuclear Information System (INIS)

    Stupakov, Gennady

    2000-01-01

    Due to manufacturing and construction errors, cells in accelerator structures can be misaligned relative to each other. As a consequence, the beam generates a transverse wakefield even when it passes through the structure on axis. The most important effect is the long-range transverse wakefield that deflects the bunches and causes growth of the bunch train projected emittance. In this paper, the effect of the cell-to-cell misalignments is evaluated using a random walk model that assumes that each cell is shifted by a random step relative to the previous one. The model is compared with measurements of a few accelerator structures

  8. Beam loading effects in a standing wave accelerator structure

    International Nuclear Information System (INIS)

    Arai, Shigeaki; Katayama, Takeshi; Tojyo, Eiki; Yoshida, Katsuhide.

    1978-11-01

    The steady-state beam loading effects on the accelerating field in the disk-loaded structure of a standing wave type have been systematically studied. The electron bunch from a 15 MeV electron linac is injected at arbitrary phase of the external driving field in the test structure. The change of the phase shift of the accelerating field and that of the stored energy are measured as a function of the phase on which the bunch rides. The former shows drastic change when the bunch is around the crest of the driving field and when the beam loading is heavy, whereas the latter varies sinusoidally for any beam loading. The resonant frequency shift of the structure due to beam loading is estimated by using the measured results. All the experimental results are well explained by the normal mode analysis of the microwave cavity theory. (author)

  9. High gradient test of X-band accelerating structure at GLCTA

    International Nuclear Information System (INIS)

    Watanabe, K.; Higo, T.; Hayano, H.; Terunuma, N.; Saeki, T.; Kudo, N.; Sanuki, T.; Seuhara, T.

    2004-01-01

    GLCTA (Global Linear Collider Test Accelerator) is the high power test facility for X-band acceleration. We have installed an X-band 60cm structure in April 2004 and have been processing it for more than 3 months. Now it is under test on long-term operation. We report here the installation process and high power test result to date. (author)

  10. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  11. High Power Test of an X-Band Slotted-IRIS Accelerator Structure at NLCTA

    International Nuclear Information System (INIS)

    Doebert, S.; Fandos, R.; Grudiev, A.; Heikkinen, S.; Rodriquez, J.A.; Taborelli, M.; Wuensch, W.; Adolphsen, Chris E.; Laurent, L.

    2007-01-01

    The CLIC study group at CERN has built two X-band HDS (hybrid damped structure) accelerating structures for high-power testing in NLCTA at SLAC. These accelerating structures are novel with respect to their rf- design and their fabrication technique. The eleven-cell constant impedance structures, one made out of copper and one out of molybdenum, are assembled from clamped high-speed milled quadrants. They feature the same heavy higher-order-mode damping as nominal CLIC structures achieved by slotted irises and radial damping waveguides for each cell. The X-band accelerators are exactly scaled versions of structures tested at 30 GHz in the CLIC test facility, CTF3. The results of the X-band tests are presented and compared to those at 30 GHz to determine frequency scaling, and are compared to the extensive copper data from the NLC structure development program to determine material dependence and make a basic validation of the HDS design

  12. Development of a dual-layered dielectric-loaded accelerating structure

    International Nuclear Information System (INIS)

    Jing Chunguang; Kanareykin, Alexei; Kazakov, Sergey; Liu Wanming; Nenasheva, Elizaveta; Schoessow, Paul; Gai Wei

    2008-01-01

    rf Power attenuation is a critical problem in the development of dielectric-loaded structures for particle acceleration. In a previous paper [C. Jing, W. Liu, W. Gai, J. Power, T. Wong, Nucl. Instr. Meth. A 539 (2005) 445] we suggested the use of a Multilayer Dielectric-Loaded Accelerating Structure (MDLA) as a possible approach for reducing the rf losses in a single layer device. The MDLA is based on the principle of Bragg reflection familiar from optics that is used to partially confine the fields inside the dielectric layers and reduce the wall current losses at the outer boundary. We report here on the design, construction and testing of a prototype X-band double-layer structure (2DLA). The measurements show an rf power attenuation for the 2DLA more than ten times smaller than that of a comparable single-layer structure, in good agreement with the analytic results. Testing and operation of MDLAs also requires efficient power coupling from test equipment or rf power systems to the device. We describe the design and construction of two novel structures: a TM 03 mode launcher for cold testing and a power coupler for planned high-gradient experiments

  13. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures

    Science.gov (United States)

    2014-01-01

    Background Improving accuracy and efficiency of computational methods that predict pseudoknotted RNA secondary structures is an ongoing challenge. Existing methods based on free energy minimization tend to be very slow and are limited in the types of pseudoknots that they can predict. Incorporating known structural information can improve prediction accuracy; however, there are not many methods for prediction of pseudoknotted structures that can incorporate structural information as input. There is even less understanding of the relative robustness of these methods with respect to partial information. Results We present a new method, Iterative HFold, for pseudoknotted RNA secondary structure prediction. Iterative HFold takes as input a pseudoknot-free structure, and produces a possibly pseudoknotted structure whose energy is at least as low as that of any (density-2) pseudoknotted structure containing the input structure. Iterative HFold leverages strengths of earlier methods, namely the fast running time of HFold, a method that is based on the hierarchical folding hypothesis, and the energy parameters of HotKnots V2.0. Our experimental evaluation on a large data set shows that Iterative HFold is robust with respect to partial information, with average accuracy on pseudoknotted structures steadily increasing from roughly 54% to 79% as the user provides up to 40% of the input structure. Iterative HFold is much faster than HotKnots V2.0, while having comparable accuracy. Iterative HFold also has significantly better accuracy than IPknot on our HK-PK and IP-pk168 data sets. Conclusions Iterative HFold is a robust method for prediction of pseudoknotted RNA secondary structures, whose accuracy with more than 5% information about true pseudoknot-free structures is better than that of IPknot, and with about 35% information about true pseudoknot-free structures compares well with that of HotKnots V2.0 while being significantly faster. Iterative HFold and all data used in

  14. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    Science.gov (United States)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  15. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    Science.gov (United States)

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  16. Magnetic field structure of the U-120 cyclotron for heavy ions acceleration

    International Nuclear Information System (INIS)

    Schwabe, J.; Starzewski, J.

    1975-01-01

    The proposed magnetic structure makes possible the acceleration, in quasi-isochronous conditions, of ions having the ratio Z/A=0,665 - 0,1 on the U-120 cyclotron in Cracow. Simultaneously, significant improvement of the accelerated beam emittance, decrease in energy scattering down to a value of about 10 -3 , and an increase in the maximum accelerated beam energy may be obtained. (author)

  17. Robust distributed model predictive control of linear systems with structured time-varying uncertainties

    Science.gov (United States)

    Zhang, Langwen; Xie, Wei; Wang, Jingcheng

    2017-11-01

    In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.

  18. Auroral ion acceleration from lower hybrid solitary structures: A summary of sounding rocket observations

    Science.gov (United States)

    Lynch, K. A.; Arnoldy, R. L.; Kintner, P. M.; Schuck, P.; Bonnell, J. W.; Coffey, V.

    In this paper we present a review of sounding rocket observations of the ion acceleration seen in nightside auroral zone lower hybrid solitary structures. Observations from Topaz3, Amicist, and Phaze2 are presented on various spatial scales, including the two-point measurements of the Amicist mission. From this collection of observations we will demonstrate the following characteristics of transverse acceleration of ions (TAI) in lower hybrid solitary structures (LHSS). The ion acceleration process is narrowly confined to 90° pitch angle, in spatially confined regions of up to a few hundred meters across B. The acceleration process does not affect the thermal core of the ambient distribution and does not directly create a measurable effect on the ambient ion population outside the LHSS themselves. This precludes observation with these data of any nonlinear feedback between the ion acceleration and the existence or evolution of the density irregularities on which these LHSS events grow. Within the LHSS region the acceleration process creates a high-energy tail beginning at a few times the thermal ion speed. The ion acceleration events are closely associated with localized wave events. Accelerated ions bursts are also seen without a concurrent observation of a localized wave event, for two possible reasons. In some cases, the pitch angles of the accelerated tail ions are elevated above perpendicular; that is, the acceleration occurred below the observer and the mirror force has begun to act upon the distribution, moving it upward from the source. In other cases, the accelerated ion structure is spatially larger than the wave event structure, and the observation catches only the ion event. The occurrence rate of these ion acceleration events is related to the ambient environment in two ways: its altitude dependence can be modeled with the parameter B2/ne, and it is highest in regions of intense VLF activity. The cumulative ion outflow from these LHSS TAI is

  19. Accelerating VASP electronic structure calculations using graphic processing units

    KAUST Repository

    Hacene, Mohamed

    2012-08-20

    We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to isolate the time-consuming parts, (ii) rewriting these so that the algorithms become better-suited for the chosen graphic accelerator, and (iii) optimizing memory traffic between the host computer and the GPU accelerator. We chose to accelerate VASP with NVIDIA GPU using CUDA. We compare the GPU and original versions of VASP by evaluating the Davidson and RMM-DIIS algorithms on chemical systems of up to 1100 atoms. In these tests, the total time is reduced by a factor between 3 and 8 when running on n (CPU core + GPU) compared to n CPU cores only, without any accuracy loss. © 2012 Wiley Periodicals, Inc.

  20. Accelerating VASP electronic structure calculations using graphic processing units

    KAUST Repository

    Hacene, Mohamed; Anciaux-Sedrakian, Ani; Rozanska, Xavier; Klahr, Diego; Guignon, Thomas; Fleurat-Lessard, Paul

    2012-01-01

    We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to isolate the time-consuming parts, (ii) rewriting these so that the algorithms become better-suited for the chosen graphic accelerator, and (iii) optimizing memory traffic between the host computer and the GPU accelerator. We chose to accelerate VASP with NVIDIA GPU using CUDA. We compare the GPU and original versions of VASP by evaluating the Davidson and RMM-DIIS algorithms on chemical systems of up to 1100 atoms. In these tests, the total time is reduced by a factor between 3 and 8 when running on n (CPU core + GPU) compared to n CPU cores only, without any accuracy loss. © 2012 Wiley Periodicals, Inc.

  1. Quasi-static drift-tube accelerating structures for low-speed heavy ions

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1978-01-01

    A pulsed drift-tube accelerating structure for use in Heavy Ion Fusion applications is described. Possible arrangements of components in such a structure, the injector design needs, and the influence of the existing state of component technology on drift-tube structure design are considered. It is concluded that the major attractions of the pulsed drift tubes are that they are nonresonant structures and that they appear suitable for accelerating a very high current bunch at low energies. The mechanical tolerances of the nonresonant structure are very loose and the cost per meter should be low; the cost of the transport system is expected to be the major cost. The pulse-power modulators used to drive the drift tubes are inexpensive compared with rf sources of equivalent peak power. The longitudinal emittance of the beam emerging from the structure could be extremely low. (U.K.)

  2. Design study on quasi-constant gradient accelerator structure

    International Nuclear Information System (INIS)

    Wang, J.W.; Littmann, B.W.

    1991-09-01

    In order to obtain high luminosity, the Next Linear Collider will operate in multibunch mode with ten or more bunches per bunch train. This leads to the need for detuning and/or damping of higher modes to control multibunch beam breakup. Continued studies of wake fields for a detuned structure with a Gaussian distribution of dipole modes showed encouraging results, and a detuned structure model has been tested experimentally. It is desirable to study the design method for this type of structure, which has a quasi-constant accelerating gradient. This note gives a brief summary of the design procedure. Also, the RF parameters of the structure are evaluated to compare with conventional constant gradient and constant impedance structures

  3. The SPS acceleration system: travelling wave drift-tube structure for the CERN SPS

    International Nuclear Information System (INIS)

    Dome, G.

    1976-01-01

    The SPS accelerating structure is essentially a high energy proton linac, except for a small frequency swing during the acceleration cycle. It is operated almost CW with a travelling wave giving an energy gain around 0.1 MeV/m. The guide-lines for the design of such a structure are explained, and practical solutions are described. (author)

  4. Design and construction of multi-port solid state structure for the Rhodotron accelerator

    International Nuclear Information System (INIS)

    Poursaleh, A.M.; Jabbari, I.; Khalafi, H.

    2017-01-01

    RF generation and method used for coupling power to the acceleration cavity are important issues in the RF accelerators. In this study, a high power vacuum tube was replaced with several medium power solid state amplifiers coupled through a multi-port structure in the Rhodotron-TT200 accelerator. To this end, a multi-port structure was implemented on a small aluminum model cavity for 1 to 9 ports and all main parameters affecting return loss, quality factor, coupling coefficient and RF power were investigated by calculation, simulation and experimental tests. Then, three 20 kW solid state amplifiers were designed and constructed. The outputs of these amplifiers were coupled to the Rhodotron acceleration cavity by three input ports based on the results obtained from the model cavity for generation of 5 MeV electron beam. In this method, several smaller amplifiers were used instead of a single high power amplifier. As such, acceleration cavity plays the role of power combiner in addition to its primary role and there is no need to a high power combiner. The results showed that the number of ports, port positions, angle between ports and phase of input signals, significantly affect the acceleration electrical field in the cavity. Also, experimental tests revealed that three constructed RF power supplies are enough for the generation of 5 MeV electron beam in the Rhodotron accelerator. Considering the advantages of the solid state amplifiers, application of multi-port structure and solid state amplifiers could be expanded in the industrial electron accelerators.

  5. Power efficiency optimization of disk-loaded waveguide traveling wave structure of electron linear accelerator

    International Nuclear Information System (INIS)

    Yang Jinghe; Li Jinhai; Li Chunguang

    2014-01-01

    Disk-loaded waveguide traveling wave structure (TWS), which is widely used in scientific research and industry, is a vital accelerating structure in electron linear accelerator. The power efficiency is an important parameter for designing TWS, which greatly effects the expenses for the fabrication and commercial running. The key parameters related with power efficiency were studied for TWS optimization. The result was proved by experiment result, and it shows some help for accelerator engineering. (authors)

  6. Precise fabrication of X-band accelerating structure

    International Nuclear Information System (INIS)

    Higo, T.; Sakai, H.; Higashi, Y.; Koike, S.; Takatomi, T.

    1994-01-01

    An accelerating structure with a/λ=0.16 is being fabricated to study a precise fabrication method. A frequency control of each cell better than 10 -4 level is required to realize a detuned structure. The present machining level is nearly 1 MHz/11.4 GHz in relative frequency error, which just satisfies the above requirement. To keep this machining precision, the diffusion bonding technique is found preferable to join the cells. Various diffusion conditions were tried. The frequency change can be less than 1 MHz/11.4 GHz and it can be controlled well better than that. (author)

  7. Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

    Energy Technology Data Exchange (ETDEWEB)

    Jo, HangJin; Kim, Jin Man [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Yeom, Hwasung [Department of Nuclear Engineering and Engineering physics, UW-Madison, Madison, WI 53706, Unities States (United States); Lee, Gi Cheol [Department of Mechanical Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Kiyofumi, Moriyama; Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Sridharan, Kumar; Corradini, Michael [Department of Nuclear Engineering and Engineering physics, UW-Madison, Madison, WI 53706, Unities States (United States)

    2015-09-15

    Highlights: • We improved boiling performance and material robustness using surface modification. • We combined micro/millimeter post structures and nanoparticles with heat treatments. • Compactly-arranged micrometer posts had improved boiling performance. • CHF increased significantly due to capillary pumping by the deposited NP layers. • Sintering procedure increased mechanical strength of the NP coating surface. - Abstract: By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-μm post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding.

  8. Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

    International Nuclear Information System (INIS)

    Jo, HangJin; Kim, Jin Man; Yeom, Hwasung; Lee, Gi Cheol; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan; Sridharan, Kumar; Corradini, Michael

    2015-01-01

    Highlights: • We improved boiling performance and material robustness using surface modification. • We combined micro/millimeter post structures and nanoparticles with heat treatments. • Compactly-arranged micrometer posts had improved boiling performance. • CHF increased significantly due to capillary pumping by the deposited NP layers. • Sintering procedure increased mechanical strength of the NP coating surface. - Abstract: By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-μm post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding

  9. The Texas horned lizard as model for robust capillary structures for passive directional transport of cooling lubricants

    Science.gov (United States)

    Comanns, Philipp; Winands, Kai; Pothen, Mario; Bott, Raya A.; Wagner, Hermann; Baumgartner, Werner

    2016-04-01

    Moisture-harvesting lizards, such as the Texas horned lizard Phrynosoma cornutum, have remarkable adaptations for inhabiting arid regions. Special skin structures, in particular capillary channels in between imbricate overlapping scales, enable the lizard to collect water by capillarity and to transport it to the snout for ingestion. This fluid transport is passive and directional towards the lizard's snout. The directionality is based on geometric principles, namely on a periodic pattern of interconnected half-open capillary channels that narrow and widen. Following a biomimetic approach, these principles were transferred to technical prototype design and manufacturing. Capillary structures, 50 μm to 300 μm wide and approx. 70 μm deep, were realized by use of a pulsed picosecond laser in hot working tool steel, hardened to 52 HRC. In order to achieve highest functionality, strategies were developed to minimize potential structural inaccuracies, which can occur at the bottom of the capillary structures caused by the laser process. Such inaccuracies are in the range of 10 μm to 15 μm and form sub-capillary structures with greater capillary forces than the main channels. Hence, an Acceleration Compensation Algorithm was developed for the laser process to minimize or even avoid these inaccuracies. The capillary design was also identified to have substantial influence; by a hexagonal capillary network of non-parallel capillaries potential influences of sub-capillaries on the functionality were reduced to realize a robust passive directional capillary transport. Such smart surface structures can lead to improvements of technical systems by decreasing energy consumption and increasing the resource efficiency.

  10. A Robust Bayesian Approach for Structural Equation Models with Missing Data

    Science.gov (United States)

    Lee, Sik-Yum; Xia, Ye-Mao

    2008-01-01

    In this paper, normal/independent distributions, including but not limited to the multivariate t distribution, the multivariate contaminated distribution, and the multivariate slash distribution, are used to develop a robust Bayesian approach for analyzing structural equation models with complete or missing data. In the context of a nonlinear…

  11. Effects of rf breakdown on the beam in the Compact Linear Collider prototype accelerator structure

    Directory of Open Access Journals (Sweden)

    A. Palaia

    2013-08-01

    Full Text Available Understanding the effects of rf breakdown in high-gradient accelerator structures on the accelerated beam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC and is one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN. During a rf breakdown high currents are generated causing parasitic magnetic fields that interact with the accelerated beam affecting its orbit. The beam energy is also affected because the power is partly reflected and partly absorbed thus reducing the available energy to accelerate the beam. We discuss here measurements of such effects observed on an electron beam accelerated in a CLIC prototype structure. Measurements of the trajectory of bunch trains on a nanosecond time scale showed fast changes in correspondence of breakdown that we compare with measurements of the relative beam spots on a scintillating screen. We identify different breakdown scenarios for which we offer an explanation based also on measurements of the power at the input and output ports of the accelerator structure. Finally we present the distribution of the magnitude of the observed changes in the beam position and we discuss its correlation with rf power and breakdown location in the accelerator structure.

  12. Observation of multipactor suppression in a dielectric-loaded accelerating structure using an applied axial magnetic field

    International Nuclear Information System (INIS)

    Jing, C.; Konecny, R.; Antipov, S.; Chang, C.; Gold, S. H.; Schoessow, P.; Kanareykin, A.; Gai, W.

    2013-01-01

    Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures in many accelerator applications

  13. Connection behaviour and the robustness of steel-framed structures in fire

    Directory of Open Access Journals (Sweden)

    Burgess Ian

    2018-01-01

    Full Text Available The full-scale fire tests at Cardington in the 1990s, and the collapse of at least one of the WTC buildings in 2001, illustrated that connections are potentially the most vulnerable parts of a structure in fire. Fracture of connections causes structural discontinuities and reduces the robustness provided by alternative load paths. An understanding of connection performance is essential to the assessment of structural robustness, and so to structural design against progressive collapse. The forces and deformations to which connectionscan be subjected during a fire differ significantly from those assumed in general design. The internal forces i generally start with moment and shear at ambient temperature, then superposing compression in the initial stages of a fire, which finally changes to catenary tension at high temperatures. If a connection does not have sufficient resistance or ductility to accommodate simultaneous large rotations and normal forces, then connections may fracture, leading to extensive damage or progressive collapse of the structure. Practical assessment of the robustness of steel connections in fire will inevitably rely largely on numerical modelling, but this is unlikely to include general-purpose finite element modelling, because of the complexity of such models. The most promising alternative is the component method, a practical approach which can be included within global three-dimensional frame analysis. The connection is represented by an assembly of individual components with known mechanical properties. Component characterization must include high-deflection elevated-temperature behaviour, and represent it up to fracture.In reality a connection may either be able to regain its stability after the initial fracture of one (or a few components, or the first failure may trigger a cascade of failures of other components, leading to complete detachment of the supported member. Numerical modelling must be capable of

  14. An Automatic Control System for Conditioning 30 GHz Accelerating Structures

    CERN Document Server

    Dubrovskiy, A

    2008-01-01

    A software application programme has been developed to allow fast and automatic high-gradient conditioning of accelerating structures at 30 GHz in CTF3. The specificity of the application is the ability to control the high-power electron beam which produces the 30 GHz RF power used to condition the accelerating structures. The programme permits operation round the clock with minimum manpower requirements. In this paper the fast control system, machine control system, logging system, graphical user control interface and logging data visualization are described. An outline of the conditioning control system itself and of the feedback controlling peak power and pulse length is given. The software allows different types of conditioning strategies to be programmed

  15. Technical infra-structure for accelerators in Brazil

    International Nuclear Information System (INIS)

    Polga, T.

    1983-01-01

    A minimal technical support infra-structura for, operation, maintenance and development suitable to a multi-user laboratory is presented. The costs of this infra-structure are 1.300 MCr$ in equipment and 700 MCr$ in people. A coordinated utilization of a particle accelerator network existing in the country and its corresponding costs are shown. Considerations in relation to the local of the sinchrotron radiation laboratory implantation are done. (L.C.) [pt

  16. Calculation of electrodynamical characteristics and choice of accelerating structure for storage ring

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Popkov, Yu.P.; Telegin, Yu.N.; Trushkin, N.A.; Dajkovskij, A.G.; Zakamskaya, L.T.; Ryabov, A.D.

    1989-01-01

    Comparative analysis of several types of accelerating structures at standing E 010 wave is conducted on the basis of numerical calculations performed with the use of the PRUD-0 and PRUD programs. Dispersion dependences of electromagnetic field distribution, quality and coupling impedance are calculated both for axially symmetric and axially asymmetric modes of oscillations in structures with 699.3 MHz operating frequency. It is shown that structure with a cell the form of which is optimized with respect to shunt resistance on the main mode possesses the numerical spurious impedance in higher modes. This is the main factor when choosing accelerating structure for storage ring with multi-bunch operation conditions. 12 refs.; 3 figs.; 3 tabs

  17. Studies on HF quadrupole accelerator structures

    International Nuclear Information System (INIS)

    Mueller, J.

    1983-01-01

    The present thesis had the aim to elaborate advantages and disadvantages of existing high frequency resonators in the MHz range regarding their use as RFQ power supply structures and to limit their application ranges. After a short survey over potential and field distributions in the RFQ suitable criteria for the valuation of RFQ resonators are indicated. For the experimentally studied resonators equivalent circuits are presented, in some cases these are theoretically analyzed. Finally the construction of the GSI/Frankfurt proton model as well experiments with the accelerated proton beams are described. (orig.) [de

  18. Micro structure processing on plastics by accelerated hydrogen molecular ions

    Science.gov (United States)

    Hayashi, H.; Hayakawa, S.; Nishikawa, H.

    2017-08-01

    A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.

  19. Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies

    Science.gov (United States)

    Susoeff, A. R.; Hawke, R. S.; Morrison, J. J.; Dimonte, G.; Remington, B. A.

    1993-12-01

    An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. The Rayleigh-Taylor instability is investigated by accelerating two dissimilar density fluids using the LEM to achieve a wide variety of acceleration and deceleration profiles. The acceleration profiles are achieved by independent control of rail and augmentation currents. A variety of acceleration-time profiles are possible including: (1) constant, (2) impulsive and (3) shaped. The LEM and support structure are a robust design in order to withstand high loads with deflections and to mitigate operational vibration. Vibration of the carriage during acceleration could create artifacts in the data which would interfere with the intended study of the Rayleigh-Taylor instability. The design allows clear access for diagnostic techniques such as laser induced fluorescence radiography, shadowgraphs and particle imaging velocimetry. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Results of contemporary studies for non-arcing sliding contact of solid armatures are used for the design of the driving armature and the dynamic electromagnetic braking system. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM design which will accelerate masses of up to 3kg to a maximum of about 3000g(sub o), where g(sub o) is accelerated due to gravity.

  20. Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakanotani, Masaru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Matsukiyo, Shuichi; Hada, Tohru [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580 (Japan); Mazelle, Christian X., E-mail: nakanot@esst.kyushu-u.ac.jp [IRAP, Université Paul Sabatier Toulouse III-CNRS, F-31028 Toulouse Cedex 4 (France)

    2017-09-10

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  1. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  2. Design of the accelerating structures for FMIT

    International Nuclear Information System (INIS)

    Liska, D.; Schamaun, R.; Potter, C.; Fuller, C.; Clark, D.; Greenwood, D.; Frank, J.

    1979-01-01

    Design considerations and concepts are presented for the accelerating structures for the Fusion Materials Irradiation Test (FMIT) Facility. These structures consist of three major units: 0.1- to 2-MeV radio-frequency quadrupole based on the Russian concept, a 2- to 35-MeV drift-tube linac made up of two separate tanks designed to generate either 20- or 35-MeV beams, and an energy dispersion cavity capable of spreading the energy of the beam slightly to ease thermal loading in the target. Because of probable beam activation, the drift-tube linac is designed so that alignment and maintenance do not require manned entry into the tanks. This conservatism also led to the choice of a conventional vacuum system and has influenced the choice of many of the rf interface components. The high-powered FMIT machine is very heavily beam loaded and delivers a 100-mA continuous duty deuteron beam to a flowing liquid lithium target. The power on target is 3.5 MW deposited in a 1 x 3 cm spot. Because of the critical importance of the low energy section of this accelerator on beam spill in the machine, a 5-MeV prototype will be constructed and tested at the Los Alamos Scientific Laboratory

  3. A mm-wave planar microcavity structure for electron linear accelerator system

    International Nuclear Information System (INIS)

    Kang, Y.W.; Kustom, R.; Mills, F.; Mavrogenes, G.; Henke, H.

    1993-01-01

    The muffin-tin cavity structure is planar and well suited for mm-wave accelerator with silicon etching techniques. A constant impedance traveling-wave structure is considered for design simplicity. The RF parameters are calculated and the shunt impedance is compared with the shunt impedance of a disk loaded cylindrical structure

  4. Robust buckling optimization of laminated composite structures using discrete material optimization considering “worst” shape imperfections

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    Robust buckling optimal design of laminated composite structures is conducted in this work. Optimal designs are obtained by considering geometric imperfections in the optimization procedure. Discrete Material Optimization is applied to obtain optimal laminate designs. The optimal geometric...... imperfection is represented by the “worst” shape imperfection. The two optimization problems are combined through the recurrence optimization. Hereby the imperfection sensitivity of the considered structures can be studied. The recurrence optimization is demonstrated through a U-profile and a cylindrical panel...... example. The imperfection sensitivity of the optimized structure decreases during the recurrence optimization for both examples, hence robust buckling optimal structures are designed....

  5. Electron acceleration by femtosecond laser interaction with micro-structured plasmas

    Science.gov (United States)

    Goers, Andy James

    Laser-driven accelerators are a promising and compact alternative to RF accelerator technology for generating relativistic electron bunches for medical, scientific, and security applications. This dissertation presents three experiments using structured plasmas designed to advance the state of the art in laser-based electron accelerators, with the goal of reducing the energy of the drive laser pulse and enabling higher repetition rate operation with current laser technology. First, electron acceleration by intense femtosecond laser pulses in He-like nitrogen plasma waveguides is demonstrated. Second, significant progress toward a proof of concept realization of quasi-phasematched direct acceleration (QPM-DLA) is presented. Finally, a laser wakefield accelerator at very high plasma density is studied, enabling relativistic electron beam generation with ˜10 mJ pulse energies. Major results from these experiments include: • Acceleration of electrons up to 120 MeV from an ionization injected wakefield accelerator driven in a 1.5 mm long He-like nitrogen plasma waveguide • Guiding of an intense, quasi-radially polarized femtosecond laser pulse in a 1 cm plasma waveguide. This pulse provides a strong drive field for the QPM-DLA concept. • Wakefield acceleration of electrons up to ˜10 MeV with sub-terawatt, ˜10 mJ pulses interacting with a thin (˜200 mum), high density (>1020 cm-3) plasma. • Observation of an intense, coherent, broadband wave breaking radiation flash from a high plasma density laser wakefield accelerator. The flash radiates > 1% of the drive laser pulse energy in a bandwidth consistent with half-cycle (˜1 fs) emission from violent unidirectional acceleration of electron bunches from rest. These results open the way to high repetition rate (>˜kHz) laser-driven generation of relativistic electron beams with existing laser technology.

  6. Accelerator structure bead pull measurement at SLAC

    CERN Document Server

    Lewandowski, J R; Miller, R H; Wang, J W

    2004-01-01

    Microwave measurement and tuning of accelerator structures are important issues for the current and next generation of high energy physics machines. Application of these measurements both before and after high power processing can reveal information about the structure but may be misinterpreted if measurement conditions are not carefully controlled. For this reason extensive studies to characterize the microwave measurements at have been made at SLAC. For the beadpull a reproducible measurement of less than 1 degree of phase accuracy in total phase drift is needed in order to resolve issues such as phase changes due to structure damage during high power testing. Factors contributing to measurement errors include temperature drift, mechanical vibration, and limitations of measurement equipment such as the network analyzer. Results of this continuing effort will be presented.

  7. Latest Development in Superconducting RF Structures for beta=1 Particle Acceleration

    International Nuclear Information System (INIS)

    Peter Kneisel

    2006-01-01

    Superconducting RF technology is since nearly a decade routinely applied to different kinds of accelerating devices: linear accelerators, storage rings, synchrotron light sources and FEL's. With the technology recommendation for the International Linear Collider (ILC) a year ago, new emphasis has been placed on improving the performance of accelerating cavities both in Q-value and in accelerating gradients with the goal to achieve performance levels close to the fundamental limits given by the material parameters of the choice material, niobium. This paper will summarize the challenges to SRF technology and will review the latest developments in superconducting structure design. Additionally, it will give an overview of the newest results and will report on the developments in alternative materials and technologies

  8. Theoretical Framework for Robustness Evaluation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, although...... the importance of robustness for structural design is widely recognized the code requirements are not specified in detail, which makes the practical use difficult. This paper describes a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines...

