WorldWideScience

Sample records for robot control architecture

  1. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  2. Distributed behavior-based control architecture for a wall climbing robot

    International Nuclear Information System (INIS)

    Nadir Ould Khessal; Shamsudin H.M. Amin . nadir.ok@ieee.org

    1999-01-01

    In the past two decades, Behavior-based AI (Artificial Intelligence) has emerged as a new approach in designing mobile robot control architecture. It stresses on the issues of reactivity, concurrency and real-time control. In this paper we propose a new approach in designing robust intelligent controllers for mobile robot platforms. The Behaviour-based paradigm implemented in a multiprocessing firmware architecture will further enhance parallelism present in the subsumption paradigm itself and increased real-timeness. The paper summarises research done to design a four-legged wall climbing robot. The emphasis will be on the control architecture of the robot based on the Behavior -based paradigm. The robot control architecture is made up of two layers, the locomotion layer and the gait controller layer. The two layers are implemented on a Vesta 68332 processor board running the Behaviour-based kernel, The software is developed using the L programming language, introduced by IS Robotics. The Behaviour-based paradigm is outlined and contrasted with the classical Knowledge-based approach. A description of the distributed architecture is presented followed by a presentation of the Behaviour-based agents for the two layers. (author)

  3. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2006-09-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  4. Developing a Psychologically Inspired Cognitive Architecture for Robotic Control: The Symbolic and Subsymbolic Robotic Intelligence Control System (SS-RICS

    Directory of Open Access Journals (Sweden)

    Troy Dale Kelley

    2008-11-01

    Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.

  5. Biologically-Inspired Control Architecture for Musical Performance Robots

    Directory of Open Access Journals (Sweden)

    Jorge Solis

    2014-10-01

    Full Text Available At Waseda University, since 1990, the authors have been developing anthropomorphic musical performance robots as a means for understanding human control, introducing novel ways of interaction between musical partners and robots, and proposing applications for humanoid robots. In this paper, the design of a biologically-inspired control architecture for both an anthropomorphic flutist robot and a saxophone playing robot are described. As for the flutist robot, the authors have focused on implementing an auditory feedback system to improve the calibration procedure for the robot in order to play all the notes correctly during a performance. In particular, the proposed auditory feedback system is composed of three main modules: an Expressive Music Generator, a Feed Forward Air Pressure Control System and a Pitch Evaluation System. As for the saxophone-playing robot, a pressure-pitch controller (based on the feedback error learning to improve the sound produced by the robot during a musical performance was proposed and implemented. In both cases studied, a set of experiments are described to verify the improvements achieved while considering biologically-inspired control approaches.

  6. Generic robot architecture

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2010-09-21

    The present invention provides methods, computer readable media, and apparatuses for a generic robot architecture providing a framework that is easily portable to a variety of robot platforms and is configured to provide hardware abstractions, abstractions for generic robot attributes, environment abstractions, and robot behaviors. The generic robot architecture includes a hardware abstraction level and a robot abstraction level. The hardware abstraction level is configured for developing hardware abstractions that define, monitor, and control hardware modules available on a robot platform. The robot abstraction level is configured for defining robot attributes and provides a software framework for building robot behaviors from the robot attributes. Each of the robot attributes includes hardware information from at least one hardware abstraction. In addition, each robot attribute is configured to substantially isolate the robot behaviors from the at least one hardware abstraction.

  7. A Multi-Agent Control Architecture for a Robotic Wheelchair

    Directory of Open Access Journals (Sweden)

    C. Galindo

    2006-01-01

    Full Text Available Assistant robots like robotic wheelchairs can perform an effective and valuable work in our daily lives. However, they eventually may need external help from humans in the robot environment (particularly, the driver in the case of a wheelchair to accomplish safely and efficiently some tricky tasks for the current technology, i.e. opening a locked door, traversing a crowded area, etc. This article proposes a control architecture for assistant robots designed under a multi-agent perspective that facilitates the participation of humans into the robotic system and improves the overall performance of the robot as well as its dependability. Within our design, agents have their own intentions and beliefs, have different abilities (that include algorithmic behaviours and human skills and also learn autonomously the most convenient method to carry out their actions through reinforcement learning. The proposed architecture is illustrated with a real assistant robot: a robotic wheelchair that provides mobility to impaired or elderly people.

  8. A portable modular architecture for robotic manipulator control

    International Nuclear Information System (INIS)

    Butler, P.L.

    1993-01-01

    A control architecture has been developed to provide a framework for robotic manipulator control. This architecture, called the Modular Integrated Control Architecture (MICA), has been successfully applied to two different manipulator systems. MICA is a portable system in two respects. First, it can be used for the control of different types of manipulator systems. Second, the MICA code is portable across several operating environments. This portability allows the sharing of common control code among various systems. A major portion of MICA is the precise control of multiple processors that have to be coordinated to control a manipulator system. By having NUCA control the processor synchronization, the system developer can concentrate on the specific aspects of a new manipulator system. MICA also provides standard functions for trajectory generation that can be used for most manipulators. Custom trajectory generators can be easily added to suit the needs of a particular robotic control system. Another facility that MICA provides is a simulation of the manipulator, allowing the control code to be simulated before trying it on a manipulator system. Using this technique, one can develop code for a manipulator system without risking damage to the arm during development

  9. THE ARCHITECTURE OF THE REMOTE CONTROL SYSTEM OF ROBOTICS OBJECTS

    Directory of Open Access Journals (Sweden)

    S.V. Shavetov

    2014-03-01

    Full Text Available The paper deals with the architecture for the universal remote control system of robotics objects over the Internet global network. Control objects are assumed to be located at a considerable distance from a reference device or end-users. An overview of studies on the subject matter of remote control of technical objects is given. A structure chart of the architecture demonstrating the system usage in practice is suggested. Server software is considered that makes it possible to work with technical objects connected to the server as with a serial port and organize a stable tunnel connection between the controlled object and the end-user. The proposed architecture has been successfully tested on mobile robots Parallax Boe-Bot and Lego Mindstorms NXT. Experimental data about values of time delays are given demonstrating the effectiveness of the considered architecture.

  10. ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1995-02-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  11. The Walk-Man Robot Software Architecture

    Directory of Open Access Journals (Sweden)

    Mirko Ferrati

    2016-05-01

    Full Text Available A software and control architecture for a humanoid robot is a complex and large project, which involves a team of developers/researchers to be coordinated and requires many hard design choices. If such project has to be done in a very limited time, i.e., less than 1 year, more constraints are added and concepts, such as modular design, code reusability, and API definition, need to be used as much as possible. In this work, we describe the software architecture developed for Walk-Man, a robot participant at the Darpa Robotics Challenge. The challenge required the robot to execute many different tasks, such as walking, driving a car, and manipulating objects. These tasks need to be solved by robotics specialists in their corresponding research field, such as humanoid walking, motion planning, or object manipulation. The proposed architecture was developed in 10 months, provided boilerplate code for most of the functionalities required to control a humanoid robot and allowed robotics researchers to produce their control modules for DRC tasks in a short time. Additional capabilities of the architecture include firmware and hardware management, mixing of different middlewares, unreliable network management, and operator control station GUI. All the source code related to the architecture and some control modules have been released as open source projects.

  12. One-Chip Solution to Intelligent Robot Control: Implementing Hexapod Subsumption Architecture Using a Contemporary Microprocessor

    Directory of Open Access Journals (Sweden)

    Nikita Pashenkov

    2008-11-01

    Full Text Available This paper introduces a six-legged autonomous robot managed by a single controller and a software core modeled on subsumption architecture. We begin by discussing the features and capabilities of IsoPod, a new processor for robotics which has enabled a streamlined implementation of our project. We argue that this processor offers a unique set of hardware and software features, making it a practical development platform for robotics in general and for subsumption-based control architectures in particular. Next, we summarize original ideas on subsumption architecture implementation for a six-legged robot, as presented by its inventor Rodney Brooks in 1980's. A comparison is then made to a more recent example of a hexapod control architecture based on subsumption. The merits of both systems are analyzed and a new subsumption architecture layout is formulated as a response. We conclude with some remarks regarding the development of this project as a hint at new potentials for intelligent robot design, opened up by a recent development in embedded controller market.

  13. A CORBA-Based Control Architecture for Real-Time Teleoperation Tasks in a Developmental Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2011-06-01

    Full Text Available This paper presents the development of new Humanoid Robot Control Architecture (HRCA platform based on Common Object Request Broker Architecture (CORBA in a developmental biped humanoid robot for real-time teleoperation tasks. The objective is to make the control platform open for collaborative teleoperation research in humanoid robotics via the internet. Meanwhile, to generate optimal trajectory generation in bipedal walk, we proposed a real time generation of optimal gait by using Genetic Algorithms (GA to minimize the energy for humanoid robot gait. In addition, we proposed simplification of kinematical solutions to generate controlled trajectories of humanoid robot legs in teleoperation tasks. The proposed control systems and strategies was evaluated in teleoperation experiments between Australia and Japan using humanoid robot Bonten-Maru. Additionally, we have developed a user-friendly Virtual Reality (VR user interface that is composed of ultrasonic 3D mouse system and a Head Mounted Display (HMD for working coexistence of human and humanoid robot in teleoperation tasks. The teleoperation experiments show good performance of the proposed system and control, and also verified the good performance for working coexistence of human and humanoid robot.

  14. A CORBA-Based Control Architecture for Real-Time Teleoperation Tasks in a Developmental Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Hanafiah Yussof

    2011-06-01

    Full Text Available This paper presents the development of new Humanoid Robot Control Architecture (HRCA platform based on Common Object Request Broker Architecture (CORBA in a developmental biped humanoid robot for real‐time teleoperation tasks. The objective is to make the control platform open for collaborative teleoperation research in humanoid robotics via the internet. Meanwhile, to generate optimal trajectory generation in bipedal walk, we proposed a real time generation of optimal gait by using Genetic Algorithms (GA to minimize the energy for humanoid robot gait. In addition, we proposed simplification of kinematical solutions to generate controlled trajectories of humanoid robot legs in teleoperation tasks. The proposed control systems and strategies was evaluated in teleoperation experiments between Australia and Japan using humanoid robot Bonten‐Maru. Additionally, we have developed a user‐ friendly Virtual Reality (VR user interface that is composed of ultrasonic 3D mouse system and a Head Mounted Display (HMD for working coexistence of human and humanoid robot in teleoperation tasks. The teleoperation experiments show good performance of the proposed system and control, and also verified the good performance for working coexistence of human and humanoid robot.

  15. Field Tested Service Oriented Robotic Architecture: Case Study

    Science.gov (United States)

    Flueckiger, Lorenzo; Utz, Hanz

    2012-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at NASA Ames Research Center. SORA relies on proven software methods and technologies applied to the robotic world. Based on a Service Oriented Architecture and robust middleware, SORA extends its reach beyond the on-board robot controller and supports the full suite of software tools used during mission scenarios from ground control to remote robotic sites. SORA has been field tested in numerous scenarios of robotic lunar and planetary exploration. The results of these high fidelity experiments are illustrated through concrete examples that have shown the benefits of using SORA as well as its limitations.

  16. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    Science.gov (United States)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  17. Using a cognitive architecture for general purpose service robot control

    Science.gov (United States)

    Puigbo, Jordi-Ysard; Pumarola, Albert; Angulo, Cecilio; Tellez, Ricardo

    2015-04-01

    A humanoid service robot equipped with a set of simple action skills including navigating, grasping, recognising objects or people, among others, is considered in this paper. By using those skills the robot should complete a voice command expressed in natural language encoding a complex task (defined as the concatenation of a number of those basic skills). As a main feature, no traditional planner has been used to decide skills to be activated, as well as in which sequence. Instead, the SOAR cognitive architecture acts as the reasoner by selecting which action the robot should complete, addressing it towards the goal. Our proposal allows to include new goals for the robot just by adding new skills (without the need to encode new plans). The proposed architecture has been tested on a human-sized humanoid robot, REEM, acting as a general purpose service robot.

  18. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    Science.gov (United States)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  19. An evolution friendly modular architecture to produce feasible robots

    DEFF Research Database (Denmark)

    Faina, Andres; Bellas, Francisco; Orjales, Felix

    2015-01-01

    This paper proposes the use of a modular robotic architecture in order to produce feasible robots through evolution. To this end, the main requirements the architecture must fulfill are analyzed and a top-down methodology is employed to obtain the different types of modules that make it up...... is described and different experiments provide an indication of how versatile the architecture is for evolving robot morphologies and control for specific tasks and how easy it is to build them....

  20. The implementation of common object request broker architecture (CORBA) for controlling robot arm via web

    International Nuclear Information System (INIS)

    Syed Mahamad Zuhdi Amin; Mohd Yazid Idris; Wan Mohd Nasir Wan Kadir

    2001-01-01

    This paper presents the employment of the Common Object Request Broker Architecture (CORBA) technology in the implementation of our distributed Arm Robot Controller (ARC). CORBA is an industrial standard architecture based on distributed abstract object model, which is developed by Object Management Group (OMG). The architecture consists of five components i.e. Object Request Broker (ORB), Interface Definition Language (IDL), Dynamic Invocation Interface (DII), Interface Repositories (IR) and Object adapter (OA). CORBA objects are different from typical programming objects in three ways i.e. they can be executed on any platform, located anywhere on the network and written in any language that supports IDL mapping. In the implementation of the system, 5 degree of freedom (DOF) arm robot RCS 6.0 and Java as a programming mapping to the CORBA IDL. By implementing this architecture, the objects in the server machine can be distributed over the network in order to run the controller. the ultimate goal for our ARC system is to demonstrate concurrent execution of multiple arm robots through multiple instantiations of distributed object components. (Author)

  1. ALLIANCE: An architecture for fault tolerant multi-robot cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1995-02-01

    ALLIANCE is a software architecture that facilitates the fault tolerant cooperative control of teams of heterogeneous mobile robots performing missions composed of loosely coupled, largely independent subtasks. ALLIANCE allows teams of robots, each of which possesses a variety of high-level functions that it can perform during a mission, to individually select appropriate actions throughout the mission based on the requirements of the mission, the activities of other robots, the current environmental conditions, and the robot`s own internal states. ALLIANCE is a fully distributed, behavior-based architecture that incorporates the use of mathematically modeled motivations (such as impatience and acquiescence) within each robot to achieve adaptive action selection. Since cooperative robotic teams usually work in dynamic and unpredictable environments, this software architecture allows the robot team members to respond robustly, reliably, flexibly, and coherently to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. The feasibility of this architecture is demonstrated in an implementation on a team of mobile robots performing a laboratory version of hazardous waste cleanup.

  2. The Walk-Man Robot Software Architecture

    OpenAIRE

    Mirko Ferrati; Alessandro Settimi; Alessandro Settimi; Luca Muratore; Alberto Cardellino; Alessio Rocchi; Enrico Mingo Hoffman; Corrado Pavan; Dimitrios Kanoulas; Nikos G. Tsagarakis; Lorenzo Natale; Lucia Pallottino

    2016-01-01

    A software and control architecture for a humanoid robot is a complex and large project, which involves a team of developers/researchers to be coordinated and requires many hard design choices. If such project has to be done in a very limited time, i.e., less than 1 year, more constraints are added and concepts, such as modular design, code reusability, and API definition, need to be used as much as possible. In this work, we describe the software architecture developed for Walk-Man, a robot ...

  3. ALLIANCE: An architecture for fault tolerant multi-robot cooperation

    International Nuclear Information System (INIS)

    Parker, L.E.

    1995-02-01

    ALLIANCE is a software architecture that facilitates the fault tolerant cooperative control of teams of heterogeneous mobile robots performing missions composed of loosely coupled, largely independent subtasks. ALLIANCE allows teams of robots, each of which possesses a variety of high-level functions that it can perform during a mission, to individually select appropriate actions throughout the mission based on the requirements of the mission, the activities of other robots, the current environmental conditions, and the robot's own internal states. ALLIANCE is a fully distributed, behavior-based architecture that incorporates the use of mathematically modeled motivations (such as impatience and acquiescence) within each robot to achieve adaptive action selection. Since cooperative robotic teams usually work in dynamic and unpredictable environments, this software architecture allows the robot team members to respond robustly, reliably, flexibly, and coherently to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. The feasibility of this architecture is demonstrated in an implementation on a team of mobile robots performing a laboratory version of hazardous waste cleanup

  4. Unibot, a Universal Agent Architecture for Robots

    Directory of Open Access Journals (Sweden)

    Saša Mladenović

    2017-01-01

    Full Text Available Today there are numerous robots in different applications domains despite the fact that they still have limitations in perception, actuation and decision process. Consequently, robots usually have limited autonomy, they are domain specific or have difficulty to adapt on new environments. Learning is the property that makes an agent intelligent and the crucial property that a robot should have to proliferate into the human society. Embedding the learning ability into the robot may simplify the development of the robot control mechanism. The motivation for this research is to develop the agent architecture of the universal robot – Unibot. In our approach the agent is the robot i.e. Unibot that acts in the physical world and is capable of learning. The Unibot conducts several simultaneous simulations of a problem of interest like path-finding. The novelty in our approach is the Multi-Agent Decision Support System which is developed and integrated into the Unibot agent architecture in order to execute simultaneous simulations. Furthermore, the Unibot calculates and evaluates between multiple solutions, decides which action should be performed and performs the action. The prototype of the Unibot agent architecture is described and evaluated in the experiment supported by the Lego Mindstorms robot and the NetLogo.

  5. Robotic control architecture development for automated nuclear material handling systems

    International Nuclear Information System (INIS)

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies

  6. RoboSmith: Wireless Networked Architecture for Multiagent Robotic System

    Directory of Open Access Journals (Sweden)

    Florin Moldoveanu

    2010-11-01

    Full Text Available In this paper is presented an architecture for a flexible mini robot for a multiagent robotic system. In a multiagent system the value of an individual agent is negligible since the goal of the system is essential. Thus, the agents (robots need to be small, low cost and cooperative. RoboSmith are designed based on these conditions. The proposed architecture divide a robot into functional modules such as locomotion, control, sensors, communication, and actuation. Any mobile robot can be constructed by combining these functional modules for a specific application. An embedded software with dynamic task uploading and multi-tasking abilities is developed in order to create better interface between robots and the command center and among the robots. The dynamic task uploading allows the robots change their behaviors in runtime. The flexibility of the robots is given by facts that the robots can work in multiagent system, as master-slave, or hybrid mode, can be equipped with different modules and possibly be used in other applications such as mobile sensor networks remote sensing, and plant monitoring.

  7. A Robot-Soccer-Coordination Inspired Control Architecture Applied to Islanded Microgrids

    DEFF Research Database (Denmark)

    Aldana, Nelson Leonardo Diaz; Guarnizo, Jose Guillermo; Mellado, Martin

    2017-01-01

    of the energy storage systems, may ensure proper and reliable operation of the microgrid. This paper proposes a structured architecture based on tactics, roles and behaviors for a coordinated operation of islanded microgrids. The architecture is inspired on a robot soccer strategy with global perception...

  8. An Architecture for Robot Assemblt Task Planning

    DEFF Research Database (Denmark)

    Sun, Hongyan

    1999-01-01

    This paper discusses an integrated robot assembly task planning system architecture. In such an integrated system, the robot motion commands produced from the planning system can be validated before done-loading for actual execution.......This paper discusses an integrated robot assembly task planning system architecture. In such an integrated system, the robot motion commands produced from the planning system can be validated before done-loading for actual execution....

  9. Architectural setup for online monitoring and control of process parameters in robot-based ISF

    Science.gov (United States)

    Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd

    2017-10-01

    This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.

  10. Controlling the autonomy of a reconnaissance robot

    Science.gov (United States)

    Dalgalarrondo, Andre; Dufourd, Delphine; Filliat, David

    2004-09-01

    In this paper, we present our research on the control of a mobile robot for indoor reconnaissance missions. Based on previous work concerning our robot control architecture HARPIC, we have developed a man machine interface and software components that allow a human operator to control a robot at different levels of autonomy. This work aims at studying how a robot could be helpful in indoor reconnaissance and surveillance missions in hostile environment. In such missions, since a soldier faces many threats and must protect himself while looking around and holding his weapon, he cannot devote his attention to the teleoperation of the robot. Moreover, robots are not yet able to conduct complex missions in a fully autonomous mode. Thus, in a pragmatic way, we have built a software that allows dynamic swapping between control modes (manual, safeguarded and behavior-based) while automatically performing map building and localization of the robot. It also includes surveillance functions like movement detection and is designed for multirobot extensions. We first describe the design of our agent-based robot control architecture and discuss the various ways to control and interact with a robot. The main modules and functionalities implementing those ideas in our architecture are detailed. More precisely, we show how we combine manual controls, obstacle avoidance, wall and corridor following, way point and planned travelling. Some experiments on a Pioneer robot equipped with various sensors are presented. Finally, we suggest some promising directions for the development of robots and user interfaces for hostile environment and discuss our planned future improvements.

  11. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Seung Ho; Hwang, Suk Yeoung; Sohn, Surg Won; Kim, Byung Soo; Kim, Chang Hoi; Lee, Yong Bum; Kim, Woong Ki

    1988-12-01

    The object of this project is to develop a multiprocessor system which is essential to robot technology. A multiprocessor system interconnecting many single board computer is much faster and flexible than a single processor. The developed multiprocessor will be used to control nuclear mobile robot, so a loosely coupled system is adopted as a robot controller. A total configuration of controller is divided into three main parts in related with its function. It is consisted of supervisory control part, functional control part, remote control part. The designed control system is to be expanded easily for further use with a modular architecture, so the functional independency within sub-systems can be obtained throughout the system structure. Electromagnetic interference affecting to the control system is minimized by using optical fiber as communication media between robot and control system. System performances is enhanced not only by using distributed architecture in hardware, but by adopting real-time, multi-tasking operating system in software. The iRMX86 OS is used and reconfigured for real-time, multi-tasking operation. RS-485 serial communication protocol is used between functional control part and remote control part. Since the developed multiprocessor control system is an essential and fundamental technology for artificial intelligent robot, the result of this project can be applied directly to nuclear mobile robot. (Author)

  12. Command and Control Architectures for Autonomous Micro-Robotic Forces - FY-2000 Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean

    2001-04-01

    Advances in Artificial Intelligence (AI) and micro-technologies will soon give rise to production of large-scale forces of autonomous micro-robots with systems of innate behaviors and with capabilities of self-organization and real world tasking. Such organizations have been compared to schools of fish, flocks of birds, herds of animals, swarms of insects, and military squadrons. While these systems are envisioned as maintaining a high degree of autonomy, it is important to understand the relationship of man with such machines. In moving from research studies to the practical deployment of large-scale numbers of robots, one of critical pieces that must be explored is the command and control architecture for humans to re-task and also inject global knowledge, experience, and intuition into the force. Tele-operation should not be the goal, but rather a level of adjustable autonomy and high-level control. If a herd of sheep is comparable to the collective of robots, then the human element is comparable to the shepherd pulling in strays and guiding the herd in the direction of greener pastures. This report addresses the issues and development of command and control for largescale numbers of autonomous robots deployed as a collective force.

  13. An FPGA based Node-on-Chip Architecture, for Rapid Robotics Research

    DEFF Research Database (Denmark)

    Falsig, Simon; Sørensen, Anders Stengaard

    2010-01-01

    One of the major costs and inhibitors to practical robotics research is the time invested in design, implementation, integration, adjusting and debugging of the embedded control systems, that implement the discrete event control in experimental robots and robot systems. Usually researchers can...... with the compactness and integration associated with customized hardware. In this paper we present an FPGA based architecture and a framework of template modules for modular embedded control that has: • Dramatically reduced the time we spend on instrumentation of experimental robots. • Increased the quality...

  14. HiMoP: A three-component architecture to create more human-acceptable social-assistive robots : Motivational architecture for assistive robots.

    Science.gov (United States)

    Rodríguez-Lera, Francisco J; Matellán-Olivera, Vicente; Conde-González, Miguel Á; Martín-Rico, Francisco

    2018-05-01

    Generation of autonomous behavior for robots is a general unsolved problem. Users perceive robots as repetitive tools that do not respond to dynamic situations. This research deals with the generation of natural behaviors in assistive service robots for dynamic domestic environments, particularly, a motivational-oriented cognitive architecture to generate more natural behaviors in autonomous robots. The proposed architecture, called HiMoP, is based on three elements: a Hierarchy of needs to define robot drives; a set of Motivational variables connected to robot needs; and a Pool of finite-state machines to run robot behaviors. The first element is inspired in Alderfer's hierarchy of needs, which specifies the variables defined in the motivational component. The pool of finite-state machine implements the available robot actions, and those actions are dynamically selected taking into account the motivational variables and the external stimuli. Thus, the robot is able to exhibit different behaviors even under similar conditions. A customized version of the "Speech Recognition and Audio Detection Test," proposed by the RoboCup Federation, has been used to illustrate how the architecture works and how it dynamically adapts and activates robots behaviors taking into account internal variables and external stimuli.

  15. Robotic fabrication in architecture, art, and design

    CERN Document Server

    Braumann, Johannes

    2013-01-01

    Architects, artists, and designers have been fascinated by robots for many decades, from Villemard’s utopian vision of an architect building a house with robotic labor in 1910, to the design of buildings that are robots themselves, such as Archigram’s Walking City. Today, they are again approaching the topic of robotic fabrication but this time employing a different strategy: instead of utopian proposals like Archigram’s or the highly specialized robots that were used by Japan’s construction industry in the 1990s, the current focus of architectural robotics is on industrial robots. These robotic arms have six degrees of freedom and are widely used in industry, especially for automotive production lines. What makes robotic arms so interesting for the creative industry is their multi-functionality: instead of having to develop specialized machines, a multifunctional robot arm can be equipped with a wide range of end-effectors, similar to a human hand using various tools. Therefore, architectural researc...

  16. Architecture for robot intelligence

    Science.gov (United States)

    Peters, II, Richard Alan (Inventor)

    2004-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  17. RoCoMAR: Robots' Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Science.gov (United States)

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2013-01-01

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134

  18. Development of a robot Holon using an open modular controller

    DEFF Research Database (Denmark)

    Schnell, Jakob; Andersen, Søren; Sørensen, Christian

    1999-01-01

    System (HoMuCS) architecture and methodology for implementing a HMS. This paper specifically reviews the development of a Robot Holon based on an open controller in the context of the HoMuCS architecture. The paper will describe the results and research work that was involved in developing a robot holon...... for a physical robot. The robot holon was implemented on an existing robot at the department which was upgraded by removing its native control system and replacing it with a new PC-based open controller. The development of the robot holon builds on the notion that a robot holon will be able to performboth......Holonic Manufacturing Systems (HMS) has during the last period presented itself as an advantageous theoretical foundation for the problems that arise in controlling agile manufacturing systems. Previous research, at the Department, has demonstrated how modern shop floor control systems can...

  19. Walking Robots Dynamic Control Systems on an Uneven Terrain

    Directory of Open Access Journals (Sweden)

    MUNTEANU, M. S.

    2010-05-01

    Full Text Available The paper presents ZPM dynamic control of walking robots, developing an open architecture real time control multiprocessor system, in view of obtaining new capabilities for walking robots. The complexity of the movement mechanism of a walking robot was taken into account, being a repetitive tilting process with numerous instable movements and which can lead to its turnover on an uneven terrain. The control system architecture for the dynamic robot walking is presented in correlation with the control strategy which contains three main real time control loops: balance robot control using sensorial feedback, walking diagram control with periodic changes depending on the sensorial information during each walk cycle, predictable movement control based on a quick decision from the previous experimental data. The results obtained through simulation and experiments show an increase in mobility, stability in real conditions and obtaining of high performances related to the possibility of moving walking robots on terrains with a configuration as close as possible to real situations, respectively developing new technological capabilities of the walking robot control systems for slope movement and walking by overtaking or going around obstacles.

  20. Intelligent autonomy for unmanned marine vehicles robotic control architecture based on service-oriented agents

    CERN Document Server

    Insaurralde, Carlos C

    2015-01-01

    This book presents an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The presented ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. It is shown that they are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This book also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions.

  1. A Modular Architecture for Developing Robots for Industrial Applications

    DEFF Research Database (Denmark)

    Faina, Andres; Orjales, Felix; Souto, Daniel

    2015-01-01

    addresses the problem the other way around. In this line, we start by defining the industrial settings the architecture is aimed at and then extract the main features that would be required from a modular robotic architecture to operate successfully in this context. Finally, a particular heterogeneous......This chapter is concerned with proposing ways to make feasible the use of robots in many sectors characterized by dynamic and unstructured environments. In particular, we are interested in addressing the problem through a new approach, based on modular robotics, to allow the fast deployment...... modular robotic architecture is designed from these requirements and a laboratory implementation of it is built in order to test its capabilities and show its versatility using a set of different configurations including manipulators, climbers and walkers....

  2. Distributed control of multi-robot teams: Cooperative baton passing task

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1998-11-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, they describe the implementation of this architecture on a team of physical mobile robots performing a cooperative baton passing task. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes during the task.

  3. A concept of distributed architecture for maintenance robot systems

    International Nuclear Information System (INIS)

    Asama, Hajime

    1990-01-01

    Aiming at development of a robot system for maintenance tasks in nuclear power plants, a concept of distributed architecture for autonomous robot systems is discussed. At first, based on investigation of maintenance tasks, requirements for maintenance robots are introduced, and structures to realize multi-functions are discussed. Then, as a new design strategy of maintenance robot system, an autonomous and decentralized robot systems is proposed, which is composed of multiple robots, computers, and equipments, and concept of ACTRESS (ACTor-based Robots and Equipments Synthetic System) including communication framework between robotic components is designed. Finally, as a model of ACTRESS, a experimental system is developed, which deals with object-pushing tasks by two micromice and an environment modeler with communicating with each other. Both of parallel independent motion and cooperative motion based on communication is reconciled, and the efficiency of the distributed architecture is verified. (author)

  4. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Byung Soo; Kim, Chang Hoi; Hwang, Suk Yong; Sohn, Surg Won; Yoon, Tae Seob; Lee, Yong Bum; Kim, Woong Ki

    1988-02-01

    A mutiprocessor system that is essential to A.I. (Artificial Intelligence) robot control was developed. A.I. robot control needs very complex real time control. The multiprocessor system interconnecting many SBC's (Single Board Computer) is much faster and accurater than using only one SBC. Various multiprocessor systems and their applications were compared and discussed. The multiprocessor architecture system is specially designed to be used in nuclear environments. The main functions are job distribution, multitasking, and intelligent remote control by SDLC protocol using optical fiber. The system can be applied to position control for locomotion and manipulation, data fusion system, and image processing. (Author)

  5. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics

    Directory of Open Access Journals (Sweden)

    Héctor Herrero

    2017-05-01

    Full Text Available This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.

  6. Telerobotic Control Architecture Including Force-Reflection

    National Research Council Canada - National Science Library

    Murphy, Mark

    1998-01-01

    This report describes the implementation of a telerobotic control architecture to manipulate a standard six-degree-of-freedom robot via a unique seven-degree-of-freedom force-reflecting exoskeleton...

  7. A Survey on Intermediation Architectures for Underwater Robotics

    Directory of Open Access Journals (Sweden)

    Xin Li

    2016-02-01

    Full Text Available Currently, there is a plethora of solutions regarding interconnectivity and interoperability for networked robots so that they will fulfill their purposes in a coordinated manner. In addition to that, middleware architectures are becoming increasingly popular due to the advantages that they are capable of guaranteeing (hardware abstraction, information homogenization, easy access for the applications above, etc.. However, there are still scarce contributions regarding the global state of the art in intermediation architectures for underwater robotics. As far as the area of robotics is concerned, this is a major issue that must be tackled in order to get a holistic view of the existing proposals. This challenge is addressed in this paper by studying the most compelling pieces of work for this kind of software development in the current literature. The studied works have been assessed according to their most prominent features and capabilities. Furthermore, by studying the individual pieces of work and classifying them several common weaknesses have been revealed and are highlighted. This provides a starting ground for the development of a middleware architecture for underwater robotics capable of dealing with these issues.

  8. Event-Based Control Strategy for Mobile Robots in Wireless Environments.

    Science.gov (United States)

    Socas, Rafael; Dormido, Sebastián; Dormido, Raquel; Fabregas, Ernesto

    2015-12-02

    In this paper, a new event-based control strategy for mobile robots is presented. It has been designed to work in wireless environments where a centralized controller has to interchange information with the robots over an RF (radio frequency) interface. The event-based architectures have been developed for differential wheeled robots, although they can be applied to other kinds of robots in a simple way. The solution has been checked over classical navigation algorithms, like wall following and obstacle avoidance, using scenarios with a unique or multiple robots. A comparison between the proposed architectures and the classical discrete-time strategy is also carried out. The experimental results shows that the proposed solution has a higher efficiency in communication resource usage than the classical discrete-time strategy with the same accuracy.

  9. An ultrasonic sensor controller for mapping and servo control in robotic systems

    International Nuclear Information System (INIS)

    Drotning, W.D.; Garcia, P. Jr.

    1993-03-01

    An ultrasonic sensor controller has been developed and applied in a variety of robotic systems for operation in hazardous environments. The controller consists of hardware and software that control multiple ultrasonic range sensors and provide workspace information to robot controllers for rapid, safe, and reliable operation in hazardous and remote environments. The hardware consists of a programmable multichannel controller that resides on a VMEbus for high speed communication to a multiprocessor architecture. The sensor controller has been used in a number of applications, which include providing high precision range information for proximity servo control of robots, and performing surface and obstacle mapping functions for safe path planning of robots in unstructured environments

  10. Architecture for Multiple Interacting Robot Intelligences

    Science.gov (United States)

    Peters, Richard Alan, II (Inventor)

    2008-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a database associative memory (DBAM) that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  11. FroboMind, proposing a conceptual architecture for agricultural field robot navigation

    DEFF Research Database (Denmark)

    Jensen, Kjeld; Bøgild, Anders; Nielsen, Søren Hundevadt

    2011-01-01

    The aim of this work is to propose a conceptual system architecture Field Robot Cognitive System Architecture (FroboMind). which can provide the flexibility and extend ability required for further research and development within cognition based navigation of plant nursing robots....

  12. Structured control for autonomous robots

    International Nuclear Information System (INIS)

    Simmons, R.G.

    1994-01-01

    To operate in rich, dynamic environments, autonomous robots must be able to effectively utilize and coordinate their limited physical and occupational resources. As complexity increases, it becomes necessary to impose explicit constraints on the control of planning, perception, and action to ensure that unwanted interactions between behaviors do not occur. This paper advocates developing complex robot systems by layering reactive behaviors onto deliberative components. In this structured control approach, the deliberative components handle normal situations and the reactive behaviors, which are explicitly constrained as to when and how they are activated, handle exceptional situations. The Task Control Architecture (TCA) has been developed to support this approach. TCA provides an integrated set of control constructs useful for implementing deliberative and reactive behaviors. The control constructs facilitate modular and evolutionary system development: they are used to integrate and coordinate planning, perception, and execution, and to incrementally improve the efficiency and robustness of the robot systems. To date, TCA has been used in implementing a half-dozen mobile robot systems, including an autonomous six-legged rover and indoor mobile manipulator

  13. Implementations of a four-level mechanical architecture for fault-tolerant robots

    International Nuclear Information System (INIS)

    Hooper, Richard; Sreevijayan, Dev; Tesar, Delbert; Geisinger, Joseph; Kapoor, Chelan

    1996-01-01

    This paper describes a fault tolerant mechanical architecture with four levels devised and implemented in concert with NASA (Tesar, D. and Sreevijayan, D., Four-level fault tolerance in manipulator design for space operations. In First Int. Symp. Measurement and Control in Robotics (ISMCR '90), Houston, Texas, 20-22 June 1990.) Subsequent work has clarified and revised the architecture. The four levels proceed from fault tolerance at the actuator level, to fault tolerance via in-parallel chains, to fault tolerance using serial kinematic redundancy, and finally to the fault tolerance multiple arm systems provide. This is a subsumptive architecture because each successive layer can incorporate the fault tolerance provided by all layers beneath. For instance a serially-redundant robot can incorporate dual fault-tolerant actuators. Redundant systems provide the fault tolerance, but the guiding principle of this architecture is that functional redundancies actively increase the performance of the system. Redundancies do not simply remain dormant until needed. This paper includes specific examples of hardware and/or software implementation at all four levels

  14. Design and real-time control of a robotic system for fracture manipulation.

    Science.gov (United States)

    Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S

    2015-08-01

    This paper presents the design, development and control of a new robotic system for fracture manipulation. The objective is to improve the precision, ergonomics and safety of the traditional surgical procedure to treat joint fractures. The achievements toward this direction are here reported and include the design, the real-time control architecture and the evaluation of a new robotic manipulator system. The robotic manipulator is a 6-DOF parallel robot with the struts developed as linear actuators. The control architecture is also described here. The high-level controller implements a host-target structure composed by a host computer (PC), a real-time controller, and an FPGA. A graphical user interface was designed allowing the surgeon to comfortably automate and monitor the robotic system. The real-time controller guarantees the determinism of the control algorithms adding an extra level of safety for the robotic automation. The system's positioning accuracy and repeatability have been demonstrated showing a maximum positioning RMSE of 1.18 ± 1.14mm (translations) and 1.85 ± 1.54° (rotations).

  15. A Dual Launch Robotic and Human Lunar Mission Architecture

    Science.gov (United States)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This

  16. Control of a high precision macro-micro robotic manipulator system

    International Nuclear Information System (INIS)

    Cho, Whang

    1997-01-01

    A controller for macro-micro robotic manipulator system in which kinematically independent two robotic sub-systems work together to improve the accuracy of the motion is proposed. A nonlinear feedback linearization scheme is employed as basic architecture for the controller and additional formulations about the controller structure are made to assure the robustness of the overall control action and to restrict the motion of micro sub-system close to its nominal position without causing saturation of joint associated with micro-robot. (author)

  17. A heterogeneous electronics architecture for dealing with complexity in modular robots

    DEFF Research Database (Denmark)

    Garcia, Ricardo Franco Mendoza

    2011-01-01

    Modular robots are robots built from many similar modules that can be arranged in different configurations to suit tasks in hand. Although promising, current incarnations of this technology suffer of an important drawback: modules are usually extremely expensive. This thesis proposes...... a heterogeneous electronics architecture that addresses the price and complexity of modular robots by focusing on the good aspects of homogeneous and heterogeneous designs, such as sequential implementation and reusable components. The architecture was implemented in four robots: Odin V1, Odin V2, Thor...... and Locomorph. In all cases, development time from conception to realization took less than a year, and two of these robots were able to take part in an international robot competition soon after their implementation. We conclude that heterogeneity brings three important advantages to the current stage...

  18. An architecture for an autonomous learning robot

    Science.gov (United States)

    Tillotson, Brian

    1988-01-01

    An autonomous learning device must solve the example bounding problem, i.e., it must divide the continuous universe into discrete examples from which to learn. We describe an architecture which incorporates an example bounder for learning. The architecture is implemented in the GPAL program. An example run with a real mobile robot shows that the program learns and uses new causal, qualitative, and quantitative relationships.

  19. Internet remote control interface for a multipurpose robotic arm

    Directory of Open Access Journals (Sweden)

    Matthew W. Dunnigan

    2008-11-01

    Full Text Available This paper presents an Internet remote control interface for a MITSUBISHI PA10-6CE manipulator established for the purpose of the ROBOT museum exhibition during spring and summer 2004. The robotic manipulator is a part of the Intelligent Robotic Systems Laboratory at Heriot ? Watt University, which has been established to work on dynamic and kinematic aspects of manipulator control in the presence of environmental disturbances. The laboratory has been enriched by a simple vision system consisting of three web-cameras to broadcast the live images of the robots over the Internet. The Interface comprises of the TCP/IP server providing command parsing and execution using the open controller architecture of the manipulator and a client Java applet web-site providing a simple robot control interface.

  20. Control of multiple robots using vision sensors

    CERN Document Server

    Aranda, Miguel; Sagüés, Carlos

    2017-01-01

    This monograph introduces novel methods for the control and navigation of mobile robots using multiple-1-d-view models obtained from omni-directional cameras. This approach overcomes field-of-view and robustness limitations, simultaneously enhancing accuracy and simplifying application on real platforms. The authors also address coordinated motion tasks for multiple robots, exploring different system architectures, particularly the use of multiple aerial cameras in driving robot formations on the ground. Again, this has benefits of simplicity, scalability and flexibility. Coverage includes details of: a method for visual robot homing based on a memory of omni-directional images a novel vision-based pose stabilization methodology for non-holonomic ground robots based on sinusoidal-varying control inputs an algorithm to recover a generic motion between two 1-d views and which does not require a third view a novel multi-robot setup where multiple camera-carrying unmanned aerial vehicles are used to observe and c...

  1. A cognitive robotic system based on the Soar cognitive architecture for mobile robot navigation, search, and mapping missions

    Science.gov (United States)

    Hanford, Scott D.

    Most unmanned vehicles used for civilian and military applications are remotely operated or are designed for specific applications. As these vehicles are used to perform more difficult missions or a larger number of missions in remote environments, there will be a great need for these vehicles to behave intelligently and autonomously. Cognitive architectures, computer programs that define mechanisms that are important for modeling and generating domain-independent intelligent behavior, have the potential for generating intelligent and autonomous behavior in unmanned vehicles. The research described in this presentation explored the use of the Soar cognitive architecture for cognitive robotics. The Cognitive Robotic System (CRS) has been developed to integrate software systems for motor control and sensor processing with Soar for unmanned vehicle control. The CRS has been tested using two mobile robot missions: outdoor navigation and search in an indoor environment. The use of the CRS for the outdoor navigation mission demonstrated that a Soar agent could autonomously navigate to a specified location while avoiding obstacles, including cul-de-sacs, with only a minimal amount of knowledge about the environment. While most systems use information from maps or long-range perceptual capabilities to avoid cul-de-sacs, a Soar agent in the CRS was able to recognize when a simple approach to avoiding obstacles was unsuccessful and switch to a different strategy for avoiding complex obstacles. During the indoor search mission, the CRS autonomously and intelligently searches a building for an object of interest and common intersection types. While searching the building, the Soar agent builds a topological map of the environment using information about the intersections the CRS detects. The agent uses this topological model (along with Soar's reasoning, planning, and learning mechanisms) to make intelligent decisions about how to effectively search the building. Once the

  2. Robotic fabrication in architecture, art and design 2014

    CERN Document Server

    Leon, Monica

    2014-01-01

    Robotic automation has become ubiquitous in the modern manufacturing landscape, spanning an overwhelming range of processes and applications-- from small scale force-controlled grinding operations for orthopedic joints to large scale composite manufacturing of aircraft fuselages. Smart factories, seamlessly linked via industrial networks and sensing, have revolutionized mass production, allowing for intelligent, adaptive manufacturing processes across a broad spectrum of industries. Against this background, an emerging group of researchers, designers, and fabricators have begun to apply robotic technology in the pursuit of architecture, art, and design, implementing them in a range of processes and scales. Coupled with computational design tools the technology is no longer relegated to the repetitive production of the assembly line, and is instead being employed for the mass-customization of non-standard components. This radical shift in protocol has been enabled by the development of new design to production...

  3. DARC: Next generation decentralized control framework for robot applications

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Andersen, Nils Axel; Ravn, Ole

    2013-01-01

    This paper presents DARC, a next generation control framework for robot applications. It is designed to be equally powerful in prototyping research projects and for building serious commercial robots running on low powered embedded hardware, thus closing the gab between research and industry....... It incorporates several new techniques such as a decentralized peer-to-peer architecture, transparent network distribution of the control system, and automatic run-time supervision to guarantee robustness....

  4. Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control

    Science.gov (United States)

    Parker, Lynne E.; Pin, Francois G.

    1988-10-01

    The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.

  5. NUClear: A Loosely Coupled Software Architecture for Humanoid Robot Systems

    Directory of Open Access Journals (Sweden)

    Trent eHouliston

    2016-04-01

    Full Text Available This paper discusses the design and interface of NUClear, a new hybrid message-passing architecture for embodied humanoid robotics. NUClear is modular, low latency and promotes functional and expandable software design. It greatly reduces the latency for messages passed between modules as the messages routes are established at compile time. It also reduces the number of functions that must be written using a system called co-messages which aids in dealing with multiple simultaneous data. NUClear has primarily been evaluated on a humanoid robotic soccer platform and on a robotic boat platform, with evaluations showing that NUClear requires fewer callbacks and cache variables over existing message-passing architectures. NUClear does have limitations when applying these techniques on multi-processed systems. It performs best in lower power systems where computational resources are limited. Future work will focus on applying the architecture to new platforms, including a larger form humanoid platform and a virtual reality platform and further evaluating the impact of the novel techniques introduced.

  6. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  7. A Decentralized Interactive Architecture for Aerial and Ground Mobile Robots Cooperation

    OpenAIRE

    Harik, El Houssein Chouaib; Guérin, François; Guinand, Frédéric; Brethé, Jean-François; Pelvillain, Hervé

    2014-01-01

    International audience; —This paper presents a novel decentralized interactive architecture for aerial and ground mobile robots cooperation. The aerial mobile robot is used to provide a global coverage during an area inspection, while the ground mobile robot is used to provide a local coverage of ground features. We include a human-in-the-loop to provide waypoints for the ground mobile robot to progress safely in the inspected area. The aerial mobile robot follows continuously the ground mobi...

  8. A modular control architecture for real-time synchronous and asynchronous systems

    International Nuclear Information System (INIS)

    Butler, P.L.; Jones, J.P.

    1993-01-01

    This paper describes a control architecture for real-time control of complex robotic systems. The Modular Integrated Control Architecture (MICA), which is actually two complementary control systems, recognizes and exploits the differences between asynchronous and synchronous control. The asynchronous control system simulates shared memory on a heterogeneous network. For control information, a portable event-scheme is used. This scheme provides consistent interprocess coordination among multiple tasks on a number of distributed systems. The machines in the network can vary with respect to their native operating systems and the intemal representation of numbers they use. The synchronous control system is needed for tight real-time control of complex electromechanical systems such as robot manipulators, and the system uses multiple processors at a specified rate. Both the synchronous and asynchronous portions of MICA have been developed to be extremely modular. MICA presents a simple programming model to code developers and also considers the needs of system integrators and maintainers. MICA has been used successfully in a complex robotics project involving a mobile 7-degree-of-freedom manipulator in a heterogeneous network with a body of software totaling over 100,000 lines of code. MICA has also been used in another robotics system, controlling a commercial long-reach manipulator

  9. A Reactive Robot Architecture With Planning on Demand

    National Research Council Canada - National Science Library

    Ranganathan, Ananth; Koenig, Sven

    2003-01-01

    In this paper, we describe a reactive robot architecture that uses fast re-planning methods to avoid the shortcomings of reactive navigation, such as getting stuck in box canyons or in front of small openings...

