WorldWideScience

Sample records for rnai-mediated c-rel silencing

  1. Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing.

    Science.gov (United States)

    Gu, Keyu; Tian, Dongsheng; Mao, Huizhu; Wu, Lifang; Yin, Zhongchao

    2015-10-08

    Jatropha curcas L. is a potential biofuel plant and its seed oil is suitable for biodiesel production. Despite this promising application, jatropha seeds contain two major toxic components, namely phorbol esters and curcins. These compounds would reduce commercial value of seed cake and raise safety and environment concerns on jatropha plantation and processing. Curcins are Type I ribosome inactivating proteins. Several curcin genes have been identified in the jatropha genome. Among which, the Curcin 1 (C1) gene is identified to be specifically expressed in endosperm, whereas the Curcin 2A (C2A) is mainly expressed in young leaves. A marker-free RNAi construct carrying a β-estradiol-regulated Cre/loxP system and a C1 promoter-driven RNAi cassette for C1 gene was made and used to generate marker-free transgenic RNAi plants to specifically silence the C1 gene in the endosperm of J. curcas. Plants of transgenic line L1, derived from T0-1, carry two copies of marker-free RNAi cassette, whereas plants of L35, derived from T0-35, harbored one copy of marker-free RNAi cassette and three copies of closely linked and yet truncated Hpt genes. The C1 protein content in endosperm of L1 and L35 seeds was greatly reduced or undetectable, while the C2A proteins in young leaves of T0-1 and T0-35 plants were unaffected. In addition, the C1 mRNA transcripts were undetectable in the endosperm of T3 seeds of L1 and L35. The results demonstrated that the expression of the C1 gene was specifically down-regulated or silenced by the double-stranded RNA-mediated RNA interference generated from the RNAi cassette. The C1 promoter-driven RNAi cassette for the C1 gene in transgenic plants was functional and heritable. Both C1 transcripts and C1 proteins were greatly down-regulated or silenced in the endosperm of transgenic J. curcas. The marker-free transgenic plants and curcin-deficient seeds developed in this study provided a solution for the toxicity of curcins in jatropha seeds and

  2. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Tatiana I Novobrantseva

    2012-01-01

    Full Text Available Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP for durable and potent in vivo RNA interference (RNAi-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA. In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

  3. Decreasing erucic acid level by RNAi-mediated silencing of fatty ...

    African Journals Online (AJOL)

    To develop low level of erucic acid in rapeseeds by intron-spliced hairpin RNA, an inverted repeat unit of a partial BnFAE1.1 gene interrupted by a spliceable intron ... In conclusion, the expression of endogenous BnFAE1.1 was efficiently silenced by the designed RNAi silencer, causing a significant down-regulation in the ...

  4. RNAi-based silencing of genes encoding the vacuolar- ATPase ...

    African Journals Online (AJOL)

    RNAi-based silencing of genes encoding the vacuolar- ATPase subunits a and c in pink bollworm (Pectinophora gossypiella). Ahmed M. A. Mohammed. Abstract. RNA interference is a post- transcriptional gene regulation mechanism that is predominantly found in eukaryotic organisms. RNAi demonstrated a successful ...

  5. RNAi-mediated silencing of enolase confirms its biological importance in Clonorchis sinensis.

    Science.gov (United States)

    Wang, Xiaoyun; Chen, Wenjun; Tian, Yanli; Huang, Yan; Li, Xuerong; Yu, Xinbing

    2014-04-01

    Clonorchis sinensis (C. sinensis) infection is still a common public health problem in freshwater fish consumption areas in Asian countries. More molecular evidence are required to speed up the prevention strategies to control this kind of infectious disease. In the present study, to confirm the biological importance of Csenolase followed by our previous observations of the key metabolic enzyme, we explored the RNA silence effect of the Csenolase-derived RNA interference (RNAi) in C. sinensis. The extramembranous region aa105-226 was selected as the target sequence of RNA silence. Csenolase-derived double strand RNA (dsRNA-Csenolase, 366 bp) was synthetized and delivered into C. sinensis by soaking approach. The penetration of dsRNA into adult worms and metacercariae was tracked using fluorescently labeled RNA. Western blotting and qRT-PCR experiments were performed to determine dsRNA-Csenolase-silencing effect. Our results showed that, after incubating for 120 h, dsRNA-Csenolase could effectively target and downregulate the expression of Csenolase in both adult worms (P sinensis adult worms (P sinensis, allowing further applications in identifying functional genes in C. sinensis.

  6. Autoantigen La promotes efficient RNAi, antiviral response, and transposon silencing by facilitating multiple-turnover RISC catalysis.

    Science.gov (United States)

    Liu, Ying; Tan, Huiling; Tian, Hui; Liang, Chunyang; Chen, She; Liu, Qinghua

    2011-11-04

    The effector of RNA interference (RNAi) is the RNA-induced silencing complex (RISC). C3PO promotes the activation of RISC by degrading the Argonaute2 (Ago2)-nicked passenger strand of duplex siRNA. Active RISC is a multiple-turnover enzyme that uses the guide strand of siRNA to direct the Ago2-mediated sequence-specific cleavage of complementary mRNA. How this effector step of RNAi is regulated is currently unknown. Here, we used the human Ago2 minimal RISC system to purify Sjögren's syndrome antigen B (SSB)/autoantigen La as an activator of the RISC-mediated mRNA cleavage activity. Our reconstitution studies showed that La could promote multiple-turnover RISC catalysis by facilitating the release of cleaved mRNA from RISC. Moreover, we demonstrated that La was required for efficient RNAi, antiviral defense, and transposon silencing in vivo. Taken together, the findings of C3PO and La reveal a general concept that regulatory factors are required to remove Ago2-cleaved products to assemble or restore active RISC. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway*

    Science.gov (United States)

    Foda, Bardees M.; Singh, Upinder

    2015-01-01

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5′-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683

  8. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway.

    Science.gov (United States)

    Foda, Bardees M; Singh, Upinder

    2015-08-21

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Assessment of RNAi-induced silencing in banana (Musa spp.).

    Science.gov (United States)

    Dang, Tuong Vi T; Windelinckx, Saskia; Henry, Isabelle M; De Coninck, Barbara; Cammue, Bruno P A; Swennen, Rony; Remy, Serge

    2014-09-18

    In plants, RNA- based gene silencing mediated by small RNAs functions at the transcriptional or post-transcriptional level to negatively regulate target genes, repetitive sequences, viral RNAs and/or transposon elements. Post-transcriptional gene silencing (PTGS) or the RNA interference (RNAi) approach has been achieved in a wide range of plant species for inhibiting the expression of target genes by generating double-stranded RNA (dsRNA). However, to our knowledge, successful RNAi-application to knock-down endogenous genes has not been reported in the important staple food crop banana. Using embryogenic cell suspension (ECS) transformed with ß-glucuronidase (GUS) as a model system, we assessed silencing of gusAINT using three intron-spliced hairpin RNA (ihpRNA) constructs containing gusAINT sequences of 299-nt, 26-nt and 19-nt, respectively. Their silencing potential was analysed in 2 different experimental set-ups. In the first, Agrobacterium-mediated co-transformation of banana ECS with a gusAINT containing vector and an ihpRNA construct resulted in a significantly reduced GUS enzyme activity 6-8 days after co-cultivation with either the 299-nt and 19-nt ihpRNA vectors. In the second approach, these ihpRNA constructs were transferred to stable GUS-expressing ECS and their silencing potential was evaluated in the regenerated in vitro plants. In comparison to control plants, transgenic plants transformed with the 299-nt gusAINT targeting sequence showed a 4.5 fold down-regulated gusA mRNA expression level, while GUS enzyme activity was reduced by 9 fold. Histochemical staining of plant tissues confirmed these findings. Northern blotting used to detect the expression of siRNA in the 299-nt ihpRNA vector transgenic in vitro plants revealed a negative relationship between siRNA expression and GUS enzyme activity. In contrast, no reduction in GUS activity or GUS mRNA expression occurred in the regenerated lines transformed with either of the two gusAINT oligo target

  10. A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System.

    Science.gov (United States)

    Pompey, Justine M; Foda, Bardees; Singh, Upinder

    2015-01-01

    Dicer enzymes process double-stranded RNA (dsRNA) into small RNAs that target gene silencing through the RNA interference (RNAi) pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway.

  11. A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System.

    Directory of Open Access Journals (Sweden)

    Justine M Pompey

    Full Text Available Dicer enzymes process double-stranded RNA (dsRNA into small RNAs that target gene silencing through the RNA interference (RNAi pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway.

  12. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-01-01

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe

  13. RNA-mediated gene silencing in Candida albicans: inhibition of hyphae formation by use of RNAi technology.

    Science.gov (United States)

    Moazeni, Maryam; Khoramizadeh, Mohammad Reza; Kordbacheh, Parivash; Sepehrizadeh, Zargham; Zeraati, Hojat; Noorbakhsh, Fatemeh; Teimoori-Toolabi, Ladan; Rezaie, Sassan

    2012-09-01

    The introduction of RNA silencing machinery in fungi has led to the promising application of RNAi methodology to knock down essential vital factor or virulence factor genes in the microorganisms. Efg1p is required for development of a true hyphal growth form which is known to be essential for interactions with human host cells and for the yeast's pathogenesis. In this paper, we describe the development of a system for presenting and studying the RNAi function on the EFG1 gene in C. albicans. The 19-nucleotide siRNA was designed on the basis of the cDNA sequence of the EFG1 gene in C. albicans and transfection was performed by use of a modified-PEG/LiAc method. To investigate EFG1 gene silencing in siRNA-treated cells, the yeasts were grown in human serum; to induce germ tubes a solid medium was used with the serum. Quantitative changes in expression of the EFG1 gene were analyzed by measuring the cognate EFG1 mRNA level by use of a quantitative real-time RT-PCR assay. Compared with the positive control, true hyphae formation was significantly reduced by siRNA at concentrations of 1 μM, 500 nM, and 100 nM (P < 0.05). In addition, siRNA at a concentration of 1 μM was revealed to inhibit expression of the EFG1 gene effectively (P < 0.05). On the basis of the potential of post-transcriptional gene silencing to control the expression of specific genes, these techniques may be regarded as promising means of drug discovery, with applications in biomedicine and functional genomics analysis.

  14. 4'- C -Methoxy-2-deoxy-2'-fluoro Modified Ribonucleotides Improve Metabolic Stability and Elicit Efficient RNAi-Mediated Gene Silencing

    Energy Technology Data Exchange (ETDEWEB)

    Malek-Adamian, Elise; Guenther, Dale C.; Matsuda, Shigeo; Martínez-Montero, Saúl; Zlatev, Ivan; Harp, Joel; Patrascu, Mihai Burai; Foster, Donald J.; Fakhoury, Johans; Perkins, Lydia; Moitessier, Nicolas; Manoharan, Rajar M.; Taneja, Nate; Bisbe, Anna; Charisse, Klaus; Maier, Martin; Rajeev, Kallanthottathil G.; Egli, Martin; Manoharan, Muthiah; Damha, Masad J. (McGill); (Alnylam Pharm.); (Vanderbilt)

    2017-10-06

    We designed novel 4'-modified 2'-deoxy-2'-fluorouridine (2'-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4'-C-methoxy (4'-OMe) as the alpha (C4'α) or beta (C4'β) epimers. The C4'α epimer was synthesized by a stereoselective route in six steps; however, both α and β epimers could be obtained by a nonstereoselective approach starting from 2'-F U. 1H NMR analysis and computational investigation of the α-epimer revealed that the 4'-OMe imparts a conformational bias toward the North-East sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects. The α-epimer generally conceded similar thermal stability as unmodified nucleotides, whereas the β-epimer led to significant destabilization. Both 4'-OMe epimers conferred increased nuclease resistance, which can be explained by the close proximity between 4'-OMe substituent and the vicinal 5'- and 3'-phosphate group, as seen in the X-ray crystal structure of modified RNA. siRNAs containing several C4'α-epimer monomers in the sense or antisense strands triggered RNAi-mediated gene silencing with efficiencies comparable to that of 2'-F U.

  15. The rde-1 gene, RNA interference, and transposon silencing in C. elegans.

    Science.gov (United States)

    Tabara, H; Sarkissian, M; Kelly, W G; Fleenor, J; Grishok, A; Timmons, L; Fire, A; Mello, C C

    1999-10-15

    Double-stranded (ds) RNA can induce sequence-specific inhibition of gene function in several organisms. However, both the mechanism and the physiological role of the interference process remain mysterious. In order to study the interference process, we have selected C. elegans mutants resistant to dsRNA-mediated interference (RNAi). Two loci, rde-1 and rde-4, are defined by mutants strongly resistant to RNAi but with no obvious defects in growth or development. We show that rde-1 is a member of the piwi/sting/argonaute/zwille/eIF2C gene family conserved from plants to vertebrates. Interestingly, several, but not all, RNAi-deficient strains exhibit mobilization of the endogenous transposons. We discuss implications for the mechanism of RNAi and the possibility that one natural function of RNAi is transposon silencing.

  16. RNAi-mediated Gene Silencing of Mutant Myotilin Improves Myopathy in LGMD1A Mice

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2014-01-01

    Full Text Available Recent progress suggests gene therapy may one day be an option for treating some forms of limb girdle muscular dystrophy (LGMD. Nevertheless, approaches targeting LGMD have so far focused on gene replacement strategies for recessive forms of the disease. In contrast, no attempts have been made to develop molecular therapies for any of the eight dominantly inherited forms of LGMD. Importantly, the emergence of RNA interference (RNAi therapeutics in the last decade provided new tools to combat dominantly inherited LGMDs with molecular therapy. In this study, we describe the first RNAi-based, preclinical gene therapy approach for silencing a gene associated with dominant LGMD. To do this, we developed adeno-associated viral vectors (AAV6 carrying designed therapeutic microRNAs targeting mutant myotilin (MYOT, which is the underlying cause of LGMD type 1A (LGMD1A. Our best MYOT-targeted microRNA vector (called miMYOT significantly reduced mutant myotilin mRNA and soluble protein expression in muscles of LGMD1A mice (the TgT57I model both 3 and 9 months after delivery, demonstrating short- and long-term silencing effects. This MYOT gene silencing subsequently decreased deposition of MYOT-seeded intramuscular protein aggregates, which is the hallmark feature of LGMD1A. Histological improvements were accompanied by significant functional correction, as miMYOT-treated animals showed increased muscle weight and improved specific force in the gastrocnemius, which is one of the most severely affected muscles in TgT57I mice and patients with dominant myotilin mutations. These promising results in a preclinical model of LGMD1A support the further development of RNAi-based molecular therapy as a prospective treatment for LGMD1A. Furthermore, this study sets a foundation that may be refined and adapted to treat other dominant LGMD and related disorders.

  17. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice.

    Science.gov (United States)

    Judge, Adam D; Robbins, Marjorie; Tavakoli, Iran; Levi, Jasna; Hu, Lina; Fronda, Anna; Ambegia, Ellen; McClintock, Kevin; MacLachlan, Ian

    2009-03-01

    siRNAs that specifically silence the expression of cancer-related genes offer a therapeutic approach in oncology. However, it remains critical to determine the true mechanism of their therapeutic effects. Here, we describe the preclinical development of chemically modified siRNA targeting the essential cell-cycle proteins polo-like kinase 1 (PLK1) and kinesin spindle protein (KSP) in mice. siRNA formulated in stable nucleic acid lipid particles (SNALP) displayed potent antitumor efficacy in both hepatic and subcutaneous tumor models. This was correlated with target gene silencing following a single intravenous administration that was sufficient to cause extensive mitotic disruption and tumor cell apoptosis. Our siRNA formulations induced no measurable immune response, minimizing the potential for nonspecific effects. Additionally, RNAi-specific mRNA cleavage products were found in tumor cells, and their presence correlated with the duration of target mRNA silencing. Histological biomarkers confirmed that RNAi-mediated gene silencing effectively inhibited the target's biological activity. This report supports an RNAi-mediated mechanism of action for siRNA antitumor effects, suggesting a new methodology for targeting other key genes in cancer development with siRNA-based therapeutics.

  18. RNA-Interference Components Are Dispensable for Transcriptional Silencing of the Drosophila Bithorax-Complex

    KAUST Repository

    Cernilogar, Filippo M.

    2013-06-13

    Background:Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated.Principal Findings:Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins.Conclusions:We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila. © 2013 Cernilogar et al.

  19. C. elegans ADARs antagonize silencing of cellular dsRNAs by the antiviral RNAi pathway.

    Science.gov (United States)

    Reich, Daniel P; Tyc, Katarzyna M; Bass, Brenda L

    2018-02-01

    Cellular dsRNAs are edited by adenosine deaminases that act on RNA (ADARs). While editing can alter mRNA-coding potential, most editing occurs in noncoding sequences, the function of which is poorly understood. Using dsRNA immunoprecipitation (dsRIP) and RNA sequencing (RNA-seq), we identified 1523 regions of clustered A-to-I editing, termed editing-enriched regions (EERs), in four stages of Caenorhabditis elegans development, often with highest expression in embryos. Analyses of small RNA-seq data revealed 22- to 23-nucleotide (nt) siRNAs, reminiscent of viral siRNAs, that mapped to EERs and were abundant in adr-1;adr-2 mutant animals. Consistent with roles for these siRNAs in silencing, EER-associated genes (EAGs) were down-regulated in adr-1;adr-2 embryos, and this was dependent on associated EERs and the RNAi factor RDE-4. We observed that ADARs genetically interact with the 26G endogenous siRNA (endo-siRNA) pathway, which likely competes for RNAi components; deletion of factors required for this pathway ( rrf-3 or ergo-1 ) in adr-1;adr-2 mutant strains caused a synthetic phenotype that was rescued by deleting antiviral RNAi factors. Poly(A) + RNA-seq revealed EAG down-regulation and antiviral gene induction in adr-1;adr-2;rrf-3 embryos, and these expression changes were dependent on rde-1 and rde-4 Our data suggest that ADARs restrict antiviral silencing of cellular dsRNAs. © 2018 Reich et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex.

    Directory of Open Access Journals (Sweden)

    Marianna Feretzaki

    2016-03-01

    Full Text Available RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein and Qip1 (a homolog of N. crassa Qip were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor and Fzc28 (a transcription factor are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.

  1. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Science.gov (United States)

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  2. Agrobacterium mediated transient gene silencing (AMTS in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Praveen Guleria

    Full Text Available Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi based Agrobacterium mediated transient gene silencing (AMTS approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1 genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins.RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3 content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes.SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route.

  3. RNAi Mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.).

    Science.gov (United States)

    Patade, Vikas Yadav; Khatri, Deepti; Kumar, Kamal; Grover, Atul; Kumari, Maya; Gupta, Sanjay Mohan; Kumar, Devender; Nasim, Mohammed

    2014-07-01

    Curcin, a type I ribosomal inhibiting protein-RIP, encoded by curcin precursor gene, is a phytotoxin present in Jatropha (Jatropha curcas L.). Here, we report designing of RNAi construct for the curcin precursor gene and further its genetic transformation of Jatropha to reduce its transcript expression. Curcin precursor gene was first cloned from Jatropha strain DARL-2 and part of the gene sequence was cloned in sense and antisense orientation separated by an intron sequence in plant expression binary vector pRI101 AN. The construction of the RNAi vector was confirmed by double digestion and nucleotide sequencing. The vector was then mobilized into Agrobacterium tumefaciens strain GV 3101 and used for tissue culture independent in planta transformation protocol optimized for Jatropha. Germinating seeds were injured with a needle before infection with Agrobacterium and then transferred to sterilized sand medium. The seedlings were grown for 90 days and genomic DNA was isolated from leaves for transgenic confirmation based on real time PCR with NPT II specific dual labeled probe. Result of the transgenic confirmation analysis revealed presence of the gene silencing construct in ten out of 30 tested seedlings. Further, quantitative transcript expression analysis of the curcin precursor gene revealed reduction in the transcript abundance by more than 98% to undetectable level. The transgenic plants are being grown in containment for further studies on reduction in curcin protein content in Jatropha seeds.

  4. RNAi dynamics in Juvenile Fasciola spp. Liver flukes reveals the persistence of gene silencing in vitro.

    Directory of Open Access Journals (Sweden)

    Paul McVeigh

    2014-09-01

    Full Text Available Fasciola spp. liver fluke cause pernicious disease in humans and animals. Whilst current control is unsustainable due to anthelmintic resistance, gene silencing (RNA interference, RNAi has the potential to contribute to functional validation of new therapeutic targets. The susceptibility of juvenile Fasciola hepatica to double stranded (dsRNA-induced RNAi has been reported. To exploit this we probe RNAi dynamics, penetrance and persistence with the aim of building a robust platform for reverse genetics in liver fluke. We describe development of standardised RNAi protocols for a commercially-available liver fluke strain (the US Pacific North West Wild Strain, validated via robust transcriptional silencing of seven virulence genes, with in-depth experimental optimisation of three: cathepsin L (FheCatL and B (FheCatB cysteine proteases, and a σ-class glutathione transferase (FheσGST.Robust transcriptional silencing of targets in both F. hepatica and Fasciola gigantica juveniles is achievable following exposure to long (200-320 nt dsRNAs or 27 nt short interfering (siRNAs. Although juveniles are highly RNAi-susceptible, they display slower transcript and protein knockdown dynamics than those reported previously. Knockdown was detectable following as little as 4h exposure to trigger (target-dependent and in all cases silencing persisted for ≥25 days following long dsRNA exposure. Combinatorial silencing of three targets by mixing multiple long dsRNAs was similarly efficient. Despite profound transcriptional suppression, we found a significant time-lag before the occurrence of protein suppression; FheσGST and FheCatL protein suppression were only detectable after 9 and 21 days, respectively.In spite of marked variation in knockdown dynamics, we find that a transient exposure to long dsRNA or siRNA triggers robust RNAi penetrance and persistence in liver fluke NEJs supporting the development of multiple-throughput phenotypic screens for control

  5. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Directory of Open Access Journals (Sweden)

    Sha Lu

    Full Text Available In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  6. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    Science.gov (United States)

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  7. Thermodynamic control of small RNA-mediated gene silencing

    Directory of Open Access Journals (Sweden)

    Kumiko eUi-Tei

    2012-06-01

    Full Text Available Small interfering RNAs (siRNAs and microRNAs (miRNAs are crucial regulators of posttranscriptional gene silencing, which is referred to as RNA interference (RNAi or RNA silencing. In RNAi, siRNA loaded onto the RNA-induced silencing complex (RISC downregulates target gene expression by cleaving mRNA whose sequence is perfectly complementary to the siRNA guide strand. We previously showed that highly functional siRNAs possessed the following characteristics: A or U residues at nucleotide position 1 measured from the 5’ terminal, four to seven A/Us in positions 1–7, and G or C residues at position 19. This finding indicated that an RNA strand with a thermodynamically unstable 5’ terminal is easily retained in the RISC and functions as a guide strand. In addition, it is clear that unintended genes with complementarities only in the seed region (positions 2–8 are also downregulated by off-target effects. siRNA efficiency is mainly determined by the Watson-Crick base-pairing stability formed between the siRNA seed region and target mRNA. siRNAs with a low seed-target duplex melting temperature (Tm have little or no seed-dependent off-target activity. Thus, important parts of the RNA silencing machinery may be regulated by nucleotide base-pairing thermodynamic stability. A mechanistic understanding of thermodynamic control may enable an efficient target gene-specific RNAi for functional genomics and safe therapeutic applications.