  9. Impossibility of unconditional stability and robustness of diffusive acceleration schemes

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1998-01-01

    The authors construct a problem for which exists no preconditioner with a cell-centered diffusion coupling stencil that is unconditionally stable and robust. In particular they consider an asymptotic limit of the Periodic Horizontal Interface (PHI) configuration wherein the cell height in both layers approaches zero like σ 2 while the total cross section varies like a in one layer and like 1/σ in the other layer. In such case they show that the conditions for stability and robustness of the flat eigenmodes of the iteration residual imply instability of the modes flat in the y-dimension and rapidly varying in the x-dimension. This paper is important for radiation transport studies

  10. Developing a robust wireless sensor network structure for environmental sensing

    Science.gov (United States)

    Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    The American River Hydrologic Observatory is being strategically deployed as a real-time ground-based measurement network that delivers accurate and timely information on snow conditions and other hydrologic attributes with a previously unheard of granularity of time and space. The basin-scale network involves 18 sub-networks set out at physiographically representative locations spanning the seasonally snow-covered half of the 5000 km2 American river basin. Each sub-network, covering about a 1-km2 area, consists of 10 wirelessly networked sensing nodes that continuously measure and telemeter temperature, and snow depth; plus selected locations are equipped with sensors for relative humidity, solar radiation, and soil moisture at several depths. The sensor locations were chosen to maximize the variance sampled for snow depth within the basin. Network design and deployment involves an iterative but efficient process. After sensor-station locations are determined, a robust network of interlinking sensor stations and signal repeaters must be constructed to route sensor data to a central base station with a two-way communicable data uplink. Data can then be uploaded from site to remote servers in real time through satellite and cell modems. Signal repeaters are placed for robustness of a self-healing network with redundant signal paths to the base station. Manual, trial-and-error heuristic approaches for node placement are inefficient and labor intensive. In that approach field personnel must restructure the network in real time and wait for new network statistics to be calculated at the base station before finalizing a placement, acting without knowledge of the global topography or overall network structure. We show how digital elevation plus high-definition aerial photographs to give foliage coverage can optimize planning of signal repeater placements and guarantee a robust network structure prior to the physical deployment. We can also 'stress test' the final network

  11. Wakefield and Beam Centering Measurements of a Damped and Detuned X-Band Accelerator Structure

    International Nuclear Information System (INIS)

    Adolphsen, Chris

    1999-01-01

    In the Next Linear Collider (NLC) design, X-Band (11.4 GHz) accelerator structures are used to accelerate multibunch beams to several hundred GeV. Although these structures allow for high gradient operation, their strong deflecting modes impose a number of operational constraints. In particular, the long-range transverse wakefields generated by the bunches need to be reduced by about two orders of magnitude to prevent significant beam breakup. During the past five years, a reduction scheme that employs both detuning and damping of the structure dipole modes has been developed to meet this requirement. Several prototype Damped and Detuned Structures (DDS) have been built to test and refine this scheme. The wakefield of the latest version, DDS3, has recently been measured in the Accelerator Structure Setup (ASSET) facility at SLAC. In this paper, we present these results together with predictions based on an equivalent circuit model of the structure. We also present ASSET studies in which the beam-induced dipole signals that are coupled out for damping purposes are used to center the beam in the structure

  12. Dynamic Programming Used to Align Protein Structures with a Spectrum Is Robust

    Directory of Open Access Journals (Sweden)

    Allen Holder

    2013-11-01

    Full Text Available Several efficient algorithms to conduct pairwise comparisons among large databases of protein structures have emerged in the recent literature. The central theme is the design of a measure between the Cα atoms of two protein chains, from which dynamic programming is used to compute an alignment. The efficiency and efficacy of these algorithms allows large-scale computational studies that would have been previously impractical. The computational study herein shows that the structural alignment algorithm eigen-decomposition alignment with the spectrum (EIGAs is robust against both parametric and structural variation.

  13. Analysis of Higher Order Modes in Large Superconducting Radio Frequency Accelerating Structures

    CERN Document Server

    Galek, Tomasz; Brackebusch, Korinna; Van Rienen, Ursula

    2015-01-01

    Superconducting radio frequency cavities used for accelerating charged particle beams are commonly used in accelerator facilities around the world. The design and optimization of modern superconducting RF cavities requires intensive numerical simulations. Vast number of operational parameters must be calculated to ensure appropriate functioning of the accelerating structures. In this study, we primarily focus on estimation and behavior of higher order modes in superconducting RF cavities connected in chains. To calculate large RF models the state-space concatenation scheme, an efficient hybrid method, is employed.

  14. Study of loading by beam of dual-resonator structure of linear electron accelerator

    International Nuclear Information System (INIS)

    Milovanov, O.S.; Smirnov, I.A.

    1988-01-01

    Loading by the beam of the accelerating structure of an Argus dual-resonator linear electron accelerator with a kinetic energy of ∼ 1 MeV and a pulsed beam current of up to 0.5 A is studied experimentally. It is shown that the conditions for stable single-frequency operation of the magnetron are disrupted and the acceleration process is cut off at certain electron-beam currents. Experimental curves of the maximum beam current and maximum electron efficiency of the Argus linear electron accelerator as functions of rf power are given

  15. Evaluation of Structural Robustness against Column Loss: Methodology and Application to RC Frame Buildings.

    Science.gov (United States)

    Bao, Yihai; Main, Joseph A; Noh, Sam-Young

    2017-08-01

    A computational methodology is presented for evaluating structural robustness against column loss. The methodology is illustrated through application to reinforced concrete (RC) frame buildings, using a reduced-order modeling approach for three-dimensional RC framing systems that includes the floor slabs. Comparisons with high-fidelity finite-element model results are presented to verify the approach. Pushdown analyses of prototype buildings under column loss scenarios are performed using the reduced-order modeling approach, and an energy-based procedure is employed to account for the dynamic effects associated with sudden column loss. Results obtained using the energy-based approach are found to be in good agreement with results from direct dynamic analysis of sudden column loss. A metric for structural robustness is proposed, calculated by normalizing the ultimate capacities of the structural system under sudden column loss by the applicable service-level gravity loading and by evaluating the minimum value of this normalized ultimate capacity over all column removal scenarios. The procedure is applied to two prototype 10-story RC buildings, one employing intermediate moment frames (IMFs) and the other employing special moment frames (SMFs). The SMF building, with its more stringent seismic design and detailing, is found to have greater robustness.

  16. Study on the limiting acceleration rate in the VLEPP linear accelerator

    International Nuclear Information System (INIS)

    Balakin, V.E.; Brezhnev, O.N.; Zakhvatkin, M.N.

    1987-01-01

    To realize the design of colliding linear electron-positron beams it is necessary to solve the radical problem of production of accelerating structure with acceleration rate of approximately 100 MeV/m which can accelerate 10 12 particles in a bunch. Results of experimental studies of the limiting acceleration rate in the VLEPP accelerating structure are presented. Accelerating sections of different length were tested. When testing sections 29 cm long the acceleration rate of 55 MeV/m was attained, and for 1 m section the value reached 40 MeV/m. The maximum rate of acceleration (90 MeV/m) was attained when electric field intensity on the structure surface constituted more than 150 MV/m

  17. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Science.gov (United States)

    Lombriser, Lucas; Lima, Nelson A.

    2017-02-01

    With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar-tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar-tensor modification of gravity.

  18. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Lombriser, Lucas, E-mail: llo@roe.ac.uk; Lima, Nelson A.

    2017-02-10

    With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.

  19. Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure

    Directory of Open Access Journals (Sweden)

    Lucas Lombriser

    2017-02-01

    Full Text Available With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.

  20. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings

  1. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  2. High gradient test of the C-band choke-mode type accelerating structure

    International Nuclear Information System (INIS)

    Inagaki, T.; Shintake, T.; Baba, H.; Togawa, K.; Onoe, K.; Marechal, X.; Takashima, T.; Takahashi, S.; Matsumoto, H.

    2004-01-01

    The C-band (5712 MHz) choke-mode type accelerating structure will be used for SPring-8 Compact SASE-FEL Source (SCSS). To make the accelerator length short, we designed the field gradient as high as 40 MV/m. Since it is higher gradient than other traditional electron accelerators, we have to carefully check its performance (RF breakdown, dark current emission, etc.) in the high gradient test stand. The first experiment will be scheduled in this summer. In this paper, we will describe the preparation progress for the test. (author)

  3. Design and construction of planar mm-wave accelerating cavity structures

    International Nuclear Information System (INIS)

    Kang, Y.W.; Kustom, R.L.; Nassiri, A.; Song, J.J.; Feineman, A.D.; Illinois Univ., Chicago, IL

    1995-01-01

    Feasibility studies on the planar millimeter-wave cavity structures have been made. The structures could be used for linear accelerators, free electron lasers, mm-wave amplifiers, or mm-wave undulators. The cavity structures are intended to be manufactured by using DXL (deep x-ray lithography) microfabrication technology. The frequency of operation can be about 30GHz to 300GHz. For most applications, a complete structure consists of two identical planar half structures put together face-to-face. Construction and properties of constant gradient structures that have been investigated so far will be discussed. These cavity structures have been designed for 120GHz 2π/3-mode operation

  4. An analytical hierarchical model explaining the robustness and flaw-tolerance of the interlocking barb-barbule structure of bird feathers

    Science.gov (United States)

    Chen, Qiang; Gorb, Stanislav; Kovalev, Alexander; Li, Zhiyong; Pugno, Nicola

    2016-10-01

    Feathers can fulfill their aerodynamic function only if the pennaceous vane forms an airfoil stabilized by robust interlocking between barbules. Thus, revealing the robustness of the interlocking mechanical behavior of the barbules is very important to understand the function and long-term resilience of bird feathers. This paper, basing on the small- and large-beam deflection solutions, presents a hierarchical mechanical model for deriving the critical delamination conditions of the interlocking barbules between two adjacent barbs in bird feathers. The results indicate a high robustness and flaw-tolerant design of the structure. This work contributes to the understanding of the mechanical behavior of the robust interlocking barb-barbule structure of the bird feather, and provides a basis for design of feather-inspired materials with robust interlocking mechanism, such as advanced bio-inspired micro-zipping devices.

  5. Robust emergence of small-world structure in networks of spiking neurons.

    Science.gov (United States)

    Kwok, Hoi Fei; Jurica, Peter; Raffone, Antonino; van Leeuwen, Cees

    2007-03-01

    Spontaneous activity in biological neural networks shows patterns of dynamic synchronization. We propose that these patterns support the formation of a small-world structure-network connectivity optimal for distributed information processing. We present numerical simulations with connected Hindmarsh-Rose neurons in which, starting from random connection distributions, small-world networks evolve as a result of applying an adaptive rewiring rule. The rule connects pairs of neurons that tend fire in synchrony, and disconnects ones that fail to synchronize. Repeated application of the rule leads to small-world structures. This mechanism is robustly observed for bursting and irregular firing regimes.

  6. Development of a Laser-Powered Dielectric Structure-Based Accelerator as a Stand-Alone Particle Source

    International Nuclear Information System (INIS)

    Yoder, R. B.; Travish, G.; Arab, E. R.; Fong, D.; Hoyer, Z.; Lacroix, U. H.; Vartanian, N.; Rosenzweig, J. B.

    2010-01-01

    An experimental program to develop and build a dielectric-based slab-symmetric structure (the micro-accelerator platform, or MAP) for generating and accelerating low-energy electrons is underway at UCLA and Manhattanville College. This optical acceleration structure is effectively a resonant cavity powered by a side-coupled laser, and has applications as a radiation source for medicine or industry. We present recent experimental and computational results on the accelerator, and progress toward its incorporation into a self-contained particle source. Such a particle source would incorporate a micron-scale electron emitter and a non-relativistic capture region to enable self-injection into the synchronous field within the accelerator. A prototype of the accelerator itself has been constructed from candidate dielectric materials using micromanufacturing techniques; the current status of the testing program is described. A novel electron emitter incorporating pyroelectric crystals with field-enhancing tips has been demonstrated to produce steady currents; the results are dependent on tip geometry, and appear suitable for injection into a microstructure. Extension of the MAP concept to non-relativistic velocities, as in the stand-alone source, requires a tapered structure that gives rise to numerous complications including beam defocusing and manufacturing challenges; approaches for addressing these complications are mentioned.

  7. A tuning method for nonuniform traveling-wave accelerating structures

    International Nuclear Information System (INIS)

    Gong Cunkui; Zheng Shuxin; Shao Jiahang; Jia Xiaoyu; Chen Huaibi

    2013-01-01

    The tuning method of uniform traveling-wave structures based on non-resonant perturbation field distribution measurement has been widely used in tuning both constant-impedance and constant-gradient structures. In this paper, the method of tuning nonuniform structures is proposed on the basis of the above theory. The internal reflection coefficient of each cell is obtained from analyzing the normalized voltage distribution. A numerical simulation of tuning process according to the coupled cavity chain theory has been done and the result shows each cell is in right phase advance after tuning. The method will be used in the tuning of a disk-loaded traveling-wave structure being developed at the Accelerator Laboratory, Tsinghua University. (authors)

  8. Robust T1-weighted structural brain imaging and morphometry at 7T using MP2RAGE.

    Directory of Open Access Journals (Sweden)

    Kieran R O'Brien

    Full Text Available PURPOSE: To suppress the noise, by sacrificing some of the signal homogeneity for numerical stability, in uniform T1 weighted (T1w images obtained with the magnetization prepared 2 rapid gradient echoes sequence (MP2RAGE and to compare the clinical utility of these robust T1w images against the uniform T1w images. MATERIALS AND METHODS: 8 healthy subjects (29.0 ± 4.1 years; 6 Male, who provided written consent, underwent two scan sessions within a 24 hour period on a 7T head-only scanner. The uniform and robust T1w image volumes were calculated inline on the scanner. Two experienced radiologists qualitatively rated the images for: general image quality; 7T specific artefacts; and, local structure definition. Voxel-based and volume-based morphometry packages were used to compare the segmentation quality between the uniform and robust images. Statistical differences were evaluated by using a positive sided Wilcoxon rank test. RESULTS: The robust image suppresses background noise inside and outside the skull. The inhomogeneity introduced was ranked as mild. The robust image was significantly ranked higher than the uniform image for both observers (observer 1/2, p-value = 0.0006/0.0004. In particular, an improved delineation of the pituitary gland, cerebellar lobes was observed in the robust versus uniform T1w image. The reproducibility of the segmentation results between repeat scans improved (p-value = 0.0004 from an average volumetric difference across structures of ≈ 6.6% to ≈ 2.4% for the uniform image and robust T1w image respectively. CONCLUSIONS: The robust T1w image enables MP2RAGE to produce, clinically familiar T1w images, in addition to T1 maps, which can be readily used in uniform morphometry packages.

  9. Assembly Test of Elastic Averaging Technique to Improve Mechanical Alignment for Accelerating Structure Assemblies in CLIC

    CERN Document Server

    Huopana, J

    2010-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider [1]. The manufacturing and assembly tolerances for the required RF-components are important for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is very sensitive to errors in shape and location of the accelerating cavity. This causes considerable issues in the field of mechanical design and manufacturing. Currently the design of the accelerating structures is a disk design. Alternatively it is possible to create the accelerating assembly from quadrants, which favour the mass manufacturing. The functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. The alignment of these quadrants has been previously made kinematic by using steel pins or spheres to align the pieces together. This method proved to be a quite tedious and time consuming method of assembly. To limit the number of different error sources, a meth...

  10. A constant gradient planar accelerating structure for linac use

    International Nuclear Information System (INIS)

    Kang, Y.W.; Matthews, P.J.; Kustom, R.L.

    1995-01-01

    Planar accelerating millimeter-wave structures have been studied during the last few years at Argonne National Laboratory in collaboration with Technical University of Berlin. The cavity structures are intended to be manufactured by using x-ray lithography microfabrication technology. A complete structure consists of two identical planar half structures put together face-to-face. Since microfabrication technology can make a since-depth indentation on a planar substrate, realizing the constant impedance structure was possible but a constant gradient structure was difficult; changing the group velocity along the structure while maintaining the gap and the depth of the indentation constant was difficult. A constant gradient structure has been devised by introducing a cut between the adjacent cavity cells along the beam axis of each half structure. The width of the cut is varied along the longitudinal axis of the structure to have proper coupling between the cells. The result of the computer simulation on such structures is shown

  11. Post accelerator of the IH type structure

    International Nuclear Information System (INIS)

    Chen Ming

    2002-01-01

    The principle, structure, adjustment of the gap voltage, beam dynamic, RF system and the bunchers of the post-accelerator with Interdigital-H type structure, which was developed by the author and Technical University Munich in four years, is described. The energy of ions with mass of three was increased from 340 keV to 1.74 MeV, when resonant frequency of 84.2 MHz and input RF power of 3 kW. The effective shunt impedance reached to 408 MΩ/m. The commissioning was succeeded with H 3 + ion beams. The output energy of H 3 + ion beams reached the design value. The two harmonic double drift buncher used by the IH structure bunches the beam to the bunches with the width of 360 ps. Then the acceptance of the IH structure is increased to 240 degree. Its shunt impedance is three times higher than former single gap bunchers used by TUM and the length of the buncher system is one fifth of former one only because the use of λ/4 coaxial cavities with double gaps

  12. Free-electron laser as a power source for a high-gradient accelerating structure

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1982-02-01

    A two beam colliding linac accelerator is proposed in which one beam is intense (approx. = 1KA), of low energy (approx. = MeV), and long (approx. = 100 ns) and provides power at 1 cm wavelength through a free-electron-laser-mechanism to the second beam of a few electrons (approx. = 10 11 ), which gain energy at the rate of 250 MeV/m in a high-gradient accelerating structure and hence reach 375 GeV in 1.5 km. The intense beam is given energy by induction units and gains, and losses by radiation, 250 keV/m thus supplying 25 J/m to the accelerating structure. The luminosity, L, of two such linacs would be, at a repetition rate of 1 kHz, L = 4. x 10 32 cm -2 s -1

  13. Compact and intense parametric x-ray radiation source based on a linear accelerator with cryogenic accelerating and decelerating copper structures

    Science.gov (United States)

    Hyun, J.; Satoh, M.; Yoshida, M.; Sakai, T.; Hayakawa, Y.; Tanaka, T.; Hayakawa, K.; Sato, I.; Endo, K.

    2018-01-01

    This paper describes a proposal for a compact x-ray source based on parametric x-ray radiation (PXR). The PXR, which is produced when a single crystal is bombarded with relativistic electrons, has good monochromaticity and spatial coherence, and is expected to be well suited for imaging of low-Z materials and medical application. The proposed system employs a pair of copper accelerating structures which are operated at a cryogenic temperature of 20 K and arranged to form a resonant ring configuration. The electron beam is once accelerated up to 75 MeV in one of the structures, being decelerated down to lower than 7 MeV in the other structure after generating PXR at a single crystal, and then dumped. The expected x-ray yield is 1 09 photons /s at a center energy of 15 keV or higher.

  14. Theory of factors limiting high gradient operation of warm accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, Gregory S. [University of Maryland; Antonsen, Thomas M. [University of Maryland; Kishek, Rami [University of Maryland

    2014-07-25

    This final report summarizes the research performed during the time period from 8/1/2010 to 7/31/2013. It consists of two parts describing our studies in two directions: (a) analysis of factors limiting operation of dielectric-loaded accelerating (DLA) structures where the main problem is the occurrence of multipactor on dielectric surfaces, and (b) studies of effects associated with either RF magnetic or RF electric fields which may cause the RF breakdown in high-gradient metallic accelerating structures. In the studies of DLA structures, at least, two accomplishments should be mentioned: the development of a 3D non-stationary, self-consistent code describing the multipactor phenomena and yielding very good agreement with some experimental data obtained in joint ANL/NRL experiments. In the metallic structures, such phenomena as the heating and melting of micro-particles (metallic dust) by RF electric and magnetic fields in single-shot and rep-rate regimes is analyzed. Also, such processes in micro-protrusions on the structure surfaces as heating and melting due to the field emitted current and the Nottingham effect are thoroughly investigated with the account for space charge of emitted current on the field emission from the tip.

  15. Contribution to the study of standing wave bi-periodical accelerating structures for electrons

    International Nuclear Information System (INIS)

    Fuhrmann, Celso

    1985-01-01

    Experimental results on bi-periodic standing wave accelerating structures are presented. These structures which are characterized by a high effective shunt impedance, are designed for standing wave, high duty cycle electron accelerators. Two types of structures are studied: the on-axis coupled structure and the coaxial coupled structure. The expressions for the dispersion relation, coupling coefficients, phase and group velocity are derived from a coupled resonator model. An experimental method to eliminate the stop-band is put forward. The influence of the coupling slots on the dispersion curves is studied experimentally. The effective shunt impedance and the transit time factor are measured by the field perturbation techniques. Measured parameters are compared with SUPERFISH theoretical calculations. The field perturbation technique is also applied to measure the transverse shunt impedance of the dipole modes which are responsible for the beam breakup phenomenon. (author) [fr

  16. Variable-structure approaches analysis, simulation, robust control and estimation of uncertain dynamic processes

    CERN Document Server

    Senkel, Luise

    2016-01-01

    This edited book aims at presenting current research activities in the field of robust variable-structure systems. The scope equally comprises highlighting novel methodological aspects as well as presenting the use of variable-structure techniques in industrial applications including their efficient implementation on hardware for real-time control. The target audience primarily comprises research experts in the field of control theory and nonlinear dynamics but the book may also be beneficial for graduate students.

  17. Development of the heat sink structure of a beam dump for the proton accelerator

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Gil, C. S.; Kim, J. H.; Kim, D. H.

    2007-01-01

    The beam dump is the essential component for the good beam quality and the reliable performance of the proton accelerator. The beam dump for a 20 MeV and 20 mA proton accelerator was designed and manufactured in this study. The high heats deposited, and the large amount of radioactivity produced in beam dump should be reduced by the proper heat sink structure. The heat source by the proton beam of 20 MeV and 20 mA was calculated. The radioactivity assessments of the beam dump were carried out for the economic shielding design with safety. The radioactivity by the protons and secondary neutrons in designed beam dump were calculated in this sturdy. The effective engineering design for the beam dump cooling was performed, considering the mitigation methods of the deposited heats with small angle, the power densities with the stopping ranges in the materials and the heat distributions in the beam dump. The heat sink structure of the beam dump was designed to meet the accelerator characteristics by placing two plates of 30 cm by 60 cm at an angle of 12 degree. The highest temperatures of the graphite, copper, and copper faced by cooling water were designed to be 223 degree, 146 degree, and 85 degree, respectively when the velocity of cooling water was 3 m/s. The heat sink structure was manufactured by the brazing graphite tiles to a copper plate with the filler alloy of Ti-Cu-Ag. The brazing procedure was developed. The tensile stress of the graphite was less than 75% of a maximum tensile stress during the accelerator operation based on the analysis. The safety analyses for the commissioning of the accelerator operation were also performed. The specimens from the brazed parts of beam dump structure were made to identify manufacturing problems. The soundness of the heat sink structure of the beam dump was confirmed by the fatigue tests of the brazed specimens of the graphite-copper tile components with the repetitive heating and cooling. The heat sink structure developed

  18. Design of Accelerator Online Simulator Server Using Structured Data

    International Nuclear Information System (INIS)

    Shen, Guobao

    2012-01-01

    Model based control plays an important role for a modern accelerator during beam commissioning, beam study, and even daily operation. With a realistic model, beam behaviour can be predicted and therefore effectively controlled. The approach used by most current high level application environments is to use a built-in simulation engine and feed a realistic model into that simulation engine. Instead of this traditional monolithic structure, a new approach using a client-server architecture is under development. An on-line simulator server is accessed via network accessible structured data. With this approach, a user can easily access multiple simulation codes. This paper describes the design, implementation, and current status of PVData, which defines the structured data, and PVAccess, which provides network access to the structured data.

  19. Project of the electron linear accelerator on the biperiodical accelerating structure with deep energy retuning in a pulse mode

    International Nuclear Information System (INIS)

    Bogdanovich, B.Yu.; Zavadtsev, D.A.; Kaminskij, V.I.; Sobenin, N.P.; Fadin, A.I.; Zavadtsev, A.A.

    2001-01-01

    The schemes of the electron linear accelerator (ELA), realized on the basis of a biperiodical accelerating structure and ensuring the possibility of deep retuning of the beam energy in a pulse mode, are considered. Advantages and shortcomings of the proposed methods of pulse regulation of the electron energy are discussed. A project of a two-section ELA with two levels of energy (10 and 4 MeV) is presented as a base version. The beam dynamics is calculated for two versions of the ELA. Their main parameters are given [ru

  20. An Examination of Resonance, Acceleration, and Particle Dynamics in the Micro-Accelerator Platform

    International Nuclear Information System (INIS)

    McNeur, Josh; Rosenzweig, J. B.; Travish, G.; Zhou, J.; Yoder, R.

    2010-01-01

    An effort to build a micron-scale dielectric-based slab-symmetric accelerator is underway at UCLA. The structure achieves acceleration via a resonant accelerating mode that is excited in an approximately 800 nm wide vacuum gap by a side coupled 800 nm laser. Detailed simulation results on structure fields and particle dynamics, using HFSS and VORPAL, are presented. We examine the quality factors of the accelerating modes for various structures and the excitations of non-accelerating destructive modes. Additionally, the results of an analytic and computational study of focusing, longitudinal dynamics and acceleration are described. Methods for achieving simultaneous transverse and longitudinal focusing are discussed, including modification of structure dimensions and slow variation of the coupling periodicity.

  1. Research on cw electron accelerators using room-temperature rf structures: Annual report

    International Nuclear Information System (INIS)

    1986-01-01

    This joint NBS-Los Alamos project of ''Research on CW Electron Accelerators Using Room-Temperature RF Structures'' began seven years ago with the goal of developing a technology base for cw electron accelerators. In this report we describe our progress during FY 1986 and present our plans for completion of the project. First, however, it is appropriate to review the past contributions of the project, describe its status, and indicate its future benefits

  2. New structure for accelerating heavy ions; Une nouvelle structure acceleratrice d'ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Pottier, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-06-01

    A new type of accelerating structure is described which is particular suited to heavy ions (high wavelength, high shunt impedance, small size). Its properties are analyzed and compared to those of other structures (more particularly the lines). It is shown that a mode of operation exists of which the shunt impedance in the station mode has 80 per cent of its value for the progressive mode. Finally results are given obtained with a small experimental apparatus which uses this structure. (author) [French] On decrit un nouveau type de structure acceleratrice, particulierement appropriee aux ions lourds (grande longueur d'onde, forte impedance-shunt, faibles dimensions). Ses proprietes sont analysees et comparees a celles d'autres structures (plus particulierement les lignes). On met en evidence un mode de fonctionnement pour lequel l'impedance shunt en regime stationnaire vaut 80 pour cent de l'impedance shunt en regime progressif. Enfin on decrit les resultats obtenus a l'aide d'une petite machine experimentale mettant en oeuvre cette structure. (auteur)

  3. Robust Performance of Systems with Structured Uncertainties in State Space

    DEFF Research Database (Denmark)

    Zhou, Kemin; Khargonekar, Pramod P.; Stoustrup, Jakob

    1995-01-01

    This paper considers robust performance analysis and state feedback design for systems with time-varying parameter uncertainties. The notion of a strongly robust % performance criterion is introduced, and its applications in robust performance analysis and synthesis for nominally linear systems...... with time-varying uncertainties are discussed and compared with the constant scaled small gain criterion. It is shown that most robust performance analysis and synthesis problems under this strongly robust % performance criterion can be transformed into linear matrix inequality problems, and can be solved...

  4. A damped and detuned accelerating structure for the main linacs of the compact linear collider

    CERN Document Server

    Khan, V

    2011-01-01

    Linear colliders are an option for lepton collision at several TeV. The Compact Linear Collider (CLIC) aims at electron and positron collisions at a centre of mass energy of 3 TeV. In CLIC, the main accelerating structures are designed to operate at an X-band frequency of 12 GHz with an accelerating gradient of 100 MV/m. Two significant issues in linear accelerators that can prevent high gradient being achieved are electrical breakdown and wakefields. The baseline design for the CLIC main linacs relies on a small aperture size to reduce the breakdown probability and a strong damping scheme to suppress the wakefields. The strong damping scheme may have a higher possibility of electrical breakdown. In this thesis an alternative design for the main accelerating structures of CLIC is studied and various aspects of this design are discussed. This design is known as a Damped and Detuned Structure (DDS) which relies on moderate damping and strong detuning of the higher order modes (HOMs). The broad idea of DDS is ba...

  5. Reliability-Based Robustness Analysis for a Croatian Sports Hall

    DEFF Research Database (Denmark)

    Čizmar, Dean; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness and a simplified mechanical system modelling of a timber truss system....... A complex timber structure with a large number of failure modes is modelled with only a few dominant failure modes. First, a component based robustness analysis is performed based on the reliability indices of the remaining elements after the removal of selected critical elements. The robustness...... is expressed and evaluated by a robustness index. Next, the robustness is assessed using system reliability indices where the probabilistic failure model is modelled by a series system of parallel systems....

  6. Simulations and Vacuum Tests of a CLIC Accelerating Structure

    CERN Document Server

    Garion, C

    2011-01-01

    The Compact LInear Collider, under study, is based on room temperature high gradient structures. The vacuum specificities of these cavities are low conductance, large surface areas and a non-baked system. The main issue is to reach UHV conditions (typically 10-7 Pa) in a system where the residual vacuum is driven by water outgassing. A finite element model based on an analogy thermal/vacuum has been built to estimate the vacuum profile in an accelerating structure. Vacuum tests are carried out in a dedicated set-up, the vacuum performances of different configurations are presented and compared with the predictions.

  7. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    Science.gov (United States)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  8. From Static Output Feedback to Structured Robust Static Output Feedback: A Survey

    OpenAIRE

    Sadabadi , Mahdieh ,; Peaucelle , Dimitri

    2016-01-01

    This paper reviews the vast literature on static output feedback design for linear time-invariant systems including classical results and recent developments. In particular, we focus on static output feedback synthesis with performance specifications, structured static output feedback, and robustness. The paper provides a comprehensive review on existing design approaches including iterative linear matrix inequalities heuristics, linear matrix inequalities with rank constraints, methods with ...

  9. Robust Performance of Systems with Structured Uncertainties in State Space

    OpenAIRE

    Zhou, K.; Khargonekar, P.P.; Stoustrup, Jakob; Niemann, H.H.

    1995-01-01

    This paper considers robust performance analysis and state feedback design for systems with time-varying parameter uncertainties. The notion of a strongly robust % performance criterion is introduced, and its applications in robust performance analysis and synthesis for nominally linear systems with time-varying uncertainties are discussed and compared with the constant scaled small gain criterion. It is shown that most robust performance analysis and synthesisproblems under this strongly rob...

  10. Analytic robust stability analysis of SVD orbit feedback

    CERN Document Server

    Pfingstner, Jürgen

    2012-01-01

    Orbit feedback controllers are indispensable for the operation of modern particle accelerators. Many such controllers are based on the decoupling of the inputs and outputs of the system to be controlled with the help of the singular value decomposition (SVD controller). It is crucial to verify the stability of SVD controllers, also in the presence of mismatches between the used accelerator model and the real machine (robust stability problem). In this paper, analytical criteria for guaranteed stability margins of SVD orbit feedback systems for three different types of model mismatches are presented: scaling errors of actuators and BPMs (beam position monitors) and additive errors of the orbit response matrix. For the derivation of these criteria, techniques from robust control theory have been used, e.g the small gain theorem. The obtained criteria can be easily applied directly to other SVD orbit feedback systems. As an example, the criteria were applied to the orbit feedback system of the Compact Linear ...

  11. The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions.

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Ribeiro Mello

    2011-02-01

    Full Text Available Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks. It is known from population studies that: (i some bat species depend more on fruits than others, and (ii that some specialized frugivorous bats prefer particular plant genera. We tested whether those preferences affected the structure and robustness of the whole network and the functional roles of species. Nine bat-fruit datasets from the literature were analyzed and all networks showed lower complementary specialization (H(2' = 0.37±0.10, mean ± SD and similar nestedness (NODF = 0.56±0.12 than pollination networks. All networks were modular (M = 0.32±0.07, and had on average four cohesive subgroups (modules of tightly connected bats and plants. The composition of those modules followed the genus-genus associations observed at population level (Artibeus-Ficus, Carollia-Piper, and Sturnira-Solanum, although a few of those plant genera were dispersed also by other bats. Bat-fruit networks showed high robustness to simulated cumulative removals of both bats (R = 0.55±0.10 and plants (R = 0.68±0.09. Primary frugivores interacted with a larger proportion of the plants available and also occupied more central positions; furthermore, their extinction caused larger changes in network structure. We conclude that bat-fruit networks are highly cohesive and robust mutualistic systems, in which redundancy is high within modules, although modules are complementary to each other. Dietary specialization seems to be an important structuring factor that affects the topology, the guild structure and functional roles in bat-fruit networks.

  12. Accelerated life assessment of coating on the radar structure components in coastal environment.

    Science.gov (United States)

    Liu, Zhe; Ming, ZhiMao

    2016-07-04

    This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.

  13. Dark-field study of rear-side density structure in laser-accelerated foils

    International Nuclear Information System (INIS)

    Stamper, J.A.; Gold, S.H.; Obenschain, S.P.; McLean, E.A.; Sica, L.