  10. Experimental robot gripper control for handling of soft objects

    Science.gov (United States)

    Friedrich, Werner E.; Ziegler, T. H.; Lim, P.

    1996-10-01

    The challenging task of automated handling of variable objects necessitates a combination of innovative engineering and advanced information technology. This paper describes the application of a recently developed control strategy applied to overcome some limitations of robot handling, particularly when dealing with variable objects. The paper focuses on a novel approach to accommodate the need for sensing and actuation in controlling the pickup procedure. An experimental robot-based system for the handling of soft parts, ranging from artificial components to natural objects such as fruit and meat pieces was developed. The configuration comprises a modular gripper subsystem, and an industrial robot as part of a distributed control system. The gripper subsystem features manually configurable fingers with integrated sensing capabilities. The control architecture is based on a concept of decentralized control differentiating between positioning and gripping procedures. In this way, the robot and gripper systems are treated as individual handling operations. THis concept allows very short set-up times for future changes involving one or more sub-systems.

  11. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  12. Application oriented programming and control of industrial robots

    International Nuclear Information System (INIS)

    Nilsson, Klas.

    1992-07-01

    Efficient use of industrial robots requires a strong interplay between user level commands, the motion control system, and external equipment. It should also be possible for an experienced application engineer to tailor the motion control to a specific application in a convenient way, instead of deficient utilization of the device or tricky user programming which is often the case today. A layered software architecture has been designed based on an application oriented view, considering typical hardware and software constraints. The top layers or the architecture support improved integration of off-line programming with interactive teach-in programming. The proposed solution is based on a transformation of robot programs between an on-line and an off-line representation. A central part of the architecture is an intermediate software layer, allowing the experienced user to introduce application specific motion primitives, on top of the motion control system. Flexibility during system configuration combined with computing efficiency and performance at run-time is of major importance. The solution is based on so called actions, which are methods to be passed between different software layers. Such methods can be specification of nonlinear control parameters, application specific control strategies, or treatment of external sensor signals. The actions can be implemented efficiently even in the multiprocessor case by using relocatable executable pieces of code generated from a special cross-compilation strategy. The lowest layers, comprising the motion control, have to be efficient and still fit in with the upper layers. In these layers, software solutions include an external sensor interface and a concept of motion pipelining allowing sensor based motions to be partly computed in advance. An experimental platform, built around commercially available robots, has been developed to verify the proposed solutions. (au)

  13. Development of a modular integrated control architecture for flexible manipulators. Final report

    International Nuclear Information System (INIS)

    Burks, B.L.; Battiston, G.

    1994-01-01

    In April 1994, ORNL and SPAR completed the joint development of a manipulator controls architecture for flexible structure controls under a CRADA between the two organizations. The CRADA project entailed design and development of a new architecture based upon the Modular Integrated Control Architecture (MICA) previously developed by ORNL. The new architecture, dubbed MICA-II, uses an object-oriented coding philosophy to provide a highly modular and expandable architecture for robotic manipulator control. This architecture can be readily ported to control of many different manipulator systems. The controller also provides a user friendly graphical operator interface and display of many forms of data including system diagnostics. The capabilities of MICA-II were demonstrated during oscillation damping experiments using the Flexible Beam Experimental Test Bed at Hanford

  14. Automatic Control of Contextual Interaction Integrated with Affection and Architectural Attentional Control

    Directory of Open Access Journals (Sweden)

    Yanrong Jiang

    2013-03-01

    Full Text Available It is still a challenge for robots to interact with complex environments in a smooth and natural manner. The robot should be aware of its surroundings and inner status to make decisions accordingly and appropriately. Contexts benefit the interaction a lot, such as avoiding frequent interruptions (e.g., the explicit inputting requests and thus are essential for interaction. Other challenges, such as shifting attentional focus to a more important stimulus, etc., are also crucial in interaction control. This paper presents a hybrid automatic control approach for interaction, as well as its integration, with these multiple important factors, aiming at performing natural, human-like interactions in robots. In particular, a novel approach of architectural attentional control, based on affection is presented, which attempts to shift the attentional focus in a natural manner. Context-aware computing is combined with interaction to endow the robot with proactive abilities. The long-term interaction control approaches are described. Emotion and personality are introduced into the interaction and their influence mechanism on interaction is explored. We implemented the proposal in an interactive head robot (IHR and the experimental results indicate the effectiveness.

  15. Robotic Fabrication in Architecture, Art and Design 2016

    CERN Document Server

    Saunders, Rob; Burry, Jane

    2016-01-01

    The book presents the proceedings of Rob/Arch 2016, the third international conference on robotic fabrication in architecture, art, and design. The work contains a wide range of contemporary topics, from methodologies for incorporating dynamic material feedback into existing fabrication processes, to novel interfaces for robotic programming, to new processes for large-scale automated construction. The latent argument behind this research is that the term ‘file-to-factory’ must not be a reductive celebration of expediency but instead a perpetual challenge to increase the quality of feedback between design, matter, and making.

  16. Intelligent perception control based on a blackboard architecture

    International Nuclear Information System (INIS)

    Taibi, I.; Koenig, A.; Vacherand, F.

    1991-01-01

    In this paper, is described the intelligent perception control system GESPER which is presently equipped with a set of three cameras, a telemeter and a camera associated with a structured strip light. This system is of great interest for all our robotic applications as it is capable of autonomously planning, triggering acquisitions, integrating and interpreting multisensory data. The GESPER architecture, based on the blackboard model, provides a generic development method for indoor and outdoor perception. The modularity and the independence of the knowledge sources make the software evolving easily without breaking down the architecture. New sensors and/or new data processing can be integrated by the addition of new knowledge sources that modelize them. At present, first results are obtained in our testbed hall which simulates the nuclear plant as gives similar experimental conditions. Our ongoing research concerns the improvement of fusion algorithms and the embedding of the whole system (hardware and software) on target robots and distributed architecture

  17. Design And Control Of Agricultural Robot For Tomato Plants Treatment And Harvesting

    Science.gov (United States)

    Sembiring, Arnes; Budiman, Arif; Lestari, Yuyun D.

    2017-12-01

    Although Indonesia is one of the biggest agricultural country in the world, implementation of robotic technology, otomation and efficiency enhancement in agriculture process hasn’t extensive yet. This research proposed a low cost agricultural robot architecture. The robot could help farmer to survey their farm area, treat the tomato plants and harvest the ripe tomatoes. Communication between farmer and robot was facilitated by wireless line using radio wave to reach wide area (120m radius). The radio wave was combinated with Bluetooth to simplify the communication between robot and farmer’s Android smartphone. The robot was equipped with a camera, so the farmers could survey the farm situation through 7 inch monitor display real time. The farmers controlled the robot and arm movement through an user interface in Android smartphone. The user interface contains control icons that allow farmers to control the robot movement (formard, reverse, turn right and turn left) and cut the spotty leaves or harvest the ripe tomatoes.

  18. An assigned responsibility system for robotic teleoperation control.

    Science.gov (United States)

    Small, Nicolas; Lee, Kevin; Mann, Graham

    2018-01-01

    This paper proposes an architecture that explores a gap in the spectrum of existing strategies for robot control mode switching in adjustable autonomy. In situations where the environment is reasonably known and/or predictable, pre-planning these control changes could relieve robot operators of the additional task of deciding when and how to switch. Such a strategy provides a clear division of labour between the automation and the human operator(s) before the job even begins, allowing for individual responsibilities to be known ahead of time, limiting confusion and allowing rest breaks to be planned. Assigned Responsibility is a new form of adjustable autonomy-based teleoperation that allows the selective inclusion of automated control elements at key stages of a robot operation plan's execution. Progression through these stages is controlled by automatic goal accomplishment tracking. An implementation is evaluated through engineering tests and a usability study, demonstrating the viability of this approach and offering insight into its potential applications.

  19. JACoW A dual arms robotic platform control for navigation, inspection and telemanipulation

    CERN Document Server

    Di Castro, Mario; Ferre, Manuel; Gilardoni, Simone; Losito, Roberto; Lunghi, Giacomo; Masi, Alessandro

    2018-01-01

    High intensity hadron colliders and fixed target experiments require an increasing amount of robotic tele-manipulation to prevent excessive exposure of maintenance personnel to the radioactive environment. Telemanipulation tasks are often required on old radioactive devices not conceived to be maintained and handled using standard industrial robotic solutions. Robotic platforms with a level of dexterity that often require the use of two robotic arms with a minimum of six degrees of freedom are instead needed for these purposes. In this paper, the control of a novel robust robotic platform able to host and to carry safely a dual robotic arm system is presented. The control of the arms is fully integrated with the vehicle control in order to guarantee simplicity to the operators during the realization of the robotic tasks. A novel high-level control architecture for the new robot is shown, as well as a novel low level safety layer for anti-collision and recovery scenarios. Preliminary results of the system comm...

  20. Bio-inspired grasp control in a robotic hand with massive sensorial input.

    Science.gov (United States)

    Ascari, Luca; Bertocchi, Ulisse; Corradi, Paolo; Laschi, Cecilia; Dario, Paolo

    2009-02-01

    The capability of grasping and lifting an object in a suitable, stable and controlled way is an outstanding feature for a robot, and thus far, one of the major problems to be solved in robotics. No robotic tools able to perform an advanced control of the grasp as, for instance, the human hand does, have been demonstrated to date. Due to its capital importance in science and in many applications, namely from biomedics to manufacturing, the issue has been matter of deep scientific investigations in both the field of neurophysiology and robotics. While the former is contributing with a profound understanding of the dynamics of real-time control of the slippage and grasp force in the human hand, the latter tries more and more to reproduce, or take inspiration by, the nature's approach, by means of hardware and software technology. On this regard, one of the major constraints robotics has to overcome is the real-time processing of a large amounts of data generated by the tactile sensors while grasping, which poses serious problems to the available computational power. In this paper a bio-inspired approach to tactile data processing has been followed in order to design and test a hardware-software robotic architecture that works on the parallel processing of a large amount of tactile sensing signals. The working principle of the architecture bases on the cellular nonlinear/neural network (CNN) paradigm, while using both hand shape and spatial-temporal features obtained from an array of microfabricated force sensors, in order to control the sensory-motor coordination of the robotic system. Prototypical grasping tasks were selected to measure the system performances applied to a computer-interfaced robotic hand. Successful grasps of several objects, completely unknown to the robot, e.g. soft and deformable objects like plastic bottles, soft balls, and Japanese tofu, have been demonstrated.

  1. A multitasking behavioral control system for the Robotic All-Terrain Lunar Exploration Rover (RATLER)

    Science.gov (United States)

    Klarer, Paul

    1993-01-01

    An approach for a robotic control system which implements so called 'behavioral' control within a realtime multitasking architecture is proposed. The proposed system would attempt to ameliorate some of the problems noted by some researchers when implementing subsumptive or behavioral control systems, particularly with regard to multiple processor systems and realtime operations. The architecture is designed to allow synchronous operations between various behavior modules by taking advantage of a realtime multitasking system's intertask communications channels, and by implementing each behavior module and each interconnection node as a stand-alone task. The potential advantages of this approach over those previously described in the field are discussed. An implementation of the architecture is planned for a prototype Robotic All Terrain Lunar Exploration Rover (RATLER) currently under development and is briefly described.

  2. The Rh-1 Full-Size Humanoid Robot: Design, Walking Pattern Generation and Control

    Directory of Open Access Journals (Sweden)

    M. Arbulú

    2009-01-01

    Full Text Available This paper is an overview of the humanoid robot Rh-1, the second phase of the Rh project, which was launched by the Robotics Lab at the Carlos III University of Madrid in 2002. The robot mechanical design includes the specifications development in order to construct a platform, which is capable of stable biped walking. At first, the robots’ weights were calculated in order to obtain the inverse dynamics and to select the actuators. After that, mechanical specifications were introduced in order to verify the robot’s structural behaviour with different experimental gaits. In addition, an important aspect is the joints design when their axes are crossed, which is called ‘Joints of Rectangular Axes’ (JRA. The problem with these joints is obtaining two or more degrees of freedom (DOF in small space. The construction of a humanoid robot also includes the design of hardware and software architectures. The main advantage of the proposed hardware and software architectures is the use of standardised solutions frequently used in the automation industry and commercially available hardware components. It provides scalability, modularity and application of standardised interfaces and brings the design of the complex control system of the humanoid robot out of a closed laboratory to industry. Stable walking is the most essential ability for the humanoid robot. The three dimensional Linear Inverted Pendulum Model (3D-LIPM and the Cart-table models had been used in order to achieve natural and dynamic biped walking. Humanoid dynamics is widely simplified by concentrating its mass in the centre of gravity (COG and moving it following the natural inverted pendulum laws (3D-LIPM or by controlling the cart motion (Cart-table model. An offline-calculated motion pattern does not guarantee the walking stability of the humanoid robot. Control architecture for the dynamic humanoid robot walking was developed, which is able to make online modifications of the

  3. End-user programming architecture facilitates the uptake of robots in social therapies

    NARCIS (Netherlands)

    Barakova, E.I.; Gillesen, J.C.C.; Huskens, Bibi; Lourens, T.

    2013-01-01

    This paper proposes an architecture that makes programming of robot behavior of an arbitrary complexity possible for end-users and shows the technical solutions in a way that is easy to understand and generalize to different situations. It aims to facilitate the uptake and actual use of robot

  4. Could positive affect help engineer robot control systems?

    Science.gov (United States)

    Quirin, Markus; Hertzberg, Joachim; Kuhl, Julius; Stephan, Achim

    2011-11-01

    Emotions have long been seen as counteracting rational thought, but over the last decades, they have been viewed as adaptive processes to optimize human (but also animal) behaviour. In particular, positive affect appears to be a functional aspect of emotions closely related to that. We argue that positive affect as understood in Kuhl's PSI model of the human cognitive architecture appears to have an interpretation in state-of-the-art hybrid robot control architectures, which might help tackle some open questions in the field.

  5. Adaptive heterogeneous multi-robot teams

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1998-11-01

    This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail the experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

  6. Combining metric episodes with semantic event concepts within the Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS)

    Science.gov (United States)

    Kelley, Troy D.; McGhee, S.

    2013-05-01

    This paper describes the ongoing development of a robotic control architecture that inspired by computational cognitive architectures from the discipline of cognitive psychology. The Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS) combines symbolic and sub-symbolic representations of knowledge into a unified control architecture. The new architecture leverages previous work in cognitive architectures, specifically the development of the Adaptive Character of Thought-Rational (ACT-R) and Soar. This paper details current work on learning from episodes or events. The use of episodic memory as a learning mechanism has, until recently, been largely ignored by computational cognitive architectures. This paper details work on metric level episodic memory streams and methods for translating episodes into abstract schemas. The presentation will include research on learning through novelty and self generated feedback mechanisms for autonomous systems.

  7. RIPE [robot independent programming environment]: A robot independent programming environment

    International Nuclear Information System (INIS)

    Miller, D.J.; Lennox, R.C.

    1990-01-01

    Remote manual operations in radiation environments are typically performed very slowly. Sensor-based computer-controlled robots hold great promise for increasing the speed and safety of remote operations; however, the programming of robotic systems has proven to be expensive and difficult. Generalized approaches to robot programming that reuse available software modules and employ programming languages which are independent of the specific robotic and sensory devices being used are needed to speed software development and increase overall system reliability. This paper discusses the robot independent programming environment (RIPE) developed at Sandia National Laboratories (SNL). The RIPE is an object-oriented approach to robot system architectures; it is a software environment that facilitates rapid design and implementation of complex robot systems for diverse applications. An architecture based on hierarchies of distributed multiprocessors provides the computing platform for a layered programming structure that models applications using software objects. These objects are designed to support model-based automated programming of robotic and machining devices, real-time sensor-based control, error handling, and robust communication

  8. Survival of falling robots

    Science.gov (United States)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-01-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  9. Survival of falling robots

    Science.gov (United States)

    Cameron, Jonathan M.; Arkin, Ronald C.

    1992-02-01

    As mobile robots are used in more uncertain and dangerous environments, it will become important to design them so that they can survive falls. In this paper, we examine a number of mechanisms and strategies that animals use to withstand these potentially catastrophic events and extend them to the design of robots. A brief survey of several aspects of how common cats survive falls provides an understanding of the issues involved in preventing traumatic injury during a falling event. After outlining situations in which robots might fall, a number of factors affecting their survival are described. From this background, several robot design guidelines are derived. These include recommendations for the physical structure of the robot as well as requirements for the robot control architecture. A control architecture is proposed based on reactive control techniques and action-oriented perception that is geared to support this form of survival behavior.

  10. Computational Architecture of a Robot Coach for Physical Exercises in Kinesthetic Rehabilitation

    OpenAIRE

    Nguyen , Sao Mai; Tanguy , Philippe; Rémy-Néris , Olivier

    2016-01-01

    International audience; The rising number of the elderly incurs growing concern about healthcare, and in particular rehabilitation healthcare. Assistive technology and and assistive robotics in particular may help to improve this process. We develop a robot coach capable of demonstrating rehabilitation exercises to patients, watch a patient carry out the exercises and give him feedback so as to improve his performance and encourage him. We propose a general software architecture for our robot...

  11. Design, analysis and control of cable-suspended parallel robots and its applications

    CERN Document Server

    Zi, Bin

    2017-01-01

    This book provides an essential overview of the authors’ work in the field of cable-suspended parallel robots, focusing on innovative design, mechanics, control, development and applications. It presents and analyzes several typical mechanical architectures of cable-suspended parallel robots in practical applications, including the feed cable-suspended structure for super antennae, hybrid-driven-based cable-suspended parallel robots, and cooperative cable parallel manipulators for multiple mobile cranes. It also addresses the fundamental mechanics of cable-suspended parallel robots on the basis of their typical applications, including the kinematics, dynamics and trajectory tracking control of the feed cable-suspended structure for super antennae. In addition it proposes a novel hybrid-driven-based cable-suspended parallel robot that uses integrated mechanism design methods to improve the performance of traditional cable-suspended parallel robots. A comparative study on error and performance indices of hybr...

  12. VIP - A Framework-Based Approach to Robot Vision

    Directory of Open Access Journals (Sweden)

    Gerd Mayer

    2008-11-01

    Full Text Available For robot perception, video cameras are very valuable sensors, but the computer vision methods applied to extract information from camera images are usually computationally expensive. Integrating computer vision methods into a robot control architecture requires to balance exploitation of camera images with the need to preserve reactivity and robustness. We claim that better software support is needed in order to facilitate and simplify the application of computer vision and image processing methods on autonomous mobile robots. In particular, such support must address a simplified specification of image processing architectures, control and synchronization issues of image processing steps, and the integration of the image processing machinery into the overall robot control architecture. This paper introduces the video image processing (VIP framework, a software framework for multithreaded control flow modeling in robot vision.

  13. VIP - A Framework-Based Approach to Robot Vision

    Directory of Open Access Journals (Sweden)

    Hans Utz

    2006-03-01

    Full Text Available For robot perception, video cameras are very valuable sensors, but the computer vision methods applied to extract information from camera images are usually computationally expensive. Integrating computer vision methods into a robot control architecture requires to balance exploitation of camera images with the need to preserve reactivity and robustness. We claim that better software support is needed in order to facilitate and simplify the application of computer vision and image processing methods on autonomous mobile robots. In particular, such support must address a simplified specification of image processing architectures, control and synchronization issues of image processing steps, and the integration of the image processing machinery into the overall robot control architecture. This paper introduces the video image processing (VIP framework, a software framework for multithreaded control flow modeling in robot vision.

  14. Flora robotica -- An Architectural System Combining Living Natural Plants and Distributed Robots

    DEFF Research Database (Denmark)

    Hamann, Heiko; Divband Soorati, Mohammad; Heinrich, Mary Katherine

    2017-01-01

    Key to our project flora robotica is the idea of creating a bio-hybrid system of tightly coupled natural plants and distributed robots to grow architectural artifacts and spaces. Our motivation with this ground research project is to lay a principled foundation towards the design and implementation...... of flora robotica, such as the continuous growth process of architectural artifacts and self-repair of living architecture....

  15. Humanoid Walking Robot: Modeling, Inverse Dynamics, and Gain Scheduling Control

    Directory of Open Access Journals (Sweden)

    Elvedin Kljuno

    2010-01-01

    Full Text Available This article presents reference-model-based control design for a 10 degree-of-freedom bipedal walking robot, using nonlinear gain scheduling. The main goal is to show concentrated mass models can be used for prediction of the required joint torques for a bipedal walking robot. Relatively complicated architecture, high DOF, and balancing requirements make the control task of these robots difficult. Although linear control techniques can be used to control bipedal robots, nonlinear control is necessary for better performance. The emphasis of this work is to show that the reference model can be a bipedal walking model with concentrated mass at the center of gravity, which removes the problems related to design of a pseudo-inverse system. Another significance of this approach is the reduced calculation requirements due to the simplified procedure of nominal joint torques calculation. Kinematic and dynamic analysis is discussed including results for joint torques and ground force necessary to implement a prescribed walking motion. This analysis is accompanied by a comparison with experimental data. An inverse plant and a tracking error linearization-based controller design approach is described. We propose a novel combination of a nonlinear gain scheduling with a concentrated mass model for the MIMO bipedal robot system.

  16. Dynamic Modelling of a CPG-Controlled Amphibious Biomimetic Swimming Robot

    Directory of Open Access Journals (Sweden)

    Rui Ding

    2013-04-01

    Full Text Available This paper focuses on the modelling and control problems of a self-propelled, multimodal amphibious robot. Inspired by the undulatory body motions of fish and dolphins, the amphibious robot propels itself underwater by oscillations of several modular fish-like propelling units coupled with a pair of pectoral fins capable of non-continuous 360 degree rotation. In order to mimic fish-like undulating propulsion, a control architecture based on Central Pattern Generator (CPG is applied to the amphibious robot for robust swimming gaits, including forward and backward swimming and turning, etc. With the simplification of the robot as a multi-link serial mechanism, a Lagrangian function is employed to establish the hydrodynamic model for steady swimming. The CPG motion control law is then imported into the Lagrangian-based dynamic model, where an associated system of kinematics and dynamics is formed to solve real-time movements and, further, to guide the exploration of the CPG parameters and steady locomotion gaits. Finally, comparative results between the simulations and experiments are provided to show the effectiveness of the built control models.

  17. Virtual Simulator for Autonomous Mobile Robots Navigation System Using Concepts of Control Rapid Prototyping

    Directory of Open Access Journals (Sweden)

    Leonimer Flavio de Melo

    2013-09-01

    Full Text Available This work presents the proposal of virtual environment implementation for project simulation and conception of supervision and control systems for mobile robots, that are capable to operate and adapting in different environments and conditions. This virtual system has as purpose to facilitate the development of embedded architecture systems, emphasizing the implementation of tools that allow the simulation of the kinematic conditions, dynamic and control, with real time monitoring of all important system points. For this, open control architecture is proposal, integrating the two main techniques of robotic control implementation in the hardware level: systems microprocessors and reconfigurable hardware devices. The implemented simulator system is composed of a trajectory generating module, a kinematic and dynamic simulator module and of a analysis module of results and errors. The kinematic and dynamic simulator module makes all simulation of the mobile robot following the pre-determined trajectory of the trajectory generator. All the kinematic and dynamic results shown during the simulation can be evaluated and visualized in graphs and tables formats, in the results analysis module, allowing an improvement in the system, minimizing the errors with the necessary adjustments optimization. For controller implementation in the embedded system, it uses the rapid prototyping, which is the technology that allows, in set with the virtual simulation environment, the development of a controller project for mobile robots. The validation and tests had been accomplishing with nonholonomics mobile robots models with differential transmission.

  18. Long-term knowledge acquisition using contextual information in a memory-inspired robot architecture

    Science.gov (United States)

    Pratama, Ferdian; Mastrogiovanni, Fulvio; Lee, Soon Geul; Chong, Nak Young

    2017-03-01

    In this paper, we present a novel cognitive framework allowing a robot to form memories of relevant traits of its perceptions and to recall them when necessary. The framework is based on two main principles: on the one hand, we propose an architecture inspired by current knowledge in human memory organisation; on the other hand, we integrate such an architecture with the notion of context, which is used to modulate the knowledge acquisition process when consolidating memories and forming new ones, as well as with the notion of familiarity, which is employed to retrieve proper memories given relevant cues. Although much research has been carried out, which exploits Machine Learning approaches to provide robots with internal models of their environment (including objects and occurring events therein), we argue that such approaches may not be the right direction to follow if a long-term, continuous knowledge acquisition is to be achieved. As a case study scenario, we focus on both robot-environment and human-robot interaction processes. In case of robot-environment interaction, a robot performs pick and place movements using the objects in the workspace, at the same time observing their displacement on a table in front of it, and progressively forms memories defined as relevant cues (e.g. colour, shape or relative position) in a context-aware fashion. As far as human-robot interaction is concerned, the robot can recall specific snapshots representing past events using both sensory information and contextual cues upon request by humans.

  19. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  20. Multi-robot control interface

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  1. Research and development of service robot platform based on artificial psychology

    Science.gov (United States)

    Zhang, Xueyuan; Wang, Zhiliang; Wang, Fenhua; Nagai, Masatake

    2007-12-01

    Some related works about the control architecture of robot system are briefly summarized. According to the discussions above, this paper proposes control architecture of service robot based on artificial psychology. In this control architecture, the robot can obtain the cognition of environment through sensors, and then be handled with intelligent model, affective model and learning model, and finally express the reaction to the outside stimulation through its behavior. For better understanding the architecture, hierarchical structure is also discussed. The control system of robot can be divided into five layers, namely physical layer, drives layer, information-processing and behavior-programming layer, application layer and system inspection and control layer. This paper shows how to achieve system integration from hardware modules, software interface and fault diagnosis. Embedded system GENE-8310 is selected as the PC platform of robot APROS-I, and its primary memory media is CF card. The arms and body of the robot are constituted by 13 motors and some connecting fittings. Besides, the robot has a robot head with emotional facial expression, and the head has 13 DOFs. The emotional and intelligent model is one of the most important parts in human-machine interaction. In order to better simulate human emotion, an emotional interaction model for robot is proposed according to the theory of need levels of Maslom and mood information of Siminov. This architecture has already been used in our intelligent service robot.

  2. A Passive Learning Sensor Architecture for Multimodal Image Labeling: An Application for Social Robots

    Directory of Open Access Journals (Sweden)

    Marco A. Gutiérrez

    2017-02-01

    Full Text Available Object detection and classification have countless applications in human–robot interacting systems. It is a necessary skill for autonomous robots that perform tasks in household scenarios. Despite the great advances in deep learning and computer vision, social robots performing non-trivial tasks usually spend most of their time finding and modeling objects. Working in real scenarios means dealing with constant environment changes and relatively low-quality sensor data due to the distance at which objects are often found. Ambient intelligence systems equipped with different sensors can also benefit from the ability to find objects, enabling them to inform humans about their location. For these applications to succeed, systems need to detect the objects that may potentially contain other objects, working with relatively low-resolution sensor data. A passive learning architecture for sensors has been designed in order to take advantage of multimodal information, obtained using an RGB-D camera and trained semantic language models. The main contribution of the architecture lies in the improvement of the performance of the sensor under conditions of low resolution and high light variations using a combination of image labeling and word semantics. The tests performed on each of the stages of the architecture compare this solution with current research labeling techniques for the application of an autonomous social robot working in an apartment. The results obtained demonstrate that the proposed sensor architecture outperforms state-of-the-art approaches.

  3. Distributed mechatronics controller for modular wall climbing robot

    CSIR Research Space (South Africa)

    Tlale, NS

    2006-07-01

    Full Text Available - climbing robot for inspection in nuclear power plants.”, Proc. IEEE Int. Conf. on Robotics and Automation, pp. 409-1414. (Chen 2001) Chen, D-. J., 2001, “Architecture for Systematic Development of Mechatronics Software Systems”, Licentiate Thesis... provide a more cost effective solution to the problem (Luk et al 1991). Such robots are termed service robots by the International Service Robot Association (ISRA) (Pransky 1996). They are defined as machines that sense, think, and act to benefit (or...

  4. CPG-Based Locomotion Control of a Robotic Fish : Using Linear Oscillators and Reducing Control Parameters via PSO

    NARCIS (Netherlands)

    Wang, Chen; Xie, G.; Wang, L.; Cao, M.

    The aim of the present study is to investigate the locomotion control of a robotic fish. To achieve this goal, we design a control architecture based on a novel central pattern generator (CPG) and implement it as a system of coupled linear oscillators. This design differs significantly from the

  5. Cooperative Three-Robot System for Traversing Steep Slopes

    Science.gov (United States)

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael

    2009-01-01

    Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data

  6. A cognitive robotics system: the symbolic and sub-symbolic robotic intelligence control system (SS-RICS)

    Science.gov (United States)

    Kelley, Troy D.; Avery, Eric

    2010-04-01

    This paper will detail the progress on the development of the Symbolic and Subsymbolic Robotics Intelligence Control System (SS-RICS). The system is a goal oriented production system, based loosely on the cognitive architecture, the Adaptive Control of Thought-Rational (ACT-R) some additions and changes. We have found that in order to simulate complex cognition on a robot, many aspects of cognition (long term memory (LTM), perception) needed to be in place before any generalized intelligent behavior can be produced. In working with ACT-R, we found that it was a good instantiation of working memory, but that we needed to add other aspects of cognition including LTM and perception to have a complete cognitive system. Our progress to date will be noted and the challenges that remain will be addressed.

  7. Arquitectura Basada en Roles Aplicada en Equipos de Fútbol de Robots con Control Centralizado

    Directory of Open Access Journals (Sweden)

    José G. Guarnizo

    2016-07-01

    Full Text Available Resumen: El fútbol de robots ofrece un entorno adecuado para el diseño y la validación de arquitecturas de sistemas multi-robot. Al clasificar las ligas de fútbol de robots existentes se encuentran ligas con arquitecturas centralizadas que poseen percepción global del entorno y donde los robots son controlados desde un ordenador a través de un único sistema de toma de decisiones. En este artículo se presenta una arquitectura basada en roles para equipos de fútbol de robots con percepción global y control centralizado. En esta arquitectura un rol es seleccionado para cada jugador por medio de una función. A partir de este rol y de las condiciones de juego presentes se selecciona un comportamiento que el jugador deberá ejecutar. La función que es utilizada para la asignación de roles es activada cuando el balón cambia de cuadrante en el campo de juego. La estrategia presentada es comparada en simulación realizando partidos contra un equipo que posee una estrategia de roles constantes y un equipo con una estrategia jerárquica basada en selección de tácticas y posteriormente asignación de roles a partir de la táctica seleccionada. Los resultados mostraron no solo un mejor rendimiento del equipo con la estrategia basada en roles, sino también uniformidad en los comportamientos realizados por los jugadores del equipo durante las transiciones de roles y comportamientos. Abstract: Robot soccer offers an adequate domain in order to design and validate architectures for robot-coordination. One classification refers to centralized architectures, which correspond to robot soccer environments with global perception and centralized control of the robots, using only one decision-making system. In this paper it is presented a centralized robot soccer architecture based on roles, where one role is assigned to each player in order to select a specific behaviour depending on game conditions. Roles

  8. Locomotor Sub-functions for Control of Assistive Wearable Robots

    Directory of Open Access Journals (Sweden)

    Maziar A. Sharbafi

    2017-09-01

    Full Text Available A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance: redirecting the center of mass by exerting forces on the ground. Swing: cycling the legs between ground contacts. Balance: maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  9. Locomotor Sub-functions for Control of Assistive Wearable Robots.

    Science.gov (United States)

    Sharbafi, Maziar A; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance : redirecting the center of mass by exerting forces on the ground. Swing : cycling the legs between ground contacts. Balance : maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  10. Design and Implementation of a Control System for a Sailboat Robot

    Directory of Open Access Journals (Sweden)

    Davi Santos

    2016-02-01

    Full Text Available This article discusses a control architecture for autonomous sailboat navigation and also presents a sailboat prototype built for experimental validation of the proposed architecture. The main goal is to allow long endurance autonomous missions, such as ocean monitoring. As the system propulsion relies on wind forces instead of motors, sailboat techniques are introduced and discussed, including the needed sensors, actuators and control laws. Mathematical modeling of the sailboat, as well as control strategies developed using PID and fuzzy controllers to control the sail and the rudder are also presented. Furthermore, we also present a study of the hardware architecture that enables the system overall performance to be increased. The sailboat movement can be planned through predetermined geographical way-points provided by a base station. Simulated and experimental results are presented to validate the control architecture, including tests performed on a lake. Underwater robotics can rely on such a platform by using it as a basis vessel, where autonomous charging of unmanned vehicles could be done or else as a relay surface base station for transmitting data.

  11. AERCam Autonomy: Intelligent Software Architecture for Robotic Free Flying Nanosatellite Inspection Vehicles

    Science.gov (United States)

    Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.

    2006-01-01

    The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits

  12. Robots Social Embodiment in Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Brian Duffy

    2008-11-01

    Full Text Available This work aims at demonstrating the inherent advantages of embracing a strong notion of social embodiment in designing a real-world robot control architecture with explicit ?intelligent? social behaviour between a collective of robots. It develops the current thinking on embodiment beyond the physical by demonstrating the importance of social embodiment. A social framework develops the fundamental social attributes found when more than one robot co-inhabit a physical space. The social metaphors of identity, character, stereotypes and roles are presented and implemented within a real-world social robot paradigm in order to facilitate the realisation of explicit social goals.

  13. Using Sun’s Java Real-Time System to Manage Behavior-Based Mobile Robot Controllers

    Directory of Open Access Journals (Sweden)

    Andrew McKenzie

    2011-01-01

    Full Text Available Implementing a robot controller that can effectively manage limited resources in a deterministic, real-time manner is challenging. Behavior-based architectures that decompose autonomy into levels of intelligence are popular due to their robustness but do not provide real-time features that enforce timing constraints or support determinism. We propose an architecture and approach for using the real-time features of the Real-Time Specification for Java (RTSJ in a behavior-based mobile robot controller to show that timing constraints affect performance. This is accomplished by extending a real-time aware architecture that explicitly enumerates timing requirements for each behavior. It is not enough to reduce latency. The usefulness of this approach is demonstrated via an implementation on Solaris 10 and the Sun Java Real-Time System (Java RTS. Experimental results are obtained using a K-team Koala robot performing path following with four composite behaviors. Experiments were conducted using several task period sets in three cases: real-time threads with the real-time garbage collector, real-time threads with the non- real-time garbage collector, and non-real-time threads with the non-real-time garbage collector. Results show that even if latency and determinism are improved, the timing of each individual behavior significantly affects task performance.

  14. Reward-Modulated Hebbian Plasticity as Leverage for Partially Embodied Control in Compliant Robotics

    Science.gov (United States)

    Burms, Jeroen; Caluwaerts, Ken; Dambre, Joni

    2015-01-01

    In embodied computation (or morphological computation), part of the complexity of motor control is offloaded to the body dynamics. We demonstrate that a simple Hebbian-like learning rule can be used to train systems with (partial) embodiment, and can be extended outside of the scope of traditional neural networks. To this end, we apply the learning rule to optimize the connection weights of recurrent neural networks with different topologies and for various tasks. We then apply this learning rule to a simulated compliant tensegrity robot by optimizing static feedback controllers that directly exploit the dynamics of the robot body. This leads to partially embodied controllers, i.e., hybrid controllers that naturally integrate the computations that are performed by the robot body into a neural network architecture. Our results demonstrate the universal applicability of reward-modulated Hebbian learning. Furthermore, they demonstrate the robustness of systems trained with the learning rule. This study strengthens our belief that compliant robots should or can be seen as computational units, instead of dumb hardware that needs a complex controller. This link between compliant robotics and neural networks is also the main reason for our search for simple universal learning rules for both neural networks and robotics. PMID:26347645

  15. Direct kinematics solution architectures for industrial robot manipulators: Bit-serial versus parallel

    Science.gov (United States)

    Lee, J.; Kim, K.

    1991-01-01

    A Very Large Scale Integration (VLSI) architecture for robot direct kinematic computation suitable for industrial robot manipulators was investigated. The Denavit-Hartenberg transformations are reviewed to exploit a proper processing element, namely an augmented CORDIC. Specifically, two distinct implementations are elaborated on, such as the bit-serial and parallel. Performance of each scheme is analyzed with respect to the time to compute one location of the end-effector of a 6-links manipulator, and the number of transistors required.

  16. Direct kinematics solution architectures for industrial robot manipulators: Bit-serial versus parallel

    Science.gov (United States)

    Lee, J.; Kim, K.

    A Very Large Scale Integration (VLSI) architecture for robot direct kinematic computation suitable for industrial robot manipulators was investigated. The Denavit-Hartenberg transformations are reviewed to exploit a proper processing element, namely an augmented CORDIC. Specifically, two distinct implementations are elaborated on, such as the bit-serial and parallel. Performance of each scheme is analyzed with respect to the time to compute one location of the end-effector of a 6-links manipulator, and the number of transistors required.

  17. Hybrid Architecture for Coordination of AGVs in FMS

    Directory of Open Access Journals (Sweden)

    Eduardo G. Hernandez-Martinez

    2014-03-01

    Full Text Available This paper presents a hybrid control architecture that coordinates the motion of groups of automated guided vehicles in flexible manufacturing systems. The high-level control is based on a Petri net model, using the industrial standard ISA-95, obtaining a task-based coordination of equipment and storage considering process restrictions, logical precedences, shared resources and the assignment of robots to move workpieces individually or in subgroups. On the other hand, in the low-level control, three basic control laws are designed for unicycle-type robots in order to achieve desired formation patterns and marching behaviours, avoiding inter-robot collisions. The control scheme combines the task assignment for the robots obtained from the discrete-event model and the implementation of formation and marching continuous control laws applied to the motion of the mobile robots. The hybrid architecture is implemented and validated for the case of a flexible manufacturing system and four mobile robots using a virtual reality platform.

  18. Fault Tolerant Control Architecture Design for Mobile Manipulation in Scientific Facilities

    Directory of Open Access Journals (Sweden)

    Mohammad M. Aref

    2015-01-01

    Full Text Available This paper describes one of the challenging issues implied by scientific infrastructures on a mobile robot cognition architecture. For a generally applicable cognition architecture, we study the dependencies and logical relations between several tasks and subsystems. The overall view of the software modules is described, including their relationship with a fault management module that monitors the consistency of the data flow among the modules. The fault management module is the solution of the deliberative architecture for the single point failures, and the safety anchor is the reactive solution for the faults by redundant equipment. In addition, a hardware architecture is proposed to ensure safe robot movement as a redundancy for the cognition of the robot. The method is designed for a four-wheel steerable (4WS mobile manipulator (iMoro as a case study.

  19. An Architecture for Emotional and Context-Aware Associative Learning for Robot Companions

    OpenAIRE

    Rizzi Raymundo, C.; Johnson, C. G.; Vargas, P. A.

    2015-01-01

    This work proposes a theoretical architectural model based on the brain's fear learning system with the purpose of generating artificial fear conditioning at both stimuli and context abstraction levels in robot companions. The proposed architecture is inspired by the different brain regions involved in fear learning, here divided into four modules that work in an integrated and parallel manner: the sensory system, the amygdala system, the hippocampal system and the working memory. Each of the...

  20. Specification of an integrated information architecture for a mobile teleoperated robot for home telecare.

    Science.gov (United States)

    Iannuzzi, David; Grant, Andrew; Corriveau, Hélène; Boissy, Patrick; Michaud, Francois

    2016-12-01

    The objective of this study was to design effectively integrated information architecture for a mobile teleoperated robot in remote assistance to the delivery of home health care. Three role classes were identified related to the deployment of a telerobot, namely, engineer, technology integrator, and health professional. Patients and natural caregivers were indirectly considered, this being a component of future field studies. Interviewing representatives of each class provided the functions, and information content and flows for each function. Interview transcripts enabled the formulation of UML (Universal Modeling Language) diagrams for feedback from participants. The proposed information architecture was validated with a use-case scenario. The integrated information architecture incorporates progressive design, ergonomic integration, and the home care needs from medical specialist, nursing, physiotherapy, occupational therapy, and social worker care perspectives. The integrated architecture iterative process promoted insight among participants. The use-case scenario evaluation showed the design's robustness. Complex innovation such as a telerobot must coherently mesh with health-care service delivery needs. The deployment of integrated information architecture bridging development, with specialist and home care applications, is necessary for home care technology innovation. It enables continuing evolution of robot and novel health information design in the same integrated architecture, while accounting for patient ecological need.

  1. CONTROL PREDICTIVO DE UN ROBOT TIPO SCARA PREDICTIVE CONTROL OF A SCARA ROBOT

    Directory of Open Access Journals (Sweden)

    Oscar Andrés Vivas Albán

    2006-08-01

    Full Text Available Este artículo presenta una aplicación eficiente de un control por modelo de referencia sobre un robot de tipo SCARA. El control estudiado es un control predictivo funcional, el que hace uso de un modelo dinámico simplificado del robot. Los ensayos simulados se realizan sobre un robot de cuatro grados de libertad, tipo SCARA. Con el fin de comparar diferentes estrategias de control, se diseña un controlador clásico tipo PID y dos controladores basados en el modelo de referencia. En este último caso el sistema se linealiza y se desacoplada por realimentación, lo que transforma el sistema a controlar en un simple par de integradores. Al sistema lineal y desacoplado resultante se le aplica el control por par calculado y el control predictivo funcional. Los tres controladores estudiados se simulan sobre el robot SCARA con valores numéricos reales. Las pruebas permiten valorar las respuestas de estos controladores en seguimiento de trayectoria, rechazo de perturbaciones y presencia de errores en el modelado con consignas complejas similares a las utilizadas en procesos de fabricación.This paper describes an efficient approach for model based control, applied on a SCARA robot. The studied control is the predictive functional control which uses a simplified dynamical model of the robot. The simulated tests are made on a SCARA type robot, with four DOF. To compare several control strategies, a classical PID control and two model based controllers are designed. In the last case, the model is first linearized and decoupled by feedback, transforming the system into a double set of integrators. Computed torque control and predictive functional control are applied to the linear and decoupled system. The three studied controllers are simulated on the SCARA robot with real numerical values. Tracking performance, disturbance rejection and model robot mismatch are enlightened, using complex machining tasks trajectories and error presence in the modelling

  2. Design and Control System of a Modular Parallel Robot for Medical Applications

    Directory of Open Access Journals (Sweden)

    Florin Covaciu

    2015-06-01

    Full Text Available Brachytherapy (BT, a cancer treatment method, is a type of internal radiation therapy which implies that radiation doses (seeds are placed inside the tumor, aiming to destroy only the cancerous cells, without affecting the surrounding healthy tissue. For a successful brachytherapy procedure, the accurate radiation seeds placement is an important issue, which is why a robotic system has been built for this task. The paper presents the design of a parallel robotic system for brachytherapy procedures and the control system architecture and its implementation.

  3. SMAC — A Modular Open Source Architecture for Medical Capsule Robots

    Directory of Open Access Journals (Sweden)

    Beccani Marco

    2014-11-01

    Full Text Available The field of Medical Capsule Robots (MCRs is gaining momentum in the robotics community, with applications spanning from abdominal surgery to gastrointestinal (GI endoscopy. MCRs are miniature multifunctional devices usually constrained in both size and on-board power supply. The design process for MCRs is time consuming and resource intensive, as it involves the development of custom hardware and software components. In this work, we present the STORM Lab Modular Architecture for Capsules (SMAC, a modular open source architecture for MCRs aiming to provide the MCRs research community with a tool for shortening the design and development time for capsule robots. The SMAC platform consists of both hardware modules and firmware libraries that can be used for developing MCRs. In particular, the SMAC modules are miniature boards of uniform diameter (i.e., 9.8 mm that are able to fulfill five different functions: signal coordination combined with wireless data transmission, sensing, actuation, powering and vision/illumination. They are small in size, low power, and have reconfigurable software libraries for the Hardware Abstraction Layer (HAL, which has been proven to work reliably for different types of MCRs. A design template for a generic SMAC application implementing a robust communication protocol is presented in this work, together with its finite state machine abstraction, capturing all the architectural components involved. The reliability of the wireless link is assessed for different levels of data transmission power and separation distances. The current consumption for each SMAC module is quantified and the timing of a SMAC radio message transmission is characterized. Finally, the applicability of SMAC in the field of MCRs is discussed by analysing examples from the literature.

  4. INTEGRATED ROBOT-HUMAN CONTROL IN MINING OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    George Danko

    2005-04-01

    This report contains a detailed description of the work conducted in the first year of the project on Integrated Robot-Human Control in Mining Operations at University of Nevada, Reno. This project combines human operator control with robotic control concepts to create a hybrid control architecture, in which the strengths of each control method are combined to increase machine efficiency and reduce operator fatigue. The kinematics reconfiguration type differential control of the excavator implemented with a variety of ''software machine kinematics'' is the key feature of the project. This software re-configured excavator is more desirable to execute a given digging task. The human operator retains the master control of the main motion parameters, while the computer coordinates the repetitive movement patterns of the machine links. These repetitive movements may be selected from a pre-defined family of trajectories with different transformations. The operator can make adjustments to this pattern in real time, as needed, to accommodate rapidly-changing environmental conditions. A Bobcat{reg_sign} 435 excavator was retrofitted with electro-hydraulic control valve elements. The modular electronic control was tested and the basic valve characteristics were measured for each valve at the Robotics Laboratory at UNR. Position sensors were added to the individual joint control actuators, and the sensors were calibrated. An electronic central control system consisting of a portable computer, converters and electronic driver components was interfaced to the electro-hydraulic valves and position sensors. The machine is operational with or without the computer control system depending on whether the computer interface is on or off. In preparation for emulated mining tasks tests, typical, repetitive tool trajectories during surface mining operations were recorded at the Newmont Mining Corporation's ''Lone Tree'' mine in Nevada.

  5. Filigree Robotics

    DEFF Research Database (Denmark)

    Tamke, Martin; Evers, Henrik Leander; Clausen Nørgaard, Esben

    2016-01-01

    Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture.......Filigree Robotics experiments with the combination of traditional ceramic craft with robotic fabrication in order to generate a new narrative of fine three-dimensional ceramic ornament for architecture....