  8. CRISPR/Cas9-mediated knockout of c-REL in HeLa cells results in profound defects of the cell cycle

    Science.gov (United States)

    Ruiz-Perera, Lucia M.; Kadhim, Hussamadin M.; Tertel, Tobias; Henkel, Elena; Hübner, Wolfgang; Huser, Thomas; Kaltschmidt, Barbara; Kaltschmidt, Christian

    2017-01-01

    Cervical cancer is the fourth common cancer in women resulting worldwide in 266,000 deaths per year. Belonging to the carcinomas, new insights into cervical cancer biology may also have great implications for finding new treatment strategies for other kinds of epithelial cancers. Although the transcription factor NF-κB is known as a key player in tumor formation, the relevance of its particular subunits is still underestimated. Here, we applied CRISPR/Cas9n-mediated genome editing to successfully knockout the NF-κB subunit c-REL in HeLa Kyoto cells as a model system for cervical cancers. We successfully generated a homozygous deletion in the c-REL gene, which we validated using sequencing, qPCR, immunocytochemistry, western blot analysis, EMSA and analysis of off-target effects. On the functional level, we observed the deletion of c-REL to result in a significantly decreased cell proliferation in comparison to wildtype (wt) without affecting apoptosis. The impaired proliferative behavior of c-REL-/- cells was accompanied by a strongly decreased amount of the H2B protein as well as a significant delay in the prometaphase of mitosis compared to c-REL+/+ HeLa Kyoto cells. c-REL-/- cells further showed significantly decreased expression levels of c-REL target genes in comparison to wt. In accordance to our proliferation data, we observed the c-REL knockout to result in a significantly increased resistance against the chemotherapeutic agents 5-Fluoro-2’-deoxyuridine (5-FUDR) and cisplatin. In summary, our findings emphasize the importance of c-REL signaling in a cellular model of cervical cancer with direct clinical implications for the development of new treatment strategies. PMID:28767691

  9. RNAi and retroviruses: are they in RISC?

    Science.gov (United States)

    Vasselon, Thierry; Bouttier, Manuella; Saumet, Anne; Lecellier, Charles-Henri

    2013-02-01

    RNA interference (RNAi) is a potent cellular system against viruses in various organisms. Although common traits are observed in plants, insects, and nematodes, the situation observed in mammals appears more complex. In mammalian somatic cells, RNAi is implicated in endonucleolytic cleavage mediated by artificially delivered small interfering RNAs (siRNAs) as well as in translation repression mediated by microRNAs (miRNAs). Because siRNAs and miRNAs recognize viral mRNAs, RNAi inherently limits virus production and participates in antiviral defense. However, several observations made in the cases of hepatitis C virus and retroviruses (including the human immunodeficiency virus and the primate foamy virus) bring evidence that this relationship is much more complex and that certain components of the RNAi effector complex [called the RNA-induced silencing complex (RISC)], such as AGO2, are also required for viral replication. Here, we summarize recent discoveries that have revealed this dual implication in virus biology. We further discuss their potential implications for the functions of RNAi-related proteins, with special emphasis on retrotransposition and genome stability.

  10. The RNAi Inheritance Machinery of Caenorhabditis elegans.

    Science.gov (United States)

    Spracklin, George; Fields, Brandon; Wan, Gang; Becker, Diveena; Wallig, Ashley; Shukla, Aditi; Kennedy, Scott

    2017-07-01

    Gene silencing mediated by dsRNA (RNAi) can persist for multiple generations in Caenorhabditis elegans (termed RNAi inheritance). Here we describe the results of a forward genetic screen in C. elegans that has identified six factors required for RNAi inheritance: GLH-1/VASA, PUP-1/CDE-1, MORC-1, SET-32, and two novel nematode-specific factors that we term here (heritable RNAi defective) HRDE-2 and HRDE-4 The new RNAi inheritance factors exhibit mortal germline (Mrt) phenotypes, which we show is likely caused by epigenetic deregulation in germ cells. We also show that HRDE-2 contributes to RNAi inheritance by facilitating the binding of small RNAs to the inheritance Argonaute (Ago) HRDE-1 Together, our results identify additional components of the RNAi inheritance machinery whose conservation provides insights into the molecular mechanism of RNAi inheritance, further our understanding of how the RNAi inheritance machinery promotes germline immortality, and show that HRDE-2 couples the inheritance Ago HRDE-1 with the small RNAs it needs to direct RNAi inheritance and germline immortality. Copyright © 2017 by the Genetics Society of America.

  11. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation.

    Science.gov (United States)

    Liu, Ying; Ye, Xuecheng; Jiang, Feng; Liang, Chunyang; Chen, Dongmei; Peng, Junmin; Kinch, Lisa N; Grishin, Nick V; Liu, Qinghua

    2009-08-07

    The catalytic engine of RNA interference (RNAi) is the RNA-induced silencing complex (RISC), wherein the endoribonuclease Argonaute and single-stranded small interfering RNA (siRNA) direct target mRNA cleavage. We reconstituted long double-stranded RNA- and duplex siRNA-initiated RISC activities with the use of recombinant Drosophila Dicer-2, R2D2, and Ago2 proteins. We used this core reconstitution system to purify an RNAi regulator that we term C3PO (component 3 promoter of RISC), a complex of Translin and Trax. C3PO is a Mg2+-dependent endoribonuclease that promotes RISC activation by removing siRNA passenger strand cleavage products. These studies establish an in vitro RNAi reconstitution system and identify C3PO as a key activator of the core RNAi machinery.

  12. RNAi technology: a new platform for crop pest control.

    Science.gov (United States)

    Mamta, B; Rajam, M V

    2017-07-01

    The insect pests are big threat in meeting the food demands for future generation. The present pest control strategies, including the existing transgenic approaches show certain limitations and are not completely successful in limiting the insect pests. However, the sequence-specific gene silencing via RNA interference (RNAi) holds a great promise for effective management of agricultural pests. RNAi is naturally occurring conserved process responsible for gene regulation and defense against pathogens. The efficacy of RNAi varies among different insect orders and also depends upon various factors, including the target gene selection, method of dsRNAs delivery, expression of dsRNAs and presence of off-target effects. RNAi-mediated silencing of different insect genes involved in various physiological processes was found to be detrimental to insects growth, development and survival. In this article, we have reviewed the potential of RNAi-based strategies for effective management of insect pests. We have also discussed the various parameters, which are to be considered for host-induced RNAi-mediated control of insect pests without producing any effect on non-target organisms and environment.

  13. Biosafety considerations of RNAi-mediated virus resistance in fruit-tree cultivars and in rootstock.

    Science.gov (United States)

    Lemgo, Godwin Nana Yaw; Sabbadini, Silvia; Pandolfini, Tiziana; Mezzetti, Bruno

    2013-12-01

    A major application of RNA interference (RNAi) is envisaged for the production of virus-resistant transgenic plants. For fruit trees, this remains the most, if not the only, viable option for the control of plant viral disease outbreaks in cultivated orchards, due to the difficulties associated with the use of traditional and conventional disease-control measures. The use of RNAi might provide an additional benefit for woody crops if silenced rootstock can efficiently transmit the silencing signal to non-transformed scions, as has already been demonstrated in herbaceous plants. This would provide a great opportunity to produce non-transgenic fruit from transgenic rootstock. In this review, we scrutinise some of the concerns that might arise with the use of RNAi for engineering virus-resistant plants, and we speculate that this virus resistance has fewer biosafety concerns. This is mainly because RNAi-eliciting constructs only express small RNA molecules rather than proteins, and because this technology can be applied using plant rootstock that can confer virus resistance to the scion, leaving the scion untransformed. We discuss the main biosafety concerns related to the release of new types of virus-resistant plants and the risk assessment approaches in the application of existing regulatory systems (in particular, those of the European Union, the USA, and Canada) for the evaluation and approval of RNAi-mediated virus-resistant plants, either as transgenic varieties or as plant virus resistance induced by transgenic rootstock.

  14. Silencing SlMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion.

    Science.gov (United States)

    Wang, Yunshu; Hu, Zongli; Zhang, Jianling; Yu, XiaoHui; Guo, Jun-E; Liang, Honglian; Liao, Changguang; Chen, Guoping

    2018-02-19

    Mediator complex, a conserved multi-protein, is necessary for controlling RNA polymerase II (Pol II) transcription in eukaryotes. Given little is known about them in tomato, a tomato Mediator subunit 18 gene was isolated and named SlMED18. To further explore the function of SlMED18, the transgenic tomato plants targeting SlMED18 by RNAi-mediated gene silencing were generated. The SlMED18-RNAi lines exhibited multiple developmental defects, including smaller size and slower growth rate of plant and significantly smaller compound leaves. The contents of endogenous bioactive GA 3 in SlMED18 silenced lines were slightly less than that in wild type. Furthermore, qRT-PCR analysis indicated that expression of gibberellins biosynthesis genes such as SlGACPS and SlGA20x2, auxin transport genes (PIN1, PIN4, LAX1 and LAX2) and several key regulators, KNOX1, KNOX2, PHAN and LANCEOLATE(LA), which involved in the leaf morphogenesis were significantly down-regulated in SlMED18-RNAi lines. These results illustrated that SlMED18 plays an essential role in regulating plant internode elongation and leaf expansion in tomato plants and it acts as a key positive regulator of gibberellins biosynthesis and signal transduction as well as auxin proper transport signalling. These findings are the basis for understanding the function of the individual Mediator subunits in tomato.

  15. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi.

    Science.gov (United States)

    Tsai, Hsin-Yue; Chen, Chun-Chieh G; Conte, Darryl; Moresco, James J; Chaves, Daniel A; Mitani, Shohei; Yates, John R; Tsai, Ming-Daw; Mello, Craig C

    2015-01-29

    Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However, in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3' uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3' uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper

    Directory of Open Access Journals (Sweden)

    Dong Ying

    2005-10-01

    Full Text Available Abstract Background Grasshopper serves as important model system in neuroscience, development and evolution. Representatives of this primitive insect group are also highly relevant targets of pest control efforts. Unfortunately, the lack of genetics or gene specific molecular manipulation imposes major limitations to the study of grasshopper biology. Results We investigated whether juvenile instars of the grasshopper species Schistocerca americana are conducive to gene silencing via the systemic RNAi pathway. Injection of dsRNA corresponding to the eye colour gene vermilion into first instar nymphs triggered suppression of ommochrome formation in the eye lasting through two instars equivalent to 10–14 days in absolute time. QRT-PCR analysis revealed a two fold decrease of target transcript levels in affected animals. Control injections of EGFP dsRNA did not result in detectable phenotypic changes. RT-PCR and in situ hybridization detected ubiquitous expression of the grasshopper homolog of the dsRNA channel protein gene sid-1 in embryos, nymphs and adults. Conclusion Our results demonstrate that systemic dsRNA application elicits specific and long-term gene silencing in juvenile grasshopper instars. The conservation of systemic RNAi in the grasshopper suggests that this pathway can be exploited for gene specific manipulation of juvenile and adult instars in a wide range of primitive insects.

  17. Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing).

    Science.gov (United States)

    Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame

    2014-04-20

    A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.

  18. CAPERalpha is a novel Rel-TAD-interacting factor that inhibits lymphocyte transformation by the potent Rel/NF-kappaB oncoprotein v-Rel.

    Science.gov (United States)

    Dutta, Jui; Fan, Gaofeng; Gélinas, Céline

    2008-11-01

    The Rel/NF-kappaB transcription factors are constitutively activated in many human cancers. The Rel proteins in this family are implicated in leukemia/lymphomagenesis, but the mechanism is not completely understood. Previous studies showed that the transcription activation domains (TADs) of the viral oncoprotein v-Rel and its cellular Rel/NF-kappaB homologues c-Rel and RelA are key determinants of their different transforming activities in primary lymphocytes. Substitution of a Rel TAD for that of RelA conferred a strong transforming phenotype upon RelA, which otherwise failed to transform cells. To gain insights into protein interactions that influence cell transformation by the Rel TADs, we identified factors that interact with the TAD of v-Rel, the most oncogenic member of the Rel/NF-kappaB family. We report that the coactivator for transcription factors AP-1 and estrogen receptors, CAPERalpha, interacts with the v-Rel TAD and potently synergizes v-Rel-mediated transactivation. Importantly, coexpression of CAPERalpha markedly reduced and delayed v-Rel's transforming activity in primary lymphocytes, whereas a dominant-negative mutant enhanced the kinetics of v-Rel-mediated transformation. Furthermore, small interfering RNA-mediated knockdown of CAPERalpha in v-Rel-transformed lymphocytes significantly enhanced colony formation in soft agar. Since the potency of Rel-mediated transactivation is an important determinant of lymphocyte transformation, as is Rel's ability to induce transcriptional repression, these data suggest that CAPERalpha's interaction with the Rel TAD could modulate Rel/NF-kappaB's transforming activity by facilitating expression or dampening repression of specific gene subsets important for oncogenesis. Overall, this study identifies CAPERalpha as a new transcriptional coregulator for v-Rel and reveals an important role in modulating Rel's oncogenic activity.

  19. In C. elegans, high levels of dsRNA allow RNAi in the absence of RDE-4.

    Science.gov (United States)

    Habig, Jeffrey W; Aruscavage, P Joseph; Bass, Brenda L

    2008-01-01

    C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to specific environmental signals.

  20. In C. elegans, high levels of dsRNA allow RNAi in the absence of RDE-4.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Habig

    Full Text Available C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to specific environmental signals.

  1. The double-stranded RNA binding protein RDE-4 can act cell autonomously during feeding RNAi in C. elegans.

    Science.gov (United States)

    Raman, Pravrutha; Zaghab, Soriayah M; Traver, Edward C; Jose, Antony M

    2017-08-21

    Long double-stranded RNA (dsRNA) can silence genes of matching sequence upon ingestion in many invertebrates and is therefore being developed as a pesticide. Such feeding RNA interference (RNAi) is best understood in the worm Caenorhabditis elegans, where the dsRNA-binding protein RDE-4 initiates silencing by recruiting an endonuclease to process long dsRNA into short dsRNA. These short dsRNAs are thought to move between cells because muscle-specific rescue of rde-4 using repetitive transgenes enables silencing in other tissues. Here, we extend this observation using additional promoters, report an inhibitory effect of repetitive transgenes, and discover conditions for cell-autonomous silencing in animals with tissue-specific rescue of rde-4. While expression of rde-4(+) in intestine, hypodermis, or neurons using a repetitive transgene can enable silencing also in unrescued tissues, silencing can be inhibited wihin tissues that express a repetitive transgene. Single-copy transgenes that express rde-4(+) in body-wall muscles or hypodermis, however, enable silencing selectively in the rescued tissue but not in other tissues. These results suggest that silencing by the movement of short dsRNA between cells is not an obligatory feature of feeding RNAi in C. elegans. We speculate that similar control of dsRNA movement could modulate tissue-specific silencing by feeding RNAi in other invertebrates. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Antisense gene silencing

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Nielsen, Jørgen E

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied...

  3. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  4. Interference RNA (RNAi)-based silencing of endogenous thrombopoietin receptor (Mpl) in Dami cells resulted in decreased hNUDC-mediated megakaryocyte proliferation and differentiation

    International Nuclear Information System (INIS)

    Pang, Shi-Feng; Li, Xiao-Kun; Zhang, Qiang; Yang, Fang; Xu, Peilin

    2009-01-01

    Recently our laboratory reported evidence showing that hNUDC acts as an additional cytokine for thrombopoietin receptor (Mpl). Previously known as the human homolog of a fungal nuclear migration protein, hNUDC plays a critical role in megakaryocyte differentiation and maturation. Here we sought to further clarify the hNUDC-Mpl ligand-receptor relationship by utilizing interference RNA (RNAi) to knockdown Mpl expression in a megakaryocyte cell line. We created U6 promoter driven constructs to express short hairpin RNAs (shRNA) with affinity for different sites on Mpl mRNA. By including Mpl-EGFP fusion protein in these constructs, we were able to effectively screen the shRNA that was most efficient in inhibiting Mpl mRNA expression. This shRNA was subsequently transferred into a lentivirus vector and transduced into Dami cells, a cell line which constitutively expresses endogenous Mpl. This lentiviral vector was also designed to simultaneously express EGFP to monitor transfection efficiency. Our results show that lentivirus can be used to effectively deliver shRNAs into Dami cells and cause specific inhibition of Mpl protein expression after transduction. Furthermore, we show the functional effects of shRNA-mediated Mpl silencing by demonstrating reduced hNUDC stimulated megakaryocyte proliferation and differentiation. Thus, the use of a RNAi knockdown strategy has allowed us to pinpoint the connection of hNUDC with Mpl in the regulation of megakaryocyte maturation.

  5. Two classes of silencing RNAs move between C. elegans tissues

    Science.gov (United States)

    Jose, Antony M; Garcia, Giancarlo A; Hunter, Craig P

    2011-01-01

    Summary Organism-wide RNA interference (RNAi) is due to the transport of mobile silencing RNA throughout the organism but the identities of these mobile RNA species in animals are unknown. Here we present genetic evidence that both the initial double-stranded RNA (dsRNA), which triggers RNAi, and at least one dsRNA intermediate produced during RNAi can act as or generate mobile silencing RNA in Caenorhabditis elegans. This dsRNA intermediate requires the long dsRNA-binding protein RDE-4, the endonuclease DCR-1, which cleaves long dsRNA into double-stranded short-interfering RNA (ds-siRNA), and the putative nucleotidyltransferase MUT-2 (RDE-3). However, single-stranded siRNA and downstream secondary siRNA produced upon amplification by the RNA-dependent RNA Polymerase RRF-1 do not generate mobile silencing RNA. Restricting inter-tissue transport to long dsRNA and directly processed siRNA intermediates rather than amplified siRNA may serve to modulate the extent of systemic silencing in proportion to available dsRNA. PMID:21984186

  6. An RNA-seq transcriptome analysis of histone modifiers and RNA silencing genes in soybean during floral initiation process.

    Directory of Open Access Journals (Sweden)

    Lim Chee Liew

    Full Text Available Epigenetics has been recognised to play vital roles in many plant developmental processes, including floral initiation through the epigenetic regulation of gene expression. The histone modifying proteins that mediate these modifications involve the SET domain-containing histone methyltransferases, JmjC domain-containing demethylase, acetylases and deacetylases. In addition, RNA interference (RNAi-associated genes are also involved in epigenetic regulation via RNA-directed DNA methylation and post-transcriptional gene silencing. Soybean, a major crop legume, requires a short day to induce flowering. How histone modifications regulate the plant response to external cues that initiate flowering is still largely unknown. Here, we used RNA-seq to address the dynamics of transcripts that are potentially involved in the epigenetic programming and RNAi mediated gene silencing during the floral initiation of soybean. Soybean is a paleopolyploid that has been subjected to at least two rounds of whole genome duplication events. We report that the expanded genomic repertoire of histone modifiers and RNA silencing genes in soybean includes 14 histone acetyltransferases, 24 histone deacetylases, 47 histone methyltransferases, 15 protein arginine methyltransferases, 24 JmjC domain-containing demethylases and 47 RNAi-associated genes. To investigate the role of these histone modifiers and RNA silencing genes during floral initiation, we compared the transcriptional dynamics of the leaf and shoot apical meristem at different time points after a short-day treatment. Our data reveal that the extensive activation of genes that are usually involved in the epigenetic programming and RNAi gene silencing in the soybean shoot apical meristem are reprogrammed for floral development following an exposure to inductive conditions.

  7. The Nuclear Cap-Binding Complex Mediates Meiotic Silencing by Unpaired DNA

    Directory of Open Access Journals (Sweden)

    Logan M. Decker

    2017-04-01

    Full Text Available In the filamentous fungus Neurospora crassa, cross walls between individual cells are normally incomplete, making the entire fungal network vulnerable to attack by viruses and selfish DNAs. Accordingly, several genome surveillance mechanisms are maintained to help the fungus combat these repetitive elements. One of these defense mechanisms is called meiotic silencing by unpaired DNA (MSUD, which identifies and silences unpaired genes during meiosis. Utilizing common RNA interference (RNAi proteins, such as Dicer and Argonaute, MSUD targets mRNAs homologous to the unpaired sequence to achieve silencing. In this study, we have identified an additional silencing component, namely the cap-binding complex (CBC. Made up of cap-binding proteins CBP20 and CBP80, CBC associates with the 5′ cap of mRNA transcripts in eukaryotes. The loss of CBC leads to a deficiency in MSUD activity, suggesting its role in mediating silencing. As confirmed in this study, CBC is predominantly nuclear, although it is known to travel in and out of the nucleus to facilitate RNA transport. As seen in animals but not in plants, CBP20’s robust nuclear import depends on CBP80 in Neurospora. CBC interacts with a component (Argonaute of the perinuclear meiotic silencing complex (MSC, directly linking the two cellular factors.

  8. MicroRNA-Mediated Myostatin Silencing in Caprine Fetal Fibroblasts

    Science.gov (United States)

    Zhong, Bushuai; Zhang, Yanli; Yan, Yibo; Wang, Ziyu; Ying, Shijia; Huang, Mingrui; Wang, Feng

    2014-01-01

    Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi) mediated by microRNAs (miRNAs) is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF) was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN) response genes, such as interferon beta (IFN-β) and 2′-5′-oligoadenylate synthetase 2 (OAS2), were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats. PMID:25244645

  9. MicroRNA-mediated myostatin silencing in caprine fetal fibroblasts.

    Directory of Open Access Journals (Sweden)

    Bushuai Zhong

    Full Text Available Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi mediated by microRNAs (miRNAs is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN response genes, such as interferon beta (IFN-β and 2'-5'-oligoadenylate synthetase 2 (OAS2, were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats.

  10. The Role of RNA Interference (RNAi in Arbovirus-Vector Interactions

    Directory of Open Access Journals (Sweden)

    Carol D. Blair

    2015-02-01

    Full Text Available RNA interference (RNAi was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (dsRNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (siRNA, micro (miRNA, and Piwi-interacting (piRNA pathways. The exogenous (exo-siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector’s antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed.

  11. Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi.

    Directory of Open Access Journals (Sweden)

    Yusuke Ohnishi

    Full Text Available Allele-specific gene silencing by RNA interference (RNAi is therapeutically useful for specifically inhibiting the expression of disease-associated alleles without suppressing the expression of corresponding wild-type alleles. To realize such allele-specific RNAi (ASP-RNAi, the design and assessment of small interfering RNA (siRNA duplexes conferring ASP-RNAi is vital; however, it is also difficult. In a previous study, we developed an assay system to assess ASP-RNAi with mutant and wild-type reporter alleles encoding the Photinus and Renilla luciferase genes. In line with experiments using the system, we realized that it is necessary and important to enhance allele discrimination between mutant and corresponding wild-type alleles. Here, we describe the improvement of ASP-RNAi against mutant alleles carrying single nucleotide variations by introducing base substitutions into siRNA sequences, where original variations are present in the central position. Artificially mismatched siRNAs or short-hairpin RNAs (shRNAs against mutant alleles of the human Prion Protein (PRNP gene, which appear to be associated with susceptibility to prion diseases, were examined using this assessment system. The data indicates that introduction of a one-base mismatch into the siRNAs and shRNAs was able to enhance discrimination between the mutant and wild-type alleles. Interestingly, the introduced mismatches that conferred marked improvement in ASP-RNAi, appeared to be largely present in the guide siRNA elements, corresponding to the 'seed region' of microRNAs. Due to the essential role of the 'seed region' of microRNAs in their association with target RNAs, it is conceivable that disruption of the base-pairing interactions in the corresponding seed region, as well as the central position (involved in cleavage of target RNAs, of guide siRNA elements could influence allele discrimination. In addition, we also suggest that nucleotide mismatches at the 3'-ends of sense

  12. Bombyx mori E26 transformation-specific 2 (BmEts2), an Ets family protein, represses Bombyx mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in the silkworm Bombyx mori.

    Science.gov (United States)

    Tanaka, H; Sagisaka, A; Suzuki, N; Yamakawa, M

    2016-10-01

    E26 transformation-specific (Ets) family transcription factors are known to play roles in various biological phenomena, including immunity, in vertebrates. However, the mechanisms by which Ets proteins contribute to immunity in invertebrates remain poorly understood. In this study, we identified a cDNA encoding BmEts2, which is a putative orthologue of Drosophila Yan and human translocation-ets-leukemia/Ets-variant gene 6, from the silkworm Bombyx mori. Expression of the BmEts2 gene was significantly increased in the fat bodies of silkworm larvae in response to injection with Escherichia coli and Staphylococcus aureus. BmEts2 overexpression dramatically repressed B. mori Rels (BmRels)-mediated promoter activation of antimicrobial peptide genes in silkworm cells. Conversely, gene knockdown of BmEts2 significantly enhanced BmRels activity. In addition, two κB sites located on the 5' upstream region of cecropin B1 were found to be involved in the repression of BmRels-mediated promoter activation. Protein-competition analysis further demonstrated that BmEts2 competitively inhibited binding of BmRels to κB sites. Overall, BmEts2 acts as a repressor of BmRels-mediated transactivation of antimicrobial protein genes by inhibiting the binding of BmRels to κB sites. © 2016 The Royal Entomological Society.