    1981-01-01

    A dark-field, laser-probing diagnostic has produced the first high-resolution photographs of density structure on the rear side of laser-accelerated foils. This diagnostic allows the preferential sampling of the steep-gradient region of an expanding plasma and permits two-dimensional, multiple-time recordings on a single photograph. The studies are aimed at understanding the early-time physics of target implosions for inertial-confinement fusion. Both long (500 psec) and short (150 psec) probe pulses were used to study the rear-side plasmas of thin foils accelerated by the rocket-like reaction to a hot plasma ablated from the front side by the laser radiation. The longer pulse results, both for angular scatter and the life-time of small, transverse structure, imply a relatively cold (1 eV) rear side plasma. The short pulses provide high resolution photographs of the complete structure. One of these was a vortex-like structure, suggestive of the remnants of a hydrodynamic instability. These observations are relevant to two of the basic requirements of inertial-confinement fusion: cold fuel isentrope and implosion symmetry

  14. RF properties of periodic accelerating structures for linear colliders

    International Nuclear Information System (INIS)

    Wang, J.W.

    1989-07-01

    With the advent of the SLAC electron-positron linear collider (SLC) in the 100 GeV center-of-mass energy range, research and development work on even higher energy machines of this type has started in several laboratories in the United States, Europe, the Soviet Union and Japan. These linear colliders appear to provide the only promising approach to studying e + e - physics at center-of-mass energies approaching 1 TeV. This thesis concerns itself with the study of radio frequency properties of periodic accelerating structures for linear colliders and their interaction with bunched beams. The topics that have been investigated are: experimental measurements of the energy loss of single bunches to longitudinal modes in two types of structures, using an equivalent signal on a coaxial wire to simulate the beam; a method of canceling the energy spread created within a single bunch by longitudinal wakefields, through appropriate shaping of the longitudinal charge distribution of the bunch; derivation of the complete transient beam-loading equation for a train of bunches passing through a constant-gradient accelerator section, with application to the calculation and minimization of multi-bunch energy spread; detailed study of field emission and radio frequency breakdown in disk-loaded structures at S-, C- and X-band frequencies under extremely high-gradient conditions, with special attention to thermal effects, radiation, sparking, emission of gases, surface damage through explosive emission and its possible control through RF-gas processing. 53 refs., 49 figs., 9 tabs

  15. Wake field accelerators

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered

  16. A beam-based alignment technique for correction of accelerator structure misalignments

    International Nuclear Information System (INIS)

    Kubo, K.; Raubenheimer, T.O.

    1994-08-01

    This paper describes a method of reducing the transverse emittance dilution in linear colliders due to transverse wakefields arising-from misaligned accelerator structures. The technique is a generalization of the Wake-Free correction algorithm. The structure alignment errors are measured locally by varying the bunch charge and/or bunch length and measuring the change in the beam trajectory. The misalignments can then be corrected by varying the beam trajectory or moving structures. The results of simulations are presented demonstrating the viability of the technique

  17. Proposal for a study of laser acceleration of electrons using micrograting structures at ATF (Phase 1)

    International Nuclear Information System (INIS)

    Chen, W.; Claus, J.; Fernow, R.C.

    1989-01-01

    We propose to investigate new methods of particle acceleration using a short-pulse CO 2 laser as the power source and grating-like structures as accelerator ''cavities''. Phase I of this program is intended to demonstrate the principle of the method. We will focus the laser light to a 3 mm line on the surface of the microstructure. The structure is used to transform the electric field pattern of the incoming transversely polarized laser beam to a mode which has a component along the electron beam direction in the vicinity of the surface. With 6 mJ of laser energy and a 6 ps pulse length, the electric field in the spot will be around 1 GV/m. The electron beam from the Brookhaven Accelerator Test Facility (ATF) will be focused transversely within the few micron transverse dimension of the microstructure. The maximum expected acceleration for a 1 GV/m field and a 3 mm acceleration length is 3 MeV. 17 refs., 11 figs., 2 tabs

  18. On the structure of acceleration in turbulence

    DEFF Research Database (Denmark)

    Liberzon, A.; Lüthi, B.; Holzner, M.

    2012-01-01

    Acceleration and spatial velocity gradients are obtained simultaneously in an isotropic turbulent flow via three dimensional particle tracking velocimetry. We observe two distinct populations of intense acceleration events: one in flow regions of strong strain and another in regions of strong...... vorticity. Geometrical alignments with respect to vorticity vector and to the strain eigenvectors, curvature of Lagrangian trajectories and of streamlines for total acceleration, and for its convective part, , are studied in detail. We discriminate the alignment features of total and convective acceleration...... statistics, which are genuine features of turbulent nature from those of kinematic nature. We find pronounced alignment of acceleration with vorticity. Similarly, and especially are predominantly aligned at 45°with the most stretching and compressing eigenvectors of the rate of the strain tensor...

  19. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    International Nuclear Information System (INIS)

    Shuets, G.

    2004-01-01

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators

  20. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    Energy Technology Data Exchange (ETDEWEB)

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new.

  1. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    International Nuclear Information System (INIS)

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new

  2. The Technique for the Numerical Tolerances Estimations in the Construction of Compensated Accelerating Structures

    CERN Document Server

    Paramonov, V V

    2004-01-01

    The requirements to the cells manufacturing precision and tining in the multi-cells accelerating structures construction came from the required accelerating field uniformity, based on the beam dynamics demands. The standard deviation of the field distribution depends on accelerating and coupling modes frequencies deviations, stop-band width and coupling coefficient deviations. These deviations can be determined from 3D fields distribution for accelerating and coupling modes and the cells surface displacements. With modern software it can be done separately for every specified part of the cell surface. Finally, the cell surface displacements are defined from the cell dimensions deviations. This technique allows both to define qualitatively the critical regions and to optimize quantitatively the tolerances definition.

  3. A ROBUST EIGHT–MEMBERED RING MOTIF IN THE HYDROGEN-BONDED STRUCTURE OF -(PHENYLAMINOPYRIDINIUM- DI(METHANESULFONYLAMIDATE

    Directory of Open Access Journals (Sweden)

    Karna Wijaya

    2002-03-01

    Full Text Available The compound was prepared by dissolving 2-(phenylaminopyridine (0.52 g ; 3.0 mmol and di(methanesulfonylamine (0.51 g; 3.0 mmol in 5 mL methanol. Slow partial evaporation of the solvent at low tempertaure (-30 oC gave a yield of 0.66 g (64% and crystals suitable for X-ray study (m.p. 150-152 oC. The single crystal X-ray result showed that the crystal system was trikline with space group P. The crystal structure of the title compound 2-(phenylaminopyridinium-di(methane-sulfonylamidate forms a robust antidromic ring motif type. The structure testifies to the persistence of the  in question, which was previously detected as a robust supramolecular synthon in 2-aminopyridinium di(benzenesulfonylamidate and in a series of onium di(methane-sulfonylamidates.   Keywords: supramolecule, hydrogen-bond

  4. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  5. Compact RF ion source for industrial electrostatic ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)

    2016-02-15

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  6. Compact RF ion source for industrial electrostatic ion accelerator

    Science.gov (United States)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  7. High Gradient Accelerator Research

    International Nuclear Information System (INIS)

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  8. Robust simulation of buckled structures using reduced order modeling

    International Nuclear Information System (INIS)

    Wiebe, R.; Perez, R.A.; Spottswood, S.M.

    2016-01-01

    Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties. (paper)

  9. Robust simulation of buckled structures using reduced order modeling

    Science.gov (United States)

    Wiebe, R.; Perez, R. A.; Spottswood, S. M.

    2016-09-01

    Lightweight metallic structures are a mainstay in aerospace engineering. For these structures, stability, rather than strength, is often the critical limit state in design. For example, buckling of panels and stiffeners may occur during emergency high-g maneuvers, while in supersonic and hypersonic aircraft, it may be induced by thermal stresses. The longstanding solution to such challenges was to increase the sizing of the structural members, which is counter to the ever present need to minimize weight for reasons of efficiency and performance. In this work we present some recent results in the area of reduced order modeling of post- buckled thin beams. A thorough parametric study of the response of a beam to changing harmonic loading parameters, which is useful in exposing complex phenomena and exercising numerical models, is presented. Two error metrics that use but require no time stepping of a (computationally expensive) truth model are also introduced. The error metrics are applied to several interesting forcing parameter cases identified from the parametric study and are shown to yield useful information about the quality of a candidate reduced order model. Parametric studies, especially when considering forcing and structural geometry parameters, coupled environments, and uncertainties would be computationally intractable with finite element models. The goal is to make rapid simulation of complex nonlinear dynamic behavior possible for distributed systems via fast and accurate reduced order models. This ability is crucial in allowing designers to rigorously probe the robustness of their designs to account for variations in loading, structural imperfections, and other uncertainties.

  10. Robust Programming by Example

    OpenAIRE

    Bishop , Matt; Elliott , Chip

    2011-01-01

    Part 2: WISE 7; International audience; Robust programming lies at the heart of the type of coding called “secure programming”. Yet it is rarely taught in academia. More commonly, the focus is on how to avoid creating well-known vulnerabilities. While important, that misses the point: a well-structured, robust program should anticipate where problems might arise and compensate for them. This paper discusses one view of robust programming and gives an example of how it may be taught.

  11. Structure of period-2 step-1 accelerator island in area preserving maps

    International Nuclear Information System (INIS)

    Hirose, K.; Ichikawa, Y.H.; Saito, S.

    1996-03-01

    Since the multi-periodic accelerator modes manifest their contribution even in the region of small stochastic parameters, analysis of such regular motion appears to be critical to explore the stochastic properties of the Hamiltonian system. Here, structure of period-2 step-1 accelerator mode is analyzed for the systems described by the Harper map and by the standard map. The stability criterions have been analyzed in detail in comparison with numerical analyses. The period-3 squeezing around the period-2 step-1 islands is identified in the standard map. (author)

  12. Design, realization and test of C-band accelerating structures for the SPARC-LAB linac energy upgrade

    International Nuclear Information System (INIS)

    Alesini, D.; Bellaveglia, M.; Biagini, M.E.; Boni, R.; Brönnimann, M.; Cardelli, F.; Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M.; Ficcadenti, L.; Gallo, A.; Kalt, R.; Lollo, V.; Palumbo, L.; Piersanti, L.; Schilcher, T.

    2016-01-01

    The energy upgrade of the SPARC-LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  13. Design, realization and test of C-band accelerating structures for the SPARC-LAB linac energy upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Alesini, D.; Bellaveglia, M.; Biagini, M.E.; Boni, R. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Brönnimann, M. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Cardelli, F. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Chimenti, P.; Clementi, R.; Di Pirro, G.; Di Raddo, R.; Ferrario, M. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Ficcadenti, L. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Gallo, A. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Kalt, R. [Paul Scherrer Institut, 5232 Villigen (Switzerland); Lollo, V. [INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044, Frascati (Italy); Palumbo, L. [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Piersanti, L., E-mail: luca.piersanti@lnf.infn.it [INFN Sezione di Roma, P.le Aldo Moro 2, 00185, Roma (Italy); Università di Roma “La Sapienza”, P.le Aldo Moro 2, 00185, Roma (Italy); Schilcher, T. [Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2016-11-21

    The energy upgrade of the SPARC-LAB photo-injector at LNF-INFN (Frascati, Italy) has been originally conceived replacing one low gradient (13 MV/m) 3 m long SLAC type S-band traveling wave (TW) section with two 1.4 m long C-band accelerating sections. Due to the higher gradients reached by such structures, a higher energy beam can be obtained within the same accelerator footprint length. The use of C-band structures for electron acceleration has been adopted in a few FEL linacs in the world, among others, the Japanese Free Electron Laser at SPring-8 and the SwissFEL at Paul Scherrer Institute (PSI). The C-band sections are traveling wave, constant impedance structures with symmetric input and output axial couplers. Their design has been optimized for the operation with a SLED RF pulse compressor. In this paper we briefly review their design criteria and we focus on the construction, tuning, low and high-power RF tests. We also illustrate the design and realization of the dedicated low level RF system that has been done in collaboration with PSI in the framework of the EU TIARA project. Preliminary experimental results appear to confirm the operation of such structures with accelerating gradients larger than 35 MV/m.

  14. An algorithm for online optimization of accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States); Corbett, Jeff [SLAC National Accelerator Lab., Menlo Park, CA (United States); Safranek, James [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wu, Juhao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2013-10-01

    We developed a general algorithm for online optimization of accelerator performance, i.e., online tuning, using the performance measure as the objective function. This method, named robust conjugate direction search (RCDS), combines the conjugate direction set approach of Powell's method with a robust line optimizer which considers the random noise in bracketing the minimum and uses parabolic fit of data points that uniformly sample the bracketed zone. Moreover, it is much more robust against noise than traditional algorithms and is therefore suitable for online application. Simulation and experimental studies have been carried out to demonstrate the strength of the new algorithm.

  15. Teleportation with Multiple Accelerated Partners

    International Nuclear Information System (INIS)

    Sagheer, A.; Hamdoun, H.; Metwally, N.

    2015-01-01

    As the current revolution in communication is underway, quantum teleportation can increase the level of security in quantum communication applications. In this paper, we present a quantum teleportation procedure that capable to teleport either accelerated or non-accelerated information through different quantum channels. These quantum channels are based on accelerated multi-qubit states, where each qubit of each of these channels represents a partner. Namely, these states are the W state, Greenberger–Horne–Zeilinger (GHZ) state, and the GHZ-like state. Here, we show that the fidelity of teleporting accelerated information is higher than the fidelity of teleporting non-accelerated information, both through a quantum channel that is based on accelerated state. Also, the comparison among the performance of these three channels shows that the degree of fidelity depends on type of the used channel, type of the measurement, and value of the acceleration. The result of comparison concludes that teleporting information through channel that is based on the GHZ state is more robust than teleporting information through channels that are based on the other two states. For future work, the proposed procedure can be generalized later to achieve communication through a wider quantum network. (paper)

  16. Robust determination of the superconducting gap sign structure via quasiparticle interference

    Energy Technology Data Exchange (ETDEWEB)

    Altenfeld, Dustin [Institut fuer Theoretische Physik III, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Hirschfeld, Peter [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Eremin, Ilya [Institut fuer Theoretische Physik III, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Kazan Federal University, Kazan 420008 (Russian Federation); Mazin, Igor [Naval Research Laboratory, Code 6393, Washington, DC 20375 (United States)

    2016-07-01

    Using an electronic theory, we present a qualitative description to identify sign changes of the superconducting order parameter via quasiparticle interference (QPI) measurement in Fe-based superconductors (FeSc). In particular, we point out that the temperature dependence of the momentum-integrated QPI data can be used to differentiate between s{sub +-} and s{sub ++} states in a system with typical iron pnictide Fermi surface. We show that the signed symmetrized and antisymmetrized QPI maps are useful to obtain a characteristic signature of a gap sign change or lack thereof, starting from two-band model up to ab initio based band structure calculation. We further suggest this method as a robust way of the determination of the superconducting gap sign structure in experiment and discuss its application to the LiFeAs compounds.

  17. Optimal placement and decentralized robust vibration control for spacecraft smart solar panel structures

    International Nuclear Information System (INIS)

    Jiang, Jian-ping; Li, Dong-xu

    2010-01-01

    The decentralized robust vibration control with collocated piezoelectric actuator and strain sensor pairs is considered in this paper for spacecraft solar panel structures. Each actuator is driven individually by the output of the corresponding sensor so that only local feedback control is implemented, with each actuator, sensor and controller operating independently. Firstly, an optimal placement method for the location of the collocated piezoelectric actuator and strain gauge sensor pairs is developed based on the degree of observability and controllability indices for solar panel structures. Secondly, a decentralized robust H ∞ controller is designed to suppress the vibration induced by external disturbance. Finally, a numerical comparison between centralized and decentralized control systems is performed in order to investigate their effectiveness to suppress vibration of the smart solar panel. The simulation results show that the vibration can be significantly suppressed with permitted actuator voltages by the controllers. The decentralized control system almost has the same disturbance attenuation level as the centralized control system with a bit higher control voltages. More importantly, the decentralized controller composed of four three-order systems is a better practical implementation than a high-order centralized controller is

  18. Hierarchical modular structure enhances the robustness of self-organized criticality in neural networks

    International Nuclear Information System (INIS)

    Wang Shengjun; Zhou Changsong

    2012-01-01

    One of the most prominent architecture properties of neural networks in the brain is the hierarchical modular structure. How does the structure property constrain or improve brain function? It is thought that operating near criticality can be beneficial for brain function. Here, we find that networks with modular structure can extend the parameter region of coupling strength over which critical states are reached compared to non-modular networks. Moreover, we find that one aspect of network function—dynamical range—is highest for the same parameter region. Thus, hierarchical modularity enhances robustness of criticality as well as function. However, too much modularity constrains function by preventing the neural networks from reaching critical states, because the modular structure limits the spreading of avalanches. Our results suggest that the brain may take advantage of the hierarchical modular structure to attain criticality and enhanced function. (paper)

  19. Robustness - theoretical framework

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Rizzuto, Enrico; Faber, Michael H.

    2010-01-01

    More frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new struct...... of this fact sheet is to describe a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines....

  20. Preliminary assessment of the activation of the IFMIF accelerator structure by deuterons and neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Itacil C. [Argonne National Lab., IL (United States); Bruhwiler, David L. [Northrop Grumman Corp., Princeton, NJ (United States). Advanced Systems and Technology

    1997-12-01

    This paper presents a preliminary analysis of the IFMF (International Fusion Materials Irradiation Facility) accelerator structure activation by deuterons and neutrons. The main objective of this study is to identify the source terms and to quantify the radioactivity levels at different positions in the accelerator vault. The MCNP code is used to perform radiation transport analysis, the RACC activation code is used for neutron activation analysis, and the cross section library of the LAHET code is used to generate the cross section for the deuteron interaction with the inside surfaces of the accelerator. (author). 10 refs., 5 figs.

  1. Acceleration of 14C beams in electrostatic accelerators

    International Nuclear Information System (INIS)

    Rowton, L.J.; Tesmer, J.R.

    1981-01-01

    Operational problems in the production and acceleration of 14 C beams for nuclear structure research in Los Alamos National Laboratory's Van de Graaff accelerators are discussed. Methods for the control of contamination in ion sources, accelerators and personnel are described. Sputter source target fabrication techniques and the relative beam production efficiencies of various types of bound particulate carbon sputter source targets are presented

  2. Growth of Structure in Theories of Cosmic Acceleration

    DEFF Research Database (Denmark)

    Cataneo, Matteo

    ) Einstein's General Relativity is the correct theory of gravity in the classical limit. The former implies that regardless of our location in the universe, its properties look the same if smoothed on large enough scales. The latter dictates how the universe as a whole and the structures within it evolve....... Although both dark components are so far in the realm of speculation, a cosmological constant suffers from important theoretical shortcomings. An alternative is to question the validity of General Relativity on cosmological scales. In fact, cosmic acceleration could stem from gravity behaving differently...... on the largest scales, eliminating the need for dark energy. Moreover, modifications to General Relativity lead to changes in the formation of structures compared to standard gravity. In particular, the accretion history of collapsed objects, as well as their abundance as a function of mass and time are key...

  3. Quasi-static drift-tube accelerating structures for low-speed heavy ions

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1977-01-01

    The major attractions of the pulsed drift-tubes are that they are non-resonant structures and that they appear suitable for accelerating a very high current bunch at low energies. The mechanical tolerances of the non-resonant structure are very loose and the cost per meter should be low; the cost of the transport system is expected to be the major cost. The pulse power modulators used to drive the drift-tubes are inexpensive compared to r.f. sources with equivalent peak-power. The longitudinal emittance of the beam emerging from the structure could be extremely low

  4. Analytical researches on the accelerating structures, wakefields, and beam dynamics for future linear colliders

    International Nuclear Information System (INIS)

    Gao, J.

    1996-01-01

    The research works presented in this memoir are oriented not only to the R and D programs towards future linear colliders, but also to the pedagogic purposes. The first part of this memoir (from Chapter 2 to Chapter 9) establishes an analytical framework of the disk-loaded slow wave accelerating structures with can be served as the advanced courses for the students who have got some basic trainings in the linear accelerator theories. The analytical formulae derived in this part describe clearly the properties of the disk-loaded accelerating structures, such as group velocity, shunt impedance, coupling coefficients κ and β, loss factors, and wake fields. The second part (from Chapter 11 to Chapter 13) gives the beam dynamics simulations and the final proposal of an S-Band Superconducting Linear Collider (SSLC) which is aimed to avoid the dark current problem in TESLA project. This memoir has not included all the works conducted since April 1992, such as beam dynamics simulations for CLIC Test Facility (CFT-2) and the design of High Charge Structures (HCS) (11π/12 mode) for CFT-2, in order to make this memoir more harmonious, coherent and continuous. (author)

  5. Robust control of flexible space vehicles with minimum structural excitation: On-off pulse control of flexible space vehicles

    Science.gov (United States)

    Wie, Bong; Liu, Qiang

    1992-01-01

    Both feedback and feedforward control approaches for uncertain dynamical systems (in particular, with uncertainty in structural mode frequency) are investigated. The control objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant uncertainty. Preshaping of an ideal, time optimal control input using a tapped-delay filter is shown to provide a fast settling time with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. It is shown that a properly designed, feedback controller performs well, as compared with a time optimal open loop controller with special preshaping for performance robustness. Also included are two separate papers by the same authors on this subject.

  6. Accelerating Corporate Research in the Development, Application and Deployment of Human Language Technologies

    National Research Council Canada - National Science Library

    Ferrucci, David; Lally, Adam

    2003-01-01

    ... accelerate scientific advance. Furthermore, the ability to reuse and combine results through a common architecture and a robust software framework would accelerate the transfer of research results in HLT into IBM's product platforms...

  7. Super-ASSET: A technique for measuring and correcting accelerator structure misalignments at the SLC

    International Nuclear Information System (INIS)

    Decker, F.J.; Assmann, R.; Minty, M.G.; Raimondi, P.; Stupakov, G.

    1998-07-01

    Transverse wakefield kicks from misaligned accelerating structures in the SLC linac contribute significantly to emittance growth. If these kicks could be measured directly, it would be possible to align and/or steer the beam to a kick-free trajectory. In the Accelerator Structure Test Facility at SLAC, ASSET, the kicks due to a drive bunch are measured with a witness bunch at varying bunch separations. In ASSET, the first bunch is discarded and only the second bunch is measured. Super-ASSET is an extension of this technique where both bunches are accelerated down the entire linac together and a sum trajectory of both bunches is measured with beam position monitors (BPMs). The trajectory of the second, kicked bunch can be calculated by subtracting the orbit of the first bunch, measured alone, from the sum trajectory. This paper discusses BPM response issues and the expected resolution of this technique together with alignment and steering strategies

  8. Design of an upgradeable 45-100 mA RFQ accelerator for FAIR

    Science.gov (United States)

    Zhang, Chuan; Schempp, Alwin

    2009-10-01

    A 325 MHz, 35 mA, 3 MeV Radio-Frequency Quadrupole (RFQ) accelerator will be operated as the first accelerating structure of the proton linac injector for the newly planned international science center Facility for Antiproton and Ion Research (FAIR) at GSI, Germany. In previous design studies, two high beam intensities, 70 and 100 mA, were used. Most recently, the design intensity has been changed to 45 mA, which is closer to the operational value. Taking advantage of the so-called New Four-Section Procedure, a new design, which is upgradable from 45 to 100 mA, has been developed for the FAIR proton RFQ. Besides the upgradability analyses, robustness studies of the new design to spatial displacements of the input beam and field errors are presented as well.

  9. Design of an upgradeable 45-100 mA RFQ accelerator for FAIR

    International Nuclear Information System (INIS)

    Zhang Chuan; Schempp, Alwin

    2009-01-01

    A 325 MHz, 35 mA, 3 MeV Radio-Frequency Quadrupole (RFQ) accelerator will be operated as the first accelerating structure of the proton linac injector for the newly planned international science center Facility for Antiproton and Ion Research (FAIR) at GSI, Germany. In previous design studies, two high beam intensities, 70 and 100 mA, were used. Most recently, the design intensity has been changed to 45 mA, which is closer to the operational value. Taking advantage of the so-called New Four-Section Procedure, a new design, which is upgradable from 45 to 100 mA, has been developed for the FAIR proton RFQ. Besides the upgradability analyses, robustness studies of the new design to spatial displacements of the input beam and field errors are presented as well.

  10. Neuro-fuzzy control of structures using acceleration feedback

    Science.gov (United States)

    Schurter, Kyle C.; Roschke, Paul N.

    2001-08-01

    This paper described a new approach for the reduction of environmentally induced vibration in constructed facilities by way of a neuro-fuzzy technique. The new control technique is presented and tested in a numerical study that involves two types of building models. The energy of each building is dissipated through magnetorheological (MR) dampers whose damping properties are continuously updated by a fuzzy controller. This semi-active control scheme relies on the development of a correlation between the accelerations of the building (controller input) and the voltage applied to the MR damper (controller output). This correlation forms the basis for the development of an intelligent neuro-fuzzy control strategy. To establish a context for assessing the effectiveness of the semi-active control scheme, responses to earthquake excitation are compared with passive strategies that have similar authority for control. According to numerical simulation, MR dampers are less effective control mechanisms than passive dampers with respect to a single degree of freedom (DOF) building model. On the other hand, MR dampers are predicted to be superior when used with multiple DOF structures for reduction of lateral acceleration.

  11. Design and fabrication of a traveling-wave muffin-tin accelerating structure at 90 GHz

    International Nuclear Information System (INIS)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.; Menegat, A.; Siemann, R.H.

    1997-05-01

    A prototype of a muffin-tin accelerating structure operating at 32 times the SLAC frequency (2.856 GHz) was built for research in high gradient acceleration. A traveling-wave design with single input and output feeds was chosen for the prototype which was fabricated by wire electrodischarge machining. Features of the mechanical design for the prototype are described. Design improvements are presented including considerations of cooling and vacuum

  12. An algorithm for the design and tuning of RF accelerating structures with variable cell lengths

    Science.gov (United States)

    Lal, Shankar; Pant, K. K.

    2018-05-01

    An algorithm is proposed for the design of a π mode standing wave buncher structure with variable cell lengths. It employs a two-parameter, multi-step approach for the design of the structure with desired resonant frequency and field flatness. The algorithm, along with analytical scaling laws for the design of the RF power coupling slot, makes it possible to accurately design the structure employing a freely available electromagnetic code like SUPERFISH. To compensate for machining errors, a tuning method has been devised to achieve desired RF parameters for the structure, which has been qualified by the successful tuning of a 7-cell buncher to π mode frequency of 2856 MHz with field flatness algorithm and tuning method have demonstrated the feasibility of developing an S-band accelerating structure for desired RF parameters with a relatively relaxed machining tolerance of ∼ 25 μm. This paper discusses the algorithm for the design and tuning of an RF accelerating structure with variable cell lengths.

  13. On Robust Stability of Differential-Algebraic Equations with Structured Uncertainty

    Directory of Open Access Journals (Sweden)

    A. Kononov

    2018-03-01

    Full Text Available We consider a linear time-invariant system of differential-algebraic equations (DAE, which can be written as a system of ordinary differential equations with non-invertible coefficients matrices. An important characteristic of DAE is the unsolvability index, which reflects the complexity of the internal structure of the system. The question of the asymptotic stability of DAE containing the uncertainty given by the matrix norm is investigated. We consider a perturbation in the structured uncertainty case. It is assumed that the initial nominal system is asymptotically stable. For the analysis, the original equation is reduced to the structural form, in which the differential and algebraic subsystems are separated. This structural form is equivalent to the input system in the sense of coincidence of sets of solutions, and the operator transforming the DAE into the structural form possesses the inverse operator. The conversion to structural form does not use a change of variables. Regularity of matrix pencil of the source equation is the necessary and sufficient condition of structural form existence. Sufficient conditions have been obtained that perturbations do not break the internal structure of the nominal system. Under these conditions robust stability of the DAE with structured uncertainty is investigated. Estimates for the stability radius of the perturbed DAE system are obtained. The text of the article is from the simpler case, in which the perturbation is present only for an unknown function, to a more complex one, under which the perturbation is also present in the derivative of the unknown function. We used values of the real and the complex stability radii of explicit ordinary differential equations for obtaining the results. We consider the example illustrating the obtained results.

  14. Experimental Study of the Effect of Beam Loading on RF Breakdown Rate in CLIC High-Gradient Accelerating Structures

    CERN Document Server

    Tecker, F; Kelisani, M; Doebert, S; Grudiev, A; Quirante, J; Riddone, G; Syratchev, I; Wuensch, W; Kononenko, O; Solodko, A; Lebet, S

    2013-01-01

    RF breakdown is a key issue for the multi-TeV highluminosity e+e- Compact Linear Collider (CLIC). Breakdowns in the high-gradient accelerator structures can deflect the beam and decrease the desired luminosity. The limitations of the accelerating structures due to breakdowns have been studied so far without a beam present in the structure. The presence of the beam modifies the distribution of the electrical and magnetic field distributions, which determine the breakdown rate. Therefore an experiment has been designed for high power testing a CLIC prototype accelerating structure with a beam present in the CLIC Test Facility (CTF3). A special beam line allows extracting a beam with nominal CLIC beam current and duration from the CTF3 linac. The paper describes the beam optics design for this experimental beam line and the commissioning of the experiment with beam.

  15. High Performance, Robust Control of Flexible Space Structures: MSFC Center Director's Discretionary Fund

    Science.gov (United States)

    Whorton, M. S.

    1998-01-01

    Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.

  16. Phase gradients in acceleration structures

    International Nuclear Information System (INIS)

    Decker, F.J.; Jobe, R.K.

    1990-05-01

    In linear accelerators with two or more bunches the beam loading of one bunch will influence the energy and energy spread the following bunches. This can be corrected by quickly changing the phase of a travelling wave structure, so that each bunch recieves a slightly different net phase. At the SLAC Linear Collider (SLC) three bunches, two (e + ,e - ) for the high energy collisions and one (e - -scavenger) for producing positrons should sit at different phases, due to their different tasks. The two e - -bunches are extracted from the damping ring at the same cycle time about 60 ns apart. Fast phase switching of the RF to the bunch length compressor in the Ring-To-Linac (RTL) section can produce the necessary advance of the scavenger bunch (about 6 degree in phase). This allows a low energy spread of this third bunch at the e + -production region at 2/3 of the linac length, while the other bunches are not influenced. The principles and possible other applications of this fast phase switching as using it for multi-bunches, as well as the experimental layout for the actual RTL compressor are presented

  17. Parametric uncertainty modeling for robust control

    DEFF Research Database (Denmark)

    Rasmussen, K.H.; Jørgensen, Sten Bay

    1999-01-01

    The dynamic behaviour of a non-linear process can often be approximated with a time-varying linear model. In the presented methodology the dynamics is modeled non-conservatively as parametric uncertainty in linear lime invariant models. The obtained uncertainty description makes it possible...... to perform robustness analysis on a control system using the structured singular value. The idea behind the proposed method is to fit a rational function to the parameter variation. The parameter variation can then be expressed as a linear fractional transformation (LFT), It is discussed how the proposed...... point changes. It is shown that a diagonal PI control structure provides robust performance towards variations in feed flow rate or feed concentrations. However including both liquid and vapor flow delays robust performance specifications cannot be satisfied with this simple diagonal control structure...