  6. Fiscal 1997 report on the results of the international standardization R and D. Robot control system; 1997 nendo seika hokokusho kokusai hyojun soseigata kenkyu kaihatsu. Robot seigyo system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    R and D of the robot control system was conducted in the following items: 1) integrated open control system, 2) remote control robot manipulation language, 3) human factor robot use built-in LAN system, 4) built-in actuator driver. In 1), there were some problems to be pointed out around the system, but the effectiveness was confirmed as system architecture of each verification item. In 2), development/design were made of RCML(R-Cube Manipulation Language) as a remote robot manipulation language, telecommunication protocol, and the experimental system, and the international standardization was targeted. In 3), the R and D was conducted of the realtime telecommunication protocol which clears the standards for the distributed control required for construction of human factor robot and the advanced realtime micro-controller, ULSI, which is the one that the protocol was made IC. In 4), an intelligent connector for built-in actuator was developed which enables saving of wiring in robot system and plug-in connection. 13 refs., 186 figs., 53 tabs.

  7. Robot Control Overview: An Industrial Perspective

    Directory of Open Access Journals (Sweden)

    T. Brogårdh

    2009-07-01

    Full Text Available One key competence for robot manufacturers is robot control, defined as all the technologies needed to control the electromechanical system of an industrial robot. By means of modeling, identification, optimization, and model-based control it is possible to reduce robot cost, increase robot performance, and solve requirements from new automation concepts and new application processes. Model-based control, including kinematics error compensation, optimal servo reference- and feed-forward generation, and servo design, tuning, and scheduling, has meant a breakthrough for the use of robots in industry. Relying on this breakthrough, new automation concepts such as high performance multi robot collaboration and human robot collaboration can be introduced. Robot manufacturers can build robots with more compliant components and mechanical structures without loosing performance and robots can be used also in applications with very high performance requirements, e.g., in assembly, machining, and laser cutting. In the future it is expected that the importance of sensor control will increase, both with respect to sensors in the robot structure to increase the control performance of the robot itself and sensors outside the robot related to the applications and the automation systems. In this connection sensor fusion and learning functionalities will be needed together with the robot control for easy and intuitive installation, programming, and maintenance of industrial robots.

  8. Models and control for force/torque sensors in robotics

    International Nuclear Information System (INIS)

    Johansson, Gert.

    1992-01-01

    One of the important problems in automatic assembly is the relative positioning accuracy between the parts in the assembly process. Inaccurate positions cause large insertion forces, wear and might damage the parts. They can also completely disable the assembly process. A solution to this problem is to detect the positioning error and to make a relevant adjustment of the position or path. This thesis presents a solution based on active feedback of force/torque data from a wrist mounted sensor. A task independent control algorithm has been realized through a sensor model concept. The sensor model includes an algorithm that transforms force/torque input to relevant motion of the end effector. The transformation is specified by a set of parameters e.g. desired forces, compliance and stopping criteria. The problem with gravity forces for varying end effector orientation is compensated by an algorithm, divided into three complexity levels. The compensation method includes a calibration sequence to ensure valid end effector properties to be used in the algorithm. A problem with available robot technology is bad integration possibilities for external sensors. To allow necessary modifications and expansions, an open and general control system architecture is proposed. The architecture is based in a computer workstation and transputers in pipeline for the robot specific operations. (au)

  9. A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims.

    Science.gov (United States)

    Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie

    2014-12-01

    Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.

  10. Robot Motion and Control 2011

    CERN Document Server

    2012-01-01

    Robot Motion Control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: • Design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors. • New control algorithms for industrial robots, nonholonomic systems and legged robots. • Different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others. • Multiagent systems consisting of mobile and flying robots with their applications The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists...

  11. New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots

    Directory of Open Access Journals (Sweden)

    Luis Emmi

    2014-01-01

    Full Text Available Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.

  12. New Trends in Robotics for Agriculture: Integration and Assessment of a Real Fleet of Robots

    Science.gov (United States)

    Gonzalez-de-Soto, Mariano; Pajares, Gonzalo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis. PMID:25143976

  13. New trends in robotics for agriculture: integration and assessment of a real fleet of robots.

    Science.gov (United States)

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    Computer-based sensors and actuators such as global positioning systems, machine vision, and laser-based sensors have progressively been incorporated into mobile robots with the aim of configuring autonomous systems capable of shifting operator activities in agricultural tasks. However, the incorporation of many electronic systems into a robot impairs its reliability and increases its cost. Hardware minimization, as well as software minimization and ease of integration, is essential to obtain feasible robotic systems. A step forward in the application of automatic equipment in agriculture is the use of fleets of robots, in which a number of specialized robots collaborate to accomplish one or several agricultural tasks. This paper strives to develop a system architecture for both individual robots and robots working in fleets to improve reliability, decrease complexity and costs, and permit the integration of software from different developers. Several solutions are studied, from a fully distributed to a whole integrated architecture in which a central computer runs all processes. This work also studies diverse topologies for controlling fleets of robots and advances other prospective topologies. The architecture presented in this paper is being successfully applied in the RHEA fleet, which comprises three ground mobile units based on a commercial tractor chassis.

  14. A Combination of Machine Learning and Cerebellar Models for the Motor Control and Learning of a Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, forming a Unit Learning Machine. The LWPR optimizes the input space...... and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar circuits including analytical models and spiking models...

  15. Teleautonomous Control on Rescue Robot Prototype

    Directory of Open Access Journals (Sweden)

    Son Kuswadi

    2012-12-01

    Full Text Available Robot application in disaster area can help responder team to save victims. In order to finish task, robot must have flexible movement mechanism so it can pass through uncluttered area. Passive linkage can be used on robot chassis so it can give robot flexibility. On physical experiments, robot is succeeded to move through gravels and 5 cm obstacle. Rescue robot also has specialized control needs. Robot must able to be controlled remotely. It also must have ability to move autonomously. Teleautonomous control method is combination between those methods. It can be concluded from experiments that on teleoperation mode, operator must get used to see environment through robot’s camera. While on autonomous mode, robot is succeeded to avoid obstacle and search target based on sensor reading and controller program. On teleautonomous mode, robot can change control mode by using bluetooth communication for data transfer, so robot control will be more flexible.

  16. On Open- source Multi-robot simulators

    CSIR Research Space (South Africa)

    Namoshe, M

    2008-07-01

    Full Text Available Open source software simulators play a major role in robotics design and research as platforms for developing, testing and improving architectures, concepts and algorithms for cooperative/multi-robot systems. Simulation environment enables control...

  17. A biologically inspired meta-control navigation system for the Psikharpax rat robot

    International Nuclear Information System (INIS)

    Caluwaerts, K; Staffa, M; N’Guyen, S; Grand, C; Dollé, L; Favre-Félix, A; Girard, B; Khamassi, M

    2012-01-01

    A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is presented, allowing for self-localization and autonomous navigation in an initially unknown environment. The ability of parts of the model (e.g. the strategy selection mechanism) to reproduce rat behavioral data in various maze tasks has been validated before in simulations. But the capacity of the model to work on a real robot platform had not been tested. This paper presents our work on the implementation on the Psikharpax robot of two independent navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a strategy selection meta-controller. We show how our robot can memorize which was the optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover, a context detector enables the controller to quickly adapt to changes in the environment—recognized as new contexts—and to restore previously acquired strategy preferences when a previously experienced context is recognized. This produces adaptivity closer to rat behavioral performance and constitutes a computational proposition of the role of the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller may provide an advancement for learning architectures in robotics. (paper)

  18. A Memory-based Robot Architecture based on Contextual Information

    OpenAIRE

    Pratama, Ferdian; Mastrogiovanni, Fulvio; Chong, Nak Young

    2014-01-01

    In this paper, we present a preliminary conceptual design for a robot long-term memory architecture based on the notion of context. Contextual information is used to organize the data flow between Working Memory (including Perceptual Memory) and Long-Term Memory components. We discuss the major influence of the notion of context within Episodic Memory on Semantic and Procedural Memory, respectively. We address how the occurrence of specific object-related events in time impacts on the semanti...

  19. Systems and Algorithms for Automated Collaborative Observation Using Networked Robotic Cameras

    Science.gov (United States)

    Xu, Yiliang

    2011-01-01

    The development of telerobotic systems has evolved from Single Operator Single Robot (SOSR) systems to Multiple Operator Multiple Robot (MOMR) systems. The relationship between human operators and robots follows the master-slave control architecture and the requests for controlling robot actuation are completely generated by human operators. …

  20. Robotic Planetary Drill Tests

    Science.gov (United States)

    Glass, Brian J.; Thompson, S.; Paulsen, G.

    2010-01-01

    Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.

  1. Social Intelligence for a Robot Engaging People in Cognitive Training Activities

    Directory of Open Access Journals (Sweden)

    Jeanie Chan

    2012-10-01

    Full Text Available Current research supports the use of cognitive training interventions to improve the brain functioning of both adults and children. Our work focuses on exploring the potential use of robot assistants to allow for these interventions to become more accessible. Namely, we aim to develop an intelligent, socially assistive robot that can engage individuals in person-centred cognitively stimulating activities. In this paper, we present the design of a novel control architecture for the robot Brian 2.0, which enables the robot to be a social motivator by providing assistance, encouragement and celebration during an activity. A hierarchical reinforcement learning approach is used in the architecture to allow the robot to: 1 learn appropriate assistive behaviours based on the structure of the activity, and 2 personalize an interaction based on user states. Experiments show that the control architecture is effective in determining the robot's optimal assistive behaviours during a memory game interaction.

  2. Neuro-Inspired Spike-Based Motion: From Dynamic Vision Sensor to Robot Motor Open-Loop Control through Spike-VITE

    Directory of Open Access Journals (Sweden)

    Fernando Perez-Peña

    2013-11-01

    Full Text Available In this paper we present a complete spike-based architecture: from a Dynamic Vision Sensor (retina to a stereo head robotic platform. The aim of this research is to reproduce intended movements performed by humans taking into account as many features as possible from the biological point of view. This paper fills the gap between current spike silicon sensors and robotic actuators by applying a spike processing strategy to the data flows in real time. The architecture is divided into layers: the retina, visual information processing, the trajectory generator layer which uses a neuroinspired algorithm (SVITE that can be replicated into as many times as DoF the robot has; and finally the actuation layer to supply the spikes to the robot (using PFM. All the layers do their tasks in a spike-processing mode, and they communicate each other through the neuro-inspired AER protocol. The open-loop controller is implemented on FPGA using AER interfaces developed by RTC Lab. Experimental results reveal the viability of this spike-based controller. Two main advantages are: low hardware resources (2% of a Xilinx Spartan 6 and power requirements (3.4 W to control a robot with a high number of DoF (up to 100 for a Xilinx Spartan 6. It also evidences the suitable use of AER as a communication protocol between processing and actuation.

  3. Neuro-Inspired Spike-Based Motion: From Dynamic Vision Sensor to Robot Motor Open-Loop Control through Spike-VITE

    Science.gov (United States)

    Perez-Peña, Fernando; Morgado-Estevez, Arturo; Linares-Barranco, Alejandro; Jimenez-Fernandez, Angel; Gomez-Rodriguez, Francisco; Jimenez-Moreno, Gabriel; Lopez-Coronado, Juan

    2013-01-01

    In this paper we present a complete spike-based architecture: from a Dynamic Vision Sensor (retina) to a stereo head robotic platform. The aim of this research is to reproduce intended movements performed by humans taking into account as many features as possible from the biological point of view. This paper fills the gap between current spike silicon sensors and robotic actuators by applying a spike processing strategy to the data flows in real time. The architecture is divided into layers: the retina, visual information processing, the trajectory generator layer which uses a neuroinspired algorithm (SVITE) that can be replicated into as many times as DoF the robot has; and finally the actuation layer to supply the spikes to the robot (using PFM). All the layers do their tasks in a spike-processing mode, and they communicate each other through the neuro-inspired AER protocol. The open-loop controller is implemented on FPGA using AER interfaces developed by RTC Lab. Experimental results reveal the viability of this spike-based controller. Two main advantages are: low hardware resources (2% of a Xilinx Spartan 6) and power requirements (3.4 W) to control a robot with a high number of DoF (up to 100 for a Xilinx Spartan 6). It also evidences the suitable use of AER as a communication protocol between processing and actuation. PMID:24264330

  4. Multibody system dynamics, robotics and control

    CERN Document Server

    Gerstmayr, Johannes

    2013-01-01

    The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.

  5. A novel optimal coordinated control strategy for the updated robot system for single port surgery.

    Science.gov (United States)

    Bai, Weibang; Cao, Qixin; Leng, Chuntao; Cao, Yang; Fujie, Masakatsu G; Pan, Tiewen

    2017-09-01

    Research into robotic systems for single port surgery (SPS) has become widespread around the world in recent years. A new robot arm system for SPS was developed, but its positioning platform and other hardware components were not efficient. Special features of the developed surgical robot system make good teleoperation with safety and efficiency difficult. A robot arm is combined and used as new positioning platform, and the remote center motion is realized by a new method using active motion control. A new mapping strategy based on kinematics computation and a novel optimal coordinated control strategy based on real-time approaching to a defined anthropopathic criterion configuration that is referred to the customary ease state of human arms and especially the configuration of boxers' habitual preparation posture are developed. The hardware components, control architecture, control system, and mapping strategy of the robotic system has been updated. A novel optimal coordinated control strategy is proposed and tested. The new robot system can be more dexterous, intelligent, convenient and safer for preoperative positioning and intraoperative adjustment. The mapping strategy can achieve good following and representation for the slave manipulator arms. And the proposed novel control strategy can enable them to complete tasks with higher maneuverability, lower possibility of self-interference and singularity free while teleoperating. Copyright © 2017 John Wiley & Sons, Ltd.

  6. SITUATION ASSESSMENT THROUGH MULTI-MODAL SENSING OF DYNAMIC ENVIRONMENTS TO SUPPORT COGNITIVE ROBOT CONTROL

    Directory of Open Access Journals (Sweden)

    Atta Badii

    2014-12-01

    Full Text Available Awareness of emerging situations in a dynamic operational environment of a robotic assistive device is an essential capability of such a cognitive system, based on its effective and efficient assessment of the prevailing situation. This allows the system to interact with the environment in a sensible (semiautonomous / pro-active manner without the need for frequent interventions from a supervisor.  In this paper, we report a novel generic Situation Assessment Architecture for robotic systems directly assisting humans as developed in the CORBYS project. This paper presents the overall architecture for situation assessment and its application in proof-of-concept Demonstrators as developed and validated within the CORBYS project. These include a robotic human follower and a mobile gait rehabilitation robotic system. We present an overview of the structure and functionality of the Situation Assessment Architecture for robotic systems with results and observations as collected from initial validation on the two CORBYS Demonstrators.

  7. A Layered Middleware Architecture for Automated Robot Services

    OpenAIRE

    Choi, Jongsun; Cho, Yongseong; Choi, Jaeyoung; Choi, Jongmyung

    2014-01-01

    These days, using robots has gradually been extending from the limited industrial areas in factories to service areas for the general public in everyday life. It is possible to imagine that end users easily control robots and they define new services by themselves as they wish in the near future. However, there are three issues to resolve to realize the future. Firstly, it is required to abstract robots’ behaviors from primitive robot functions, and secondly, we need context awareness in orde...

  8. A Coordinated Control Architecture for Disaster Response Robots

    Science.gov (United States)

    2016-01-01

    to use these same algorithms to provide navigation Odometry for the vehicle motions when the robot is driving. Visual Odometry The YouTube link... depressed the accelerator pedal. We relied on the fact that the vehicle quickly comes to rest when the accelerator pedal is not being pressed. The

  9. A Robotic Coach Architecture for Elder Care (ROCARE) Based on Multi-User Engagement Models.

    Science.gov (United States)

    Fan, Jing; Bian, Dayi; Zheng, Zhi; Beuscher, Linda; Newhouse, Paul A; Mion, Lorraine C; Sarkar, Nilanjan

    2017-08-01

    The aging population with its concomitant medical conditions, physical and cognitive impairments, at a time of strained resources, establishes the urgent need to explore advanced technologies that may enhance function and quality of life. Recently, robotic technology, especially socially assistive robotics has been investigated to address the physical, cognitive, and social needs of older adults. Most system to date have predominantly focused on one-on-one human robot interaction (HRI). In this paper, we present a multi-user engagement-based robotic coach system architecture (ROCARE). ROCARE is capable of administering both one-on-one and multi-user HRI, providing implicit and explicit channels of communication, and individualized activity management for long-term engagement. Two preliminary feasibility studies, a one-on-one interaction and a triadic interaction with two humans and a robot, were conducted and the results indicated potential usefulness and acceptance by older adults, with and without cognitive impairment.

  10. Controller Design Of Unicycle Mobile Robot

    Directory of Open Access Journals (Sweden)

    Mohd Zamzuri Abd Rashid

    2012-10-01

    Full Text Available ABSTRACT: The ability of unicycle mobile robot to stand and move around using one wheel has attracted a lot of researchers to conduct studies about the system, particularly in the design of the system mechanisms and the control strategies. This paper reports the investigation done on the design of the controller of the unicycle mobile robot system to maintain its stability in both longitudinal and lateral directions. The controller proposed is a Linear Quadratic Controller (LQR type which is based on the linearized model of the system. A thorough simulation studies have been carried out to find out the performance of the LQR controller. The best controller gain, K acquired through the simulation is selected to be implemented and tested in the experimental hardware. Finally, the results obtained from the experimental study are compared to the simulation results to study the controller efficacy. The analysis reveals that the proposed controller design is able to stabilize the unicycle mobile robot.ABSTRAK: Kemampuan robot satu roda untuk berdiri dan bergerak di sekitar telah menarik minat ramai penyelidik untuk mengkaji sistem robot terutamanya didalam bidang rangka mekanikal dan strategi kawalan robot. Kertas kajian ini melaporkan hasil penyelidikan ke atas strategi kawalan robot bagi memastikan sistem robot satu roda dapat distabilkan dari arah sisi dan hadapan. Strategi kawalan yang dicadang, menggunakan teknik kawalan kuadratik sejajar (Linear Quadratic Control yang berdasarkan model robot yang telah dipermudahkan. Kajian simulasi secara terperinci telah dijalankan bagi mengkaji prestasi strategi kawalan yang dicadangkan. Dari kajian simulasi sistem robot, pemilihan faktor konstan, K yang sesuai di dalam strategi kawalan telah dibuat, agar dapat dilaksanakan ke atas sistem robot yang dibangunkan. Keputusan dari kajian simulasi dan tindak balas oleh sistem robot yang dibangunkan akhirnya dibandingkan bagi melihat kesesuaian faktor kostan, K

  11. Vision-Based Robot Following Using PID Control

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar Pati

    2017-06-01

    Full Text Available Applications like robots which are employed for shopping, porter services, assistive robotics, etc., require a robot to continuously follow a human or another robot. This paper presents a mobile robot following another tele-operated mobile robot based on a PID (Proportional–Integral-Differential controller. Here, we use two differential wheel drive robots; one is a master robot and the other is a follower robot. The master robot is manually controlled and the follower robot is programmed to follow the master robot. For the master robot, a Bluetooth module receives the user’s command from an android application which is processed by the master robot’s controller, which is used to move the robot. The follower robot receives the image from the Kinect sensor mounted on it and recognizes the master robot. The follower robot identifies the x, y positions by employing the camera and the depth by using the Kinect depth sensor. By identifying the x, y, and z locations of the master robot, the follower robot finds the angle and distance between the master and follower robot, which is given as the error term of a PID controller. Using this, the follower robot follows the master robot. A PID controller is based on feedback and tries to minimize the error. Experiments are conducted for two indigenously developed robots; one depicting a humanoid and the other a small mobile robot. It was observed that the follower robot was easily able to follow the master robot using well-tuned PID parameters.

  12. Networked Control System for the Guidance of a Four-Wheel Steering Agricultural Robotic Platform

    Directory of Open Access Journals (Sweden)

    Eduardo Paciência Godoy

    2012-01-01

    Full Text Available A current trend in the agricultural area is the development of mobile robots and autonomous vehicles for precision agriculture (PA. One of the major challenges in the design of these robots is the development of the electronic architecture for the control of the devices. In a joint project among research institutions and a private company in Brazil a multifunctional robotic platform for information acquisition in PA is being designed. This platform has as main characteristics four-wheel propulsion and independent steering, adjustable width, span of 1,80 m in height, diesel engine, hydraulic system, and a CAN-based networked control system (NCS. This paper presents a NCS solution for the platform guidance by the four-wheel hydraulic steering distributed control. The control strategy, centered on the robot manipulators control theory, is based on the difference between the desired and actual position and considering the angular speed of the wheels. The results demonstrate that the NCS was simple and efficient, providing suitable steering performance for the platform guidance. Even though the simplicity of the NCS solution developed, it also overcame some verified control challenges in the robot guidance system design such as the hydraulic system delay, nonlinearities in the steering actuators, and inertia in the steering system due the friction of different terrains.

  13. Design and implementation of an electronic architecture for an agricultural mobile robot Projeto e implementação de uma arquitetura eletrônica para um robô agrícola móvel

    Directory of Open Access Journals (Sweden)

    Eduardo P. Godoy

    2010-11-01

    Full Text Available A current trend in the agricultural area is the development of mobile robots and autonomous vehicles for remote sensing. One of the major challenges in the design of these robots is the development of the electronic architecture for the integration and control of the devices. Recent applications of mobile robots have used distributed architectures based on communication networks. A technology that has been widely used as an embedded network is the CAN protocol. The implementation of the ISO11783 standard represents the standardization of the CAN for application in agricultural machinery. This work describes the design and implementation of an electronic architecture for a mobile agricultural robot. The discussions are focused on the developed architecture, the wireless communication system for teleoperation and the distributed control based on CAN protocol and ISO11783. The evaluation of the developed system was based on the analysis of performance parameters such as motor response and architectural time delay obtained with the robot operation. The results show that the developed architecture can be applied for teleoperation and distributed control of agricultural robots meeting the requirements for accurate robot movement and an acceptable response time for robot control commands and supervision.Uma tendência atual na área agrícola é o desenvolvimento de robôs móveis e veículos autônomos para sensoriamento remoto. Um dos grandes desafios no projeto desses robôs é o desenvolvimento da arquitetura eletrônica para integração e controle dos dispositivos. Em aplicações recentes desses robôs tem-se utilizado arquiteturas distribuídas baseadas em redes de comunicação. Uma tecnologia amplamente usada como rede embarcada é o protocolo CAN. A implementação da norma ISO11783 representa a padronização do protocolo CAN para aplicações agrícolas. Este artigo apresenta o projeto e a implementação de uma arquitetura eletr

  14. Using a virtual world for robot planning

    Science.gov (United States)

    Benjamin, D. Paul; Monaco, John V.; Lin, Yixia; Funk, Christopher; Lyons, Damian

    2012-06-01

    We are building a robot cognitive architecture that constructs a real-time virtual copy of itself and its environment, including people, and uses the model to process perceptual information and to plan its movements. This paper describes the structure of this architecture. The software components of this architecture include PhysX for the virtual world, OpenCV and the Point Cloud Library for visual processing, and the Soar cognitive architecture that controls the perceptual processing and task planning. The RS (Robot Schemas) language is implemented in Soar, providing the ability to reason about concurrency and time. This Soar/RS component controls visual processing, deciding which objects and dynamics to render into PhysX, and the degree of detail required for the task. As the robot runs, its virtual model diverges from physical reality, and errors grow. The Match-Mediated Difference component monitors these errors by comparing the visual data with corresponding data from virtual cameras, and notifies Soar/RS of significant differences, e.g. a new object that appears, or an object that changes direction unexpectedly. Soar/RS can then run PhysX much faster than real-time and search among possible future world paths to plan the robot's actions. We report experimental results in indoor environments.

  15. Vision-Based Robot Following Using PID Control

    OpenAIRE

    Chandra Sekhar Pati; Rahul Kala

    2017-01-01

    Applications like robots which are employed for shopping, porter services, assistive robotics, etc., require a robot to continuously follow a human or another robot. This paper presents a mobile robot following another tele-operated mobile robot based on a PID (Proportional–Integral-Differential) controller. Here, we use two differential wheel drive robots; one is a master robot and the other is a follower robot. The master robot is manually controlled and the follower robot is programmed to ...

  16. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  17. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning. Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  18. Distributed formation control for autonomous robots

    NARCIS (Netherlands)

    Garcia de Marina Peinado, Hector Jesús

    2016-01-01

    This thesis addresses several theoretical and practical problems related to formation-control of autonomous robots. Formation-control aims to simultaneously accomplish the tasks of forming a desired shape by the robots and controlling their coordinated collective motion. This kind of robot

  19. Towards Real-Time Distributed Planning in Multi-Robot Systems

    KAUST Repository

    Abdelkader, Mohamed

    2018-04-01

    Recently, there has been an increasing interest in robotics related to multi-robot applications. Such systems can be involved in several tasks such as collaborative search and rescue, aerial transportation, surveillance, and monitoring, to name a few. There are two possible architectures for the autonomous control of multi-robot systems. In the centralized architecture, a master controller communicates with all the robots to collect information. It uses this information to make decisions for the entire system and then sends commands to each robot. In contrast, in the distributed architecture, each robot makes its own decision independent from a central authority. While distributed architecture is a more portable solution, it comes at the expense of extensive information exchange (communication). The extensive communication between robots can result in decision delays because of which distributed architecture is often impractical for systems with strict real-time constraints, e.g. when decisions have to be taken in the order of milliseconds. In this thesis, we propose a distributed framework that strikes a balance between limited communicated information and reasonable system-wide performance while running in real-time. We implement the proposed approach in a game setting of two competing teams of drones, defenders and attackers. Defending drones execute a proposed linear program algorithm (using only onboard computing modules) to obstruct attackers from infiltrating a defense zone while having minimal local message passing. Another main contribution is that we developed a realistic simulation environment as well as lab and outdoor hardware setups of customized drones for testing the system in realistic scenarios. Our software is completely open-source and fully integrated with the well-known Robot Operating System (ROS) in hopes to make our work easily reproducible and for rapid future improvements.

  20. A System for Complex Robotic Welding

    DEFF Research Database (Denmark)

    Madsen, Ole; Sørensen, Carsten Bro; Olsen, Birger

    2002-01-01

    This paper presents the architecture of a system for robotic welding of complex tasks. The system integrates off-line programming, control of redundant robots, collision-free motion planning and sensor-based control. An implementation for pipe structure welding made at Odense Steel Shipyard Ltd......., Denmark, demonstrates the system can be used for automatic welding of complex products in one-of-a-kind production....

  1. Apparatus for multiprocessor-based control of a multiagent robot

    Science.gov (United States)

    Peters, II, Richard Alan (Inventor)

    2009-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  2. Distance-Based Behaviors for Low-Complexity Control in Multiagent Robotics

    Science.gov (United States)

    Pierpaoli, Pietro

    Several biological examples show that living organisms cooperate to collectively accomplish tasks impossible for single individuals. More importantly, this coordination is often achieved with a very limited set of information. Inspired by these observations, research on autonomous systems has focused on the development of distributed control techniques for control and guidance of groups of autonomous mobile agents, or robots. From an engineering perspective, when coordination and cooperation is sought in large ensembles of robotic vehicles, a reduction in hardware and algorithms' complexity becomes mandatory from the very early stages of the project design. The research for solutions capable of lowering power consumption, cost and increasing reliability are thus worth investigating. In this work, we studied low-complexity techniques to achieve cohesion and control on swarms of autonomous robots. Starting from an inspiring example with two-agents, we introduced effects of neighbors' relative positions on control of an autonomous agent. The extension of this intuition addressed the control of large ensembles of autonomous vehicles, and was applied in the form of a herding-like technique. To this end, a low-complexity distance-based aggregation protocol was defined. We first showed that our protocol produced a cohesion aggregation among the agent while avoiding inter-agent collisions. Then, a feedback leader-follower architecture was introduced for the control of the swarm. We also described how proximity measures and probability of collisions with neighbors can also be used as source of information in highly populated environments.

  3. Development of a 10 kGy(Si) rad hard controller for a mobile robot using COTS

    International Nuclear Information System (INIS)

    Alexandre, J.M.; Marceau, M.

    1999-01-01

    The CEA has developed a 10 kGy(Si) hardened controller using only COTS (Commercial-Off-The-Shelf devices), to equip the mobile robot Andros. An electronic architecture adapted to the constraint of hardening have been carried out, leading to the construction of a complete set of electronics modules (power electronic, control computer). (authors)

  4. Controlling Underwater Robots with Electronic Nervous Systems

    Directory of Open Access Journals (Sweden)

    Joseph Ayers

    2010-01-01

    Full Text Available We are developing robot controllers based on biomimetic design principles. The goal is to realise the adaptive capabilities of the animal models in natural environments. We report feasibility studies of a hybrid architecture that instantiates a command and coordinating level with computed discrete-time map-based (DTM neuronal networks and the central pattern generators with analogue VLSI (Very Large Scale Integration electronic neuron (aVLSI networks. DTM networks are realised using neurons based on a 1-D or 2-D Map with two additional parameters that define silent, spiking and bursting regimes. Electronic neurons (ENs based on Hindmarsh–Rose (HR dynamics can be instantiated in analogue VLSI and exhibit similar behaviour to those based on discrete components. We have constructed locomotor central pattern generators (CPGs with aVLSI networks that can be modulated to select different behaviours on the basis of selective command input. The two technologies can be fused by interfacing the signals from the DTM circuits directly to the aVLSI CPGs. Using DTMs, we have been able to simulate complex sensory fusion for rheotaxic behaviour based on both hydrodynamic and optical flow senses. We will illustrate aspects of controllers for ambulatory biomimetic robots. These studies indicate that it is feasible to fabricate an electronic nervous system controller integrating both aVLSI CPGs and layered DTM exteroceptive reflexes.

  5. A neuro-inspired spike-based PID motor controller for multi-motor robots with low cost FPGAs.

    Science.gov (United States)

    Jimenez-Fernandez, Angel; Jimenez-Moreno, Gabriel; Linares-Barranco, Alejandro; Dominguez-Morales, Manuel J; Paz-Vicente, Rafael; Civit-Balcells, Anton

    2012-01-01

    In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  6. Human Assisted Robotic Vehicle Studies - A conceptual end-to-end mission architecture

    Science.gov (United States)

    Lehner, B. A. E.; Mazzotta, D. G.; Teeney, L.; Spina, F.; Filosa, A.; Pou, A. Canals; Schlechten, J.; Campbell, S.; Soriano, P. López

    2017-11-01

    With current space exploration roadmaps indicating the Moon as a proving ground on the way to human exploration of Mars, it is clear that human-robotic partnerships will play a key role for successful future human space missions. This paper details a conceptual end-to-end architecture for an exploration mission in cis-lunar space with a focus on human-robot interactions, called Human Assisted Robotic Vehicle Studies (HARVeSt). HARVeSt will build on knowledge of plant growth in space gained from experiments on-board the ISS and test the first growth of plants on the Moon. A planned deep space habitat will be utilised as the base of operations for human-robotic elements of the mission. The mission will serve as a technology demonstrator not only for autonomous tele-operations in cis-lunar space but also for key enabling technologies for future human surface missions. The successful approach of the ISS will be built on in this mission with international cooperation. Mission assets such as a modular rover will allow for an extendable mission and to scout and prepare the area for the start of an international Moon Village.

  7. Multiprocessor development for robot control

    International Nuclear Information System (INIS)

    Lee, John Min; Kim, Seung Ho; Kim, Chang Hoi; Kim, Byung Soo; Hwang, Suk Yeong; Lee, Young Bum; Sohn, Suk Won; Kim, Woon Gi

    1990-01-01

    The project of this study is to develop a real time controller applying autonomous robotic systems operated in hostile environment. Developed control system is designed with a multiprocessor to get independency and reliability as well as to extend the system easily. The control system is designed in three distinct subsystems (supervisory control part, functional control part, and remote control part). To review the functional performance of developed controller, a prototype mobile robot, which was installed 4 DOF mainpulator, was designed and manufactured. Initial tests showed that the robot could turn with a radius of 38 cm and a maximum speed of 1.26 km/hr and go over obstacle of 18 cm in height. (author)

  8. A Combination of Machine Learning and Cerebellar-like Neural Networks for the Motor Control and Motor Learning of the Fable Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, in the form of a Unit Learning Machine. The LWPR algorithm optimizes...... the input space and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar-like microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar-like circuits including analytical...

  9. Embodying a cognitive model in a mobile robot

    Science.gov (United States)

    Benjamin, D. Paul; Lyons, Damian; Lonsdale, Deryle

    2006-10-01

    The ADAPT project is a collaboration of researchers in robotics, linguistics and artificial intelligence at three universities to create a cognitive architecture specifically designed to be embodied in a mobile robot. There are major respects in which existing cognitive architectures are inadequate for robot cognition. In particular, they lack support for true concurrency and for active perception. ADAPT addresses these deficiencies by modeling the world as a network of concurrent schemas, and modeling perception as problem solving. Schemas are represented using the RS (Robot Schemas) language, and are activated by spreading activation. RS provides a powerful language for distributed control of concurrent processes. Also, The formal semantics of RS provides the basis for the semantics of ADAPT's use of natural language. We have implemented the RS language in Soar, a mature cognitive architecture originally developed at CMU and used at a number of universities and companies. Soar's subgoaling and learning capabilities enable ADAPT to manage the complexity of its environment and to learn new schemas from experience. We describe the issues faced in developing an embodied cognitive architecture, and our implementation choices.

  10. Integrated Robot-Human Control in Mining Operations

    Energy Technology Data Exchange (ETDEWEB)

    George Danko

    2007-09-30

    This report contains a detailed description of the work conducted for the project on Integrated Robot-Human Control in Mining Operations at University of Nevada, Reno. This project combines human operator control with robotic control concepts to create a hybrid control architecture, in which the strengths of each control method are combined to increase machine efficiency and reduce operator fatigue. The kinematics reconfiguration type differential control of the excavator implemented with a variety of 'software machine kinematics' is the key feature of the project. This software re-configured excavator is more desirable to execute a given digging task. The human operator retains the master control of the main motion parameters, while the computer coordinates the repetitive movement patterns of the machine links. These repetitive movements may be selected from a pre-defined family of trajectories with different transformations. The operator can make adjustments to this pattern in real time, as needed, to accommodate rapidly-changing environmental conditions. A working prototype has been developed using a Bobcat 435 excavator. The machine is operational with or without the computer control system depending on whether the computer interface is on or off. In preparation for emulated mining tasks tests, typical, repetitive tool trajectories during surface mining operations were recorded at the Newmont Mining Corporation's 'Lone Tree' mine in Nevada. Analysis of these working trajectories has been completed. The motion patterns, when transformed into a family of curves, may serve as the basis for software-controlled machine kinematics transformation in the new human-robot control system. A Cartesian control example has been developed and tested both in simulation and on the experimental excavator. Open-loop control is robustly stable and free of short-term dynamic problems, but it allows for drifting away from the desired motion kinematics of the

  11. Intelligent control system for nuclear power plant mobile robot

    International Nuclear Information System (INIS)

    Koenig, A.; Lecoeur-Taibi, I.; Crochon, E.; Vacherand, F.

    1991-01-01

    In order to fully optimize the efficiency of the perception and navigation components available on a mobile robot, the upper level of a mobile robot control requires intelligence support to unload the work of the teleoperator. This knowledge-based system has to manage a priori data such as the map of the workspace, the mission, the characteristics of sensors and robot, but also, the current environment state and the running mission. It has to issue a plan to drive the sensors to focus on relevant objects or to scan the environment and to select the best algorithms depending on the current situation. The environment workspace is a nuclear power plant building. The teleoperated robot is a mobile wheeled or legged vehicle that moves inside the different floors of the building. There are three types of mission: radio-activity survey, inspection and intervention. To perform these goals the robot must avoid obstacles, pass through doors, possibly climb stairs and recognize valves and pipes. The perception control system has to provide the operator with a synthetic view of the surroundings. It manages background tasks such as obstacle detection and free space map building, and specific tasks such as beacon recognition for odometry relocalization and valve detection for maintenance. To do this, the system solves perception resources conflicts, taking into account the current states of the sensors and the current conditions such as lightness or darkness, cluttered scenes, sensor failure. A perception plan is issued from the mission goals, planned path, relocalization requirements and available perception resources. Basically, the knowledge-based system is implemented on a blackboard architecture which includes two parts: a top-down planning part and a bottom-up perception part. The results of the perception are continuously sent to the operator who can trigger new perception actions. (author)

  12. Simulated Energy Usage for a Novel 6 DOF Articulated Robot

    International Nuclear Information System (INIS)

    Shaik, A A; Tlale, N; Bright, G

    2014-01-01

    The serial robot architecture is widespread in modern day manufacturing, and over the last few decades the technology has matured and settled to its current state. One drawback from the architecture however is the location of motors and gearboxes which are either at the joint it controls or close by. A novel hybrid 6 DOF robot was designed to move all the actuators to the robot base, and to control the desired axis through a set of connected links and gears, while maintaining the same workspace and dexterity. This would reduce the inertia of the movable part of the robot and some of the moment arms on the 3 axes required for translation of the 3 DOF spherical wrist. Doing so would decrease the energy requirements when compared to a 6 DOF serial robot. This paper focuses on the mathematical modelling and simulation of the novel hybrid machine design and compares it to an equivalent serial robot

  13. Controlling Tensegrity Robots Through Evolution

    Science.gov (United States)

    Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan

    2013-01-01

    Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future.

  14. Dynamics and control of robot for capturing objects in space

    Science.gov (United States)

    Huang, Panfeng

    Space robots are expected to perform intricate tasks in future space services, such as satellite maintenance, refueling, and replacing the orbital replacement unit (ORU). To realize these missions, the capturing operation may not be avoided. Such operations will encounter some challenges because space robots have some unique characteristics unfound on ground-based robots, such as, dynamic singularities, dynamic coupling between manipulator and space base, limited energy supply and working without a fixed base, and so on. In addition, since contacts and impacts may not be avoided during capturing operation. Therefore, dynamics and control problems of space robot for capturing objects are significant research topics if the robots are to be deployed for the space services. A typical servicing operation mainly includes three phases: capturing the object, berthing and docking the object, then repairing the target. Therefore, this thesis will focus on resolving some challenging problems during capturing the object, berthing and docking, and so on. In this thesis, I study and analyze the dynamics and control problems of space robot for capturing objects. This work has potential impact in space robotic applications. I first study the contact and impact dynamics of space robot and objects. I specifically focus on analyzing the impact dynamics and mapping the relationship of influence and speed. Then, I develop the fundamental theory for planning the minimum-collision based trajectory of space robot and designing the configuration of space robot at the moment of capture. To compensate for the attitude of the space base during the capturing approach operation, a new balance control concept which can effectively balance the attitude of the space base using the dynamic couplings is developed. The developed balance control concept helps to understand of the nature of space dynamic coupling, and can be readily applied to compensate or minimize the disturbance to the space base

  15. Adaptive Behavior for Mobile Robots

    Science.gov (United States)

    Huntsberger, Terrance

    2009-01-01

    The term "System for Mobility and Access to Rough Terrain" (SMART) denotes a theoretical framework, a control architecture, and an algorithm that implements the framework and architecture, for enabling a land-mobile robot to adapt to changing conditions. SMART is intended to enable the robot to recognize adverse terrain conditions beyond its optimal operational envelope, and, in response, to intelligently reconfigure itself (e.g., adjust suspension heights or baseline distances between suspension points) or adapt its driving techniques (e.g., engage in a crabbing motion as a switchback technique for ascending steep terrain). Conceived for original application aboard Mars rovers and similar autonomous or semi-autonomous mobile robots used in exploration of remote planets, SMART could also be applied to autonomous terrestrial vehicles to be used for search, rescue, and/or exploration on rough terrain.

  16. Control of autonomous robot using neural networks

    Science.gov (United States)

    Barton, Adam; Volna, Eva

    2017-07-01

    The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.

  17. Robot motion control in mobile environment

    Institute of Scientific and Technical Information of China (English)

    Iliya V Miroshnik; HUANG Xian-lin(黄显林); HE Jie(贺杰)

    2003-01-01

    With the problem of robot motion control in dynamic environment represented by mobile obstacles,working pieces and external mechanisms considered, a relevant control actions design procedure has been pro-posed to provide coordination of robot motions with respect to the moving external objects so that an extension ofrobot spatial motion techniques and active robotic strategies based on approaches of nonlinear control theory canbe achieved.

  18. Kinematics Control and Analysis of Industrial Robot

    Science.gov (United States)

    Zhu, Tongbo; Cai, Fan; Li, Yongmei; Liu, Wei

    2018-03-01

    The robot’s development present situation, basic principle and control system are introduced briefly. Research is mainly focused on the study of the robot’s kinematics and motion control. The structural analysis of a planar articulated robot (SCARA) robot is presented,the coordinate system is established to obtain the position and orientation matrix of the end effector,a method of robot kinematics analysis based on homogeneous transformation method is proposed, and the kinematics solution of the robot is obtained.Establishment of industrial robot’s kinematics equation and formula for positive kinematics by example. Finally,the kinematic analysis of this robot was verified by examples.It provides a basis for structural design and motion control.It has active significance to promote the motion control of industrial robot.

  19. Automatic control system generation for robot design validation

    Science.gov (United States)

    Bacon, James A. (Inventor); English, James D. (Inventor)

    2012-01-01

    The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.

  20. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A working group (WG) study was conducted aiming at realizing human type robots. The following six working groups in the basement field were organized to study in terms mostly of items of technical development and final technical targets: platform, and remote attendance control in the basement field, maintenance of plant, etc., home service, disaster/construction, and entertainment in the application field. In the platform WG, a robot of human like form is planning which walks with two legs and works with two arms, and the following were discussed: a length of 160cm, weight of 110kg, built-in LAN, actuator specifications, modulated structure, intelligent driver, etc. In the remote attendance control WG, remote control using working function, stabilized movement, stabilized control, and network is made possible. Studied were made on the decision on a remote control cockpit by open architecture added with function and reformable, problems on the development of the standard language, etc. 77 ref., 82 figs., 21 tabs.

  1. Task-space sensory feedback control of robot manipulators

    CERN Document Server

    Cheah, Chien Chern

    2015-01-01

    This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity i...

  2. A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

    Directory of Open Access Journals (Sweden)

    Anton Civit-Balcells

    2012-03-01

    Full Text Available In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN, which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.

  3. Robot welding process control

    Science.gov (United States)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  4. Snake Robots Modelling, Mechatronics, and Control

    CERN Document Server

    Liljebäck, Pål; Stavdahl, Øyvind; Gravdahl, Jan Tommy

    2013-01-01

    Snake Robots is a novel treatment of theoretical and practical topics related to snake robots: robotic mechanisms designed to move like biological snakes and able to operate in challenging environments in which human presence is either undesirable or impossible. Future applications of such robots include search and rescue, inspection and maintenance, and subsea operations. Locomotion in unstructured environments is a focus for this book. The text targets the disparate muddle of approaches to modelling, development and control of snake robots in current literature, giving a unified presentation of recent research results on snake robot locomotion to increase the reader’s basic understanding of these mechanisms and their motion dynamics and clarify the state of the art in the field. The book is a complete treatment of snake robotics, with topics ranging from mathematical modelling techniques, through mechatronic design and implementation, to control design strategies. The development of two snake robots is de...

  5. Intelligent robotic tracker

    Science.gov (United States)

    Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.

    1987-01-01

    An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.

  6. A Basic Architecture of an Autonomous Adaptive System With Conscious-Like Function for a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Yasuo Kinouchi

    2018-04-01

    Full Text Available In developing a humanoid robot, there are two major objectives. One is developing a physical robot having body, hands, and feet resembling those of human beings and being able to similarly control them. The other is to develop a control system that works similarly to our brain, to feel, think, act, and learn like ours. In this article, an architecture of a control system with a brain-oriented logical structure for the second objective is proposed. The proposed system autonomously adapts to the environment and implements a clearly defined “consciousness” function, through which both habitual behavior and goal-directed behavior are realized. Consciousness is regarded as a function for effective adaptation at the system-level, based on matching and organizing the individual results of the underlying parallel-processing units. This consciousness is assumed to correspond to how our mind is “aware” when making our moment to moment decisions in our daily life. The binding problem and the basic causes of delay in Libet’s experiment are also explained by capturing awareness in this manner. The goal is set as an image in the system, and efficient actions toward achieving this goal are selected in the goal-directed behavior process. The system is designed as an artificial neural network and aims at achieving consistent and efficient system behavior, through the interaction of highly independent neural nodes. The proposed architecture is based on a two-level design. The first level, which we call the “basic-system,” is an artificial neural network system that realizes consciousness, habitual behavior and explains the binding problem. The second level, which we call the “extended-system,” is an artificial neural network system that realizes goal-directed behavior.

  7. A multitasking behavioral control system for the Robotic All Terrain Lunar Exploration Rover (RATLER)

    Science.gov (United States)

    Klarer, P.

    1994-01-01

    An alternative methodology for designing an autonomous navigation and control system is discussed. This generalized hybrid system is based on a less sequential and less anthropomorphic approach than that used in the more traditional artificial intelligence (AI) technique. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules. This is accomplished by intertask communications channels which implement each behavior module and each interconnection node as a stand-alone task. The proposed design architecture allows for construction of hybrid systems which employ both subsumption and traditional AI techniques as well as providing for a teleoperator's interface. Implementation of the architecture is planned for the prototype Robotic All Terrain Lunar Explorer Rover (RATLER) which is described briefly.

  8. Goals and strategies in the global control design of the OAJ Robotic Observatory

    Science.gov (United States)

    Yanes-Díaz, A.; Rueda-Teruel, S.; Antón, J. L.; Rueda-Teruel, F.; Moles, M.; Cenarro, A. J.; Marín-Franch, A.; Ederoclite, A.; Gruel, N.; Varela, J.; Cristóbal-Hornillos, D.; Chueca, S.; Díaz-Martín, M. C.; Guillén, L.; Luis-Simoes, R.; Maícas, N.; Lamadrid, J. L.; López-Sainz, A.; Hernández-Fuertes, J.; Valdivielso, L.; Mendes de Oliveira, C.; Penteado, P.; Schoenell, W.; Kanaan, A.

    2012-09-01

    There are many ways to solve the challenging problem of making a high performance robotic observatory from scratch. The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located in the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys. The OAJ control system has been designed from a global point of view including astronomical subsystems as well as infrastructures and other facilities. Three main factors have been considered in the design of a global control system for the robotic OAJ: quality, reliability and efficiency. We propose CIA (Control Integrated Architecture) design and OEE (Overall Equipment Effectiveness) as a key performance indicator in order to improve operation processes, minimizing resources and obtaining high cost reduction whilst maintaining quality requirements. The OAJ subsystems considered for the control integrated architecture are the following: two wide-field telescopes and their instrumentation, active optics subsystems, facilities for sky quality monitoring (seeing, extinction, sky background, sky brightness, cloud distribution, meteorological station), domes and several infrastructure facilities such as water supply, glycol water, water treatment plant, air conditioning, compressed air, LN2 plant, illumination, surveillance, access control, fire suppression, electrical generators, electrical distribution, electrical consumption, communication network, Uninterruptible Power Supply and two main control rooms, one at the OAJ and the other remotely located in Teruel, 40km from the observatory, connected through a microwave radio-link. This paper presents the OAJ strategy in control design to achieve maximum quality efficiency for the observatory processes and operations, giving practical examples of our approach.