  13. Distinct RNAi Pathways in the Regulation of Physiology and Development in the Fungus Mucor circinelloides.

    Science.gov (United States)

    Ruiz-Vázquez, Rosa M; Nicolás, Francisco E; Torres-Martínez, Santiago; Garre, Victoriano

    2015-01-01

    The basal fungus Mucor circinelloides has become, in recent years, a valuable model to study RNA-mediated gene silencing or RNA interference (RNAi). Serendipitously discovered in the late 1900s, the gene silencing in M. circinelloides is a landscape of consensus and dissents. Although similar to other classical fungal models in the basic design of the essential machinery that is responsible for silencing of gene expression, the existence of small RNA molecules of different sizes generated during this process and the presence of a mechanism that amplifies the silencing signal, give it a unique identity. In addition, M. circinelloides combines the components of RNAi machinery to carry out functions that not only limit themselves to the defense against foreign genetic material, but it uses some of these elements to regulate the expression of its own genes. Thus, different combinations of RNAi elements produce distinct classes of endogenous small RNAs (esRNAs) that regulate different physiological and developmental processes in response to environmental signals. The recent discovery of a new RNAi pathway involved in the specific degradation of endogenous mRNAs, using a novel RNase protein, adds one more element to the exciting puzzle of the gene silencing in M. circinelloides, in addition to providing hints about the evolutionary origin of the RNAi mechanism. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. RNAi pathways in Mucor: A tale of proteins, small RNAs and functional diversity.

    Science.gov (United States)

    Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M

    2016-05-01

    The existence of an RNA-mediated silencing mechanism in the opportunistic fungal pathogen Mucor circinelloides was first described in the early 2000. Since then, Mucor has reached an outstanding position within the fungal kingdom as a model system to achieve a deeper understanding of regulation of endogenous functions by the RNA interference (RNAi) machinery. M. circinelloides combines diverse components of its RNAi machinery to carry out functions not only limited to the defense against invasive nucleic acids, but also to regulate expression of its own genes by producing different classes of endogenous small RNA molecules (esRNAs). The recent discovery of a novel RNase that participates in a new RNA degradation pathway adds more elements to the gene silencing-mediated regulation. This review focuses on esRNAs in M. circinelloides, the different pathways involved in their biogenesis, and their roles in regulating specific physiological and developmental processes in response to environmental signals, highlighting the complexity of silencing-mediated regulation in fungi. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The Vasa Homolog RDE-12 engages target mRNA and multiple argonaute proteins to promote RNAi in C. elegans.

    Science.gov (United States)

    Shirayama, Masaki; Stanney, William; Gu, Weifeng; Seth, Meetu; Mello, Craig C

    2014-04-14

    Argonaute (AGO) proteins are key nuclease effectors of RNAi. Although purified AGOs can mediate a single round of target RNA cleavage in vitro, accessory factors are required for small interfering RNA (siRNA) loading and to achieve multiple-target turnover. To identify AGO cofactors, we immunoprecipitated the C. elegans AGO WAGO-1, which engages amplified small RNAs during RNAi. These studies identified a robust association between WAGO-1 and a conserved Vasa ATPase-related protein RDE-12. rde-12 mutants are deficient in RNAi, including viral suppression, and fail to produce amplified secondary siRNAs and certain endogenous siRNAs (endo-siRNAs). RDE-12 colocalizes with WAGO-1 in germline P granules and in cytoplasmic and perinuclear foci in somatic cells. These findings and our genetic studies suggest that RDE-12 is first recruited to target mRNA by upstream AGOs (RDE-1 and ERGO-1), where it promotes small RNA amplification and/or WAGO-1 loading. Downstream of these events, RDE-12 forms an RNase-resistant (target mRNA-independent) complex with WAGO-1 and may thus have additional functions in target mRNA surveillance and silencing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis.

    Science.gov (United States)

    Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-01-01

    RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests.

  17. Phylogenetic origin and diversification of RNAi pathway genes in insects

    DEFF Research Database (Denmark)

    Dowling, Daniel; Pauli, Thomas; Donath, Alexander

    2016-01-01

    RNAinterference (RNAi) refers tothe set ofmolecular processes foundin eukaryotic organisms in which smallRNAmolecules mediate the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous genes, anti-viral defense, and defense...... against transposable elements. Despite being well studied in model organisms, such as Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present the most comprehensive overview of the distribution and diversity of core RNAi pathway genes...... across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect...

  18. Identification of highly effective target genes for RNAi-mediated control of emerald ash borer, Agrilus planipennis.

    Science.gov (United States)

    Rodrigues, Thais B; Duan, Jian J; Palli, Subba R; Rieske, Lynne K

    2018-03-22

    Recent study has shown that RNA interference (RNAi) is efficient in emerald ash borer (EAB), Agrilus planipennis, and that ingestion of double-stranded RNA (dsRNA) targeting specific genes causes gene silencing and mortality in neonates. Here, we report on the identification of highly effective target genes for RNAi-mediated control of EAB. We screened 13 candidate genes in neonate larvae and selected the most effective target genes for further investigation, including their effect on EAB adults and on a non-target organism, Tribolium castaneum. The two most efficient target genes selected, hsp (heat shock 70-kDa protein cognate 3) and shi (shibire), caused up to 90% mortality of larvae and adults. In EAB eggs, larvae, and adults, the hsp is expressed at higher levels when compared to that of shi. Ingestion of dsHSP and dsSHI caused mortality in both neonate larvae and adults. Administration of a mixture of both dsRNAs worked better than either dsRNA by itself. In contrast, injection of EAB.dsHSP and EAB.dsSHI did not cause mortality in T. castaneum. Thus, the two genes identified cause high mortality in the EAB with no apparent phenotype effects in a non-target organism, the red flour beetle, and could be used in RNAi-mediated control of this invasive pest.

  19. miR-221 stimulates breast cancer cells and cancer-associated fibroblasts (CAFs) through selective interference with the A20/c-Rel/CTGF signaling.

    Science.gov (United States)

    Santolla, Maria Francesca; Lappano, Rosamaria; Cirillo, Francesca; Rigiracciolo, Damiano Cosimo; Sebastiani, Anna; Abonante, Sergio; Tassone, Pierfrancesco; Tagliaferri, Pierosandro; Di Martino, Maria Teresa; Maggiolini, Marcello; Vivacqua, Adele

    2018-05-02

    MicroRNA (miRNAs) are non-coding small RNA molecules that regulate gene expression by inhibiting the translation of target mRNAs. Among several dysregulated miRNAs in human cancer, the up-regulation of miR-221 has been associated with development of a variety of hematologic and solid malignancies. In this study, we investigated the involvement of miR-221 in breast cancer. TaqMan microRNA assay was used to detect the miR-221 levels in normal cells and in MDA-MB 231 and SkBr3 breast cancer cells as well as in main players of the tumor microenvironment, namely cancer-associated fibroblasts (CAFs). miR-221 mimic sequence and locked nucleic acid (LNA)-i-miR-221 construct were used to induce or inhibit, respectively, the miR-221 expression in cells used. Quantitative PCR and western blotting analysis were performed to evaluate the levels of the miR-221 target gene A20 (TNFAIP3), as well as the member of the NF-kB complex namely c-Rel and the connective tissue growth factor (CTGF). Chromatin immunoprecipitation (ChIP) assay was performed to ascertain the recruitment of c-Rel to the CTFG promoter. Finally, the cell growth and migration in the presence of LNA-i-miR-221 or silencing c-Rel and CTGF by specific short hairpin were assessed by cell count, colony formation and boyden chambers assays. Statistical analysis was performed by ANOVA. We first demonstrated that LNA-i-miR-221 inhibits both endogenous and ectopic expression of miR-221 in our experimental models. Next, we found that the A20 down-regulation, as well as the up-regulation of c-Rel induced by miR-221 were no longer evident using LNA-i-miR-221. Moreover, we established that the miR-221 dependent recruitment of c-Rel to the NF-kB binding site located within the CTGF promoter region is prevented by using LNA-i-miR-221. Furthermore, we determined that the up-regulation of CTGF mRNA and protein levels by miR-221 is no longer evident using LNA-i-miR221 and silencing c-Rel. Finally, we assessed that cell growth and

  20. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation.

    Science.gov (United States)

    Renouard, Sullivan; Tribalatc, Marie-Aude; Lamblin, Frederic; Mongelard, Gaëlle; Fliniaux, Ophélie; Corbin, Cyrielle; Marosevic, Djurdjica; Pilard, Serge; Demailly, Hervé; Gutierrez, Laurent; Hano, Christophe; Mesnard, François; Lainé, Eric

    2014-09-15

    RNAi technology was applied to down regulate LuPLR1 gene expression in flax (Linum usitatissimum L.) seeds. This gene encodes a pinoresinol lariciresinol reductase responsible for the synthesis of (+)-secoisolariciresinol diglucoside (SDG), the major lignan accumulated in the seed coat. If flax lignans biological properties and health benefits are well documented their roles in planta remain unclear. This loss of function strategy was developed to better understand the implication of the PLR1 enzyme in the lignan biosynthetic pathway and to provide new insights on the functions of these compounds. RNAi plants generated exhibited LuPLR1 gene silencing as demonstrated by quantitative RT-PCR experiments and the failed to accumulate SDG. The accumulation of pinoresinol the substrate of the PLR1 enzyme under its diglucosylated form (PDG) was increased in transgenic seeds but did not compensate the overall loss of SDG. The monolignol flux was also deviated through the synthesis of 8-5' linked neolignans dehydrodiconiferyl alcohol glucoside (DCG) and dihydro-dehydrodiconiferyl alcohol glucoside (DDCG) which were observed for the first time in flax seeds. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Disruption of prefoldin-2 protein synthesis in root-knot nematodes via host-mediated gene silencing efficiently reduces nematode numbers and thus protects plants.

    Science.gov (United States)

    Ajjappala, Hemavathi; Chung, Ha Young; Sim, Joon-Soo; Choi, Inchan; Hahn, Bum-Soo

    2015-03-01

    The aim of this study is to demonstrate the feasibility of down-regulating endogeneous prefoldin-2 root-knot nematode transcripts by expressing dsRNA with sequence identity to the nematode gene in tobacco roots under the influence of strong Arabidopsis ubiquitin (UBQ1) promoter. Root-knot nematodes (RKNs) are sedentary endoparasites infecting a wide range of plant species. They parasitise the root system, thereby disrupting water and nutrient uptake and causing major reductions in crop yields. The most reliable means of controlling RKNs is via the use of soil fumigants such as methyl bromide. With the emergence of RNA interference (RNAi) technology, which permits host-mediated nematode gene silencing, a new strategy to control plant pathogens has become available. In the present study, we investigated host-induced RNAi gene silencing of prefoldin-2 in transgenic Nicotiana benthamiana. Reductions in prefoldin-2 mRNA transcript levels were observed when nematodes were soaked in a dsRNA solution in vitro. Furthermore, nematode reproduction was suppressed in RNAi transgenic lines, as evident by reductions in the numbers of root knots (by 34-60 % in independent RNAi lines) and egg masses (by 33-58 %). Endogenous expression of prefoldin-2, analysed via real-time polymerase chain reaction and Western blotting, revealed that the gene was strongly expressed in the pre-parasitic J2 stage. Our observations demonstrate the relevance and potential importance of targeting the prefoldin gene during the nematode life cycle. The work also suggests that further improvements in silencing efficiency in economically important crops can be accomplished using RNAi directed against plant-parasitic nematodes.

  2. RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants.

    Science.gov (United States)

    Pareek, Manish; Rajam, Manchikatla Venkat

    2017-09-01

    Fusarium oxysporum is a soil-borne plant fungal pathogen, and causes colossal losses in several crop plants including tomato. Effective control measures include the use of harmful fungicides and resistant cultivars, but these methods have shown limited success. Conventional methods to validate fungal pathogenic genes are labour intensive. Therefore, an alternative strategy is required to efficiently characterize unknown pathogenic genes. RNA interference (RNAi) has emerged as a potential tool to functionally characterize novel fungal pathogenic genes and also to control fungal diseases. Here, we report an efficient method to produce stable RNAi transformants of F. oxysporum using Agrobacterium-mediated transformation (AMT). We have transformed F. oxysporum spores using RNAi constructs of Fmk1, Hog1, and Pbs2 MAP kinase signalling genes. Fmk1 RNAi fungal transformants showed loss of surface hydrophobicity, reduced invasive growth on tomato fruits and hypo-virulence on tomato seedlings. Hog1 and Pbs2 RNAi transformants showed altered conidial size, and reduced invasive growth and pathogenesis. These results showed that AMT using RNAi constructs is an effective approach for dissecting the role of genes involved in pathogenesis in F. oxysporum and this could be extended for other fungal systems. The obtained knowledge can be easily translated for developing fungal resistant crops by RNAi. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. Soaking RNAi in Bombyx mori BmN4-SID1 Cells Arrests Cell Cycle Progression

    Science.gov (United States)

    Mon, Hiroaki; Li, Zhiqing; Kobayashi, Isao; Tomita, Shuichiro; Lee, JaeMan; Sezutsu, Hideki; Tamura, Toshiki; Kusakabe, Takahiro

    2013-01-01

    RNA interference (RNAi) is an evolutionarily conserved mechanism for sequence-specific gene silencing. Previously, the BmN4-SID1 cell expressing Caenorhabditis ele gans SID-1 was established, in which soaking RNAi could induce effective gene silencing. To establish its utility, 6 cell cycle progression related cDNAs, CDK1, MYC, MYB, RNRS, CDT1, and GEMININ, were isolated from the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), and their expressions were further silenced by soaking RNAi in the BmN4-SID1 cells. The cell cycle progression analysis using flow cytometer demonstrated that the small amount of double stranded RNA was enough to arrest cell cycle progression at the specific cell phases. These data suggest that RNAi in the BmN4-SID1 cells can be used as a powerful tool for loss-of-function analysis of B. mori genes. PMID:24773378

  4. RNAi suppressors encoded by pathogenic human viruses

    NARCIS (Netherlands)

    de Vries, Walter; Berkhout, Ben

    2008-01-01

    RNA silencing or RNAi interference (RNAi) serves as an innate antiviral mechanism in plants, fungi and animals. Human viruses, like plant viruses, encode suppressor proteins or RNAs that block or modulate the RNAi pathway. This review summarizes the mechanisms by which pathogenic human viruses

  5. RNAi-based therapeutic nanostrategy: IL-8 gene silencing in pancreatic cancer cells using gold nanorods delivery vehicles

    International Nuclear Information System (INIS)

    Panwar, Nishtha; Yang, Chengbin; Yin, Feng; Chuan, Tjin Swee; Yong, Ken-Tye; Yoon, Ho Sup

    2015-01-01

    RNA interference (RNAi)-based gene silencing possesses great ability for therapeutic intervention in pancreatic cancer. Among various oncogene mutations, Interleukin-8 (IL-8) gene mutations are found to be overexpressed in many pancreatic cell lines. In this work, we demonstrate IL-8 gene silencing by employing an RNAi-based gene therapy approach and this is achieved by using gold nanorods (AuNRs) for efficient delivery of IL-8 small interfering RNA (siRNA) to the pancreatic cell lines of MiaPaCa-2 and Panc-1. Upon comparing to Panc-1 cells, we found that the dominant expression of the IL-8 gene in MiaPaCa-2 cells resulted in an aggressive behavior towards the processes of cell invasion and metastasis. We have hence investigated the suitability of using AuNRs as novel non-viral nanocarriers for the efficient uptake and delivery of IL-8 siRNA in realizing gene knockdown of both MiaPaCa-2 and Panc-1 cells. Flow cytometry and fluorescence imaging techniques have been applied to confirm transfection and release of IL-8 siRNA. The ratio of AuNRs and siRNA has been optimized and transfection efficiencies as high as 88.40 ± 2.14% have been achieved. Upon successful delivery of IL-8 siRNA into cancer cells, the effects of IL-8 gene knockdown are quantified in terms of gene expression, cell invasion, cell migration and cell apoptosis assays. Statistical comparative studies for both MiaPaCa-2 and Panc-1 cells are presented in this work. IL-8 gene silencing has been demonstrated with knockdown efficiencies of 81.02 ± 10.14% and 75.73 ± 6.41% in MiaPaCa-2 and Panc-1 cells, respectively. Our results are then compared with a commercial transfection reagent, Oligofectamine, serving as positive control. The gene knockdown results illustrate the potential role of AuNRs as non-viral gene delivery vehicles for RNAi-based targeted cancer therapy applications. (paper)

  6. The synthetic epoxyquinoids jesterone dimer and epoxyquinone A monomer induce apoptosis and inhibit REL (human c-Rel) DNA binding in an IkappaBalpha-deficient diffuse large B-cell lymphoma cell line.

    Science.gov (United States)

    Liang, Mei-Chih; Bardhan, Sujata; Porco, John A; Gilmore, Thomas D

    2006-09-08

    The NF-kappaB transcription factor signaling pathway is constitutively active in many human cancers, and inhibition of this pathway can often kill cancer cells by inducing apoptosis. In this study, we show that two synthetic epoxyquinoids, jesterone dimer (JD) and epoxyquinone A monomer (EqM), are equally effective at inhibiting the growth of two human lymphoma cell lines that have constitutively nuclear REL (human c-Rel) DNA-binding complexes, but either express (SUDHL-4 cells) or do not express (RC-K8 cells) the NF-kappaB inhibitor IkappaBalpha. Furthermore, in these cells, both JD and EqM dose-dependently induced apoptosis, inhibited REL DNA-binding activity, and converted REL to a high molecular weight form. In A293 cells, JD and EqM inhibited the DNA-binding activity of overexpressed REL, but not p50. Replacement of Cys-27 with Ser in REL reduced JD- and EqM-mediated inhibition of REL DNA-binding activity. These results suggest that JD and EqM can induce apoptosis in IkappaBalpha-deficient lymphoma cells through a mechanism involving direct inhibition of transcription factor REL.

  7. Pre-clinical Safety and Off-Target Studies to Support Translation of AAV-Mediated RNAi Therapy for FSHD.

    Science.gov (United States)

    Wallace, Lindsay M; Saad, Nizar Y; Pyne, Nettie K; Fowler, Allison M; Eidahl, Jocelyn O; Domire, Jacqueline S; Griffin, Danielle A; Herman, Adam C; Sahenk, Zarife; Rodino-Klapac, Louise R; Harper, Scott Q

    2018-03-16

    RNAi emerged as a prospective molecular therapy nearly 15 years ago. Since then, two major RNAi platforms have been under development: oligonucleotides and gene therapy. Oligonucleotide-based approaches have seen more advancement, with some promising therapies that may soon reach market. In contrast, vector-based approaches for RNAi therapy have remained largely in the pre-clinical realm, with limited clinical safety and efficacy data to date. We are developing a gene therapy approach to treat the autosomal-dominant disorder facioscapulohumeral muscular dystrophy. Our strategy involves silencing the myotoxic gene DUX4 using adeno-associated viral vectors to deliver targeted microRNA expression cassettes (miDUX4s). We previously demonstrated proof of concept for this approach in mice, and we are now taking additional steps here to assess safety issues related to miDUX4 overexpression and sequence-specific off-target silencing. In this study, we describe improvements in vector design and expansion of our miDUX4 sequence repertoire and report differential toxicity elicited by two miDUX4 sequences, of which one was toxic and the other was not. This study provides important data to help advance our goal of translating RNAi gene therapy for facioscapulohumeral muscular dystrophy.

  8. RNAi Screening in Spodoptera frugiperda.

    Science.gov (United States)

    Ghosh, Subhanita; Singh, Gatikrushna; Sachdev, Bindiya; Kumar, Ajit; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2016-01-01

    RNA interference is a potent and precise reverse genetic approach to carryout large-scale functional genomic studies in a given organism. During the past decade, RNAi has also emerged as an important investigative tool to understand the process of viral pathogenesis. Our laboratory has successfully generated transgenic reporter and RNAi sensor line of Spodoptera frugiperda (Sf21) cells and developed a reversal of silencing assay via siRNA or shRNA guided screening to investigate RNAi factors or viral pathogenic factors with extraordinary fidelity. Here we describe empirical approaches and conceptual understanding to execute successful RNAi screening in Spodoptera frugiperda 21-cell line.

  9. HvCKX2 gene silencing by biolistic or Agrobacterium-mediated transformation in barley leads to different phenotypes.

    Science.gov (United States)

    Zalewski, Wojciech; Orczyk, Wacław; Gasparis, Sebastian; Nadolska-Orczyk, Anna

    2012-11-07

    CKX genes encode cytokinin dehydrogenase enzymes (CKX), which metabolize cytokinins in plants and influence developmental processes. The genes are expressed in different tissues and organs during development; however, their exact role in barley is poorly understood. It has already been proven that RNA interference (RNAi)-based silencing of HvCKX1 decreased the CKX level, especially in those organs which showed the highest expression, i.e. developing kernels and roots, leading to higher plant productivity and higher mass of the roots [1]. The same type of RNAi construct was applied to silence HvCKX2 and analyze the function of the gene. Two cultivars of barley were transformed with the same silencing and selection cassettes by two different methods: biolistic and via Agrobacterium. The mean Agrobacterium-mediated transformation efficiency of Golden Promise was 3.47% (±2.82). The transcript level of HvCKX2 in segregating progeny of T(1) lines was decreased to 34%. The reduction of the transcript in Agrobacterium-derived plants resulted in decreased CKX activity in the developing and developed leaves as well as in 7 DAP (days after pollination) spikes. The final phenotypic effect was increased productivity of T(0) plants and T(1) lines. Higher productivity was the result of the higher number of seeds and higher grain yield. It was also correlated with the higher 1000 grain weight, increased (by 7.5%) height of the plants and higher (from 0.5 to 2) numbers of spikes. The transformation efficiency of Golden Promise after biolistic transformation was more than twice as low compared to Agrobacterium. The transcript level in segregating progeny of T(1) lines was decreased to 24%. Otherwise, the enzyme activity found in the leaves of the lines after biolistic transformation, especially in cv. Golden Promise, was very high, exceeding the relative level of the control lines. These unbalanced ratios of the transcript level and the activity of the CKX enzyme negatively

  10. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model.

    Science.gov (United States)

    Zheng, Min; Mitra, Rajendra N; Filonov, Nazar A; Han, Zongchao

    2016-03-01

    Previously, we compared the efficacy of nanoparticle (NP)-mediated intron-containing rhodopsin (sgRho) vs. intronless cDNA in ameliorating retinal disease phenotypes in a rhodopsin knockout (RKO) mouse model of retinitis pigmentosa. We showed that NP-mediated sgRho delivery achieved long-term expression and phenotypic improvement in RKO mice, but not NP housing cDNA. However, the protein level of the NP-sgRho construct was only 5-10% of wild-type at 8 mo postinjection. To have a better understanding of the reduced levels of long-term expression of the vectors, in the present study, we evaluated the epigenetic changes of subretinal delivering NP-cDNA vs. NP-sgRho in the RKO mouse eyes. Following the administration, DNA methylation and histone status of specific regions (bacteria plasmid backbone, promoter, rhodopsin gene, and scaffold/matrix attachment region) of the vectors were evaluated at various time points. We documented that epigenetic transgene silencing occurred in vector-mediated gene transfer, which were caused by the plasmid backbone and the cDNA of the transgene, but not the intron-containing transgene. No toxicity or inflammation was found in the treated eyes. Our results suggest that cDNA of the rhodopsin transgene and bacteria backbone interfered with the host defense mechanism of DNA methylation-mediated transgene silencing through heterochromatin-associated modifications. © FASEB.