  18. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  19. Baryon bias and structure formation in an accelerating universe

    International Nuclear Information System (INIS)

    Amendola, Luca; Tocchini-Valentini, Domenico

    2002-01-01

    In most models of dark energy the structure formation stops after the accelerated expansion begins. In contrast, we show that the coupling of dark energy to dark matter may induce the growth of perturbations even in the accelerated regime. In particular, we show that this occurs in the models proposed to solve the cosmic coincidence problem, in which the ratio of dark energy to dark matter is constant. Depending on the parameters, the growth may be much faster than in a standard matter-dominated era. Moreover, if the dark energy couples only to dark matter and not to baryons, as requested by the constraints imposed by local gravity measurements, the baryon fluctuations develop a constant, scale-independent, large-scale bias which is in principle directly observable. We find that a lower limit to the baryon bias b>0.5 requires the total effective parameter of state w e =1+p/ρ to be larger than 0.6 while a limit b>0.73 would rule out the model

  20. A Robust Longitudinal Control Strategy of Platoons under Model Uncertainties and Time Delays

    Directory of Open Access Journals (Sweden)

    Na Chen

    2018-01-01

    Full Text Available Automated vehicles are designed to free drivers from driving tasks and are expected to improve traffic safety and efficiency when connected via vehicle-to-vehicle communication, that is, connected automated vehicles (CAVs. The time delays and model uncertainties in vehicle control systems pose challenges for automated driving in real world. Ignoring them may render the performance of cooperative driving systems unsatisfactory or even unstable. This paper aims to design a robust and flexible platooning control strategy for CAVs. A centralized control method is presented, where the leader of a CAV platoon collects information from followers, computes the desired accelerations of all controlled vehicles, and broadcasts the desired accelerations to followers. The robust platooning is formulated as a Min-Max Model Predictive Control (MM-MPC problem, where optimal accelerations are generated to minimize the cost function under the worst case, where the worst case is taken over the possible models. The proposed method is flexible in such a way that it can be applied to both homogeneous platoon and heterogeneous platoon with mixed human-driven and automated controlled vehicles. A third-order linear vehicle model with fixed feedback delay and stochastic actuator lag is used to predict the platoon behavior. Actuator lag is assumed to vary randomly with unknown distributions but a known upper bound. The controller regulates platoon accelerations over a time horizon to minimize a cost function representing driving safety, efficiency, and ride comfort, subject to speed limits, plausible acceleration range, and minimal net spacing. The designed strategy is tested by simulating homogeneous and heterogeneous platoons in a number of typical and extreme scenarios to assess the system stability and performance. The test results demonstrate that the designed control strategy for CAV can ensure the robustness of stability and performance against model uncertainties

  1. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing

    Science.gov (United States)

    Fang, Ye; Ding, Yun; Feinstein, Wei P.; Koppelman, David M.; Moreno, Juana; Jarrell, Mark; Ramanujam, J.; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249. PMID:27420300

  2. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.

    Directory of Open Access Journals (Sweden)

    Ye Fang

    Full Text Available Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU. First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.

  3. Accelerating structure of the CERN new 50 MeV linac

    International Nuclear Information System (INIS)

    Warner, D.J.

    1976-01-01

    The design of the post-coupled Alvarez structure is presented with emphasis on features which are novel and critical especially as regards acceleration of high currents (150 mA) to 50 MeV. Among topics treated are the sequence of computational techniques leading from unit cell (e.m. field) calculations to dynamics of the complete linac, and model measurements which justify the drift-tube girder support approach and our particular post-coupler arrangement. (author)

  4. Experimental Investigation of an X-Band Tunable Dielectric Accelerating Structure

    CERN Document Server

    Kanareykin, Alex; Karmanenko, Sergei F; Nenasheva, Elisaveta; Power, John G; Schoessow, Paul; Semenov, Alexei

    2005-01-01

    Experimental study of a new scheme to tune the resonant frequency for dielectric based accelerating structure (driven either by the wakefield of a beam or an external rf source) is underway. The structure consists of a single layer of conventional dielectric surrounded by a very thin layer of ferroelectric material situated on the outside. Carefully designed electrodes are attached to a thin layer of ferroelectric material. A DC bias can be applied to the electrodes to change the permittivity of the ferroelectric layer and therefore, the dielectric overall resonant frequency can be tuned. In this paper, we present the test results for an 11.424 GHz rectangular DLA prototype structure that the ferroelectric material's dielectric constant of 500 and show that a frequency tuning range of 2% can be achieved. If successful, this scheme would compensate for structure errors caused by ceramic waveguide machining tolerances and dielectric constant heterogeneity.

  5. Experimentally reducing species abundance indirectly affects food web structure and robustness.

    Science.gov (United States)

    Barbosa, Milton; Fernandes, G Wilson; Lewis, Owen T; Morris, Rebecca J

    2017-03-01

    Studies on the robustness of ecological communities suggest that the loss or reduction in abundance of individual species can lead to secondary and cascading extinctions. However, most such studies have been simulation-based analyses of the effect of primary extinction on food web structure. In a field experiment we tested the direct and indirect effects of reducing the abundance of a common species, focusing on the diverse and self-contained assemblage of arthropods associated with an abundant Brazilian shrub, Baccharis dracunculifolia D.C. (Asteraceae). Over a 5-month period we experimentally reduced the abundance of Baccharopelma dracunculifoliae (Sternorrhyncha: Psyllidae), the commonest galling species associated with B. dracunculifolia, in 15 replicate plots paired with 15 control plots. We investigated direct effects of the manipulation on parasitoids attacking B. dracunculifoliae, as well as indirect effects (mediated via a third species or through the environment) on 10 other galler species and 50 associated parasitoid species. The experimental manipulation significantly increased parasitism on B. dracunculifoliae in the treatment plots, but did not significantly alter either the species richness or abundance of other galler species. Compared to control plots, food webs in manipulated plots had significantly lower values of weighted connectance, interaction evenness and robustness (measured as simulated tolerance to secondary extinction), even when B. dracunculifoliae was excluded from calculations. Parasitoid species were almost entirely specialized to individual galler species, so the observed effects of the manipulation on food web structure could not have propagated via the documented trophic links. Instead, they must have spread either through trophic links not included in the webs (e.g. shared predators) or non-trophically (e.g. through changes in habitat availability). Our results highlight that the inclusion of both trophic and non

  6. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  7. Design, Fabrication and Measurement of the First Rounded Damped Detuned Accelerator Structure (RDDS1)

    International Nuclear Information System (INIS)

    Wang, Juwen

    2000-01-01

    As a joint effort in the JLC/NLC research program, the authors have developed a new type of damped detuned accelerator structure with optimized round-shaped cavities (RDDS). This paper discusses some important R and D aspects of the first structure in this series (RDDS1). The design aspects covered are the cell design with sub-MHz precision, HOM detuning, coupling and damping technique and wakefield simulation. The fabrication issues covered are ultra-precision cell machining with micron accuracy, assembly and diffusion bonding technologies to satisfactorily meet bookshelf, straightness and cell rotational alignment requirements. The measurements described are the RF properties of single cavities and complete accelerator section, as well as wakefields from the ASSET tests at SLAC. Finally, future improvements are also discussed

  8. Traveling wave linear accelerator with RF power flow outside of accelerating cavities

    Science.gov (United States)

    Dolgashev, Valery A.

    2016-06-28

    A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities has a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.

  9. Diamond field emitter array cathodes and possibilities for employing additive manufacturing for dielectric laser accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andrews, Heather Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Herman, Matthew Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hubbard, Kevin Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weis, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-20

    These are slides for a presentation at Stanford University. The outline is as follows: Motivation: customers for compact accelerators, LANL's technologies for laser acceleration, DFEA cathodes, and additive manufacturing of micron-size structures. Among the stated conclusions are the following: preliminary study identified DFEA cathodes as promising sources for DLAs--high beam current and small emittance; additive manufacturing with Nanoscribe Professional GT can produce structures with the right scale features for a DLA operating at micron wavelengths (fabrication tolerances need to be studied, DLAs require new materials). Future plans include DLA experiment with a beam produced by the DFEA cathode with field emission, demonstration of photoemission from DFEAs, and new structures to print and test.

  10. Structural activation calculations due to proton beam loss in the APT accelerator design

    International Nuclear Information System (INIS)

    Lee, S. K.; Beard, C. A.; Wilson, W. B.; Daemen, L. L.; Liska, D. J.; Waters, L. S.; Adams, M. L.

    1995-01-01

    For the new, high-power accelerators currently being designed, the amount of activation of the accelerator structure has become an important issue. To quantify this activation, a methodology was utilized that coupled transport and depletion codes to obtain dose rate estimates at several locations near the accelerator. This research focused on the 20 and 100 MeV sections of the Bridge-Coupled Drift Tube Linear Accelerator. The peak dose rate was found to be approximately 6 mR/hr in the 100 MeV section near the quadrupoles at a 25-cm radius for an assumed beam loss of 1 nA/m. It was determined that the activation was dominated by the proton interactions and subsequent spallation product generation, as opposed to the presence of the generated neutrons. The worst contributors were the spallation products created by proton bombardment of iron, and the worst component was the beam pipe, which consists mostly of iron. No definitive conclusions about the feasibility of hands-on maintenance can be determined, as the design is still not finalized

  11. Structural activation calculations due to proton beam loss in the APT accelerator design

    International Nuclear Information System (INIS)

    Lee, S.K.; Beard, C.A.; Wilson, W.B.; Daemen, L.L.; Liska, D.J.; Waters, L.S.; Adams, M.L.

    1994-01-01

    For the new, high-power accelerators currently being designed, the amount of activation of the accelerator structure has become an important issue. To quantify this activation, a methodology was utilized that coupled transport and depletion codes to obtain dose rate estimates at several locations near the accelerator. This research focused on the 20 and 100 MeV sections of the Bridge-Coupled Drift Tube Linear Accelerator. The peak dose rate was found to be approximately 6 mR/hr in the 100 MeV section near the quadrupoles at a 25-cm radius for an assumed beam loss of 1 nA/m. It was determined that the activation was dominated by the proton interactions and subsequent spallation product generation, as opposed to the presence of the generated neutrons. The worst contributors were the spallation products created by proton bombardment of iron, and the worst component was the beam pipe, which consists mostly of iron. No definitive conclusions about the feasibility of hands-on maintenance can be determined, as the design is still not finalized

  12. Theoretical Framework for Robustness Evaluation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, althou...

  13. Exploration of multi-fold symmetry element-loaded superconducting radio frequency structure for reliable acceleration of low- & medium-beta ion species

    International Nuclear Information System (INIS)

    Huang, Shichun; Geng, Rongli

    2015-09-01

    Reliable acceleration of low- to medium-beta proton or heavy ion species is needed for future high-current superconducting radio frequency (SRF) accelerators. Due to the high-Q nature of an SRF resonator, it is sensitive to many factors such as electron loading (from either the accelerated beam or from parasitic field emitted electrons), mechanical vibration, and liquid helium bath pressure fluctuation etc. To increase the stability against those factors, a mechanically strong and stable RF structure is desirable. Guided by this consideration, multi-fold symmetry element-loaded SRF structures (MFSEL), cylindrical tanks with multiple (n>=3) rod-shaped radial elements, are being explored. The top goal of its optimization is to improve mechanical stability. A natural consequence of this structure is a lowered ratio of the peak surface electromagnetic field to the acceleration gradient as compared to the traditional spoke cavity. A disadvantage of this new structure is an increased size for a fixed resonant frequency and optimal beta. This paper describes the optimization of the electro-magnetic (EM) design and preliminary mechanical analysis for such structures.

  14. Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis.

    Science.gov (United States)

    Marami, Bahram; Mohseni Salehi, Seyed Sadegh; Afacan, Onur; Scherrer, Benoit; Rollins, Caitlin K; Yang, Edward; Estroff, Judy A; Warfield, Simon K; Gholipour, Ali

    2017-08-01

    Diffusion weighted magnetic resonance imaging, or DWI, is one of the most promising tools for the analysis of neural microstructure and the structural connectome of the human brain. The application of DWI to map early development of the human connectome in-utero, however, is challenged by intermittent fetal and maternal motion that disrupts the spatial correspondence of data acquired in the relatively long DWI acquisitions. Fetuses move continuously during DWI scans. Reliable and accurate analysis of the fetal brain structural connectome requires careful compensation of motion effects and robust reconstruction to avoid introducing bias based on the degree of fetal motion. In this paper we introduce a novel robust algorithm to reconstruct in-vivo diffusion-tensor MRI (DTI) of the moving fetal brain and show its effect on structural connectivity analysis. The proposed algorithm involves multiple steps of image registration incorporating a dynamic registration-based motion tracking algorithm to restore the spatial correspondence of DWI data at the slice level and reconstruct DTI of the fetal brain in the standard (atlas) coordinate space. A weighted linear least squares approach is adapted to remove the effect of intra-slice motion and reconstruct DTI from motion-corrected data. The proposed algorithm was tested on data obtained from 21 healthy fetuses scanned in-utero at 22-38 weeks gestation. Significantly higher fractional anisotropy values in fiber-rich regions, and the analysis of whole-brain tractography and group structural connectivity, showed the efficacy of the proposed method compared to the analyses based on original data and previously proposed methods. The results of this study show that slice-level motion correction and robust reconstruction is necessary for reliable in-vivo structural connectivity analysis of the fetal brain. Connectivity analysis based on graph theoretic measures show high degree of modularity and clustering, and short average

  15. An introduction to acceleration mechanisms

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  16. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  17. RF measurements of a traveling-wave muffin-tin accelerating structure at 90 GHz

    International Nuclear Information System (INIS)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.; Menegat, A.; Pritzkau, D.P.; Siemann, R.H.

    1997-05-01

    A measuring system at the table-top scale was developed for RF measurements of a muffin-tin accelerating structure operating at 32 times the SLAC frequency (2.856 GHz). Both perturbation and non-perturbation methods are employed to characterize the RF properties of a muffin-tin structure. Conventional bead pull measurements are extended to millimeter wavelengths. Design of the measuring system and preliminary results of RF measurements are presented

  18. Structure, shape, and evolution of radiatively accelerated QSO emission-line clouds

    International Nuclear Information System (INIS)

    Blumenthal, G.R.; Mathews, W.G.

    1979-01-01

    The possibility that the broad emission-line regions of QSOs and active galactic nuclei are formed by a multitude of small clouds which are radiatively accelerated is discussed. Although this model is by no means certain at present, it has four virtues: (1) Observed emission-line widths can be produced with observationally allowed electron densities, UV luminosities, and ionization levels. (2) The acceleration force is coherent in each cloud are found. (3) Reasonable line profiles can result for all emission lines. (4) Photoionization of hydrogen accounts for both heating and acceleration of the emission-line gas. A self-consistent model is developed for the structure, shape, and evolution of radiatively accelerated clouds. The shape varies with cloud mass, and two distinct types of clouds. Fully ionized clouds of very low mass approach a nearly spherical shape. However, all clouds having masses greater than some critical mass adopt a ''pancake'' shape. The condition for constant cloud mass in the cloud frame is shown to be equivalent to the equation of motion of a cloud in the rest frame of the QSO. The emission-line profiles can be sensitive to radial variations in the properties of the intercloud medium, and those properties that correspond to observed profiles are discussed. Finally, the covering factor of a system of pancake clouds is estimated along with the total number of clouds required--approximately 10 14 clouds in each QSO

  19. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  20. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction

    NARCIS (Netherlands)

    Sieberling, S.; Chu, Q.P.; Mulder, J.A.

    2010-01-01

    This paper presents a flight control strategy based on nonlinear dynamic inversion. The approach presented, called incremental nonlinear dynamic inversion, uses properties of general mechanical systems and nonlinear dynamic inversion by feeding back angular accelerations. Theoretically, feedback of

  1. Ensemble Manifold Rank Preserving for Acceleration-Based Human Activity Recognition.

    Science.gov (United States)

    Tao, Dapeng; Jin, Lianwen; Yuan, Yuan; Xue, Yang

    2016-06-01

    With the rapid development of mobile devices and pervasive computing technologies, acceleration-based human activity recognition, a difficult yet essential problem in mobile apps, has received intensive attention recently. Different acceleration signals for representing different activities or even a same activity have different attributes, which causes troubles in normalizing the signals. We thus cannot directly compare these signals with each other, because they are embedded in a nonmetric space. Therefore, we present a nonmetric scheme that retains discriminative and robust frequency domain information by developing a novel ensemble manifold rank preserving (EMRP) algorithm. EMRP simultaneously considers three aspects: 1) it encodes the local geometry using the ranking order information of intraclass samples distributed on local patches; 2) it keeps the discriminative information by maximizing the margin between samples of different classes; and 3) it finds the optimal linear combination of the alignment matrices to approximate the intrinsic manifold lied in the data. Experiments are conducted on the South China University of Technology naturalistic 3-D acceleration-based activity dataset and the naturalistic mobile-devices based human activity dataset to demonstrate the robustness and effectiveness of the new nonmetric scheme for acceleration-based human activity recognition.

  2. Beam Acceleration by a Multicell RF Cavity Structure Proposed for an Improved Yield in Hydroforming

    International Nuclear Information System (INIS)

    Kang, Yoon W.; Shin, Ki; Fathy, A.E.; Holmes, Jeffrey A.

    2012-01-01

    We study the accelerating properties of a new multicell cavity structure with irises forming a rectangular aperture between the cavity cells. We are interested in this structure because, from a mechanical point of view, it may be possible to manufacture with high quality using a hydroforming process. RF analysis shows that the rectangular iris shape provides some asymmetric transverse focusing per half RF period, particularly for low beam energies. If the horizontal and vertical rectangular irises are interleaved, the net transverse focusing could be increased. Here we present studies of the acceleration and transport properties of these cavities by tracking particles using the ORBIT Code through time-dependent 3D cavity fields taken from CST MWS.

  3. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  4. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  5. Multimodel Robust Control for Hydraulic Turbine

    OpenAIRE

    Osuský, Jakub; Števo, Stanislav

    2014-01-01

    The paper deals with the multimodel and robust control system design and their combination based on M-Δ structure. Controller design will be done in the frequency domain with nominal performance specified by phase margin. Hydraulic turbine model is analyzed as system with unstructured uncertainty, and robust stability condition is included in controller design. Multimodel and robust control approaches are presented in detail on hydraulic turbine model. Control design approaches are compared a...

  6. Plasma particle accelerators

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1988-01-01

    The Superconducting Supercollider (SSC) will require an 87-kilometer accelerator ring to boost particles to 40 TeV. The SSC's size is due in part to the fact that its operating principle is the same one that has dominated accelerator design for 50 years: it guides particles by means of magnetic fields and propels them by strong electric fields. If one were to build an equally powerful but smaller accelerator, one would need to increase the strength of the guiding and propelling fields. Actually, however, conventional technology may not be able to provide significant increases in field strength. There are two reasons. First, the forces from magnetic fields are becoming greater than the structural forces that hold a magnetic material together; the magnets that produce these fields would themselves be torn apart. Second, the energy from electric fields is reaching the energies that bind electrons to atoms; it would tear electrons from nuclei in the accelerator's support structures. It is the electric field problem that plasma accelerators can overcome. Plasma particle accelerators are based on the principle that particles can be accelerated by the electric fields generated within a plasma. Because the plasma has already been ionized, plasma particle accelerators are not susceptible to electron dissociation. They can in theory sustain accelerating fields thousands of times stronger that conventional technologies. So far two methods for creating plasma waves for accelerators have been proposed and tested: the wakefield and the beat wave. Although promising electric fields have been produced, more research is necessary to determine whether plasma particle accelerators can compete with the existing accelerators. 7 figs

  7. Nonlinear model-based robust control of a nuclear reactor using adaptive PIF gains and variable structure controller

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Cho, Nam Zin

    1993-01-01

    A Nonlinear model-based Hybrid Controller (NHC) is developed which consists of the adaptive proportional-integral-feedforward (PIF) gains and variable structure controller. The controller has the robustness against modeling uncertainty and is applied to the trajectory tracking control of single-input, single-output nonlinear systems. The essence of the scheme is to divide the control into four different terms. Namely, the adaptive P-I-F gains and variable structure controller are used to accomplish the specific control actions by each terms. The robustness of the controller is guaranteed by the feedback of estimated uncertainty and the performance specification given by the adaptation of PIF gains using the second method of Lyapunov. The variable structure controller is incorporated to regulate the initial peak of the tracking error during the parameter adaptation is not settled yet. The newly developed NHC method is applied to the power tracking control of a nuclear reactor and the simulation results show great improvement in tracking performance compared with the conventional model-based control methods. (Author)

  8. Grounding of SNS Accelerator Structure

    CERN Document Server

    Holik, Paul S

    2005-01-01

    Description of site general grounding network. RF grounding network enhancement underneath the klystron gallery building. Grounding network of the Ring Systems with ground breaks in the Ring Tunnel. Grounding and Bonding of R&D accelerator equipment. SNS Building lightning protection.

  9. Measurement of S Parameters ofan Accelerating Structure with Double-Feed Couplers

    CERN Document Server

    Fandos, R; Wuensch, W

    2006-01-01

    A method for measuring the transmission and reflection coefficients of an accelerating structure with double-feed input and output couplers using a 2 port network analyzer is presented. This method avoids the use of magic Ts and hybrids, whose symmetry is not obvious. The procedure is extended to devices with n symmetrical input and m symmetrical output ports. The method to make bead pull measurements for such devices is described.

  10. Obtaining the Wakefield Due to Cell-to-Cell Misalignments in a Linear Accelerator Structure

    OpenAIRE

    Bane, Karl L. F.; Li, Zenghai

    2001-01-01

    A linear accelerator structure, such as will be used in the linacs of the JLC/NLC collider, is composed of on the order of 100 cells. The cells are constructed as individual cups that are brazed together to form a structure. Fabrication error will result in slight cell-to-cell misalignments along the finished structure. In this report we derive an approximation to the transverse wakefield of a structure with cell-to-cell misalignments in terms of the eigenfunctions and eigenvalues of the erro...

  11. Development of heavy ion linear accelerators

    International Nuclear Information System (INIS)

    Bomko, V.A.; Khizhnyak, N.A.

    1981-01-01

    A review of the known heavy ion accelerators is given. It is stated that cyclic and linear accelerators are the most perspective ones in the energy range up to 10 MeV/nucleon according to universality in respect with the possibility of ion acceleration of the wide mass range. However, according to the accelerated beam intensity of the heavier ions the linear accelerators have considerable advantages over any other types of accelerators. The review of the known heavy ion linac structures permits to make the conclusion that a new modification of an accelerating structure of opposite pins excited on a H-wave is the most perspective one [ru

  12. WE-G-BRD-09: Novel MRI Compatible Electron Accelerator for MRI-Linac Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, B; Keall, P [University of Sydney, Sydney (Australia); Gierman, S; Schmerge, J [SLAC National Accelerator Laboratory, Palo Alto, CA (United States); Holloway, L [Ingham Institute, Sydney, NSW (Australia); Fahrig, R [Stanford University, Stanford, CA (United States)

    2015-06-15

    Purpose: MRI guided radiotherapy is a rapidly growing field; however current linacs are not designed to operate in MRI fringe fields. As such, current MRI- Linac systems require magnetic shielding, impairing MR image quality and system flexibility. Here, we present a bespoke electron accelerator concept with robust operation in in-line magnetic fields. Methods: For in-line MRI-Linac systems, electron gun performance is the major constraint on accelerator performance. To overcome this, we propose placing a cathode directly within the first accelerating cavity. Such a configuration is used extensively in high energy particle physics, but not previously for radiotherapy. Benchmarked computational modelling (CST, Darmstadt, Germany) was employed to design and assess a 5.5 cell side coupled accelerator with a temperature limited thermionic cathode in the first accelerating cell. This simulation was coupled to magnetic fields from a 1T MRI model to assess robustness in magnetic fields for Source to Isocenter Distance between 1 and 2 meters. Performance was compared to a conventional electron gun based system in the same magnetic field. Results: A temperature limited cathode (work function 1.8eV, temperature 1245K, emission constant 60A/K/cm{sup 2}) will emit a mean current density of 24mA/mm{sup 2} (Richardson’s Law). We modeled a circular cathode with radius 2mm and mean current 300mA. Capture efficiency of the device was 43%, resulting in target current of 130 mA. The electron beam had a FWHM of 0.2mm, and mean energy of 5.9MeV (interquartile spread of 0.1MeV). Such an electron beam is suitable for radiotherapy, comparing favourably to conventional systems. This model was robust to operation the MRI fringe field, with a maximum current loss of 6% compared to 85% for the conventional system. Conclusion: The bespoke electron accelerator is robust to operation in in-line magnetic fields. This will enable MRI-Linacs with no accelerator magnetic shielding, and minimise

  13. Exploring the Impact of Network Structure and Demand Collaboration on the Dynamics of a Supply Chain Network Using a Robust Control Approach

    Directory of Open Access Journals (Sweden)

    Yongchang Wei

    2015-01-01

    uncertain environment. The impact of network structure and collaboration on the dynamics and robustness of supply chain network, however, remains to be explored. In this paper, a unified state space model for a two-layer supply chain network composed of multiple distributors and multiple retailers is developed. A robust control algorithm is advocated to reduce both order and demand fluctuations for unknown demand. Numerical simulations demonstrate that the robust control approach has the advantage to reduce both inventory and order fluctuations. In the simulation experiment, it is interesting to notice that complex network structure and collaborations might contribute to the reduction of inventory and order oscillations. This paper yields new insights into the overestimated bullwhip effect problem and helps us understand the complexities of supply chain networks.

  14. Tests of a niobium split-ring superconducting heavy ion accelerating structure

    International Nuclear Information System (INIS)

    Benaroya, R.; Bollinger, L.M.; Jaffey, A.H.; Khoe, T.K.; Olesen, M.C.; Scheibelhut, C.H.; Shepard, K.W.; Wesolowski, W.A.

    1976-01-01

    A niobium split-ring accelerating structure designed for use in the Argonne superconducting heavy-ion energy booster was successfully tested. The superconducting resonator has a resonant frequency of 97 MHz and an optimum particle velocity β = 0.11. Ultimate performance is expected to be limited by peak surface fields, which in this structure are 4.7 E/sub a/ electric and 170 E/sub a/ (Gauss) magnetic, where E/sub a/ is the effective accelerating gradient in MV/m. The rf losses in two demountable superconducting joints severely limited performance in initial tests. Following independent measurements of the rf loss properties of several types of demountable joints, one demountable joint was eliminated and the other modified. Subsequently, the resonator could be operated continuously at E/sub a/ = 3.6 MV/m (corresponding to an energy gain of 1.3 MeV per charge) with 10W rf input power. Maximum field level was limited by electron loading. The mechanical stability of the resonator under operating conditions is excellent: vibration induced eigenfrequency noise is less than 120 Hz peak to peak, and the radiation pressure induced frequency shift is Δf/f = 1.6 x 10 -6 E/sub a/ 2

  15. Tests of a niobium split-ring superconducting heavy ion accelerating structure

    Energy Technology Data Exchange (ETDEWEB)

    Benaroya, R.; Bollinger, L.M.; Jaffey, A.H.; Khoe, T.K.; Olesen, M.C.; Scheibelhut, C.H.; Shepard, K.W.; Wesolowski, W.A.

    1976-01-01

    A niobium split-ring accelerating structure designed for use in the Argonne superconducting heavy-ion energy booster was successfully tested. The superconducting resonator has a resonant frequency of 97 MHz and an optimum particle velocity ..beta.. = 0.11. Ultimate performance is expected to be limited by peak surface fields, which in this structure are 4.7 E/sub a/ electric and 170 E/sub a/ (Gauss) magnetic, where E/sub a/ is the effective accelerating gradient in MV/m. The rf losses in two demountable superconducting joints severely limited performance in initial tests. Following independent measurements of the rf loss properties of several types of demountable joints, one demountable joint was eliminated and the other modified. Subsequently, the resonator could be operated continuously at E/sub a/ = 3.6 MV/m (corresponding to an energy gain of 1.3 MeV per charge) with 10W rf input power. Maximum field level was limited by electron loading. The mechanical stability of the resonator under operating conditions is excellent: vibration induced eigenfrequency noise is less than 120 Hz peak to peak, and the radiation pressure induced frequency shift is ..delta..f/f = 1.6 x 10/sup -6/ E/sub a//sup 2/.

  16. Multipactoring studies in accelerating structures

    International Nuclear Information System (INIS)

    Kravachuk, L.V.; Puntus, V.A.; Romanov, G.V.; Tarsov, S.G.

    1992-01-01

    A multipactor discharge takes place in the accelerating tanks of the Moscow meson factory linac. The RF power level, the place and the characteristics of the discharge were determined based on experimental results and the computer simulation. The results of the investigation are given. (Author) 5 refs

  17. Possibility-based robust design optimization for the structural-acoustic system with fuzzy parameters

    Science.gov (United States)

    Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan

    2018-03-01

    The conventional engineering optimization problems considering uncertainties are based on the probabilistic model. However, the probabilistic model may be unavailable because of the lack of sufficient objective information to construct the precise probability distribution of uncertainties. This paper proposes a possibility-based robust design optimization (PBRDO) framework for the uncertain structural-acoustic system based on the fuzzy set model, which can be constructed by expert opinions. The objective of robust design is to optimize the expectation and variability of system performance with respect to uncertainties simultaneously. In the proposed PBRDO, the entropy of the fuzzy system response is used as the variability index; the weighted sum of the entropy and expectation of the fuzzy response is used as the objective function, and the constraints are established in the possibility context. The computations for the constraints and objective function of PBRDO are a triple-loop and a double-loop nested problem, respectively, whose computational costs are considerable. To improve the computational efficiency, the target performance approach is introduced to transform the calculation of the constraints into a double-loop nested problem. To further improve the computational efficiency, a Chebyshev fuzzy method (CFM) based on the Chebyshev polynomials is proposed to estimate the objective function, and the Chebyshev interval method (CIM) is introduced to estimate the constraints, thereby the optimization problem is transformed into a single-loop one. Numerical results on a shell structural-acoustic system verify the effectiveness and feasibility of the proposed methods.

  18. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  19. Conceptual Design of Dielectric Accelerating Structures for Intense Neutron and Monochromatic X-ray Sources

    Science.gov (United States)

    Blanovsky, Anatoly

    2004-12-01

    Bright compact photon sources, which utilize electron beam interaction with periodic structures, may benefit a broad range of medical, industrial and scientific applications. A class of dielectric-loaded periodic structures for hard and soft X-ray production has been proposed that would provide a high accelerating gradient when excited by an external RF and/or primary electron beam. Target-distributed accelerators (TDA), in which an additional electric field compensates for lost beam energy in internal targets, have been shown to provide the necessary means to drive a high flux subcritical reactor (HFSR) for nuclear waste transmutation. The TDA may also be suitable for positron and nuclear isomer production, X-ray lithography and monochromatic computer tomography. One of the early assumptions of the theory of dielectric wake-field acceleration was that, in electrodynamics, the vector potential was proportional to the scalar potential. The analysis takes into consideration a wide range of TDA design aspects including the wave model of observed phenomena, a layered compound separated by a Van der Waals gap and a compact energy source based on fission electric cells (FEC) with a multistage collector. The FEC is a high-voltage power source that directly converts the kinetic energy of the fission fragments into electrical potential of about 2MV.

  20. Is cosmic acceleration proven by local cosmological probes?

    Science.gov (United States)

    Tutusaus, I.; Lamine, B.; Dupays, A.; Blanchard, A.

    2017-06-01

    Context. The cosmological concordance model (ΛCDM) matches the cosmological observations exceedingly well. This model has become the standard cosmological model with the evidence for an accelerated expansion provided by the type Ia supernovae (SNIa) Hubble diagram. However, the robustness of this evidence has been addressed recently with somewhat diverging conclusions. Aims: The purpose of this paper is to assess the robustness of the conclusion that the Universe is indeed accelerating if we rely only on low-redshift (z ≲ 2) observations, that is to say with SNIa, baryonic acoustic oscillations, measurements of the Hubble parameter at different redshifts, and measurements of the growth of matter perturbations. Methods: We used the standard statistical procedure of minimizing the χ2 function for the different probes to quantify the goodness of fit of a model for both ΛCDM and a simple nonaccelerated low-redshift power law model. In this analysis, we do not assume that supernovae intrinsic luminosity is independent of the redshift, which has been a fundamental assumption in most previous studies that cannot be tested. Results: We have found that, when SNIa intrinsic luminosity is not assumed to be redshift independent, a nonaccelerated low-redshift power law model is able to fit the low-redshift background data as well as, or even slightly better, than ΛCDM. When measurements of the growth of structures are added, a nonaccelerated low-redshift power law model still provides an excellent fit to the data for all the luminosity evolution models considered. Conclusions: Without the standard assumption that supernovae intrinsic luminosity is independent of the redshift, low-redshift probes are consistent with a nonaccelerated universe.