  9. Controller design for Robotic hand through Electroencephalogram

    OpenAIRE

    Pandelidis P.; Kiriazis N.; Orgianelis K.; Koulios N.

    2016-01-01

    - This paper deals with the designing, the construction and the control of a robotic hand via an electroencephalogram sensor. First a robotic device that is able to mimic a real human hand is constructed. A PID controller is designed in order to improve the performance of the robotic arm for grabbing objects. Furthermore, a novel design approach is presented for controlling the motion of the robotic arm using signals produced from an innovative electroencephalogram sensor that detects the con...

  10. Handling uncertainty and networked structure in robot control

    CERN Document Server

    Tamás, Levente

    2015-01-01

    This book focuses on two challenges posed in robot control by the increasing adoption of robots in the everyday human environment: uncertainty and networked communication. Part I of the book describes learning control to address environmental uncertainty. Part II discusses state estimation, active sensing, and complex scenario perception to tackle sensing uncertainty. Part III completes the book with control of networked robots and multi-robot teams. Each chapter features in-depth technical coverage and case studies highlighting the applicability of the techniques, with real robots or in simulation. Platforms include mobile ground, aerial, and underwater robots, as well as humanoid robots and robot arms. Source code and experimental data are available at http://extras.springer.com. The text gathers contributions from academic and industry experts, and offers a valuable resource for researchers or graduate students in robot control and perception. It also benefits researchers in related areas, such as computer...

  11. An architecture for robotic system integration

    International Nuclear Information System (INIS)

    Butler, P.L.; Reister, D.B.; Gourley, C.S.; Thayer, S.M.

    1993-01-01

    An architecture has been developed to provide an object-oriented framework for the integration of multiple robotic subsystems into a single integrated system. By using an object-oriented approach, all subsystems can interface with each other, and still be able to be customized for specific subsystem interface needs. The object-oriented framework allows the communications between subsystems to be hidden from the interface specification itself. Thus, system designers can concentrate on what the subsystems are to do, not how to communicate. This system has been developed for the Environmental Restoration and Waste Management Decontamination and Decommissioning Project at Oak Ridge National Laboratory. In this system, multiple subsystems are defined to separate the functional units of the integrated system. For example, a Human-Machine Interface (HMI) subsystem handles the high-level machine coordination and subsystem status display. The HMI also provides status-logging facilities and safety facilities for use by the remaining subsystems. Other subsystems have been developed to provide specific functionality, and many of these can be reused by other projects

  12. Modular architecture for robotics and teleoperation

    Science.gov (United States)

    Anderson, Robert J.

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  13. NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    Science.gov (United States)

    Albus, James S.; Mccain, Harry G.; Lumia, Ronald

    1989-01-01

    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.

  14. Quantitative analysis of distributed control paradigms of robot swarms

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    2010-01-01

    describe the physical and simulated robots, experiment scenario, and experiment setup. Third, we present our robot controllers based on behaviour based and neural network based paradigms. Fourth, we graphically show their experiment results and quantitatively analyse the results in comparison of the two......Given a task of designing controller for mobile robots in swarms, one might wonder which distributed control paradigms should be selected. Until now, paradigms of robot controllers have been within either behaviour based control or neural network based control, which have been recognized as two...... mainstreams of controller design for mobile robots. However, in swarm robotics, it is not clear how to determine control paradigms. In this paper we study the two control paradigms with various experiments of swarm aggregation. First, we introduce the two control paradigms for mobile robots. Second, we...

  15. Medical robotics

    CERN Document Server

    Troccaz, Jocelyne

    2013-01-01

    In this book, we present medical robotics, its evolution over the last 30 years in terms of architecture, design and control, and the main scientific and clinical contributions to the field. For more than two decades, robots have been part of hospitals and have progressively become a common tool for the clinician. Because this domain has now reached a certain level of maturity it seems important and useful to provide a state of the scientific, technological and clinical achievements and still open issues. This book describes the short history of the domain, its specificity and constraints, and

  16. Upper-Extremity Rehabilitation Robot RehabRoby: Methodology, Design, Usability and Validation

    Directory of Open Access Journals (Sweden)

    Fatih Ozkul

    2013-12-01

    Full Text Available In this study, an exoskeleton type robot-assisted rehabilitation system, called RehabRoby, is developed for rehabilitation purposes. A control architecture, which contains a high-level controller and a low-level controller, is designed so that RehabRoby can complete the given rehabilitation task in a desired and safe manner. A hybrid system modelling technique is used for the high-level controller. An admittance control with an inner robust position control loop is used for the low-level control of the RehabRoby. Real-time experiments are performed to evaluate the control architecture of the robot-assisted rehabilitation system, RehabRoby. Furthermore, the usability of RehabRoby is evaluated.

  17. Controller design for Robotic hand through Electroencephalogram

    Directory of Open Access Journals (Sweden)

    Pandelidis P.

    2016-01-01

    Full Text Available - This paper deals with the designing, the construction and the control of a robotic hand via an electroencephalogram sensor. First a robotic device that is able to mimic a real human hand is constructed. A PID controller is designed in order to improve the performance of the robotic arm for grabbing objects. Furthermore, a novel design approach is presented for controlling the motion of the robotic arm using signals produced from an innovative electroencephalogram sensor that detects the concentration of the brain

  18. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin

    2008-11-01

    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  19. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin

    2007-03-01

    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  20. Dynamic analysis of space robot remote control system

    Science.gov (United States)

    Kulakov, Felix; Alferov, Gennady; Sokolov, Boris; Gorovenko, Polina; Sharlay, Artem

    2018-05-01

    The article presents analysis on construction of two-stage remote control for space robots. This control ensures efficiency of the robot control system at large delays in transmission of control signals from the ground control center to the local control system of the space robot. The conditions for control stability of and high transparency are found.

  1. Multipurpose expert-robot system model for control, diagnosis, maintenance, and repairs at the steam generators of the NPP

    International Nuclear Information System (INIS)

    Popa, I.

    1994-01-01

    The paper presents the model concept for a multipurpose expert-robot system for control, diagnosis, forecast, maintenance, and repairs at the steam generators of CANDU type nuclear power plants. The system has two separate parts: the expert system and the robot (manipulator) system. These parts compose a hierarchic structure with the expert system on the upper level. The expert system has a blackboard architecture, to which tree interfaces with the robot system, with the control system of the NPP and with the methods and techniques of control, maintenance and repairs system of the steam generator are added. Due to complex nature of its activities the expert-robot system model combines the deterministic type reasons with probabilistic, fuzzy, and neural-networks type ones. The information that enter the expert system comes from the robot system, from process, from user, and human expert. The information that enter robot system comes from the expert system, from the human operator (when connected) and from process. Control maintenance and repair operations take place by means of the robot system that can be monitored either directly by the expert system or by the human operator who follows its activity. All these activities are performed in parallel with the adequate information of the expert system directly, by the human operator, about the status parameters and, possibly, operating parameters of the steam generator components. The expert-robot system can work independently, but it can be connected and integrated in the control system of NPP, to take over and develop some of its functions. The activities concerning diagnosis and characterization of the state of steam generator components subsequent to control, as well as the forecast of their future behavior, are performed by means of the expert system. Due to these characteristics the expert-robot system can be used successfully in personnel training activities. (Author)

  2. Kinematic control of robot with degenerate wrist

    Science.gov (United States)

    Barker, L. K.; Moore, M. C.

    1984-01-01

    Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.

  3. Control of wheeled mobile robot in restricted environment

    Science.gov (United States)

    Ali, Mohammed A. H.; En, Chang Yong

    2018-03-01

    This paper presents a simulation and practical control system for wheeled mobile robot in restricted environment. A wheeled mobile robot with 3 wheels is fabricated and controlled by proportional derivative active force control (PD-AFC) to move in a pre-planned restricted environment to maintain the tracking errors at zero level. A control system with two loops, outer by PD controller and inner loop by Active Force Control, are designed to control the wheeled mobile robot. Fuzzy logic controller is implemented in the Active force Control to estimate the inertia matrix that will be used to calculate the actual torque applied on the wheeled mobile robot. The mobile robot is tested in two different trajectories, namely are circular and straight path. The actual path and desired path are compared.

  4. Fuzzy Behaviors for Control of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Saleh Zein-Sabatto

    2003-02-01

    Full Text Available In this research work, an RWI B-14 robot has been used as the development platform to embody some basic behaviors that can be combined to build more complex robotics behaviors. Emergency, avoid-obstacle, left wall- following, right wall-following, and move-to-point behaviors have been designed and embodied as basic robot behaviors. The basic behaviors developed in this research are designed based on fuzzy control technique and are integrated and coordinated to from complex robotics system. More behaviors can be added into the system as needed. A robot task can be defined by the user and executed by the intelligent robot control system. Testing results showed that fuzzy behaviors made the robot move intelligently and adapt to changes in its environment.

  5. CLARAty: Challenges and Steps Toward Reusable Robotic Software

    Directory of Open Access Journals (Sweden)

    Richard Madison

    2008-11-01

    Full Text Available We present in detail some of the challenges in developing reusable robotic software. We base that on our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, planning and execution. CLARAty was adapted to a number of heterogeneous robots with different mechanisms and hardware control architectures. In this paper, we also describe how we addressed some of these challenges in the development of the CLARAty software.

  6. CLARAty: Challenges and Steps toward Reusable Robotic Software

    Directory of Open Access Journals (Sweden)

    Issa A.D. Nesnas

    2006-03-01

    Full Text Available We present in detail some of the challenges in developing reusable robotic software. We base that on our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, planning and execution. CLARAty was adapted to a number of heterogeneous robots with different mechanisms and hardware control architectures. In this paper, we also describe how we addressed some of these challenges in the development of the CLARAty software.

  7. Open software architecture for east articulated maintenance arm

    International Nuclear Information System (INIS)

    Wu, Jing; Wu, Huapeng; Song, Yuntao; Li, Ming; Yang, Yang; Alcina, Daniel A.M.

    2016-01-01

    Highlights: • A software requirement of serial-articulated robot for EAST assembly and maintains is presented. • A open software architecture of the robot is developed. • A component-based model distribution system with real-time communication of the robot is constructed. - Abstract: For the inside inspection and the maintenance of vacuum vessel in the EAST, an articulated maintenance arm is developed. In this article, an open software architecture developed for the EAST articulated maintenance arm (EAMA) is described, which offers a robust and proper performance and easy-going experience based on standard open robotic platform OROCOS. The paper presents a component-based model software architecture using multi-layer structure: end layer, up layer, middle, and down layer. In the end layer the components are defined off-line in the task planner manner. The components in up layer complete the function of trajectory plan. The CORBA, as a communication framework, is adopted to exchange the data between the distributed components. The contributors use Real-Time Workshop from the MATLAB/Simulink to generate the components in the middle layer. Real-time Toolkit guarantees control applications running in the hard real-time mode. Ethernets and the CAN bus are used for data transfer in the down layer, where the components implement the hardware functions. The distributed architecture of control system associates each processing node with each joint, which is mapped to a component with all functioning features of the framework.

  8. Open software architecture for east articulated maintenance arm

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jing, E-mail: wujing@ipp.ac.cn [Institute of Plasma Physics Chinese Academy of Sciences, 350 Shushanhu Rd Hefei Anhui (China); Lappeenranta University of Technology, Skinnarilankatu 34 Lappeenranta (Finland); Wu, Huapeng [Lappeenranta University of Technology, Skinnarilankatu 34 Lappeenranta (Finland); Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, 350 Shushanhu Rd Hefei Anhui (China); Li, Ming [Lappeenranta University of Technology, Skinnarilankatu 34 Lappeenranta (Finland); Yang, Yang [Institute of Plasma Physics Chinese Academy of Sciences, 350 Shushanhu Rd Hefei Anhui (China); Alcina, Daniel A.M. [Lappeenranta University of Technology, Skinnarilankatu 34 Lappeenranta (Finland)

    2016-11-01

    Highlights: • A software requirement of serial-articulated robot for EAST assembly and maintains is presented. • A open software architecture of the robot is developed. • A component-based model distribution system with real-time communication of the robot is constructed. - Abstract: For the inside inspection and the maintenance of vacuum vessel in the EAST, an articulated maintenance arm is developed. In this article, an open software architecture developed for the EAST articulated maintenance arm (EAMA) is described, which offers a robust and proper performance and easy-going experience based on standard open robotic platform OROCOS. The paper presents a component-based model software architecture using multi-layer structure: end layer, up layer, middle, and down layer. In the end layer the components are defined off-line in the task planner manner. The components in up layer complete the function of trajectory plan. The CORBA, as a communication framework, is adopted to exchange the data between the distributed components. The contributors use Real-Time Workshop from the MATLAB/Simulink to generate the components in the middle layer. Real-time Toolkit guarantees control applications running in the hard real-time mode. Ethernets and the CAN bus are used for data transfer in the down layer, where the components implement the hardware functions. The distributed architecture of control system associates each processing node with each joint, which is mapped to a component with all functioning features of the framework.

  9. Artificial emotion triggered stochastic behavior transitions with motivational gain effects for multi-objective robot tasks

    Science.gov (United States)

    Dağlarli, Evren; Temeltaş, Hakan

    2007-04-01

    This paper presents artificial emotional system based autonomous robot control architecture. Hidden Markov model developed as mathematical background for stochastic emotional and behavior transitions. Motivation module of architecture considered as behavioral gain effect generator for achieving multi-objective robot tasks. According to emotional and behavioral state transition probabilities, artificial emotions determine sequences of behaviors. Also motivational gain effects of proposed architecture can be observed on the executing behaviors during simulation.

  10. Radio Controlled Fish Robot RR-9

    OpenAIRE

    Cifanskis, S; Vība, J; Jakuševičs, V

    2015-01-01

    A remote-controlled underwater robot fish is described. For motion control three actuator drives are used: one actuator is for tail frequency exchange, the second actuator is for the left or right turnings and the third actuator provides neutral swimming or up and down diving. From the robot's center of mass motion theorem (according to the given total mass of robot) the proportional distribution of massesof structural elements is found. Experimental indoor and out...

  11. Interactive robot control system and method of use

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Reiland, Matthew J. (Inventor); Abdallah, Muhammad E. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor)

    2012-01-01

    A robotic system includes a robot having joints, actuators, and sensors, and a distributed controller. The controller includes command-level controller, embedded joint-level controllers each controlling a respective joint, and a joint coordination-level controller coordinating motion of the joints. A central data library (CDL) centralizes all control and feedback data, and a user interface displays a status of each joint, actuator, and sensor using the CDL. A parameterized action sequence has a hierarchy of linked events, and allows the control data to be modified in real time. A method of controlling the robot includes transmitting control data through the various levels of the controller, routing all control and feedback data to the CDL, and displaying status and operation of the robot using the CDL. The parameterized action sequences are generated for execution by the robot, and a hierarchy of linked events is created within the sequence.

  12. RoCoMAR: Robots’ Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Seokhoon Yoon

    2013-07-01

    Full Text Available In a practical deployment, mobile sensor network (MSN suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots’ Controllable Mobility Aided Routing that uses robotic nodes’ controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.

  13. Dynamic control of quadruped robot with hierarchical control structure

    International Nuclear Information System (INIS)

    Wang, Yu-Zhang; Furusho, Junji; Okajima, Yosuke.

    1988-01-01

    For moving on irregular terrain, such as the inside of a nuclear power plant and outer space, it is generally recognized that the multilegged walking robot is suitable. This paper proposes a hierarchical control structure for the dynamic control of quadruped walking robots. For this purpose, we present a reduced order model which can approximate the original higher order model very well. Since this reduced order model does not require much computational time, it can be used in the real-time control of a quadruped walking robot. A hierarchical control experiment is shown in which the optimal control algorithm using a reduced order model is calculated by one microprocessor, and the other control algorithm is calculated by another microprocessor. (author)

  14. Towards Coordination and Control of Multi-robot Systems

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt

    This thesis focuses on control and coordination of mobile multi-robot systems (MRS). MRS can often deal with tasks that are difficult to be accomplished by a single robot. One of the challenges is the need to control, coordinate and synchronize the operation of several robots to perform some...... specified task. This calls for new strategies and methods which allow the desired system behavior to be specified in a formal and succinct way. Two different frameworks for the coordination and control of MRS have been investigated. Framework I - A network of robots is modeled as a network of multi...... a requirement specification in Computational Tree Logic (CTL) for a network of robots. The result is a set of motion plans for the robots which satisfy the specification. Framework II - A framework for controller synthesis for a single robot with respect to requirement specification in Linear-time Temporal...

  15. Positional control of space robot manipulator

    Science.gov (United States)

    Kurochkin, Vladislav; Shymanchuk, Dzmitry

    2018-05-01

    In this article the mathematical model of a planar space robot manipulator is under study. The space robot manipulator represents a solid body with attached manipulators. The system of equations of motion is determined using the Lagrange's equations. The control problem concerning moving the robot to a given point and return it to a given trajectory in the phase space is solved. Changes of generalized coordinates and necessary control actions are plotted for a specific model.

  16. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots.

    Science.gov (United States)

    Vujovic, Vuk; Rosendo, Andre; Brodbeck, Luzius; Iida, Fumiya

    2017-01-01

    Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.

  17. Device for dynamic switching of robot control points

    DEFF Research Database (Denmark)

    2015-01-01

    The invention comprises a system for switching between control points of a robotic system involving an industrial robot including a robot arm with a number of joints and provided with a tool interest point movable in a plurality of degrees of freedom.......The invention comprises a system for switching between control points of a robotic system involving an industrial robot including a robot arm with a number of joints and provided with a tool interest point movable in a plurality of degrees of freedom....

  18. Motion control for a walking companion robot with a novel human–robot interface

    Directory of Open Access Journals (Sweden)

    Yunqi Lv

    2016-09-01

    Full Text Available A walking companion robot is presented for rehabilitation from dyskinesia of lower limbs in this article. A new human–robot interface (HRI is designed which adopts one-axis force sensor and potentiometer connector to detect the motion of the user. To accompany in displacement and angle between the user and the robot precisely in real time, the common motions are classified into two elemental motion states. With distinction method of motion states, a classification scheme of motion control is adopted. The mathematical model-based control method is first introduced and the corresponding control systems are built. Due to the unavoidable deviation of the mathematical model-based control method, a force control method is proposed and the corresponding control systems are built. The corresponding simulations demonstrate that the efficiency of the two proposed control methods. The experimental data and paths of robot verify the two control methods and indicate that the force control method can better satisfy the user’s requirements.

  19. Open core control software for surgical robots.

    Science.gov (United States)

    Arata, Jumpei; Kozuka, Hiroaki; Kim, Hyung Wook; Takesue, Naoyuki; Vladimirov, B; Sakaguchi, Masamichi; Tokuda, Junichi; Hata, Nobuhiko; Chinzei, Kiyoyuki; Fujimoto, Hideo

    2010-05-01

    In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. A cutting-edge "intelligent surgical robot" will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are "home-made" in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open Core Control software, several

  20. Hierarchical Motion Control for a Team of Humanoid Soccer Robots

    Directory of Open Access Journals (Sweden)

    Seung-Joon Yi

    2016-02-01

    Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.

  1. Opinion on the examination of the control-command general architecture of the Flamanville 3 EPR reactor and of its associated platforms

    International Nuclear Information System (INIS)

    2009-06-01

    This report first recalls the different technical and hardware elements and components discussed by the ISRN (Nuclear Radioprotection and Safety Institute) in front of the Expert Permanent Group for nuclear reactors. These elements and components are concerning the control-command architecture as a whole, and the technical ability of networks, computers, and robots. It outlines the main principles which the control-and-command must comply with: compliance of each component of the retained technological solution with the design requirements corresponding to the safety classification, robustness of the whole control-command architecture. Then, it comments and sometimes criticizes the status of the various components of the control-command platforms with respect to this compliance. Eight recommendations are given for the SPPA T2000 control-command platform and for the robustness of the control-command architecture

  2. Fuzzy Logic Controller Design for Intelligent Robots

    Directory of Open Access Journals (Sweden)

    Ching-Han Chen

    2017-01-01

    Full Text Available This paper presents a fuzzy logic controller by which a robot can imitate biological behaviors such as avoiding obstacles or following walls. The proposed structure is implemented by integrating multiple ultrasonic sensors into a robot to collect data from a real-world environment. The decisions that govern the robot’s behavior and autopilot navigation are driven by a field programmable gate array- (FPGA- based fuzzy logic controller. The validity of the proposed controller was demonstrated by simulating three real-world scenarios to test the bionic behavior of a custom-built robot. The results revealed satisfactorily intelligent performance of the proposed fuzzy logic controller. The controller enabled the robot to demonstrate intelligent behaviors in complex environments. Furthermore, the robot’s bionic functions satisfied its design objectives.

  3. A Motion System for Social and Animated Robots

    Directory of Open Access Journals (Sweden)

    Jelle Saldien

    2014-05-01

    Full Text Available This paper presents an innovative motion system that is used to control the motions and animations of a social robot. The social robot Probo is used to study Human-Robot Interactions (HRI, with a special focus on Robot Assisted Therapy (RAT. When used for therapy it is important that a social robot is able to create an “illusion of life” so as to become a believable character that can communicate with humans. The design of the motion system in this paper is based on insights from the animation industry. It combines operator-controlled animations with low-level autonomous reactions such as attention and emotional state. The motion system has a Combination Engine, which combines motion commands that are triggered by a human operator with motions that originate from different units of the cognitive control architecture of the robot. This results in an interactive robot that seems alive and has a certain degree of “likeability”. The Godspeed Questionnaire Series is used to evaluate the animacy and likeability of the robot in China, Romania and Belgium.

  4. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  5. Whole-body impedance control of wheeled humanoid robots

    CERN Document Server

    Dietrich, Alexander

    2016-01-01

    Introducing mobile humanoid robots into human environments requires the systems to physically interact and execute multiple concurrent tasks. The monograph at hand presents a whole-body torque controller for dexterous and safe robotic manipulation. This control approach enables a mobile humanoid robot to simultaneously meet several control objectives with different pre-defined levels of priority, while providing the skills for compliant physical contacts with humans and the environment. After a general introduction into the topic of whole-body control, several essential reactive tasks are developed to extend the repertoire of robotic control objectives. Additionally, the classical Cartesian impedance is extended to the case of mobile robots. All of these tasks are then combined and integrated into an overall, priority-based control law. Besides the experimental validation of the approach, the formal proof of asymptotic stability for this hierarchical controller is presented. By interconnecting the whole-body ...

  6. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1989-01-01

    Control techniques for self-contained, autonomous free-flying space robots are being tested and developed. Free-flying space robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require astronaut extra-vehicular activity (EVA). Use of robots will provide economic savings as well as improved astronaut safety by reducing and in many cases, eliminating the need for human EVA. The focus of the work is to develop and carry out a set of research projects using laboratory models of satellite robots. These devices use air-cushion-vehicle (ACV) technology to simulate in two dimensions the drag-free, zero-g conditions of space. Current work is divided into six major projects or research areas. Fixed-base cooperative manipulation work represents our initial entry into multiple arm cooperation and high-level control with a sophisticated user interface. The floating-base cooperative manipulation project strives to transfer some of the technologies developed in the fixed-base work onto a floating base. The global control and navigation experiment seeks to demonstrate simultaneous control of the robot manipulators and the robot base position so that tasks can be accomplished while the base is undergoing a controlled motion. The multiple-vehicle cooperation project's goal is to demonstrate multiple free-floating robots working in teams to carry out tasks too difficult or complex for a single robot to perform. The Location Enhancement Arm Push-off (LEAP) activity's goal is to provide a viable alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its manipulators to throw itself from place to place. Because the successful execution of the LEAP technique requires an accurate model of the robot and payload mass properties, it was deemed an attractive testbed for adaptive control technology.

  7. Intelligent computational control of multi-fingered dexterous robotic hand

    OpenAIRE

    Chen, Disi; Li, Gongfa; Jiang, Guozhang; Fang, Yinfeng; Ju, Zhaojie; Liu, Honghai

    2015-01-01

    We discuss the intelligent computational control theory and introduce the hardware structure of HIT/DLR II dexterous robotic hand, which is the typical dexterous robotic hand. We show that how DSP or FPGA controller can be used in the dexterous robotic hand. A popular intelligent dexterous robotic hand control system, which named Electromyography (EMG) control is investigated. We introduced some mathematical algorithms in EMG controlling, such as Gauss mixture model (GMM), artificial neural n...

  8. Decentralized neural control application to robotics

    CERN Document Server

    Garcia-Hernandez, Ramon; Sanchez, Edgar N; Alanis, Alma y; Ruz-Hernandez, Jose A

    2017-01-01

    This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors. This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF). The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold. The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network. The third control scheme applies a decentralized neural i...

  9. Robotics development for the enhancement of space endeavors

    Science.gov (United States)

    Mauceri, A. J.; Clarke, Margaret M.

    Telerobotics and robotics development activities to support NASA's goal of increasing opportunities in space commercialization and exploration are described. The Rockwell International activities center is using robotics to improve efficiency and safety in three related areas: remote control of autonomous systems, automated nondestructive evaluation of aspects of vehicle integrity, and the use of robotics in space vehicle ground reprocessing operations. In the first area, autonomous robotic control, Rockwell is using the control architecture, NASREM, as the foundation for the high level command of robotic tasks. In the second area, we have demonstrated the use of nondestructive evaluation (using acoustic excitation and lasers sensors) to evaluate the integrity of space vehicle surface material bonds, using Orbiter 102 as the test case. In the third area, Rockwell is building an automated version of the present manual tool used for Space Shuttle surface tile re-waterproofing. The tool will be integrated into an orbiter processing robot being developed by a KSC-led team.

  10. Adaptive learning fuzzy control of a mobile robot

    International Nuclear Information System (INIS)

    Tsukada, Akira; Suzuki, Katsuo; Fujii, Yoshio; Shinohara, Yoshikuni

    1989-11-01

    In this report a problem is studied to construct a fuzzy controller for a mobile robot to move autonomously along a given reference direction curve, for which control rules are generated and acquired through an adaptive learning process. An adaptive learning fuzzy controller has been developed for a mobile robot. Good properties of the controller are shown through the travelling experiments of the mobile robot. (author)

  11. Efficient Control Law Simulation for Multiple Mobile Robots

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, B.J.; Feddema, J.T.; Kotulski, J.D.; Kwok, K.S.

    1998-10-06

    In this paper we consider the problem of simulating simple control laws involving large numbers of mobile robots. Such simulation can be computationally prohibitive if the number of robots is large enough, say 1 million, due to the 0(N2 ) cost of each time step. This work therefore uses hierarchical tree-based methods for calculating the control law. These tree-based approaches have O(NlogN) cost per time step, thus allowing for efficient simulation involving a large number of robots. For concreteness, a decentralized control law which involves only the distance and bearing to the closest neighbor robot will be considered. The time to calculate the control law for each robot at each time step is demonstrated to be O(logN).

  12. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  13. Robotic environments

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Technological and conceptual advances in fields such as artificial intelligence, robotics, and material science have enabled robotic architectural environments to be implemented and tested in the last decade in virtual and physical prototypes. These prototypes are incorporating sensing-actuating

  14. Model Driven Software Development for Agricultural Robotics

    DEFF Research Database (Denmark)

    Larsen, Morten

    The design and development of agricultural robots, consists of both mechan- ical, electrical and software components. All these components must be de- signed and combined such that the overall goal of the robot is fulfilled. The design and development of these systems require collaboration between...... processing, control engineering, etc. This thesis proposes a Model-Driven Software Develop- ment based approach to model, analyse and partially generate the software implementation of a agricultural robot. Furthermore, Guidelines for mod- elling the architecture of an agricultural robots are provided......, assisting with bridging the different engineering disciplines. Timing play an important role in agricultural robotic applications, synchronisation of robot movement and implement actions is important in order to achieve precision spraying, me- chanical weeding, individual feeding, etc. Discovering...

  15. Neural Architectures for Control

    Science.gov (United States)

    Peterson, James K.

    1991-01-01

    The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.

  16. Control of a Robot Dancer for Enhancing Haptic Human-Robot Interaction in Waltz.

    Science.gov (United States)

    Hongbo Wang; Kosuge, K

    2012-01-01

    Haptic interaction between a human leader and a robot follower in waltz is studied in this paper. An inverted pendulum model is used to approximate the human's body dynamics. With the feedbacks from the force sensor and laser range finders, the robot is able to estimate the human leader's state by using an extended Kalman filter (EKF). To reduce interaction force, two robot controllers, namely, admittance with virtual force controller, and inverted pendulum controller, are proposed and evaluated in experiments. The former controller failed the experiment; reasons for the failure are explained. At the same time, the use of the latter controller is validated by experiment results.

  17. Generating Self-Reliant Teams of Autonomous Cooperating Robots: Desired design Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1999-05-01

    The difficulties in designing a cooperative team are significant. Several of the key questions that must be resolved when designing a cooperative control architecture include: How do we formulate, describe, decompose, and allocate problems among a group of intelligent agents? How do we enable agents to communicate and interact? How do we ensure that agents act coherently in their actions? How do we allow agents to recognize and reconcile conflicts? However, in addition to these key issues, the software architecture must be designed to enable multi-robot teams to be robust, reliable, and flexible. Without these capabilities, the resulting robot team will not be able to successfully deal with the dynamic and uncertain nature of the real world. In this extended abstract, we first describe these desired capabilities. We then briefly describe the ALLIANCE software architecture that we have previously developed for multi-robot cooperation. We then briefly analyze the ALLIANCE architecture in terms of the desired design qualities identified.

  18. Hydraulically actuated hexapod robots design, implementation and control

    CERN Document Server

    Nonami, Kenzo; Irawan, Addie; Daud, Mohd Razali

    2014-01-01

    Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likel...

  19. Review on design and control aspects of ankle rehabilitation robots.

    Science.gov (United States)

    Jamwal, Prashant K; Hussain, Shahid; Xie, Sheng Q

    2015-03-01

    Ankle rehabilitation robots can play an important role in improving outcomes of the rehabilitation treatment by assisting therapists and patients in number of ways. Consequently, few robot designs have been proposed by researchers which fall under either of the two categories, namely, wearable robots or platform-based robots. This paper presents a review of both kinds of ankle robots along with a brief analysis of their design, actuation and control approaches. While reviewing these designs it was observed that most of them are undesirably inspired by industrial robot designs. Taking note of the design concerns of current ankle robots, few improvements in the ankle robot designs have also been suggested. Conventional position control or force control approaches, being used in the existing ankle robots, have been reviewed. Apparently, opportunities of improvement also exist in the actuation as well as control of ankle robots. Subsequently, a discussion on most recent research in the development of novel actuators and advanced controllers based on appropriate physical and cognitive human-robot interaction has also been included in this review. Implications for Rehabilitation Ankle joint functions are restricted/impaired as a consequence of stroke or injury during sports or otherwise. Robots can help in reinstating functions faster and can also work as tool for recording rehabilitation data useful for further analysis. Evolution of ankle robots with respect to their design and control aspects has been discussed in the present paper and a novel design with futuristic control approach has been proposed.

  20. Robot-Arm Dynamic Control by Computer

    Science.gov (United States)

    Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.

    1987-01-01

    Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.

  1. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.

    Science.gov (United States)

    Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Portillo, Eva; Jung, Je Hyung

    2018-03-05

    In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.

  2. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics

    Directory of Open Access Journals (Sweden)

    Aitziber Mancisidor

    2018-03-01

    Full Text Available In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error. Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.

  3. Assistant Personal Robot (APR: Conception and Application of a Tele-Operated Assisted Living Robot

    Directory of Open Access Journals (Sweden)

    Eduard Clotet

    2016-04-01

    Full Text Available This paper presents the technical description, mechanical design, electronic components, software implementation and possible applications of a tele-operated mobile robot designed as an assisted living tool. This robotic concept has been named Assistant Personal Robot (or APR for short and has been designed as a remotely telecontrolled robotic platform built to provide social and assistive services to elderly people and those with impaired mobility. The APR features a fast high-mobility motion system adapted for tele-operation in plain indoor areas, which incorporates a high-priority collision avoidance procedure. This paper presents the mechanical architecture, electrical fundaments and software implementation required in order to develop the main functionalities of an assistive robot. The APR uses a tablet in order to implement the basic peer-to-peer videoconference and tele-operation control combined with a tactile graphic user interface. The paper also presents the development of some applications proposed in the framework of an assisted living robot.

  4. Modelling and Control of a Mobile Robot

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    1998-01-01

    In order to control a mobile robot, kinematic odels as well as dynamic models are required. This parer describes these basic models for an experimental mobile robot under construction at the Department of Control and Engineering Design. A description of a set of trajectory control rules is given...

  5. Development of 6-DOF painting robot control system

    Science.gov (United States)

    Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang

    2017-01-01

    With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.

  6. Development of Vision Control Scheme of Extended Kalman filtering for Robot's Position Control

    International Nuclear Information System (INIS)

    Jang, W. S.; Kim, K. S.; Park, S. I.; Kim, K. Y.

    2003-01-01

    It is very important to reduce the computational time in estimating the parameters of vision control algorithm for robot's position control in real time. Unfortunately, the batch estimation commonly used requires too murk computational time because it is iteration method. So, the batch estimation has difficulty for robot's position control in real time. On the other hand, the Extended Kalman Filtering(EKF) has many advantages to calculate the parameters of vision system in that it is a simple and efficient recursive procedures. Thus, this study is to develop the EKF algorithm for the robot's vision control in real time. The vision system model used in this study involves six parameters to account for the inner(orientation, focal length etc) and outer (the relative location between robot and camera) parameters of camera. Then, EKF has been first applied to estimate these parameters, and then with these estimated parameters, also to estimate the robot's joint angles used for robot's operation. finally, the practicality of vision control scheme based on the EKF has been experimentally verified by performing the robot's position control

  7. Feedback Control Design for a Walking Athlete Robot

    Directory of Open Access Journals (Sweden)

    Xuan Vu Trien Nguyen

    2017-06-01

    Full Text Available In the paper, authors generalized the dynamic model of an athlete robot with elastic legs through Lagrange method. Then, a feed-back controller was designed to control the robot through a step-walking. The research just focused on stance phase – the period that robot just touched one leg on the ground. The simulation results showed that system worked well with the designed controller.

  8. From Virtual Creatures to Feasible Robots

    DEFF Research Database (Denmark)

    Faina, Andres; Souto, Daniel; Orjales, Félix

    with the main objective of obtaining feasible and manufacturable robots. To this end, a modular architecture has been defined and implemented [2], which faces real hardware issues and promotes the evolvability of the robotic structures by considering heterogeneous modules with a large number of connection faces......This paper provides a brief description of the robots obtained using the evolutionary design system called EDHMoR (Evolutionary Designer of Heterogeneous Modular Robots) that are displayed in the corresponding video [1]. This system is based on the coevolution of morphology and control...... per module. These modules constitute the building blocks the EDHMoR system uses to design the robots. Moreover, an evaluation methodology is proposed as a key element of EDMHoR, which is based on modifications in the environment that can produce more useful and realistic robots without limiting...

  9. Fractal gene regulatory networks for robust locomotion control of modular robots

    DEFF Research Database (Denmark)

    Zahadat, Payam; Christensen, David Johan; Schultz, Ulrik Pagh

    2010-01-01

    Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed and the ......Designing controllers for modular robots is difficult due to the distributed and dynamic nature of the robots. In this paper fractal gene regulatory networks are evolved to control modular robots in a distributed way. Experiments with different morphologies of modular robot are performed...

  10. Open middleware for robotics

    CSIR Research Space (South Africa)

    Namoshe, M

    2008-12-01

    Full Text Available and their technologies within the field of multi-robot systems to ease the difficulty of realizing robot applications. And lastly, an example of algorithm development for multi-robot co-operation using one of the discussed software architecture is presented...

  11. Spoken commands control robot that handles radioactive materials

    International Nuclear Information System (INIS)

    Phelan, P.F.; Keddy, C.; Beugelsdojk, T.J.

    1989-01-01

    Several robotic systems have been developed by Los Alamos National Laboratory to handle radioactive material. Because of safety considerations, the robotic system must be under direct human supervision and interactive control continuously. In this paper, we describe the implementation of a voice-recognition system that permits this control, yet allows the robot to perform complex preprogrammed manipulations without the operator's intervention. To provide better interactive control, we connected to the robot's control computer, a speech synthesis unit, which provides audible feedback to the operator. Thus upon completion of a task or if an emergency arises, an appropriate spoken message can be reported by the control computer. The training programming and operation of this commercially available system are discussed, as are the practical problems encountered during operations

  12. Applying virtual reality to remote control of mobile robot

    Directory of Open Access Journals (Sweden)

    Chen Chin-Shan

    2017-01-01

    Full Text Available The purpose of this research is based on virtual reality to assisted pick and place tasks. Virtual reality can be utilized to control remote robot for pick and place element. The operator monitored and controlled the situation information of working site by Human Machine Interface. Therefore, we worked in harsh or dangerous environments that thing can be avoided. The procedure to operate mobile robot in virtual reality describes as follow: An experiment site with really experimental equipment is first established. Then, the experimental equipment and scene modeling are input to virtual reality for establishing a environment similar to the reality. Finally, the remote mobile robot is controlled to operate pick and place tasks through wireless communication by the object operation in virtual reality. The robot consists of a movable robot platform and robotic arm. The virtual reality is constructed by EON software; the Human Machine Interface is established by Visual Basic. The wireless connection is equipped the wireless Bluetooth, which is set the PC and PLC controller. With experimental tests to verify the robot in virtual reality and the wireless remote control, the robot could be operated and controlled to successfully complete pick and place tasks in reality by Human Machine Interface.

  13. Human-Derived Disturbance Estimation and Compensation (DEC) Method Lends Itself to a Modular Sensorimotor Control in a Humanoid Robot.

    Science.gov (United States)

    Lippi, Vittorio; Mergner, Thomas

    2017-01-01

    The high complexity of the human posture and movement control system represents challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage that engineering-inspired, model-based approaches will help to deal with the high complexity of the human posture control system. Since the methods of system identification and parameter estimation are limited to systems with only a few DoF, our laboratory proposes a heuristic approach that step-by-step increases complexity when creating a hypothetical human-derived control systems in humanoid robots. This system is then compared with the human control in the same test bed, a posture control laboratory. The human-derived control builds upon the identified disturbance estimation and compensation (DEC) mechanism, whose main principle is to support execution of commanded poses or movements by compensating for external or self-produced disturbances such as gravity effects. In previous robotic implementation, up to 3 interconnected DEC control modules were used in modular control architectures separately for the sagittal plane or the frontal body plane and successfully passed balancing and movement tests. In this study we hypothesized that conflict-free movement coordination between the robot's sagittal and frontal body planes emerges simply from the physical embodiment, not necessarily requiring a full body control. Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that the mechanical coupling from the robot's body suffices to coordinate the controls in the two planes when the robot produces movements and balancing responses in the intermediate plane, (ii) providing quantitative characterization of the interaction dynamics between body planes including frequency response functions (FRFs), as they are used in human postural control analysis, and (iii) witnessing postural and control stability when all DoFs are challenged together with the emergence of inter

  14. EMBEDDED CONTROL SYSTEM FOR MOBILE ROBOTS WITH DIFFERENTIAL DRIVE

    Directory of Open Access Journals (Sweden)

    Michal KOPČÍK

    2017-09-01

    Full Text Available This article deals with design and implementation of control system for mobile robots with differential drive using embedded system. This designed embedded system consists of single control board featuring ARM based microcontroller which control the peripherals in real time and perform all low-level motion control. Designed embedded system can be easily expanded with additional sensors, actuators or control units to enhance applicability of mobile robot. Designed embedded system also features build-in communication module, which can be used for data for data acquisition and control of the mobile robot. Control board was implemented on two different types of mobile robots with differential drive, one of which was wheeled and other was tracked. These mobile robots serve as testing platform for Fault Detection and Isolation using hardware and analytical redundancy using Multisensor Data Fusion based on Kalman filters.

  15. Graphical programming: On-line robot simulation for telerobotic control

    International Nuclear Information System (INIS)

    McDonald, M.J.; Palmquist, R.D.

    1993-01-01

    Sandia has developed an advanced operational control system approach, caged Graphical Programming, to design and operate robotic waste cleanup and other hazardous duty robotic systems. The Graphical Programming approach produces robot systems that are faster to develop and use, safer in operation, and cheaper overall than altemative teleoperation or autonomous robot control systems. The Graphical Programming approach uses 3-D visualization and simulation software with intuitive operator interfaces for the programming and control of complex robotic systems. Graphical Programming Supervisor software modules allow an operator to command and simulate complex tasks in a graphic preview mode and, when acceptable, command the actual robots and monitor their motions with the graphic system. Graphical Progranuning Supervisors maintain registration with the real world and allow the robot to perform tasks that cannot be accurately represented with models alone by using a combination of model and sensor-based control. This paper describes the Graphical Programming approach, several example control systems that use Graphical Programming, and key features necessary for implementing successful Graphical Programming systems

  16. Remote hardware-reconfigurable robotic camera

    Science.gov (United States)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.

    2001-10-01

    In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.

  17. A Multi-Sensorial Hybrid Control for Robotic Manipulation in Human-Robot Workspaces

    Directory of Open Access Journals (Sweden)

    Juan A. Corrales

    2011-10-01

    Full Text Available Autonomous manipulation in semi-structured environments where human operators can interact is an increasingly common task in robotic applications. This paper describes an intelligent multi-sensorial approach that solves this issue by providing a multi-robotic platform with a high degree of autonomy and the capability to perform complex tasks. The proposed sensorial system is composed of a hybrid visual servo control to efficiently guide the robot towards the object to be manipulated, an inertial motion capture system and an indoor localization system to avoid possible collisions between human operators and robots working in the same workspace, and a tactile sensor algorithm to correctly manipulate the object. The proposed controller employs the whole multi-sensorial system and combines the measurements of each one of the used sensors during two different phases considered in the robot task: a first phase where the robot approaches the object to be grasped, and a second phase of manipulation of the object. In both phases, the unexpected presence of humans is taken into account. This paper also presents the successful results obtained in several experimental setups which verify the validity of the proposed approach.

  18. Direct adaptive control of a PUMA 560 industrial robot

    Science.gov (United States)

    Seraji, Homayoun; Lee, Thomas; Delpech, Michel

    1989-01-01

    The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.

  19. Cooperative Robot Teams Applied to the Site Preparation Task

    International Nuclear Information System (INIS)

    Parker, LE

    2001-01-01

    Prior to human missions to Mars, infrastructures on Mars that support human survival must be prepared. robotic teams can assist in these advance preparations in a number of ways. This paper addresses one of these advance robotic team tasks--the site preparation task--by proposing a control structure that allows robot teams to cooperatively solve this aspect of infrastructure preparation. A key question in this context is determining how robots should make decisions on which aspect of the site preparation t6ask to address throughout the mission, especially while operating in rough terrains. This paper describes a control approach to solving this problem that is based upon the ALLIANCE architecture, combined with performance-based rough terrain navigation that addresses path planning and control of mobile robots in rough terrain environments. They present the site preparation task and the proposed cooperative control approach, followed by some of the results of the initial testing of various aspects of the system

  20. Car-Like Mobile Robot Oriented Positioning by Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Noureddine Ouadah

    2008-11-01

    Full Text Available In this paper, fuzzy logic controllers (FLC are used to implement an efficient and accurate positioning of an autonomous car-like mobile robot, respecting final orientation. To accomplish this task, called "Oriented Positioning", two FLC have been developed: robot positioning controller (RPC and robot following controller (RFC. Computer simulation results illustrate the effectiveness of the proposed technique. Finally, real-time experiments have been made on an autonomous car-like mobile robot called "Robucar", developed to perform people transportation. Obtained results from experiments demonstrate the effectiveness of the proposed control strategy.

  1. Car-Like Mobile Robot Oriented Positioning by Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Noureddine Ouadah

    2008-09-01

    Full Text Available In this paper, fuzzy logic controllers (FLC are used to implement an efficient and accurate positioning of an autonomous car-like mobile robot, respecting final orientation. To accomplish this task, called “Oriented Positioning”, two FLC have been developed: robot positioning controller (RPC and robot following controller (RFC. Computer simulation results illustrate the effectiveness of the proposed technique. Finally, real-time experiments have been made on an autonomous car-like mobile robot called “Robucar”, developed to perform people transportation. Obtained results from experiments demonstrate the effectiveness of the proposed control strategy.

  2. Research on wheelchair robot control system based on EOG

    Science.gov (United States)

    Xu, Wang; Chen, Naijian; Han, Xiangdong; Sun, Jianbo

    2018-04-01

    The paper describes an intelligent wheelchair control system based on EOG. It can help disabled people improve their living ability. The system can acquire EOG signal from the user, detect the number of blink and the direction of glancing, and then send commands to the wheelchair robot via RS-232 to achieve the control of wheelchair robot. Wheelchair robot control system based on EOG is composed of processing EOG signal and human-computer interactive technology, which achieves a purpose of using conscious eye movement to control wheelchair robot.

  3. Method and apparatus for automatic control of a humanoid robot

    Science.gov (United States)

    Abdallah, Muhammad E (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Reiland, Matthew J (Inventor); Sanders, Adam M (Inventor)

    2013-01-01

    A robotic system includes a humanoid robot having a plurality of joints adapted for force control with respect to an object acted upon by the robot, a graphical user interface (GUI) for receiving an input signal from a user, and a controller. The GUI provides the user with intuitive programming access to the controller. The controller controls the joints using an impedance-based control framework, which provides object level, end-effector level, and/or joint space-level control of the robot in response to the input signal. A method for controlling the robotic system includes receiving the input signal via the GUI, e.g., a desired force, and then processing the input signal using a host machine to control the joints via an impedance-based control framework. The framework provides object level, end-effector level, and/or joint space-level control of the robot, and allows for functional-based GUI to simplify implementation of a myriad of operating modes.

  4. Toward cognitive robotics

    Science.gov (United States)

    Laird, John E.

    2009-05-01

    Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.