  11. The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification.

    Science.gov (United States)

    Zhang, Chi; Montgomery, Taiowa A; Fischer, Sylvia E J; Garcia, Susana M D A; Riedel, Christian G; Fahlgren, Noah; Sullivan, Christopher M; Carrington, James C; Ruvkun, Gary

    2012-05-22

    In nematodes, plants, and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary small interfering RNAs (siRNAs) and the target messenger RNA (mRNA) leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10, and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, and other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage but sensitive to high dosage of double-stranded RNAs. We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6, and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia

    Science.gov (United States)

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-01-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia. PMID:24860163

  13. Expression of RNA interference triggers from an oncolytic herpes simplex virus results in specific silencing in tumour cells in vitro and tumours in vivo

    International Nuclear Information System (INIS)

    Anesti, Anna-Maria; Simpson, Guy R; Price, Toby; Pandha, Hardev S; Coffin, Robert S

    2010-01-01

    Delivery of small interfering RNA (siRNA) to tumours remains a major obstacle for the development of RNA interference (RNAi)-based therapeutics. Following the promising pre-clinical and clinical results with the oncolytic herpes simplex virus (HSV) OncoVEX GM-CSF , we aimed to express RNAi triggers from oncolytic HSV, which although has the potential to improve treatment by silencing tumour-related genes, was not considered possible due to the highly oncolytic properties of HSV. To evaluate RNAi-mediated silencing from an oncolytic HSV backbone, we developed novel replicating HSV vectors expressing short-hairpin RNA (shRNA) or artificial microRNA (miRNA) against the reporter genes green fluorescent protein (eGFP) and β-galactosidase (lacZ). These vectors were tested in non-tumour cell lines in vitro and tumour cells that are moderately susceptible to HSV infection both in vitro and in mice xenografts in vivo. Silencing was assessed at the protein level by fluorescent microscopy, x-gal staining, enzyme activity assay, and western blotting. Our results demonstrate that it is possible to express shRNA and artificial miRNA from an oncolytic HSV backbone, which had not been previously investigated. Furthermore, oncolytic HSV-mediated delivery of RNAi triggers resulted in effective and specific silencing of targeted genes in tumour cells in vitro and tumours in vivo, with the viruses expressing artificial miRNA being comprehensibly more effective. This preliminary data provide the first demonstration of oncolytic HSV-mediated expression of shRNA or artificial miRNA and silencing of targeted genes in tumour cells in vitro and in vivo. The vectors developed in this study are being adapted to silence tumour-related genes in an ongoing study that aims to improve the effectiveness of oncolytic HSV treatment in tumours that are moderately susceptible to HSV infection and thus, potentially improve response rates seen in human clinical trials

  14. Host-induced silencing of essential genes in Puccinia triticina through transgenic expression of RNAi sequences reduces severity of leaf rust infection in wheat.

    Science.gov (United States)

    Panwar, Vinay; Jordan, Mark; McCallum, Brent; Bakkeren, Guus

    2018-05-01

    Leaf rust, caused by the pathogenic fungus Puccinia triticina (Pt), is one of the most serious biotic threats to sustainable wheat production worldwide. This obligate biotrophic pathogen is prevalent worldwide and is known for rapid adaptive evolution to overcome resistant wheat varieties. Novel disease control approaches are therefore required to minimize the yield losses caused by Pt. Having shown previously the potential of host-delivered RNA interference (HD-RNAi) in functional screening of Pt genes involved in pathogenesis, we here evaluated the use of this technology in transgenic wheat plants as a method to achieve protection against wheat leaf rust (WLR) infection. Stable expression of hairpin RNAi constructs with sequence homology to Pt MAP-kinase (PtMAPK1) or a cyclophilin (PtCYC1) encoding gene in susceptible wheat plants showed efficient silencing of the corresponding genes in the interacting fungus resulting in disease resistance throughout the T 2 generation. Inhibition of Pt proliferation in transgenic lines by in planta-induced RNAi was associated with significant reduction in target fungal transcript abundance and reduced fungal biomass accumulation in highly resistant plants. Disease protection was correlated with the presence of siRNA molecules specific to targeted fungal genes in the transgenic lines harbouring the complementary HD-RNAi construct. This work demonstrates that generating transgenic wheat plants expressing RNAi-inducing transgenes to silence essential genes in rust fungi can provide effective disease resistance, thus opening an alternative way for developing rust-resistant crops. © 2017 Her Majesty the Queen in Right of Canada. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian; Wang, Junguo; Miki, Daisuke; Xia, Ran; Yu, Wenxiang; He, Junna; Zheng, Zhimin; Zhu, Jian-Kang; Gonga, Zhizhong

    2010-01-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  16. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  17. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    Science.gov (United States)

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34 +  cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in

  18. Technical advances in trigger-induced RNA interference gene silencing in the parasite Entamoeba histolytica.

    Science.gov (United States)

    Khalil, Mohamed I; Foda, Bardees M; Suresh, Susmitha; Singh, Upinder

    2016-03-01

    Entamoeba histolytica has a robust endogenous RNA interference (RNAi) pathway. There are abundant 27 nucleotide (nt) anti-sense small RNAs (AS sRNAs) that target genes for silencing and the genome encodes many genes involved in the RNAi pathway such as Argonaute proteins. Importantly, an E. histolytica gene with numerous AS sRNAs can function as a "trigger" to induce silencing of a gene that is fused to the trigger. Thus, the amebic RNAi pathway regulates gene expression relevant to amebic biology and has additionally been harnessed as a tool for genetic manipulation. In this study we have further improved the trigger-induced gene silencing method. We demonstrate that rather than using the full-length gene, a short portion of the coding region fused to a trigger is sufficient to induce silencing; the first 537 bp of the E. histolytica rhomboid gene (EhROM1) fused in-frame to the trigger was sufficient to silence EhROM1. We also demonstrated that the trigger method could silence two amebic genes concomitantly; fusion of the coding regions of EhROM1 and transcription factor, EhMyb, in-frame to a trigger gene resulted in both genes being silenced. Alternatively, two genes can be silenced sequentially: EhROM1-silenced parasites with no drug selection plasmid were transfected with trigger-EhMyb, resulting in parasites with both EhROM1 and EhMyb silenced. With all approaches tested, the trigger-mediated silencing was substantive and silencing was maintained despite loss of the G418 selectable marker. All gene silencing was associated with generation of AS sRNAs to the silenced gene. We tested the reversibility of the trigger system using inhibitors of histone modifications but found that the silencing was highly stable. This work represents a technical advance in the trigger gene silencing method in E. histolytica. Approaches that readily silence multiple genes add significantly to the genetic toolkit available to the ameba research community. Copyright © 2016

  19. Achieving efficient RNAi therapy: progress and challenges

    Directory of Open Access Journals (Sweden)

    Kun Gao

    2013-07-01

    Full Text Available RNA interference (RNAi has been harnessed to produce a new class of drugs for treatment of various diseases. This review summarizes the most important parameters that govern the silencing efficiency and duration of the RNAi effect such as small interfering RNA (siRNA stability and modification, the type of delivery system and particle sizing methods. It also discusses the predominant barriers for siRNA delivery, such as off-target effects and introduces internalization, endosomal escape and mathematical modeling in RNAi therapy and combinatorial RNAi. At present, effective delivery of RNAi therapeutics in vivo remains a challenge although significant progress has been made in this field.

  20. RNAi-mediated resistance to whitefly (Bemisia tabaci) in genetically engineered lettuce (Lactuca sativa).

    Science.gov (United States)

    Ibrahim, Abdulrazak B; Monteiro, Tatiane R; Cabral, Glaucia B; Aragão, Francisco J L

    2017-10-01

    RNA interference (RNAi)-based transgenic technologies have evolved as potent biochemical tools for silencing specific genes of plant pathogens and pests. The approach has been demonstrated to be useful in silencing genes in insect species. Here, we report on the successful construction of RNAi-based plasmid containing an interfering cassette designed to generate dsRNAs that target a novel v-ATPase transcript in whitefly (Bemisia tabaci), an important agricultural pest in tropical and sub-tropical regions. The presence of the transgene was confirmed in T 0 and T 1 generations of transgenic lettuce lines, segregating in a Mendelian fashion. Seven lines were infested with whiteflies and monitored over a period of 32 days. Analysis of mortality showed that within five days of feeding, insects on transgenic plants showed a mortality rate of 83.8-98.1%. In addition, a reduced number of eggs (95 fold less) was observed in flies feeding on transgenic lettuce plants than insects on control lines. Quantitative reverse transcription PCR showed decreased expression level of endogenous v-ATPase gene in whiteflies feeding on transgenic plants. This technology is a foundation for the production of whitefly-resistant commercial crops, improving agricultural sustainability and food security, reducing the use of more environmentally aggressive methods of pest control.

  1. RNAi-Mediated Downregulation of Inositol Pentakisphosphate Kinase (IPK1 in Wheat Grains Decreases Phytic Acid Levels and Increases Fe and Zn Accumulation

    Directory of Open Access Journals (Sweden)

    Sipla Aggarwal

    2018-03-01

    Full Text Available Enhancement of micronutrient bioavailability is crucial to address the malnutrition in the developing countries. Various approaches employed to address the micronutrient bioavailability are showing promising signs, especially in cereal crops. Phytic acid (PA is considered as a major antinutrient due to its ability to chelate important micronutrients and thereby restricting their bioavailability. Therefore, manipulating PA biosynthesis pathway has largely been explored to overcome the pleiotropic effect in different crop species. Recently, we reported that functional wheat inositol pentakisphosphate kinase (TaIPK1 is involved in PA biosynthesis, however, the functional roles of the IPK1 gene in wheat remains elusive. In this study, RNAi-mediated gene silencing was performed for IPK1 transcripts in hexaploid wheat. Four non-segregating RNAi lines of wheat were selected for detailed study (S3-D-6-1; S6-K-3-3; S6-K-6-10 and S16-D-9-5. Homozygous transgenic RNAi lines at T4 seeds with a decreased transcript of TaIPK1 showed 28–56% reduction of the PA. Silencing of IPK1 also resulted in increased free phosphate in mature grains. Although, no phenotypic changes in the spike was observed but, lowering of grain PA resulted in the reduced number of seeds per spikelet. The lowering of grain PA was also accompanied by a significant increase in iron (Fe and zinc (Zn content, thereby enhancing their molar ratios (Zn:PA and Fe:PA. Overall, this work suggests that IPK1 is a promising candidate for employing genome editing tools to address the mineral accumulation in wheat grains.

  2. RNAi technology extends its reach: Engineering plant resistance ...

    African Journals Online (AJOL)

    RNA interference (RNAi) is a homology-dependent gene silencing technology that is initiated by double stranded RNA (dsRNA). It has emerged as a genetic tool for engineering plants resistance against prokaryotic pathogens such as virus and bacteria. Recent studies broaden the role of RNAi, and many successful ...

  3. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    Science.gov (United States)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  4. Progress on RNAi-based molecular medicines

    OpenAIRE

    Chen, Jing; Xie, Jianping

    2012-01-01

    Jing Chen, Jianping XieInstitute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, ChinaAbstract: RNA interference (RNAi) is a promising strategy to suppress the expression of disease-relevant genes and induce post-transcriptional gene silencing. Their simplicity and stability endow RNAi with great advantages in molecular medicine. Several RNA...

  5. Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Kruithof Egbert KO

    2004-08-01

    Full Text Available Abstract Background RNA interference (RNAi can potently reduce target gene expression in mammalian cells and is in wide use for loss-of-function studies. Several recent reports have demonstrated that short double-stranded RNAs (dsRNAs, used to mediate RNAi, can also induce an interferon-based response resulting in changes in the expression of many interferon-responsive genes. Off-target gene silencing has also been described, bringing into question the validity of certain RNAi-based approaches for studying gene function. We have targeted the plasminogen activator inhibitor-2 (PAI-2 or SERPINB2 mRNA using lentiviral vectors for delivery of U6 promoter-driven PAI-2-targeted short hairpin RNA (shRNA expression. PAI-2 is reported to have anti-apoptotic activity, thus reduction of endogenous expression may be expected to make cells more sensitive to programmed cell death. Results As expected, we encountered a cytotoxic phenotype when targeting the PAI-2 mRNA with vector-derived shRNA. However, this predicted phenotype was a potent non-specific effect of shRNA expression, as functional overexpression of the target protein failed to rescue the phenotype. By decreasing the shRNA length or modifying its sequence we maintained PAI-2 silencing and reduced, but did not eliminate, cytotoxicity. ShRNA of 21 complementary nucleotides (21 mers or more increased expression of the oligoadenylate synthase-1 (OAS1 interferon-responsive gene. 19 mer shRNA had no effect on OAS1 expression but long-term selective pressure on cell growth was observed. By lowering lentiviral vector titre we were able to reduce both expression of shRNA and induction of OAS1, without a major impact on the efficacy of gene silencing. Conclusions Our data demonstrate a rapid cytotoxic effect of shRNAs expressed in human tumor cell lines. There appears to be a cut-off of 21 complementary nucleotides below which there is no interferon response while target gene silencing is maintained

  6. Persistent interferon transgene expression by RNA interference-mediated silencing of interferon receptors.

    Science.gov (United States)

    Takahashi, Yuki; Vikman, Elin; Nishikawa, Makiya; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2010-09-01

    The in vivo half-life of interferons (IFNs) is very short, and its extension would produce a better therapeutic outcome in IFN-based therapy. Delivery of IFN genes is one solution for providing a sustained supply. IFNs have a variety of functions, including the suppression of transgene expression, through interaction with IFN receptors (IFNRs). This suppression could prevent IFNs from being expressed from vectors delivered. Silencing the expression of IFNAR and IFNGR, the receptors for type I and II IFNs, respectively, in cells expressing IFNs may prolong transgene expression of IFNs. Mouse melanoma B16-BL6 cells or mouse liver were selected as a site expressing IFNs (not a target for IFN gene therapy) and IFN-expressing plasmid DNA was delivered with or without small interfering RNA (siRNA) targeting IFNRs. Transfection of B16-BL6 cells with siRNA targeting IFNAR1 subunit (IFNAR1) resulted in the reduced expression of IFNAR on the cell surface. This silencing significantly increased the IFN-beta production in cells that were transfected with IFN-beta-expressing plasmid DNA. Similar results were obtained with the combination of IFN-gamma and IFNGR. Co-injection of IFN-beta-expressing plasmid DNA with siRNA targeting IFNAR1 into mice resulted in sustained plasma concentration of IFN-beta. These results provide experimental evidence that the RNAi-mediated silencing of IFNRs in cells expressing IFN, such as hepatocytes, is an effective approach for improving transgene expression of IFNs when their therapeutic target comprises cells other than those expressing IFNs.

  7. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans.

    Science.gov (United States)

    Tabara, Hiroaki; Yigit, Erbay; Siomi, Haruhiko; Mello, Craig C

    2002-06-28

    Double-stranded (ds) RNA induces potent gene silencing, termed RNA interference (RNAi). At an early step in RNAi, an RNaseIII-related enzyme, Dicer (DCR-1), processes long-trigger dsRNA into small interfering RNAs (siRNAs). DCR-1 is also required for processing endogenous regulatory RNAs called miRNAs, but how DCR-1 recognizes its endogenous and foreign substrates is not yet understood. Here we show that the C. elegans RNAi pathway gene, rde-4, encodes a dsRNA binding protein that interacts during RNAi with RNA identical to the trigger dsRNA. RDE-4 protein also interacts in vivo with DCR-1, RDE-1, and a conserved DExH-box helicase. Our findings suggest a model in which RDE-4 and RDE-1 function together to detect and retain foreign dsRNA and to present this dsRNA to DCR-1 for processing.

  8. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    International Nuclear Information System (INIS)

    Ding, L.; Wu, J.P.; Xu, G.; Zhu, B.; Zeng, Q.M.; Li, D.F.; Lu, W.

    2014-01-01

    Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis

  9. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ding, L.; Wu, J.P. [Fudan University, Jinshan Hospital, Department of Orthopaedics, Shanghai, China, Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai (China); Xu, G. [Fudan University, Jinshan Hospital, Center Laboratory, Shanghai, China, Center Laboratory, Jinshan Hospital, Fudan University, Shanghai (China); Zhu, B.; Zeng, Q.M.; Li, D.F.; Lu, W. [Fudan University, Jinshan Hospital, Department of Orthopaedics, Shanghai, China, Department of Orthopaedics, Jinshan Hospital, Fudan University, Shanghai (China)

    2014-05-09

    Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.

  10. Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro

    Directory of Open Access Journals (Sweden)

    L. Ding

    2014-06-01

    Full Text Available Current studies find that degenerated cartilage endplates (CEP of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.

  11. IRF-4 and c-Rel expression in antiviral-resistant adult T-cell leukemia/lymphoma

    Science.gov (United States)

    Ramos, Juan Carlos; Ruiz, Phillip; Ratner, Lee; Reis, Isildinha M.; Brites, Carlos; Pedroso, Celia; Byrne, Gerald E.; Toomey, Ngoc L.; Andela, Valentine; Harhaj, Edward W.; Lossos, Izidore S.

    2007-01-01

    Adult T-cell leukemia/lymphoma (ATLL) is a generally fatal malignancy. Most ATLL patients fare poorly with conventional chemotherapy; however, antiviral therapy with zidovudine (AZT) and interferon alpha (IFN-α) has produced long-term clinical remissions. We studied primary ATLL tumors and identified molecular features linked to sensitivity and resistance to antiviral therapy. Enhanced expression of the proto-oncogene c-Rel was noted in 9 of 27 tumors. Resistant tumors exhibited c-Rel (6 of 10; 60%) more often than did sensitive variants (1 of 9; 11%). This finding was independent of the disease form. Elevated expression of the putative c-Rel target, interferon regulatory factor-4 (IRF-4), was observed in 10 (91%) of 11 nonresponders and in all tested patients with c-Rel+ tumors and occurred in the absence of the HTLV-1 oncoprotein Tax. In contrast, tumors in complete responders did not express c-Rel or IRF-4. Gene rearrangement studies demonstrated the persistence of circulating T-cell clones in long-term survivors maintained on antiviral therapy. The expression of nuclear c-Rel and IRF-4 occurs in the absence of Tax in primary ATLL and is associated with antiviral resistance. These molecular features may help guide treatment. AZT and IFN-α is a suppressive rather than a curative regimen, and patients in clinical remission should remain on maintenance therapy indefinitely. PMID:17138822

  12. A Key Role for NF-κB Transcription Factor c-Rel in T-Lymphocyte-Differentiation and Effector Functions

    Directory of Open Access Journals (Sweden)

    Alexander Visekruna

    2012-01-01

    Full Text Available The transcription factors of the Rel/NF-κB family function as key regulators of innate and adoptive immunity. Tightly and temporally controlled activation of NF-κB-signalling pathways ensures prevention of harmful immune cell dysregulation, whereas a loss of control leads to pathological conditions such as severe inflammation, autoimmune disease, and inflammation-associated oncogenesis. Five family members have been identified in mammals: RelA (p65, c-Rel, RelB, and the precursor proteins NF-κB1 (p105 and NF-κB2 (p100, that are processed into p50 and p52, respectively. While RelA-containing dimers are present in most cell types, c-Rel complexes are predominately found in cells of hematopoietic origin. In T-cell lymphocytes, certain genes essential for immune function such as Il2 and Foxp3 are directly regulated by c-Rel. Additionally, c-Rel-dependent IL-12 and IL-23 transcription by macrophages and dendritic cells is crucial for T-cell differentiation and effector functions. Accordingly, c-Rel expression in T cells and antigen-presenting cells (APCs controls a delicate balance between tolerance and immunity. This review gives a selective overview on recent progress in understanding of diverse roles of c-Rel in regulating adaptive immunity.

  13. Plant pathology and RNAi: a brief history.

    Science.gov (United States)

    Lindbo, John A; Dougherty, William G

    2005-01-01

    This article describes the discovery of RNA-activated sequence-specific RNA degradation, a phenomenon now referred to as RNA silencing or RNA interference (RNAi). From 1992 to 1996, a series of articles were published on virus resistant transgenic plants expressing either translatable or nontranslatable versions of the coat protein gene of Tobacco etch virus (TEV). Certain transgenic plant lines were resistant to TEV but not to closely related viruses. In these plants a surprising correlation was observed: Transgenic plant lines with the highest degree of TEV resistance had actively transcribed transgenes but low steady-state levels of transgene RNA. Molecular analysis of these transgenic plants demonstrated the existence of a cellular-based, sequence-specific, posttranscriptional RNA-degradation system that was programmed by the transgene-encoded RNA sequence. This RNA-degradation activity specifically targeted both the transgene RNA and TEV (viral) RNA for degradation and was the first description of RNA-mediated gene silencing.

  14. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46's role in a nicotine-mediated antipredator herbivore defense.

    Science.gov (United States)

    Kumar, Pavan; Pandit, Sagar S; Steppuhn, Anke; Baldwin, Ian T

    2014-01-28

    Manduca sexta (Ms) larvae are known to efficiently excrete ingested nicotine when feeding on their nicotine-producing native hostplant, Nicotiana attenuata. Here we describe how ingested nicotine is co-opted for larval defense by a unique mechanism. Plant-mediated RNAi was used to silence a midgut-expressed, nicotine-induced cytochrome P450 6B46 (CYP6B46) in larvae consuming transgenic N. attenuata plants producing MsCYP6B46 dsRNA. These and transgenic nicotine-deficient plants were planted into native habitats to study the phenotypes of larvae feeding on these plants and the behavior of their predators. The attack-behavior of a native wolf spider (Camptocosa parallela), a major nocturnal predator, provided the key to understanding MsCYP6B46's function: spiders clearly preferred CYP6B46-silenced larvae, just as they had preferred larvae fed nicotine-deficient plants. MsCYP6B46 redirects a small amount (0.65%) of ingested nicotine from the midgut into hemolymph, from which nicotine is exhaled through the spiracles as an antispider signal. CYP6B46-silenced larvae were more susceptible to spider-attack because they exhaled less nicotine because of lower hemolymph nicotine concentrations. CYP6B46-silenced larvae were impaired in distributing ingested nicotine from midgut to hemolymph, but not in the clearing of hemolymph nicotine or in the exhalation of nicotine from hemolymph. MsCYP6B46 could be a component of a previously hypothesized pump that converts nicotine to a short-lived, transportable, metabolite. Other predators, big-eyed bugs, and antlion larvae were insensitive to this defense. Thus, chemical defenses, too toxic to sequester, can be repurposed for defensive functions through respiration as a form of defensive halitosis, and predators can assist the functional elucidation of herbivore genes.

  15. PhOBF1, a petunia ocs element binding factor, plays an important role in antiviral RNA silencing.

    Science.gov (United States)

    Sun, Daoyang; Li, Shaohua; Niu, Lixin; Reid, Michael S; Zhang, Yanlong; Jiang, Cai-Zhong

    2017-02-01

    Virus-induced gene silencing (VIGS) is a common reverse genetics strategy for characterizing the function of genes in plants. The detailed mechanism governing RNA silencing efficiency triggered by viruses is largely unclear. Here, we reveal that a petunia (Petunia hybrida) ocs element binding factor, PhOBF1, one of the basic leucine zipper (bZIP) transcription factors, was up-regulated by Tobacco rattle virus (TRV) infection. Simultaneous silencing of PhOBF1 and a reporter gene, phytoene desaturase (PDS) or chalcone synthase (CHS), by TRV-based VIGS led to a failure of the development of leaf photobleaching or the white-corollas phenotype. PhOBF1 silencing caused down-regulation of RNA silencing-related genes, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonautes (AGOs). After inoculation with the TRV-PhPDS, PhOBF1-RNAi lines exhibited a substantially impaired PDS silencing efficiency, whereas overexpression of PhOBF1 resulted in a recovery of the silencing phenotype (photobleaching) in systemic leaves. A compromised resistance to TRV and Tobacco mosaic virus was found in PhOBF1-RNAi lines, while PhOBF1-overexpressing lines displayed an enhanced resistance to their infections. Compared with wild-type plants, PhOBF1-silenced plants accumulated lower levels of free salicylic acid (SA), salicylic acid glucoside, and phenylalanine, contrarily to higher levels of those in plants overexpressing PhOBF1. Furthermore, transcripts of a number of genes associated with the shikimate and phenylpropanoid pathways were decreased or increased in PhOBF1-RNAi or PhOBF1-overexpressing lines, respectively. Taken together, the data suggest that PhOBF1 regulates TRV-induced RNA silencing efficiency through modulation of RDRs, DCLs, and AGOs mediated by the SA biosynthesis pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. siRNA-mediated RNA interference in precision-cut tissue slices prepared from mouse lung and kidney

    NARCIS (Netherlands)

    Ruigrok, Mitchel J. R.; Maggan, Nalinie; Willaert, Delphine; Frijlink, Henderik W.; Melgert, Barbro N.; Olinga, Peter; Hinrichs, Wouter L. J.