  1. Convergence acceleration for partitioned simulations of the fluid-structure interaction in arteries

    Science.gov (United States)

    Radtke, Lars; Larena-Avellaneda, Axel; Debus, Eike Sebastian; Düster, Alexander

    2016-06-01

    We present a partitioned approach to fluid-structure interaction problems arising in analyses of blood flow in arteries. Several strategies to accelerate the convergence of the fixed-point iteration resulting from the coupling of the fluid and the structural sub-problem are investigated. The Aitken relaxation and variants of the interface quasi-Newton -least-squares method are applied to different test cases. A hybrid variant of two well-known variants of the interface quasi-Newton-least-squares method is found to perform best. The test cases cover the typical boundary value problem faced when simulating the fluid-structure interaction in arteries, including a strong added mass effect and a wet surface which accounts for a large part of the overall surface of each sub-problem. A rubber-like Neo Hookean material model and a soft-tissue-like Holzapfel-Gasser-Ogden material model are used to describe the artery wall and are compared in terms of stability and computational expenses. To avoid any kind of locking, high-order finite elements are used to discretize the structural sub-problem. The finite volume method is employed to discretize the fluid sub-problem. We investigate the influence of mass-proportional damping and the material model chosen for the artery on the performance and stability of the acceleration strategies as well as on the simulation results. To show the applicability of the partitioned approach to clinical relevant studies, the hemodynamics in a pathologically deformed artery are investigated, taking the findings of the test case simulations into account.

  2. Reactivity Monitoring of Accelerator-Driven Nuclear Reactor Systems

    NARCIS (Netherlands)

    Uyttenhove, W.

    2016-01-01

    This thesis provides a methodology and set-up of a reactivity monitoring tool for Accelerator-Driven Systems (ADS). The reactivity monitoring tool should guarantee the operation of an ADS at a safe margin from criticality. Robustness is assured in different aspects of the monitoring tool: the choice

  3. Laser-driven accelerators

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  4. Information theory perspective on network robustness

    International Nuclear Information System (INIS)

    Schieber, Tiago A.; Carpi, Laura; Frery, Alejandro C.; Rosso, Osvaldo A.; Pardalos, Panos M.; Ravetti, Martín G.

    2016-01-01

    A crucial challenge in network theory is the study of the robustness of a network when facing a sequence of failures. In this work, we propose a dynamical definition of network robustness based on Information Theory, that considers measurements of the structural changes caused by failures of the network's components. Failures are defined here as a temporal process defined in a sequence. Robustness is then evaluated by measuring dissimilarities between topologies after each time step of the sequence, providing a dynamical information about the topological damage. We thoroughly analyze the efficiency of the method in capturing small perturbations by considering different probability distributions on networks. In particular, we find that distributions based on distances are more consistent in capturing network structural deviations, as better reflect the consequences of the failures. Theoretical examples and real networks are used to study the performance of this methodology. - Highlights: • A novel methodology to measure the robustness of a network to component failure or targeted attacks is proposed. • The use of the network's distance PDF allows a precise analysis. • The method provides a dynamic robustness profile showing the response of the topology to each failure event. • The measure is capable to detect network's critical elements.

  5. APS linac klystron and accelerating structure gain measurements and klystron PFN voltage regulation requirements

    International Nuclear Information System (INIS)

    Sereno, N.S.

    1997-01-01

    This note details measurements of the APS positron linac klystron and accelerating structure gain and presents an analysis of the data using fits to simple mathematical models. The models are used to investigate the sensitivity of the energy dependence of the output positron beam to klystron parameters. The gain measurements are separated into two parts: first, the energy gains of the accelerating structures of the positron linac are measured as a function of output power of the klystron; second, the klystron output power is measured as a function of input drive power and pulse forming network (PFN) voltage. This note concentrates on the positron linac rf and its performance as it directly affects the energy stability of the positron beam injected into the positron accumulator ring (PAR). Ultimately it is important to be able to minimize beam energy variations to maximize the PAR accumulation efficiency

  6. Uncertainty Quantification for Complex RF-structures Using the State-space Concatenation Approach

    CERN Document Server

    Heller, Johann; Schmidt, Christian; Van Rienen, Ursula

    2015-01-01

    as well as to employ robust optimizations, a so-called uncertainty quantification (UQ) is applied. For large and complex structures such computations are heavily demanding and cannot be carried out using standard brute-force approaches. In this paper, we propose a combination of established techniques to perform UQ for long and complex structures, where the uncertainty is located only in parts of the structure. As exemplary structure, we investigate the third-harmonic cavity, which is being used at the FLASH accelerator at DESY, assuming an uncertain...

  7. Robust on-off pulse control of flexible space vehicles

    Science.gov (United States)

    Wie, Bong; Sinha, Ravi

    1993-01-01

    The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.

  8. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  9. Heating of microprotrusions in accelerating structures

    Directory of Open Access Journals (Sweden)

    A. C. Keser

    2013-09-01

    Full Text Available The thermal and field emission of electrons from protrusions on metal surfaces is a possible limiting factor on the performance and operation of high-gradient room temperature accelerator structures. We present here the results of extensive numerical simulations of electrical and thermal behavior of protrusions. We unify the thermal and field emission in the same numerical framework, describe bounds for the emission current and geometric enhancement, then we calculate the Nottingham and Joule heating terms and solve the heat equation to characterize the thermal evolution of emitters under rf electric field. Our findings suggest that heating is entirely due to the Nottingham effect. The time dependence of the rf field leads to a time dependent tip temperature with excursion that depends weakly on rf frequency. We build a phenomenological model to account for the effect of space charge and show that space charge eliminates the possibility of copper tip melting for tips with radii less than 10  μm with vacuum fields on their surface less than 12  GV/m, and for rf frequencies above 1 GHz.

  10. Robust Online Multi-Task Learning with Correlative and Personalized Structures

    KAUST Repository

    Yang, Peng

    2017-06-29

    Multi-Task Learning (MTL) can enhance a classifier\\'s generalization performance by learning multiple related tasks simultaneously. Conventional MTL works under the offline setting and suffers from expensive training cost and poor scalability. To address such issues, online learning techniques have been applied to solve MTL problems. However, most existing algorithms of online MTL constrain task relatedness into a presumed structure via a single weight matrix, which is a strict restriction that does not always hold in practice. In this paper, we propose a robust online MTL framework that overcomes this restriction by decomposing the weight matrix into two components: the first one captures the low-rank common structure among tasks via a nuclear norm; the second one identifies the personalized patterns of outlier tasks via a group lasso. Theoretical analysis shows the proposed algorithm can achieve a sub-linear regret with respect to the best linear model in hindsight. However, the nuclear norm that simply adds all nonzero singular values together may not be a good low-rank approximation. To improve the results, we use a log-determinant function as a non-convex rank approximation. Experimental results on a number of real-world applications also verify the efficacy of our approaches.

  11. Robust Online Multi-Task Learning with Correlative and Personalized Structures

    KAUST Repository

    Yang, Peng; Zhao, Peilin; Gao, Xin

    2017-01-01

    Multi-Task Learning (MTL) can enhance a classifier's generalization performance by learning multiple related tasks simultaneously. Conventional MTL works under the offline setting and suffers from expensive training cost and poor scalability. To address such issues, online learning techniques have been applied to solve MTL problems. However, most existing algorithms of online MTL constrain task relatedness into a presumed structure via a single weight matrix, which is a strict restriction that does not always hold in practice. In this paper, we propose a robust online MTL framework that overcomes this restriction by decomposing the weight matrix into two components: the first one captures the low-rank common structure among tasks via a nuclear norm; the second one identifies the personalized patterns of outlier tasks via a group lasso. Theoretical analysis shows the proposed algorithm can achieve a sub-linear regret with respect to the best linear model in hindsight. However, the nuclear norm that simply adds all nonzero singular values together may not be a good low-rank approximation. To improve the results, we use a log-determinant function as a non-convex rank approximation. Experimental results on a number of real-world applications also verify the efficacy of our approaches.

  12. Structural damage detection robust against time synchronization errors

    International Nuclear Information System (INIS)

    Yan, Guirong; Dyke, Shirley J

    2010-01-01

    Structural damage detection based on wireless sensor networks can be affected significantly by time synchronization errors among sensors. Precise time synchronization of sensor nodes has been viewed as crucial for addressing this issue. However, precise time synchronization over a long period of time is often impractical in large wireless sensor networks due to two inherent challenges. First, time synchronization needs to be performed periodically, requiring frequent wireless communication among sensors at significant energy cost. Second, significant time synchronization errors may result from node failures which are likely to occur during long-term deployment over civil infrastructures. In this paper, a damage detection approach is proposed that is robust against time synchronization errors in wireless sensor networks. The paper first examines the ways in which time synchronization errors distort identified mode shapes, and then proposes a strategy for reducing distortion in the identified mode shapes. Modified values for these identified mode shapes are then used in conjunction with flexibility-based damage detection methods to localize damage. This alternative approach relaxes the need for frequent sensor synchronization and can tolerate significant time synchronization errors caused by node failures. The proposed approach is successfully demonstrated through numerical simulations and experimental tests in a lab

  13. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  14. Hot spots and dark current in advanced plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. G. Manahan

    2016-01-01

    Full Text Available Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.

  15. Robust control synthesis for uncertain dynamical systems

    Science.gov (United States)

    Byun, Kuk-Whan; Wie, Bong; Sunkel, John

    1989-01-01

    This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.

  16. Lyapunov stability robust analysis and robustness design for linear continuous-time systems

    NARCIS (Netherlands)

    Luo, J.S.; Johnson, A.; Bosch, van den P.P.J.

    1995-01-01

    The linear continuous-time systems to be discussed are described by state space models with structured time-varying uncertainties. First, the explicit maximal perturbation bound for maintaining quadratic Lyapunov stability of the closed-loop systems is presented. Then, a robust design method is

  17. Current state of X-band accelerating structure high gradient test. Be held at high energy accelerator organization on April 15, 2005

    International Nuclear Information System (INIS)

    Watanabe, Ken; Higo, Toshiyasu

    2005-01-01

    XTF (X-band Test Facility, Old name is GLCTA) is the high gradient test facility for X-band acceleration. We have installed an X-band 60cm structure (KX01) in the April 2004 and have been processing it for more than 10 months. Now it is under test on long-term operation. We report here the high gradient test result to date. (author)

  18. Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers.

    Science.gov (United States)

    Driben, Rodislav; Babushkin, Ihar

    2012-12-15

    Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between copropagating solitons with small temporal and wavelength separation. We show that the mechanism of acceleration of a trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic-crystal fibers. As a result of fusion, large-intensity robust light structures arise and propagate over significant distances. In the presence of small random noise the delicate condition for the effective fusion between solitons can easily be broken, making the fusion-induced giant waves a rare statistical event. Thus oblong-shaped giant accelerated waves become excellent candidates for optical rogue waves.

  19. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  20. Revisiting Robustness and Evolvability: Evolution in Weighted Genotype Spaces

    Science.gov (United States)

    Partha, Raghavendran; Raman, Karthik

    2014-01-01

    Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these properties determines how biological systems are able to withstand mutations and show variation in response to them. Computational studies have explored the relationship between these two properties using neutral networks of RNA sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations, and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network), underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80% or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations evolving on neutral networks of phenotypes, can access less phenotypic variation compared to

  1. Criteria for robustness of heteroclinic cycles in neural microcircuits

    Science.gov (United States)

    2011-01-01

    We introduce a test for robustness of heteroclinic cycles that appear in neural microcircuits modeled as coupled dynamical cells. Robust heteroclinic cycles (RHCs) can appear as robust attractors in Lotka-Volterra-type winnerless competition (WLC) models as well as in more general coupled and/or symmetric systems. It has been previously suggested that RHCs may be relevant to a range of neural activities, from encoding and binding to spatio-temporal sequence generation. The robustness or otherwise of such cycles depends both on the coupling structure and the internal structure of the neurons. We verify that robust heteroclinic cycles can appear in systems of three identical cells, but only if we require perturbations to preserve some invariant subspaces for the individual cells. On the other hand, heteroclinic attractors can appear robustly in systems of four or more identical cells for some symmetric coupling patterns, without restriction on the internal dynamics of the cells. PMID:22656192

  2. The Next Linear Collider Test Accelerator

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.

    1993-04-01

    During the past several years, there has been tremendous progress the development of the RF system and accelerating structures for a Next Linear Collider (NLC). Developments include high-power klystrons, RF pulse compression systems and damped/detuned accelerator structures to reduce wakefields. In order to integrate these separate development efforts into an actual X-band accelerator capable of accelerating the electron beams necessary for an NLC, we are building an NLC Test Accelerator (NLCTA). The goal of the NLCTA is to bring together all elements of the entire accelerating system by constructing and reliably operating an engineered model of a high-gradient linac suitable for the NLC. The NLCTA will serve as a testbed as the design of the NLC evolves. In addition to testing the RF acceleration system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration. In this paper, we will report oil the status of the design, component development, and construction of the NLC Test Accelerator

  3. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Min [Northern Illinois U.; Lumpkin, Alex H. [Fermilab; Thangaraj, Jayakar Charles [Fermilab; Thurman-Keup, Randy Michael [Fermilab; Shiltsev, Vladimir D. [Fermilab

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  4. Coherent multimoded dielectric wakefield accelerators

    International Nuclear Information System (INIS)

    Power, J.

    1998-01-01

    There has recently been a study of the potential uses of multimode dielectric structures for wakefield acceleration [1]. This technique is based on adjusting the wakefield modes of the structure to constructively interfere at certain delays with respect to the drive bunch, thus providing an accelerating gradient enhancement over single mode devices. In this report we examine and attempt to clarify the issues raised by this work in the light of the present state of the art in wakefield acceleration

  5. The sense of balance in humans: Structural features of otoconia and their response to linear acceleration.

    Directory of Open Access Journals (Sweden)

    Rüdiger Kniep

    Full Text Available We explored the functional role of individual otoconia within the otolith system of mammalians responsible for the detection of linear accelerations and head tilts in relation to the gravity vector. Details of the inner structure and the shape of intact human and artificial otoconia were studied using environmental scanning electron microscopy (ESEM, including decalcification by ethylenediaminetetraacetic acid (EDTA to discriminate local calcium carbonate density. Considerable differences between the rhombohedral faces of human and artificial otoconia already indicate that the inner architecture of otoconia is not consistent with the point group -3m. This is clearly confirmed by decalcified otoconia specimen which are characterized by a non-centrosymmetric volume distribution of the compact 3+3 branches. This structural evidence for asymmetric mass distribution was further supported by light microscopy in combination with a high speed camera showing the movement of single otoconia specimen (artificial specimen under gravitational influence within a viscous medium (artificial endolymph. Moreover, the response of otoconia to linear acceleration forces was investigated by particle dynamics simulations. Both, time-resolved microscopy and computer simulations of otoconia acceleration show that the dislocation of otoconia include significant rotational movement stemming from density asymmetry. Based on these findings, we suggest an otolith membrane expansion/stiffening mechanism for enhanced response to linear acceleration transmitted to the vestibular hair cells.

  6. Particle accelerators in the Czech lands

    International Nuclear Information System (INIS)

    Janovsky, I.

    2007-01-01

    The paper is structured as follows: A short look into history of accelerators; Particle accelerators in the Czech lands (Accelerators at the Institute of Nuclear Physics; Accelerators at the Faculty of Mathematics and Physics, Charles University; Czechoslovak betatron, accelerators for non-destructive testing and radiotherapy; Czechoslovak high-frequency linear electron accelerator; Czechoslovak-Soviet microtron; Accelerators at the State Research Institute of Textiles; Accelerators at the Kablo Vrchlabi plant; and Cyclotrons in the medical sector. (P.A.)

  7. Material studies in the frame of CLIC Accelerating structures production conducted within the Mechanics program together with Metso Oy

    CERN Document Server

    Nurminen, Janne

    2012-01-01

    MeChanICs (Marie Curie Linking Industry to CERN) is an Industry to Academia Partnership and Pathways (IAPP) platform for precision manufacturing knowledge exchange bringing together five Finnish manufacturing companies with Helsinki Insitute of Physics (HIP) and CERN. The scientific objective of MeChanICs project is to contribute to the manufacturing RTD of CLIC enabling technologies. The focus is on the design, materials, machining, brazing and assembly of A CLIC accelerating structure. This study deals with the materials work package of the program and wants to explore the following items: 1) producing copper accelerating structures for CLIC from raw copper powder by near net shape hot isostatic pressing (HIP). 2) The feasibility to use HIP diffusion bonding of the accelerator structures as a function of surface quality and applied temperature and pressure. 3) Brazing for CLIC AS auxiliary systems, like water cooling or damping manifolds, to the disc stack by coating one of the brazing partners with an enab...

  8. Robust visual tracking via structured multi-task sparse learning

    KAUST Repository

    Zhang, Tianzhu

    2012-11-09

    In this paper, we formulate object tracking in a particle filter framework as a structured multi-task sparse learning problem, which we denote as Structured Multi-Task Tracking (S-MTT). Since we model particles as linear combinations of dictionary templates that are updated dynamically, learning the representation of each particle is considered a single task in Multi-Task Tracking (MTT). By employing popular sparsity-inducing lp,q mixed norms (specifically p∈2,∞ and q=1), we regularize the representation problem to enforce joint sparsity and learn the particle representations together. As compared to previous methods that handle particles independently, our results demonstrate that mining the interdependencies between particles improves tracking performance and overall computational complexity. Interestingly, we show that the popular L1 tracker (Mei and Ling, IEEE Trans Pattern Anal Mach Intel 33(11):2259-2272, 2011) is a special case of our MTT formulation (denoted as the L11 tracker) when p=q=1. Under the MTT framework, some of the tasks (particle representations) are often more closely related and more likely to share common relevant covariates than other tasks. Therefore, we extend the MTT framework to take into account pairwise structural correlations between particles (e.g. spatial smoothness of representation) and denote the novel framework as S-MTT. The problem of learning the regularized sparse representation in MTT and S-MTT can be solved efficiently using an Accelerated Proximal Gradient (APG) method that yields a sequence of closed form updates. As such, S-MTT and MTT are computationally attractive. We test our proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that S-MTT is much better than MTT, and both methods consistently outperform state-of-the-art trackers. © 2012 Springer Science+Business Media New York.

  9. Summary report : working group 5 on 'electron beam-driven plasma and structure based acceleration concepts'

    International Nuclear Information System (INIS)

    Conde, M. E.; Katsouleas, T.

    2000-01-01

    The talks presented and the work performed on electron beam-driven accelerators in plasmas and structures are summarized. Highlights of the working group include new experimental results from the E-157 Plasma Wakefield Experiment, the E-150 Plasma Lens Experiment and the Argonne Dielectric Structure Wakefield experiments. The presentations inspired discussion and analysis of three working topics: electron hose instability, ion channel lasers and the plasma afterburner

  10. Theoretical problems in accelerator physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following research on accelerators: computational methods; higher order mode suppression in accelerators structures; overmoded waveguide components and application to SLED II and power transport; rf sources; accelerator cavity design for a B factory asymmetric collider; and photonic band gap cavities

  11. Resonance control for a CW accelerator

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1987-01-01

    This paper describes a resonance-control technique that has been successfully applied to several cw accelerating structures built by the Los Alamos National Laboratory for the National Bureau of Standards and for the University of Illinois. The technique involves sensing the rf fields in an accelerating structure as well as the rf power feeding into the cavity and, then, using the measurement to control the resonant frequency of the structure by altering the temperature of the structure. The temperature of the structure is altered by adjusting the temperature of the circulating cooling water. The technique has been applied to continuous wave (cw) side-coupled cavities only but should have applications with most high-average-power accelerator structures. Some additional effort would be required for pulsed systems

  12. Methodology for the structural design of single spoke accelerating cavities at Fermilab

    International Nuclear Information System (INIS)

    Passarelli, Donato; Merio, Margherita; Ristori, Leonardo

    2016-01-01

    Fermilab is planning to upgrade its accelerator complex to deliver a more powerful and intense proton-beam for neutrino experiments. In the framework of the so-called Proton Improvement Plan-II (PIP-II), we are designing and developing a cryomodule containing superconducting accelerating cavities, the Single Spoke Resonators of type 1 (SSR1). In this paper, we present the sequence of analysis and calculations performed for the structural de- sign of these cavities, using the rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC). The lack of an accepted procedure for addressing the design, fabrication, and inspection of such unique pressure vessels makes the task demanding and challenging every time. Several factors such as exotic materials, unqualified brazing procedures, limited nondestructive examination, and the general R&D nature of these early generations of cavity design, conspire to make it impractical to obtain full compliance with all ASME BPVC requirements. However, the presented approach allowed us to validate the design of these new generation of single spoke cavities with values of maximum allowable working pressure that exceed the safety requirements. This set of rules could be used as a starting point for the structural design and development of similar objects.

  13. Two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Hopkins, D.B.

    1986-06-01

    The Two-Beam Accelerator (TBA) consists of a long high-gradient accelerator structure (HGS) adjacent to an equal-length Free Electron Laser (FEL). In the FEL, a beam propagates through a long series of undulators. At regular intervals, waveguides couple microwave power out of the FEL into the HGS. To replenish energy given up by the FEL beam to the microwave field, induction accelerator units are placed periodically along the length of the FEL. In this manner it is expected to achieve gradients of more than 250 MV/m and thus have a serious option for a 1 TeV x 1 TeV linear collider. The state of present theoretical understanding of the TBA is presented with particular emphasis upon operation of the ''steady-state'' FEL, phase and amplitude control of the rf wave, and suppression of sideband instabilities. Experimental work has focused upon the development of a suitable HGS and the testing of this structure using the Electron Laser Facility (ELF). Description is given of a first test at ELF with a seven-cell 2π/3 mode structure which without preconditioning and with a not-very-good vacuum nevertheless at 35 GHz yielded an average accelerating gradient of 180 MV/m

  14. Accelerating field step-up transformer in wake-field accelerators

    International Nuclear Information System (INIS)

    Chojnacki, E.; Gai, W.; Schoessow, P.; Simpson, J.

    1991-01-01

    In the wake-field scheme of particle acceleration, a short, intense drive bunch of electrons passes through a slow-wave structure, leaving behind high rf power in its wake field. The axial accelerating electric field associated with the rf can be quite large, > 100 MeV/m, and is used to accelerate a much less intense ''witness'' beam to eventual energies > 1 TeV. The rf power is deposited predominantly in the fundamental mode of the structure, which, for dielectric-lined waveguide as used at Argonne, is the TM 01 mode. In all likelihood on the field amplitude will be limited only by rf breakdown of the dielectric material, the limit of which is currently unknown in the short time duration, high frequency regime of wake-field acceleration operation. To obtain such strong electric fields with given wake-field rf power, the dimensions of the dielectric-lined waveguide have to be fairly small, OD of the order of a cm and ID of a few mm, and this gives rise to the generation of strong deflection modes with beam misalignment. While a scheme exists to damp such deflection modes on a bunch-to-bunch time scale, head-tail beam deflection could still be a problem and BNS damping as well as FODO focusing are incomplete cures. Presented here are details of a scheme by which the rf power is generated by in a large-diameter wake-field tube, where deflection mode generation by the intense drive beam is tolerable, and then fed into a small-diameter acceleration tube where the less intense witness beam is accelerated by the greatly enhanced axial electric field. The witness beam generates little deflection-mode power itself, even in the small acceleration tube, thus a final high-quality, high-energy electron beam is produced

  15. Two-Channel Dielectric Wake Field Accelerator

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at ∼30 GHz, and the structure is configured to exhibit a high transformer ratio (∼12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  16. Reaction effects in diffusive shock acceleration

    International Nuclear Information System (INIS)

    Drury, L.Oc.

    1984-01-01

    The effects of the reaction of accelerated particles back on the shock wave in the diffusive-shock-acceleration model of cosmic-ray generation are investigated theoretically. Effects examined include changes in the shock structure, modifications of the input and output spectra, scattering effects, and possible instabilities in the small-scale structure. It is pointed out that the latter two effects are applicable to any spatially localized acceleration mechanism. 14 references

  17. Efficient and robust cell detection: A structured regression approach.

    Science.gov (United States)

    Xie, Yuanpu; Xing, Fuyong; Shi, Xiaoshuang; Kong, Xiangfei; Su, Hai; Yang, Lin

    2018-02-01

    Efficient and robust cell detection serves as a critical prerequisite for many subsequent biomedical image analysis methods and computer-aided diagnosis (CAD). It remains a challenging task due to touching cells, inhomogeneous background noise, and large variations in cell sizes and shapes. In addition, the ever-increasing amount of available datasets and the high resolution of whole-slice scanned images pose a further demand for efficient processing algorithms. In this paper, we present a novel structured regression model based on a proposed fully residual convolutional neural network for efficient cell detection. For each testing image, our model learns to produce a dense proximity map that exhibits higher responses at locations near cell centers. Our method only requires a few training images with weak annotations (just one dot indicating the cell centroids). We have extensively evaluated our method using four different datasets, covering different microscopy staining methods (e.g., H & E or Ki-67 staining) or image acquisition techniques (e.g., bright-filed image or phase contrast). Experimental results demonstrate the superiority of our method over existing state of the art methods in terms of both detection accuracy and running time. Copyright © 2017. Published by Elsevier B.V.

  18. Test accelerator for linear collider

    International Nuclear Information System (INIS)

    Takeda, S.; Akai, K.; Akemoto, M.; Araki, S.; Hayano, H.; Hugo, T.; Ishihara, N.; Kawamoto, T.; Kimura, Y.; Kobayashi, H.; Kubo, T.; Kurokawa, S.; Matsumoto, H.; Mizuno, H.; Odagiri, J.; Otake, Y.; Sakai, H.; Shidara, T.; Shintake, T.; Suetake, M.; Takashima, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yamamoto, N.; Yokoya, K.; Yoshida, M.; Yoshioka, M.; Yamaoka, Y.

    1989-01-01

    KEK has proposed to build Test Accelerator Facility (TAF) capable of producing a 2.5 GeV electron beam for the purpose of stimulating R ampersand D for linear collider in TeV region. The TAF consists of a 1.5 GeV S-band linear accelerator, 1.5 GeV damping ring and 1.0 GeV X-band linear accelerator. The TAF project will be carried forward in three phases. Through Phase-I and Phase-II, the S-band and X-band linacs will be constructed, and in Phase-III, the damping ring will be completed. The construction of TAF Phase-I has started, and the 0.2 GeV S-band injector linac has been almost completed. The Phase-I linac is composed of a 240 keV electron gun, subharmonic bunchers, prebunchers and traveling buncher followed by high-gradient accelerating structures. The SLAC 5045 klystrons are driven at 450 kV in order to obtain the rf-power of 100 MW in a 1 μs pulse duration. The rf-power from a pair of klystrons are combined into an accelerating structure. The accelerating gradient up to 100 MeV/m will be obtained in a 0.6 m long structure. 5 refs., 3 figs., 2 tabs

  19. Vp x B acceleration

    International Nuclear Information System (INIS)

    Sugihara, Ryo.

    1987-05-01

    A unique particle acceleration by an electrostatic (ES) wave, a magnetosonic shock wave as well as an electromagnetic (EM) wave is reviewed. The principle of the acceleration is that when a charged particle is carried across an external magnetic field the charge feels a DC field (the Lorentz force) and is accelerated. The theory for the ES wave acceleration is experimentally verified thought it is semi-quantitative. The shock acceleration is extensively studied theoretically and in a particle simulation method and the application is extended to phenomena in interplanetary space. The EM wave acceleration is based on a trapping in a moving neutral sheet created by the wave magnetic field and the external magnetic field, and the particle can be accelerated indefinitely. A brief sketch on a slow-wave-structure for this acceleration will be given. (author)

  20. Synthesis of fixed-architecture, robust H2 and H∞ controllers

    Directory of Open Access Journals (Sweden)

    Emmanuel G. Collins

    2000-01-01

    Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H2 or H∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H∞ performance. Both robust H2 and H∞, controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H∞ performance is much more computationally intensive than that for robust H2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis.

  1. Target shape effects on monoenergetic GeV proton acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Chen Min; Yu Tongpu; Pukhov, Alexander [Institut fuer Theoretische Physik I, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf (Germany); Sheng Zhengming, E-mail: pukhov@tp1.uni-duesseldorf.d [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-04-15

    When a circularly polarized laser pulse interacts with a foil target, there are three stages: pre-hole-boring, hole-boring and light sail acceleration. We study the electron and ion dynamics in the first stage and find the minimum foil thickness requirement for a given laser intensity. Based on this analysis, we propose using a shaped foil for ion acceleration, whose thickness varies transversely to match the laser intensity. Then, the target evolves into three regions: the acceleration, transparency and deformation regions. In the acceleration region, the target can be uniformly accelerated producing a mono-energetic and spatially collimated ion beam. Detailed numerical simulations are performed to check the feasibility and robustness of this scheme, such as the influence of shape factors and surface roughness. A GeV mono-energetic proton beam is observed in three-dimensional particle-in-cell simulations when a laser pulse with a focus intensity of 10{sup 22} W cm{sup -2} is used. The energy conversion efficiency of the laser pulse to the accelerated proton beam with the simulation parameters is more than 23%.

  2. Target shape effects on monoenergetic GeV proton acceleration

    International Nuclear Information System (INIS)

    Chen Min; Yu Tongpu; Pukhov, Alexander; Sheng Zhengming

    2010-01-01

    When a circularly polarized laser pulse interacts with a foil target, there are three stages: pre-hole-boring, hole-boring and light sail acceleration. We study the electron and ion dynamics in the first stage and find the minimum foil thickness requirement for a given laser intensity. Based on this analysis, we propose using a shaped foil for ion acceleration, whose thickness varies transversely to match the laser intensity. Then, the target evolves into three regions: the acceleration, transparency and deformation regions. In the acceleration region, the target can be uniformly accelerated producing a mono-energetic and spatially collimated ion beam. Detailed numerical simulations are performed to check the feasibility and robustness of this scheme, such as the influence of shape factors and surface roughness. A GeV mono-energetic proton beam is observed in three-dimensional particle-in-cell simulations when a laser pulse with a focus intensity of 10 22 W cm -2 is used. The energy conversion efficiency of the laser pulse to the accelerated proton beam with the simulation parameters is more than 23%.

  3. Design study of high gradient, low impedance accelerating structures for the FERMI free electron laser linac upgrade

    Science.gov (United States)

    Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.

    2017-09-01

    The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.

  4. Observation of Rayleigh-Taylor-like structures in a laser-accelerated foil

    International Nuclear Information System (INIS)

    Whitlock, R.R.; Emery, M.H.; Stamper, J.A.; McLean, E.A.; Obenschain, S.P.; Peckerar, M.C.

    1984-01-01

    Laser-accelerated targets have been predicted to be subject to the Rayleigh-Taylor hydrodynamic instability. The development of the instability was studied by introducing mass thickness variations in foil targets and observing the development of the target nonuniformities by side-on flash x radiography. Observations were made of target structures and mass redistribution effects which resemble Rayleigh-Taylor bubbles and spikes, including not only advanced broadening of the spike tips on the laser-irradiated side of the foil but also projections of mass on the unirradiated side. The observations compare well with numerical simulations

  5. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    Science.gov (United States)

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  6. Advanced Accelerator Concepts

    Science.gov (United States)

    Siemann, Robert

    1998-04-01

    Current particle accelerators rely on conventional or superconducting radio frequency cavities to accelerate beams of protons or electrons for nuclear and particle research and for medical and materials science studies. New methods for achieving larger accelerating gradients have been proposed and are being studied. These include the use of high power lasers, laser driven plasmas, wake fields generated by intense low energy beams, and millimeter wavelength EM structures. The studies to date, and the prospects for practical applications of these new ideas will be discussed.

  7. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  8. Robustness of Topological Superconductivity in Solid State Hybrid Structures

    Science.gov (United States)

    Sitthison, Piyapong

    The non-Abelian statistics of Majorana fermions (MFs) makes them an ideal platform for implementing topological quantum computation. In addition to the fascinating fundamental physics underlying the emergence of MFs, this potential for applications makes the study of these quasiparticles an extremely popular subject in condensed matter physics. The commonly called `Majorana fermions' are zero-energy bound states that emerge near boundaries and defects in topological superconducting phases, which can be engineered, for example, by proximity coupling strong spin-orbit coupling semiconductor nanowires and ordinary s-wave superconductors. The stability of these bound states is determined by the stability of the underlying topological superconducting phase. Hence, understanding their stability (which is critical for quantum computation), involves studying the robustness of the engineered topological superconductors. This work addresses this important problem in the context of two types of hybrid structures that have been proposed for realizing topological superconductivity: topological insulator - superconductor (TI-SC) and semiconductor - superconductor (SM-SC) nanostructures. In both structures, electrostatic effects due to applied external potentials and interface-induced potentials are significant. This work focuses on developing a theoretical framework for understanding these effects, to facilitate the optimization of the nanostructures studied in the laboratory. The approach presented in this thesis is based on describing the low-energy physics of the hybrid structure using effective tight-binding models that explicitly incorporate the proximity effects emerging at interfaces. Generically, as a result of the proximity coupling to the superconductor, an induced gap emerges in the semiconductor (topological insulator) sub-system. The strength of the proximity-induced gap is determined by the transparency of the interface and by the amplitude of the low- energy SM

  9. Delivery of single accelerated particles

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.; Schimmerling, W.; Vosburgh, K.G.; Crebbin, K.; Everette, W.; Howard, J.