  5. Software design of the hybrid robot machine for ITER vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming, E-mail: Ming.Li@lut.fi [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Wu, Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Yang, Guangyou [School of Mechanical Engineering, Hubei University of Technology, Wuhan (China)

    2013-10-15

    A specific software design is elaborated in this paper for the hybrid robot machine used for the ITER vacuum vessel (VV) assembly and maintenance. In order to provide the multi-machining-function as well as the complicated, flexible and customizable GUI designing satisfying the non-standardized VV assembly process in one hand, and in another hand guarantee the stringent machining precision in the real-time motion control of robot machine, a client–server-control software architecture is proposed, which separates the user interaction, data communication and robot control implementation into different software layers. Correspondingly, three particular application protocols upon the TCP/IP are designed to transmit the data, command and status between the client and the server so as to deal with the abundant data streaming in the software. In order not to be affected by the graphic user interface (GUI) modification process in the future experiment in VV assembly working field, the real-time control system is realized as a stand-alone module in the architecture to guarantee the controlling performance of the robot machine. After completing the software development, a milling operation is tested on the robot machine, and the result demonstrates that both the specific GUI operability and the real-time motion control performance could be guaranteed adequately in the software design.

  6. Software design of the hybrid robot machine for ITER vacuum vessel assembly and maintenance

    International Nuclear Information System (INIS)

    Li, Ming; Wu, Huapeng; Handroos, Heikki; Yang, Guangyou

    2013-01-01

    A specific software design is elaborated in this paper for the hybrid robot machine used for the ITER vacuum vessel (VV) assembly and maintenance. In order to provide the multi-machining-function as well as the complicated, flexible and customizable GUI designing satisfying the non-standardized VV assembly process in one hand, and in another hand guarantee the stringent machining precision in the real-time motion control of robot machine, a client–server-control software architecture is proposed, which separates the user interaction, data communication and robot control implementation into different software layers. Correspondingly, three particular application protocols upon the TCP/IP are designed to transmit the data, command and status between the client and the server so as to deal with the abundant data streaming in the software. In order not to be affected by the graphic user interface (GUI) modification process in the future experiment in VV assembly working field, the real-time control system is realized as a stand-alone module in the architecture to guarantee the controlling performance of the robot machine. After completing the software development, a milling operation is tested on the robot machine, and the result demonstrates that both the specific GUI operability and the real-time motion control performance could be guaranteed adequately in the software design

  7. Interaction between Task Oriented and Affective Information Processing in Cognitive Robotics

    Science.gov (United States)

    Haazebroek, Pascal; van Dantzig, Saskia; Hommel, Bernhard

    There is an increasing interest in endowing robots with emotions. Robot control however is still often very task oriented. We present a cognitive architecture that allows the combination of and interaction between task representations and affective information processing. Our model is validated by comparing simulation results with empirical data from experimental psychology.

  8. Modeling and identification for high-performance robot control : an RRR-robotic arm case study

    NARCIS (Netherlands)

    Kostic, D.; Jager, de A.G.; Steinbuch, M.; Hensen, R.H.A.

    2004-01-01

    We explain a procedure for getting models of robot kinematics and dynamics that are appropriate for robot control design. The procedure consists of the following steps: (i) derivation of robot kinematic and dynamic models and establishing correctness of their structures; (ii) experimental estimation

  9. Dynamic Modelling and Adaptive Traction Control for Mobile Robots

    Directory of Open Access Journals (Sweden)

    A. Albagul

    2004-09-01

    Full Text Available Mobile robots have received a great deal of research in recent years. A significant amount of research has been published in many aspects related to mobile robots. Most of the research is devoted to design and develop some control techniques for robot motion and path planning. A large number of researchers have used kinematic models to develop motion control strategy for mobile robots. Their argument and assumption that these models are valid if the robot has low speed, low acceleration and light load. However, dynamic modelling of mobile robots is very important as they are designed to travel at higher speed and perform heavy duty work. This paper presents and discusses a new approach to develop a dynamic model and control strategy for wheeled mobile robot which I modelled as a rigid body that roles on two wheels and a castor. The motion control strategy consists of two levels. The first level is dealing with the dynamic of the system and denoted as ‘Low’ level controller. The second level is developed to take care of path planning and trajectory generation.

  10. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  11. Design and control of a pneumatic musculoskeletal biped robot.

    Science.gov (United States)

    Zang, Xizhe; Liu, Yixiang; Liu, Xinyu; Zhao, Jie

    2016-04-29

    Pneumatic artificial muscles are quite promising actuators for humanoid robots owing to their similar characteristics with human muscles. Moreover, biologically inspired musculoskeletal systems are particularly important for humanoid robots to perform versatile dynamic tasks. This study aims to develop a pneumatic musculoskeletal biped robot, and its controller, to realize human-like walking. According to the simplified musculoskeletal structure of human lower limbs, each leg of the biped robot is driven by nine muscles, including three pairs of monoarticular muscles which are arranged in the flexor-extensor form, as well as three biarticular muscles which span two joints. To lower cost, high-speed on/off solenoid valves rather than proportional valves are used to control the muscles. The joint trajectory tracking controller based on PID control method is designed to achieve the desired motion. Considering the complex characteristics of pneumatic artificial muscles, the control model is obtained through parameter identification experiments. Preliminary experimental results demonstrate that the biped robot is able to walk with this control strategy. The proposed musculoskeletal structure and control strategy are effective for the biped robot to achieve human-like walking.

  12. Designing the Mind of a Social Robot

    Directory of Open Access Journals (Sweden)

    Nicole Lazzeri

    2018-02-01

    Full Text Available Humans have an innate tendency to anthropomorphize surrounding entities and have always been fascinated by the creation of machines endowed with human-inspired capabilities and traits. In the last few decades, this has become a reality with enormous advances in hardware performance, computer graphics, robotics technology, and artificial intelligence. New interdisciplinary research fields have brought forth cognitive robotics aimed at building a new generation of control systems and providing robots with social, empathetic and affective capabilities. This paper presents the design, implementation, and test of a human-inspired cognitive architecture for social robots. State-of-the-art design approaches and methods are thoroughly analyzed and discussed, cases where the developed system has been successfully used are reported. The tests demonstrated the system’s ability to endow a social humanoid robot with human social behaviors and with in-silico robotic emotions.

  13. A computer architecture for intelligent machines

    Science.gov (United States)

    Lefebvre, D. R.; Saridis, G. N.

    1992-01-01

    The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.

  14. Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Science.gov (United States)

    Erickson, Jon D. (Editor)

    1994-01-01

    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications.

  15. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    International Nuclear Information System (INIS)

    Geisinger, Joseph W. Ph.D.

    2001-01-01

    ARM Automation, Inc. is developing a FR-amework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator FR-om these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC(trademark)s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost

  16. Development of constrained motion control for robot handling of hazardous waste

    International Nuclear Information System (INIS)

    Starr, G.P.

    1993-01-01

    Handling and archiving of hazardous waste is an area where automation and robotics can be of significant benefit, by removing the human operator from the workplace and its associated hazards. For reasons of safety, throughput, and reduced setup time, force-controlled robots are well-suited for hazardous materials handling. The focus of this investigation is the development of advanced force control techniques for commercial industrial robots in the surface sampling of hazardous waste containers. Two particular control strategies are considered, (1) preview control, and (2) adaptive control. Preview control uses a sensor which can ''look ahead'' and thereby reduce the effect of surface irregularity on contact force control. Adaptive control allows the robot controller to compensate for changes in the robot characteristics as it changes position, and likewise improves performance. The resulting control algorithms will be applied to a two-dimensional contour-following task using a PUMA robot at the Robotics Research Laboratory at The University of New Mexico. (author) 9 figs., 13 refs

  17. Supervisory control for a complex robotic system

    International Nuclear Information System (INIS)

    Miller, D.J.

    1988-01-01

    The Robotic Radiation Survey and Analysis System investigates the use of advanced robotic technology for performing remote radiation surveys on nuclear waste shipping casks. Robotic systems have the potential for reducing personnel exposure to radiation and providing fast reliable throughput at future repository sites. A primary technology issue is the integrated control of distributed specialized hardware through a modular supervisory software system. Automated programming of robot trajectories based upon mathematical models of the cask and robot coupled with sensory feedback enables flexible operation of a commercial gantry robot with the reliability needed to perform autonomous operations in a hazardous environment. Complexity is managed using structured software engineering techniques resulting in the generation of reusable command primitives which contribute to a software parts catalog for a generalized robot programming language

  18. [Haptic tracking control for minimally invasive robotic surgery].

    Science.gov (United States)

    Xu, Zhaohong; Song, Chengli; Wu, Wenwu

    2012-06-01

    Haptic feedback plays a significant role in minimally invasive robotic surgery (MIRS). A major deficiency of the current MIRS is the lack of haptic perception for the surgeon, including the commercially available robot da Vinci surgical system. In this paper, a dynamics model of a haptic robot is established based on Newton-Euler method. Because it took some period of time in exact dynamics solution, we used a digital PID arithmetic dependent on robot dynamics to ensure real-time bilateral control, and it could improve tracking precision and real-time control efficiency. To prove the proposed method, an experimental system in which two Novint Falcon haptic devices acting as master-slave system has been developed. Simulations and experiments showed proposed methods could give instrument force feedbacks to operator, and bilateral control strategy is an effective method to master-slave MIRS. The proposed methods could be used to tele-robotic system.

  19. Advances in soft computing, intelligent robotics and control

    CERN Document Server

    Fullér, Robert

    2014-01-01

    Soft computing, intelligent robotics and control are in the core interest of contemporary engineering. Essential characteristics of soft computing methods are the ability to handle vague information, to apply human-like reasoning, their learning capability, and ease of application. Soft computing techniques are widely applied in the control of dynamic systems, including mobile robots. The present volume is a collection of 20 chapters written by respectable experts of the fields, addressing various theoretical and practical aspects in soft computing, intelligent robotics and control. The first part of the book concerns with issues of intelligent robotics, including robust xed point transformation design, experimental verification of the input-output feedback linearization of differentially driven mobile robot and applying kinematic synthesis to micro electro-mechanical systems design. The second part of the book is devoted to fundamental aspects of soft computing. This includes practical aspects of fuzzy rule ...

  20. Air Force construction automation/robotics

    Science.gov (United States)

    Nease, AL; Dusseault, Christopher

    1994-01-01

    The Air Force has several unique requirements that are being met through the development of construction robotic technology. The missions associated with these requirements place construction/repair equipment operators in potentially harmful situations. Additionally, force reductions require that human resources be leveraged to the maximum extent possible and that more stringent construction repair requirements push for increased automation. To solve these problems, the U.S. Air Force is undertaking a research and development effort at Tyndall AFB, FL to develop robotic teleoperation, telerobotics, robotic vehicle communications, automated damage assessment, vehicle navigation, mission/vehicle task control architecture, and associated computing environment. The ultimate goal is the fielding of robotic repair capability operating at the level of supervised autonomy. The authors of this paper will discuss current and planned efforts in construction/repair, explosive ordnance disposal, hazardous waste cleanup, fire fighting, and space construction.

  1. Siroco, a configurable robot control system

    International Nuclear Information System (INIS)

    Tejedor, B.G.; Maraggi, G.J.B.

    1988-01-01

    The SIROCO (Configurable Robot Control System) is an electronic system designed to work in applications where mechanized remote control equipment and robots are necessary especially in Nuclear Power Plants. The structure of the system (hardware and software) determines the following user characteristics: a) Reduction in the time spent in NDT and in radiation doses absorbed, due to remote control operation; b) possibility for full automation in NDT, c) the system can simultaneously control up to six axes and can generate movements in remote areas; and d) possibility for equipment unification, due to SIROCO being a configurable system. (author)

  2. Teaching Human Poses Interactively to a Social Robot

    Science.gov (United States)

    Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.

    2013-01-01

    The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336

  3. Teaching Human Poses Interactively to a Social Robot

    Directory of Open Access Journals (Sweden)

    Miguel A. Salichs

    2013-09-01

    Full Text Available The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher’s explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics.

  4. Visual Recognition and Its Application to Robot Arm Control

    Directory of Open Access Journals (Sweden)

    Jih-Gau Juang

    2015-10-01

    Full Text Available This paper presents an application of optical word recognition and fuzzy control to a smartphone automatic test system. The system consists of a robot arm and two webcams. After the words from the control panel that represent commands are recognized by the robot system, the robot arm performs the corresponding actions to test the smartphone. One of the webcams is utilized to capture commands on the screen of the control panel, the other to recognize the words on the screen of the tested smartphone. The method of image processing is based on the Red-Green-Blue (RGB and Hue-Saturation-Luminance (HSL color spaces to reduce the influence of light. Fuzzy theory is used in the robot arm’s position control. The Optical Character Recognition (OCR technique is applied to the word recognition, and the recognition results are then checked by a dictionary process to increase the recognition accuracy. The camera which is used to recognize the tested smartphone also provides object coordinates to the fuzzy controller, then the robot arm moves to the desired positions and presses the desired buttons. The proposed control scheme allows the robot arm to perform different assigned test functions successfully.

  5. Position Control of the Single Spherical Wheel Mobile Robot by Using the Fuzzy Sliding Mode Controller

    OpenAIRE

    Hamed Navabi; Soroush Sadeghnejad; Sepehr Ramezani; Jacky Baltes

    2017-01-01

    A spherical wheel robot or Ballbot—a robot that balances on an actuated spherical ball—is a new and recent type of robot in the popular area of mobile robotics. This paper focuses on the modeling and control of such a robot. We apply the Lagrangian method to derive the governing dynamic equations of the system. We also describe a novel Fuzzy Sliding Mode Controller (FSMC) implemented to control a spherical wheel mobile robot. The nonlinear nature of the equations makes the controller nontrivi...

  6. Haptic Control with a Robotic Gripper

    OpenAIRE

    Rody, Morgan

    2011-01-01

    The Novint Falcon is a low cost, 3-axis, haptic device primarily designed and built for the gaming industry. Meant to replace the conventional mouse, the Novint Falcon has sub- millimeter accuracy and is capable of real time updates. The device itself has the potential to be used in telerobotics applications when coupled with a robotic gripper for example. Recently, the Intelligent Control Lab at Örebro University in Sweden built such a robotic gripper. The robotic gripper has three fingers a...

  7. Generative Programming for Functional Safety in Mobile Robots

    DEFF Research Database (Denmark)

    Adam, Marian Sorin

    2018-01-01

    execution environment. The effective usage of DeRoS to specify safetyrelated properties of mobile robots and generation of a runtime verification infrastructure for the different controllers has been experimentally demonstrated on ROS-based systems, safety PLCs and microcontrollers. The key issue of making......Safety is a major challenge in robotics, in particular for mobile robots operating in an open and unpredictable environment. Safety certification is desired for commercial robots, but the existing approaches for addressing safety do not provide a clearly defined and isolated programmatic safety...... layer, with an easily understandable specification for facilitating safety certification. Moreover, mobile robots are advanced systems often implemented using a distributed architecture where software components are deployed on heterogeneous hardware modules. Many components are key to the overall...

  8. Case studies in configuration control for redundant robots

    Science.gov (United States)

    Seraji, H.; Lee, T.; Colbaugh, R.; Glass, K.

    1989-01-01

    A simple approach to configuration control of redundant robots is presented. The redundancy is utilized to control the robot configuration directly in task space, where the task will be performed. A number of task-related kinematic functions are defined and combined with the end-effector coordinates to form a set of configuration variables. An adaptive control scheme is then utilized to ensure that the configuration variables track the desired reference trajectories as closely as possible. Simulation results are presented to illustrate the control scheme. The scheme has also been implemented for direct online control of a PUMA industrial robot, and experimental results are presented. The simulation and experimental results validate the configuration control scheme for performing various realistic tasks.

  9. Control of complex physically simulated robot groups

    Science.gov (United States)

    Brogan, David C.

    2001-10-01

    Actuated systems such as robots take many forms and sizes but each requires solving the difficult task of utilizing available control inputs to accomplish desired system performance. Coordinated groups of robots provide the opportunity to accomplish more complex tasks, to adapt to changing environmental conditions, and to survive individual failures. Similarly, groups of simulated robots, represented as graphical characters, can test the design of experimental scenarios and provide autonomous interactive counterparts for video games. The complexity of writing control algorithms for these groups currently hinders their use. A combination of biologically inspired heuristics, search strategies, and optimization techniques serve to reduce the complexity of controlling these real and simulated characters and to provide computationally feasible solutions.

  10. Research on Robot Pose Control Technology Based on Kinematics Analysis Model

    Science.gov (United States)

    Liu, Dalong; Xu, Lijuan

    2018-01-01

    In order to improve the attitude stability of the robot, proposes an attitude control method of robot based on kinematics analysis model, solve the robot walking posture transformation, grasping and controlling the motion planning problem of robot kinematics. In Cartesian space analytical model, using three axis accelerometer, magnetometer and the three axis gyroscope for the combination of attitude measurement, the gyroscope data from Calman filter, using the four element method for robot attitude angle, according to the centroid of the moving parts of the robot corresponding to obtain stability inertia parameters, using random sampling RRT motion planning method, accurate operation to any position control of space robot, to ensure the end effector along a prescribed trajectory the implementation of attitude control. The accurate positioning of the experiment is taken using MT-R robot as the research object, the test robot. The simulation results show that the proposed method has better robustness, and higher positioning accuracy, and it improves the reliability and safety of robot operation.

  11. Lattice Automata for Control of Self-Reconfigurable Robots

    DEFF Research Database (Denmark)

    Støy, Kasper

    2015-01-01

    are extreme versatility and robustness. The organisation of self-reconfigurable robots in a lattice structure and the emphasis on local communication between modules mean that lattice automata are a useful basis for control of self-reconfigurable robots. However, there are significant differences which arise...... mainly from the physical nature of self-reconfigurable robots as opposed to the virtual nature of lattice automata. The problems resulting from these differences are mutual exclusion, handling motion constraints of modules, and unrealistic assumption about global, spatial orientation. Despite...... these problems the self-reconfigurable robot community has successfully applied lattice automata to simple control problems. However, for more complex problems hybrid solutions based on lattice automata and distributed algorithms are used. Hence, lattice automata have shown to have potential for the control...

  12. Kinect-Based Sliding Mode Control for Lynxmotion Robotic Arm

    Directory of Open Access Journals (Sweden)

    Ismail Ben Abdallah

    2016-01-01

    Full Text Available Recently, the technological development of manipulator robot increases very quickly and provides a positive impact to human life. The implementation of the manipulator robot technology offers more efficiency and high performance for several human’s tasks. In reality, efforts published in this context are focused on implementing control algorithms with already preprogrammed desired trajectories (passive robots case or trajectory generation based on feedback sensors (active robots case. However, gesture based control robot can be considered as another channel of system control which is not widely discussed. This paper focuses on a Kinect-based real-time interactive control system implementation. Based on LabVIEW integrated development environment (IDE, a developed human-machine-interface (HMI allows user to control in real time a Lynxmotion robotic arm. The Kinect software development kit (SDK provides a tool to keep track of human body skeleton and abstract it into 3-dimensional coordinates. Therefore, the Kinect sensor is integrated into our control system to detect the different user joints coordinates. The Lynxmotion dynamic has been implemented in a real-time sliding mode control algorithm. The experimental results are carried out to test the effectiveness of the system, and the results verify the tracking ability, stability, and robustness.

  13. Forward Models for Following a Moving Target with the Puma 560 Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Daniel Fernando Tello Gamarra

    2015-12-01

    Full Text Available This paper describes how a forward model could be applied in a manipulator robot to accomplish the task of following a moving target. The forward model has been implemented in the puma 560 robot manipulator in simulation after a babbling motor phase using ANFIS neural networks. The forward model delivers a rough estimation of the position in the operational space of a moving target. Using this information a Cartesian controller tracks the moving target. An implementation of the proposed architecture and the Piepmeir algorithm for the problem of following a moving target is also shown in the paper. The control architecture proposed in this paper was also tested with MLP and RBF neural networks. Results and simulations are shown to demonstrate the applicability of our proposed architecture for tracking a moving target.

  14. Artificial intelligence in robot control systems

    Science.gov (United States)

    Korikov, A.

    2018-05-01

    This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.

  15. Controlling legs for locomotion-insights from robotics and neurobiology.

    Science.gov (United States)

    Buschmann, Thomas; Ewald, Alexander; von Twickel, Arndt; Büschges, Ansgar

    2015-06-29

    Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.

  16. A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-07-01

    .'s (ARM) modular robotic manipulator technology developed for DOE EM operations, which addresses many of the issues discussed in the previous section. This manipulator system has the capability of custom configurations, which accommodate common glovebox tasks such as materials repackaging. The modular nature and quick connects of this system simplify installations into ''hot'' boxes and any potential modifications or repair therein. In the field of automation and robotics, a very common element is one used to generate motion for precise positioning of loads. One example of such an automation component would be an individual joint within an industrial robotic manipulator. This component consists of a tightly integrated package containing an electric motor, gear train, output support bearings, position sensors, brake, servo-amplifier and communications controller. Within the context of this paper, this key building block is referred to as an actuator module. With regard to the needs of the EM, [8] and [9] have shown that while each focus area has unique requirements for robotic automation at a system or manipulator level, their requirements at the actuator level are very similar. Thereby, a modular approach to automation which utilizes a small set of versatile actuator modules can be used to construct a broad range of robotic systems and automation cells suited to EM applications. By providing a pre-engineered, pre-integrated motion system to different robotics users within the DOE, new automation systems can be more quickly created without extensive expertise in motion control or the expense of building custom equipment.

  17. A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS

    International Nuclear Information System (INIS)

    None

    2001-01-01

    .'s (ARM) modular robotic manipulator technology developed for DOE EM operations, which addresses many of the issues discussed in the previous section. This manipulator system has the capability of custom configurations, which accommodate common glovebox tasks such as materials repackaging. The modular nature and quick connects of this system simplify installations into ''hot'' boxes and any potential modifications or repair therein. In the field of automation and robotics, a very common element is one used to generate motion for precise positioning of loads. One example of such an automation component would be an individual joint within an industrial robotic manipulator. This component consists of a tightly integrated package containing an electric motor, gear train, output support bearings, position sensors, brake, servo-amplifier and communications controller. Within the context of this paper, this key building block is referred to as an actuator module. With regard to the needs of the EM, [8] and [9] have shown that while each focus area has unique requirements for robotic automation at a system or manipulator level, their requirements at the actuator level are very similar. Thereby, a modular approach to automation which utilizes a small set of versatile actuator modules can be used to construct a broad range of robotic systems and automation cells suited to EM applications. By providing a pre-engineered, pre-integrated motion system to different robotics users within the DOE, new automation systems can be more quickly created without extensive expertise in motion control or the expense of building custom equipment

  18. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Science.gov (United States)

    Sanfeliu, Alberto; Andrade-Cetto, Juan; Barbosa, Marco; Bowden, Richard; Capitán, Jesús; Corominas, Andreu; Gilbert, Andrew; Illingworth, John; Merino, Luis; Mirats, Josep M.; Moreno, Plínio; Ollero, Aníbal; Sequeira, João; Spaan, Matthijs T.J.

    2010-01-01

    In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites), a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted. PMID:22294927

  19. Position Control of the Single Spherical Wheel Mobile Robot by Using the Fuzzy Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Hamed Navabi

    2017-01-01

    Full Text Available A spherical wheel robot or Ballbot—a robot that balances on an actuated spherical ball—is a new and recent type of robot in the popular area of mobile robotics. This paper focuses on the modeling and control of such a robot. We apply the Lagrangian method to derive the governing dynamic equations of the system. We also describe a novel Fuzzy Sliding Mode Controller (FSMC implemented to control a spherical wheel mobile robot. The nonlinear nature of the equations makes the controller nontrivial. We compare the performance of four different fuzzy controllers: (a regulation with one signal, (b regulation and position control with one signal, (c regulation and position control with two signals, and (d FSMC for regulation and position control with two signals. The system is evaluated in a realistic simulation and the robot parameters are chosen based on a LEGO platform, so the designed controllers have the ability to be implemented on real hardware.

  20. Torque Control of Underactuated Tendon-driven Robotic Fingers

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Ihrke, Chris A. (Inventor); Reiland, Matthew J. (Inventor); Wampler, Charles W. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Bridgwater, Lyndon (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  1. MODELADO, SIMULACIÓN Y CONTROL DEL ROBOT PARA CIRUGÍA LAPAROSCÓPICA 'LAPBOT' MODELING, SIMULATION AND CONTROL OF SURGICAL LAPAROSCOPIC ROBOT 'LAPBOT'

    Directory of Open Access Journals (Sweden)

    Sergio Alexander Salinas

    2009-12-01

    Full Text Available Este artículo presenta el modelado matemático y estructural, la simulación por computador y el control por par calculado del robot para cirugía laparoscópica ‘LapBot’, que ha sido desarrollado en el Grupo de Investigación de Automática Industrial de la Universidad del Cauca, Colombia. Inicialmente se muestra un resumen de los principales robots utilizados como asistentes para cirugías de laparoscopia en el mundo, y de cómo tratan ellos el problema del paso por la incisión practicada en la cavidad abdominal. Con base en lo anterior se describen los requerimientos que deben cumplir los robots de este tipo y a partir de éstos se diseña el robot LapBot. Se muestra el modelo cinemático y dinámico del robot LapBot, así como el modelo de la restricción espacial que representa el punto de incisión abdominal. Se implementa una estrategia de control basada en el modelo del robot (control por par calculado. Diversas trayectorias en un plano y en un espacio de tres dimensiones son utilizadas para validar tanto el modelo como el controlador.This paper presents the mathematical and structural model, simulation and computed torque control of the LapBot robot, developed by the Group of Investigation of Industrial Automatics, of the University of Cauca, Colombia. First, a summary of the principal surgery assistant robots of the world is presented, and how they solve the problem of passing through the incision into the abdominal cavity. Based on this, the conditions that must be fulfilled by the robots of this type is exposed, and from these conditions the LapBot robot is designed. Its kinematics and dynamics model is shown, as well as the mathematical spatial restriction that incision represents. A control strategy based on the model (computed torque control is implemented. Several trajectories defined in a plane and in a three dimensions space are used to validate the model and the control.

  2. Autonomous learning in humanoid robotics through mental imagery.

    Science.gov (United States)

    Di Nuovo, Alessandro G; Marocco, Davide; Di Nuovo, Santo; Cangelosi, Angelo

    2013-05-01

    In this paper we focus on modeling autonomous learning to improve performance of a humanoid robot through a modular artificial neural networks architecture. A model of a neural controller is presented, which allows a humanoid robot iCub to autonomously improve its sensorimotor skills. This is achieved by endowing the neural controller with a secondary neural system that, by exploiting the sensorimotor skills already acquired by the robot, is able to generate additional imaginary examples that can be used by the controller itself to improve the performance through a simulated mental training. Results and analysis presented in the paper provide evidence of the viability of the approach proposed and help to clarify the rational behind the chosen model and its implementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Mobile robot navigation in unknown static environments using ANFIS controller

    Directory of Open Access Journals (Sweden)

    Anish Pandey

    2016-09-01

    Full Text Available Navigation and obstacle avoidance are the most important task for any mobile robots. This article presents the Adaptive Neuro-Fuzzy Inference System (ANFIS controller for mobile robot navigation and obstacle avoidance in the unknown static environments. The different sensors such as ultrasonic range finder sensor and sharp infrared range sensor are used to detect the forward obstacles in the environments. The inputs of the ANFIS controller are obstacle distances obtained from the sensors, and the controller output is a robot steering angle. The primary objective of the present work is to use ANFIS controller to guide the mobile robot in the given environments. Computer simulations are conducted through MATLAB software and implemented in real time by using C/C++ language running Arduino microcontroller based mobile robot. Moreover, the successful experimental results on the actual mobile robot demonstrate the effectiveness and efficiency of the proposed controller.

  4. Multilateral Telecoordinated Control of Multiple Robots With Uncertain Kinematics.

    Science.gov (United States)

    Zhai, Di-Hua; Xia, Yuanqing

    2017-06-06

    This paper addresses the telecoordinated control of multiple robots in the simultaneous presence of asymmetric time-varying delays, nonpassive external forces, and uncertain kinematics/dynamics. To achieve the control objective, a neuroadaptive controller with utilizing prescribed performance control and switching control technique is developed, where the basic idea is to employ the concept of motion synchronization in each pair of master-slave robots and among all slave robots. By using the multiple Lyapunov-Krasovskii functionals method, the state-independent input-to-output practical stability of the closed-loop system is established. Compared with the previous approaches, the new design is straightforward and easier to implement and is applicable to a wider area. Simulation results on three pairs of three degrees-of-freedom robots confirm the theoretical findings.

  5. Controlling Kuka Industrial Robots : Flexible Communication Interface JOpenShowVar.

    OpenAIRE

    Sanfilippo, Filippo; Hatledal, Lars Ivar; Zhang, Houxiang; Fago, Massimiliano; Pettersen, Kristin Ytterstad

    2015-01-01

    JOpenShowVar is a Java open-source cross-platform communication interface to Kuka industrial robots. This novel interface allows for read-write use of the controlled manipulator variables and data structures. JOpenShowVar, which is compatible with all the Kuka industrial robots that use KUKA Robot Controller version 4 (KR C4) and KUKA Robot Controller version 2 (KR C2), runs as a client on a remote computer connected with the Kuka controller via TCP/IP. Even though only soft real-time applica...

  6. Formations of Robotic Swarm: An Artificial Force Based Approach

    Directory of Open Access Journals (Sweden)

    Samitha W. Ekanayake

    2009-03-01

    Full Text Available Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter-member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc. Also the performance of the proposed distributed swarm control architecture was investigated in the presence of realistic implementation issues such as localization errors, communication range limitations, boundedness of forces etc.

  7. Formations of Robotic Swarm: An Artificial Force Based Approach

    Directory of Open Access Journals (Sweden)

    Samitha W. Ekanayake

    2010-09-01

    Full Text Available Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter-member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc. Also the performance of the proposed distributed swarm control architecture was investigated in the presence of realistic implementation issues such as localization errors, communication range limitations, boundedness of forces etc.

  8. Formations of Robotic Swarm: An Artificial Force Based Approach

    Directory of Open Access Journals (Sweden)

    Samitha W. Ekanayake

    2009-03-01

    Full Text Available Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter- member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc. Also the performance of the proposed distributed swarm control architecture was investigated in the presence of realistic implementation issues such as localization errors, communication range limitations, boundedness of forces etc.

  9. Formations of Robotic Swarm: An Artificial Force Based Approach

    Directory of Open Access Journals (Sweden)

    Samitha W. Ekanayake

    2010-09-01

    Full Text Available Cooperative control of multiple mobile robots is an attractive and challenging problem which has drawn considerable attention in the recent past. This paper introduces a scalable decentralized control algorithm to navigate a group of mobile robots (swarm into a predefined shape in 2D space. The proposed architecture uses artificial forces to control mobile agents into the shape and spread them inside the shape while avoiding inter- member collisions. The theoretical analysis of the swarm behavior describes the motion of the complete swarm and individual members in relevant situations. We use computer simulated case studies to verify the theoretical assertions and to demonstrate the robustness of the swarm under external disturbances such as death of agents, change of shape etc. Also the performance of the proposed distributed swarm control architecture was investigated in the presence of realistic implementation issues such as localization errors, communication range limitations, boundedness of forces etc.

  10. External force/velocity control for an autonomous rehabilitation robot

    Science.gov (United States)

    Saekow, Peerayuth; Neranon, Paramin; Smithmaitrie, Pruittikorn

    2018-01-01

    Stroke is a primary cause of death and the leading cause of permanent disability in adults. There are many stroke survivors, who live with a variety of levels of disability and always need rehabilitation activities on daily basis. Several studies have reported that usage of rehabilitation robotic devices shows the better improvement outcomes in upper-limb stroke patients than the conventional therapy-nurses or therapists actively help patients with exercise-based rehabilitation. This research focuses on the development of an autonomous robotic trainer designed to guide a stroke patient through an upper-limb rehabilitation task. The robotic device was designed and developed to automate the reaching exercise as mentioned. The designed robotic system is made up of a four-wheel omni-directional mobile robot, an ATI Gamma multi-axis force/torque sensor used to measure contact force and a microcontroller real-time operating system. Proportional plus Integral control was adapted to control the overall performance and stability of the autonomous assistive robot. External force control was successfully implemented to establish the behavioral control strategy for the robot force and velocity control scheme. In summary, the experimental results indicated satisfactorily stable performance of the robot force and velocity control can be considered acceptable. The gain tuning for proportional integral (PI) velocity control algorithms was suitably estimated using the Ziegler-Nichols method in which the optimized proportional and integral gains are 0.45 and 0.11, respectively. Additionally, the PI external force control gains were experimentally tuned using the trial and error method based on a set of experiments which allow a human participant moves the robot along the constrained circular path whilst attempting to minimize the radial force. The performance was analyzed based on the root mean square error (E_RMS) of the radial forces, in which the lower the variation in radial

  11. Actuation control of a PiezoMEMS biomimetic robotic jellyfish

    Science.gov (United States)

    Alejandre, Alvaro; Olszewski, Oskar; Jackson, Nathan

    2017-06-01

    Biomimetic micro-robots try to mimic the motion of a living system in the form of a synthetically developed microfabricated device. Dynamic motion of living systems have evolved through the years, but trying to mimic these motions is challenging. Micro-robotics are particular challenging as the fabrication of devices and controlling the motion in 3 dimensions is difficult. However, micro-scale robotics have potential to be used in a wide range of applications. MEMS based robots that can move and function in a liquid environment is of particular interest. This paper describes the development of a piezoMEMS based device that mimics the movement of a jellyfish. The paper focuses on the development of a finite element model that investigates a method of controlling the individual piezoelectric beams in order to create a jet propulsion motion, consisting of a quick excitation pulse followed by a slow recovery pulse in order to maximize thrust and velocity. By controlling the individual beams or legs of the jellyfish robot the authors can control the robot to move precisely in 3 dimensions.

  12. Control of Wall Mounting Robot

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Pedersen, Rasmus

    2017-01-01

    This paper presents a method for designing controllers for trajectory tracking with actuator constraints. In particular, we consider a joystick-controlled wall mounting robot called WallMo. In contrast to previous works, a model-free approach is taken to the control problem, where the path...

  13. Control and robotics remote laboratory for engineering education

    Directory of Open Access Journals (Sweden)

    Gregor Pačnik

    2005-06-01

    Full Text Available The new tools for education of engineering emerged and one of the most promising is a remote rapid control prototyping (RRCP, which is very useful also for control and robotics development in industry and in education. Examples of introductory remote control and simple robotics courses with integrated hands on experiments are presented in the paper. The aim of integration of remote hands on experiments into control and/or robotics course is to minimize the gap between the theory and practice to teach students the use of RRCP and to decrease the education costs. Developed RRCP experiments are based on MATLAB/Simulink, xPC target, custom developed embedded target

  14. The development of robot application technology in nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Kim, Seung Ho; Kim, Chang Hoi; Kim, Byung Soo; Hwang, Suk Young; Sohn, Surg Won; Lee, Yong Bum; Kim, Woong Ki

    1991-01-01

    The project of this study is intended to develop the application technology for autonomous robotic systems operated in hostile environments where human access is prohibited. The mobile robot, named as KAEROT, has been designed by adopting the controller of multiprocessor of distributed system architecture in order to get flexibility. 2 driving wheel assembles and 1 steering mechanism has been adopted and each of them is made of planetary wheel which is composed of a couple of star-like arms with 3 wheels. The 6 D.O.F of manipulator is controlled by CCD camera mounted on the elbow and base, to provide wide view of the working area for tele-operation. The off-line programming system is being developed for checking robot constraint violations within workspace prior to execution of robot programming. (Author)

  15. The Middlesex University rehabilitation robot.

    Science.gov (United States)

    Parsons, B; White, A; Prior, S; Warner, P

    2005-01-01

    This paper describes the development of an electrically powered wheelchair-mounted manipulator for use by severely disabled persons. A detailed review is given explaining the specification. It describes the construction of the device and its control architecture. The prototype robot used several gesture recognition and other input systems. The system has been tested on disabled and non-disabled users. They observed that it was easy to use but about 50% slower than comparable systems before design modifications were incorporated. The robot has a payload of greater than 1 kg with a maximum reach of 0.7-0.9 m.

  16. R4SA for Controlling Robots

    Science.gov (United States)

    Aghazarian, Hrand

    2009-01-01

    The R4SA GUI mentioned in the immediately preceding article is a userfriendly interface for controlling one or more robot(s). This GUI makes it possible to perform meaningful real-time field experiments and research in robotics at an unmatched level of fidelity, within minutes of setup. It provides such powerful graphing modes as that of a digitizing oscilloscope that displays up to 250 variables at rates between 1 and 200 Hz. This GUI can be configured as multiple intuitive interfaces for acquisition of data, command, and control to enable rapid testing of subsystems or an entire robot system while simultaneously performing analysis of data. The R4SA software establishes an intuitive component-based design environment that can be easily reconfigured for any robotic platform by creating or editing setup configuration files. The R4SA GUI enables event-driven and conditional sequencing similar to those of Mars Exploration Rover (MER) operations. It has been certified as part of the MER ground support equipment and, therefore, is allowed to be utilized in conjunction with MER flight hardware. The R4SA GUI could also be adapted to use in embedded computing systems, other than that of the MER, for commanding and real-time analysis of data.

  17. Passivity-based control and estimation in networked robotics

    CERN Document Server

    Hatanaka, Takeshi; Fujita, Masayuki; Spong, Mark W

    2015-01-01

    Highlighting the control of networked robotic systems, this book synthesizes a unified passivity-based approach to an emerging cross-disciplinary subject. Thanks to this unified approach, readers can access various state-of-the-art research fields by studying only the background foundations associated with passivity. In addition to the theoretical results and techniques,  the authors provide experimental case studies on testbeds of robotic systems  including networked haptic devices, visual robotic systems,  robotic network systems and visual sensor network systems. The text begins with an introduction to passivity and passivity-based control together with the other foundations needed in this book. The main body of the book consists of three parts. The first examines how passivity can be utilized for bilateral teleoperation and demonstrates the inherent robustness of the passivity-based controller against communication delays. The second part emphasizes passivity’s usefulness for visual feedback control ...

  18. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.

    Science.gov (United States)

    Grosu, Victor; Grosu, Svetlana; Vanderborght, Bram; Lefeber, Dirk; Rodriguez-Guerrero, Carlos

    2017-06-05

    Human-robot interaction sensing is a compulsory feature in modern robotic systems where direct contact or close collaboration is desired. Rehabilitation and assistive robotics are fields where interaction forces are required for both safety and increased control performance of the device with a more comfortable experience for the user. In order to provide an efficient interaction feedback between the user and rehabilitation device, high performance sensing units are demanded. This work introduces a novel design of a multi-axis force sensor dedicated for measuring pelvis interaction forces in a rehabilitation exoskeleton device. The sensor is conceived such that it has different sensitivity characteristics for the three axes of interest having also movable parts in order to allow free rotations and limit crosstalk errors. Integrated sensor electronics make it easy to acquire and process data for a real-time distributed system architecture. Two of the developed sensors are integrated and tested in a complex gait rehabilitation device for safe and compliant control.

  19. Interactive animated displayed of man-controlled and autonomous robots

    International Nuclear Information System (INIS)

    Crane, C.D. III; Duffy, J.

    1986-01-01

    An interactive computer graphics program has been developed which allows an operator to more readily control robot motions in two distinct modes; viz., man-controlled and autonomous. In man-controlled mode, the robot is guided by a joystick or similar device. As the robot moves, actual joint angle information is measured and supplied to a graphics system which accurately duplicates the robot motion. Obstacles are placed in the actual and animated workspace and the operator is warned of imminent collisions by sight and sound via the graphics system. Operation of the system in man-controlled mode is shown. In autonomous mode, a collision-free path between specified points is obtained by previewing robot motions on the graphics system. Once a satisfactory path is selected, the path characteristics are transmitted to the actual robot and the motion is executed. The telepresence system developed at the University of Florida has been successful in demonstrating that the concept of controlling a robot manipulator with the aid of an interactive computer graphics system is feasible and practical. The clarity of images coupled with real-time interaction and real-time determination of imminent collision with obstacles has resulted in improved operator performance. Furthermore, the ability for an operator to preview and supervise autonomous operations is a significant attribute when operating in a hazardous environment

  20. Fuzzy Logic and PID control of a 3 DOF Robotic Arm

    Directory of Open Access Journals (Sweden)

    Korhan Kayışlı

    2017-12-01

    Full Text Available The robotic arms are used in many industrial applications at the present time. At this point, high precision control is required for robotics used in fields such as healthcare area. Therefore, the control method applied to robots is also important. In this study, a force was applied to the end function of a three degree-of-freedom robot and the robustness of the controllers are tested. PID and Fuzzy Logic control method are used for this process. The control process of robotic arm which is designed and simulated is obtained by using Fuzzy Logic and classical PID controllers and the results are presented comparatively

  1. Four Degree Freedom Robot Arm with Fuzzy Neural Network Control

    Directory of Open Access Journals (Sweden)

    Şinasi Arslan

    2013-01-01

    Full Text Available In this study, the control of four degree freedom robot arm has been realized with the computed torque control method.. It is usually required that the four jointed robot arm has high precision capability and good maneuverability for using in industrial applications. Besides, high speed working and external applied loads have been acting as important roles. For those purposes, the computed torque control method has been developed in a good manner that the robot arm can track the given trajectory, which has been able to enhance the feedback control together with fuzzy neural network control. The simulation results have proved that the computed torque control with the neural network has been so successful in robot control.

  2. Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas

    Directory of Open Access Journals (Sweden)

    Aníbal Ollero

    2010-03-01

    Full Text Available In this article we explain the architecture for the environment and sensors that has been built for the European project URUS (Ubiquitous Networking Robotics in Urban Sites, a project whose objective is to develop an adaptable network robot architecture for cooperation between network robots and human beings and/or the environment in urban areas. The project goal is to deploy a team of robots in an urban area to give a set of services to a user community. This paper addresses the sensor architecture devised for URUS and the type of robots and sensors used, including environment sensors and sensors onboard the robots. Furthermore, we also explain how sensor fusion takes place to achieve urban outdoor execution of robotic services. Finally some results of the project related to the sensor network are highlighted.

  3. MPC-Based Path Following Control of an Omnidirectional Mobile Robot with Consideration of Robot Constraints

    Directory of Open Access Journals (Sweden)

    Kiattisin Kanjanawanishkul

    2015-01-01

    Full Text Available In this paper, the path following problem of an omnidirectional mobile robot (OMR has been studied. Unlike nonholonomic mobile robots, translational and rotational movements of OMRs can be controlled simultaneously and independently. However the constraints of translational and rotational velocities are coupled through the OMR's orientation angle. Therefore, a combination of a virtual-vehicle concept and a model predictive control (MPC strategy is proposed in this work to handle both robot constraints and the path following problem. Our proposed control scheme allows the OMR to follow the reference path successfully and safely, as illustrated in simulation experiments. The forward velocity is close to the desired one and the desired orientation angle is achieved at a given point on the path, while the robot's wheel velocities are maintained within boundaries.

  4. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  5. High Performance Motion-Planner Architecture for Hardware-In-the-Loop System Based on Position-Based-Admittance-Control

    Directory of Open Access Journals (Sweden)

    Francesco La Mura

    2018-02-01

    Full Text Available This article focuses on a Hardware-In-the-Loop application developed from the advanced energy field project LIFES50+. The aim is to replicate, inside a wind gallery test facility, the combined effect of aerodynamic and hydrodynamic loads on a floating wind turbine model for offshore energy production, using a force controlled robotic device, emulating floating substructure’s behaviour. In addition to well known real-time Hardware-In-the-Loop (HIL issues, the particular application presented has stringent safety requirements of the HIL equipment and difficult to predict operating conditions, so that extra computational efforts have to be spent running specific safety algorithms and achieving desired performance. To meet project requirements, a high performance software architecture based on Position-Based-Admittance-Control (PBAC is presented, combining low level motion interpolation techniques, efficient motion planning, based on buffer management and Time-base control, and advanced high level safety algorithms, implemented in a rapid real-time control architecture.

  6. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot.

    Science.gov (United States)

    Alexandrov, Alexei V; Lippi, Vittorio; Mergner, Thomas; Frolov, Alexander A; Hettich, Georg; Husek, Dusan

    2017-01-01

    Control of a multi-body system in both robots and humans may face the problem of destabilizing dynamic coupling effects arising between linked body segments. The state of the art solutions in robotics are full state feedback controllers. For human hip-ankle coordination, a more parsimonious and theoretically stable alternative to the robotics solution has been suggested in terms of the Eigenmovement (EM) control. Eigenmovements are kinematic synergies designed to describe the multi DoF system, and its control, with a set of independent, and hence coupling-free , scalar equations. This paper investigates whether the EM alternative shows "real-world robustness" against noisy and inaccurate sensors, mechanical non-linearities such as dead zones, and human-like feedback time delays when controlling hip-ankle movements of a balancing humanoid robot. The EM concept and the EM controller are introduced, the robot's dynamics are identified using a biomechanical approach, and robot tests are performed in a human posture control laboratory. The tests show that the EM controller provides stable control of the robot with proactive ("voluntary") movements and reactive balancing of stance during support surface tilts and translations. Although a preliminary robot-human comparison reveals similarities and differences, we conclude (i) the Eigenmovement concept is a valid candidate when different concepts of human sensorimotor control are considered, and (ii) that human-inspired robot experiments may help to decide in future the choice among the candidates and to improve the design of humanoid robots and robotic rehabilitation devices.

  7. Progress in EEG-Based Brain Robot Interaction Systems

    Directory of Open Access Journals (Sweden)

    Xiaoqian Mao

    2017-01-01

    Full Text Available The most popular noninvasive Brain Robot Interaction (BRI technology uses the electroencephalogram- (EEG- based Brain Computer Interface (BCI, to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques.

  8. Humanoid Robotics: Real-Time Object Oriented Programming

    Science.gov (United States)

    Newton, Jason E.

    2005-01-01

    Programming of robots in today's world is often done in a procedural oriented fashion, where object oriented programming is not incorporated. In order to keep a robust architecture allowing for easy expansion of capabilities and a truly modular design, object oriented programming is required. However, concepts in object oriented programming are not typically applied to a real time environment. The Fujitsu HOAP-2 is the test bed for the development of a humanoid robot framework abstracting control of the robot into simple logical commands in a real time robotic system while allowing full access to all sensory data. In addition to interfacing between the motor and sensory systems, this paper discusses the software which operates multiple independently developed control systems simultaneously and the safety measures which keep the humanoid from damaging itself and its environment while running these systems. The use of this software decreases development time and costs and allows changes to be made while keeping results safe and predictable.

  9. Architecture and prototype of human-machine interface with mobile robotic device

    International Nuclear Information System (INIS)

    Dyumin, A.A.; Sorokoumov, P.S.; Chepin, E.V.; Urvanov, G.A.