    Small interfering RNA (siRNA)-mediated RNAi interference (RNAi) is a powerful post-transcriptional gene silencing mechanism which can be used to study the function of genes in vitro (cell cultures) and in vivo (animal models). However, there is a translational gap between these models. Hence, there

  17. Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNAi-mediated silencing.

    Science.gov (United States)

    Song, Guo-qing; Sink, Kenneth C; Walworth, Aaron E; Cook, Meridith A; Allison, Richard F; Lang, Gregory A

    2013-08-01

    Prunus necrotic ringspot virus (PNRSV) is a major pollen-disseminated ilarvirus that adversely affects many Prunus species. In this study, an RNA interference (RNAi) vector pART27-PNRSV containing an inverted repeat (IR) region of PNRSV was transformed into two hybrid (triploid) cherry rootstocks, 'Gisela 6' (GI 148-1) and 'Gisela 7'(GI 148-8)', which are tolerant and sensitive, respectively, to PNRSV infection. One year after inoculation with PNRSV plus Prune Dwarf Virus, nontransgenic 'Gisela 6' exhibited no symptoms but a significant PNRSV titre, while the transgenic 'Gisela 6' had no symptoms and minimal PNRSV titre. The nontransgenic 'Gisela 7' trees died, while the transgenic 'Gisela 7' trees survived. These results demonstrate the RNAi strategy is useful for developing viral resistance in fruit rootstocks, and such transgenic rootstocks may have potential to enhance production of standard, nongenetically modified fruit varieties while avoiding concerns about transgene flow and exogenous protein production that are inherent for transformed fruiting genotypes. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. RNAi: An emerging field of molecular research

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... structure and genome integrity (Hannon, 2002; Grewal and Moazed ... function. COMPONENTS OF RNAi. Among the components of gene silencing process, some serve as .... PTGS technology has many advantages: It is.

  19. p100, a precursor of NF-κB2, inhibits c-Rel and reduces the expression of IL-23 in dendritic cells

    International Nuclear Information System (INIS)

    Mise-Omata, Setsuko; Obata, Yuichi; Doi, Takahiro S.

    2014-01-01

    Highlights: • The deficiency of p100 enhances c-Rel-, not RelA-, dependent cytokine expression. • p100 associates with c-Rel in the steady state but dissociates after LPS stimulation. • The deficiency of p100 enhances the nuclear translocation of c-Rel. • p100 negatively regulates the c-Rel function. - Abstract: Nuclear factor κB regulates various genes involved in the immune response, inflammation, cell survival, and development. NF-κB activation is controlled by proteins possessing ankyrin repeats, such as IκBs. A precursor of the NF-κB2 (p52) subunit, p100, contains ankyrin repeats in its C-terminal portion and has been found to act as a cytoplasmic inhibitor of RelA in the canonical pathway of NF-κB activation. Here, we demonstrate that p100 also suppresses c-Rel function in dendritic cells. Expression of the p19 and p40 subunits of IL-23, a c-Rel-dependent cytokine, was enhanced in p100-deficient cells, although expression of a RelA-dependent cytokine, TNF-α, was reduced. Nuclear translocation of c-Rel was enhanced in p100-deficient cells. p100, and not the processed p52 form, associated with c-Rel in the steady state and dissociated immediately after lipopolysaccharide stimulation in wild-type dendritic cells. Four hours after the stimulation, p100 was newly synthesized and associated with c-Rel again. In cells expressing both c-Rel and RelA, c-Rel is preferentially suppressed by p100

  20. Human amniotic epithelial cells inhibit CD4+ T cell activation in acute kidney injury patients by influencing the miR-101-c-Rel-IL-2 pathway.

    Science.gov (United States)

    Liu, Junfeng; Hua, Rong; Gong, Zhangbin; Shang, Bin; Huang, Yongyi; Guo, Lihe; Liu, Te; Xue, Jun

    2017-01-01

    In the pathogenesis of acute kidney injury (AKI), the release of multiple interleukins can lead to increased kidney damage. Human amniotic epithelial cells (HuAECs) can inhibit immune cell activation in vivo and in vitro. We hypothesized that HuAECs could weaken patient-derived peripheral blood CD4+ T-cell activation and decreasing the ability of these cells to express and release IL-2. -Cell proliferation assay revealed that under the same culture conditions, activated AKI patient-derived CD4+ T cells had a significantly reduced proliferation rate when were co-cultured with HuAECs. And the level of IL-2 released was also significantly reduced. Western blot and qRT-PCR assays showed that the expression of c-Rel in the CD4+ T cells was also significantly reduced. However, the expression level of endogenous miR-101 in the CD4+ T cells co-cultured with HuAECs was significantly increased. Luciferase reporter assay results suggested that miR-101 could bind to a specific site in the c-Rel 3' UTR and induce the post-transcriptional silencing of c-Rel. Subsequently, we over-expressed miR-101 in AKI patient-derived CD4+ T cells. The qRT-PCR and western blot assay results revealed that the expression of endogenous c-Rel was significantly reduced, while the ELISA results indicated that the level of IL-2 released was also significantly decreased. Finally, ChIP-PCR assay results showed that the miR-101-overexpressing CD4+ T-cell group and the HuAEC co-culture CD4+ T-cell group exhibited significantly decreased binding capacities between the 'c-Rel-NFκB' complex and the IL-2 gene promoter, and the transcriptional activity of IL-2 was also significantly decreased. Therefore, we confirmed that HuAECs can stimulate miR-101 expression in AKI patient-derived peripheral blood CD4+ T cells, thus inhibiting the expression of the miR-101 target gene c-Rel and leading to a reduction in IL-2 expression and release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Field Trial and Molecular Characterization of RNAi-Transgenic Tomato Plants That Exhibit Resistance to Tomato Yellow Leaf Curl Geminivirus.

    Science.gov (United States)

    Fuentes, Alejandro; Carlos, Natacha; Ruiz, Yoslaine; Callard, Danay; Sánchez, Yadira; Ochagavía, María Elena; Seguin, Jonathan; Malpica-López, Nachelli; Hohn, Thomas; Lecca, Maria Rita; Pérez, Rosabel; Doreste, Vivian; Rehrauer, Hubert; Farinelli, Laurent; Pujol, Merardo; Pooggin, Mikhail M

    2016-03-01

    RNA interference (RNAi) is a widely used approach to generate virus-resistant transgenic crops. However, issues of agricultural importance like the long-term durability of RNAi-mediated resistance under field conditions and the potential side effects provoked in the plant by the stable RNAi expression remain poorly investigated. Here, we performed field trials and molecular characterization studies of two homozygous transgenic tomato lines, with different selection markers, expressing an intron-hairpin RNA cognate to the Tomato yellow leaf curl virus (TYLCV) C1 gene. The tested F6 and F4 progenies of the respective kanamycin- and basta-resistant plants exhibited unchanged field resistance to TYLCV and stably expressed the transgene-derived short interfering RNA (siRNAs) to represent 6 to 8% of the total plant small RNAs. This value outnumbered the average percentage of viral siRNAs in the nontransformed plants exposed to TYLCV-infested whiteflies. As a result of the RNAi transgene expression, a common set of up- and downregulated genes was revealed in the transcriptome profile of the plants selected from either of the two transgenic events. A previously unidentified geminivirus causing no symptoms of viral disease was detected in some of the transgenic plants. The novel virus acquired V1 and V2 genes from TYLCV and C1, C2, C3, and C4 genes from a distantly related geminivirus and, thereby, it could evade the repressive sequence-specific action of transgene-derived siRNAs. Our findings shed light on the mechanisms of siRNA-directed antiviral silencing in transgenic plants and highlight the applicability limitations of this technology as it may alter the transcriptional pattern of nontarget genes.

  2. A protocol for assessment of direct effects of RNAi to earthworms

    DEFF Research Database (Denmark)

    de Pinto, Roberta; Strandberg, Morten Tune; Kostov, Kaloyan

    both how to study fate and effects of the RNAi molecules. If COI or another gene apt for silencing will be successful in the earthworm L. terrestris, this could become a suggested positive control agent for future non-target studies of RNAi. The testing of environmental effects of NBT require...

  3. [Expression analysis of a transformer gene in Daphnia pulex after RNAi].

    Science.gov (United States)

    Guo, C Y; Chen, P; Zhang, M M; Ning, J J; Wang, С L; Wang, D L; Zhao, Y L

    2016-01-01

    In order to explore the importance of the transformer (tra) gene in reproductive mode switching in Daphnia pulex, we studied the effect of silencing of this gene using RNA interference (RNAi). We obtained Dptra dsRNA by constructing and using a dsRNA expression vector and transcription method in vitro. D. pulex individuals in different reproductive modes were treated by soaking in a solution of Dptra dsRNA. We then assayed the expression of the endogenous Dptra mRNA after RNAi treatment using RT-PCR and obtained the suppression ratio. Expression of the tra gene in the RNAi groups was down-regulated compared with the controls after 16 h (p < 0.05). We also analyzed the effect of RNAi on the expression of the TRA protein using Western blot, which showed that the expression level of the TRA protein was reduced after RNAi treatment. Our experimental results showed that soaking of D. pulex adults in tra-specific dsRNA transcribed in vitro can specifically reduce the level of tra mRNA and also reduce the expression of the TRA protein, demonstrating effective in vivo silencing of the tra gene.

  4. Detection of the argonaute protein Ago2 and microRNAs in the RNA induced silencing complex (RISC) using a monoclonal antibody.

    Science.gov (United States)

    Ikeda, Keigo; Satoh, Minoru; Pauley, Kaleb M; Fritzler, Marvin J; Reeves, Westley H; Chan, Edward K L

    2006-12-20

    MicroRNAs (miRNAs) are short RNA molecules responsible for post-transcriptional gene silencing by the degradation or translational inhibition of their target messenger RNAs (mRNAs). This process of gene silencing, known as RNA interference (RNAi), is mediated by highly conserved Argonaute (Ago) proteins which are the key components of the RNA induced silencing complex (RISC). In humans, Ago2 is responsible for the endonuclease cleavage of targeted mRNA and it interacts with the mRNA-binding protein GW182, which is a marker for cytoplasmic foci referred to as GW bodies (GWBs). We demonstrated that the anti-Ago2 monoclonal antibody 4F9 recognized GWBs in a cell cycle dependent manner and was capable of capturing miRNAs associated with Ago2. Since Ago2 protein is the effector protein of RNAi, anti-Ago2 monoclonal antibody may be useful in capturing functional miRNAs.

  5. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D.; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M.; Webster, Thomas C.; Su, Songkun

    2016-01-01

    ABSTRACT Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. IMPORTANCE Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors

  6. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections.

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M; Webster, Thomas C; Su, Songkun; Chen, Yan Ping

    2016-11-15

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate

  7. Role of RNA interference (RNAi) in the moss Physcomitrella patens

    KAUST Repository

    Arif, Muhammad Asif; Frank, Wolfgang; Khraiwesh, Basel

    2013-01-01

    RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  8. Role of RNA interference (RNAi) in the moss Physcomitrella patens

    KAUST Repository

    Arif, Muhammad Asif

    2013-01-14

    RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  9. RNA interference: ready to silence cancer?

    Science.gov (United States)

    Mocellin, Simone; Costa, Rodolfo; Nitti, Donato

    2006-01-01

    RNA interference (RNAi) is considered the most promising functional genomics tool recently developed. As in other medical fields, this biotechnology might revolutionize the approach to dissecting the biology of cancer, ultimately speeding up the discovery pace of novel targets suitable for molecularly tailored antitumor therapies. In addition, preclinical results suggest that RNAi itself might be used as a therapeutic weapon. With the aim of illustrating not only the potentials but also the current limitations of RNAi as a tool in the fight against cancer, here we summarize the physiology of RNAi, discuss the main technical issues of RNAi-based gene silencing, and review some of the most interesting preclinical results obtained so far with its implementation in the field of oncology.

  10. RDE-2 interacts with MUT-7 to mediate RNA interference in Caenorhabditis elegans.

    Science.gov (United States)

    Tops, Bastiaan B J; Tabara, Hiroaki; Sijen, Titia; Simmer, Femke; Mello, Craig C; Plasterk, Ronald H A; Ketting, René F

    2005-01-01

    In Caenorhabditis elegans, the activity of transposable elements is repressed in the germline. One of the mechanisms involved in this repression is RNA interference (RNAi), a process in which dsRNA targets cleavage of mRNAs in a sequence-specific manner. The first gene found to be involved in RNAi and transposon silencing in C.elegans is mut-7, a gene encoding a putative exoribonuclease. Here, we show that the MUT-7 protein resides in complexes of approximately 250 kDa in the nucleus and in the cytosol. In addition, we find that upon triggering of RNAi the cytosolic MUT-7 complex increases in size. This increase is independent of the presence of target RNA, but does depend on the presence of RDE-1 and RDE-4, two proteins involved in small interfering RNA (siRNA) production. Finally, using a yeast two-hybrid screen, we identified RDE-2/MUT-8 as one of the other components of this complex. This protein is encoded by the rde-2/mut-8 locus, previously implicated in RNAi and transposon silencing. Using genetic complementation analysis, we show that the interaction between these two proteins is required for efficient RNAi in vivo. Together these data support a role for the MUT-7/RDE-2 complex downstream of siRNA formation, but upstream of siRNA mediated target RNA recognition, possibly indicating a role in the siRNA amplification step.

  11. Environmental RNAi in herbivorous insects.

    Science.gov (United States)

    Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R

    2015-05-01

    Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. © 2015 Ivashuta et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. Construction of RNAi lentiviral vector targeting mouse Islet-1 gene

    Directory of Open Access Journals (Sweden)

    Shen-shen ZHI

    2011-02-01

    Full Text Available Objective To construct and select RNAi lentiviral vectors that can silence mouse Islet-1 gene effectively.Methods Three groups of RNAi-target of mouse Islet-1 gene were designed,and corresponding shRNA oligo(sh1,sh2 and sh3 were synthesized,and then they were respectively inserted to the PLVTHM vector that had been digested by endonuclease.Agarose gel electrophoresis and sequencing were used to select and indentify the positive clones.The positive clones were extracted and then mixed with E.coli to amplify positive clones.The amplified clones were then infected into 293T along with the other 3 helper plasmids to produce lentiviral vector.After the construction of the lentiviral vector,plaque formation test was performed to determine the titer of lentiviral vector.The lentiviral vectors were then infected into C3H10T1/2 cells.The transfect efficiency of the lentiviral vectors was determined with flow cytometry with detection of green fluorescent protein(GFP.Q-PCR was employed to detect the RNAi efficiency of the lentiviral vectors.Results Agarose gel electrophoresis analysis showed that the clones with right gene at the target size were successfully established;gene sequencing showed that the right DNA fragments had been inserted;plaque formation test showed that the titer of the virus solution was 3.87×108TU/ml;the transfect efficiency of the lentiviral vector infected into C3H10T1/2 cells was 90.36%.All the 3 groups of shRNA targets(sh1,sh2 and sh3 showed an inhibitory effect on Islet-1 gene,and the sh1 showed the highest inhibitory effect(76.8%,as compared with that of normal cells(P < 0.05.Conclusion The RNAi lentiviral vector that can effectively silence the mouse Islet-1 gene has been constructed successfully,which may lay a foundation for further investigation of Islet-1 gene.

  13. Transgenic RNAi in mouse oocytes: The first decade

    Czech Academy of Sciences Publication Activity Database

    Malík, Radek; Svoboda, Petr

    2012-01-01

    Roč. 134, 1-2 (2012), s. 64-68 ISSN 0378-4320 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : RNAi * oocyte * transgene * silencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.897, year: 2012

  14. RDE-1 slicer activity is required only for passenger-strand cleavage during RNAi in Caenorhabditis elegans.

    Science.gov (United States)

    Steiner, Florian A; Okihara, Kristy L; Hoogstrate, Suzanne W; Sijen, Titia; Ketting, René F

    2009-02-01

    RNA interference (RNAi) is a process in which double-stranded RNA is cleaved into small interfering RNAs (siRNAs) that induce the destruction of homologous single-stranded mRNAs. Argonaute proteins are essential components of this silencing process; they bind siRNAs directly and can cleave RNA targets using a conserved RNase H motif. In Caenorhabditis elegans, the Argonaute protein RDE-1 has a central role in RNAi. In animals lacking RDE-1, the introduction of double-stranded RNA does not trigger any detectable level of RNAi. Here we show that RNase H activity of RDE-1 is required only for efficient removal of the passenger strand of the siRNA duplex and not for triggering the silencing response at the target-mRNA level. These results uncouple the role of the RDE-1 RNase H activity in small RNA maturation from its role in target-mRNA silencing in vivo.

  15. Biotechnological uses of RNAi in plants: risk assessment considerations.

    Science.gov (United States)

    Casacuberta, Josep M; Devos, Yann; du Jardin, Patrick; Ramon, Matthew; Vaucheret, Hervé; Nogué, Fabien

    2015-03-01

    RNAi offers opportunities to generate new traits in genetically modified (GM) plants. Instead of expressing novel proteins, RNAi-based GM plants reduce target gene expression. Silencing of off-target genes may trigger unintended effects, and identifying these genes would facilitate risk assessment. However, using bioinformatics alone is not reliable, due to the lack of genomic data and insufficient knowledge of mechanisms governing mRNA-small (s)RNA interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Dacheng Liang

    2014-12-01

    Full Text Available In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.

  17. IRF-4 and c-Rel expression in antiviral-resistant adult T-cell leukemia/lymphoma

    OpenAIRE

    Ramos, Juan Carlos; Ruiz, Phillip; Ratner, Lee; Reis, Isildinha M.; Brites, Carlos; Pedroso, Celia; Byrne, Gerald E.; Toomey, Ngoc L.; Andela, Valentine; Harhaj, Edward W.; Lossos, Izidore S.; Harrington, William J.

    2007-01-01

    Adult T-cell leukemia/lymphoma (ATLL) is a generally fatal malignancy. Most ATLL patients fare poorly with conventional chemotherapy; however, antiviral therapy with zidovudine (AZT) and interferon alpha (IFN-α) has produced long-term clinical remissions. We studied primary ATLL tumors and identified molecular features linked to sensitivity and resistance to antiviral therapy. Enhanced expression of the proto-oncogene c-Rel was noted in 9 of 27 tumors. Resistant tumors exhibited c-Rel (6 of 1...

  18. Double-stranded RNA delivery through soaking mediates silencing of the muscle protein 20 and increases mortality to the Asian citrus psyllid, Diaphorina citri.

    Science.gov (United States)

    Yu, Xiudao; Gowda, Siddarame; Killiny, Nabil

    2017-09-01

    Asian citrus psyllid, Diaphorina citri Kuwayama, is the most important economic pest of citrus because it transmits Candidatus Liberibacter asiaticus (CLas), the causal agent of huanglongbing (HLB). Silencing genes by RNA interference (RNAi) is a promising approach for controlling D. citri. RNAi-based insect management strategies depend on the selection of suitable target genes. The muscle protein 20 gene DcMP20 was characterized from D. citri in an effort to impair proper muscle development through RNAi. Phylogenetic analysis showed that DcMP20 was more closely related to MP20 from Drosophila compared with its counterpart from other insect species. Developmental expression analysis revealed that transcription of DcMP20 was development dependent and reached a maximum level in the last instar (fourth-fifth) of the nymphal stage. The extent of RNAi in D. citri was dose dependent, with dsRNA-DcMP20 at 75 ng µL -1 being sufficient to knock down endogenous DcMP20 expression, which resulted in significant mortality and reduced body weight that positively correlated with the silencing of DcMP20. No effect was found when dsRNA-GFP or water was used, indicating the specific effect of dsRNA-DcMP20. Our results suggest that dsRNA can be delivered to D. citri through soaking, and DcMP20 is an effective RNAi target to be used in the management of D. citri. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests.

    Science.gov (United States)

    Gillet, François-Xavier; Garcia, Rayssa A; Macedo, Leonardo L P; Albuquerque, Erika V S; Silva, Maria C M; Grossi-de-Sa, Maria F

    2017-01-01

    Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil ( Anthonomus grandis ), we showed that the chimeric protein PTD-DRBD (peptide transduction domain-dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  20. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests

    Directory of Open Access Journals (Sweden)

    François-Xavier Gillet

    2017-04-01

    Full Text Available Genetically modified (GM crops producing double-stranded RNAs (dsRNAs are being investigated largely as an RNA interference (RNAi-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis, we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain combined with dsRNA forms a ribonucleoprotein particle (RNP that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  1. CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila.

    Science.gov (United States)

    Xue, Zhaoyu; Wu, Menghua; Wen, Kejia; Ren, Menda; Long, Li; Zhang, Xuedi; Gao, Guanjun

    2014-09-05

    Existing transgenic RNA interference (RNAi) methods greatly facilitate functional genome studies via controlled silencing of targeted mRNA in Drosophila. Although the RNAi approach is extremely powerful, concerns still linger about its low efficiency. Here, we developed a CRISPR/Cas9-mediated conditional mutagenesis system by combining tissue-specific expression of Cas9 driven by the Gal4/upstream activating site system with various ubiquitously expressed guide RNA transgenes to effectively inactivate gene expression in a temporally and spatially controlled manner. Furthermore, by including multiple guide RNAs in a transgenic vector to target a single gene, we achieved a high degree of gene mutagenesis in specific tissues. The CRISPR/Cas9-mediated conditional mutagenesis system provides a simple and effective tool for gene function analysis, and complements the existing RNAi approach. Copyright © 2014 Xue et al.

  2. Antiviral RNA silencing initiated in the absence of RDE-4, a double-stranded RNA binding protein, in Caenorhabditis elegans.

    Science.gov (United States)

    Guo, Xunyang; Zhang, Rui; Wang, Jeffrey; Lu, Rui

    2013-10-01

    Small interfering RNAs (siRNAs) processed from double-stranded RNA (dsRNA) of virus origins mediate potent antiviral defense through a process referred to as RNA interference (RNAi) or RNA silencing in diverse organisms. In the simple invertebrate Caenorhabditis elegans, the RNAi process is initiated by a single Dicer, which partners with the dsRNA binding protein RDE-4 to process dsRNA into viral siRNAs (viRNAs). Notably, in C. elegans this RNA-directed viral immunity (RDVI) also requires a number of worm-specific genes for its full antiviral potential. One such gene is rsd-2 (RNAi spreading defective 2), which was implicated in RDVI in our previous studies. In the current study, we first established an antiviral role by showing that rsd-2 null mutants permitted higher levels of viral RNA accumulation, and that this enhanced viral susceptibility was reversed by ectopic expression of RSD-2. We then examined the relationship of rsd-2 with other known components of RNAi pathways and established that rsd-2 functions in a novel pathway that is independent of rde-4 but likely requires the RNA-dependent RNA polymerase RRF-1, suggesting a critical role for RSD-2 in secondary viRNA biogenesis, likely through coordinated action with RRF-1. Together, these results suggest that RDVI in the single-Dicer organism C. elegans depends on the collective actions of both RDE-4-dependent and RDE-4-independent mechanisms to produce RNAi-inducing viRNAs. Our study reveals, for the first time, a novel siRNA-producing mechanism in C. elegans that bypasses the need for a dsRNA-binding protein.