    1978-01-01

    It is desirable for certain experiments involving accelerators to have the capability of delivering just a single beam particle to the target area. The essential features of such a one-at-a-time facility are discussed. Two such facilities are described which were implemented at high-energy heavy ion accelerators without having to make major structural changes in the existing beam lines or substantially interfering with other accelerator uses. Two accelerator facilities are described which had the capability of delivering a single beam particle to the target area. This feature is necessary in certain experiments investigating visual phenomena induced by charged particles, other single particle interactions in biology, and other experiments in which the low intensities of cosmic rays need to be simulated. Both facilities were implemented without having to make structural changes in the existing beam lines or substantially interfering with other accelerator uses. (Auth.)

  10. Deuteron and neutron induced activation in the Eveda accelerator materials: implications for the accelerator maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.; Sanz, J.; Garcia, N.; Cabellos, O. [Madrid Univ. Politecnica, C/ Jose Gutierrez Abascal, lnstituto de Fusion Nuclear (Spain); Sauvan, R. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain); Moreno, C.; Sedano, L.A. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain)

    2007-07-01

    Full text of publication follows: The IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based DLi neutron source designed to test fusion reactor candidate materials for high fluence neutrons. Before deciding IFMIF construction, an engineering design and associated experimental data acquisition, defined as EVEDA, has been proposed. Along the EVEDA accelerator, deuteron beam losses collide with the accelerator materials, producing activation and consequent radiations responsible of dose. Calculation of the dose rates in the EVEDA accelerator room is necessary in order to analyze the feasibility for manual maintenance. Dose rates due to the activation produced by the deuteron beam losses interaction with the accelerator materials, will be calculated with the ACAB activation code, using EAF2007 library for deuteron activation cross-sections. Also, dose rates from the activation induced by the neutron source produced by the interaction of deuteron beam losses with the accelerator materials and the deuterium implanted in the structural lattice, will be calculated with the SRIM2006, TMAP7, DROSG2000/NEUYIE, MCNPX and ACAB codes. All calculations will be done for the EVEDA accelerator with the room temperature DTL structure, which is based on copper cavities for the DTL. Some calculations will be done for the superconducting DTL structure, based on niobium cavities for the DTL working at cryogenic temperature. Final analysis will show the dominant mechanisms and major radionuclides contributing to the surface dose rates. (authors)

  11. A kriging metamodel-assisted robust optimization method based on a reverse model

    Science.gov (United States)

    Zhou, Hui; Zhou, Qi; Liu, Congwei; Zhou, Taotao

    2018-02-01

    The goal of robust optimization methods is to obtain a solution that is both optimum and relatively insensitive to uncertainty factors. Most existing robust optimization approaches use outer-inner nested optimization structures where a large amount of computational effort is required because the robustness of each candidate solution delivered from the outer level should be evaluated in the inner level. In this article, a kriging metamodel-assisted robust optimization method based on a reverse model (K-RMRO) is first proposed, in which the nested optimization structure is reduced into a single-loop optimization structure to ease the computational burden. Ignoring the interpolation uncertainties from kriging, K-RMRO may yield non-robust optima. Hence, an improved kriging-assisted robust optimization method based on a reverse model (IK-RMRO) is presented to take the interpolation uncertainty of kriging metamodel into consideration. In IK-RMRO, an objective switching criterion is introduced to determine whether the inner level robust optimization or the kriging metamodel replacement should be used to evaluate the robustness of design alternatives. The proposed criterion is developed according to whether or not the robust status of the individual can be changed because of the interpolation uncertainties from the kriging metamodel. Numerical and engineering cases are used to demonstrate the applicability and efficiency of the proposed approach.

  12. The Klynac: An integrated klystron and linear accelerator

    International Nuclear Information System (INIS)

    Potter, James M.; Schwellenbach, David; Meidinger, Alfred

    2013-01-01

    The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system. The klystron is essentially a conventional klystron structure with an input cavity, some number of intermediate cavities and an output cavity. The accelerator structure is, likewise, a conventional on-axis coupled structure. The uniqueness is the means of coupling the klystron output cavity to the accelerator. The coupler is a resonant coupler rather than an ordinary transmission line. The geometry of such a system need not be coaxial. However, if the klystron and accelerator are coaxial we can eliminate the need for a separate cathode for the accelerator by injecting some of the klystron beam into the accelerator. Such a device can be made cylindrical which is ideal for some applications.

  13. On robust parameter estimation in brain-computer interfacing

    Science.gov (United States)

    Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert

    2017-12-01

    Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.

  14. Prediction of spectral acceleration response ordinates based on PGA attenuation

    Science.gov (United States)

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  15. Robustness Metrics: Consolidating the multiple approaches to quantify Robustness

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Eifler, Tobias; Howard, Thomas J.

    2016-01-01

    robustness metrics; 3) Functional expectancy and dispersion robustness metrics; and 4) Probability of conformance robustness metrics. The goal was to give a comprehensive overview of robustness metrics and guidance to scholars and practitioners to understand the different types of robustness metrics...

  16. Direct electron acceleration in plasma waveguides for compact high-repetition-rate x-ray sources

    International Nuclear Information System (INIS)

    Lin, M-W; Jovanovic, I

    2014-01-01

    Numerous applications in fundamental and applied research, security, and industry require robust, compact sources of x-rays, with a particular recent interest in monochromatic, spatially coherent, and ultrafast x-ray pulses in well-collimated beams. Such x-ray sources usually require production of high-quality electron beams from compact accelerators. Guiding a radially polarized laser pulse in a plasma waveguide has been proposed for realizing direct laser acceleration (DLA), where the electrons are accelerated by the axial electric field of a co-propagating laser pulse (Serafim et al 2000 IEEE Trans. Plasma Sci. 28 1190). A moderate laser peak power is required for DLA when compared to laser wakefield acceleration, thus offering the prospect for high repetition rate operation. By using a density-modulated plasma waveguide for DLA, the acceleration distance can be extended with pulse guiding, while the density-modulation with proper axial structure can realize the quasi-phase matching between the laser pulses and electrons for a net gain accumulation (York et al 2008 Phys. Rev. Lett. 100 195001; York et al 2008 J. Opt. Soc. Am. B 25 B137; Palastro et al 2008 Phys. Rev. E 77 036405). We describe the development and application of a test particle model and particle-in-cell model for DLA. Experimental setups designed for fabrication of optically tailored plasma waveguides via the ignitor-heater scheme, and for generation and characterization of radially polarized short pulses used to drive DLA, are presented. (paper)

  17. Need for accelerating electrons

    International Nuclear Information System (INIS)

    Kerst, D.W.

    1987-01-01

    Photons for nuclear disintegration experiments were not abundantly available in the early days of nuclear physics, whereas accelerated ions led the way. When electrons could be accelerated into the 20--30 MeV range, they found application not only to nuclear disintegration of the elements of the periodic table but also to x-ray radiography and to deep therapy. Energies of interest for probing nuclear structure by electron scattering and for meson production followed soon after. The elementary nature of the electron has now made it a valuable tool for present day particle physics; and the synchrotron radiation, which is an obstacle for some accelerating processes, has become a much sought after source of photons for experiments at atomic structure energies

  18. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  19. VEDs for charged particle accelerators: Indian scenario

    International Nuclear Information System (INIS)

    Bhandari, R.K.

    2012-01-01

    In the initial times after their invention, the charged particle accelerators have, primarily, been used for fundamental studies on nuclei and atoms. From the first modern accelerator, the cathode ray tube, used by J.J. Thomson for the discovery of electron, very recently the gigantic 27 km circumference Large Hadron Collider (LHC) is operational in the search of Higg's boson and related physics issues. Particle accelerators have emerged as powerful microscopes for investigating the finest details of cells, genes, molecules, atoms, protons, neutrons, muons, electrons, quarks and, possibly, still undiscovered even more fundamental constituents of the universe, such as dark matter and dark energy. Several noble prize winning discoveries have been made using accelerators. Accelerators are now being used in a wide area of industrial and medical applications. They are used for the production of radioisotopes for medical imaging, cancer therapy, food sterilization, treatment of waste water, sterilization of medical equipment, material modification, mass spectroscopy, cargo scanning, fabrication of semiconductors etc. Ongoing effort towards the development of accelerators with megawatt beam power is showing hope for a cleaner source of nuclear energy and treatment of nuclear waste. Several tens of thousands of accelerators are presently operational in the world for basic research and applications. Development of new accelerators has several times been driven by new technologies and materials and sometimes they have driven the technological developments towards cutting edge. Some examples are ultra-high vacuum in large volumes, superfluid helium in cryogenics, cryocoolers, superconducting magnets and RF cavities, high power vacuum electronic devices, global control systems, superfast computing and communication networks, giant data storage/processing systems etc. India has been pursuing a fairly robust programme of accelerator development at various institutions. It

  20. rf quadrupole linac: a new low-energy accelerator

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Fuller, C.W.

    1980-01-01

    A new concept in low-energy particle accelerators, the radio-frequency quadrupole (RFQ) linac, is currently being developed at the Los Alamos National Scientific Laboratory. In this new linear accelerating structure both the focusing and accelerating forces are produced by the rf fields. It can accept a high-current, low-velocity dc ion beam and bunch it with a high capture efficiency. The performance of this structure as a low-energy linear accelerator has been verified with the successful construction of a proton RFQ linac. This test structure has accelerated 38 mA of protons from 100 keV to 640 keV in 1.1 meters with a capture efficiency greater than 80%. In this paper a general description of the RFQ linac and an outline of the basic RFQ linac design procedure are presented in addition to the experimental results from the test accelerator. Finally, several applications of this new accelerator are discussed

  1. Gauging the cosmic acceleration with recent type Ia supernovae data sets

    Science.gov (United States)

    Velten, Hermano; Gomes, Syrios; Busti, Vinicius C.

    2018-04-01

    We revisit a model-independent estimator for cosmic acceleration based on type Ia supernovae distance measurements. This approach does not rely on any specific theory for gravity, energy content, nor parametrization for the scale factor or deceleration parameter and is based on falsifying the null hypothesis that the Universe never expanded in an accelerated way. By generating mock catalogs of known cosmologies, we test the robustness of this estimator, establishing its limits of applicability. We detail the pros and cons of such an approach. For example, we find that there are specific counterexamples in which the estimator wrongly provides evidence against acceleration in accelerating cosmologies. The dependence of the estimator on the H0 value is also discussed. Finally, we update the evidence for acceleration using the recent UNION2.1 and Joint Light-Curve Analysis samples. Contrary to recent claims, available data strongly favor an accelerated expansion of the Universe in complete agreement with the standard Λ CDM model.

  2. Results from the RACE [Ring ACceleration Experiment] Compact Torus Acceleration Experiment

    International Nuclear Information System (INIS)

    Hammer, J.H.; Hartman, C.W.; Eddleman, J.L.; Kusse, B.

    1987-06-01

    RACE (Ring ACceleration Experiment) is a proof-of-principle experiment aimed at demonstrating acceleration of magnetically confined compact torus plasma rings to directed kinetic energies well in excess of their magnetic and thermal energies. In the course of the first year of operation the following have been observed: successful formation of rings in the RACE geometry; acceleration of rings with large forces, F/sub accelerate/ ∼F/sub equilibrium/ without apparent degradation of the ring structure; peak velocities of ≅2.5 x 10 8 cm/sec; acceleration efficiency of >30% at speeds of 1.5 x 10 8 cm/sec inferred from trajectory and capacitor bank data; kinetic to magnetic energy ratios ∼10 were observed. Experiments in the near future will be aimed at confirmation of the mass/energy measurements by calorimetry and direct density measurements

  3. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    1998-12-31

    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  4. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    1997-12-31

    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  5. Nonlinear robust hierarchical control for nonlinear uncertain systems

    Directory of Open Access Journals (Sweden)

    Leonessa Alexander

    1999-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  6. RF processing of an S-band high gradient accelerator unit

    International Nuclear Information System (INIS)

    Morita, S.

    1994-01-01

    A 3m-long S-band accelerating structure is used in 1.54 GeV Linac of Accelerator Test Facility. The accelerating structure should be processed up to 200 MW which produce 52 MV/m accelerating gradient. The process of RF processing is described. (author)

  7. An optimization of robust SMES with specified structure H∞ controller for power system stabilization considering superconducting magnetic coil size

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai

    2011-01-01

    Even the superconducting magnetic energy storage (SMES) is the smart stabilizing device in electric power systems, the installation cost of SMES is very high. Especially, the superconducting magnetic coil size which is the critical part of SMES, must be well designed. On the contrary, various system operating conditions result in system uncertainties. The power controller of SMES designed without taking such uncertainties into account, may fail to stabilize the system. By considering both coil size and system uncertainties, this paper copes with the optimization of robust SMES controller. No need of exact mathematic equations, the normalized coprime factorization is applied to model system uncertainties. Based on the normalized integral square error index of inter-area rotor angle difference and specified structured H ∞ loop shaping optimization, the robust SMES controller with the smallest coil size, can be achieved by the genetic algorithm. The robustness of the proposed SMES with the smallest coil size can be confirmed by simulation study.

  8. A Novel Evolutionary Algorithm for Designing Robust Analog Filters

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Designing robust circuits that withstand environmental perturbation and device degradation is critical for many applications. Traditional robust circuit design is mainly done by tuning parameters to improve system robustness. However, the topological structure of a system may set a limit on the robustness achievable through parameter tuning. This paper proposes a new evolutionary algorithm for robust design that exploits the open-ended topological search capability of genetic programming (GP coupled with bond graph modeling. We applied our GP-based robust design (GPRD algorithm to evolve robust lowpass and highpass analog filters. Compared with a traditional robust design approach based on a state-of-the-art real-parameter genetic algorithm (GA, our GPRD algorithm with a fitness criterion rewarding robustness, with respect to parameter perturbations, can evolve more robust filters than what was achieved through parameter tuning alone. We also find that inappropriate GA tuning may mislead the search process and that multiple-simulation and perturbed fitness evaluation methods for evolving robustness have complementary behaviors with no absolute advantage of one over the other.

  9. Efficient and robust implementation of the TLISMNI method

    Science.gov (United States)

    Aboubakr, Ahmed K.; Shabana, Ahmed A.

    2015-09-01

    The dynamics of large scale and complex multibody systems (MBS) that include flexible bodies and contact/impact pairs is governed by stiff equations. Because explicit integration methods can be inefficient and often fail in the case of stiff problems, the use of implicit numerical integration methods is recommended in this case. This paper presents a new and efficient implementation of the two-loop implicit sparse matrix numerical integration (TLISMNI) method proposed for the solution of constrained rigid and flexible MBS differential and algebraic equations. The TLISMNI method has desirable features that include avoiding numerical differentiation of the forces, allowing for an efficient sparse matrix implementation, and ensuring that the kinematic constraint equations are satisfied at the position, velocity and acceleration levels. In this method, a sparse Lagrangian augmented form of the equations of motion that ensures that the constraints are satisfied at the acceleration level is used to solve for all the accelerations and Lagrange multipliers. The generalized coordinate partitioning or recursive methods can be used to satisfy the constraint equations at the position and velocity levels. In order to improve the efficiency and robustness of the TLISMNI method, the simple iteration and the Jacobian-Free Newton-Krylov approaches are used in this investigation. The new implementation is tested using several low order formulas that include Hilber-Hughes-Taylor (HHT), L-stable Park, A-stable Trapezoidal, and A-stable BDF methods. The HHT method allows for including numerical damping. Discussion on which method is more appropriate to use for a certain application is provided. The paper also discusses TLISMNI implementation issues including the step size selection, the convergence criteria, the error control, and the effect of the numerical damping. The use of the computer algorithm described in this paper is demonstrated by solving complex rigid and flexible tracked

  10. NSC KIPT accelerator on nuclear and high energy physics

    NARCIS (Netherlands)

    Dovbnya, A.N.; Guk, I.S.; Kononenko, S.G.; Wiel, van der M.J.; Botman, J.I.M.; Tarasenko, A.S.

    2004-01-01

    Qualitatively new level can be performed by creating the accelerator that will incorporate the latest technological achievements in the field of electron beam acceleration on the basis of a superconducting TESLA accelerating structure. This structure permits the production of both quasi-continuous

  11. BFROST: binary features from robust orientation segment tests accelerated on the GPU

    CSIR Research Space (South Africa)

    Cronje, J

    2011-11-01

    Full Text Available purpose parallel algo- rithms. The CUDA (Compute Unified Device Architecture) [1] framework from NVidia provides a programmable interface for GPUs. FAST (Features from Accelerated Segment Tests) [2], [3] is one of the fastest and most reliable corner... runs. Our detector detects slightly more keypoints because the decision tree of FAST does not perform a complete segment test. Timing comparisons were performed on a NVidia GeForce GTX 460 for our GPU implementation and on a Intel Core i7 2.67 GHz...

  12. Tractor accelerated test on test rig

    Directory of Open Access Journals (Sweden)

    M. Mattetti

    2013-09-01

    Full Text Available The experimental tests performed to validate a tractor prototype before its production, need a substantial financial and time commitment. The tests could be reduced using accelerated tests able to reproduce on the structural part of the tractor, the same damage produced on the tractor during real life in a reduced time. These tests were usually performed reproducing a particular harsh condition a defined number of times, as for example using a bumpy road on track to carry out the test in any weather condition. Using these procedures the loads applied on the tractor structure are different with respect to those obtained during the real use, with the risk to apply loads hard to find in reality. Recently it has been demonstrated how, using the methodologies designed for cars, it is possible to also expedite the structural tests for tractors. In particular, automotive proving grounds were recently successfully used with tractors to perform accelerated structural tests able to reproduce the real use of the machine with an acceleration factor higher than that obtained with the traditional methods. However, the acceleration factor obtained with a tractor on proving grounds is in any case reduced due to the reduced speed of the tractors with respect to cars. In this context, the goal of the paper is to show the development of a methodology to perform an accelerated structural test on a medium power tractor using a 4 post test rig. In particular, several proving ground testing conditions have been performed to measure the loads on the tractor. The loads obtained were then edited to remove the not damaging portion of signals, and finally the loads obtained were reproduced in a 4 post test rig. The methodology proposed could be a valid alternative to the use of a proving ground to reproduce accelerated structural tests on tractors.

  13. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections

    International Nuclear Information System (INIS)

    Poulsen, Per Rugaard; Fledelius, Walther; Keall, Paul J.; Weiss, Elisabeth; Lu Jun; Brackbill, Emily; Hugo, Geoffrey D.

    2011-01-01

    Purpose: Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. Methods: The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Results: Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). Conclusions: A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed.

  14. APT accelerator technology

    International Nuclear Information System (INIS)

    Schneider, J. David

    1996-01-01

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  15. Conditioning and Robustness of RNA Boltzmann Sampling under Thermodynamic Parameter Perturbations.

    Science.gov (United States)

    Rogers, Emily; Murrugarra, David; Heitsch, Christine

    2017-07-25

    Understanding how RNA secondary structure prediction methods depend on the underlying nearest-neighbor thermodynamic model remains a fundamental challenge in the field. Minimum free energy (MFE) predictions are known to be "ill conditioned" in that small changes to the thermodynamic model can result in significantly different optimal structures. Hence, the best practice is now to sample from the Boltzmann distribution, which generates a set of suboptimal structures. Although the structural signal of this Boltzmann sample is known to be robust to stochastic noise, the conditioning and robustness under thermodynamic perturbations have yet to be addressed. We present here a mathematically rigorous model for conditioning inspired by numerical analysis, and also a biologically inspired definition for robustness under thermodynamic perturbation. We demonstrate the strong correlation between conditioning and robustness and use its tight relationship to define quantitative thresholds for well versus ill conditioning. These resulting thresholds demonstrate that the majority of the sequences are at least sample robust, which verifies the assumption of sampling's improved conditioning over the MFE prediction. Furthermore, because we find no correlation between conditioning and MFE accuracy, the presence of both well- and ill-conditioned sequences indicates the continued need for both thermodynamic model refinements and alternate RNA structure prediction methods beyond the physics-based ones. Copyright © 2017. Published by Elsevier Inc.

  16. Development of an RF accelerating structure loaded with multi-ring magnetic cores

    International Nuclear Information System (INIS)

    Morita, Yuichi; Kageyama, Tatsuya; Kato, Ichiro; Yamashita, Satoru

    2012-01-01

    In order to upgrade the J-PARC rings (RCS and MR) for more beam powers, the existing accelerating structures for both rings need to be improved for better performance especially in the long-term reliability. As a solution for this purpose, we have proposed a new accelerating structure loaded with multi-ring core modules. Each core module consists of three ring FINEMET cores with different radial sizes concentrically arranged and sandwiched between two glass epoxy plates with flow channels grooved on the surfaces. The Fe-based FINEMET cores are to be cooled with the turbulent flow of Fluorinert (chemically inert perfluorinated liquid). Therefore, the cores need neither impregnation nor coating with epoxy resin for anti corrosion. A half-gap cavity loaded with three core modules, which is a minimum configuration for the performance test, is under fabrication. Additionally, a high efficient solid state RF amplifier is under development. Thirty two amplifier modules, each of which is a push-pull class-D amplifier driven by power MOSFET hybrids, are combined to deliver RF power up to 60 kW (peak power with a duty factor of 50%) at frequencies 1.7 ± 0.2MHz. The amplitude of the RF output can be modulated by changing the voltage across the drain and source of the power MOSFET in proportion to the wave envelope. This paper reports the recent status of our R and D activities. (author)

  17. Robust H2 performance for sampled-data systems

    DEFF Research Database (Denmark)

    Rank, Mike Lind

    1997-01-01

    Robust H2 performance conditions under structured uncertainty, analogous to well known methods for H∞ performance, have recently emerged in both discrete and continuous-time. This paper considers the extension into uncertain sampled-data systems, taking into account inter-sample behavior. Convex...... conditions for robust H2 performance are derived for different uncertainty sets...

  18. Compact accelerator for medical therapy

    Science.gov (United States)

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  19. Synthesis of fixed-architecture, robust H 2 and H ∞ controllers

    Directory of Open Access Journals (Sweden)

    Collins Jr. Emmanuel G.

    2000-01-01

    Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H 2 or H ∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H 2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H ∞ performance. Both robust H 2 and H ∞ , controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H ∞ performance is much more computationally intensive than that for robust H 2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis

  20. Relativity and accelerator engineering

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2017-09-01

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  1. Coronal structures and particle acceleration studies from radioelectric and optical observations

    International Nuclear Information System (INIS)

    Axisa, Francois.

    1974-01-01

    The problem of acceleration outside of and during eruptions is studied from the association of type III radioelectric jumps with the chromosphere activity observed in absorption and emission of the Hα line. In addition the mean corona structure is investigated from observation of the slowly variable metric wave component in connection with coronal filaments and jets, and by type III emission in relation to the eruptive sites of complex active regions. Most of the experimental material comes from observations made with the Nancay East-West radioheliograph, which works on 169 MHz and optical observations carried out at the Meudon Observatory on the chromosphere and on photosphere magnetic fields [fr

  2. Semiparametric Bayesian analysis of accelerated failure time models with cluster structures.

    Science.gov (United States)

    Li, Zhaonan; Xu, Xinyi; Shen, Junshan

    2017-11-10

    In this paper, we develop a Bayesian semiparametric accelerated failure time model for survival data with cluster structures. Our model allows distributional heterogeneity across clusters and accommodates their relationships through a density ratio approach. Moreover, a nonparametric mixture of Dirichlet processes prior is placed on the baseline distribution to yield full distributional flexibility. We illustrate through simulations that our model can greatly improve estimation accuracy by effectively pooling information from multiple clusters, while taking into account the heterogeneity in their random error distributions. We also demonstrate the implementation of our method using analysis of Mayo Clinic Trial in Primary Biliary Cirrhosis. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range

    CERN Document Server

    Wang, Juwen; Van Pelt, John; Yoneda, Charles; Gudkov, D; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu

    2010-01-01

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of <5×10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed

  4. Interferometric Measurement of Acceleration at Relativistic Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Pierre; Loeb, Abraham, E-mail: pchristian@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Astronomy Department, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-01-10

    We show that an interferometer moving at a relativistic speed relative to a point source of light offers a sensitive probe of acceleration. Such an accelerometer contains no moving parts, and is thus more robust than conventional “mass-on-a-spring” accelerometers. In an interstellar mission to Alpha Centauri, such an accelerometer could be used to measure the masses of exoplanets and their host stars as well as test theories of modified gravity.

  5. Diagnostics for advanced laser acceleration experiments

    Energy Technology Data Exchange (ETDEWEB)

    Misuri, Alessio [Univ. of Pisa (Italy)

    2002-01-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure.

  6. Diagnostics for advanced laser acceleration experiments

    International Nuclear Information System (INIS)

    Misuri, Alessio

    2002-01-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure

  7. High-energy inverse free-electron laser accelerator

    International Nuclear Information System (INIS)

    Courant, E.D.; Pellegrini, C.; Zakowicz, W.

    1985-01-01

    We study the inverse free electron laser (IFEL) accelerator and show that it can accelerate electrons to the few hundred GeV region with average acceleration rates of the order of 200 meV/m. Several possible accelerating structures are analyzed, and the effect of synchrotron radiation losses is studied. The longitudinal phase stability of accelerated particles is also analyzed. A Hamiltonian description, which takes into account the dissipative features of the IFEL accelerator, is introduced to study perturbations from the resonant acceleration. Adiabatic invariants are obtained and used to estimate the change of the electron phase space density during the acceleration process

  8. Resonance control for a cw [continuous wave] accelerator

    International Nuclear Information System (INIS)

    Young, L.M.; Biddle, R.S.

    1987-01-01

    A resonance-control technique is described that has been successfully applied to several cw accelerating structures built by the Los Alamos National Laboratory for the National Bureau of Standards and for the University of Illinois. The technique involves sensing the rf fields in an accelerating structure as well as the rf power feeding into the cavity and, then, using the measurement to control the resonant frequency of the structure by altering the temperature of the structure. The temperature of the structure is altered by adjusting the temperature of the circulating cooling water. The technique has been applied to continuous wave (cw) side-coupled cavities only but should have applications with most high-average-power accelerator structures. Some additional effort would be required for pulsed systems

  9. High power experimental studies of hybrid photonic band gap accelerator structures

    Directory of Open Access Journals (Sweden)

    JieXi Zhang

    2016-08-01

    Full Text Available This paper reports the first high power tests of hybrid photonic band gap (PBG accelerator structures. Three hybrid PBG (HPBG structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM_{02} mode, with suppression of both lower order modes, such as the TM_{11} mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion of the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19  MV/m, corresponding to a surface electric field of 78  MV/m, with a breakdown probability of 5×10^{-1} per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20  MV/m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. This research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.

  10. Nuclear structure and astrophysics with accelerated beams of radioactive ions: A new multidisciplinary research tool

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1995-01-01

    After a brief discussion of the techniques for producing accelerated radioactive ion beams (RIBs), several recent scientific applications are mentioned. Three general nuclear structure topics, which can be addressed using RIBs, are discussed in some detail: possible modifications of the nuclear shell structure near the particle drip lines; various possibilities for decoupling the proton and neutron mass distributions for weakly bound nuclei; and tests of fundamental nuclear symmetries for self-conjugate and nearly self-conjugate nuclei. The use of RIBs to study r- and rp-process nucleosynthesis also is discussed

  11. Architectures and Algorithms for Control and Diagnostics of Coupled-Bunch Instabilities in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, Dmitry

    2003-07-08

    Modern light sources and circular colliders employ large numbers of high-intensity particle bunches in order to achieve high luminosity. The electromagnetic coupling of bunches via resonant structures causes coherent instabilities at high beam currents. Achieving high luminosity requires the control of such unstable motion. Feedback control is challenging due to wideband nature of the problem with up to 250 MHz bandwidths required. This thesis presents digital signal processing architectures and diagnostic techniques for control of longitudinal and transverse coupled-bunch instabilities. Diagnostic capabilities integrated into the feedback system allow one to perform fast transient measurements of unstable dynamics by perturbing the beam from the controlled state via feedback and recording the time-domain response. Such measurements enable one to thoroughly characterize plant (beam) dynamics as well as performance of the feedback system. Beam dynamics can change significantly over the operating range of accelerator currents and energies . Here we present several methods for design of robust stabilizing feedback controllers. Experimental results from several accelerators are presented. A new baseband architecture for transverse feedback is described that compactly implements the digital processing functions using field-programmable gate array devices. The architecture is designed to be software configurable so that the same hardware can be used for instability control in different accelerators.

  12. Architectures and Algorithms for Control and Diagnostics of Coupled-Bunch Instabilities in Circular Accelerators

    International Nuclear Information System (INIS)

    Teytelman, Dmitry

    2003-01-01

    Modern light sources and circular colliders employ large numbers of high-intensity particle bunches in order to achieve high luminosity. The electromagnetic coupling of bunches via resonant structures causes coherent instabilities at high beam currents. Achieving high luminosity requires the control of such unstable motion. Feedback control is challenging due to wideband nature of the problem with up to 250 MHz bandwidths required. This thesis presents digital signal processing architectures and diagnostic techniques for control of longitudinal and transverse coupled-bunch instabilities. Diagnostic capabilities integrated into the feedback system allow one to perform fast transient measurements of unstable dynamics by perturbing the beam from the controlled state via feedback and recording the time-domain response. Such measurements enable one to thoroughly characterize plant (beam) dynamics as well as performance of the feedback system. Beam dynamics can change significantly over the operating range of accelerator currents and energies . Here we present several methods for design of robust stabilizing feedback controllers. Experimental results from several accelerators are presented. A new baseband architecture for transverse feedback is described that compactly implements the digital processing functions using field-programmable gate array devices. The architecture is designed to be software configurable so that the same hardware can be used for instability control in different accelerators

  13. Fractional order PID control design for semi-active control of smart base-isolated structures: A multi-objective cuckoo search approach.

    Science.gov (United States)

    Zamani, Abbas-Ali; Tavakoli, Saeed; Etedali, Sadegh

    2017-03-01

    Fractional order PID (FOPID) controllers are introduced as a general form of classical PID controllers using fractional calculus. As this controller provides good disturbance rejection and is robust against plant uncertainties it is appropriate for the vibration mitigation in structures. In this paper, an FOPID controller is designed to adjust the contact force of piezoelectric friction dampers for semi-active control of base-isolated structures during far-field and near-field earthquake excitations. A multi-objective cuckoo search algorithm is employed to tune the controller parameters. Considering the resulting Pareto optimal front, the best input for the FOPID controller is selected. For seven pairs of earthquakes and nine performance indices, the performance of the proposed controller is compared with those provided by several well-known control techniques. According to the simulation results, the proposed controller performs better than other controllers in terms of simultaneous reduction of the maximum base displacement and story acceleration for various types of earthquakes. Also, it provides acceptable responses in terms of inter-story drifts, root mean square of base displacements and floor acceleration. In addition, the evaluation of robustness for a stiffness uncertainty of ±10% indicates that the proposed controller gives a robust performance against such modeling errors. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Summary Report of Working Group 6: Laser-Plasma Acceleration

    International Nuclear Information System (INIS)

    Leemans, Wim P.; Downer, Michael; Siders, Craig

    2006-01-01

    A summary is given of presentations and discussions in the Laser-Plasma Acceleration Working Group at the 2006 Advanced Accelerator Concepts Workshop. Presentation highlights include: widespread observation of quasi-monoenergetic electrons; good agreement between measured and simulated beam properties; the first demonstration of laser-plasma acceleration up to 1 GeV; single-shot visualization of laser wakefield structure; new methods for measuring <100 fs electron bunches; and new methods for 'machining' laser-plasma accelerator structures. Discussion of future direction includes: developing a roadmap for laser-plasma acceleration beyond 1 GeV; a debate over injection and guiding; benchmarking simulations with improved wake diagnostics; petawatt laser technology for future laser-plasma accelerators

  15. RF-Based Accelerators for HEDP Research

    CERN Document Server

    Staples, John W; Keller, Roderich; Ostroumov, Peter; Sessler, Andrew M

    2005-01-01

    Accelerator-driven High-Energy Density Physics experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the "warm dense matter" regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with either multiple parallel beams (combined at the target) or a single beam and a small stacking ring that accumulates 1 microcoulomb of charge. In either case, the beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  16. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Doche, A.; Beekman, C.; Corde, S.