    2013-01-01

    The possibility of controlling mobile robotic (MRD) device is analyzed and a prototype control system is described. It is established that, for controlling MRD, it is expedient to use a brain-computer interface. A system of interpretation of information obtained from the operator brain has been developed and used in the proposed prototype control system [ru

  10. Towards Human-Friendly Efficient Control of Multi-Robot Teams

    Science.gov (United States)

    Stoica, Adrian; Theodoridis, Theodoros; Barrero, David F.; Hu, Huosheng; McDonald-Maiers, Klaus

    2013-01-01

    This paper explores means to increase efficiency in performing tasks with multi-robot teams, in the context of natural Human-Multi-Robot Interfaces (HMRI) for command and control. The motivating scenario is an emergency evacuation by a transport convoy of unmanned ground vehicles (UGVs) that have to traverse, in shortest time, an unknown terrain. In the experiments the operator commands, in minimal time, a group of rovers through a maze. The efficiency of performing such tasks depends on both, the levels of robots' autonomy, and the ability of the operator to command and control the team. The paper extends the classic framework of levels of autonomy (LOA), to levels/hierarchy of autonomy characteristic of Groups (G-LOA), and uses it to determine new strategies for control. An UGVoriented command language (UGVL) is defined, and a mapping is performed from the human-friendly gesture-based HMRI into the UGVL. The UGVL is used to control a team of 3 robots, exploring the efficiency of different G-LOA; specifically, by (a) controlling each robot individually through the maze, (b) controlling a leader and cloning its controls to followers, and (c) controlling the entire group. Not surprisingly, commands at increased G-LOA lead to a faster traverse, yet a number of aspects are worth discussing in this context.

  11. Control architectures for IT management

    International Nuclear Information System (INIS)

    Wang Ting

    2003-01-01

    This paper summaries the three financial control architectures for IT department in an enterprise or organization, they are unallocated cost center, allocated cost center and profit center, analyses the characteristics of them and in the end gives the detailed suggestions for choosing these control architectures. (authors)

  12. DISTRIBUTED CONTROL ARCHITECTURE OF AN OMNI-DIRECTIONAL AUTONOMOUS GUIDED VEHICLE

    Directory of Open Access Journals (Sweden)

    N.S. Tlale

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Omni-directionality is the ability of a mobile robot to move instantaneously in any direction. This paper describes the wheel and controller designs of a Mecanumwheeled, autonomous guided vehicle (AGV for reconfigurable manufacturing systems. Mecanum wheels use slip developed between rollers and surface, surface and ground, to achieve omni-directionality. An advantage of omni-directional robotic platforms is that they are capable of performing tasks in congested environments such as those found in factory workshops, narrow aisles, warehouses, etc. Controller Area Network (CAN is implemented as a distributed controller to control motion and navigation tasks of the developed robot. The design of the distributed controller is described and its performance analyzed. This increases the reliability and functionality of the mobile robot.

    AFRIKAANSE OPSOMMING: Die artikel beskryf wiel - en beheerontwerpe van ‘n veelrigting mobiele robot. Die robot is ‘n selfstandigbeheerde voertuig vir gebruik by vervaardigingstelsels met veranderbare konfigurasie. Die ontwerp van die robot en bypassende beheerstelsel word beskryf en ontleed teen die agterground van bewegings – en navigeertake. Die betroubaarheid en funksionering van die sisteem word beoordeel.

  13. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    Directory of Open Access Journals (Sweden)

    Brandon Sights

    2006-10-01

    Full Text Available High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact with its surroundings are greatly diminished. This problem is amplified when the environment is hostile, such as in a battlefield situation where an error in movement or a slow response may lead to destruction of the robot. As the presence of robots on the battlefield continues to escalate and the trend toward relieving the human of the low-level control burden advances, the ability to combine the functionalities of several critical control systems on a single platform becomes imperative.

  14. The NASA automation and robotics technology program

    Science.gov (United States)

    Holcomb, Lee B.; Montemerlo, Melvin D.

    1986-01-01

    The development and objectives of the NASA automation and robotics technology program are reviewed. The objectives of the program are to utilize AI and robotics to increase the probability of mission success; decrease the cost of ground control; and increase the capability and flexibility of space operations. There is a need for real-time computational capability; an effective man-machine interface; and techniques to validate automated systems. Current programs in the areas of sensing and perception, task planning and reasoning, control execution, operator interface, and system architecture and integration are described. Programs aimed at demonstrating the capabilities of telerobotics and system autonomy are discussed.

  15. Software protocol design: Communication and control in a multi-task robot machine for ITER vacuum vessel assembly and maintenance

    International Nuclear Information System (INIS)

    Li, Ming; Wu, Huapeng; Handroos, Heikki; Yang, Guangyou; Wang, Yongbo

    2015-01-01

    Highlights: • A high-level protocol is proposed for the data inter-transmission. • The protocol design is task-oriented for the robot control in the software system. • The protocol functions as a role of middleware in the software. • The protocol running stand-alone as an independent process in the software provides greater security. • Providing a reference design protocol for the multi-task robot machine in the industry. - Abstract: A specific communication and control protocol for software design of a multi-task robot machine is proposed. In order to fulfill the requirements on the complicated multi machining functions and the high performance motion control, the software design of robot is divided into two main parts accordingly, which consists of the user-oriented HMI part and robot control-oriented real-time control system. The two parts of software are deployed in the different hardware for the consideration of run-time performance, which forms a client–server-control architecture. Therefore a high-level task-oriented protocol is designed for the data inter-communication between the HMI part and the control system part, in which all the transmitting data related to a machining task is divided into three categories: trajectory-oriented data, task control-oriented data and status monitoring-oriented data. The protocol consists of three sub-protocols accordingly – a trajectory protocol, task control protocol and status protocol – which are deployed over the Ethernet and run as independent processes in both the client and server computers. The protocols are able to manage the vast amounts of data streaming due to the multi machining functions in a more efficient way. Since the protocol is functioning in the software as a role of middleware, and providing the data interface standards for the developing groups of two parts of software, it also permits greater focus of both software parts developers on their own requirements-oriented design. By

  16. Software protocol design: Communication and control in a multi-task robot machine for ITER vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming, E-mail: ming.li@lut.fi [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Wu, Huapeng; Handroos, Heikki [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland); Yang, Guangyou [School of Mechanical Engineering, Hubei University of Technology, Wuhan (China); Wang, Yongbo [Laboratory of Intelligent Machines, Lappeenranta University of Technology (Finland)

    2015-10-15

    Highlights: • A high-level protocol is proposed for the data inter-transmission. • The protocol design is task-oriented for the robot control in the software system. • The protocol functions as a role of middleware in the software. • The protocol running stand-alone as an independent process in the software provides greater security. • Providing a reference design protocol for the multi-task robot machine in the industry. - Abstract: A specific communication and control protocol for software design of a multi-task robot machine is proposed. In order to fulfill the requirements on the complicated multi machining functions and the high performance motion control, the software design of robot is divided into two main parts accordingly, which consists of the user-oriented HMI part and robot control-oriented real-time control system. The two parts of software are deployed in the different hardware for the consideration of run-time performance, which forms a client–server-control architecture. Therefore a high-level task-oriented protocol is designed for the data inter-communication between the HMI part and the control system part, in which all the transmitting data related to a machining task is divided into three categories: trajectory-oriented data, task control-oriented data and status monitoring-oriented data. The protocol consists of three sub-protocols accordingly – a trajectory protocol, task control protocol and status protocol – which are deployed over the Ethernet and run as independent processes in both the client and server computers. The protocols are able to manage the vast amounts of data streaming due to the multi machining functions in a more efficient way. Since the protocol is functioning in the software as a role of middleware, and providing the data interface standards for the developing groups of two parts of software, it also permits greater focus of both software parts developers on their own requirements-oriented design. By

  17. Sociable Robots Through Self-Maintained Energy

    Directory of Open Access Journals (Sweden)

    Trung Dung Ngo

    2006-12-01

    Full Text Available Research of autonomous mobile robots has mostly emphasized interaction and coordination that are natually inspired from biological behavior of birds, insects, and fish: flocking, foraging, collecting, and sharing. However, most research has been only focused on autonomous behaviors in order to perform robots like animals, whereas it is lacked of determinant to those behaviours: energy. Approaching to clusted amimal and the higher, collective and sharing food among individuals are major activity to keep society being. This paper issues an approach to sociable robots using self-maintained energy in cooperative mobile robots, which is dominantly inspired from swarm behavior of collecting and sharing food of honey-bee and ant. Autonomous mobile robots are usually equipped with a finite energy, thus they can operate in a finite time. To overcome the finitude, we describe practical deployment of mobile robots that are capable of carrying and exchanging fuel to other robots. Mechanism implementation including modular hardware and control architecture to demonstrate the capabicities of the approach is presented. Subsequently, the battery exchange algorithm basically based on probabilistic modeling of total energy on each robot located in its local vicinity is described. The paper is concluded with challenging works of chain of mobile robots, rescue, repair, and relation of heterogeneous robots.

  18. Sociable Robots through Self-maintained Energy

    Directory of Open Access Journals (Sweden)

    Henrik Schioler

    2008-11-01

    Full Text Available Research of autonomous mobile robots has mostly emphasized interaction and coordination that are natually inspired from biological behavior of birds, insects, and fish: flocking, foraging, collecting, and sharing. However, most research has been only focused on autonomous behaviors in order to perform robots like animals, whereas it is lacked of determinant to those behaviours: energy. Approaching to clusted amimal and the higher, collective and sharing food among individuals are major activity to keep society being. This paper issues an approach to sociable robots using self-maintained energy in cooperative mobile robots, which is dominantly inspired from swarm behavior of collecting and sharing food of honey-bee and ant. Autonomous mobile robots are usually equipped with a finite energy, thus they can operate in a finite time. To overcome the finitude, we describe practical deployment of mobile robots that are capable of carrying and exchanging fuel to other robots. Mechanism implementation including modular hardware and control architecture to demonstrate the capabicities of the approach is presented. Subsequently, the battery exchange algorithm basically based on probabilistic modeling of total energy on each robot located in its local vicinity is described. The paper is concluded with challenging works of chain of mobile robots, rescue, repair, and relation of heterogeneous robots.

  19. Muecas: A Multi-Sensor Robotic Head for Affective Human Robot Interaction and Imitation

    Directory of Open Access Journals (Sweden)

    Felipe Cid

    2014-04-01

    Full Text Available This paper presents a multi-sensor humanoid robotic head for human robot interaction. The design of the robotic head, Muecas, is based on ongoing research on the mechanisms of perception and imitation of human expressions and emotions. These mechanisms allow direct interaction between the robot and its human companion through the different natural language modalities: speech, body language and facial expressions. The robotic head has 12 degrees of freedom, in a human-like configuration, including eyes, eyebrows, mouth and neck, and has been designed and built entirely by IADeX (Engineering, Automation and Design of Extremadura and RoboLab. A detailed description of its kinematics is provided along with the design of the most complex controllers. Muecas can be directly controlled by FACS (Facial Action Coding System, the de facto standard for facial expression recognition and synthesis. This feature facilitates its use by third party platforms and encourages the development of imitation and of goal-based systems. Imitation systems learn from the user, while goal-based ones use planning techniques to drive the user towards a final desired state. To show the flexibility and reliability of the robotic head, the paper presents a software architecture that is able to detect, recognize, classify and generate facial expressions in real time using FACS. This system has been implemented using the robotics framework, RoboComp, which provides hardware-independent access to the sensors in the head. Finally, the paper presents experimental results showing the real-time functioning of the whole system, including recognition and imitation of human facial expressions.

  20. Human-Inspired Eigenmovement Concept Provides Coupling-Free Sensorimotor Control in Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Thomas Mergner

    2017-04-01

    Full Text Available Control of a multi-body system in both robots and humans may face the problem of destabilizing dynamic coupling effects arising between linked body segments. The state of the art solutions in robotics are full state feedback controllers. For human hip-ankle coordination, a more parsimonious and theoretically stable alternative to the robotics solution has been suggested in terms of the Eigenmovement (EM control. Eigenmovements are kinematic synergies designed to describe the multi DoF system, and its control, with a set of independent, and hence coupling-free, scalar equations. This paper investigates whether the EM alternative shows “real-world robustness” against noisy and inaccurate sensors, mechanical non-linearities such as dead zones, and human-like feedback time delays when controlling hip-ankle movements of a balancing humanoid robot. The EM concept and the EM controller are introduced, the robot's dynamics are identified using a biomechanical approach, and robot tests are performed in a human posture control laboratory. The tests show that the EM controller provides stable control of the robot with proactive (“voluntary” movements and reactive balancing of stance during support surface tilts and translations. Although a preliminary robot-human comparison reveals similarities and differences, we conclude (i the Eigenmovement concept is a valid candidate when different concepts of human sensorimotor control are considered, and (ii that human-inspired robot experiments may help to decide in future the choice among the candidates and to improve the design of humanoid robots and robotic rehabilitation devices.

  1. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    International Nuclear Information System (INIS)

    Chen, H J; Gao, B T; Zhang, X H; Deng, Z Q

    2006-01-01

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot

  2. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H J [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Gao, B T [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Zhang, X H [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Deng, Z Q [School of Mechanical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China)

    2006-10-15

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot.

  3. Everyday robotic action: Lessons from human action control

    Directory of Open Access Journals (Sweden)

    Roy eDe Kleijn

    2014-03-01

    Full Text Available Robots are increasingly capable of performing everyday human activities such as cooking, cleaning, and doing the laundry. This requires the real-time planning and execution of complex, temporally-extended sequential actions under high degrees of uncertainty, which provides many challenges to traditional approaches to robot action control. We argue that important lessons in this respect can be learned from research on human action control. We provide a brief overview of available psychological insights into this issue and focus on four principles that we think could be particularly beneficial for robot control: the integration of symbolic and subsymbolic planning of action sequences, the integration of feedforward and feedback control, the clustering of complex actions into subcomponents, and the contextualization of action-control structures through goal representations.

  4. Robot trajectory tracking with self-tuning predicted control

    Science.gov (United States)

    Cui, Xianzhong; Shin, Kang G.

    1988-01-01

    A controller that combines self-tuning prediction and control is proposed for robot trajectory tracking. The controller has two feedback loops: one is used to minimize the prediction error, and the other is designed to make the system output track the set point input. Because the velocity and position along the desired trajectory are given and the future output of the system is predictable, a feedforward loop can be designed for robot trajectory tracking with self-tuning predicted control (STPC). Parameters are estimated online to account for the model uncertainty and the time-varying property of the system. The authors describe the principle of STPC, analyze the system performance, and discuss the simplification of the robot dynamic equations. To demonstrate its utility and power, the controller is simulated for a Stanford arm.

  5. micROS: a morphable, intelligent and collective robot operating system.

    Science.gov (United States)

    Yang, Xuejun; Dai, Huadong; Yi, Xiaodong; Wang, Yanzhen; Yang, Shaowu; Zhang, Bo; Wang, Zhiyuan; Zhou, Yun; Peng, Xuefeng

    2016-01-01

    Robots are developing in much the same way that personal computers did 40 years ago, and robot operating system is the critical basis. Current robot software is mainly designed for individual robots. We present in this paper the design of micROS, a morphable, intelligent and collective robot operating system for future collective and collaborative robots. We first present the architecture of micROS, including the distributed architecture for collective robot system as a whole and the layered architecture for every single node. We then present the design of autonomous behavior management based on the observe-orient-decide-act cognitive behavior model and the design of collective intelligence including collective perception, collective cognition, collective game and collective dynamics. We also give the design of morphable resource management, which first categorizes robot resources into physical, information, cognitive and social domains, and then achieve morphability based on self-adaptive software technology. We finally deploy micROS on NuBot football robots and achieve significant improvement in real-time performance.

  6. Workspace Safe Operation of a Force- or Impedance-Controlled Robot

    Science.gov (United States)

    Abdallah, Muhammad E. (Inventor); Hargrave, Brian (Inventor); Yamokoski, John D. (Inventor); Strawser, Philip A. (Inventor)

    2013-01-01

    A method of controlling a robotic manipulator of a force- or impedance-controlled robot within an unstructured workspace includes imposing a saturation limit on a static force applied by the manipulator to its surrounding environment, and may include determining a contact force between the manipulator and an object in the unstructured workspace, and executing a dynamic reflex when the contact force exceeds a threshold to thereby alleviate an inertial impulse not addressed by the saturation limited static force. The method may include calculating a required reflex torque to be imparted by a joint actuator to a robotic joint. A robotic system includes a robotic manipulator having an unstructured workspace and a controller that is electrically connected to the manipulator, and which controls the manipulator using force- or impedance-based commands. The controller, which is also disclosed herein, automatically imposes the saturation limit and may execute the dynamic reflex noted above.

  7. Contribution to control of robotics structures and dynamic behaviour

    International Nuclear Information System (INIS)

    Gilliot, Jean-Marie

    1990-01-01

    The scope of this thesis is the simulation of the dynamics of complex rigid multi-body systems involved in robotics, in order to control them. In the first stage, methods for obtaining equations and models required for simulation and control purposes are proposed and discussed: - determination of constraint equations using the jacobian matrices, - elaboration of direct and inverse dynamics of manipulators. The second part of this thesis deals with the different concepts and components involved in the setting of simulation systems for Robotics Application Programs: models, emulators and the software development environment. The control algorithms are then introduced as a particular class of robotics application programs. A simulator has been developed, allowing the calculation and the visualisation of robot motions, driven by generalized torques. Some examples of control programs generating such control torques are then presented to illustrate the use of the simulator. (author) [fr

  8. Towards a Unified Representation of Mechanisms for Robotic Control Software

    Directory of Open Access Journals (Sweden)

    Antonio Diaz-Calderon

    2008-11-01

    Full Text Available This article gives an overview of the Mechanism Model paradigm. The mechanism model paradigm provides a framework to modeling mechanisms for robotic control. The emphasis is on the unification of mathematical models of kinematics/dynamics, geometric information and control system parameters for a variety of robotic systems (including serial manipulators, wheeled and legged locomotors, with algorithms that are needed for typical robot control applications.

  9. Multi-robot motion control for cooperative observation

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E. [Oak Ridge National Lab., TN (United States). Center for Engineering Systems Advanced Research

    1997-06-01

    An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement--determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the authors investigate the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. They focus primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. This paper first formalizes the problem and discusses related work. The authors then present a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level reasoning control based on the ALLIANCE formalism. They analyze the effectiveness of the approach by comparing it to 3 other feasible algorithms for cooperative control, showing the superiority of the approach for a large class of problems.

  10. Multi-robot motion control for cooperative observation

    International Nuclear Information System (INIS)

    Parker, L.E.

    1997-01-01

    An important issue that arises in the automation of many security, surveillance, and reconnaissance tasks is that of monitoring (or observing) the movements of targets navigating in a bounded area of interest. A key research issue in these problems is that of sensor placement--determining where sensors should be located to maintain the targets in view. In complex applications involving limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this paper, the authors investigate the use of a cooperative team of autonomous sensor-based robots for the observation of multiple moving targets. They focus primarily on developing the distributed control strategies that allow the robot team to attempt to minimize the total time in which targets escape observation by some robot team member in the area of interest. This paper first formalizes the problem and discusses related work. The authors then present a distributed approximate approach to solving this problem that combines low-level multi-robot control with higher-level reasoning control based on the ALLIANCE formalism. They analyze the effectiveness of the approach by comparing it to 3 other feasible algorithms for cooperative control, showing the superiority of the approach for a large class of problems

  11. Remote-controlled vision-guided mobile robot system

    Science.gov (United States)

    Ande, Raymond; Samu, Tayib; Hall, Ernest L.

    1997-09-01

    Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of the remote controlled emergency stop and vision systems for an autonomous mobile robot. The remote control provides human supervision and emergency stop capabilities for the autonomous vehicle. The vision guidance provides automatic operation. A mobile robot test-bed has been constructed using a golf cart base. The mobile robot (Bearcat) was built for the Association for Unmanned Vehicle Systems (AUVS) 1997 competition. The mobile robot has full speed control with guidance provided by a vision system and an obstacle avoidance system using ultrasonic sensors systems. Vision guidance is accomplished using two CCD cameras with zoom lenses. The vision data is processed by a high speed tracking device, communicating with the computer the X, Y coordinates of blobs along the lane markers. The system also has three emergency stop switches and a remote controlled emergency stop switch that can disable the traction motor and set the brake. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles.

  12. Fuzzy logic controller for stabilization of biped robot gait

    Directory of Open Access Journals (Sweden)

    Ryadchikov I.V.

    2018-01-01

    Full Text Available The article centers round the problem of stabilization of biped robot gait through smoothing out the jumps of first and second order derivatives of a biped robot control vector using the fuzzy logic approach. The structure of a composite Takagi-Sugeno fuzzy logic controller developed by the authors is presented. The simulation study of a robot gait with climbing an obstacle is carried out and the results provided in the article showed that the developed controller performed significantly better than the analytical formula model in terms of smoothing out the derivatives of the control vector.

  13. Robots with Internal Models: A Route to Self-Aware and Hence Safer Robots

    Science.gov (United States)

    Winfield, Alan F. T.

    The following sections are included: * Introduction * Internal Models and Self-Awareness * Internal Model-Based Architecture for Robot Safety * The Internal Model * The Consequence Evaluator * The Object Tracker-Localizer * Towards an Ethical Robot * Challenges and Open Questions * Discussion: The Way Forward * Summary and Conclusions

  14. Modeling and identification for robot motion control

    NARCIS (Netherlands)

    Kostic, D.; Jager, de A.G.; Steinbuch, M.; Kurfess, T.R.

    2004-01-01

    This chapter deals with the problems of robot modelling and identification for high-performance model-based motion control. A derivation of robot kinematic and dynamic models was explained. Modelling of friction effects was also discussed. Use of a writing task to establish correctness of the models

  15. Visual Trajectory-Tracking Model-Based Control for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Andrej Zdešar

    2013-09-01

    Full Text Available In this paper we present a visual-control algorithm for driving a mobile robot along the reference trajectory. The configuration of the system consists of a two-wheeled differentially driven mobile robot that is observed by an overhead camera, which can be placed at arbitrary, but reasonable, inclination with respect to the ground plane. The controller must be capable of generating appropriate tangential and angular control velocities for the trajectory-tracking problem, based on the information received about the robot position obtained in the image. To be able to track the position of the robot through a sequence of images in real-time, the robot is marked with an artificial marker that can be distinguishably recognized by the image recognition subsystem. Using the property of differential flatness, a dynamic feedback compensator can be designed for the system, thereby extending the system into a linear form. The presented control algorithm for reference tracking combines a feedforward and a feedback loop, the structure also known as a two DOF control scheme. The feedforward part should drive the system to the vicinity of the reference trajectory and the feedback part should eliminate any errors that occur due to noise and other disturbances etc. The feedforward control can never achieve accurate reference following, but this deficiency can be eliminated with the introduction of the feedback loop. The design of the model predictive control is based on the linear error model. The model predictive control is given in analytical form, so the computational burden is kept at a reasonable level for real-time implementation. The control algorithm requires that a reference trajectory is at least twice differentiable function. A suitable approach to design such a trajectory is by exploiting some useful properties of the Bernstein-Bézier parametric curves. The simulation experiments as well as real system experiments on a robot normally used in the

  16. Controlling Tensegrity Robots through Evolution using Friction based Actuation

    Science.gov (United States)

    Kothapalli, Tejasvi; Agogino, Adrian K.

    2017-01-01

    Traditional robotic structures have limitations in planetary exploration as their rigid structural joints are prone to damage in new and rough terrains. In contrast, robots based on tensegrity structures, composed of rods and tensile cables, offer a highly robust, lightweight, and energy efficient solution over traditional robots. In addition tensegrity robots can be highly configurable by rearranging their topology of rods, cables and motors. However, these highly configurable tensegrity robots pose a significant challenge for locomotion due to their complexity. This study investigates a control pattern for successful locomotion in tensegrity robots through an evolutionary algorithm. A twelve-rod hardware model is rapidly prototyped to utilize a new actuation method based on friction. A web-based physics simulation is created to model the twelve-rod tensegrity ball structure. Square-waves are used as control policies for the actuators of the tensegrity structure. Monte Carlo trials are run to find the most successful number of amplitudes for the square-wave control policy. From the results, an evolutionary algorithm is implemented to find the most optimized solution for locomotion of the twelve-rod tensegrity structure. The software pattern coupled with the new friction based actuation method can serve as the basis for highly efficient tensegrity robots in space exploration.

  17. Optimization-Based Controllers for Robotics Applications (OCRA: The Case of iCub’s Whole-Body Control

    Directory of Open Access Journals (Sweden)

    Jorhabib G. Eljaik

    2018-03-01

    Full Text Available OCRA stands for Optimization-based Control for Robotics Applications. It consists of a set of platform-independent libraries which facilitates the development of optimization-based controllers for articulated robots. Hierarchical, weighted, and hybrid control strategies can easily be implemented using these tools. The generic interfaces provided by OCRA allow different robots to use the exact same controllers. OCRA also allows users to specify high-level objectives via tasks. These tasks provide an intuitive way of generating complex behaviors and can be specified in XML format. To illustrate the use of OCRA, an implementation of interest to this research topic for the humanoid robot iCub is presented. OCRA stands for Optimization-based Control for Robotics Applications. It consists of a set of platform-independent libraries which facilitates the development of optimization-based controllers for articulated robots. Hierarchical, weighted, and hybrid control strategies can easily be implemented using these tools. The generic interfaces provided by OCRA allow different robots to use the exact same controllers. OCRA also allows users to specify high-level objectives via tasks. These tasks provide an intuitive way of generating complex behaviors and can be specified in XML format. To illustrate the use of OCRA, an implementation of interest to this research topic for the humanoid robot iCub is presented.

  18. Challenges in adapting imitation and reinforcement learning to compliant robots

    Directory of Open Access Journals (Sweden)

    Calinon Sylvain

    2011-12-01

    Full Text Available There is an exponential increase of the range of tasks that robots are forecasted to accomplish. (Reprogramming these robots becomes a critical issue for their commercialization and for their applications to real-world scenarios in which users without expertise in robotics wish to adapt the robot to their needs. This paper addresses the problem of designing userfriendly human-robot interfaces to transfer skills in a fast and efficient manner. This paper presents recent work conducted at the Learning and Interaction group at ADVR-IIT, ranging from skill acquisition through kinesthetic teaching to self-refinement strategies initiated from demonstrations. Our group started to explore the use of imitation and exploration strategies that can take advantage of the compliant capabilities of recent robot hardware and control architectures.

  19. Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Platt, Robert J., Jr. (Inventor); Quillin, Nathaniel (Inventor); Permenter, Frank Noble (Inventor); Pfeiffer, Joseph (Inventor)

    2014-01-01

    A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.

  20. Study of Inverted Pendulum Robot Using Fuzzy Servo Control Method

    Directory of Open Access Journals (Sweden)

    Dazhong Wang

    2012-09-01

    Full Text Available The inverted pendulum robot is a classical problem in controls. The inherit instabilities in the setup make it a natural target for a control system. Inverted pendulum robot is suitable to use for investigation and verification of various control methods for dynamic systems. Maintaining an equilibrium position of the pendulum pointing up is a challenge as this equilibrium position is unstable. As the inverted pendulum robot system is nonlinear it is well-suited to be controlled by fuzzy logic. In this paper, Lagrange method has been applied to develop the mathematical model of the system. The objective of the simulation to be shown using the fuzzy control method can stabilize the nonlinear system of inverted pendulum robot.

  1. A Modular Approach to Redundant Robot Control

    International Nuclear Information System (INIS)

    Anderson, R.J.

    1997-12-01

    This paper describes a modular approach for computing redundant robot kinematics. First some conventional redundant control methods are presented and shown to be 'passive control laws', i.e. they can be represented by a network consisting of passive elements. These networks are then put into modular form by applying scattering operator techniques. Additional subnetwork modules can then be added to further shape the motion. Modules for obstacle detection, joint limit avoidance, proximity sensing, and for imposing nonlinear velocity constraints are presented. The resulting redundant robot control system is modular, flexible and robust

  2. Formalization, implementation, and modeling of institutional controllers for distributed robotic systems.

    Science.gov (United States)

    Pereira, José N; Silva, Porfírio; Lima, Pedro U; Martinoli, Alcherio

    2014-01-01

    The work described is part of a long term program of introducing institutional robotics, a novel framework for the coordination of robot teams that stems from institutional economics concepts. Under the framework, institutions are cumulative sets of persistent artificial modifications made to the environment or to the internal mechanisms of a subset of agents, thought to be functional for the collective order. In this article we introduce a formal model of institutional controllers based on Petri nets. We define executable Petri nets-an extension of Petri nets that takes into account robot actions and sensing-to design, program, and execute institutional controllers. We use a generalized stochastic Petri net view of the robot team controlled by the institutional controllers to model and analyze the stochastic performance of the resulting distributed robotic system. The ability of our formalism to replicate results obtained using other approaches is assessed through realistic simulations of up to 40 e-puck robots. In particular, we model a robot swarm and its institutional controller with the goal of maintaining wireless connectivity, and successfully compare our model predictions and simulation results with previously reported results, obtained by using finite state automaton models and controllers.

  3. Adaptive Control Methods for Soft Robots

    Data.gov (United States)

    National Aeronautics and Space Administration — I propose to develop methods for soft and inflatable robots that will allow the control system to adapt and change control parameters based on changing conditions...

  4. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.

    Science.gov (United States)

    del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-03-04

    Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking.Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia.Acronym list: 10 mWT: ten meters walking test; 6 MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical

  5. Live video monitoring robot controlled by web over internet

    Science.gov (United States)

    Lokanath, M.; Akhil Sai, Guruju

    2017-11-01

    Future is all about robots, robot can perform tasks where humans cannot, Robots have huge applications in military and industrial area for lifting heavy weights, for accurate placements, for repeating the same task number of times, where human are not efficient. Generally robot is a mix of electronic, electrical and mechanical engineering and can do the tasks automatically on its own or under the supervision of humans. The camera is the eye for robot, call as robovision helps in monitoring security system and also can reach into the places where the human eye cannot reach. This paper presents about developing a live video streaming robot controlled from the website. We designed the web, controlling for the robot to move left, right, front and back while streaming video. As we move to the smart environment or IoT (Internet of Things) by smart devices the system we developed here connects over the internet and can be operated with smart mobile phone using a web browser. The Raspberry Pi model B chip acts as heart for this system robot, the sufficient motors, surveillance camera R pi 2 are connected to Raspberry pi.

  6. Integrated multi-sensory control of space robot hand

    Science.gov (United States)

    Bejczy, A. K.; Kan, E. P.; Killion, R. R.

    1985-01-01

    Dexterous manipulation of a robot hand requires the use of multiple sensors integrated into the mechanical hand under distributed microcomputer control. Where space applications such as construction, assembly, servicing and repair tasks are desired of smart robot arms and robot hands, several critical drives influence the design, engineering and integration of such an electromechanical hand. This paper describes a smart robot hand developed at the Jet Propulsion Laboratory for experimental use and evaluation with the Protoflight Manipulator Arm (PFMA) at the Marshall Space Flight Center (MSFC).

  7. Navigation control of a multi-functional eye robot

    International Nuclear Information System (INIS)

    Ali, F.A.M.; Hashmi, B.; Younas, A.; Abid, B.

    2016-01-01

    The advancement in robotic field is enhanced rigorously in the past Few decades. Robots are being used in different fields of science as well as warfare. The research shows that in the near future, robots would be able to serve in fighting wars. Different countries and their armies have already deployed several military robots. However, there exist some drawbacks of robots like their inefficiency and inability to work under abnormal conditions. Ascent of artificial intelligence may resolve this issue in the coming future. The main focus of this paper is to provide a low cost and long range most efficient mechanical as well as software design of an Eye Robot. Using a blend of robotics and image processing with an addition of artificial intelligence path navigation techniques, this project is designed and implemented by controlling the robot (including robotic arm and camera) through a 2.4 GHz RF module manually. Autonomous function of the robot includes navigation based on the path assigned to the robot. The path is drawn on a VB based application and then transferred to the robot wirelessly or through serial port. A Wi-Fi based Optical Character Recognition (OCR) implemented video streaming can also be observed at remote devices like laptops. (author)

  8. Control desacoplado de un actuador de rigidez variable para robots asistenciales

    Directory of Open Access Journals (Sweden)

    J. Medina

    2016-01-01

    Full Text Available Resumen: Los actuadores de rigidez variable son dispositivos que permiten cambiar la posición y rigidez articular de un robot en forma simultánea. En los últimos años se han diseñado y desarrollado muchos dispositivos de este tipo, con la esperanza de favorecer la seguridad en la interacción humano-robot y mejorar el rendimiento dinámico de los robots. En este artículo se presenta el desarrollo de un controlador para un actuador de rigidez variable de configuración serie. La estrategia de control se basa en la linealización por realimentación y el ajuste de dos controladores lineales. Esta estrategia permite el seguimiento de referencias de posición y rigidez articular de forma simultánea y desacoplada. Además, se realizan simulaciones en las que se incorpora este dispositivo dentro del robot asistencial ASIBOT, a fin de evaluar el desempeño del controlador, los cambios en la dinámica del robot y las posibles ventajas que tendrá la inclusión del mismo a nivel de seguridad en la interacción física humano-robot. Abstract: The variable stiffness actuators are devices that change the position and stiffness of a robot simultaneously. In recent years have been designed and developed many devices of this type, hoping to ensure safety in human-robot interaction and improve the dynamic performance of robots. In this article, we present the control of a variable stiffness actuator with serial configuration. The control strategy is based on feedback linearization and adjustment of two linear controllers. This allows the control, independently, of the stiffness and the equilibrium position of the joint. Finally, the behavior of this device within the assistive robot ASIBOT, is simulated in order to assess: the controller performance, changes in the dynamics of the robot and possible advantages of a level of safety during physical interaction human-robot. Palabras clave: control de robot

  9. Control de Tracción en Robots Móviles con Ruedas

    Directory of Open Access Journals (Sweden)

    R. Fernández

    2012-10-01

    Full Text Available Resumen: En este trabajo se presenta una solución para mejorar el rendimiento de los robots móviles con ruedas que se desplacen sobre superficies con un bajo coeficiente de fricción estática. En estas circunstancias, los robots móviles con ruedas pueden experimentar pérdidas de tracción, y por tanto, sufrir deslizamientos a lo largo de la superficie. La solución descrita propone la utilización de una configuración especial para el robot móvil, en la que todas las ruedas son accionadas de forma independiente, y una estructura de control que consta de tres partes bien diferenciadas: un controlador de seguimiento con realimentación de estado basado en el modelo cinemático del robot, una extensión de la ley de control cinemático resultante para incorporar la dinámica del robot móvil utilizando backstepping, y un algoritmo de distribución de la fuerza de tracción global, que calcula las señales de referencia adecuadas para cada una de las ruedas. Con esta estructura se consigue controlar la posición y la velocidad del robot móvil, y al mismo tiempo, distribuir la fuerza de tracción global entre las ruedas, evitando así el deslizamiento del robot. El funcionamiento de los algoritmos de control es evaluado mediante pruebas experimentales. Abstract: This article presents a solution to improve the performance of wheeled mobile robots that move upon surfaces with small coefficient of static friction. In these circumstances the wheeled mobile robots can experience loss of traction and therefore, slide along the surface. The proposed solution implies the use of a special configuration for the mobile robot, in which all the wheels are driven independently, and a control structure which consists of three distinct parts: firstly, a state-feedback tracking controller based on the kinematic model of the mobile robot is derived. Secondly, an extension of the kinematic control law is made to incorporate the dynamics of the wheeled mobile

  10. The Remotely Controlled Robot System for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Koh, Kwangill; Lee, Gwangnam; Lim, Kyeyoung

    1993-01-01

    The problem of radioactivity has been our major concern. So, it makes the needs of remotely controlled robot system necessary for maintenance and repair services. Up to now, several foreign companies have been contracted for the maintenance of the steam generators of nuclear power plants in Korea, to acquire its own capability of maintaining the steam generators of it impossible for Korea to acquire its own capability of maintaining the steam generators. In case of emergency, it is difficult to take appropriate steps on its own. In order to resolve the above problems, it seems inevitable to develop the robot system for the inspection and repair of steam generator. This project intends to acquire domestic capabilities of maintaining steam generators, so that this advanced skills could be applied to the related areas. As a result, it will save immense money in the future. the purposes of development of the remotely controlled robot system are : to perform the desired tasks at the polluted area without requiring entry of personnel. to closely inspect the steam generator U-tubes at high speed. to inspect the steam generator intelligently and efficiently under the extreme circumstances where radioactivity problem is very severe. to use for the repair of steam generator tube. Considering from the social and technical standpoint, we can say that the development of the remotely controlled robot system for nuclear power plants resulted in great achievements. From the social standpoint, it should be recognized that domestic robot for nuclear power plant was successfully developed and operator was protected against radioactivity. Also, we advanced our skills in the area of mechanical and control system design for an articulated robot. Using the robot controller in hierarchical structure, it was possible to control the robot remotely. In addition, resolver feedback typed A C servo drive was proven to be sturdy in hazardous environment. Now we are confident that our robot will

  11. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  12. Design of robust robotic proxemic behaviour

    NARCIS (Netherlands)

    Torta, E.; Cuijpers, R.H.; Juola, J.F.; Pol, van der D.; Mutlu, B.; Bartneck, C.; Ham, J.R.C.; Evers, V.; Kanda, T.

    2011-01-01

    Personal robots that share the same space with humans need to be socially acceptable and effective as they interact with people. In this paper we focus our attention on the definition of a behaviour-based robotic architecture that, (1) allows the robot to navigate safely in a cluttered and

  13. Biologically based neural network for mobile robot navigation

    Science.gov (United States)

    Torres Muniz, Raul E.

    1999-01-01

    The new tendency in mobile robots is to crete non-Cartesian system based on reactions to their environment. This emerging technology is known as Evolutionary Robotics, which is combined with the Biorobotic field. This new approach brings cost-effective solutions, flexibility, robustness, and dynamism into the design of mobile robots. It also provides fast reactions to the sensory inputs, and new interpretation of the environment or surroundings of the mobile robot. The Subsumption Architecture (SA) and the action selection dynamics developed by Brooks and Maes, respectively, have successfully obtained autonomous mobile robots initiating this new trend of the Evolutionary Robotics. Their design keeps the mobile robot control simple. This work present a biologically inspired modification of these schemes. The hippocampal-CA3-based neural network developed by Williams Levy is used to implement the SA, while the action selection dynamics emerge from iterations of the levels of competence implemented with the HCA3. This replacement by the HCA3 results in a closer biological model than the SA, combining the Behavior-based intelligence theory with neuroscience. The design is kept simple, and it is implemented in the Khepera Miniature Mobile Robot. The used control scheme obtains an autonomous mobile robot that can be used to execute a mail delivery system and surveillance task inside a building floor.

  14. RoMPS concept review automatic control of space robot, volume 2

    Science.gov (United States)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form and include: (1) system concept; (2) Hitchhiker Interface Requirements; (3) robot axis control concepts; (4) Autonomous Experiment Management System; (5) Zymate Robot Controller; (6) Southwest SC-4 Computer; (7) oven control housekeeping data; and (8) power distribution.

  15. Inverse kinematic-based robot control

    Science.gov (United States)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  16. Connecting a cognitive architecture to robotic perception

    Science.gov (United States)

    Kurup, Unmesh; Lebiere, Christian; Stentz, Anthony; Hebert, Martial

    2012-06-01

    We present an integrated architecture in which perception and cognition interact and provide information to each other leading to improved performance in real-world situations. Our system integrates the Felzenswalb et. al. object-detection algorithm with the ACT-R cognitive architecture. The targeted task is to predict and classify pedestrian behavior in a checkpoint scenario, most specifically to discriminate between normal versus checkpoint-avoiding behavior. The Felzenswalb algorithm is a learning-based algorithm for detecting and localizing objects in images. ACT-R is a cognitive architecture that has been successfully used to model human cognition with a high degree of fidelity on tasks ranging from basic decision-making to the control of complex systems such as driving or air traffic control. The Felzenswalb algorithm detects pedestrians in the image and provides ACT-R a set of features based primarily on their locations. ACT-R uses its pattern-matching capabilities, specifically its partial-matching and blending mechanisms, to track objects across multiple images and classify their behavior based on the sequence of observed features. ACT-R also provides feedback to the Felzenswalb algorithm in the form of expected object locations that allow the algorithm to eliminate false-positives and improve its overall performance. This capability is an instance of the benefits pursued in developing a richer interaction between bottom-up perceptual processes and top-down goal-directed cognition. We trained the system on individual behaviors (only one person in the scene) and evaluated its performance across single and multiple behavior sets.

  17. Integrated mobile robot control

    Science.gov (United States)

    Amidi, Omead; Thorpe, Chuck E.

    1991-03-01

    This paper describes the strucwre implementation and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation path specification and hacking human interfaces fast communication and multiple client support The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Naviab autonomous vehicle. In addition performance results from positioning and tracking systems are reported and analyzed.

  18. Telerobotics: through-the-Internet teleoperation of the ABB IRB 2000 industrial robot

    Science.gov (United States)

    Alvares, Alberto J.; Caribe de Carvalho, Guilherme; Paulinyi, Luis F. d. A.; Alfaro, Sadek C. A.

    1999-11-01

    Robotic systems can be controlled remotely through the use of telerobotics. This work presents a through-the-internet teleoperation system for remotely operating the IRB2000 industrial robot. The IRB2000 controller allows external access through a RS232 serial communication link, which is based on a 42 function proprietary communication protocol. The proposed teleoperation system uses this communication capability by connecting it to a local area network based on TCP/IP (Transport Control Protocol/Internet Protocol). The system was implemented using a Client/Server architecture, having as server a UNIX (LINUX) platform.

  19. The iCub Software Architecture: evolution and lessons learned

    Directory of Open Access Journals (Sweden)

    Lorenzo eNatale

    2016-04-01

    Full Text Available The complexity of humanoid robots is increasing with the availability of new sensors, embedded CPUs and actuators. This wealth of technologies allows researchers to investigate new problems like whole-body force control, multi-modal human-robot interaction and sensory fusion. Under the hood of these robots, the software architecture has an important role: it allows researchers to get access to the robot functionalities focusing primarily on their research problems, it supports code reuse to minimize development and debugging, especially when new hardware becomes available. But more importantly it allows increasing the complexity of the experiments that can be implemented before system integration becomes unmanageable and debugging draws more resources than research itself.In this paper we illustrate the software architecture of the iCub humanoid robot and the software engineering best practices that have emerged driven by the needs of our research community. We describe the latest developments at the level of the middleware supporting interface definition and automatic code generation, logging, ROS compatibility and channel prioritization. We show the robot abstraction layer and how it has been modified to better address the requirements of the users and to support new hardware as it became available. We also describe the testing framework we have recently adopted for developing code using a test driven methodology. We conclude the paper discussing the lessons we have learned during the past eleven years of software development on the iCub humanoid robot.

  20. Towards multi-platform software architecture for Collaborative Teleoperation

    Science.gov (United States)

    Domingues, Christophe; Otmane, Samir; Davesne, Frederic; Mallem, Malik

    2009-03-01

    Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robot simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.

  1. Towards multi-platform software architecture for Collaborative Teleoperation

    International Nuclear Information System (INIS)

    Domingues, Christophe; Otmane, Samir; Davesne, Frederic; Mallem, Malik

    2009-01-01

    Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robot simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.

  2. Controller tuning based on optimization algorithms of a novel spherical rolling robot

    International Nuclear Information System (INIS)

    Sadegjian, Rasou; Masouleh, Mehdi Tale

    2016-01-01

    This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time

  3. Controller tuning based on optimization algorithms of a novel spherical rolling robot

    Energy Technology Data Exchange (ETDEWEB)

    Sadegjian, Rasou [Dept. of Electrical, Biomedical, and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, QazvinI (Iran, Islamic Republic of); Masouleh, Mehdi Tale [Human and Robot Interaction Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-11-15

    This study presents the construction process of a novel spherical rolling robot and control strategies that are used to improve robot locomotion. The proposed robot drive mechanism is constructed based on a combination of the pendulum and wheel drive mechanisms. The control model of the proposed robot is developed, and the state space model is calculated based on the obtained control model. Two control strategies are defined to improve the synchronization performance of the proposed robot motors. The proportional-derivative and proportional-integral-derivative controllers are designed based on the pole placement method. The proportional-integral-derivative controller leads to a better step response than the proportional-derivative controller. The controller parameters are tuned with genetic and differential evaluation algorithms. The proportional-integral-derivative controller which is tuned based on the differential evaluation algorithm leads to a better step response than the proportional-integral-derivative controller that is tuned based on genetic algorithm. Fuzzy logics are used to reduce the robot drive mechanism motors synchronizing process time to the end of achieving a high-performance controller. The experimental implementation results of fuzzy-proportional-integral-derivative on the proposed spherical rolling robot resulted in a desirable synchronizing performance in a short time.

  4. 11th International Symposium on Distributed Autonomous Robotic Systems

    CERN Document Server

    Chirikjian, Gregory

    2014-01-01

    Distributed robotics is a rapidly growing and maturing interdisciplinary research area lying at the intersection of computer science, network science, control theory, and electrical and mechanical engineering. The goal of the Symposium on Distributed Autonomous Robotic Systems (DARS) is to exchange and stimulate research ideas to realize advanced distributed robotic systems. This volume of proceedings includes 31 original contributions presented at the 2012 International Symposium on Distributed Autonomous Robotic Systems (DARS 2012) held in November 2012 at the Johns Hopkins University in Baltimore, MD USA. The selected papers in this volume are authored by leading researchers from Asia, Europa, and the Americas, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into five parts, representative of critical long-term and emerging research thrusts in the multi-robot com...

  5. Walking Pattern Generation of Dual-Arm Mobile Robot Using Preview Controller

    OpenAIRE

    P. Wu; W. Wu

    2012-01-01

    Based on the stability request of robot’s moving on the ground, the motion planning of dual-arm mobile robot when moving on the ground is studied and the preview control system is applied in the robot walking pattern generation. Direct question of robot kinematics in the extended task space is analyzed according to Degrees of Freedom configuration of the dual-arm mobile robot. It is proved that the preview control system could be used in the generation of robot Center of Mass forward trajecto...

  6. Optimization in the design and control of robotic manipulators: A survey

    International Nuclear Information System (INIS)

    Rao, S.S.; Bhatti, P.K.