  3. Targeting NF-κB RelA/p65 phosphorylation overcomes RITA resistance.

    Science.gov (United States)

    Bu, Yiwen; Cai, Guoshuai; Shen, Yi; Huang, Chenfei; Zeng, Xi; Cao, Yu; Cai, Chuan; Wang, Yuhong; Huang, Dan; Liao, Duan-Fang; Cao, Deliang

    2016-12-28

    Inactivation of p53 occurs frequently in various cancers. RITA is a promising anticancer small molecule that dissociates p53-MDM2 interaction, reactivates p53 and induces exclusive apoptosis in cancer cells, but acquired RITA resistance remains a major drawback. This study found that the site-differential phosphorylation of nuclear factor-κB (NF-κB) RelA/p65 creates a barcode for RITA chemosensitivity in cancer cells. In naïve MCF7 and HCT116 cells where RITA triggered vast apoptosis, phosphorylation of RelA/p65 increased at Ser536, but decreased at Ser276 and Ser468; oppositely, in RITA-resistant cells, RelA/p65 phosphorylation decreased at Ser536, but increased at Ser276 and Ser468. A phosphomimetic mutation at Ser536 (p65/S536D) or silencing of endogenous RelA/p65 resensitized the RITA-resistant cells to RITA while the phosphomimetic mutant at Ser276 (p65/S276D) led to RITA resistance of naïve cells. In mouse xenografts, intratumoral delivery of the phosphomimetic p65/S536D mutant increased the antitumor activity of RITA. Furthermore, in the RITA-resistant cells ATP-binding cassette transporter ABCC6 was upregulated, and silencing of ABCC6 expression in these cells restored RITA sensitivity. In the naïve cells, ABCC6 delivery led to RITA resistance and blockage of p65/S536D mutant-induced RITA sensitivity. Taken together, these data suggest that the site-differential phosphorylation of RelA/p65 modulates RITA sensitivity in cancer cells, which may provide an avenue to manipulate RITA resistance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Biosafety research for non-target organism risk assessment of RNAi-based GE plants

    Science.gov (United States)

    Roberts, Andrew F.; Devos, Yann; Lemgo, Godwin N. Y.; Zhou, Xuguo

    2015-01-01

    RNA interference, or RNAi, refers to a set of biological processes that make use of conserved cellular machinery to silence genes. Although there are several variations in the source and mechanism, they are all triggered by double stranded RNA (dsRNA) which is processed by a protein complex into small, single stranded RNA, referred to as small interfering RNAs (siRNA) with complementarity to sequences in genes targeted for silencing. The use of the RNAi mechanism to develop new traits in plants has fueled a discussion about the environmental safety of the technology for these applications, and this was the subject of a symposium session at the 13th ISBGMO in Cape Town, South Africa. This paper continues that discussion by proposing research areas that may be beneficial for future environmental risk assessments of RNAi-based genetically modified plants, with a particular focus on non-target organism assessment. PMID:26594220

  5. Nanoparticle-Based Delivery System for Biomedical Applications of RNAi

    DEFF Research Database (Denmark)

    Yang, Chuanxu

    RNA interference (RNAi) is a post-transcriptional gene silencing process triggered by double-strand RNA, including synthetic short interfering RNA (siRNA) and endogenous microRNA (miRNA). RNAi has attracted great attention for developing a new class of therapeutics, due to its capability to speci......RNA/miRNA and transport them to the action site in the target cells. This thesis describes the development of various nanocarriers for siRNA/miRNA delivery and investigate their potential biomedical applications including: anti-inflammation, tissue engineering and cancer...

  6. SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Takanori, E-mail: kubo-t@yasuda-u.ac.jp [Faculty of Pharmacy, Yasuda Women' s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153 (Japan); Yanagihara, Kazuyoshi [Faculty of Pharmacy, Yasuda Women' s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153 (Japan); Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Takei, Yoshifumi [Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumi-cho, Showa-ku, Nagoya 466-8550 (Japan); Mihara, Keichiro [Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Sato, Yuichiro; Seyama, Toshio [Faculty of Pharmacy, Yasuda Women' s University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153 (Japan)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer SiRNAs conjugated with aromatic compounds (Ar-siRNAs) at 5 Prime -sense strand were synthesized. Black-Right-Pointing-Pointer Ar-siRNAs increased resistance against nuclease degradation. Black-Right-Pointing-Pointer Ar-siRNAs were thermodynamically stable compared with the unmodified siRNA. Black-Right-Pointing-Pointer High levels of cellular uptake and cytoplasmic localization were found. Black-Right-Pointing-Pointer Strong gene-silencing efficacy was exhibited in the Ar-siRNAs. -- Abstract: Short interference RNA (siRNA) is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with aromatic compounds in order to improve the potency of RNAi and thus to overcome several problems with siRNAs, such as cellular delivery and nuclease stability. The siRNAs conjugated with phenyl, hydroxyphenyl, naphthyl, and pyrenyl derivatives showed strong resistance to nuclease degradation, and were thermodynamically stable compared with unmodified siRNA. A high level of membrane permeability in HeLa cells was also observed. Moreover, these siRNAs exhibited enhanced RNAi efficacy, which exceeded that of locked nucleic acid (LNA)-modified siRNAs, against exogenous Renilla luciferase in HeLa cells. In particular, abundant cytoplasmic localization and strong gene-silencing efficacy were found in the siRNAs conjugated with phenyl and hydroxyphenyl derivatives. The novel siRNAs conjugated with aromatic compounds are promising candidates for a new generation of modified siRNAs that can solve many of the problems associated with RNAi technology.

  7. The Ebola virus VP35 protein is a suppressor of RNA silencing

    NARCIS (Netherlands)

    Haasnoot, J.; Vries, de W.; Geutjes, E.J.; Prins, M.W.; Haan, de P.; Berkhout, B.

    2007-01-01

    RNA silencing or interference (RNAi) is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is

  8. Optical silencing of C. elegans cells with arch proton pump.

    Directory of Open Access Journals (Sweden)

    Ayako Okazaki

    Full Text Available BACKGROUND: Optogenetic techniques using light-driven ion channels or ion pumps for controlling excitable cells have greatly facilitated the investigation of nervous systems in vivo. A model organism, C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. METHODOLOGY/PRINCIPAL FINDINGS: We describe the application of archaerhodopsin-3 (Arch, a recently reported optical neuronal silencer, to C. elegans. Arch::GFP expressed either in all neurons or body wall muscles of the entire body by means of transgenes were localized, at least partially, to the cell membrane without adverse effects, and caused locomotory paralysis of worms when illuminated by green light (550 nm. Pan-neuronal expression of Arch endowed worms with quick and sustained responsiveness to such light. Worms reliably responded to repeated periods of illumination and non-illumination, and remained paralyzed under continuous illumination for 30 seconds. Worms expressing Arch in different subsets of motor neurons exhibited distinct defects in the locomotory behavior under green light: selective silencing of A-type motor neurons affected backward movement while silencing of B-type motor neurons affected forward movement more severely. Our experiments using a heat-shock-mediated induction system also indicate that Arch becomes fully functional only 12 hours after induction and remains functional for more than 24 hour. CONCLUSIONS/SGNIFICANCE: Arch can be used for silencing neurons and muscles, and may be a useful alternative to currently widely used halorhodopsin (NpHR in optogenetic studies of C. elegans.

  9. In Vivo RNAi-Based Screens: Studies in Model Organisms

    Directory of Open Access Journals (Sweden)

    Miki Yamamoto-Hino

    2013-11-01

    Full Text Available RNA interference (RNAi is a technique widely used for gene silencing in organisms and cultured cells, and depends on sequence homology between double-stranded RNA (dsRNA and target mRNA molecules. Numerous cell-based genome-wide screens have successfully identified novel genes involved in various biological processes, including signal transduction, cell viability/death, and cell morphology. However, cell-based screens cannot address cellular processes such as development, behavior, and immunity. Drosophila and Caenorhabditis elegans are two model organisms whose whole bodies and individual body parts have been subjected to RNAi-based genome-wide screening. Moreover, Drosophila RNAi allows the manipulation of gene function in a spatiotemporal manner when it is implemented using the Gal4/UAS system. Using this inducible RNAi technique, various large-scale screens have been performed in Drosophila, demonstrating that the method is straightforward and valuable. However, accumulated results reveal that the results of RNAi-based screens have relatively high levels of error, such as false positives and negatives. Here, we review in vivo RNAi screens in Drosophila and the methods that could be used to remove ambiguity from screening results.

  10. Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via β-catenin/GSK-3β modulation in colorectal carcinoma.

    Directory of Open Access Journals (Sweden)

    Yung-Kuo Lee

    Full Text Available Multidrug resistance (MDR, an unfavorable factor compromising the treatment efficacy of anticancer drugs, involves the upregulation of ATP binding cassette (ABC transporters and induction of galectin-3 signaling. Galectin-3 plays an anti-apoptotic role in many cancer cells and regulates various pathways to activate MDR. Thus, the inhibition of galectin-3 has the potential to enhance the efficacy of the anticancer drug epirubicin. In this study, we examined the effects and mechanisms of silencing galectin-3 via RNA interference (RNAi on the β-catenin/GSK-3β pathway in human colon adenocarcinoma Caco-2 cells. Galectin-3 knockdown increased the intracellular accumulation of epirubicin in Caco-2 cells; suppressed the mRNA expression of galectin-3, β-catenin, cyclin D1, c-myc, P-glycoprotein (P-gp, MDR-associated protein (MRP 1, and MRP2; and downregulated the protein expression of P-gp, cyclin D1, galectin-3, β-catenin, c-Myc, and Bcl-2. Moreover, galectin-3 RNAi treatment significantly increased the mRNA level of GSK-3β, Bax, caspase-3, and caspase-9; remarkably increased the Bax-to-Bcl-2 ratio; and upregulated the GSK-3β and Bax protein expressions. Apoptosis was induced by galectin-3 RNAi and/or epirubicin as demonstrated by chromatin condensation, a higher sub-G1 phase proportion, and increased caspase-3 and caspase-9 activity, indicating an intrinsic/mitochondrial apoptosis pathway. Epirubicin-mediated resistance was effectively inhibited via galectin-3 RNAi treatment. However, these phenomena could be rescued after galectin-3 overexpression. We show for the first time that the silencing of galectin-3 sensitizes MDR cells to epirubicin by inhibiting ABC transporters and activating the mitochondrial pathway of apoptosis through modulation of the β-catenin/GSK-3β pathway in human colon cancer cells.

  11. Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity.

    Science.gov (United States)

    Gallo, Christopher M; Smith, Daniel L; Smith, Jeffrey S

    2004-02-01

    The Saccharomyces cerevisiae Sir2 protein is an NAD(+)-dependent histone deacetylase (HDAC) that functions in transcriptional silencing and longevity. The NAD(+) salvage pathway protein, Npt1, regulates Sir2-mediated processes by maintaining a sufficiently high intracellular NAD(+) concentration. However, another NAD(+) salvage pathway component, Pnc1, modulates silencing independently of the NAD(+) concentration. Nicotinamide (NAM) is a by-product of the Sir2 deacetylase reaction and is a natural Sir2 inhibitor. Pnc1 is a nicotinamidase that converts NAM to nicotinic acid. Here we show that recombinant Pnc1 stimulates Sir2 HDAC activity in vitro by preventing the accumulation of NAM produced by Sir2. In vivo, telomeric, rDNA, and HM silencing are differentially sensitive to inhibition by NAM. Furthermore, PNC1 overexpression suppresses the inhibitory effect of exogenously added NAM on silencing, life span, and Hst1-mediated transcriptional repression. Finally, we show that stress suppresses the inhibitory effect of NAM through the induction of PNC1 expression. Pnc1, therefore, positively regulates Sir2-mediated silencing and longevity by preventing the accumulation of intracellular NAM during times of stress.

  12. Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple-turnover

    Science.gov (United States)

    Rawlings, Renata A.; Krishnan, Vishalakshi; Walter, Nils G.

    2011-01-01

    RNA interference (RNAi) is a conserved gene regulatory mechanism employed by most eukaryotes as a key component of their innate immune response against viruses and retrotransposons. During viral infection, the RNase III-type endonuclease Dicer cleaves viral double-stranded RNA into small interfering RNAs (siRNAs), 21–24 nucleotides in length, and helps load them into the RNA-induced silencing complex (RISC) to guide cleavage of complementary viral RNA. As a countermeasure, many viruses have evolved viral RNA silencing suppressor (RSS) proteins that tightly, and presumably quantitatively, bind siRNAs to thwart RNAi-mediated degradation. Viral RSS proteins also act across kingdoms as potential immunosuppressors in gene therapeutic applications. Here we report fluorescence quenching and electrophoretic mobility shift assays that probe siRNA binding by the dimeric RSS p19 from Carnation Italian Ringspot Virus (CIRV), as well as by human Dicer and RISC assembly complexes. We find that the siRNA:p19 interaction is readily reversible, characterized by rapid binding ((1.69 ± 0.07)×108 M−1s−1) and marked dissociation (koff = 0.062 ± 0.002 s−1). We also observe that p19 efficiently competes with recombinant Dicer and inhibits formation of RISC-related assembly complexes found in human cell extract. Computational modeling based on these results provides evidence for the transient formation of a ternary complex between siRNA, human Dicer, and p19. An expanded model of RNA silencing indicates that multiple-turnover by reversible binding of siRNAs potentiates the efficiency of the suppressor protein. Our predictive model is expected to be applicable to the dosing of p19 as a silencing suppressor in viral gene therapy. PMID:21354178

  13. RNAi effector diversity in nematodes.

    Directory of Open Access Journals (Sweden)

    Johnathan J Dalzell

    2011-06-01

    Full Text Available While RNA interference (RNAi has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (dsRNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii The Argonautes (AGOs responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii Secondary Argonautes (SAGOs are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research

  14. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success.

    Science.gov (United States)

    Sindhu, Anoop S; Maier, Tom R; Mitchum, Melissa G; Hussey, Richard S; Davis, Eric L; Baum, Thomas J

    2009-01-01

    Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.

  15. New insights into siRNA amplification and RNAi.

    Science.gov (United States)

    Zhang, Chi; Ruvkun, Gary

    2012-08-01

    In the nematode Caenorhabditis elegans (C. elegans), gene inactivation by RNA interference can achieve remarkable potency due to the amplification of initial silencing triggers by RNA-dependent RNA polymerases (RdRPs). RdRPs catalyze the biogenesis of an abundant species of secondary small interfering RNAs (siRNAs) using the target mRNA as template. The interaction between primary siRNAs derived from the exogenous double-stranded RNA (dsRNA) trigger and the target mRNA is required for the recruitment of RdRPs. Other genetic requirements for RdRP activities have not been characterized. Recent studies have identified the RDE-10/RDE-11 complex which interacts with the primary siRNA bound target mRNA and acts upstream of the RdRPs. rde-10 and rde-11 mutants show an RNAi defective phenotype because the biogenesis of secondary siRNAs is completely abolished. In addition, the RDE-10/RDE-11 complex plays a similar role in the endogenous RNAi pathway for the biogenesis of a subset of siRNAs targeting recently acquired, duplicated genes.

  16. Silencing of RhoA and RhoC expression by RNA interference suppresses human colorectal carcinoma growth in vivo

    Directory of Open Access Journals (Sweden)

    Wang Haibo

    2010-09-01

    Full Text Available Abstract Background RhoA and RhoC have been proved to be over-expressed in many solid cancers, including colorectal cancer. The reduction of RhoA and RhoC expression by RNA interference (RNAi resulted growth inhibition of cancer cells. The present study was to evaluate the effect of silencing of RhoA and RhoC expression by RNAi on growth of human colorectal carcinoma (CRC in tumor-bearing nude mice in vivo. Methods To establish HCT116 cell transplantable model, the nude mice were subcutaneously inoculated with 1.0 × 107 HCT116 cells and kept growing till the tumor xenografts reached 5-7 mm in diameter. Then the mice were randomly assigned to three groups(seven mice in each group: (1 normal saline(NS group, (2replication-defective recombinant adenovirus carrying the negative control shRNA (Ad-HK group and (3replication-defective recombinant adenovirus carrying the 4-tandem linked RhoA and RhoC shRNAs (Ad-RhoA-RhoC group. Ad-HK (4 × 108 pfu, 30 ul/mouse, Ad-RhoA-RhoC (4 × 108 pfu, 30 ul/mouse or PBS (30 ul/mouse was injected intratumorally four times once every other day. The weight and volumes of tumor xenografts were recorded. The levels of RhoA and RhoC mRNA transcripts and proteins in tumor xenografts were detected by reverse quantitative transcription polymerase chain reaction (QRT-PCR and immunohistochemical staining respectively. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL assay was used to detect the death of cells. Results The xenografts in mice could be seen at 5th day from the implantation of HCT116 cells and all had reached 5-7 mm in size at 9th day. After injection intratumorally, the growth speed of tumor xenografts in Ad-RhoA-RhoC group was significantly delayed compared with those in NS and Ad-HK group(P RhoA and RhoC reduced more in Ad-RhoA-RhoC group than those in NS and Ad-HK group. The relative RhoA and RhoC mRNA transcripts were decreased to 48% and 43% respectively (P RhoA and RhoC

  17. RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation.

    Directory of Open Access Journals (Sweden)

    Victor L Jensen

    2010-12-01

    Full Text Available The DAF-16/FOXO transcription factor is the major downstream output of the insulin/IGF1R signaling pathway controlling C. elegans dauer larva development and aging. To identify novel downstream genes affecting dauer formation, we used RNAi to screen candidate genes previously identified to be regulated by DAF-16. We used a sensitized genetic background [eri-1(mg366; sdf-9(m708], which enhances both RNAi efficiency and constitutive dauer formation (Daf-c. Among 513 RNAi clones screened, 21 displayed a synthetic Daf-c (SynDaf phenotype with sdf-9. One of these genes, srh-100, was previously identified to be SynDaf, but twenty have not previously been associated with dauer formation. Two of the latter genes, lys-1 and cpr-1, are known to participate in innate immunity and six more are predicted to do so, suggesting that the immune response may contribute to the dauer decision. Indeed, we show that two of these genes, lys-1 and clc-1, are required for normal resistance to Staphylococcus aureus. clc-1 is predicted to function in epithelial cohesion. Dauer formation exhibited by daf-8(m85, sdf-9(m708, and the wild-type N2 (at 27°C were all enhanced by exposure to pathogenic bacteria, while not enhanced in a daf-22(m130 background. We conclude that knockdown of the genes required for proper pathogen resistance increases pathogenic infection, leading to increased dauer formation in our screen. We propose that dauer larva formation is a behavioral response to pathogens mediated by increased dauer pheromone production.

  18. Normalization of Overexpressed α-Synuclein Causing Parkinson's Disease By a Moderate Gene Silencing With RNA Interference

    Directory of Open Access Journals (Sweden)

    Masaki Takahashi

    2015-01-01

    Full Text Available The α-synuclein (SNCA gene is a responsible gene for Parkinson's disease (PD; and not only nucleotide variations but also overexpression of SNCA appears to be involved in the pathogenesis of PD. A specific inhibition against mutant SNCA genes carrying nucleotide variations may be feasible by a specific silencing such as an allele-specific RNA interference (RNAi; however, there is no method for restoring the SNCA overexpression to a normal level. Here, we show that an atypical RNAi using small interfering RNAs (siRNAs that confer a moderate level of gene silencing is capable of controlling overexpressed SNCA genes to return to a normal level; named “expression-control RNAi” (ExCont-RNAi. ExCont-RNAi exhibited little or no significant off-target effects in its treated PD patient's fibroblasts that carry SNCA triplication. To further assess the therapeutic effect of ExCont-RNAi, PD-model flies that carried the human SNCA gene underwent an ExCont-RNAi treatment. The treated PD-flies demonstrated a significant improvement in their motor function. Our current findings suggested that ExCont-RNAi might be capable of becoming a novel therapeutic procedure for PD with the SNCA overexpression, and that siRNAs conferring a moderate level of gene silencing to target genes, which have been abandoned as useless siRNAs so far, might be available for controlling abnormally expressed disease-causing genes without producing adverse effects.

  19. Importins α and β signaling mediates endothelial cell inflammation and barrier disruption.

    Science.gov (United States)

    Leonard, Antony; Rahman, Arshad; Fazal, Fabeha

    2018-04-01

    Nucleocytoplasmic shuttling via importins is central to the function of eukaryotic cells and an integral part of the processes that lead to many human diseases. In this study, we addressed the role of α and β importins in the mechanism of endothelial cell (EC) inflammation and permeability, important pathogenic features of many inflammatory diseases such as acute lung injury and atherosclerosis. RNAi-mediated knockdown of importin α4 or α3 each inhibited NF-κB activation, proinflammatory gene (ICAM-1, VCAM-1, and IL-6) expression, and thereby endothelial adhesivity towards HL-60 cells, upon thrombin challenge. The inhibitory effect of α4 and α3 knockdown was associated with impaired nuclear import and consequently, DNA binding of RelA/p65 subunit of NF-κB and occurred independently of IκBα degradation. Intriguingly, knockdown of importins α4 and α3 also inhibited thrombin-induced RelA/p65 phosphorylation at Ser 536 , showing a novel role of α importins in regulating transcriptional activity of RelA/p65. Similarly, knockdown of importin β1, but not β2, blocked thrombin-induced activation of RelA/p65 and its target genes. In parallel studies, TNFα-mediated inflammatory responses in EC were refractory to knockdown of importins α4, α3 or β1, indicating a stimulus-specific regulation of RelA/p65 and EC inflammation by these importins. Importantly, α4, α3, or β1 knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and by regulating actin cytoskeletal rearrangement. These results identify α4, α3 and β1 as critical mediators of EC inflammation and permeability associated with intravascular coagulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing.

    Science.gov (United States)

    Xie, Zhongcong; Dong, Yuanlin; Maeda, Uta; Xia, Weiming; Tanzi, Rudolph E

    2012-03-22

    Amyloid-β-protein (Aβ), the key component of senile plaques in Alzheimer's disease (AD) brain, is produced from amyloid precursor protein (APP) by cleavage of β-secretase and then γ-secretase. APP adaptor proteins with phosphotyrosine-binding (PTB) domains, including Dab (gene: DAB) and Numb (gene: NUMB), can bind to and interact with the conserved YENPTY-motif in the APP C-terminus. Here we describe, for the first time, the effects of RNAi knock-down of Dab and Numb expression on APP processing and Aβ production. RNAi knock-down of Dab and Numb in H4 human neuroglioma cells stably transfected to express either FL-APP (H4-FL-APP cells) or APP-C99 (H4-APP-C99 cells) increased levels of APP-C-terminal fragments (APP-CTFs) and lowered Aβ levels in both cell lines by inhibiting γ-secretase cleavage of APP. Finally, RNAi knock-down of APP also reduced levels of Numb in H4-APP cells. These findings suggest that pharmacologically blocking interaction of APP with Dab and Numb may provide novel therapeutic strategies of AD. The notion of attenuating γ-secretase cleavage of APP via the APP adaptor proteins, Dab and Numb, is particularly attractive with regard to therapeutic potential, given that side effects of γ-secretase inhibition owing to impaired proteolysis of other γ-secretase substrates, e.g. Notch, might be avoided.

  1. RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing

    Science.gov (United States)

    2012-01-01

    Amyloid-β-protein (Aβ), the key component of senile plaques in Alzheimer's disease (AD) brain, is produced from amyloid precursor protein (APP) by cleavage of β-secretase and then γ-secretase. APP adaptor proteins with phosphotyrosine-binding (PTB) domains, including Dab (gene: DAB) and Numb (gene: NUMB), can bind to and interact with the conserved YENPTY-motif in the APP C-terminus. Here we describe, for the first time, the effects of RNAi knock-down of Dab and Numb expression on APP processing and Aβ production. RNAi knock-down of Dab and Numb in H4 human neuroglioma cells stably transfected to express either FL-APP (H4-FL-APP cells) or APP-C99 (H4-APP-C99 cells) increased levels of APP-C-terminal fragments (APP-CTFs) and lowered Aβ levels in both cell lines by inhibiting γ-secretase cleavage of APP. Finally, RNAi knock-down of APP also reduced levels of Numb in H4-APP cells. These findings suggest that pharmacologically blocking interaction of APP with Dab and Numb may provide novel therapeutic strategies of AD. The notion of attenuating γ-secretase cleavage of APP via the APP adaptor proteins, Dab and Numb, is particularly attractive with regard to therapeutic potential, given that side effects of γ-secretase inhibition owing to impaired proteolysis of other γ-secretase substrates, e.g. Notch, might be avoided. PMID:23211096

  2. Immune modulation through RNA interference-mediated silencing of CD40 in dendritic cells.

    Science.gov (United States)

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Samiee, Shahram; Ataee, Zahra; Tabei, Seyyed Ziyaoddin; Moazzeni, Seyed Mohammad

    2009-01-01

    RNA interference (RNAi) is an exciting mechanism for knocking down any target gene in transcriptional level. It is now clear that small interfering RNA (siRNA), a 19-21nt long dsRNA, can trigger a degradation process (RNAi) that specifically silences the expression of a cognate mRNA. Our findings in this study showed that down regulation of CD40 gene expression in dendritic cells (DCs) by RNAi culminated to immune modulation. Effective delivery of siRNA into DCs would be a reasonable method for the blocking of CD40 gene expression at the cell surface without any effect on other genes and cell cytotoxicity. The effects of siRNA against CD40 mRNA on the function and phenotype of DCs were investigated. The DCs were separated from the mice spleen and then cultured in vitro. By the means of Lipofectamine2000, siRNA was delivered to the cells and the efficacy of transfection was estimated by flow cytometry. By Annexine V and Propidium Iodide staining, we could evaluate the transfected cells viability. Also, the mRNA expression and protein synthesis were assessed by real-time PCR and flow cytometry, respectively. Knocking down the CD40 gene in the DCs caused an increase in IL-4 production, decrease in IL-12 production and allostimulation activity. All together, these effects would stimulate Th2 cytokines production from allogenic T-cells in vitro.