    2017-01-01

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positron bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.

  17. Accelerator control systems in China

    International Nuclear Information System (INIS)

    Yao Chihyuan

    1992-01-01

    Three accelerator facilities were built in the past few years, the 2.8 GeV electron positron collider BEPC, the heavy ion SSC cyclotron accelerator HIRFL and the 800 MeV synchrotron radiation storage ring HESYRL. Aimed at different research areas, they represent a new generation of accelerator in China. This report describes the design philosophy, the structure, performance as well as future improvements of the control systems of the these facilities. (author)

  18. Robustness Analysis of Kinetic Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2009-01-01

    Kinetic structures in architecture follows a new trend which is emerging in responsive architecture coined by Nicholas Negroponte when he proposed that architecture may benefit from the integration of computing power into built spaces and structures, and that better performing, more rational...

  19. EPICS-QT based graphical user interface for accelerator control

    International Nuclear Information System (INIS)

    Basu, A.; Singh, S.K.; Rosily, Sherry; Bhagwat, P.V.

    2016-01-01

    Particle accelerators and many industrial complex systems, require a robust and efficient control for its proper operation to achieve required beam quality, safety of its sub component and all working personnel. This control is executed via a graphical user interface through which an operator interacts with the accelerator to achieve the desired state of the machine and its output. Experimental Physics and Industrial Control System (EPICS) is a widely used control system framework in the field of accelerator control. It acts as a middle layer between field devices and graphic user interface used by the operator. Field devices can also be made EPICS compliant by using EPICS based software in that. On the other hand Qt is a C++ framework which is widely used for creating very professional looking and user friendly graphical component. In Low Energy High Intensity Proton Accelerator (LEHIPA), which is the first stage of the three stage Accelerator Driven System (ADS) program taken by Bhabha Atomic Research Centre (BARC), it is decided that EPICS will be used for controlling the accelerator and Qt will be used for developing the various Graphic User Interface (GUI) for operation and diagnostics. This paper discuss the work carried out to achieve this goal in LEHIPA

  20. Accelerated whole-brain multi-parameter mapping using blind compressed sensing.

    Science.gov (United States)

    Bhave, Sampada; Lingala, Sajan Goud; Johnson, Casey P; Magnotta, Vincent A; Jacob, Mathews

    2016-03-01

    To introduce a blind compressed sensing (BCS) framework to accelerate multi-parameter MR mapping, and demonstrate its feasibility in high-resolution, whole-brain T1ρ and T2 mapping. BCS models the evolution of magnetization at every pixel as a sparse linear combination of bases in a dictionary. Unlike compressed sensing, the dictionary and the sparse coefficients are jointly estimated from undersampled data. Large number of non-orthogonal bases in BCS accounts for more complex signals than low rank representations. The low degree of freedom of BCS, attributed to sparse coefficients, translates to fewer artifacts at high acceleration factors (R). From 2D retrospective undersampling experiments, the mean square errors in T1ρ and T2 maps were observed to be within 0.1% up to R = 10. BCS was observed to be more robust to patient-specific motion as compared to other compressed sensing schemes and resulted in minimal degradation of parameter maps in the presence of motion. Our results suggested that BCS can provide an acceleration factor of 8 in prospective 3D imaging with reasonable reconstructions. BCS considerably reduces scan time for multiparameter mapping of the whole brain with minimal artifacts, and is more robust to motion-induced signal changes compared to current compressed sensing and principal component analysis-based techniques. © 2015 Wiley Periodicals, Inc.

  1. rf coaxial couplers for high-intensity linear accelerators

    International Nuclear Information System (INIS)

    Manca, J.J.; Knapp, E.A.

    1980-02-01

    Two rf coaxial couplers that are particularly suitable for intertank connection of the disk-and-washer accelerating structure for use in high-intensity linear accelerators have been developed. These devices have very high coupling to the accelerating structure and very low rf power loss at the operating frequency, and they can be designed for any relative particle velocity β > 0.4. Focusing and monitoring devices can be located inside these couplers

  2. Temperature rise and stress induced by microcracks in accelerating structures

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2010-12-01

    Full Text Available The temperature rise and induced stress due to Ohmic heating in the vicinity of microcracks on the walls of high-gradient accelerating structures are considered. The temperature rise and induced stress depend on the orientation of the crack with respect to the rf magnetic field, the shape of the crack, and the power and duration of the rf pulse. Under certain conditions the presence of cracks can double the temperature rise over that of a smooth surface. Stress at the bottom of the cracks can be several times larger than that of the case when there are no cracks. We study these effects both analytically and by computer simulation. It is shown that the stress in cracks is maximal when the crack depth is on the order of the thermal penetration depth.

  3. Gradient limitation in accelerating structures imposed by surface melting

    International Nuclear Information System (INIS)

    Wilson, Perry B

    2003-01-01

    A rough picture is beginning to emerge of the physics behind the maximum gradient that can be sustained in an accelerating structure without producing surface damage at a level sufficient to cause a measurable change in the rf properties of the structure. Field emission sites are known to trigger the formation of so-called plasma spots in regions of high dc or rf surface electric fields. A single plasma spot has a finite lifetime (∼ 20-50ns) and leaves behind a single crater. In the rf case, some fraction of the electrons emitted from the spot pick up energy from the rf field and back-bombard the area around the spot. Depending on the gradient, pulse length and available rf energy, multiple spots can form in close proximity. The combined back-bombardment power density from such a spot cluster can be sufficient to raise the surface temperature to the melting point in tens of nanoseconds over an area on the order of 100 microns in diameter. This molten area can now support a plasma capable of emitting several kiloamperes of electrons with an average energy of 50-100kV. This is sufficient beam power to collapse the field in a travelling structure in 30 ns or so. The plasma also exerts a tremendous pressure on the molten surface, sufficient to cause a macroscopic amount of material to migrate toward a region of lower surface field. Over time, this process can modify the profile of the iris tip and produce an unacceptable change in the phase shift per cell

  4. LOO: a low-order nonlinear transport scheme for acceleration of method of characteristics

    International Nuclear Information System (INIS)

    Li, Lulu; Smith, Kord; Forget, Benoit; Ferrer, Rodolfo

    2015-01-01

    This paper presents a new physics-based multi-grid nonlinear acceleration method: the low-order operator method, or LOO. LOO uses a coarse space-angle multi-group method of characteristics (MOC) neutron transport calculation to accelerate the fine space-angle MOC calculation. LOO is designed to capture more angular effects than diffusion-based acceleration methods through a transport-based low-order solver. LOO differs from existing transport-based acceleration schemes in that it emphasizes simplified coarse space-angle characteristics and preserves physics in quadrant phase-space. The details of the method, including the restriction step, the low-order iterative solver and the prolongation step are discussed in this work. LOO shows comparable convergence behavior to coarse mesh finite difference on several two-dimensional benchmark problems while not requiring any under-relaxation, making it a robust acceleration scheme. (author)

  5. Relativity and accelerator engineering

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Schenefeld (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-09-15

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  6. CLIC accelerator modules under construction at CERN

    CERN Multimedia

    Anna Pantelia

    2012-01-01

    The Compact LInear Collider (CLIC) study is dedicated to the design of an electron-positron (e- e+) linear accelerator, colliding particle beams at the energy of 3 TeV. The CLIC required luminosity can be reached with powerful particle beams (14 MW each) colliding with extremely small dimensions and high beam stability at the interaction point. The accelerated particle beams must have dimensions of 45 nm in the horizontal plane and 1 nm in the vertical plane. CLIC relies upon a novel two-beam acceleration concept in which the Radio Frequency (RF) power is extracted from a low energy but high-intensity particle beam, called Drive Beam (DB), and transferred to a parallel high energy accelerating particle beam, called Main Beam (MB). The extraction and transfer of the RF power is achieved by the Power Extraction and Transfer Structures (PETS) and the particle beam acceleration is achieved with high precision RF-Accelerating Structures (AS), operating at 11.9942 GHz with an accelerating gradient of 100 MV/m, whi...

  7. Robust design optimization using the price of robustness, robust least squares and regularization methods

    Science.gov (United States)

    Bukhari, Hassan J.

    2017-12-01

    In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.

  8. Accelerating the culture change!

    Science.gov (United States)

    Klunk, S W; Panetta, J; Wooten, J

    1996-11-01

    Exide Electronics, a major supplier of uninterruptible power system equipment, embarked on a journey of changing a culture to improve quality, enhance customer responsiveness, and reduce costs. This case study examines the evolution of change over a period of seven years, with particular emphasis on the most recent years, 1992 through 1995. The article focuses on the Raleigh plant operations and describes how each succeeding year built on the successes and fixed the shortcomings of the prior years to accelerate the culture change, including corrective action and continuous improvement processes, organizational structures, expectations, goals, achievements, and pitfalls. The real challenge to changing the culture was structuring a dynamic approach to accelerate change! The presentation also examines how the evolutionary process itself can be created and accelerated through ongoing communication, regular feedback of progress and goals, constant evaluation and direction of the process, and measuring and paying for performance.

  9. Robust predictions of the interacting boson model

    International Nuclear Information System (INIS)

    Casten, R.F.; Koeln Univ.

    1994-01-01

    While most recognized for its symmetries and algebraic structure, the IBA model has other less-well-known but equally intrinsic properties which give unavoidable, parameter-free predictions. These predictions concern central aspects of low-energy nuclear collective structure. This paper outlines these ''robust'' predictions and compares them with the data

  10. Development of low emittance high brightness electron beams and rf accelerating structures

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1991-01-01

    The main goals of this project were the construction of an S-band RF photoinjector for the production of a high brightness electron beam, and the development of a new type of RF accelerator structure; the Plane wave transformer. By the end of October 1991 the photoinjector had been built, its RF characteristics had been measured at low power, and an initial test of the gun at high RF power had been done. The Plane Wave Transformer had also been built and tested at lower power. In both cases the results obtained are mostly in agreement with the expected and calculated behavior

  11. A robust nonlinear filter for image restoration.

    Science.gov (United States)

    Koivunen, V

    1995-01-01

    A class of nonlinear regression filters based on robust estimation theory is introduced. The goal of the filtering is to recover a high-quality image from degraded observations. Models for desired image structures and contaminating processes are employed, but deviations from strict assumptions are allowed since the assumptions on signal and noise are typically only approximately true. The robustness of filters is usually addressed only in a distributional sense, i.e., the actual error distribution deviates from the nominal one. In this paper, the robustness is considered in a broad sense since the outliers may also be due to inappropriate signal model, or there may be more than one statistical population present in the processing window, causing biased estimates. Two filtering algorithms minimizing a least trimmed squares criterion are provided. The design of the filters is simple since no scale parameters or context-dependent threshold values are required. Experimental results using both real and simulated data are presented. The filters effectively attenuate both impulsive and nonimpulsive noise while recovering the signal structure and preserving interesting details.

  12. Fine-grained parallelism accelerating for RNA secondary structure prediction with pseudoknots based on FPGA.

    Science.gov (United States)

    Xia, Fei; Jin, Guoqing

    2014-06-01

    PKNOTS is a most famous benchmark program and has been widely used to predict RNA secondary structure including pseudoknots. It adopts the standard four-dimensional (4D) dynamic programming (DP) method and is the basis of many variants and improved algorithms. Unfortunately, the O(N(6)) computing requirements and complicated data dependency greatly limits the usefulness of PKNOTS package with the explosion in gene database size. In this paper, we present a fine-grained parallel PKNOTS package and prototype system for accelerating RNA folding application based on FPGA chip. We adopted a series of storage optimization strategies to resolve the "Memory Wall" problem. We aggressively exploit parallel computing strategies to improve computational efficiency. We also propose several methods that collectively reduce the storage requirements for FPGA on-chip memory. To the best of our knowledge, our design is the first FPGA implementation for accelerating 4D DP problem for RNA folding application including pseudoknots. The experimental results show a factor of more than 50x average speedup over the PKNOTS-1.08 software running on a PC platform with Intel Core2 Q9400 Quad CPU for input RNA sequences. However, the power consumption of our FPGA accelerator is only about 50% of the general-purpose micro-processors.

  13. Superconducting cavities for the APT accelerator

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Gentzlinger, R.C.; Haynes, B.; Montoya, D.I.; Rusnak, B.; Shapiro, A.H.

    1997-01-01

    The design of an Accelerator Production of Tritium (APT) facility being investigated at Los Alamos includes a linear accelerator using superconducting rf-cavities for the acceleration of a high-current cw proton beam. For electron accelerators with particles moving at the speed of light (β ∼ 1.0), resonators with a rounded shape, consisting of ellipsoidal and cylindrical sections, are well established. They are referred to as elliptical cavities. For the APT-design, this shape has been adapted for much slower proton beams with β ranging from 0.60 to 0.94. This is a new energy range, in which resonators of an elliptical type have never been used before. Simulations with the well-proven electromagnetic modeling tools MAFIA and SUPERFISH were performed. The structures have been optimized for their rf and mechanical properties as well as for beam dynamics requirements. The TRAK-RF simulation code is used to investigate potential multipacting in these structures. All the simulations will be put to a final test in experiments performed on single cell cavities that have started in the structures laboratory

  14. SU-E-T-625: Robustness Evaluation and Robust Optimization of IMPT Plans Based on Per-Voxel Standard Deviation of Dose Distributions.

    Science.gov (United States)

    Liu, W; Mohan, R

    2012-06-01

    Proton dose distributions, IMPT in particular, are highly sensitive to setup and range uncertainties. We report a novel method, based on per-voxel standard deviation (SD) of dose distributions, to evaluate the robustness of proton plans and to robustly optimize IMPT plans to render them less sensitive to uncertainties. For each optimization iteration, nine dose distributions are computed - the nominal one, and one each for ± setup uncertainties along x, y and z axes and for ± range uncertainty. SD of dose in each voxel is used to create SD-volume histogram (SVH) for each structure. SVH may be considered a quantitative representation of the robustness of the dose distribution. For optimization, the desired robustness may be specified in terms of an SD-volume (SV) constraint on the CTV and incorporated as a term in the objective function. Results of optimization with and without this constraint were compared in terms of plan optimality and robustness using the so called'worst case' dose distributions; which are obtained by assigning the lowest among the nine doses to each voxel in the clinical target volume (CTV) and the highest to normal tissue voxels outside the CTV. The SVH curve and the area under it for each structure were used as quantitative measures of robustness. Penalty parameter of SV constraint may be varied to control the tradeoff between robustness and plan optimality. We applied these methods to one case each of H&N and lung. In both cases, we found that imposing SV constraint improved plan robustness but at the cost of normal tissue sparing. SVH-based optimization and evaluation is an effective tool for robustness evaluation and robust optimization of IMPT plans. Studies need to be conducted to test the methods for larger cohorts of patients and for other sites. This research is supported by National Cancer Institute (NCI) grant P01CA021239, the University Cancer Foundation via the Institutional Research Grant program at the University of Texas MD

  15. CAS CERN Accelerator School third general accelerator physics course

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    The general course on accelerator physics given in Salamanca, Spain, closely followed those organised by the CERN Accelerator School at Gif-sur-Yvette, Paris in 1984, and at Aarhus, Denmark in 1986 and whose proceedings were published as CERN Yellow Reports 85-19 (1985) and 87-10 (1987) respectively. However, certain topics were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include beam-cooling concepts, Liouville's theorem and emittance, emittance dilution in transfer lines, weak-betatron coupling, diagnostics, while the seminars are on positron and electron sources, linac structures and the LEP L3 experiment, together with industrial aspects of particle accelerators. Also included are errata and addenda to the Yellow Reports mentioned above. (orig.)

  16. Generation of auroral kilometric radiation and the structure of auroral acceleration region

    International Nuclear Information System (INIS)

    Lee, L.C.; Kan, J.R.; Wu, C.S.

    1980-01-01

    Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by the backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1-2 Rsub(E). The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively approximately 2000 and approximately 9000 km. (author)

  17. First high-power model of the annular-ring coupled structure for use in the Japan Proton Accelerator Research Complex linac

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ao

    2012-01-01

    Full Text Available A prototype cavity for the annular-ring coupled structure (ACS for use in the Japan Proton Accelerator Research Complex (J-PARC linac has been developed to confirm the feasibility of achieving the required performance. This prototype cavity is a buncher module, which includes ten accelerating cells in total. The ACS cavity is formed by the silver brazing of ACS half-cell pieces stacked in a vacuum furnace. The accelerating cell of the ACS is surrounded by a coupling cell. We, therefore, tuned the frequencies of the accelerating and coupling cells by an ultraprecision lathe before brazing, taking into account the frequency shift due to brazing. The prototype buncher module was successfully conditioned up to 600 kW, which corresponds to an accelerating field that is higher than the designed field of 4.1  MV/m by 30%. We describe the frequency-tuning results for the prototype buncher module and its high-power conditioning.

  18. CEBAF [Continuous Electron Beam Accelerator Facility] design report

    International Nuclear Information System (INIS)

    1986-05-01

    This book describes the conceptual design of, and the planning for, the Continuous Electron Beam Accelerator Facility (CEBAF), which will be a high-intensity, continuous-wave electron linear accelerator (linac) for nuclear physics. Its principal scientific goal is to understand the quark structure, behavior, and clustering of individual nucleons in the nuclear medium, and simultaneously to understand the forces governing this behavior. The linac will consist of 1 GeV of accelerating structure, split into two antiparallel 0.5-GeV segments. The segments will be connected by a beam transport system to circulate the electron beams from one segment to the other for up to four complete passes of acceleration. The maximum beam energy will be 4 GeV at a design current of 200 microamperes. The accelerator complex will also include systems to extract three continuous beams from the linac and to deliver them to three experimental halls equipped with detectors and instrumentation for nuclear physics research. The accelerating structure will be kept superconducting within insulated cryostats filled with liquid helium produced at a central helium refrigerator and distributed to the cryostats via insulated transfer lines. An injector, instrumentation and controls for the accelerator, radio-frequency power systems, and several support facilities will also be provided. A cost estimate based on the Work Breakdown Structure has been completed. Assuming a five-year construction schedule starting early in FY 1987, the total estimated cost is $236 million (actual year dollars), including contingency

  19. Optimizing Diamond Structured Automobile Supply Chain Network Towards a Robust Business Continuity Management

    Directory of Open Access Journals (Sweden)

    Abednico Montshiwa

    2016-02-01

    Full Text Available This paper presents an optimized diamond structured automobile supply chain network towards a robust Business Continuity Management model. The model is necessitated by the nature of the automobile supply chain. Companies in tier two are centralized and numerically limited and have to supply multiple tier one companies with goods and services. The challenge with this supply chain structure is the inherent risks in the supply chain. Once supply chain disruption takes place at tier 2 level, the whole supply chain network suffers huge loses. To address this challenge, the paper replaces Risk Analysis with Risk Ranking and it introduces Supply Chain Cooperation (SCC to the traditional Business Continuity Plan (BCP concept. The paper employed three statistical analysis techniques (correlation analysis, regression analysis and Smart PLS 3.0 calculations. In this study, correlation and regression analysis results on risk rankings, SCC and Business Impact Analysis were significant, ascertaining the value of the model. The multivariate data analysis calculations demonstrated that SCC has a positive total significant effect on risk rankings and BCM while BIA has strongest positive effects on all BCP factors. Finally, sensitivity analysis demonstrated that company size plays a role in BCM.

  20. Particle acceleration in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Baker, K.B.

    1978-10-01

    The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied, using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star

  1. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-offs on Phenotype Robustness in Biological Networks. Part III: Synthetic Gene Networks in Synthetic Biology

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties that are observed in biological systems at many different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be large enough to confer: intrinsic robustness for tolerating intrinsic parameter fluctuations; genetic robustness for buffering genetic variations; and environmental robustness for resisting environmental disturbances. Network robustness is needed so phenotype stability of biological network can be maintained, guaranteeing phenotype robustness. Synthetic biology is foreseen to have important applications in biotechnology and medicine; it is expected to contribute significantly to a better understanding of functioning of complex biological systems. This paper presents a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation for synthetic gene networks in synthetic biology. Further, from the unifying mathematical framework, we found that the phenotype robustness criterion for synthetic gene networks is the following: if intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in synthetic biology can also be investigated through corresponding phenotype robustness criteria from the systematic point of view. Finally, a robust synthetic design that involves network evolution algorithms with desired behavior under intrinsic parameter fluctuations, genetic variations, and environmental

  2. Robust methods and asymptotic theory in nonlinear econometrics

    CERN Document Server

    Bierens, Herman J

    1981-01-01

    This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non­ linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...

  3. Superconducting accelerating structures for very low velocity ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Shepard, K.W.; Ostroumov, P.N.; Fuerst, J.D.; Waldschmidt, G.; /Argonne; Gonin, I.V.; /Fermilab

    2008-01-01

    This paper presents designs for four types of very-low-velocity superconducting accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0.006 < v/c < 0.06. Superconducting TEM-class cavities have been widely applied to CW acceleration of ion beams. SC linacs can be formed as an array of independently-phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the US and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front-end of such linacs, particularly for the post-acceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0.008 < {beta} = v/c < 0.05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications.

  4. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    International Nuclear Information System (INIS)

    Park, J.J.; Buksa, J.J.

    1994-01-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed

  5. Multi-beam linear accelerator EVT

    Energy Technology Data Exchange (ETDEWEB)

    Teryaev, Vladimir E., E-mail: vladimir_teryaev@mail.ru [Omega-P, Inc., New Haven, CT 06510 (United States); Kazakov, Sergey Yu. [Fermilab, Batavia, IL 60510 (United States); Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT 06510 (United States); Yale University, New Haven, CT 06511 (United States)

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  6. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    2000-01-01

    Full text: The principal Department's duties in 1999 have not changed and were consequently directed on development in the area of electron and ion accelerators and their applications in science, medicine and technology. Two important events dominated the current and future orientation of R and D activity. The first was finalizing of long time efforts for preparing of the ordered research project granted by the State Committee of Scientific Research and devoted to elaboration and design of a new electron accelerator for radiotherapy, with two energies of X-ray photon beams. This project was formally approved in March 1999 and due to organisatory procedures set in operation after few months. In the second half of 1999, an important progress was done in advancing the project. The second mentioned event is foundation by the government of a Multiyear Research Programme - called ''Isotopes and Accelerators''. This programme formulates a broad spectrum of important tasks oriented on application of isotopes and accelerator techniques in many branches of science and national economy. The expected participation of the Department in this programme comprises following subjects: medical interoperative accelerator, high power electron accelerator for radiation technology, and upgrading of cyclotron for isotopes production. In course of 1999, preparatory studies in these subjects were carried out. Some of the results were presented on conferences and seminars. An interesting experience was the expertise done on technical status of Eindhoven isochronous cyclotron and its possible transfer to Swierk as a professional tool for isotopes production. In the group of medical applications, three subjects were continued during 1999 and brought important results: - completion of microwave measurements of high gradient acceleration structure for low energy accelerators; such structure will be very useful solution for Co-Line and interoperative accelerator; - evaluation of design data and

  7. The laser accelerator-another unicorn in the garden

    Science.gov (United States)

    Hand, L. N.

    1981-07-01

    Some proposed techniques for using laser beams to accelerate charged particles was reviewed. Two specific ideas for grating type accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a multipass collider; a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak power requirements to be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.

  8. The laser accelerator-another unicorn in the garden

    International Nuclear Information System (INIS)

    Hand, L.N.

    1981-07-01

    Some proposed techniques for using laser beams to accelerate charged particles are reviewed. Two specific ideas for ''grating-type'' accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a ''multi-pass collider'', a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single-pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak power requirements be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range. (author)

  9. Optimization of accelerator control

    International Nuclear Information System (INIS)

    Vasiljev, N.D.; Mozin, I.V.; Shelekhov, V.A.; Efremov, D.V.

    1992-01-01

    Expensive exploitation of charged particle accelerators is inevitably concerned with requirements of effectively obtaining of the best characteristics of accelerated beams for physical experiments. One of these characteristics is intensity. Increase of intensity is hindered by a number of effects, concerned with the influence of the volume charge field on a particle motion dynamics in accelerator's chamber. However, ultimate intensity, determined by a volume charge, is almost not achieved for the most of the operating accelerators. This fact is caused by losses of particles during injection, at the initial stage of acceleration and during extraction. These losses are caused by deviations the optimal from real characteristics of the accelerating and magnetic system. This is due to a number of circumstances, including technological tolerances on structural elements of systems, influence of measuring and auxiliary equipment and beam consumers' installations, placed in the closed proximity to magnets, and instability in operation of technological systems of accelerator. Control task consists in compensation of deviations of characteristics of magnetic and electric fields by optimal selection of control actions. As for technical means, automatization of modern accelerators allows to solve optimal control problems in real time. Therefore, the report is devoted to optimal control methods and experimental results. (J.P.N.)

  10. Robust D-optimal designs under correlated error, applicable invariantly for some lifetime distributions

    International Nuclear Information System (INIS)

    Das, Rabindra Nath; Kim, Jinseog; Park, Jeong-Soo

    2015-01-01

    In quality engineering, the most commonly used lifetime distributions are log-normal, exponential, gamma and Weibull. Experimental designs are useful for predicting the optimal operating conditions of the process in lifetime improvement experiments. In the present article, invariant robust first-order D-optimal designs are derived for correlated lifetime responses having the above four distributions. Robust designs are developed for some correlated error structures. It is shown that robust first-order D-optimal designs for these lifetime distributions are always robust rotatable but the converse is not true. Moreover, it is observed that these designs depend on the respective error covariance structure but are invariant to the above four lifetime distributions. This article generalizes the results of Das and Lin [7] for the above four lifetime distributions with general (intra-class, inter-class, compound symmetry, and tri-diagonal) correlated error structures. - Highlights: • This paper presents invariant robust first-order D-optimal designs under correlated lifetime responses. • The results of Das and Lin [7] are extended for the four lifetime (log-normal, exponential, gamma and Weibull) distributions. • This paper also generalizes the results of Das and Lin [7] to more general correlated error structures

  11. Effect of interaction strength on robustness of controlling edge dynamics in complex networks

    Science.gov (United States)

    Pang, Shao-Peng; Hao, Fei

    2018-05-01

    Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.

  12. Improvements of the beam timing structure during a slow extraction from the 70 GeV IFVE accelerator

    International Nuclear Information System (INIS)

    Vorob'ev, V.K.; Levin, A.V.; Mojzhes, L.L.; Myznikov, K.P.; Tatarenko, V.M.; Fedotov, Yu.S.

    1977-01-01

    To improve the density uniformity of an extracted beam in the slow extraction system of the IFVE accelerator a correlation analysis of a timing structure of a proton beam is developed. A passive filter for a power supply system of an annular electromagnet is reconstructed by introduction of a double-loop circuit to reduce pulsations of 600 Hz main frequency and higher harmonics. To suppress accelerator field pulsations of subharmonic components from 50 to 300 Hz an active filter was introduced, where high Q qualities band filters were inserted. Using the above methods of pulsation suppression permits to improve the density uniformity of the extracted beam

  13. CAS CERN accelerator school: 5. general accelerator physics course. Vol. 2. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1994-01-01

    The fifth CERN Accelerator School (CAS) basic course on General Accelerator Physics was given at the University of Jyvaeskylae, Finland, from 7 to 18 September 1992. Its syllabus was based on the previous similar courses held at Gif-sur-Yvette in 1984, Aarhus 1986, Salamanca 1988 and Juelich 1990, and whose proceedings were published as CERN Reports 85-19, 87-10, 89-05 and 91-04, respectively. However, certain topics were treated in a different way, improved or extended, while new subjects were introduced. As far as the proceedings of this school are concerned the opportunity was taken not only to include the lectures presented but also to select and revise the most appropriate chapters from the previous similar schools. In this way the present volumes constitute a rather complete introduction to all aspects of the design and construction of particle accelerators, including optics, emittance, luminosity, longitudinal and transverse beam dynamics, insertions, chromaticity, transfer lines, resonances, accelerating structures, tune shifts, coasting beams, lifetime, synchrotron radiation, radiation damping, beam-beam effects, diagnostics, cooling, ion and positron sources, RF and vacuum systems, injection and extraction, conventional, permanent and superconducting magnets, cyclotrons, RF linear accelerators, microtrons, as well as applications of particle accelerators (including therapy) and the history of accelerators. See hints under the relevant topics. (orig.)

  14. Structural Shielding Design of a 6 MV Flattening Filter Free Linear Accelerator: Indian Scenario

    OpenAIRE

    Mishra, Bibekananda; Selvam, T. Palani; Sharma, P. K. Dash

    2017-01-01

    Detailed structural shielding of primary and secondary barriers for a 6 MV medical linear accelerator (LINAC) operated with flattening filter (FF) and flattening filter free (FFF) modes are calculated. The calculations have been carried out by two methods, one using the approach given in National Council on Radiation Protection (NCRP) Report No. 151 and the other based on the monitor units (MUs) delivered in clinical practice. Radiation survey of the installations was also carried out. NCRP a...

  15. 805 MHz Beta = 0.47 Elliptical Accelerating Structure R & D

    Energy Technology Data Exchange (ETDEWEB)

    S. Bricker; C. Compton; W. Hartung; M. Johnson; F. Marti; J. Popierlarski; R. C. York; et al

    2008-09-22

    A 6-cell 805 MHz superconducting cavity for acceleration in the velocity range of about 0.4 to 0.53 times the speed of light was designed. After single-cell prototyping, three 6-cell niobium cavities were fabricated. In vertical RF tests of the 6-cell cavities, the measured quality factors (Q{sub 0}) were between 7 {center_dot} 10{sup 9} and 1.4 {center_dot} 10{sup 10} at the design field (accelerating gradient of 8 to 10 MV/m). A rectangular cryomodule was designed to house 4 cavities per cryomodule. The 4-cavity cryomodule could be used for acceleration of ions in a linear accelerator, with focusing elements between the cryomodules. A prototype cryomodule was fabricated to test 2 cavities under realistic operating conditions. Two of the 6-cell cavities were equipped with helium tanks, tuners, and input coupler and installed into the cryomodule. The prototype cryomodule was used to verify alignment, electromagnetic performance, frequency tuning, cryogenic performance, low-level RF control, and control of microphonics.

  16. From accelerators to storage rings to

    International Nuclear Information System (INIS)

    Panofsky, W.K.H.

    1983-02-01

    This talk gives a general but highly subjective overview of the expectation for accelerators and colliders for high energy physics, but not extended developments of accelerators and storage rings for application to nuclear structure physics, synchrotron radiation, medical applications or industrial use

  17. The Accelerator Markup Language and the Universal Accelerator Parser

    International Nuclear Information System (INIS)

    Sagan, D.; Forster, M.; Cornell U., LNS; Bates, D.A.; LBL, Berkeley; Wolski, A.; Liverpool U.; Cockcroft Inst. Accel. Sci. Tech.; Schmidt, F.; CERN; Walker, N.J.; DESY; Larrieu, T.; Roblin, Y.; Jefferson Lab; Pelaia, T.; Oak Ridge; Tenenbaum, P.; Woodley, M.; SLAC; Reiche, S.; UCLA

    2006-01-01

    A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format

  18. Operation of the tandem-linac accelerator

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The tandem-linac accelerator system is operated as a source of energetic heavy-ion projectiles for research in several areas of nuclear physics and occasionally in other areas of science. The accelerator system consists of a 9-MV tandem electrostatic accelerator and a superconducting-linac energy booster that can provide an additional 20 MV of acceleration. A figure shows the layout of this system, which will be operated in its present form until September 1985, when it will be incorporated into the larger ATLAS system. In both the present and future forms the accelerator is designed to provide the exceptional beam quality and overall versatility required for precision nuclear-structure research

  19. Genesis of the "Critical-Acceleration of MOND" and Its Role in "Formation of Structures"

    Directory of Open Access Journals (Sweden)

    Tank H. K.