    1989-01-01

    Robotics is a relatively new and evolving technology being applied to manufacturing automation and is fast replacing the special-purpose machines or hard automation as it is often called. Demands for higher productivity, better and uniform quality products, and better working environments are primary reasons for its development. An industrial robot is a multifunctional and computer-controlled mechanical manipulator exhibiting a complex and highly nonlinear behavior. Even though most current robots have anthropomorphic configurations, they have far inferior manipulating abilities compared to humans. A great deal of research effort is presently being directed toward improving their overall performance by using optimal mechanical structures and control strategies. The optimal design of robot manipulators can include kinematic performance characteristics such as workspace, accuracy, repeatability, and redundancy. The static load capacity as well as dynamic criteria such as generalized inertia ellipsoid, dynamic manipulability, and vibratory response have also been considered in the design stages. The optimal control problems typically involve trajectory planning, time-optimal control, energy-optimal control, and mixed-optimal control. The constraints in a robot manipulator design problem usually involve link stresses, actuator torques, elastic deformation of links, and collision avoidance. This paper presents a review of the literature on the issues of optimum design and control of robotic manipulators and also the various optimization techniques currently available for application to robotics

  7. An architecture for efficient reuse in flexible production scenarios

    DEFF Research Database (Denmark)

    Andersen, Rasmus Hasle; Dalgaard, Lars; Beck, Anders Billesø

    2015-01-01

    Traditionally, small batch production has not been automated - it has been too resource demanding compared to the expected benefit. However, this is set to change with the new developments in easily trainable robotic co-worker systems, capable of being adapted to new tasks through intuitive user....... We present the DTI Robot CoWorker architecture, which is a generic robotic architecture, which provides a system-independent execution framework for adaptive and interactive robotic applications. Our approach has proven viable as we have successfully automated a complicated integration task (among...

  8. Soft brain-machine interfaces for assistive robotics: A novel control approach.

    Science.gov (United States)

    Schiatti, Lucia; Tessadori, Jacopo; Barresi, Giacinto; Mattos, Leonardo S; Ajoudani, Arash

    2017-07-01

    Robotic systems offer the possibility of improving the life quality of people with severe motor disabilities, enhancing the individual's degree of independence and interaction with the external environment. In this direction, the operator's residual functions must be exploited for the control of the robot movements and the underlying dynamic interaction through intuitive and effective human-robot interfaces. Towards this end, this work aims at exploring the potential of a novel Soft Brain-Machine Interface (BMI), suitable for dynamic execution of remote manipulation tasks for a wide range of patients. The interface is composed of an eye-tracking system, for an intuitive and reliable control of a robotic arm system's trajectories, and a Brain-Computer Interface (BCI) unit, for the control of the robot Cartesian stiffness, which determines the interaction forces between the robot and environment. The latter control is achieved by estimating in real-time a unidimensional index from user's electroencephalographic (EEG) signals, which provides the probability of a neutral or active state. This estimated state is then translated into a stiffness value for the robotic arm, allowing a reliable modulation of the robot's impedance. A preliminary evaluation of this hybrid interface concept provided evidence on the effective execution of tasks with dynamic uncertainties, demonstrating the great potential of this control method in BMI applications for self-service and clinical care.

  9. Self-Inhibiting Modules Can Self-Organize as a Brain of a Robot: A Conjecture

    Directory of Open Access Journals (Sweden)

    J. Negrete-Martínez

    2006-01-01

    Full Text Available In this article we describe a new robot control architecture on the basis of self-organization of self-inhibiting modules. The architecture can generate a complex behaviour repertoire. The repertoire can be performance-enhanced or increased by modular poly-functionality and/or by addition of new modules. This architecture is illustrated in a robot consisting of a car carrying an arm with a grasping tool. In the robot, each module drives either a joint motor or a pair of wheel motors. Every module estimates the distance from a sensor placed in the tool to a beacon. If the distance is smaller than a previously measured distance, the module drives its motor in the same direction of its prior movement. If the distance is larger, the next movement will be in the opposite direction; but, if the movement produces no significant change in distance, the module self-inhibits. A self-organization emerges: any module can be the next to take control of the motor activity of the robot once one module self-inhibits. A single module is active at a given time. The modules are implemented as computer procedures and their turn for participation scheduled by an endless program. The overall behaviour of the robot corresponds to a reaching attention behaviour. It is easily switched to a running-away attention behaviour by changing the sign of the same parameter in each module. The addition of a “sensor-gain attenuation reflex” module and of a “light-orientation reflex” module provides an increase of the behavioural attention repertoire and performance enhancement. Since scheduling a module does not necessarily produce its sustained intervention, the architecture of the “brain” is actually providing action induction rather than action selection.

  10. Robotics for mining control

    Energy Technology Data Exchange (ETDEWEB)

    1986-11-01

    In 1982 surveys of the mining industry revealed no applications of robotics existed and none were planned. This report provides a general overview of automation in the mining industry since this point in time. Roof control electronics, gas monitoring, jumbo drill automation, remote and sensor- controlled continuous miners, automated trolley trucks, roof bolting and screening machines are examples of technology available today. The report concludes with recommendations as to six potential research areas. 25 refs.

  11. Intelligent control and cooperation for mobile robots

    Science.gov (United States)

    Stingu, Petru Emanuel

    The topic discussed in this work addresses the current research being conducted at the Automation & Robotics Research Institute in the areas of UAV quadrotor control and heterogenous multi-vehicle cooperation. Autonomy can be successfully achieved by a robot under the following conditions: the robot has to be able to acquire knowledge about the environment and itself, and it also has to be able to reason under uncertainty. The control system must react quickly to immediate challenges, but also has to slowly adapt and improve based on accumulated knowledge. The major contribution of this work is the transfer of the ADP algorithms from the purely theoretical environment to the complex real-world robotic platforms that work in real-time and in uncontrolled environments. Many solutions are adopted from those present in nature because they have been proven to be close to optimal in very different settings. For the control of a single platform, reinforcement learning algorithms are used to design suboptimal controllers for a class of complex systems that can be conceptually split in local loops with simpler dynamics and relatively weak coupling to the rest of the system. Optimality is enforced by having a global critic but the curse of dimensionality is avoided by using local actors and intelligent pre-processing of the information used for learning the optimal controllers. The system model is used for constructing the structure of the control system, but on top of that the adaptive neural networks that form the actors use the knowledge acquired during normal operation to get closer to optimal control. In real-world experiments, efficient learning is a strong requirement for success. This is accomplished by using an approximation of the system model to focus the learning for equivalent configurations of the state space. Due to the availability of only local data for training, neural networks with local activation functions are implemented. For the control of a formation

  12. Access control and service-oriented architectures

    NARCIS (Netherlands)

    Leune, C.J.

    2007-01-01

    Access Control and Service-Oriented Architectures" investigates in which way logical access control can be achieved effectively, in particular in highly dynamic environments such as service-oriented architectures (SOA's). The author combines state-of-the-art best-practice and projects these onto the

  13. Enabling Effective Human-Robot Interaction Using Perspective-Taking in Robots

    National Research Council Canada - National Science Library

    Trafton, J. G; Cassimatis, Nicholas L; Bugajska, Magdalena D; Brock, Derek P; Mintz, Farilee E; Schultz, Alan C

    2005-01-01

    ...) and present a cognitive architecture for performing perspective-taking called Polyscheme. Finally, we show a fully integrated system that instantiates our theoretical framework within a working robot system...

  14. ROBERT autonomous navigation robot with artificial vision

    International Nuclear Information System (INIS)

    Cipollini, A.; Meo, G.B.; Nanni, V.; Rossi, L.; Taraglio, S.; Ferjancic, C.

    1993-01-01

    This work, a joint research between ENEA (the Italian National Agency for Energy, New Technologies and the Environment) and DIGlTAL, presents the layout of the ROBERT project, ROBot with Environmental Recognizing Tools, under development in ENEA laboratories. This project aims at the development of an autonomous mobile vehicle able to navigate in a known indoor environment through the use of artificial vision. The general architecture of the robot is shown together with the data and control flow among the various subsystems. Also the inner structure of the latter complete with the functionalities are given in detail

  15. Iterative learning control with sampled-data feedback for robot manipulators

    Directory of Open Access Journals (Sweden)

    Delchev Kamen

    2014-09-01

    Full Text Available This paper deals with the improvement of the stability of sampled-data (SD feedback control for nonlinear multiple-input multiple-output time varying systems, such as robotic manipulators, by incorporating an off-line model based nonlinear iterative learning controller. The proposed scheme of nonlinear iterative learning control (NILC with SD feedback is applicable to a large class of robots because the sampled-data feedback is required for model based feedback controllers, especially for robotic manipulators with complicated dynamics (6 or 7 DOF, or more, while the feedforward control from the off-line iterative learning controller should be assumed as a continuous one. The robustness and convergence of the proposed NILC law with SD feedback is proven, and the derived sufficient condition for convergence is the same as the condition for a NILC with a continuous feedback control input. With respect to the presented NILC algorithm applied to a virtual PUMA 560 robot, simulation results are presented in order to verify convergence and applicability of the proposed learning controller with SD feedback controller attached

  16. A remote lab for experiments with a team of mobile robots.

    Science.gov (United States)

    Casini, Marco; Garulli, Andrea; Giannitrapani, Antonio; Vicino, Antonio

    2014-09-04

    In this paper, a remote lab for experimenting with a team of mobile robots is presented. Robots are built with the LEGO Mindstorms technology and user-defined control laws can be directly coded in the Matlab programming language and validated on the real system. The lab is versatile enough to be used for both teaching and research purposes. Students can easily go through a number of predefined mobile robotics experiences without having to worry about robot hardware or low-level programming languages. More advanced experiments can also be carried out by uploading custom controllers. The capability to have full control of the vehicles, together with the possibility to define arbitrarily complex environments through the definition of virtual obstacles, makes the proposed facility well suited to quickly test and compare different control laws in a real-world scenario. Moreover, the user can simulate the presence of different types of exteroceptive sensors on board of the robots or a specific communication architecture among the agents, so that decentralized control strategies and motion coordination algorithms can be easily implemented and tested. A number of possible applications and real experiments are presented in order to illustrate the main features of the proposed mobile robotics remote lab.

  17. A Remote Lab for Experiments with a Team of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Marco Casini

    2014-09-01

    Full Text Available In this paper, a remote lab for experimenting with a team of mobile robots is presented. Robots are built with the LEGO Mindstorms technology and user-defined control laws can be directly coded in the Matlab programming language and validated on the real system. The lab is versatile enough to be used for both teaching and research purposes. Students can easily go through a number of predefined mobile robotics experiences without having to worry about robot hardware or low-level programming languages. More advanced experiments can also be carried out by uploading custom controllers. The capability to have full control of the vehicles, together with the possibility to define arbitrarily complex environments through the definition of virtual obstacles, makes the proposed facility well suited to quickly test and compare different control laws in a real-world scenario. Moreover, the user can simulate the presence of different types of exteroceptive sensors on board of the robots or a specific communication architecture among the agents, so that decentralized control strategies and motion coordination algorithms can be easily implemented and tested. A number of possible applications and real experiments are presented in order to illustrate the main features of the proposed mobile robotics remote lab.

  18. Intelligent control system Cellular Robotics Approach to Nuclear Plant control and maintenance

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Sekiyama, Kousuke; Xue Guoqing; Ueyama, Tsuyoshi.

    1994-01-01

    This paper presents the concept of Cellular Robotic System (CEBOT) and describe the strategy of a distributed sensing, control and planning as a Cellular Robotics Approach to the Nuclear Plant control and maintenance. Decentralized System is effective in large plant and The CEBOT possesses desirable features for realization of Nuclear Plant control and maintenance because of its flexibility and adaptability. Also, as related on going research work, self-organizing manipulator and communication issues are mentioned. (author)

  19. Robust tracking control of two-degrees-of-freedom mobile robots

    NARCIS (Netherlands)

    Oelen, W.; Oelen, W.; van Amerongen, J.

    1994-01-01

    A robust tracking controller for a mobile robot with two degrees of freedom has been developed. It is implemented and tested on a real mobile robot. Where other controllers show decreasing performance for low reference velocities, the performance of this controller depends only on the geometry of

  20. An architecture for implementation of multivariable controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    1999-01-01

    Browse > Conferences> American Control Conference, Prev | Back to Results | Next » An architecture for implementation of multivariable controllers 786292 searchabstract Niemann, H. ; Stoustrup, J. ; Dept. of Autom., Tech. Univ., Lyngby This paper appears in: American Control Conference, 1999....... Proceedings of the 1999 Issue Date : 1999 Volume : 6 On page(s): 4029 - 4033 vol.6 Location: San Diego, CA Meeting Date : 02 Jun 1999-04 Jun 1999 Print ISBN: 0-7803-4990-3 References Cited: 7 INSPEC Accession Number: 6403075 Digital Object Identifier : 10.1109/ACC.1999.786292 Date of Current Version : 06...... august 2002 Abstract An architecture for implementation of multivariable controllers is presented in this paper. The architecture is based on the Youla-Jabr-Bongiorno-Kucera parameterization of all stabilizing controllers. By using this architecture for implementation of multivariable controllers...

  1. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.

    Science.gov (United States)

    Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P

    2016-05-01

    Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. A Multi-purpose Rescue Vehicle and a human–robot interface architecture for remote assistance in ITER

    International Nuclear Information System (INIS)

    Soares, João; Vale, Alberto; Ventura, Rodrigo

    2015-01-01

    Highlights: • Design of an omnidirectional vehicle equipped with cameras and laser range finders. • Two robotic manipulators that slide over the vehicle's body to perform independent tasks. • Architecture to connect the control system, communication, power, navigation and HMI. • An immersive interface HMI with augmented reality features with head mounted display. - Abstract: The remote handling (RH) plays an important role in nuclear test facilities, such as in ITER, for in-vessel and ex-vessel maintenance operations. Unexpected situations may occur when RH devices fail. Since no human being is allowed during the RH operations, a Multi-purpose Rescue Vehicle (MPRV) must be required for providing support in site. This paper proposes a design of a MPRV, i.e., a mobile platform equipped with different sensors and two manipulators with different sets of end-effectors. A human–machine interface is also proposed to remotely operate the MPRV and to carry out rescue and recovery operations.

  3. A Multi-purpose Rescue Vehicle and a human–robot interface architecture for remote assistance in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Soares, João [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Vale, Alberto, E-mail: avale@ipfn.tecnico.ulisboa.pt [Instituto de Plasmas e Fusão Nuclear, Instituto SuperiorTécnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ventura, Rodrigo, E-mail: rodrigo.ventura@isr.tecnico.ulisboa.pt [Laboratório de Robótica e Sistemas em Engenharia eCiência, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Design of an omnidirectional vehicle equipped with cameras and laser range finders. • Two robotic manipulators that slide over the vehicle's body to perform independent tasks. • Architecture to connect the control system, communication, power, navigation and HMI. • An immersive interface HMI with augmented reality features with head mounted display. - Abstract: The remote handling (RH) plays an important role in nuclear test facilities, such as in ITER, for in-vessel and ex-vessel maintenance operations. Unexpected situations may occur when RH devices fail. Since no human being is allowed during the RH operations, a Multi-purpose Rescue Vehicle (MPRV) must be required for providing support in site. This paper proposes a design of a MPRV, i.e., a mobile platform equipped with different sensors and two manipulators with different sets of end-effectors. A human–machine interface is also proposed to remotely operate the MPRV and to carry out rescue and recovery operations.

  4. The research on visual industrial robot which adopts fuzzy PID control algorithm

    Science.gov (United States)

    Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye

    2017-03-01

    The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.

  5. Traction Control Study for a Scaled Automated Robotic Car

    OpenAIRE

    Morton, Mark A.

    2004-01-01

    This thesis presents the use of sliding mode control applied to a 1/10th scale robotic car to operate at a desired slip. Controlling the robot car at any desired slip has a direct relation to the amount of force that is applied to the driving wheels based on road surface conditions. For this model, the desired traction/slip is maintained for a specific surface which happens to be a Lego treadmill platform. How the platform evolved and the robot car was designed are also covered. To parame...

  6. Automating the Incremental Evolution of Controllers for Physical Robots

    DEFF Research Database (Denmark)

    Faina, Andres; Jacobsen, Lars Toft; Risi, Sebastian

    2017-01-01

    the evolution of digital objects.…” The work presented here investigates how fully autonomous evolution of robot controllers can be realized in hardware, using an industrial robot and a marker-based computer vision system. In particular, this article presents an approach to automate the reconfiguration...... of the test environment and shows that it is possible, for the first time, to incrementally evolve a neural robot controller for different obstacle avoidance tasks with no human intervention. Importantly, the system offers a high level of robustness and precision that could potentially open up the range...

  7. Remote control and motion coordination of mobile robots

    NARCIS (Netherlands)

    Alvarez Aguirre, A.

    2011-01-01

    As robots destined for personal and professional applications advance towards becoming part of our daily lives, the importance and complexity of the control algorithms which regulate them should not be underestimated. This thesis is related to two fields within robotics which are of major importance

  8. Self-repairing control for damaged robotic manipulators

    International Nuclear Information System (INIS)

    Eisler, G.R.; Robinett, R.D.; Dohrmann, C.R.; Driessen, B.J.

    1997-03-01

    Algorithms have been developed allowing operation of robotic systems under damaged conditions. Specific areas addressed were optimal sensor location, adaptive nonlinear control, fault-tolerant robot design, and dynamic path-planning. A seven-degree-of-freedom, hydraulic manipulator, with fault-tolerant joint design was also constructed and tested. This report completes this project which was funded under the Laboratory Directed Research and Development program

  9. Action understanding and imitation learning in a robot-human task

    NARCIS (Netherlands)

    Erlhagen, W.; Mukovskiy, A.; Bicho, E.; Panin, G.; Kiss, C.; Knoll, A.; Schie, H.T. van; Bekkering, H.

    2005-01-01

    We report results of an interdisciplinary project which aims at endowing a real robot system with the capacity for learning by goal-directed imitation. The control architecture is biologically inspired as it reflects recent experimental findings in action observation/execution studies. We test its

  10. Deep learning with convolutional neural networks: a resource for the control of robotic prosthetic hands via electromyography

    Directory of Open Access Journals (Sweden)

    Manfredo Atzori

    2016-09-01

    Full Text Available Motivation: Natural control methods based on surface electromyography and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications and commercial prostheses are in the best case capable to offer natural control for only a few movements. Objective: In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its capabilities for the natural control of robotic hands via surface electromyography by providing a baseline on a large number of intact and amputated subjects. Methods: We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 hand amputated subjects. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets.Results: The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods but lower than the results obtained with the best reference methods in our tests. Significance: The results show that convolutional neural networks with a very simple architecture can produce accuracy comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters can be fundamental for the analysis of surface electromyography data. Finally, the results suggest that deeper and more complex networks may increase dexterous control robustness, thus contributing to bridge the gap between the market and scientific research

  11. Optimal Control Method of Robot End Position and Orientation Based on Dynamic Tracking Measurement

    Science.gov (United States)

    Liu, Dalong; Xu, Lijuan

    2018-01-01

    In order to improve the accuracy of robot pose positioning and control, this paper proposed a dynamic tracking measurement robot pose optimization control method based on the actual measurement of D-H parameters of the robot, the parameters is taken with feedback compensation of the robot, according to the geometrical parameters obtained by robot pose tracking measurement, improved multi sensor information fusion the extended Kalan filter method, with continuous self-optimal regression, using the geometric relationship between joint axes for kinematic parameters in the model, link model parameters obtained can timely feedback to the robot, the implementation of parameter correction and compensation, finally we can get the optimal attitude angle, realize the robot pose optimization control experiments were performed. 6R dynamic tracking control of robot joint robot with independent research and development is taken as experimental subject, the simulation results show that the control method improves robot positioning accuracy, and it has the advantages of versatility, simplicity, ease of operation and so on.

  12. Odico Formwork Robotics

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn

    2014-01-01

    In the next decade or so, the widespread adoption of robotics is set to transform the construction industry: building techniques will become increasingly automated both on– and off–site, dispensing with manual labour and enabling greater cost and operational efficiencies. What unique opportunities......, however, does robotics afford beyond operational effectiveness explicitly for the practice of architecture? What is the potential for the serial production of non–standard elements as well as for varied construction processes? In order to scale up and advance the application of robotics, for both...

  13. Design and Implementation of a Bionic Mimosa Robot with Delicate Leaf Swing Behavior

    Directory of Open Access Journals (Sweden)

    Chung-Liang Chang

    2014-12-01

    Full Text Available This study designed and developed a bionic mimosa robot with delicate leaf swing behaviors. For different swing behaviors, this study developed a variety of situations, in which the bionic mimosa robot would display different postures. The core technologies used were Shape Memory Alloys (SMAs, plastic material, and an intelligent control device. The technology particularly focused on the SMAs memory processing bend mode, directional guidance, and the position of SMAs installed inside the plastic material. Performance analysis and evaluation were conducted using two SMAs for mimosa opening/closing behaviors. Finally, by controlling the mimosa behavior with a micro-controller, the optimal strain swing behavior was realized through fuzzy logic control in order to display the different postures of mimosa under different situations. The proposed method is applicable to micro-bionic robot systems, entertainment robots, biomedical engineering, and architectural aesthetics-related fields in the future.

  14. Computer-controlled wall servicing robot

    Energy Technology Data Exchange (ETDEWEB)

    Lefkowitz, S. [Pentek, Inc., Corapolis, PA (United States)

    1995-03-01

    After four years of cooperative research, Pentek has unveiled a new robot with the capability to automatically deliver a variety of cleaning, painting, inspection, and surveillance devices to large vertical surfaces. The completely computer-controlled robot can position a working tool on a 50-foot tall by 50-foot wide vertical surface with a repeatability of 1/16 inch. The working end can literally {open_quotes}fly{close_quotes} across the face of a wall at speed of 60 per minute, and can handle working loads of 350 pounds. The robot was originally developed to decontaminate the walls of reactor fueling cavities at commercial nuclear power plants during fuel outages. If these cavities are left to dry after reactor refueling, contamination present in the residue could later become airborne and move throughout the containment building. Decontaminating the cavity during the refueling outage reduces the need for restrictive personal protective equipment during plant operations to limit the dose rates.

  15. Gesture-Based Robot Control with Variable Autonomy from the JPL Biosleeve

    Science.gov (United States)

    Wolf, Michael T.; Assad, Christopher; Vernacchia, Matthew T.; Fromm, Joshua; Jethani, Henna L.

    2013-01-01

    This paper presents a new gesture-based human interface for natural robot control. Detailed activity of the user's hand and arm is acquired via a novel device, called the BioSleeve, which packages dry-contact surface electromyography (EMG) and an inertial measurement unit (IMU) into a sleeve worn on the forearm. The BioSleeve's accompanying algorithms can reliably decode as many as sixteen discrete hand gestures and estimate the continuous orientation of the forearm. These gestures and positions are mapped to robot commands that, to varying degrees, integrate with the robot's perception of its environment and its ability to complete tasks autonomously. This flexible approach enables, for example, supervisory point-to-goal commands, virtual joystick for guarded teleoperation, and high degree of freedom mimicked manipulation, all from a single device. The BioSleeve is meant for portable field use; unlike other gesture recognition systems, use of the BioSleeve for robot control is invariant to lighting conditions, occlusions, and the human-robot spatial relationship and does not encumber the user's hands. The BioSleeve control approach has been implemented on three robot types, and we present proof-of-principle demonstrations with mobile ground robots, manipulation robots, and prosthetic hands.

  16. Kinematic equations for resolved-rate control of an industrial robot arm

    Science.gov (United States)

    Barker, L. K.

    1983-01-01

    An operator can use kinematic, resolved-rate equations to dynamically control a robot arm by watching its response to commanded inputs. Known resolved-rate equations for the control of a particular six-degree-of-freedom industrial robot arm and proceeds to simplify the equations for faster computations are derived. Methods for controlling the robot arm in regions which normally cause mathematical singularities in the resolved-rate equations are discussed.

  17. Topology Optimization and Robotic Fabrication of Advanced Timber Space-frame Structures

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Amir, Oded; Eversmann, Phillip

    2016-01-01

    This paper presents a novel method for integrated topology optimization and fabrication of advanced timber space-frame structures. The method, developed in research collaboration between ETH Zürich, Aarhus School of Architecture and Israel Institute of Technology, entails the coupling of truss...... processes solving timber joint intersections, robotically controlling member prefabrication, and spatial robotic assembly of the optimized timber structures. The implication of this concept is studied through pilot fabrication and load-testing of a full scale prototype structure.......-based topology optimization with digital procedures for rationalization and robotic assembly of bespoke timber members, through a procedural, cross-application workflow. Through this, a direct chaining of optimization and robotic fabrication is established, in which optimization data is driving subsequent...

  18. Integrated Control Strategies Supporting Autonomous Functionalities in Mobile Robots

    National Research Council Canada - National Science Library

    Sights, B; Everett, H. R; Pacis, E. B; Kogut, G; Thompson, M

    2005-01-01

    High-level intelligence allows a mobile robot to create and interpret complex world models, but without a precise control system, the accuracy of the world model and the robot's ability to interact...

  19. Robust Control Design of Wheeled Inverted Pendulum Assistant Robot

    Institute of Scientific and Technical Information of China (English)

    Magdi S.Mahmoud; Mohammad T.Nasir

    2017-01-01

    This paper examines the design concept and mobile control strategy of the human assistant robot I-PENTAR(inverted pendulum type assistant robot). The motion equation is derived considering the non-holonomic constraint of the twowheeled mobile robot. Different optimal control approaches are applied to a linearized model of I-PENTAR. These include linear quadratic regulator(LQR), linear quadratic Gaussian control(LQG), H2 control and H∞ control. Simulation is performed for all the approaches yielding good performance results.

  20. Co-Simulation Control of Robot Arm Dynamics in ADAMS and MATLAB

    OpenAIRE

    Luo Haitao; Liu Yuwang; Chen Zhengcang; Leng Yuquan

    2013-01-01

    The main objective of this study is how to quickly establish the virtual prototyping model of robot arm system and effectively solve trajectory tracking control for a given signal. Taking the 2-DOF robot arm as an example, a co-simulation control method is introduced to research multi-body dynamics. Using Newton-Euler and Lagrange method, respectively establish the dynamics model of robot arm and verify the correctness of equations. Firstly, the physical model of robot arm was built by PROE a...

  1. Neural Network Observer-Based Finite-Time Formation Control of Mobile Robots

    Directory of Open Access Journals (Sweden)

    Caihong Zhang

    2014-01-01

    Full Text Available This paper addresses the leader-following formation problem of nonholonomic mobile robots. In the formation, only the pose (i.e., the position and direction angle of the leader robot can be obtained by the follower. First, the leader-following formation is transformed into special trajectory tracking. And then, a neural network (NN finite-time observer of the follower robot is designed to estimate the dynamics of the leader robot. Finally, finite-time formation control laws are developed for the follower robot to track the leader robot in the desired separation and bearing in finite time. The effectiveness of the proposed NN finite-time observer and the formation control laws are illustrated by both qualitative analysis and simulation results.

  2. Informed Design to Robotic Production Systems; Developing Robotic 3D Printing System for Informed Material Deposition

    NARCIS (Netherlands)

    Mostafavi, S.; Bier, H.; Bodea, S.; Anton, A.M.

    2015-01-01

    This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out

  3. Transputer Control of Hydraulic Actuators and Robots

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...

  4. Robotics, vision and control fundamental algorithms in Matlab

    CERN Document Server

    Corke, Peter

    2017-01-01

    Robotic vision, the combination of robotics and computer vision, involves the application of computer algorithms to data acquired from sensors. The research community has developed a large body of such algorithms but for a newcomer to the field this can be quite daunting. For over 20 years the author has maintained two open-source MATLAB® Toolboxes, one for robotics and one for vision. They provide implementations of many important algorithms and allow users to work with real problems, not just trivial examples. This book makes the fundamental algorithms of robotics, vision and control accessible to all. It weaves together theory, algorithms and examples in a narrative that covers robotics and computer vision separately and together. Using the latest versions of the Toolboxes the author shows how complex problems can be decomposed and solved using just a few simple lines of code. The topics covered are guided by real problems observed by the author over many years as a practitioner of both robotics and compu...

  5. Periodic activations of behaviours and emotional adaptation in behaviour-based robotics

    Science.gov (United States)

    Burattini, Ernesto; Rossi, Silvia

    2010-09-01

    The possible modulatory influence of motivations and emotions is of great interest in designing robotic adaptive systems. In this paper, an attempt is made to connect the concept of periodic behaviour activations to emotional modulation, in order to link the variability of behaviours to the circumstances in which they are activated. The impact of emotion is studied, described as timed controlled structures, on simple but conflicting reactive behaviours. Through this approach it is shown that the introduction of such asynchronies in the robot control system may lead to an adaptation in the emergent behaviour without having an explicit action selection mechanism. The emergent behaviours of a simple robot designed with both a parallel and a hierarchical architecture are evaluated and compared.

  6. CPG-based Locomotion Controller Design for a Boxfish-like Robot

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-06-01

    Full Text Available This paper focuses on a Central Pattern Generator (CPG-based locomotion controller design for a boxfish-like robot. The bio-inspired controller is aimed at flexible switching in multiple 3D swimming patterns and exact attitude control of yaw and roll such that the robot will swim more like a real boxfish. The CPG network comprises two layers, the lower layer is the network of coupled linear oscillators and the upper is the transition layer where the lower-dimensional locomotion stimuli are transformed into the higher-dimensional control parameters serving for all the oscillators. Based on such a two-layer framework, flexible switching between multiple three-dimensional swimming patterns, such as swimming forwards/backwards, turning left/right, swimming upwards/downwards and rolling clockwise/counter-clockwise, can be simply realized by inputting different stimuli. Moreover, the stability of the CPG network is strictly proved to guarantee the intrinsic stability of the swimming patterns. As to exact attitude control, based on this open-loop CPG network and the sensory feedback from the Inertial Measurement Unit (IMU, a closed-loop CPG controller is advanced for yaw and roll control of the robotic fish for the first time. This CPG-based online attitude control for a robotic fish will greatly facilitate high-level practical underwater applications. A series of relevant experiments with the robotic fish are conducted systematically to validate the effectiveness and stability of the open-loop and closed-loop CPG controllers.

  7. Development of the first force-controlled robot for otoneurosurgery.

    Science.gov (United States)

    Federspil, Philipp A; Geisthoff, Urban W; Henrich, Dominik; Plinkert, Peter K

    2003-03-01

    In some surgical specialties (eg, orthopedics), robots are already used in the operating room for bony milling work. Otological surgery and otoneurosurgery may also greatly benefit from the enhanced precision of robotics. Experimental study on robotic milling of oak wood and human temporal bone specimen. A standard industrial robot with a six-degrees-of-freedom serial kinematics was used, with force feedback to proportionally control the robot speed. Different milling modes and characteristic path parameters were evaluated to generate milling paths based on computer-aided design (CAD) geometry data of a cochlear implant and an implantable hearing system. The best-suited strategy proved to be the spiral horizontal milling mode with the burr held perpendicular to the temporal bone surface. To reduce groove height, the distance between paths should equal half the radius of the cutting burr head. Because of the vibration of the robot's own motors, a high oscillation of the SD of forces was encountered. This oscillation dropped drastically to nearly 0 Newton (N) when the burr head made contact with the dura mater, because of its damping characteristics. The cutting burr could be kept in contact with the dura mater for an extended period without damaging it, because of the burr's blunt head form. The robot moved the burr smoothly according to the encountered resistances. The study reports the first development of a functional robotic milling procedure for otoneurosurgery with force-based speed control. Future plans include implementation of ultrasound-based local navigation and performance of robotic mastoidectomy.

  8. Hand Motion-Based Remote Control Interface with Vibrotactile Feedback for Home Robots

    Directory of Open Access Journals (Sweden)

    Juan Wu

    2013-06-01

    Full Text Available This paper presents the design and implementation of a hand-held interface system for the locomotion control of home robots. A handheld controller is proposed to implement hand motion recognition and hand motion-based robot control. The handheld controller can provide a ‘connect-and-play’ service for the users to control the home robot with visual and vibrotactile feedback. Six natural hand gestures are defined for navigating the home robots. A three-axis accelerometer is used to detect the hand motions of the user. The recorded acceleration data are analysed and classified to corresponding control commands according to their characteristic curves. A vibration motor is used to provide vibrotactile feedback to the user when an improper operation is performed. The performances of the proposed hand motion-based interface and the traditional keyboard and mouse interface have been compared in robot navigation experiments. The experimental results of home robot navigation show that the success rate of the handheld controller is 13.33% higher than the PC based controller. The precision of the handheld controller is 15.4% more than that of the PC and the execution time is 24.7% less than the PC based controller. This means that the proposed hand motion-based interface is more efficient and flexible.

  9. Myoelectric Control Techniques for a Rehabilitation Robot

    Directory of Open Access Journals (Sweden)

    Alan Smith

    2011-01-01

    Full Text Available This work examines two different types of myoelectric control schemes for the purpose of rehabilitation robot applications. The first is a commonly used technique based on a Gaussian classifier. It is implemented in real time for healthy subjects in addition to a subject with Central Cord Syndrome (CCS. The myoelectric control scheme is used to control three degrees of freedom (DOF on a robot manipulator which corresponded to the robot's elbow joint, wrist joint, and gripper. The classes of motion controlled include elbow flexion and extension, wrist pronation and supination, hand grasping and releasing, and rest. Healthy subjects were able to achieve 90% accuracy. Single DOF controllers were first tested on the subject with CCS and he achieved 100%, 96%, and 85% accuracy for the elbow, gripper, and wrist controllers respectively. Secondly, he was able to control the three DOF controller at 68% accuracy. The potential applications for this scheme are rehabilitation and teleoperation. To overcome limitations in the pattern recognition based scheme, a second myoelectric control scheme is also presented which is trained using electromyographic (EMG data derived from natural reaching motions in the sagittal plane. This second scheme is based on a time delayed neural network (TDNN which has the ability to control multiple DOF at once. The controller tracked a subject's elbow and shoulder joints in the sagittal plane. Results showed an average error of 19° for the two joints. This myoelectric control scheme has the potential of being used in the development of exoskeleton and orthotic rehabilitation applications.

  10. Web based educational tool for neural network robot control

    Directory of Open Access Journals (Sweden)

    Jure Čas

    2007-05-01

    Full Text Available Abstract— This paper describes the application for teleoperations of the SCARA robot via the internet. The SCARA robot is used by students of mehatronics at the University of Maribor as a remote educational tool. The developed software consists of two parts i.e. the continuous neural network sliding mode controller (CNNSMC and the graphical user interface (GUI. Application is based on two well-known commercially available software packages i.e. MATLAB/Simulink and LabVIEW. Matlab/Simulink and the DSP2 Library for Simulink are used for control algorithm development, simulation and executable code generation. While this code is executing on the DSP-2 Roby controller and through the analog and digital I/O lines drives the real process, LabVIEW virtual instrument (VI, running on the PC, is used as a user front end. LabVIEW VI provides the ability for on-line parameter tuning, signal monitoring, on-line analysis and via Remote Panels technology also teleoperation. The main advantage of a CNNSMC is the exploitation of its self-learning capability. When friction or an unexpected impediment occurs for example, the user of a remote application has no information about any changed robot dynamic and thus is unable to dispatch it manually. This is not a control problem anymore because, when a CNNSMC is used, any approximation of changed robot dynamic is estimated independently of the remote’s user. Index Terms—LabVIEW; Matlab/Simulink; Neural network control; remote educational tool; robotics

  11. Framework and Method for Controlling a Robotic System Using a Distributed Computer Network

    Science.gov (United States)

    Sanders, Adam M. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor); Strawser, Philip A. (Inventor)

    2015-01-01

    A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.

  12. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  13. Control synchronization of differential mobile robots

    NARCIS (Netherlands)

    Nijmeijer, H.; Rodriguez Angeles, A.; Allgoewer, F.

    2004-01-01

    In this paper a synchronization controller for differential mobile robots is proposed. The synchronization goal is to control the angular position of each wheel to a desired trajectory and at the same time the differential (or synchronization) error between the angular positions of the two wheels.

  14. Trajectory-tracking control of underwater inspection robot for nuclear reactor internals using Time Delay Control

    International Nuclear Information System (INIS)

    Park, Joon-Young; Cho, Byung-Hak; Lee, Jae-Kyung

    2009-01-01

    This paper addresses the trajectory control problem of an underwater inspection robot for nuclear reactor internals. From the viewpoint of control engineering, the trajectory control of the underwater robot is a difficult task due to its nonlinear dynamics, which includes various hydraulic forces such as buoyancy and hydrodynamic damping, the difference between the centres of gravity and buoyancy, and disturbances from a tether cable. To solve such problems, we applied Time Delay Control to the underwater robot. This control law has a very simple structure not requiring nonlinear plant dynamics, and was proven to be highly robust against nonlinearities, uncertainties and disturbances. We confirmed its effectiveness through experiments.

  15. The development of robot application technology in nuclear facilities

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Lee, Jong Min; Kim, Chang Hoe; Kim, Byung Soo; Sohn, Surg Won; Hwoang, Suk Yeoung; Lee, Yong Bum; Kim, Woong Ki

    1992-12-01

    The objective of this project is to establish the basic technologies for advanced robotic systems operated in unstructured environment. The developed robotic system, which is remotely controlled, is expected to reduce the radiation dosage for workers who do the maintenance, inspection, and repairing work in nuclear facilities. The two major work scopes of this project in this year are to study the control scheme of advanced robotic system and develop a mobile robot. An inverse kinematic algorithm of 7 degrees of freedom anthropomorphic manipulator is investigated for dexterous control. Extended closed-loop schemes for solving the inverse kinematics of the redundant manipulator have been proposed and decentralized adaptive controller was designed by utilizing a new cartesian space controller. Control architecture of neural network has been developed, which has a strong capability on solving the kinematics of manipulator. The planetary wheel assembly has been implemented in the design to be suitable for plant. The design of manipulator has been implemented to operate with the battery power in the mobile system. This project will continue to be a major technical driver, with nuclear plant maintenance and waste management applications in conjunction with 'Long-term nuclear development program' over the next decade. (Author)

  16. Alternative Motion Control for Educational Biped BRAT Robots

    Directory of Open Access Journals (Sweden)

    Levente Barabas

    2015-12-01

    Full Text Available In this paper an alternative control solution will be proposed for an educational biped BRAT robot by replacing its SSC-32 servomotor controller with an Arduino R3 development board. Also we will be approaching the problem of adapting the existing electronic circuit to the new requirements and proposing a new application by adding an ultrasonic distance sensor in order to increase the versatility of the robot and make it capable to interact with its environment.

  17. Thought-Controlled Nanoscale Robots in a Living Host.

    Directory of Open Access Journals (Sweden)

    Shachar Arnon

    Full Text Available We report a new type of brain-machine interface enabling a human operator to control nanometer-size robots inside a living animal by brain activity. Recorded EEG patterns are recognized online by an algorithm, which in turn controls the state of an electromagnetic field. The field induces the local heating of billions of mechanically-actuating DNA origami robots tethered to metal nanoparticles, leading to their reversible activation and subsequent exposure of a bioactive payload. As a proof of principle we demonstrate activation of DNA robots to cause a cellular effect inside the insect Blaberus discoidalis, by a cognitively straining task. This technology enables the online switching of a bioactive molecule on and off in response to a subject's cognitive state, with potential implications to therapeutic control in disorders such as schizophrenia, depression, and attention deficits, which are among the most challenging conditions to diagnose and treat.

  18. Thought-Controlled Nanoscale Robots in a Living Host

    Science.gov (United States)

    Giron, Jonathan; Ben-Ami, Lee; Amir, Yaniv; Hel-Or, Yacov; Friedman, Doron; Bachelet, Ido

    2016-01-01

    We report a new type of brain-machine interface enabling a human operator to control nanometer-size robots inside a living animal by brain activity. Recorded EEG patterns are recognized online by an algorithm, which in turn controls the state of an electromagnetic field. The field induces the local heating of billions of mechanically-actuating DNA origami robots tethered to metal nanoparticles, leading to their reversible activation and subsequent exposure of a bioactive payload. As a proof of principle we demonstrate activation of DNA robots to cause a cellular effect inside the insect Blaberus discoidalis, by a cognitively straining task. This technology enables the online switching of a bioactive molecule on and off in response to a subject’s cognitive state, with potential implications to therapeutic control in disorders such as schizophrenia, depression, and attention deficits, which are among the most challenging conditions to diagnose and treat. PMID:27525806

  19. Fuzzy Logic Supervised Teleoperation Control for Mobile Robot

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The supervised teleoperation control is presented for a mobile robot to implement the tasks by using fuzzy logic. The teleoperation control system includes joystick based user interaction mechanism, the high level instruction set and fuzzy logic behaviors integrated in a supervised autonomy teleoperation control system for indoor navigation. These behaviors include left wall following, right wall following, turn left, turn right, left obstacle avoidance, right obstacle avoidance and corridor following based on ultrasonic range finders data. The robot compares the instructive high level command from the operator and relays back a suggestive signal back to the operator in case of mismatch between environment and instructive command. This strategy relieves the operator's cognitive burden, handle unforeseen situations and uncertainties of environment autonomously. The effectiveness of the proposed method for navigation in an unstructured environment is verified by experiments conducted on a mobile robot equipped with only ultrasonic range finders for environment sensing.

  20. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  1. Nonlinear control methods for planar carangiform robot fish locomotion

    OpenAIRE

    Morgansen, Kristi A.; Duindam, Vincent; Mason, Richard J.; Burdick, Joel W.; Murray, Richard M.

    2001-01-01

    Considers the design of motion control algorithms for robot fish. We present modeling, control design, and experimental trajectory tracking results for an experimental planar robotic fish system that is propelled using carangiform-like locomotion. Our model for the fish's propulsion is based on quasi-steady fluid flow. Using this model, we propose gaits for forward and turning trajectories and analyze system response under such control strategies. Our models and predictions are verified by ex...

  2. Tele-rehabilitation using in-house wearable ankle rehabilitation robot.

    Science.gov (United States)

    Jamwal, Prashant K; Hussain, Shahid; Mir-Nasiri, Nazim; Ghayesh, Mergen H; Xie, Sheng Q

    2018-01-01

    This article explores wide-ranging potential of the wearable ankle robot for in-house rehabilitation. The presented robot has been conceptualized following a brief analysis of the existing technologies, systems, and solutions for in-house physical ankle rehabilitation. Configuration design analysis and component selection for ankle robot have been discussed as part of the conceptual design. The complexities of human robot interaction are closely encountered while maneuvering a rehabilitation robot. We present a fuzzy logic-based controller to perform the required robot-assisted ankle rehabilitation treatment. Designs of visual haptic interfaces have also been discussed, which will make the treatment interesting, and the subject will be motivated to exert more and regain lost functions rapidly. The complex nature of web-based communication between user and remotely sitting physiotherapy staff has also been discussed. A high-level software architecture appended with robot ensures user-friendly operations. This software is made up of three important components: patient-related database, graphical user interface (GUI), and a library of exercises creating virtual reality-specifically developed for ankle rehabilitation.

  3. Software toolkit for modeling, simulation and control of soft robots

    OpenAIRE

    Coevoet , Eulalie; Morales-Bieze , Thor; Largilliere , Frederick; Zhang , Zhongkai; Thieffry , Maxime; Sanz-Lopez , Mario; Carrez , Bruno; Marchal , Damien; Goury , Olivier; Dequidt , Jeremie; Duriez , Christian

    2017-01-01

    International audience; The technological differences between traditional robotics and soft robotics have an impact on all of the modeling tools generally in use, including direct kinematics and inverse models, Jacobians, and dynamics. Due to the lack of precise modeling and control methods for soft robots, the promising concepts of using such design for complex applications (medicine, assistance, domestic robotics...) cannot be practically implemented. This paper presents a first unified sof...

  4. Navigation Algorithm Using Fuzzy Control Method in Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Cviklovič Vladimír

    2016-03-01

    Full Text Available The issue of navigation methods is being continuously developed globally. The aim of this article is to test the fuzzy control algorithm for track finding in mobile robotics. The concept of an autonomous mobile robot EN20 has been designed to test its behaviour. The odometry navigation method was used. The benefits of fuzzy control are in the evidence of mobile robot’s behaviour. These benefits are obtained when more physical variables on the base of more input variables are controlled at the same time. In our case, there are two input variables - heading angle and distance, and two output variables - the angular velocity of the left and right wheel. The autonomous mobile robot is moving with human logic.

  5. The development of radiation hardened robot for nuclear facility - Development of embedded controller for hydraulic robot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Kook; Kim, Jae Kwon [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    We designed and implemented a reliable hierarchical control system for hydraulic robots for nuclear power plant maintenance. In hazardous environments such as nuclear power plants, robot systems or automated equipment should be used instead of human being for maintenance and repair. Such robot should guarantee high reliability in hazardous environments such as high radiation or high temperature. The overall system is composed of three hierarchical subsystems: i) supervisory controller in safe zone for operator interaction with monitoring and commanding and graphic user interface, ii) master controller in semi-hazardous zone for control function, and iii) slave controller in hazardous zone for sensing and actuation. These subsystems are connected with suitable communication channels: a) master-slave communication channel implemented with CAN (Control Area Network) and b) supervisory-master communication with Ethernet. The master and the slave controllers construct a feedback closed-loop control system. In order to improve reliability, the slave controller is duplicated using cold-standby scheme, and master-slave communication channel is also duplicated. The overall system is implemented harmonically, and we obtained fast control interval of 1msec, which is sufficient for high-performance real-time control. 12 refs., 58 figs., 13 tabs. (Author)

  6. Fuzzy Control of Robotic Arm

    Science.gov (United States)

    Lin, Kyaw Kyaw; Soe, Aung Kyaw; Thu, Theint Theint

    2008-10-01

    This research work investigates a Self-Tuning Proportional Derivative (PD) type Fuzzy Logic Controller (STPDFLC) for a two link robot system. The proposed scheme adjusts on-line the output Scaling Factor (SF) by fuzzy rules according to the current trend of the robot. The rule base for tuning the output scaling factor is defined on the error (e) and change in error (de). The scheme is also based on the fact that the controller always tries to manipulate the process input. The rules are in the familiar if-then format. All membership functions for controller inputs (e and de) and controller output (UN) are defined on the common interval [-1,1]; whereas the membership functions for the gain updating factor (α) is defined on [0,1]. There are various methods to calculate the crisp output of the system. Center of Gravity (COG) method is used in this application due to better results it gives. Performances of the proposed STPDFLC are compared with those of their corresponding PD-type conventional Fuzzy Logic Controller (PDFLC). The proposed scheme shows a remarkably improved performance over its conventional counterpart especially under parameters variation (payload). The two-link results of analysis are simulated. These simulation results are illustrated by using MATLAB® programming.