  3. Genomic Characterization of Variable Surface Antigens Reveals a Telomere Position Effect as a Prerequisite for RNA Interference-Mediated Silencing in Paramecium tetraurelia

    Science.gov (United States)

    Baranasic, Damir; Oppermann, Timo; Cheaib, Miriam; Cullum, John; Schmidt, Helmut

    2014-01-01

    ABSTRACT Antigenic or phenotypic variation is a widespread phenomenon of expression of variable surface protein coats on eukaryotic microbes. To clarify the mechanism behind mutually exclusive gene expression, we characterized the genetic properties of the surface antigen multigene family in the ciliate Paramecium tetraurelia and the epigenetic factors controlling expression and silencing. Genome analysis indicated that the multigene family consists of intrachromosomal and subtelomeric genes; both classes apparently derive from different gene duplication events: whole-genome and intrachromosomal duplication. Expression analysis provides evidence for telomere position effects, because only subtelomeric genes follow mutually exclusive transcription. Microarray analysis of cultures deficient in Rdr3, an RNA-dependent RNA polymerase, in comparison to serotype-pure wild-type cultures, shows cotranscription of a subset of subtelomeric genes, indicating that the telomere position effect is due to a selective occurrence of Rdr3-mediated silencing in subtelomeric regions. We present a model of surface antigen evolution by intrachromosomal gene duplication involving the maintenance of positive selection of structurally relevant regions. Further analysis of chromosome heterogeneity shows that alternative telomere addition regions clearly affect transcription of closely related genes. Consequently, chromosome fragmentation appears to be of crucial importance for surface antigen expression and evolution. Our data suggest that RNAi-mediated control of this genetic network by trans-acting RNAs allows rapid epigenetic adaptation by phenotypic variation in combination with long-term genetic adaptation by Darwinian evolution of antigen genes. PMID:25389173

  4. A novel form of the RelA nuclear factor kappaB subunit is induced by and forms a complex with the proto-oncogene c-Myc.

    Science.gov (United States)

    Chapman, Neil R; Webster, Gill A; Gillespie, Peter J; Wilson, Brian J; Crouch, Dorothy H; Perkins, Neil D

    2002-01-01

    Members of both Myc and nuclear factor kappaB (NF-kappaB) families of transcription factors are found overexpressed or inappropriately activated in many forms of human cancer. Furthermore, NF-kappaB can induce c-Myc gene expression, suggesting that the activities of these factors are functionally linked. We have discovered that both c-Myc and v-Myc can induce a previously undescribed, truncated form of the RelA(p65) NF-kappaB subunit, RelA(p37). RelA(p37) encodes the N-terminal DNA binding and dimerization domain of RelA(p65) and would be expected to function as a trans-dominant negative inhibitor of NF-kappaB. Surprisingly, we found that RelA(p37) no longer binds to kappaB elements. This result is explained, however, by the observation that RelA(p37), but not RelA(p65), forms a high-molecular-mass complex with c-Myc. These results demonstrate a previously unknown functional and physical interaction between RelA and c-Myc with many significant implications for our understanding of the role that both proteins play in the molecular events underlying tumourigenesis. PMID:12027803

  5. The histone H3K9 methylation and RNAi pathways regulate normalnucleolar and repeated DNA organization by inhibiting formation ofextrachromosomal DNAs

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C.; Karpen, Gary H.

    2006-06-15

    In order to identify regulators of nuclear organization, Drosophila mutants in the Su(var)3-9 histone H3K9 methyltransferase, RNAi pathway components, and other regulators of heterochromatin-mediated gene silencing were examined for altered nucleoli and positioning of repeated DNAs. Animals lacking components of the H3K9 methylation and RNAi pathways contained disorganized nucleoli, ribosomal DNA (rDNA) and satellite DNAs. The levels of H3K9 dimethylation (H3K9me2) in chromatin associated with repeated DNAs decreased dramatically in Su(var)3-9 and dcr-2 (dicer-2) mutant tissues compared to wild type. We also observed a substantial increase in extrachromosomal repeated DNAs in mutant tissues. The disorganized nucleolus phenotype depends on the presence of Ligase 4 (Lig4), and ecc DNA formation is not induced by removal of cohesin. We conclude that H3K9 methylation of rDNA and satellites, maintained by Su(var)3-9, HP1, and the RNAi pathway, is necessary for the structural stability of repeated DNAs, which is mediated through suppression of non-homologous end joining (NHEJ). These results suggest a mechanism for how local chromatin structure can regulate genome stability, and the organization of chromosomal elements and nuclear organelles.

  6. RNAi: An emerging field of molecular research | Kabir | African ...

    African Journals Online (AJOL)

    RNA interference (RNAi) is a specific technique using only a few double stranded RNA (dsRNA) molecules to stop the expression which has made it one of the important areas in molecular biology. By introducing a gene into the host genome which is highly homologous to an endogenous gene, the RNA silencing is ...

  7. Manipulation of saponin biosynthesis by RNA interference-mediated silencing of β-amyrin synthase gene expression in soybean.

    Science.gov (United States)

    Takagi, Kyoko; Nishizawa, Keito; Hirose, Aya; Kita, Akiko; Ishimoto, Masao

    2011-10-01

    Soybean seeds contain substantial amount of diverse triterpenoid saponins that influence the seed quality, although little is known about the physiologic functions of saponins in plants. We now describe the modification of saponin biosynthesis by RNA interference (RNAi)-mediated gene silencing targeted to β-amyrin synthase, a key enzyme in the synthesis of a common aglycon of soybean saponins. We identified two putative β-amyrin synthase genes in soybean that manifested distinct expression patterns with regard to developmental stage and tissue specificity. Given that one of these genes, GmBAS1, was expressed at a much higher level than the other (GmBAS2) in various tissues including the developing seeds, we constructed two RNAi vectors that encode self-complementary hairpin RNAs corresponding to the distinct regions of GmBAS1 under the control of a seed-specific promoter derived from the soybean gene for the α' subunit of the seed storage protein β-conglycinin. These vectors were introduced independently into soybean. Six independent transgenic lines exhibited a stable reduction in seed saponin content, with the extent of saponin deficiency correlating with the β-amyrin synthase mRNA depletion. Although some transgenic lines produced seeds almost devoid of saponins, no abnormality in their growth was apparent and the antioxidant activity of their seeds was similar to that of control seeds. These results suggest that saponins are not required for seed development and survival, and that soybean seeds may therefore be amenable to the modification of triterpenoid saponin content and composition through molecular biologic approaches.

  8. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing; Zhu, Jian-Kang

    2010-01-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host's essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  9. RNAi-mediated knock-down of Dab and Numb attenuate Aβ levels via γ-secretase mediated APP processing

    Directory of Open Access Journals (Sweden)

    Xie Zhongcong

    2012-03-01

    Full Text Available Abstract Amyloid-β-protein (Aβ, the key component of senile plaques in Alzheimer's disease (AD brain, is produced from amyloid precursor protein (APP by cleavage of β-secretase and then γ-secretase. APP adaptor proteins with phosphotyrosine-binding (PTB domains, including Dab (gene: DAB and Numb (gene: NUMB, can bind to and interact with the conserved YENPTY-motif in the APP C-terminus. Here we describe, for the first time, the effects of RNAi knock-down of Dab and Numb expression on APP processing and Aβ production. RNAi knock-down of Dab and Numb in H4 human neuroglioma cells stably transfected to express either FL-APP (H4-FL-APP cells or APP-C99 (H4-APP-C99 cells increased levels of APP-C-terminal fragments (APP-CTFs and lowered Aβ levels in both cell lines by inhibiting γ-secretase cleavage of APP. Finally, RNAi knock-down of APP also reduced levels of Numb in H4-APP cells. These findings suggest that pharmacologically blocking interaction of APP with Dab and Numb may provide novel therapeutic strategies of AD. The notion of attenuating γ-secretase cleavage of APP via the APP adaptor proteins, Dab and Numb, is particularly attractive with regard to therapeutic potential, given that side effects of γ-secretase inhibition owing to impaired proteolysis of other γ-secretase substrates, e.g. Notch, might be avoided.

  10. RNA-Interference Components Are Dispensable for Transcriptional Silencing of the Drosophila Bithorax-Complex

    KAUST Repository

    Cernilogar, Filippo M.; Burroughs, A. Maxwell; Lanzuolo, Chiara; Breiling, Achim; Imhof, Axel; Orlando, Valerio

    2013-01-01

    .Conclusions:We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila. © 2013 Cernilogar et al.

  11. The Ebola virus VP35 protein is a suppressor of RNA silencing.

    Directory of Open Access Journals (Sweden)

    Joost Haasnoot

    2007-06-01

    Full Text Available RNA silencing or interference (RNAi is a gene regulation mechanism in eukaryotes that controls cell differentiation and developmental processes via expression of microRNAs. RNAi also serves as an innate antiviral defence response in plants, nematodes, and insects. This antiviral response is triggered by virus-specific double-stranded RNA molecules (dsRNAs that are produced during infection. To overcome antiviral RNAi responses, many plant and insect viruses encode RNA silencing suppressors (RSSs that enable them to replicate at higher titers. Recently, several human viruses were shown to encode RSSs, suggesting that RNAi also serves as an innate defence response in mammals. Here, we demonstrate that the Ebola virus VP35 protein is a suppressor of RNAi in mammalian cells and that its RSS activity is functionally equivalent to that of the HIV-1 Tat protein. We show that VP35 can replace HIV-1 Tat and thereby support the replication of a Tat-minus HIV-1 variant. The VP35 dsRNA-binding domain is required for this RSS activity. Vaccinia virus E3L protein and influenza A virus NS1 protein are also capable of replacing the HIV-1 Tat RSS function. These findings support the hypothesis that RNAi is part of the innate antiviral response in mammalian cells. Moreover, the results indicate that RSSs play a critical role in mammalian virus replication.

  12. RNAi-mediated silencing of vitellogenin gene function turns honeybee ( Apis mellifera) workers into extremely precocious foragers

    Science.gov (United States)

    Marco Antonio, David Santos; Guidugli-Lazzarini, Karina Rosa; Do Nascimento, Adriana Mendes; Simões, Zilá Luz Paulino; Hartfelder, Klaus

    2008-10-01

    The switch from within-hive activities to foraging behavior is a major transition in the life cycle of a honeybee ( Apis mellifera) worker. A prominent regulatory role in this switch has long been attributed to juvenile hormone (JH), but recent evidence also points to the yolk precursor protein vitellogenin as a major player in behavioral development. In the present study, we injected vitellogenin double-stranded RNA (dsVg) into newly emerged worker bees of Africanized genetic origin and introduced them together with controls into observation hives to record flight behavior. RNA interference-mediated silencing of vitellogenin gene function shifted the onset of long-duration flights (>10 min) to earlier in life (by 3 4 days) when compared with sham and untreated control bees. In fact, dsVg bees were observed conducting such flights extremely precociously, when only 3 days old. Short-duration flights (<10 min), which bees usually perform for orientation and cleaning, were not affected. Additionally, we found that the JH titer in dsVg bees collected after 7 days was not significantly different from the controls. The finding that depletion of the vitellogenin titer can drive young bees to become extremely precocious foragers could imply that vitellogenin is the primary switch signal. At this young age, downregulation of vitellogenin gene activity apparently had little effect on the JH titer. As this unexpected finding stands in contrast with previous results on the vitellogenin/JH interaction at a later age, when bees normally become foragers, we propose a three-step sequence in the constellation of physiological parameters underlying behavioral development.

  13. Effective silencing of ENaC by siRNA delivered with epithelial-targeted nanocomplexes in human cystic fibrosis cells and in mouse lung.

    Science.gov (United States)

    Tagalakis, Aristides D; Munye, Mustafa M; Ivanova, Rositsa; Chen, Hanpeng; Smith, Claire M; Aldossary, Ahmad M; Rosa, Luca Z; Moulding, Dale; Barnes, Josephine L; Kafetzis, Konstantinos N; Jones, Stuart A; Baines, Deborah L; Moss, Guy W J; O'Callaghan, Christopher; McAnulty, Robin J; Hart, Stephen L

    2018-05-10

    Loss of the cystic fibrosis transmembrane conductance regulator in cystic fibrosis (CF) leads to hyperabsorption of sodium and fluid from the airway due to upregulation of the epithelial sodium channel (ENaC). Thickened mucus and depleted airway surface liquid (ASL) then lead to impaired mucociliary clearance. ENaC regulation is thus a promising target for CF therapy. Our aim was to develop siRNA nanocomplexes that mediate effective silencing of airway epithelial ENaC in vitro and in vivo with functional correction of epithelial ion and fluid transport. We investigated translocation of nanocomplexes through mucus and their transfection efficiency in primary CF epithelial cells grown at air-liquid interface (ALI).Short interfering RNA (SiRNA)-mediated silencing was examined by quantitative RT-PCR and western analysis of ENaC. Transepithelial potential (V t ), short circuit current (I sc ), ASL depth and ciliary beat frequency (CBF) were measured for functional analysis. Inflammation was analysed by histological analysis of normal mouse lung tissue sections. Nanocomplexes translocated more rapidly than siRNA alone through mucus. Transfections of primary CF epithelial cells with nanocomplexes targeting αENaC siRNA, reduced αENaC and βENaC mRNA by 30%. Transfections reduced V t , the amiloride-sensitive I sc and mucus protein concentration while increasing ASL depth and CBF to normal levels. A single dose of siRNA in mouse lung silenced ENaC by approximately 30%, which persisted for at least 7 days. Three doses of siRNA increased silencing to approximately 50%. Nanoparticle-mediated delivery of ENaCsiRNA to ALI cultures corrected aspects of the mucociliary defect in human CF cells and offers effective delivery and silencing in vivo. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. A viral suppressor protein inhibits host RNA silencing by hooking up with Argonautes

    KAUST Repository

    Jin, Hailing

    2010-05-01

    RNA viruses are particularly vulnerable to RNAi-based defenses in the host, and thus have evolved specific proteins, known as viral suppressors of RNA silencing (VSRs), as a counterdefense. In this issue of Genes & Development, Azevedo and colleagues (pp. 904-915) discovered that P38, the VSR of Turnip crinkle virus, uses its glycine/tryptophane (GW) motifs as an ARGONAUTE (AGO) hook to attract and disarm the host\\'s essential effector of RNA silencing. Several GW motif-containing cellular proteins are known to be important partners of AGOs in RNA silencing effector complexes in yeast, plants, and animals. The GW motif appears to be a versatile and effective tool for regulating the activities of RNA silencing pathways, and the use of GW mimicry to compete for and inhibit host AGOs may be a strategy used by many pathogens to counteract host RNAi-based defenses. © 2010 by Cold Spring Harbor Laboratory Press.

  15. Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing.

    Science.gov (United States)

    Sun, Xiaowen; Wu, Hefang; Zhao, Genhai; Li, Zhemin; Wu, Xihua; Liu, Hui; Zheng, Zhiming

    2018-04-02

    The mycelial morphology of Aspergillus niger, a major filamentous fungus used for citric acid production, is important for citric acid synthesis during submerged fermentation. To investigate the involvement of the chitin synthase gene, chsC, in morphogenesis and citric acid production in A. niger, an RNAi system was constructed to silence chsC and the morphological mutants were screened after transformation. The compactness of the mycelial pellets was obviously reduced in the morphological mutants, with lower proportion of dispersed mycelia. These morphological changes have caused a decrease in viscosity and subsequent improvement in oxygen and mass transfer efficiency, which may be conducive for citric acid accumulation. All the transformants exhibited improvements in citric acid production; in particular, chsC-3 showed 42.6% higher production than the original strain in the shake flask. Moreover, the high-yield strain chsC-3 exhibited excellent citric acid production potential in the scale-up process.The citric acid yield and the conversion rate of glucose of chsC-3 were both improved by 3.6%, when compared with that of the original strain in the stirred tank bioreactor.

  16. Lymphotoxin β receptor activation promotes mRNA expression of RelA and pro-inflammatory cytokines TNFα and IL-1β in bladder cancer cells.

    Science.gov (United States)

    Shen, Mo; Zhou, Lianlian; Zhou, Ping; Zhou, Wu; Lin, Xiangyang

    2017-07-01

    The role of inflammation in tumorigenesis and development is currently well established. Lymphotoxin β receptor (LTβR) activation induces canonical and noncanonical nuclear factor (NF)‑κB signaling pathways, which are linked to inflammation‑induced carcinogenesis. In the present study, 5,637 bladder cancer cells were cultured and the activation of LTβR was induced by functional ligand, lymphotoxin (LT) α1β2, and silencing with shRNA. Reverse transcription‑quantitative polymerase chain reaction was utilized to detect the mRNA expression levels of NF‑κB family members RelA and RelB, cytokines including LTα, LTβ, tumor necrosis factor (TNF)α, TNF superfamily member 14, interleukin (IL)‑6 and IL‑1β, and proliferation‑related genes including CyclinD1 and Survivin. The expression of phospho‑p65 was determined by western blotting. Activation of LTβR on bladder cancer 5,637 cells was demonstrated to upregulate the mRNA expression levels of the RELA proto‑oncogene, RelA, by 2.5‑fold compared with unstimulated cells, while no significant change was observed in the RELB proto‑oncogene NF‑κB member mRNA levels. Expression of pro‑inflammatory cytokines tumor necrosis factor (TNF)α and interleukin (IL)‑1β mRNA levels were significantly increased nearly 5‑fold and 1.5‑fold, respectively, following LTβR activation compared with unstimulated cells. The LTβR‑induced upregulation of RelA, TNFα and IL‑1β was decreased by ~33, 27, and 26% respectively when LTβR was silenced via short hairpin RNA. Activation of LTβR had no effect on 5,637 cell growth, despite CyclinD1 and Survivin mRNA levels increasing by ~2.7 and 1.3‑fold, respectively, compared with unstimulated cells. In conclusion, activation of LTβR induced the expression of RelA mRNA levels. LTβR activation might be an important mediator in promoting an inflammatory microenvironment in bladder cancer, via the upregulation of TNFα and IL‑1β mRNA levels. LTβR may

  17. RelB and RelE of Escherichia coli Form a Tight Complex That Represses Transcription via The Ribbon-Helix-Helix Motif in RelB

    DEFF Research Database (Denmark)

    Overgaard, Martin; Borch, Jonas; Gerdes, Kenn

    2009-01-01

    RelB, the Ribbon-Helix-Helix (RHH) repressor encoded by the relBE toxin-antitoxin locus of Escherichia coli, forms a tight complex with RelE and thereby counteracts the mRNA cleavage activity of RelE. In addition, RelB dimers repress the strong relBE promoter and this repression by RelB is enhanced...... by RelE - that is - RelE functions as a transcriptional co-repressor. RelB is a Lon protease substrate and Lon is required both for activation of relBE transcription and for activation of the mRNA cleavage activity of RelE. Here we characterize the molecular interactions important for transcriptional...... motif recognizes four 6 bp repeats within the bipartite binding site. The spacing between each half-site was found to be essential for cooperative interactions between adjacently bound RelB dimers stabilized by the co-repressor RelE. Kinetic and stoichiometric measurements of the interaction between Rel...

  18. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing.

    Science.gov (United States)

    Saveliev, Alexander; Everett, Christopher; Sharpe, Tammy; Webster, Zoë; Festenstein, Richard

    2003-04-24

    Gene repression is crucial to the maintenance of differentiated cell types in multicellular organisms, whereas aberrant silencing can lead to disease. The organization of DNA into chromatin and heterochromatin is implicated in gene silencing. In chromatin, DNA wraps around histones, creating nucleosomes. Further condensation of chromatin, associated with large blocks of repetitive DNA sequences, is known as heterochromatin. Position effect variegation (PEV) occurs when a gene is located abnormally close to heterochromatin, silencing the affected gene in a proportion of cells. Here we show that the relatively short triplet-repeat expansions found in myotonic dystrophy and Friedreich's ataxia confer variegation of expression on a linked transgene in mice. Silencing was correlated with a decrease in promoter accessibility and was enhanced by the classical PEV modifier heterochromatin protein 1 (HP1). Notably, triplet-repeat-associated variegation was not restricted to classical heterochromatic regions but occurred irrespective of chromosomal location. Because the phenomenon described here shares important features with PEV, the mechanisms underlying heterochromatin-mediated silencing might have a role in gene regulation at many sites throughout the mammalian genome and modulate the extent of gene silencing and hence severity in several triplet-repeat diseases.

  19. The RNAi machinery controls distinct responses to environmental signals in the basal fungus Mucor circinelloides.

    Science.gov (United States)

    Nicolás, Francisco E; Vila, Ana; Moxon, Simon; Cascales, María D; Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M; Garre, Victoriano

    2015-03-25

    RNA interference (RNAi) is a conserved mechanism of genome defence that can also have a role in the regulation of endogenous functions through endogenous small RNAs (esRNAs). In fungi, knowledge of the functions regulated by esRNAs has been hampered by lack of clear phenotypes in most mutants affected in the RNAi machinery. Mutants of Mucor circinelloides affected in RNAi genes show defects in physiological and developmental processes, thus making Mucor an outstanding fungal model for studying endogenous functions regulated by RNAi. Some classes of Mucor esRNAs map to exons (ex-siRNAs) and regulate expression of the genes from which they derive. To have a broad picture of genes regulated by the silencing machinery during vegetative growth, we have sequenced and compared the mRNA profiles of mutants in the main RNAi genes by using RNA-seq. In addition, we have achieved a more complete phenotypic characterization of silencing mutants. Deletion of any main RNAi gene provoked a deep impact in mRNA accumulation at exponential and stationary growth. Genes showing increased mRNA levels, as expected for direct ex-siRNAs targets, but also genes with decreased expression were detected, suggesting that, most probably, the initial ex-siRNA targets regulate the expression of other genes, which can be up- or down-regulated. Expression of 50% of the genes was dependent on more than one RNAi gene in agreement with the existence of several classes of ex-siRNAs produced by different combinations of RNAi proteins. These combinations of proteins have also been involved in the regulation of different cellular processes. Besides genes regulated by the canonical RNAi pathway, this analysis identified processes, such as growth at low pH and sexual interaction that are regulated by a dicer-independent non-canonical RNAi pathway. This work shows that the RNAi pathways play a relevant role in the regulation of a significant number of endogenous genes in M. circinelloides during exponential

  20. MPEG-CS/Bmi-1RNAi Nanoparticles Synthesis and Its Targeted Inhibition Effect on CD133+ Laryngeal Stem Cells.

    Science.gov (United States)

    Wei, Xudong; He, Jian; Wang, Jingyu; Wang, Wei

    2018-03-01

    Previous studies have confirmed that CD133+ cells in laryngeal tumor tissue have the characteristics of cancer stem cells. Bmi-1 gene expression is central to the tumorigenicity of CD133+ cells. In this study, we tried to develop a new siRNA carrier system using chitosan-methoxypolyethylene nanoparticles (CS-mPEG-NPs) that exhibit higher tumor-targeting ability and enhanced gene silencing efficacy in CD133+ tumor stem cells. It is hoped to block the self-renewal and kill the stem cells of laryngeal carcinoma. The mPEG-CS-Bmi-1RNAi-NPs were synthesized and their characters were checked. The changes in invasion ability and sensitivity to radiotherapy and chemotherapy of CD133+Hep-2 tumor cells were observed after Bmi-1 gene silencing. The mPEG-CS-Bmi-1RNAi-NPs synthesized in this experiment have a regular spherical form, a mean size of 139.70 ±6.40 nm, an encapsulation efficiency of 85.21 ± 1.94%, with drug loading capacity of 18.47 ± 1.83%, as well as low cytotoxicity, providing good protection to the loaded gene, strong resistance to nuclease degradation and high gene transfection efficiency. After Bmi-1 gene silencing, the invasion ability of CD133+ cells was weakened. Co-cultured with paclitaxel, the survival rates of CD133+Bmi-1RNAi cells were lower. After radiotherapy, the mean growth inhibition rate of CD133+/Bmi-1RNAi cells was significantly lower than CD133+ cells. In conclusion, the mPEG-CS nano-carrier is an ideal vector in gene therapy, while silencing the Bmi-1 gene can enhance the sensitivity of CD133+ tumor stem cells to chemoradiotherapy and abate their invasion ability.