    2012-10-01

    Full Text Available As an attempt to explain the “flattening of galaxies rotation-curves”, Milgrom proposed a Modification of Newtonian Dynamics MOND, in which he needed a new constant of nature a 0 , termed as “critical-acceleration-of MOND”, in his best-fit empirical formula. But so far it has been an ad-hoc introduction of a new constant. Whereas this article pro- poses: (i a genesis of this constant; (ii explains its recurrences in various physical sit- uations; and (iii its role in determining the size and radii of various structures, like: the electron, the proton, the nucleus-of-atom, the globular-clusters, the spiral-galaxies, the galactic-clusters and the whole universe. In this process we get a new interpretation of “the cosmological-red-shift”, that the linear part of the cosmological-red-shift may not be due to “metric-expansion-of-space”; and even the currently-believed “accelerated- expansion” may be slowing down with time.

  20. Manufacturing of mushroom-shaped structures and its hydrophobic robustness analysis based on energy minimization approach

    Science.gov (United States)

    Wang, Li; Yang, Xiaonan; Wang, Quandai; Yang, Zhiqiang; Duan, Hui; Lu, Bingheng

    2017-07-01

    The construction of stable hydrophobic surfaces has increasingly gained attention owing to its wide range of potential applications. However, these surfaces may become wet and lose their slip effect owing to insufficient hydrophobic stability. Pillars with a mushroom-shaped tip are believed to enhance hydrophobicity stability. This work presents a facile method of manufacturing mushroom-shaped structures, where, compared with the previously used method, the modulation of the cap thickness, cap diameter, and stem height of the structures is more convenient. The effects of the development time on the cap diameter and overhanging angle are investigated and well-defined mushroom-shaped structures are demonstrated. The effect of the microstructure geometry on the contact state of a droplet is predicted by taking an energy minimization approach and is experimentally validated with nonvolatile ultraviolet-curable polymer with a low surface tension by inspecting the profiles of liquid-vapor interface deformation and tracking the trace of the receding contact line after exposure to ultraviolet light. Theoretical and experimental results show that, compared with regular pillar arrays having a vertical sidewall, the mushroom-like structures can effectively enhance hydrophobic stability. The proposed manufacturing method will be useful for fabricating robust hydrophobic surfaces in a cost-effective and convenient manner.

  1. Second International Conference on Accelerating Biopharmaceutical Development

    Science.gov (United States)

    2009-01-01

    The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme “Delivering cost-effective, robust processes and methods quickly and efficiently.” The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development. PMID:20065637

  2. Washington Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Highlights of the 1993 Particle Accelerator Conference, held in Washington in May, were picked out in the previous issue (page 18). Talks on the big hadron colliders reflected the sea-change in the accelerator world where the scale, complexity and cost of the front-line projects has slowed the pace of developments (not unlike the scene in particle physics itself). Speaking before the anti-SSC vote in the House of Representatives in June, Dick Briggs reviewed the situation at the SSC Superconducting Supercollider in Ellis County, Texas. The linac building is near completion and the Low Energy Booster will be ready to receive components early next year. Tunnelling for the Main Ring is advancing rapidly with four boring machines in action. Five miles of tunnel have been completed since January and the pace has now stepped up to nearly a mile each week. The superconducting magnet news is good. Following the successful initial string test of a half cell of the magnet lattice, a two-ring full cell with all associated services is being assembled. The mechanical robustness of the magnet design was confirmed when a dipole was taken to 9.7 T when cooled to 1.8 K. In the Magnet Test Lab itself, ten test stands are installed and equipped

  3. Washington Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-09-15

    Highlights of the 1993 Particle Accelerator Conference, held in Washington in May, were picked out in the previous issue (page 18). Talks on the big hadron colliders reflected the sea-change in the accelerator world where the scale, complexity and cost of the front-line projects has slowed the pace of developments (not unlike the scene in particle physics itself). Speaking before the anti-SSC vote in the House of Representatives in June, Dick Briggs reviewed the situation at the SSC Superconducting Supercollider in Ellis County, Texas. The linac building is near completion and the Low Energy Booster will be ready to receive components early next year. Tunnelling for the Main Ring is advancing rapidly with four boring machines in action. Five miles of tunnel have been completed since January and the pace has now stepped up to nearly a mile each week. The superconducting magnet news is good. Following the successful initial string test of a half cell of the magnet lattice, a two-ring full cell with all associated services is being assembled. The mechanical robustness of the magnet design was confirmed when a dipole was taken to 9.7 T when cooled to 1.8 K. In the Magnet Test Lab itself, ten test stands are installed and equipped.

  4. Multi-stage wake-field accelerator

    International Nuclear Information System (INIS)

    Gai, Wei.

    1989-01-01

    In this paper we propose a multi-stage wake field acceleration scheme to overcome the low transformer ratio problem and still provide high accelerating gradients. The idea is very simple. We use a train of several electron bunches from a linear accelerator (main linac) with well defined separations between the bunches (tens of ns) to drive wake field devices. Here we have made the assumption that the wake field devices are available, whether plasma, iris-loaded metallic or dielectric wake field structures. 10 refs

  5. Physics design of an accelerator for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-08-01

    Full Text Available An accelerator-driven subcritical system (ADS program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  6. An FFT-accelerated fdtd scheme with exact absorbing conditions for characterizing axially symmetric resonant structures

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    An accurate and efficient finite-difference time-domain (FDTD) method for characterizing transient waves interactions on axially symmetric structures is presented. The method achieves its accuracy and efficiency by employing localized and/or fast Fourier transform (FFT) accelerated exact absorbing conditions (EACs). The paper details the derivation of the EACs, discusses their implementation and discretization in an FDTD method, and proposes utilization of a blocked-FFT based algorithm for accelerating the computation of temporal convolutions present in nonlocal EACs. The proposed method allows transient analyses to be carried for long time intervals without any loss of accuracy and provides reliable numerical data pertinent to physical processes under resonant conditions. This renders the method highly useful in characterization of high-Q microwave radiators and energy compressors. Numerical results that demonstrate the accuracy and efficiency of the method are presented.

  7. Perceptual Robust Design

    DEFF Research Database (Denmark)

    Pedersen, Søren Nygaard

    The research presented in this PhD thesis has focused on a perceptual approach to robust design. The results of the research and the original contribution to knowledge is a preliminary framework for understanding, positioning, and applying perceptual robust design. Product quality is a topic...... been presented. Therefore, this study set out to contribute to the understanding and application of perceptual robust design. To achieve this, a state-of-the-art and current practice review was performed. From the review two main research problems were identified. Firstly, a lack of tools...... for perceptual robustness was found to overlap with the optimum for functional robustness and at most approximately 2.2% out of the 14.74% could be ascribed solely to the perceptual robustness optimisation. In conclusion, the thesis have offered a new perspective on robust design by merging robust design...

  8. Accelerated Test Method for Corrosion Protective Coatings Project

    Science.gov (United States)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  9. Real-Time Continuous Response Spectra Exceedance Calculation Displayed in a Web-Browser Enables Rapid and Robust Damage Evaluation by First Responders

    Science.gov (United States)

    Franke, M.; Skolnik, D. A.; Harvey, D.; Lindquist, K.

    2014-12-01

    A novel and robust approach is presented that provides near real-time earthquake alarms for critical structures at distributed locations and large facilities using real-time estimation of response spectra obtained from near free-field motions. Influential studies dating back to the 1980s identified spectral response acceleration as a key ground motion characteristic that correlates well with observed damage in structures. Thus, monitoring and reporting on exceedance of spectra-based thresholds are useful tools for assessing the potential for damage to facilities or multi-structure campuses based on input ground motions only. With as little as one strong-motion station per site, this scalable approach can provide rapid alarms on the damage status of remote towns, critical infrastructure (e.g., hospitals, schools) and points of interests (e.g., bridges) for a very large number of locations enabling better rapid decision making during critical and difficult immediate post-earthquake response actions. Details on the novel approach are presented along with an example implementation for a large energy company. Real-time calculation of PSA exceedance and alarm dissemination are enabled with Bighorn, an extension module based on the Antelope software package that combines real-time spectral monitoring and alarm capabilities with a robust built-in web display server. Antelope is an environmental data collection software package from Boulder Real Time Technologies (BRTT) typically used for very large seismic networks and real-time seismic data analyses. The primary processing engine produces continuous time-dependent response spectra for incoming acceleration streams. It utilizes expanded floating-point data representations within object ring-buffer packets and waveform files in a relational database. This leads to a very fast method for computing response spectra for a large number of channels. A Python script evaluates these response spectra for exceedance of one or more

  10. TIARA: Toward accelerator R&D coordination

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The preparatory phase of the TIARA (Test Infrastructure and Accelerator Research Area) project has begun. In January, members from 11 research institutes in 8 European countries began a three-year collaboration intended to enhance, improve and structure R&D efforts in the area of accelerator science and technology in Europe.   Partly funded by the European Commission under its Seventh Framework Programme (FP7), the TIARA project is being coordinated by the CEA (Commissariat à l’Énergie Atomique et aux Energies Alternatives). “The aim of the project is to arrive at an organisational structure that will provide coordination for R&D efforts and associated infrastructures in the field of particle accelerators in Europe,” explains the CEA’s Céline Tanguy, project coordinator assistant. “The new structure, which we hope will be a durable one, will be set up at the end of the project’s preparatory phase....

  11. Development of a 20 MeV Dielectric-Loaded Test Accelerator

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.; Lombardi, Marcie; Kinkead, Allen K.; Gai, Wei; Power, John G.; Konecny, Richard; Long, Jidong; Jing, Chunguang; Tantawi, Sami G.; Nantista, Christopher D.; Bruce, Ralph W.; Lewis, David III

    2006-01-01

    This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a ∼250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to ∼8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year

  12. High-gradient normal-conducting RF structures for muon cooling channels

    International Nuclear Information System (INIS)

    Corlett, J.N.; Green, M.A.; Hartman, N.; Ladran, A.; Li, D.; MacGill, R.; Rimmer, R.; Moretti, A.; Jurgens, T.; Holtkamp, N.; Black, E.; Summers, D.; Booke, M.

    2001-01-01

    We present a status report on the research and development of high-gradient normal-conducting RF structures for the ionization cooling of muons in a neutrino factory or muon collider. High-gradient RF structures are required in regions enclosed in strong focusing solenoidal magnets, precluding the application of superconducting RF technology [1]. We propose using linear accelerating structures, with individual cells electromagnetically isolated, to achieve the required gradients of over 15 MV/m at 201 MHz and 30 MV/m at 805 MHz. Each cell will be powered independently, and cell length and drive phase adjusted to optimize shunt impedance of the assembled structure. This efficient design allows for relatively small field enhancement on the structure walls, and an accelerating field approximately 1.7 times greater than the peak surface field. The electromagnetic boundary of each cell may be provided by a thin Be sheet, or an assembly of thin-walled metal tubes. Use of thin, low-Z materials will allow passage of the muon beams without significant deterioration in beam quality due to scattering. R and D in design and analysis of robust structures that will operate under large electric and magnetic fields and RF current heating are discussed, including the experimental program based in a high-power test laboratory developed for this purpose

  13. Enrichment of Druggable Conformations from Apo Protein Structures Using Cosolvent-Accelerated Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Andrew Kalenkiewicz

    2015-04-01

    Full Text Available Here we describe the development of an improved workflow for utilizing experimental and simulated protein conformations in the structure-based design of inhibitors for anti-apoptotic Bcl-2 family proteins. Traditional structure-based approaches on similar targets are often constrained by the sparsity of available structures and difficulties in finding lead compounds that dock against flat, flexible protein-protein interaction surfaces. By employing computational docking of known small molecule inhibitors, we have demonstrated that structural ensembles derived from either accelerated MD (aMD or MD in the presence of an organic cosolvent generally give better scores than those assessed from analogous conventional MD. Furthermore, conformations obtained from combined cosolvent aMD simulations started with the apo-Bcl-xL structure yielded better average and minimum docking scores for known binders than an ensemble of 72 experimental apo- and ligand-bound Bcl-xL structures. A detailed analysis of the simulated conformations indicates that the aMD effectively enhanced conformational sampling of the flexible helices flanking the main Bcl-xL binding groove, permitting the cosolvent acting as small ligands to penetrate more deeply into the binding pocket and shape ligand-bound conformations not evident in conventional simulations. We believe this approach could be useful for identifying inhibitors against other protein-protein interaction systems involving highly flexible binding sites, particularly for targets with less accumulated structural data.

  14. High intensity proton accelerator program

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Mizumoto, Motoharu; Nishida, Takahiko

    1991-06-01

    Industrial applications of proton accelerators to the incineration of the long-lived nuclides contained in the spent fuels have long been investigated. Department of Reactor Engineering of Japan Atomic Energy Research Institute (JAERI) has formulated the Accelerator Program through the investigations on the required performances of the accelerator and its development strategies and also the research plan using the accelerator. Outline of the Program is described in the present report. The target of the Program is the construction of the Engineering Test Accelerators (ETA) of the type of a linear accelerator with the energy 1.5 GeV and the proton current ∼10 mA. It is decided that the construction of the Basic Technology Accelerator (BTA) is necessary as an intermediate step, aiming at obtaining the required technical basis and human resources. The Basic Technology Accelerator with the energy of 10 MeV and with the current of ∼10 mA is composed of the ion source, RFQ and DTL, of which system forms the mock-up of the injector of ETA. Development of the high-β structure which constitutes the main acceleration part of ETA is also scheduled. This report covers the basic parameters of the Basic Technology Accelerator (BTA), development steps of the element and system technologies of the high current accelerators and rough sketch of ETA which can be prospected at present. (J.P.N.)

  15. Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories

    Science.gov (United States)

    Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele

    2013-01-01

    We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth…

  16. Study of higher order modes in superconducting accelerating structures for linac applications

    Energy Technology Data Exchange (ETDEWEB)

    Schuh, Marcel

    2011-06-22

    Higher Order Modes (HOMs) can severely limit the operation of superconducting cavities in a linear accelerator with high beam current, high duty factor and complex pulse structure. Therefore, the full HOM spectrum has to be analysed in detail to identify potentially dangerous modes already during the design phase and to define their damping requirements. For this purpose a dedicated beam dynamics simulation code, Simulation of higher order Mode Dynamics (SMD), focusing on beam-HOM interaction, has been developed in the frame of this project. SMD allows to analyse the beam behaviour under the presence of HOMs, taking into account many important effects, such as for example the HOM frequency spread, beam input jitter, different chopping patterns, as well as klystron and alignment errors. SMD is used to investigate in detail into the effects of HOMs in the Superconducting Proton Linac (SPL) at CERN and in particular their potential to drive beam instabilities in the longitudinal and transverse direction. Based on these results, HOM damping requirements for the HOM coupler design are then defined. In addition, the linear accelerators of the European Spallation Source (ESS) and the Spallation Neutron Source (SNS) are analysed with respect to HOM impact and the results are compared with the SPL simulations. (orig.)

  17. Recent progress of the advanced test accelerator

    International Nuclear Information System (INIS)

    Prono, D.S.

    1985-01-01

    The Advanced Test Accelerator (ATA) of Lawrence Livermore National Laboratory is a linear induction accelerator whose electron beam parameters are 10 kA, 50 MeV, and 70 ns. This accelerator structure basically is a 2.5 MeV injector followed by 190 identical induction accelerator cores each of which incrementally adds 250 kV to the electron beam as it threads the center of the core. Recent work on beam stability, beam emittance and beam brightness is reported

  18. The Crane Robust Control

    Directory of Open Access Journals (Sweden)

    Marek Hicar

    2004-01-01

    Full Text Available The article is about a control design for complete structure of the crane: crab, bridge and crane uplift.The most important unknown parameters for simulations are burden weight and length of hanging rope. We will use robustcontrol for crab and bridge control to ensure adaptivity for burden weight and rope length. Robust control will be designed for current control of the crab and bridge, necessary is to know the range of unknown parameters. Whole robust will be splitto subintervals and after correct identification of unknown parameters the most suitable robust controllers will be chosen.The most important condition at the crab and bridge motion is avoiding from burden swinging in the final position. Crab and bridge drive is designed by asynchronous motor fed from frequency converter. We will use crane uplift with burden weightobserver in combination for uplift, crab and bridge drive with cooperation of their parameters: burden weight, rope length and crab and bridge position. Controllers are designed by state control method. We will use preferably a disturbance observerwhich will identify burden weight as a disturbance. The system will be working in both modes at empty hook as well asat maximum load: burden uplifting and dropping down.

  19. Radio-frequency quadrupole linear accelerator

    International Nuclear Information System (INIS)

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented

  20. Effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators

    International Nuclear Information System (INIS)

    Miller, R.B.; Marder, B.M.; Coleman, P.D.; Clark, R.E.

    1988-01-01

    The electron beam in a linear induction accelerator is generally susceptible to growth of the transverse beam breakup instability. In this paper we analyze a new technique for reducing the transverse coupling between the beam and the accelerating cavities, thereby reducing beam breakup growth. The basic idea is that the most worrisome cavity modes can be cutoff by a short section of coaxial transmission line inserted between the cavity structure and the accelerating gap region. We have used the three-dimensional simulation code SOS to analyze this problem. In brief, we find that the technique works, provided that the lowest TE mode cutoff frequency in the coaxial line is greater than the frequency of the most worrisome TM mode of the accelerating cavity

  1. Preliminary design of a 10 MV ion accelerator

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Celata, C.M.; Faltens, A.

    1986-06-01

    At the low energy end of an induction linac HIF driver the beam current is limited by our ability to control space charge by a focusing system. As a consequence, HIF induction accelerator designs feature simultaneous acceleration of many beams in parallel within a single accelerator structure. As the speed of the beams increase, the focusing system changes from electrostatic to magnetic quadrupoles with a corresponding increase in the maximum allowable current. At that point the beams are merged thereby decreasing the cost of the subsequent accelerator structure. The LBL group is developing an experiment to study the physics of merging and of focusing ion beams. In the design, parallel beams of ions (C + , Al + , or Al ++ ) are accelerated to several MV and merged transversely. The merged beams are then further accelerated and the growth in transverse and longitudinal emittance is determined for comparison with theory. The apparatus will then be used to study the problems associated with focusing ion beams to a small spot. Details of the accelerator design and considerations of the physics of combining beams are presented

  2. 0,01-5 MeV heavy ion accelerators

    International Nuclear Information System (INIS)

    Golubev, V.P.; Ivanov, A.S.; Nikiforov, S.A.; Svin'in, M.P.; Tarvid, G.V.; Troshikhin, A.G.; Fedotov, M.T.

    1983-01-01

    The results of development of an accelerating complex on the base of the UP-2-1 heavy ion charge exchange accelerator and IMPLANT-500 high-voltage heavy ion accelerator are given. The accelerating complex provides overlapping of the 0.01 MeV to 5 MeV energy range at accelerated beam currents of 10 -3 -10 -6 A order. The structural features of accelerators and their basic units and systems are considered. The UP-2-1 accelerator is designed for researches in the field of experimental physics and applied problem solutions. The IMPLANT-500 accelerator is designed for commercial ion-beam facilities with closed loop of silicon plate treatment

  3. Robust Tomlinson-Harashima precoding for non-regenerative multi-antenna relaying systems

    KAUST Repository

    Xing, Chengwen

    2012-04-01

    In this paper, we consider the robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems. THP is adopted at the source to mitigate the spatial inter-symbol interference and then a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. Based on the elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the optimization problem is greatly simplified and can be efficiently solved. Finally, the performance advantage of the proposed robust design is assessed by simulation results. © 2012 IEEE.

  4. Standing Wave Linear Accelerators: An Investigation of the Fundamental Field Stability and Tuning Characteristics

    International Nuclear Information System (INIS)

    2002-01-01

    The first accelerators were designed as a tool in high-energy particle physics. Their development has given rise to numerous applications in industry, such as materials processing, sterilization, food preservation, and radiopharmaceutical product generation (Barbalat, 1994). Modern day linear accelerators for particle physics accelerate multiple bunches of electrons and positrons up to 50 GeV. Accelerators of the next generation, such as the Next Linear Collider (NLC), aim to accelerate the bunches initially to a center of mass of 500GeV and later to 1.5 TeV (Decking 2001, Miyamoto 2002, Phinney 2002). The NLC will operate under gradient fields on the order of 70 MV/m (Phinney, 2002). For all accelerators, two issues are fundamental for their construction: maximizing the efficiency of acceleration while, at the same time, preserving the luminosity of the beam. These issues are critically important in the design of the NLC. A linear accelerator operates as follows: An electron gun fires electrons into a structure that bunches the electrons and tightly focuses the beam. At the same time, a radiofrequency wave is fed into the accelerating structure. The electron bunches enter the accelerating structure in phase with the crest of the radiofrequency wave in order to achieve maximum energy. There are two principal types of accelerating structures: traveling wave (TW) and standing wave (SW). The electromagnetic wave in a TW structure travels in one direction; the electromagnetic wave in a SW structure travels in two directions. Many TW structures have been designed for the NLC, but recent experiments indicate that TW structures suffer from electrical breakdown at high gradients (Miller et. al., 2001). To address this problem, SW structures are being considered as the alternative for the NLC (Jones and Miller et. al., 2002). The input power required for an accelerating cavity increases with the length of the cavity (Miller et. al., 2001). Since SW structures can be made

  5. Acceleration of particles in plasmas

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The accelerating fields in radio-frequency accelerators are limited to roughly 100 MV/m due to material breakdown which occurs on the walls of the structure. In contrast, a plasma, being already ionized, can support electric fields in excess of 100 GV/m. Such high accelerating gradients hold the promise of compact particle accelerators. Plasma acceleration has been an emerging and fast growing field of research in the past two decades. In this series of lectures, we will review the principles of plasma acceleration. We will see how relativistic plasma waves can be excited using an ultra-intense laser or using a particle beam. We will see how these plasma waves can be used to accelerate electrons to high energy in short distances. Throughout the lectures, we will also review recent experimental results. Current laser-plasma experiments throughout the world have shown that monoenergetic electron beams from 100 MeV to 1 GeV can be obtained in distances ranging from the millimetre to the centimetre. Experiments a...

  6. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  7. Acceleration mechanisms flares, magnetic reconnection and shock waves

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1979-01-01

    Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references

  8. Development of a superconducting CH-accelerator-structure for light and heavy ions; Entwicklung einer supraleitenden CH-Beschleuniger-Struktur fuer leichte und schwere Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Liebermann, Holger

    2007-07-01

    This work deals with the development of the prototype of a superconducting CH accelerator structure. The simulations were calculated with the program CST Microwave Studio. It is based on the finite integration theory, which the Maxwell equations in a two-grid matrix form convicted so they can be solved numerically. In another chapter, a method for determining the coupling strength is discussed. The conditions that previously were created for the optimization of the prototype of the superconducting CH structure are described. It was for the optimization of the field distribution on the beam axis by adjusting the end cell design, optimization of support for the magnetic and electric fields, leading to reduction of the quadrupole component of the CH-structure, the coupling and, finally, the possibility of static tuning during the completion of the structure. On the basis of these investigations the completion of an initial prototype superconducting at the company ACCEL in Bergisch Gladbach was commissioned. Finally simulations for an operation accelerator facility, and a look at possible areas of the superconducting CH-structure are presented. The optimizations performed for the high power injector led to a more stable operation of the plant. Through this work it could be shown that the newly-CH structure is very well suited for use in superconducting accelerators. (orig.)

  9. Compact multi-energy electron linear accelerators

    International Nuclear Information System (INIS)

    Tanabe, E.; Hamm, R.W.

    1985-01-01

    Two distinctly different concepts that have been developed for compact multi-energy, single-section, standing-wave electron linear accelerator structures are presented. These new concepts, which utilize (a) variable nearest neighbor couplings and (b) accelerating field phase switching, provide the capability of continuously varying the electron output energy from the accelerator without degrading the energy spectrum. These techniques also provide the means for continuously varying the energy spectrum while maintaining a given average electron energy, and have been tested successfully with several accelerators of length from 0.1 m to 1.9 m. Theoretical amd experimental results from these accelerators, and demonstrated applications of these techniques to medical and industrial linear accelerator technology will be described. In addition, possible new applications available to research and industry from these techniques are presented. (orig.)

  10. Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle

    Science.gov (United States)

    Adams, Richard J.

    1993-01-01

    High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.

  11. Operation of the graded-β electron test accelerator

    International Nuclear Information System (INIS)

    Fraser, J.S.; McKeown, J.; McMichael, G.E.; Diamond, W.T.

    1976-01-01

    The Electron Test Accelerator has been built to model the behaviour of the high energy portion of a proton linear accelerator which would be suitable for breeding fissile material. The test accelerator and its control systems have been tested at 100% duty factor producing a beam of electrons at 1.5 MeV and currents up to 20 mA where the incident rf power is shared equally between the structure dissipation and the beam loading. The structure has performed satisfactorily in all respects at dissipation power densities up to 5 kW/cell where the mean energy gradient was 1.1 MeV/m. Experiments have been done on the beam loading effects in the coupling of the transmission line to the cavity, the amplitude depression in and phase tilt along the structure, and the phase lag of the structure field. The phase acceptance, the variation of transmission with buncher-accelerator phase shift and the beam energy spread are in qualitative agreement with beam dynamics calculations. (author)

  12. Possible role of rf melted microparticles on the operation of high-gradient accelerating structures

    Directory of Open Access Journals (Sweden)

    G. S. Nusinovich

    2009-10-01

    Full Text Available High-gradient accelerating structures should operate reliably for a long time. Therefore studies of various processes which may lead to disruption of such an operation are so important. In the present paper, the dissipation of rf electromagnetic energy in metallic microparticles is analyzed accounting for the temperature dependence of the skin depth. Such particles may appear in structures, for example, due to mechanical fracture of irises in strong rf electric fields. It is shown that such microparticles with dimensions on the order of the skin depth, being immersed in the region of strong rf magnetic field, can absorb enough energy in long-pulse operation to be melted. Then, the melted clumps can impinge on the surface of a structure and create nonuniformities leading to field enhancement and corresponding emission of dark current. Results are given for several geometries and materials of microparticles.

  13. H.V. support structure of 3MVDC generator and its protection from HV discharges in vacuum and SF6 gas for DC electron accelerator

    International Nuclear Information System (INIS)

    Sharma, D.K.; Rajan, R.N.; Srivastava, S.K.; Dewangan, S.; Jayaprakash, D.; Bakhtsingh, R.I.; Acharya, S.; Gantayet, L.M.

    2014-01-01

    Accelerator and Pulse Power Division of BARC has developed a DC electron accelerator for cross linking of polymers, medical sterilisation, preservation of food. The demonstration of stack-gas cleanup for green power generation has been demonstrated successfully. The support structure of the 3MVDC voltage generator is made of Perspex for high dielectric strength, easy availability of raw material, excellent radiation resistance and long term dimensional stability. This paper describes the salient design features of the High voltage support structure in brief. (author)

  14. H.V. support structure of 3MVDC generator and its protection from HV discharges in vacuum and SF6 gas for DC electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K.; Rajan, R.N.; Srivastava, S.K.; Dewangan, S.; Jayaprakash, D.; Bakhtsingh, R.I.; Acharya, S.; Gantayet, L.M., E-mail: dksharma@barc.gov.in [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Accelerator and Pulse Power Division of BARC has developed a DC electron accelerator for cross linking of polymers, medical sterilisation, preservation of food. The demonstration of stack-gas cleanup for green power generation has been demonstrated successfully. The support structure of the 3MVDC voltage generator is made of Perspex for high dielectric strength, easy availability of raw material, excellent radiation resistance and long term dimensional stability. This paper describes the salient design features of the High voltage support structure in brief. (author)

  15. ConnectViz: Accelerated Approach for Brain Structural Connectivity Using Delaunay Triangulation.

    Science.gov (United States)

    Adeshina, A M; Hashim, R

    2016-03-01

    Stroke is a cardiovascular disease with high mortality and long-term disability in the world. Normal functioning of the brain is dependent on the adequate supply of oxygen and nutrients to the brain complex network through the blood vessels. Stroke, occasionally a hemorrhagic stroke, ischemia or other blood vessel dysfunctions can affect patients during a cerebrovascular incident. Structurally, the left and the right carotid arteries, and the right and the left vertebral arteries are responsible for supplying blood to the brain, scalp and the face. However, a number of impairment in the function of the frontal lobes may occur as a result of any decrease in the flow of the blood through one of the internal carotid arteries. Such impairment commonly results in numbness, weakness or paralysis. Recently, the concepts of brain's wiring representation, the connectome, was introduced. However, construction and visualization of such brain network requires tremendous computation. Consequently, previously proposed approaches have been identified with common problems of high memory consumption and slow execution. Furthermore, interactivity in the previously proposed frameworks for brain network is also an outstanding issue. This study proposes an accelerated approach for brain connectomic visualization based on graph theory paradigm using compute unified device architecture, extending the previously proposed SurLens Visualization and computer aided hepatocellular carcinoma frameworks. The accelerated brain structural connectivity framework was evaluated with stripped brain datasets from the Department of Surgery, University of North Carolina, Chapel Hill, USA. Significantly, our proposed framework is able to generate and extract points and edges of datasets, displays nodes and edges in the datasets in form of a network and clearly maps data volume to the corresponding brain surface. Moreover, with the framework, surfaces of the dataset were simultaneously displayed with the

  16. Structural design and analysis of test mass module for DECIGO Pathfinder

    International Nuclear Information System (INIS)

    Wakabayashi, Y; Ejiri, Y; Suzuki, R; Sugamoto, A; Obuchi, Y; Okada, N; Torii, Y; Ueda, A; Kawamura, S; Araya, A; Ando, M; Sato, S

    2010-01-01

    Deci-hertz Interferometer Gravitational-Wave Observatory: DECIGO is a project aimed at future detection of deci-hertz gravitational waves in space. DECIGO Pathfinder: DPF is a precursor mission to test the key technologies with one spacecraft. Our work in this article was to examine the strength of the DPF test mass module to ensure that it is sufficiently robust for launch with a launch vehicle. We designed the test mass module, and examined the structural strength of this model by structural analysis, Quasi-static acceleration analysis and Modal analysis using FEA (Finite Element Analysis). We found that the results of each analysis fulfilled all requirements. We are confident that the DPF test mass module will withstand Quasi-static acceleration or coupling with vibration of launch vehicle during launch, if the design matches the current design. For more detail, further analysis including Response analysis and Thermal analysis are recommended. In addition, it will be necessary to lighten the model in the next step.

  17. Robust wide-range control of nuclear reactors by using the feedforward-feedback concept

    International Nuclear Information System (INIS)

    Weng, C.K.; Edwards, R.M.; Ray, A.

    1994-01-01

    A robust feedforward-feedback controller is proposed for wide-range operations of nuclear reactors. This control structure provides (a) optimized performance over a wide operating range resulting form the feedforward element and (b) guaranteed robust stability and performance resulting from the feedback element. The feedforward control law is synthesized via nonlinear programming, which generates an optimal control sequence over a finite-time horizon under specified constraints. The feedback control is synthesized via the structured singular value μ approach to guarantee robustness in the presence of disturbances and modeling uncertainties. The results of simulation experiments are presented to demonstrate efficacy of the proposed control structure for a large rapid power reduction to avoid unnecessary plant trips

  18. Designing Phononic Crystals with Wide and Robust Band Gaps

    Science.gov (United States)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  19. Designing Phononic Crystals with Wide and Robust Band Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jia, Zian [State University of New York at Stony Brook; Yang, Haoxiang [State University of New York at Stony Brook; Wang, Lifeng [State University of New York at Stony Brook

    2018-04-16

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  20. On the estimation of the wake potential for an ultrarelativistic charge in an accelerating structure

    International Nuclear Information System (INIS)

    Novokhatskij, A.V.

    1988-01-01

    The method to derive the analytic estimations for wake fields of an ultrarelativistic charge in an accelerating structure, that are valid in the range of distances smalller or compared to the effective structure dimensions. The method is based on the approximate space-time domain integrating of the maxwell equations in the Kirchhoff formulation. the method is demonstrated on the examples of obtaining the wake potentials for energy loss of a bunch traversing a scraper, a cavity or periodic iris-loaded structure. Likewise formulae are derived for Green functions that describe transverse force action of wake fields. Simple formulae for the total energy loss evaluation of a bunch with the Gaussian charge density distribution are derived as well. The derived estimations are compared with the computer results and predictions of other models