  7. SVM-Based Control System for a Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Foudil Abdessemed

    2012-12-01

    Full Text Available Real systems are usually non-linear, ill-defined, have variable parameters and are subject to external disturbances. Modelling these systems is often an approximation of the physical phenomena involved. However, it is from this approximate system of representation that we propose - in this paper - to build a robust control, in the sense that it must ensure low sensitivity towards parameters, uncertainties, variations and external disturbances. The computed torque method is a well-established robot control technique which takes account of the dynamic coupling between the robot links. However, its main disadvantage lies on the assumption of an exactly known dynamic model which is not realizable in practice. To overcome this issue, we propose the estimation of the dynamics model of the nonlinear system with a machine learning regression method. The output of this regressor is used in conjunction with a PD controller to achieve the tracking trajectory task of a robot manipulator. In cases where some of the parameters of the plant undergo a change in their values, poor performance may result. To cope with this drawback, a fuzzy precompensator is inserted to reinforce the SVM computed torque-based controller and avoid any deterioration. The theory is developed and the simulation results are carried out on a two-degree of freedom robot manipulator to demonstrate the validity of the proposed approach.

  8. Adaptive Robot Control – An Experimental Comparison

    Directory of Open Access Journals (Sweden)

    Francesco Alonge

    2012-11-01

    Full Text Available This paper deals with experimental comparison between stable adaptive controllers of robotic manipulators based on Model Based Adaptive, Neural Network and Wavelet -Based control. The above control methods were compared with each other in terms of computational efficiency, need for accurate mathematical model of the manipulator and tracking performances. An original management algorithm of the Wavelet Network control scheme has been designed, with the aim of constructing the net automatically during the trajectory tracking, without the need to tune it to the trajectory itself. Experimental tests, carried out on a planar two link manipulator, show that the Wavelet-Based control scheme, with the new management algorithm, outperforms the conventional Model-Based schemes in the presence of structural uncertainties in the mathematical model of the robot, without pre-training and more efficiently than the Neural Network approach.

  9. Energy-based control for a biologically inspired hexapod robot with rolling locomotion

    Directory of Open Access Journals (Sweden)

    Takuma Nemoto

    2015-04-01

    Full Text Available This paper presents an approach to control rolling locomotion on the level ground with a biologically inspired hexapod robot. For controlling rolling locomotion, a controller which can compensate energy loss with rolling locomotion of the hexapod robot is designed based on its dynamic model. The dynamic model describes the rolling locomotion which is limited to planar one by an assumption that the hexapod robot does not fall down while rolling and influences due to collision and contact with the ground, and it is applied for computing the mechanical energy of the hexapod robot and a plant for a numerical simulation. The numerical simulation of the rolling locomotion on the level ground verifies the effectiveness of the proposed controller. The simulation results show that the hexapod robot can perform the rolling locomotion with the proposed controller. In conclusion, it is shown that the proposed control approach is effective in achieving the rolling locomotion on the level ground.

  10. Force control of a robot for surface contamination detection

    International Nuclear Information System (INIS)

    Petterson, B.J.; Jones, J.F.

    1987-01-01

    A system is under development at Sandia National Laboratories for use in understanding the issues relating to automated robotic handling of spent nuclear fuel shipping casks. The goal of robotic handling is reduction of personnel radiation exposure at the proposed geologic repositories. One of the major technology development areas has been the integration of sensors into the control of the robot system to allow operation in semi-structured environments. In particular, a multiaxis force sensor is used to make robot trajectory corrections based on the contact force between the robot and workpiece. This force feedback system allows contact swipes (smears) to be made on the cask surface in a repeatable manner. 8 refs., 3 figs

  11. Using expectations to monitor robotic progress and recover from problems

    Science.gov (United States)

    Kurup, Unmesh; Lebiere, Christian; Stentz, Anthony; Hebert, Martial

    2013-05-01

    How does a robot know when something goes wrong? Our research answers this question by leveraging expectations - predictions about the immediate future - and using the mismatch between the expectations and the external world to monitor the robot's progress. We use the cognitive architecture ACT-R (Adaptive Control of Thought - Rational) to learn the associations between the current state of the robot and the world, the action to be performed in the world, and the future state of the world. These associations are used to generate expectations that are then matched by the architecture with the next state of the world. A significant mismatch between these expectations and the actual state of the world indicate a problem possibly resulting from unexpected consequences of the robot's actions, unforeseen changes in the environment or unanticipated actions of other agents. When a problem is detected, the recovery model can suggest a number of recovery options. If the situation is unknown, that is, the mismatch between expectations and the world is novel, the robot can use a recovery solution from a set of heuristic options. When a recovery option is successfully applied, the robot learns to associate that recovery option with the mismatch. When the same problem is encountered later, the robot can apply the learned recovery solution rather than using the heuristics or randomly exploring the space of recovery solutions. We present results from execution monitoring and recovery performed during an assessment conducted at the Combined Arms Collective Training Facility (CACTF) at Fort Indiantown Gap.

  12. Intelligence for Human-Assistant Planetary Surface Robots

    Science.gov (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  13. PD-like controller for delayed bilateral teleoperation of wheeled robots

    Science.gov (United States)

    Slawiñski, E.; Mut, V.; Santiago, D.

    2016-08-01

    This paper proposes a proportional derivative (PD)-like controller applied to the delayed bilateral teleoperation of wheeled robots with force feedback in face of asymmetric and varying-time delays. In contrast to bilateral teleoperation of manipulator robots, in these systems, there is a mismatch between the models of the master and slave (mobile robot), problem that is approached in this work, where the system stability is analysed. From this study, it is possible to infer the control parameters, depending on the time delay, necessary to assure stability. Finally, the performance of the delayed teleoperation system is evaluated through tests where a human operator drives a 3D simulator as well as a mobile robot for pushing objects.

  14. Implementación de un control fuzzy para el control cinemático directo en un robot manipulador Implementation of a fuzzy control for the direct kinematic control of a robot manipulator

    Directory of Open Access Journals (Sweden)

    D.A Tibaduiza

    2011-12-01

    Full Text Available En este artículo se muestra el desarrollo e implementación de la lógica difusa como herramienta de control de posición para cada una de las articulaciones de un robot tipo PUMA. Se hace una descripción general del robot y se muestra el cálculo del volumen de trabajo, el cual es usado para la fuzzificación en el desarrollo del controlador. Finalmente es mostrado el desarrollo y la simulación del controlador usando la toolbox fuzzy de Matlab, así como la descripción de una implementación realizada en un PLC.In this article, the development and implementation of a fuzzy logic system as position control tool of each one of the joints in a PUMA robot is shown. A general description, which include general descriptions about the robot as workspace and therefore the development of the strategy of control with the definition of the rules in the fuzzification process is also included. Finally are shown the development and simulation of the controller using the fuzzy control toolbox of Matlab and the description of a implementation in a PLC.

  15. Control of compliant anthropomimetic robot joint

    Directory of Open Access Journals (Sweden)

    Svetozarević Bratislav

    2011-01-01

    Full Text Available In this paper we propose a control strategy for a robot joint which fully mimics the typical human joint structure. The joint drive is based on two actuators (dc motors, agonist and antagonist, acting through compliant tendons and forming a nonlinear multi-input multi-output (MIMO system. At any time, we consider one actuator, the puller, as being responsible for motion control, while the role of the other is to keep its tendon force at some appropriate low level. This human-like and energetically efficient approach requires the control of 'switching', or exchanging roles between actuators. Moreover, an algorithm based on adaptive force reference is used to solve a problem of slacken tendons during the switching and to increase the energy efficiency. This approach was developed and evaluated on increasingly complex robot joint configurations, starting with simple and noncompliant system, and finishing with nonlinear and compliant system.

  16. Reverse control for humanoid robot task recognition.

    Science.gov (United States)

    Hak, Sovannara; Mansard, Nicolas; Stasse, Olivier; Laumond, Jean Paul

    2012-12-01

    Efficient methods to perform motion recognition have been developed using statistical tools. Those methods rely on primitive learning in a suitable space, for example, the latent space of the joint angle and/or adequate task spaces. Learned primitives are often sequential: A motion is segmented according to the time axis. When working with a humanoid robot, a motion can be decomposed into parallel subtasks. For example, in a waiter scenario, the robot has to keep some plates horizontal with one of its arms while placing a plate on the table with its free hand. Recognition can thus not be limited to one task per consecutive segment of time. The method presented in this paper takes advantage of the knowledge of what tasks the robot is able to do and how the motion is generated from this set of known controllers, to perform a reverse engineering of an observed motion. This analysis is intended to recognize parallel tasks that have been used to generate a motion. The method relies on the task-function formalism and the projection operation into the null space of a task to decouple the controllers. The approach is successfully applied on a real robot to disambiguate motion in different scenarios where two motions look similar but have different purposes.

  17. Control method for biped locomotion robots based on ZMP information

    International Nuclear Information System (INIS)

    Kume, Etsuo

    1994-01-01

    The Human Acts Simulation Program (HASP) started as a ten year program of Computing and Information Systems Center (CISC) at Japan Atomic Energy Research Institute (JAERI) in 1987. A mechanical design study of biped locomotion robots for patrol and inspection in nuclear facilities is being performed as an item of the research scope. One of the goals of our research is to design a biped locomotion robot for practical use in nuclear facilities. So far, we have been studying for several dynamic walking patterns. In conventional control methods for biped locomotion robots, the program control is used based on preset walking patterns, so it dose not have the robustness such as a dynamic change of walking pattern. Therefore, a real-time control method based on dynamic information of the robot states is necessary for the high performance of walking. In this study a new control method based on Zero Moment Point (ZMP) information is proposed as one of real-time control methods. The proposed method is discussed and validated based on the numerical simulation. (author)

  18. Monitoring and Controlling an Underwater Robotic Arm

    Science.gov (United States)

    Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.

    2009-01-01

    The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.

  19. DEVELOPMENT OF TRAJECTORY CONTROL SYSTEM FOR THE OMNIDIRECTIONAL MOBILE ROBOT

    Directory of Open Access Journals (Sweden)

    Y. A. Kapitanyuk

    2014-03-01

    Full Text Available The article deals with a trajectory control system development for the omnidirectional mobile robot. This kind of robots gives the possibility to control separately each degree of freedom due to special design of the wheels, which greatly facilitates the solution of the spatial control tasks and makes it possible to focus directly on the development of algorithms. Control law synthesis is based on kinematic model of a solid body on a plane. Desired trajectory is defined as a smooth implicit function in a fixed coordinate system. Procedure of control design is represented by using a differential-geometric method of nonlinear transformation of the original model to the task-oriented form, which describes the longitudinal motion along a trajectory and orthogonal deviation. Proportional controllers with direct compensation of nonlinear terms are synthesized for the transformed model. Main results are represented by nonlinear control algorithms and experimental data. Practical implementation of considered control laws for the Robotino mobile robot by Festo Didactics Company is done for illustration of this approach workability. The cases of straight line motion and movement along a circle are represented as desirable trajectories, and the majority of practical tasks for mobile robots control can be implemented by their combination.

  20. Design, Implementation and Control of a Fish Robot with Undulating Fins

    Directory of Open Access Journals (Sweden)

    Mohsen Siahmansouri

    2011-11-01

    Full Text Available Biomimetic robots can potentially perform better than conventional robots in underwater vehicle designing. This paper describes the design of the propulsion system and depth control of a robotic fish. In this study, inspired by knife fish, we have designed and implemented an undulating fin to produce propulsive force. This undulating fin is a segmental anal fin that produces sinusoidal wave to propel the robot. The relationship between the individual fin segment and phase angles with the overall fin trajectory has also been discussed. This propulsive force can be adjusted and directed for fish robot manoeuvre by a mechanical system with two servomotors. These servomotors regulate the direction and depth of swimming. A wireless remote control system is designed to adjust the servomotors which enables us to control revolution, speed and phase differences of neighbor servomotors of fins. Finally, Field trials are conducted in an outdoor pool to demonstrate the relationship between robotic fish speed and fin parameters like phase difference, the number of phase and undulatory amplitude.

  1. Integrating Robot Task Planning into Off-Line Programming Systems

    DEFF Research Database (Denmark)

    Sun, Hongyan; Kroszynski, Uri

    1988-01-01

    a system architecture for integrated robot task planning. It identifies and describes the components considered necessary for implementation. The focus is on functionality of these elements as well as on the information flow. A pilot implementation of such an integrated system architecture for a robot......The addition of robot task planning in off-line programming systems aims at improving the capability of current state-of-the-art commercially available off-line programming systems, by integrating modeling, task planning, programming and simulation together under one platform. This article proposes...... assembly task is discussed....

  2. SDRE control strategy applied to a nonlinear robotic including drive motor

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Jeferson J. de, E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Tusset, Angelo M., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Janzen, Frederic C., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Piccirillo, Vinicius, E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br; Nascimento, Claudinor B., E-mail: jefersonjl82@gmail.com, E-mail: tusset@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: claudinor@utfpr.edu.br [UTFPR-PONTA GROSSA, PR (Brazil); Balthazar, José M., E-mail: jmbaltha@rc.unesp.br [UNESP-BAURU, SP (Brazil); Brasil, Reyolando M. L. R. da Fonseca, E-mail: reyolando.brasil@ufabc.edu.br [UFABC-SANTO ANDRE, SP (Brazil)

    2014-12-10

    A robotic control design considering all the inherent nonlinearities of the robot-engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State-Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case I: For control positioning, it is only used motor voltage; Case II: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.

  3. ANFIS -Based Navigation for HVAC Service Robot with Image Processing

    International Nuclear Information System (INIS)

    Salleh, Mohd Zoolfadli Md; Rashid, Nahrul Khair Alang Md; Mustafah, Yasir Mohd

    2013-01-01

    In this paper, we present an ongoing work on the autonomous navigation of a mobile service robot for Heat, Ventilation and Air Condition (HVAC) ducting. CCD camera mounted on the front-end of our robot is used to analyze the ducts openings (blob analysis) in order to differentiate them from other landmarks (blower fan, air outlets and etc). Distance between the robot and duct openings is measured using ultrasonic sensor. Controller chosen is ANFIS where its architecture accepts three inputs; recognition of duct openings, robot positions and distance while the outputs is maneuver direction (left or right).45 membership functions are created from which produces 46 training epochs. In order to demonstrate the functionality of the system, a working prototype is developed and tested inside HVAC ducting in ROBOCON Lab, IIUM

  4. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    International Nuclear Information System (INIS)

    Al-saedi, Mazin I.; Wu, Huapeng; Handroos, Heikki

    2014-01-01

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  5. Intelligent controller of a flexible hybrid robot machine for ITER assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Al-saedi, Mazin I., E-mail: mazin.al-saedi@lut.fi; Wu, Huapeng; Handroos, Heikki

    2014-10-15

    Highlights: • Studying flexible multibody dynamic of hybrid parallel robot. • Investigating fuzzy-PD controller to control a hybrid flexible hydraulically driven robot. • Investigating ANFIS-PD controller to control a hybrid flexible robot. Compare to traditional PID this method gives better performance. • Using the equilibrium of reaction forces between the parallel and serial parts of hybrid robot to control the serial part hydraulically driven. - Abstract: The assembly and maintenance of International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. To fulfill the tasks in ITER application, this paper presents a hybrid redundant manipulator with four DOFs provided by serial kinematic axes and six DOFs by parallel mechanism. Thus, in machining, to achieve greater end-effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. In this paper, the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two control schemes have been investigated: (1) fuzzy-PID self tuning controller composed of the conventional PID control and with fuzzy logic; (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel robot based on rod position predictions. The obtained results of the fuzzy-PID and ANFIS-PID self tuning controller can reduce more tracking errors than the conventional PID controller. Subsequently, the serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should

  6. Kinematics, dynamics and control design of 4WIS4WID mobile robots

    Directory of Open Access Journals (Sweden)

    Ming-Han Lee

    2015-01-01

    Full Text Available Kinematic and dynamic modelling and corresponding control design of a four-wheel-independent steering and four-wheel-independent driving (4WIS4WID mobile robot are presented in this study. Different from the differential or car-like mobile robot, the 4WIS4WID mobile robot is controlled by four steering and four driving motors, so the control scheme should possess the ability to integrate and manipulate the four independent wheels. A trajectory tracking control scheme is developed for the 4WIS4WID mobile robot, where both non-linear kinematic control and dynamic sliding-mode control are designed. All of the stabilities of the kinematic and dynamic control laws are proved by Lyapunov stability analysis. Finally, the feasibility and validity of the proposed trajectory tracking control scheme are confirmed through computer simulations.

  7. Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot.

    Science.gov (United States)

    Jia, Wenchuan; Huang, Dandan; Luo, Xin; Pu, Huayan; Chen, Xuedong; Bai, Ou

    2012-01-01

    Artificial intelligence and bionic control have been applied in electroencephalography (EEG)-based robot system, to execute complex brain-control task. Nevertheless, due to technical limitations of the EEG decoding, the brain-computer interface (BCI) protocol is often complex, and the mapping between the EEG signal and the practical instructions lack of logic associated, which restrict the user's actual use. This paper presents a strategy that can be used to control a quadruped locomotion robot by user's instinctive action, based on five kinds of movement related neurophysiological signal. In actual use, the user drives or imagines the limbs/wrists action to generate EEG signal to adjust the real movement of the robot according to his/her own motor reflex of the robot locomotion. This method is easy for real use, as the user generates the brain-control signal through the instinctive reaction. By adopting the behavioral control of learning and evolution based on the proposed strategy, complex movement task may be realized by instinctive brain-control.

  8. A review on modeling, identification and servo control of robotic ...

    African Journals Online (AJOL)

    user

    This article reviews modeling, identification, and low level control of the robotic excavator. ... The oil viscosity, oil flow through the spool valves, and variable loading, ..... squares, to identify all the unknown individual parameters for a unmanned ..... Robust low level control of robotic excavation, PhD Thesis, The University of ...

  9. An Interactive Astronaut-Robot System with Gesture Control

    Directory of Open Access Journals (Sweden)

    Jinguo Liu

    2016-01-01

    Full Text Available Human-robot interaction (HRI plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM is employed to recognize hand gestures and particle swarm optimization (PSO algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL have been selected and used to test and validate the performance of the proposed system.

  10. Artificial Intelligence techniques for mission planning for mobile robots

    International Nuclear Information System (INIS)

    Martinez, J.M.; Nomine, J.P.

    1990-01-01

    This work focuses on Spatial Modelization Techniques and on Control Software Architectures, in order to deal efficiently with the Navigation and Perception problems encountered in Mobile Autonomous Robotics. After a brief survey of the current various approaches for these techniques, we expose ongoing simulation works for a specific mission in robotics. Studies in progress used for Spatial Reasoning are based on new approaches combining Artificial Intelligence and Geometrical techniques. These methods deal with the problem of environment modelization using three types of models: geometrical topological and semantic models at different levels. The decision making processes of control are presented as the result of cooperation between a group of decentralized agents that communicate by sending messages. (author)

  11. 12th International Conference on Informatics in Control, Automation and Robotics

    CERN Document Server

    Gusikhin, Oleg; Madani, Kurosh; Sasiadek, Jurek

    2016-01-01

    The present book includes a set of selected extended papers from the 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2014), held in Vienna, Austria, from 1 to 3 September 2014. The conference brought together researchers, engineers and practitioners interested in the application of informatics to Control, Automation and Robotics. Four simultaneous tracks will be held, covering Intelligent Control Systems, Optimization, Robotics, Automation, Signal Processing, Sensors, Systems Modelling and Control, and Industrial Engineering, Production and Management. Informatics applications are pervasive in many areas of Control, Automation and Robotics. ICINCO 2014 received 301 submissions, from 49 countries, in all continents. After a double blind paper review performed by the Program Committee, 20% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, ba...

  12. 12th International Conference on Informatics in Control, Automation and Robotics

    CERN Document Server

    Madani, Kurosh; Gusikhin, Oleg; Sasiadek, Jurek

    2016-01-01

    The present book includes a set of selected extended papers from the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2015), held in Colmar, France, from 21 to 23 July 2015. The conference brought together researchers, engineers and practitioners interested in the application of informatics to Control, Automation and Robotics. Four simultaneous tracks will be held, covering Intelligent Control Systems, Optimization, Robotics, Automation, Signal Processing, Sensors, Systems Modelling and Control, and Industrial Engineering, Production and Management. Informatics applications are pervasive in many areas of Control, Automation and Robotics. ICINCO 2015 received 214 submissions, from 42 countries, in all continents. After a double blind paper review performed by the Program Committee, 14% were accepted as full papers and thus selected for oral presentation. Additional papers were accepted as short papers and posters. A further selection was made after the Conference, based ...

  13. Combination of Robot Simulation with Real-time Monitoring and Control

    Directory of Open Access Journals (Sweden)

    Jianyu YANG

    2014-08-01

    Full Text Available The paper mainly focuses in combining virtual reality based operation simulation with remote real-time monitoring and control method for an experimental robot. A system composition framework was designed and relative arm-wheel experimental robot platform was also built. Virtual robots and two virtual environments were developed. To locate the virtual robot within numerical environments, relative mathematical methods is also discussed, including analytic locating methods for linear motion and self-rotation, as well as linear transformation method with homogeneous matrices for turning motion, in order to decrease division calculations. Several experiments were carried out, trajectory errors were found because of relative slides between the wheel and the floor, during the locating experiments. Writing-monitoring experiments were also performed by programming the robotic arm to write a Chinese character, and the virtual robot in monitoring terminal perfectly followed all the movements. All the experiment results confirmed that virtual environment can not only be used as a good supplement to the traditional video monitoring method, but also offer better control experience during the operation.

  14. A new approach of active compliance control via fuzzy logic control for multifingered robot hand

    Science.gov (United States)

    Jamil, M. F. A.; Jalani, J.; Ahmad, A.

    2016-07-01

    Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.

  15. SMR-CL, A Real-time Control Language for Mobile Robots

    DEFF Research Database (Denmark)

    Andersen, Nils Axel; Ravn, Ole

    2004-01-01

    The paper describes requirements and implementation of a tactical control lan¬guage for mobile robots. Emphasis is given to the real-time issues of the language especially the isolation of the hard real-time and the soft real-time layers of the mobile robot control system. The language may be used...

  16. The cognitive nature of action - functional links between cognitive psychology, movement science, and robotics.

    Science.gov (United States)

    Schack, Thomas; Ritter, Helge

    2009-01-01

    This paper examines the cognitive architecture of human action, showing how it is organized over several levels and how it is built up. Basic action concepts (BACs) are identified as major building blocks on a representation level. These BACs are cognitive tools for mastering the functional demands of movement tasks. Results from different lines of research showed that not only the structure formation of mental representations in long-term memory but also chunk formation in working memory are built up on BACs and relate systematically to movement structures. It is concluded that such movement representations might provide the basis for action implementation and action control in skilled voluntary movements in the form of cognitive reference structures. To simulate action implementation we discuss challenges and issues that arise when we try to replicate complex movement abilities in robots. Among the key issues to be addressed is the question how structured representations can arise during skill acquisition and how the underlying processes can be understood sufficiently succinctly to replicate them on robot platforms. Working towards this goal, we translate our findings in studies of motor control in humans into models that can guide the implementation of cognitive robot architectures. Focusing on the issue of manual action control, we illustrate some results in the context of grasping with a five-fingered anthropomorphic robot hand.

  17. Modelling and testing proxemic behaviour for humanoid robots

    NARCIS (Netherlands)

    Torta, E.; Cuijpers, R.H.; Juola, J.F.; Pol, van der D.

    2012-01-01

    Humanoid robots that share the same space with humans need to be socially acceptable and effective as they interact with people. In this paper we focus our attention on the definition of a behavior-based robotic architecture that (1) allows the robot to navigate safely in a cluttered and dynamically

  18. The psychosocial effects of a companion robot: a randomized controlled trial.

    Science.gov (United States)

    Robinson, Hayley; Macdonald, Bruce; Kerse, Ngaire; Broadbent, Elizabeth

    2013-09-01

    To investigate the psychosocial effects of the companion robot, Paro, in a rest home/hospital setting in comparison to a control group. Randomized controlled trial. Residents were randomized to the robot intervention group or a control group that attended normal activities instead of Paro sessions. Sessions took place twice a week for an hour over 12 weeks. Over the trial period, observations were conducted of residents' social behavior when interacting as a group with the robot. As a comparison, observations were also conducted of all the residents during general activities when the resident dog was or was not present. A residential care facility in Auckland, New Zealand. Forty residents in hospital and rest home care. Residents completed a baseline measure assessing cognitive status, loneliness, depression, and quality of life. At follow-up, residents completed a questionnaire assessing loneliness, depression, and quality of life. During observations, behavior was noted and collated for instances of talking and stroking the dog/robot. In comparison with the control group, residents who interacted with the robot had significant decreases in loneliness over the period of the trial. Both the resident dog and the seal robot made an impact on the social environment in comparison to when neither was present. Residents talked to and touched the robot significantly more than the resident dog. A greater number of residents were involved in discussion about the robot in comparison with the resident dog and conversation about the robot occurred more. Paro is a positive addition to this environment and has benefits for older people in nursing home care. Paro may be able to address some of the unmet needs of older people that a resident animal may not, particularly relating to loneliness. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.

  19. Developing Humanoid Robots for Real-World Environments

    Science.gov (United States)

    Stoica, Adrian; Kuhlman, Michael; Assad, Chris; Keymeulen, Didier

    2008-01-01

    Humanoids are steadily improving in appearance and functionality demonstrated in controlled environments. To address the challenges of operation in the real-world, researchers have proposed the use of brain-inspired architectures for robot control, and the use of robot learning techniques that enable the robot to acquire and tune skills and behaviours. In the first part of the paper we introduce new concepts and results in these two areas. First, we present a cerebellum-inspired model that demonstrated efficiency in the sensory-motor control of anthropomorphic arms, and in gait control of dynamic walkers. Then, we present a set of new ideas related to robot learning, emphasizing the importance of developing teaching techniques that support learning. In the second part of the paper we propose the use in robotics of the iterative and incremental development methodologies, in the context of practical task-oriented applications. These methodologies promise to rapidly reach system-level integration, and to early identify system-level weaknesses to focus on. We apply this methodology in a task targeting the automated assembly of a modular structure using HOAP-2. We confirm this approach led to rapid development of a end-to-end capability, and offered guidance on which technologies to focus on for gradual improvement of a complete functional system. It is believed that providing Grand Challenge type milestones in practical task-oriented applications accelerates development. As a meaningful target in short-mid term we propose the 'IKEA Challenge', aimed at the demonstration of autonomous assembly of various pieces of furniture, from the box, following included written/drawn instructions.

  20. A multifunction editor for programming control sequences for a robot based radiopharmaceutical synthesis system

    International Nuclear Information System (INIS)

    Appelquist, G.; Bohm, C.

    1990-01-01

    A Multifunction Editor is a development tool for building control sequences for a robotized production system for positron emitting radiopharmaceuticals. This system consists of SCARA robot and a PC-AT personal computer as a controller together with general and synthesis specific chemistry equipment. The general equipment, which is common for many synthesis, is fixed to the wall of the hotcell, while the specific equipment, dedicated to the given synthesis, is located on a removable tray. The program recognizes commands to move the robot, to control valves and to control the computer screen. From within the editor it is possible to run the control sequence forward or backward to test it and to use the single step feature to debug. The editor commands include insert, replace and delete of commands in the sequence. When programming or editing robot movements the robot may be controlled by the mouse, from the keyboard or from a remote control box. The robot control sequence consists of a succession of stored robot positions. The screen control is used to display dynamic flowchart diagrams. This is achieved by displaying a modified picture on the screen whenever the system state has been changed significantly

  1. Trends in control and decision-making for human-robot collaboration systems

    CERN Document Server

    Zhang, Fumin

    2017-01-01

    This book provides an overview of recent research developments in the automation and control of robotic systems that collaborate with humans. A measure of human collaboration being necessary for the optimal operation of any robotic system, the contributors exploit a broad selection of such systems to demonstrate the importance of the subject, particularly where the environment is prone to uncertainty or complexity. They show how such human strengths as high-level decision-making, flexibility, and dexterity can be combined with robotic precision, and ability to perform task repetitively or in a dangerous environment. The book focuses on quantitative methods and control design for guaranteed robot performance and balanced human experience. Its contributions develop and expand upon material presented at various international conferences. They are organized into three parts covering: one-human–one-robot collaboration; one-human–multiple-robot collaboration; and human–swarm collaboration. Individual topic ar...

  2. Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots.

    Science.gov (United States)

    Chikhaoui, Mohamed Taha; Benouhiba, Amine; Rougeot, Patrick; Rabenorosoa, Kanty; Ouisse, Morvan; Andreff, Nicolas

    2018-04-30

    Dexterity of robots is highly required when it comes to integration for medical applications. Major efforts have been conducted to increase the dexterity at the distal parts of medical robots. This paper reports on developments toward integrating biocompatible conducting polymers (CP) into inherently dexterous concentric tube robot paradigm. In the form of tri-layer thin structures, CP micro-actuators produce high strains while requiring less than 1 V for actuation. Fabrication, characterization, and first integrations of such micro-actuators are presented. The integration is validated in a preliminary telescopic soft robot prototype with qualitative and quantitative performance assessment of accurate position control for trajectory tracking scenarios. Further, CP micro-actuators are integrated to a laser steering system in a closed-loop control scheme with displacements up to 5 mm. Our first developments aim toward intracorporeal medical robotics, with miniaturized actuators to be embedded into continuum robots.

  3. Robot soccer anywhere: achieving persistent autonomous navigation, mapping, and object vision tracking in dynamic environments

    Science.gov (United States)

    Dragone, Mauro; O'Donoghue, Ruadhan; Leonard, John J.; O'Hare, Gregory; Duffy, Brian; Patrikalakis, Andrew; Leederkerken, Jacques

    2005-06-01

    The paper describes an ongoing effort to enable autonomous mobile robots to play soccer in unstructured, everyday environments. Unlike conventional robot soccer competitions that are usually held on purpose-built robot soccer "fields", in our work we seek to develop the capability for robots to demonstrate aspects of soccer-playing in more diverse environments, such as schools, hospitals, or shopping malls, with static obstacles (furniture) and dynamic natural obstacles (people). This problem of "Soccer Anywhere" presents numerous research challenges including: (1) Simultaneous Localization and Mapping (SLAM) in dynamic, unstructured environments, (2) software control architectures for decentralized, distributed control of mobile agents, (3) integration of vision-based object tracking with dynamic control, and (4) social interaction with human participants. In addition to the intrinsic research merit of these topics, we believe that this capability would prove useful for outreach activities, in demonstrating robotics technology to primary and secondary school students, to motivate them to pursue careers in science and engineering.

  4. Repetitive motion planning and control of redundant robot manipulators

    CERN Document Server

    Zhang, Yunong

    2013-01-01

    Repetitive Motion Planning and Control of Redundant Robot Manipulators presents four typical motion planning schemes based on optimization techniques, including the fundamental RMP scheme and its extensions. These schemes are unified as quadratic programs (QPs), which are solved by neural networks or numerical algorithms. The RMP schemes are demonstrated effectively by the simulation results based on various robotic models; the experiments applying the fundamental RMP scheme to a physical robot manipulator are also presented. As the schemes and the corresponding solvers presented in the book have solved the non-repetitive motion problems existing in redundant robot manipulators, it is of particular use in applying theoretical research based on the quadratic program for redundant robot manipulators in industrial situations. This book will be a valuable reference work for engineers, researchers, advanced undergraduate and graduate students in robotics fields. Yunong Zhang is a professor at The School of Informa...

  5. Control of walking robots using virtual springs

    NARCIS (Netherlands)

    van Oort, Gijs; Stramigioli, Stefano; Gevers, M.; Sepulchre, R.

    2009-01-01

    At the Control Engineering group of the University of Twente, we are conducting research on control of bipedal robots. In our search for robust and energy efficient control, we are making extensive use of simulation. In order to facil- itate the development of algorithms, we want to design con-

  6. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    Science.gov (United States)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  7. Novel Approach to Control of Robotic Hand Using Flex Sensors

    Directory of Open Access Journals (Sweden)

    Sandesh R.S

    2014-05-01

    Full Text Available This paper discuss about novel design approach to control of a robotic hand using flex sensors which indicates a biomechatronic multi fingered robotic hand. This robotic hand consists of base unit, upper arm, lower arm, palm and five fingers. The aim is to develop an anthropomorphic five fingered robotic hand. The proposed design illustrates the use of 5 micro DC motors with 9 Degrees of Freedom (DOF.Each finger is controlled independently. Further three extra motors were used for the control of wrist elbow and base movement. The study of the DC motor is being carried out using the transfer function model for constant excitation. The micro DC motor performance was analyzed using MATLAB simulation environment. The whole system is implemented using flex sensors. The flex sensors placed on the human hand gloves appear as if they look like real human hand.  89v51 microcontroller was used for all the controlling actions along with RF transmitter/receiver .The performance of the system has been conducted experimentally and studied.

  8. Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control

    Science.gov (United States)

    Zhou, Jiawang; Zhou, Zude; Ai, Qingsong

    As an auxiliary treatment, the 6-DOF parallel robot plays an important role in lower limb rehabilitation. In order to improve the efficiency and flexibility of the lower limb rehabilitation training, this paper studies the impedance controller based on the position control. A nonsingular terminal sliding mode control is developed to ensure the trajectory tracking precision and in contrast to traditional PID control strategy in the inner position loop, the system will be more stable. The stability of the system is proved by Lyapunov function to guarantee the convergence of the control errors. Simulation results validate the effectiveness of the target impedance model and show that the parallel robot can adjust gait trajectory online according to the human-machine interaction force to meet the gait request of patients, and changing the impedance parameters can meet the demands of different stages of rehabilitation training.

  9. Cloud-Enhanced Robotic System for Smart City Crowd Control

    Directory of Open Access Journals (Sweden)

    Akhlaqur Rahman

    2016-12-01

    Full Text Available Cloud robotics in smart cities is an emerging paradigm that enables autonomous robotic agents to communicate and collaborate with a cloud computing infrastructure. It complements the Internet of Things (IoT by creating an expanded network where robots offload data-intensive computation to the ubiquitous cloud to ensure quality of service (QoS. However, offloading for robots is significantly complex due to their unique characteristics of mobility, skill-learning, data collection, and decision-making capabilities. In this paper, a generic cloud robotics framework is proposed to realize smart city vision while taking into consideration its various complexities. Specifically, we present an integrated framework for a crowd control system where cloud-enhanced robots are deployed to perform necessary tasks. The task offloading is formulated as a constrained optimization problem capable of handling any task flow that can be characterized by a Direct Acyclic Graph (DAG. We consider two scenarios of minimizing energy and time, respectively, and develop a genetic algorithm (GA-based approach to identify the optimal task offloading decisions. The performance comparison with two benchmarks shows that our GA scheme achieves desired energy and time performance. We also show the adaptability of our algorithm by varying the values for bandwidth and movement. The results suggest their impact on offloading. Finally, we present a multi-task flow optimal path sequence problem that highlights how the robot can plan its task completion via movements that expend the minimum energy. This integrates path planning with offloading for robotics. To the best of our knowledge, this is the first attempt to evaluate cloud-based task offloading for a smart city crowd control system.

  10. Partially Decentralized Control Architectures for Satellite Formations

    Science.gov (United States)

    Carpenter, J. Russell; Bauer, Frank H.

    2002-01-01

    In a partially decentralized control architecture, more than one but less than all nodes have supervisory capability. This paper describes an approach to choosing the number of supervisors in such au architecture, based on a reliability vs. cost trade. It also considers the implications of these results for the design of navigation systems for satellite formations that could be controlled with a partially decentralized architecture. Using an assumed cost model, analytic and simulation-based results indicate that it may be cheaper to achieve a given overall system reliability with a partially decentralized architecture containing only a few supervisors, than with either fully decentralized or purely centralized architectures. Nominally, the subset of supervisors may act as centralized estimation and control nodes for corresponding subsets of the remaining subordinate nodes, and act as decentralized estimation and control peers with respect to each other. However, in the context of partially decentralized satellite formation control, the absolute positions and velocities of each spacecraft are unique, so that correlations which make estimates using only local information suboptimal only occur through common biases and process noise. Covariance and monte-carlo analysis of a simplified system show that this lack of correlation may allow simplification of the local estimators while preserving the global optimality of the maneuvers commanded by the supervisors.

  11. Method of Grasping Control by Computing Internal and External Impedances for Two Robot Fingers, and Its Application to Admittance Control of a Robot Hand-Arm System

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2015-08-01

    Full Text Available Impedance control is an important technology used in the grasping control of a robot hand. Numerous studies related to grasping algorithms have been reported in recent years, with the contact force between robot fingers and the object to be grasped being primarily discussed in most cases. Generally, a coupling effect occurs between the internal loop of the grasping operation and the external loop of the interaction with the environment when a multi-fingered robot hand is used to complete a contact task. Therefore, a robot hand cannot hold an object using a large external force to complete a wide range of tasks by applying the conventional method. In this paper, the coupling of the internal/external forces occurring in grasping operations using multiple fingers is analysed. Then, improved impedance control based on the previous method is proposed as an effective tool to solve the problem of grasping failure caused by single-finger contact. Furthermore, a method for applying the improved grasping algorithm to the admittance control of a robot hand-arm system is also proposed. The proposed method divides the impedance effect into the grasping control of the hand and the cooperative control of the arm, so that expanding the task space and increasing the flexibility of impedance adjustment can be achieved. Experiments were conducted to demonstrate the effectiveness of the proposed method.

  12. Processes for an Architecture of Volume

    DEFF Research Database (Denmark)

    Mcgee, Wes; Feringa, Jelle; Søndergaard, Asbjørn

    2013-01-01

    This paper addresses both the architectural, conceptual motivations and the tools and techniques necessary for the digital production of an architecture of volume. The robotic manufacturing techniques of shaping volumetric materials by hot wire and abrasive wire cutting are discussed through...

  13. Control of articulated snake robot under dynamic active constraints.

    Science.gov (United States)

    Kwok, Ka-Wai; Vitiello, Valentina; Yang, Guang-Zhong

    2010-01-01

    Flexible, ergonomically enhanced surgical robots have important applications to transluminal endoscopic surgery, for which path-following and dynamic shape conformance are essential. In this paper, kinematic control of a snake robot for motion stabilisation under dynamic active constraints is addressed. The main objective is to enable the robot to track the visual target accurately and steadily on deforming tissue whilst conforming to pre-defined anatomical constraints. The motion tracking can also be augmented with manual control. By taking into account the physical limits in terms of maximum frequency response of the system (manifested as a delay between the input of the manipulator and the movement of the end-effector), we show the importance of visual-motor synchronisation for performing accurate smooth pursuit movements. Detailed user experiments are performed to demonstrate the practical value of the proposed control mechanism.

  14. Active Tension Control for WT Wheelchair Robot by Using a Novel Control Law for Holonomic or Nonholonomic Systems

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2013-01-01

    Full Text Available Interactional characteristics between WT wheelchair robot and stair environment are analyzed, and possible patterns of WT wheelchair robot during the stair-climbing process are summarized, with the criteria of the wheelchair robot for determining the pattern proposed. Aiming at WT wheelchair robot's complicated mechanism with holonomic constraints and combined with the computed torque method, a novel control law that is called active tension control is presented for holonomic or nonholonomic robotic systems, by which the wheelchair robot with a holonomic or nonholonomic mechanism can track the reference input of the constraint forces of holonomic or nonholonomic constraints as well as tracking the reference input of the generalized coordinate of each joint. A stateflow module of Matlab is used to simulate the entire stair-climbing process for WT wheelchair robot. A comparison of output curve with the reference input curve of each joint is made, with the effectiveness of the presented control law verified.

  15. Automating the Incremental Evolution of Controllers for Physical Robots.

    Science.gov (United States)

    Faíña, Andrés; Jacobsen, Lars Toft; Risi, Sebastian

    2017-01-01

    Evolutionary robotics is challenged with some key problems that must be solved, or at least mitigated extensively, before it can fulfill some of its promises to deliver highly autonomous and adaptive robots. The reality gap and the ability to transfer phenotypes from simulation to reality constitute one such problem. Another lies in the embodiment of the evolutionary processes, which links to the first, but focuses on how evolution can act on real agents and occur independently from simulation, that is, going from being, as Eiben, Kernbach, & Haasdijk [2012, p. 261] put it, "the evolution of things, rather than just the evolution of digital objects.…" The work presented here investigates how fully autonomous evolution of robot controllers can be realized in hardware, using an industrial robot and a marker-based computer vision system. In particular, this article presents an approach to automate the reconfiguration of the test environment and shows that it is possible, for the first time, to incrementally evolve a neural robot controller for different obstacle avoidance tasks with no human intervention. Importantly, the system offers a high level of robustness and precision that could potentially open up the range of problems amenable to embodied evolution.

  16. Fiscal 2000 achievement report on the venture business assisting type regional consortium - Core industry creation type. Research and development of polisher robot system using intelligent force control; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Intelligent ryoku seigyo wo mochiita kenma robot system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The effort aims to automatize the manufacture of wooden furniture by robotizing the polishing work in the field of wooden furniture manufacturing, making use of the seeds provided by intelligent force control technologies. The intelligent force control technologies ('Delicate control of force for the open architecture type industrial robot' and 'Method for target orbit generation not requiring joystick teaching') of Saga University and the interior laboratory of Fukuoka Prefectural Industrial Research Institute are evolved and applied, and are integrated with the 3-dimensional object modelling technology developed by the mechanical and electronic laboratory, Fukuoka Prefectural Industrial Research Institute, and the CAD (computer aided design) data conversion technology developed by ASA Systems Inc. The result was a polisher robot system experimentally fabricated to satisfy the need of an automated polishing process in the wooden furniture manufacturing industry. The robot was tested, and achieved a surface coarseness level of 5{mu}m or less. As for the manufacturing rate, it attained a rate of approximately 100mm/s which was two times higher than the rate to be expected from a skilled worker. (NEDO)

  17. Quasi-dynamic walk of a quadruped locomotion robot using optimal tracking control

    International Nuclear Information System (INIS)

    Uchida, Hiroaki; Nonami, Kenzo; Chiba, Yasunori; Koyama, Kakutaro.

    1994-01-01

    Recently, many research works of quadruped locomotion robots, which are considered to be operable on irregular terrain, have been carried out. In the case of realizing ideal motion control of the quadruped locomotion robot, it is assumed that hierarchical cooperative control consisting of decentralized control and centralized control is desirable. In the case that the locomotion robot moves at high speed, it is impossible to follow the desired trajectory because using only the feedback control method includes time delay. It is known that feedforward control input is valid for such motion control. In this paper, decentralized control is realized to apply optimal tracking control using feedforward control input to the quadruped locomotion robot, as the first step. As a result, it is determined that the angle variation of the foot and the stride applying optimal tracking control input are large compared with using only feedback control. It is verified that feedforward control input is useful to control the trajectory of the tip of the foot in high speed locomotion. (author)

  18. Recommendations for cask features for robotic handling from the Advanced Handling Technology Project

    International Nuclear Information System (INIS)

    Drotning, W.

    1991-02-01

    This report describes the current status and recent progress in the Advanced Handling Technology Project (AHTP) initiated to explore the use of advanced robotic systems and handling technologies to perform automated cask handling operations at radioactive waste handling facilities, and to provide guidance to cask designers on the impact of robotic handling on cask design. Current AHTP tasks have developed system mock-ups to investigate robotic manipulation of impact limiters and cask tiedowns. In addition, cask uprighting and transport, using computer control of a bridge crane and robot, were performed to demonstrate the high speed cask transport operation possible under computer control. All of the current AHTP tasks involving manipulation of impact limiters and tiedowns require robotic operations using a torque wrench. To perform these operations, a pneumatic torque wrench and control system were integrated into the tool suite and control architecture of the gantry robot. The use of captured fasteners is briefly discussed as an area where alternative cask design preferences have resulted from the influence of guidance for robotic handling vs traditional operations experience. Specific robotic handling experiences with these system mock-ups highlight a number of continually recurring design principles: (1) robotic handling feasibility is improved by mechanical designs which emphasize operation with limited dexterity in constrained workspaces; (2) clearances, tolerances, and chamfers must allow for operations under actual conditions with consideration for misalignment and imprecise fixturing; (3) successful robotic handling is enhanced by including design detail in representations for model-based control; (4) robotic handling and overall quality assurance are improved by designs which eliminate the use of loose, disassembled parts. 8 refs., 15 figs

  19. Distributed multi-robot sensing and tracking: a behavior-based approach

    International Nuclear Information System (INIS)

    Parker, L.E.

    1995-01-01

    An important issue that arises in the automation of many large-scale surveillance and reconnaissance tasks is that of tracking the movements of (or maintaining passive contact with) objects navigating in a bounded area of interest. Oftentimes in these problems, the area to be monitored will move over time or will not permit fixed sensors, thus requiring a team of mobile sensors -- or robots -- to monitor the area collectively. In these situations, the robots must not only have mechanisms for determining how to track objects and how to fuse information from neighboring robots, but they must also have distributed control strategies for ensuring that the entire area of interest is continually covered to the greatest extent possible. This paper focuses on the distributed control issue by describing a proposed decentralized control mechanism that allows a team of robots to collectively track and monitor objects in an uncluttered area of interest. The approach is based upon an extension to the ALLIANCE behavior-based architecture that generalizes from the domain of loosely-coupled, independent applications to the domain of strongly cooperative applications, in which the action selection of a robot is dependent upon the actions selected by its teammates. We conclude the paper by describing our ongoing implementation of the proposed approach on a team of four mobile robots

  20. Distributed multi-robot sensing and tracking: a behavior-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Parker, L.E.

    1995-12-31

    An important issue that arises in the automation of many large-scale surveillance and reconnaissance tasks is that of tracking the movements of (or maintaining passive contact with) objects navigating in a bounded area of interest. Oftentimes in these problems, the area to be monitored will move over time or will not permit fixed sensors, thus requiring a team of mobile sensors -- or robots -- to monitor the area collectively. In these situations, the robots must not only have mechanisms for determining how to track objects and how to fuse information from neighboring robots, but they must also have distributed control strategies for ensuring that the entire area of interest is continually covered to the greatest extent possible. This paper focuses on the distributed control issue by describing a proposed decentralized control mechanism that allows a team of robots to collectively track and monitor objects in an uncluttered area of interest. The approach is based upon an extension to the ALLIANCE behavior-based architecture that generalizes from the domain of loosely-coupled, independent applications to the domain of strongly cooperative applications, in which the action selection of a robot is dependent upon the actions selected by its teammates. We conclude the paper by describing our ongoing implementation of the proposed approach on a team of four mobile robots.