  1. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    International Nuclear Information System (INIS)

    Yu, Teng; Ji, Jiang; Guo, Yong-li

    2013-01-01

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

  2. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Teng, E-mail: tengyu33@yahoo.com [Department of Dermatology, Shandong Ji-ning No. 1 People’s Hospital, Shandong Province 272011 (China); Ji, Jiang [Department of Dermatology, The Second Hospital Affiliated of Soochow University, SuZhou, Jiangsu Province 215000 (China); Guo, Yong-li [Department of Oncology, Shandong Ji-ning No. 1 People’s Hospital, Shandong Province 272011 (China)

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.

  3. Strand Analysis, a free online program for the computational identification of the best RNA interference (RNAi targets based on Gibbs free energy

    Directory of Open Access Journals (Sweden)

    Tiago Campos Pereira

    2007-01-01

    Full Text Available The RNA interference (RNAi technique is a recent technology that uses double-stranded RNA molecules to promote potent and specific gene silencing. The application of this technique to molecular biology has increased considerably, from gene function identification to disease treatment. However, not all small interfering RNAs (siRNAs are equally efficient, making target selection an essential procedure. Here we present Strand Analysis (SA, a free online software tool able to identify and classify the best RNAi targets based on Gibbs free energy (deltaG. Furthermore, particular features of the software, such as the free energy landscape and deltaG gradient, may be used to shed light on RNA-induced silencing complex (RISC activity and RNAi mechanisms, which makes the SA software a distinct and innovative tool.

  4. A Significant Increase of RNAi Efficiency in Human Cells by the CMV Enhancer with a tRNAlys Promoter

    Directory of Open Access Journals (Sweden)

    Ma Weiwei

    2009-01-01

    Full Text Available RNA interference (RNAi is the process of mRNA degradation induced by double-stranded RNA in a sequence-specific manner. Different types of promoters, such as U6, H1, tRNA, and CMV, have been used to control the inhibitory effect of RNAi expression vectors. In the present study, we constructed two shRNA expression vectors, respectively, controlled by tRNAlys and CMV enhancer-tRNAlys promoters. Compared to the vectors with tRNAlys or U6 promoter, the vector with a CMV enhancer-tRNAlys promoter silenced pokemon more efficiently on both the mRNA and the protein levels. Meanwhile, the silencing of pokemon inhibited the proliferation of MCF7 cells, but the induction of apoptosis of MCF7 cells was not observed. We conclude that the CMV enhancer-tRNAlys promoter may be a powerful tool in driving intracellular expression of shRNA which can efficiently silence targeted gene.

  5. A Significant Increase of RNAi Efficiency in Human Cells by the CMV Enhancer with a tRNAlys Promoter

    Science.gov (United States)

    Weiwei, Ma; Zhenhua, Xie; Feng, Liu; Hang, Ning; Yuyang, Jiang

    2009-01-01

    RNA interference (RNAi) is the process of mRNA degradation induced by double-stranded RNA in a sequence-specific manner. Different types of promoters, such as U6, H1, tRNA, and CMV, have been used to control the inhibitory effect of RNAi expression vectors. In the present study, we constructed two shRNA expression vectors, respectively, controlled by tRNAlys and CMV enhancer-tRNAlys promoters. Compared to the vectors with tRNAlys or U6 promoter, the vector with a CMV enhancer-tRNAlys promoter silenced pokemon more efficiently on both the mRNA and the protein levels. Meanwhile, the silencing of pokemon inhibited the proliferation of MCF7 cells, but the induction of apoptosis of MCF7 cells was not observed. We conclude that the CMV enhancer-tRNAlys promoter may be a powerful tool in driving intracellular expression of shRNA which can efficiently silence targeted gene. PMID:19859553

  6. RNAi-based silencing of genes encoding the vacuolar- ATPase ...

    African Journals Online (AJOL)

    2016-11-09

    Nov 9, 2016 ... Spodoptera exigua larval development by silencing chitin synthase gene with RNA interference. Bull. Entomol. Res. 98:613-619. Dow JAT (1999). The Multifunctional Drosophila melanogaster V-. ATPase is encoded by a multigene family. J. Bioenerg. Biomembr. 31:75-83. Fire A, Xu SQ, Montgomery MK, ...

  7. AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system.

    Science.gov (United States)

    Schuck, Jana; Gursinsky, Torsten; Pantaleo, Vitantonio; Burgyán, Jozsef; Behrens, Sven-Erik

    2013-05-01

    AGO/RISC-mediated antiviral RNA silencing, an important component of the plant's immune response against RNA virus infections, was recapitulated in vitro. Cytoplasmic extracts of tobacco protoplasts were applied that supported Tombusvirus RNA replication, as well as the formation of RNA-induced silencing complexes (RISC) that could be functionally reconstituted with various plant ARGONAUTE (AGO) proteins. For example, when RISC containing AGO1, 2, 3 or 5 were programmed with exogenous siRNAs that specifically targeted the viral RNA, endonucleolytic cleavages occurred and viral replication was inhibited. Antiviral RNA silencing was disabled by the viral silencing suppressor p19 when this was present early during RISC formation. Notably, with replicating viral RNA, only (+)RNA molecules were accessible to RISC, whereas (-)RNA replication intermediates were not. The vulnerability of viral RNAs to RISC activity also depended on the RNA structure of the target sequence. This was most evident when we characterized viral siRNAs (vsiRNAs) that were particularly effective in silencing with AGO1- or AGO2/RISC. These vsiRNAs targeted similar sites, suggesting that accessible parts of the viral (+)RNA may be collectively attacked by different AGO/RISC. The in vitro system was, hence, established as a valuable tool to define and characterize individual molecular determinants of antiviral RNA silencing.

  8. The molecular basis for stability of heterochromatin-mediated silencing in mammals.

    Science.gov (United States)

    Hiragami-Hamada, Kyoko; Xie, Sheila Q; Saveliev, Alexander; Uribe-Lewis, Santiago; Pombo, Ana; Festenstein, Richard

    2009-11-04

    The archetypal epigenetic phenomenon of position effect variegation (PEV) in Drosophila occurs when a gene is brought abnormally close to heterochromatin, resulting in stochastic silencing of the affected gene in a proportion of cells that would normally express it. PEV has been instrumental in unraveling epigenetic mechanisms. Using an in vivo mammalian model for PEV we have extensively investigated the molecular basis for heterochromatin-mediated gene silencing. Here we distinguish 'epigenetic effects' from other cellular differences by studying ex vivo cells that are identical, apart from the expression of the variegating gene which is silenced in a proportion of the cells. By separating cells according to transgene expression we show here that silencing appears to be associated with histone H3 lysine 9 trimethylation (H3K9me3), DNA methylation and the localization of the silenced gene to a specific nuclear compartment enriched in these modifications. In contrast, histone H3 acetylation (H3Ac) and lysine 4 di or tri methylation (H3K4me2/3) are the predominant modifications associated with expression where we see the gene in a euchromatic compartment. Interestingly, DNA methylation and inaccessibility, rather than H3K9me3, correlated most strongly with resistance to de-repression by cellular activation. These results have important implications for understanding the contribution of specific factors involved in the establishment and maintenance of gene silencing and activation in vivo.

  9. The molecular basis for stability of heterochromatin-mediated silencing in mammals

    Directory of Open Access Journals (Sweden)

    Hiragami-Hamada Kyoko

    2009-11-01

    Full Text Available Abstract The archetypal epigenetic phenomenon of position effect variegation (PEV in Drosophila occurs when a gene is brought abnormally close to heterochromatin, resulting in stochastic silencing of the affected gene in a proportion of cells that would normally express it. PEV has been instrumental in unraveling epigenetic mechanisms. Using an in vivo mammalian model for PEV we have extensively investigated the molecular basis for heterochromatin-mediated gene silencing. Here we distinguish 'epigenetic effects' from other cellular differences by studying ex vivo cells that are identical, apart from the expression of the variegating gene which is silenced in a proportion of the cells. By separating cells according to transgene expression we show here that silencing appears to be associated with histone H3 lysine 9 trimethylation (H3K9me3, DNA methylation and the localization of the silenced gene to a specific nuclear compartment enriched in these modifications. In contrast, histone H3 acetylation (H3Ac and lysine 4 di or tri methylation (H3K4me2/3 are the predominant modifications associated with expression where we see the gene in a euchromatic compartment. Interestingly, DNA methylation and inaccessibility, rather than H3K9me3, correlated most strongly with resistance to de-repression by cellular activation. These results have important implications for understanding the contribution of specific factors involved in the establishment and maintenance of gene silencing and activation in vivo.

  10. Structural studies of the toxin-antitoxin proteins RelE and RelB from E. coli

    DEFF Research Database (Denmark)

    Andersen, Kasper Røjkjær; Overgaard, Martin; Gerdes, Kenn

    the special tRNA-mRNA mimic, tmRNA [1]. Questions to be addressed Many questions remain to be answered in the bacterial toxin-antitoxin system. The crystal structure of RelBE from Pyrococcus horikoshii OT3 was previously solved at 2.3Å [2]. This structure shows the molecule in an inactive state, but OT3......The bacterial toxin-antitoxin system The relBE operon in E. coli encodes two small proteins: A toxin, RelE (12 kDa) and an antitoxin, RelB (9 kDa). RelE is activated under nutritional stress and is able to inhibit protein synthesis by cleaving the mRNA in the ribosomal A-site. This stress response...... serves to down-regulate metabolism in the cell when growth conditions are limited. RelB is expressed in excess over RelE during balanced growth, and inhibits the toxicity of RelE by forming an extremely stable toxin-antitoxin complex. The activation of RelE is induced when the labile RelB protein...

  11. RNA interference gene therapy in dominant retinitis pigmentosa and cone-rod dystrophy mouse models caused by GCAP1 mutations

    Directory of Open Access Journals (Sweden)

    Li eJiang

    2014-04-01

    Full Text Available RNA interference (RNAi knockdown is an efficacious therapeutic strategy for silencing genes causative for dominant retinal dystrophies. To test this, we used self-complementary (sc AAV2/8 vector to develop an RNAi-based therapy in two dominant retinal degeneration mouse models. The allele-specific model expresses transgenic bovine GCAP1(Y99C establishing a rapid RP-like phenotype, whereas the nonallele-specific model expresses mouse GCAP1(L151F producing a slowly progressing cone/rod dystrophy (CORD. The late onset GCAP1(L151F-CORD mimics the dystrophy observed in human GCAP1-CORD patients. Subretinal injection of scAAV2/8 carrying shRNA expression cassettes specific for bovine or mouse GCAP1 showed strong expression at one week post-injection. In both allele-specific (GCAP1(Y99C-RP and nonallele-specific (GCAP1(L151F-CORD models of dominant retinal dystrophy, RNAi-mediated gene silencing enhanced photoreceptor survival, delayed onset of degeneration and improved visual function. Such results provide a proof of concept toward effective RNAi-based gene therapy mediated by scAAV2/8 for dominant retinal disease based on GCAP1 mutation. Further, nonallele-specific RNAi knockdown of GCAP1 may prove generally applicable toward the rescue of any human GCAP1-based dominant cone-rod dystrophy.

  12. RNA interference silences Microplitis demolitor bracovirus genes and implicates glc1.8 in disruption of adhesion in infected host cells

    International Nuclear Information System (INIS)

    Beck, Markus; Strand, Michael R.

    2003-01-01

    The family Polydnaviridae consists of ds-DNA viruses that are symbiotically associated with certain parasitoid wasps. PDVs are transmitted vertically but also are injected by wasps into hosts where they cause several physiological alterations including immunosuppression. The PDV genes responsible for mediating immunosuppression and other host alterations remain poorly characterized in large measure because viral mutants cannot be produced to study gene function. Here we report the use of RNA interference (RNAi) to specifically silence the glc1.8 and egf1.0 genes from Microplitis demolitor bracovirus (MdBV) in High Five cells derived from the lepidopteran Trichoplusia ni. Dose-response studies indicated that MdBV infects High Five cells and blocks the ability of these cells to adhere to culture plates. This response was very similar to what occurs in two classes of hemocytes, granular cells, and plasmatocytes, after infection by MdBV. Screening of monoclonal antibody (mAb) markers that distinguish different classes of lepidopteran hemocytes indicated that High Five cells cross-react with three mAbs that recognize granular cells from T. ni. Double-stranded RNA (dsRNA) complementary to glc1.8 specifically silenced glc1.8 expression and rescued the adhesive phenotype of High Five cells. Reciprocally, dsRNA complementary to egf1.0 silenced egf1.0 expression but had no effect on adhesion. The simplicity and potency of RNAi could be extremely useful for analysis of other PDV genes

  13. Illuminating the gateway of gene silencing: perspective of RNA interference technology in clinical therapeutics.

    Science.gov (United States)

    Sindhu, Annu; Arora, Pooja; Chaudhury, Ashok

    2012-07-01

    A novel laboratory revolution for disease therapy, the RNA interference (RNAi) technology, has adopted a new era of molecular research as the next generation "Gene-targeted prophylaxis." In this review, we have focused on the chief technological challenges associated with the efforts to develop RNAi-based therapeutics that may guide the biomedical researchers. Many non-curable maladies, like neurodegenerative diseases and cancers have effectively been cured using this technology. Rapid advances are still in progress for the development of RNAi-based technologies that will be having a major impact on medical research. We have highlighted the recent discoveries associated with the phenomenon of RNAi, expression of silencing molecules in mammals along with the vector systems used for disease therapeutics.

  14. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri.

    Science.gov (United States)

    Killiny, Nabil; Hajeri, Subhas; Tiwari, Siddharth; Gowda, Siddarame; Stelinski, Lukasz L

    2014-01-01

    Silencing of genes through RNA interference (RNAi) in insects has gained momentum during the past few years. RNAi has been used to cause insect mortality, inhibit insect growth, increase insecticide susceptibility, and prevent the development of insecticide resistance. We investigated the efficacy of topically applied dsRNA to induce RNAi for five Cytochrome P450 genes family 4 (CYP4) in Diaphorina citri. We previously reported that these CYP4 genes are associated with the development of insecticide resistance in D. citri. We targeted five CYP4 genes that share a consensus sequence with one dsRNA construct. Quantitative PCR confirmed suppressed expression of the five CYP4 genes as a result of dsRNA topically applied to the thoracic region of D. citri when compared to the expression levels in a control group. Western blot analysis indicated a reduced signal of cytochrome P450 proteins (45 kDa) in adult D. citri treated with the dsRNA. In addition, oxidase activity and insecticide resistance were reduced for D. citri treated with dsRNA that targeted specific CYP4 genes. Mortality was significantly higher in adults treated with dsRNA than in adults treated with water. Our results indicate that topically applied dsRNA can penetrate the cuticle of D. citri and induce RNAi. These results broaden the scope of RNAi as a mechanism to manage pests by targeting a broad range of genes. The results also support the application of RNAi as a viable tool to overcome insecticide resistance development in D. citri populations. However, further research is needed to develop grower-friendly delivery systems for the application of dsRNA under field conditions. Considering the high specificity of dsRNA, this tool can also be used for management of D. citri by targeting physiologically critical genes involved in growth and development.

  15. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri.

    Directory of Open Access Journals (Sweden)

    Nabil Killiny

    Full Text Available Silencing of genes through RNA interference (RNAi in insects has gained momentum during the past few years. RNAi has been used to cause insect mortality, inhibit insect growth, increase insecticide susceptibility, and prevent the development of insecticide resistance. We investigated the efficacy of topically applied dsRNA to induce RNAi for five Cytochrome P450 genes family 4 (CYP4 in Diaphorina citri. We previously reported that these CYP4 genes are associated with the development of insecticide resistance in D. citri. We targeted five CYP4 genes that share a consensus sequence with one dsRNA construct. Quantitative PCR confirmed suppressed expression of the five CYP4 genes as a result of dsRNA topically applied to the thoracic region of D. citri when compared to the expression levels in a control group. Western blot analysis indicated a reduced signal of cytochrome P450 proteins (45 kDa in adult D. citri treated with the dsRNA. In addition, oxidase activity and insecticide resistance were reduced for D. citri treated with dsRNA that targeted specific CYP4 genes. Mortality was significantly higher in adults treated with dsRNA than in adults treated with water. Our results indicate that topically applied dsRNA can penetrate the cuticle of D. citri and induce RNAi. These results broaden the scope of RNAi as a mechanism to manage pests by targeting a broad range of genes. The results also support the application of RNAi as a viable tool to overcome insecticide resistance development in D. citri populations. However, further research is needed to develop grower-friendly delivery systems for the application of dsRNA under field conditions. Considering the high specificity of dsRNA, this tool can also be used for management of D. citri by targeting physiologically critical genes involved in growth and development.

  16. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma.

    Science.gov (United States)

    Yoo, Byoung Kwon; Santhekadur, Prasanna K; Gredler, Rachel; Chen, Dong; Emdad, Luni; Bhutia, Sujit; Pannell, Lewis; Fisher, Paul B; Sarkar, Devanand

    2011-05-01

    There is virtually no effective treatment for advanced hepatocellular carcinoma (HCC) and novel targets need to be identified to develop effective treatment. We recently documented that the oncogene Astrocyte elevated gene-1 (AEG-1) plays a seminal role in hepatocarcinogenesis. Employing yeast two-hybrid assay and coimmunoprecipitation followed by mass spectrometry, we identified staphylococcal nuclease domain containing 1 (SND1), a nuclease in the RNA-induced silencing complex (RISC) facilitating RNAi-mediated gene silencing, as an AEG-1 interacting protein. Coimmunoprecipitation and colocalization studies confirmed that AEG-1 is also a component of RISC and both AEG-1 and SND1 are required for optimum RISC activity facilitating small interfering RNA (siRNA) and micro RNA (miRNA)-mediated silencing of luciferase reporter gene. In 109 human HCC samples SND1 was overexpressed in ≈74% cases compared to normal liver. Correspondingly, significantly higher RISC activity was observed in human HCC cells compared to immortal normal hepatocytes. Increased RISC activity, conferred by AEG-1 or SND1, resulted in increased degradation of tumor suppressor messenger RNAs (mRNAs) that are target of oncomiRs. Inhibition of enzymatic activity of SND1 significantly inhibited proliferation of human HCC cells. As a corollary, stable overexpression of SND1 augmented and siRNA-mediated inhibition of SND1 abrogated growth of human HCC cells in vitro and in vivo, thus revealing a potential role of SND1 in hepatocarcinogenesis. We unravel a novel mechanism that overexpression of AEG-1 and SND1 leading to increased RISC activity might contribute to hepatocarcinogenesis. Targeted inhibition of SND1 enzymatic activity might be developed as an effective therapy for HCC. Copyright © 2011 American Association for the Study of Liver Diseases.

  17. Silencing of CXCR4 inhibits tumor cell proliferation and neural invasion in human hilar cholangiocarcinoma.

    Science.gov (United States)

    Tan, Xin-Yu; Chang, Shi; Liu, Wei; Tang, Hui-Huan

    2014-03-01

    To evaluate the expression of CXC motif chemokine receptor 4 (CXCR4) in the tissues of patients with hilar cholangiocarcinoma (hilar-CCA) and to investigate the cell proliferation and frequency of neural invasion (NI) influenced by RNAi-mediated CXCR4 silencing. An immunohistochemical technique was used to detect the expression of CXCR4 in 41 clinical tissues, including hilar-CCA, cholangitis, and normal bile duct tissues. The effects of small interference RNA (siRNA)-mediated CXCR4 silencing were detected in the hilar-CCA cell line QBC939. Cell proliferation was determined by MTT. Expression of CXCR4 was monitored by quantitative real time polymerase chain reaction and Western blot analysis. The NI ability of hilar-CCA cells was evaluated using a perineural cell and hilar-CCA cell coculture migration assay. The expression of CXCR4 was significantly induced in clinical hilar-CCA tissue. There was a positive correlation between the expression of CXCR4 and lymph node metastasis/NI in hilar-CCA patients (philar-CCA. CXCR4 is involved in the invasion and proliferation of human hilar-CCA cell line QBC939, indicating that CXCR4 could be a promising therapeutic target for hilar-CCA.

  18. The 5'-end heterogeneity of adenovirus virus-associated RNAI contributes to the asymmetric guide strand incorporation into the RNA-induced silencing complex.

    Science.gov (United States)

    Xu, Ning; Gkountela, Sofia; Saeed, Khalid; Akusjärvi, Göran

    2009-11-01

    Human Adenovirus type 5 encodes two short RNA polymerase III transcripts, the virus-associated (VA) RNAI and VA RNAII, which can adopt stable hairpin structures that resemble micro-RNA precursors. The terminal stems of the VA RNAs are processed into small RNAs (mivaRNAs) that are incorporated into RISC. It has been reported that VA RNAI has two transcription initiation sites, which produce two VA RNAI species; a major species, VA RNAI(G), which accounts for 75% of the VA RNAI pool, and a minor species, VA RNAI(A), which initiates transcription three nucleotides upstream compared to VA RNAI(G). We show that this 5'-heterogeneity results in a dramatic difference in RISC assembly. Thus, both VA RNAI(G) and VA RNAI(A) are processed by Dicer at the same position in the terminal stem generating the same 3'-strand mivaRNA. This mivaRNA is incorporated into RISC with 200-fold higher efficiency compared to the 5'-strand of mivaRNAI. Of the small number of 5'-strands used in RISC assembly only VA RNAI(A) generated active RISC complexes. We also show that the 3'-strand of mivaRNAI, although being the preferred substrate for RISC assembly, generates unstable RISC complexes with a low in vitro cleavage activity, only around 2% compared to RISC assembled on the VA RNAI(A) 5'-strand.

  19. Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi

    Directory of Open Access Journals (Sweden)

    Manev Hari

    2003-08-01

    Full Text Available Abstract Background RNA interference (RNAi is a process triggered by a double-stranded RNA that leads to targeted down-regulation/silencing of gene expression and can be used for functional genomics; i.e. loss-of-function studies. Here we report on the use of RNAi in the identification of a developmentally important novel Drosophila (fruit fly gene (corresponding to a putative gene CG5652/GM06434, that we named beltless based on an embryonic loss-of-function phenotype. Results Beltless mRNA is expressed in all developmental stages except in 0–6 h embryos. In situ RT-PCR localized beltless mRNA in the ventral cord and brain of late stage embryos and in the nervous system, ovaries, and the accessory glands of adult flies. RNAi was induced by injection of short (22 bp beltless double-stranded RNAs into embryos or into adult flies. Embryonic RNAi altered cuticular phenotypes ranging from partially-formed to missing denticle belts (thus beltless of the abdominal segments A2–A4. Embryonic beltless RNAi was lethal. Adult RNAi resulted in the shrinkage of the ovaries by half and reduced the number of eggs laid. We also examined Df(1RK4 flies in which deletion removes 16 genes, including beltless. In some embryos, we observed cuticular abnormalities similar to our findings with beltless RNAi. After differentiating Df(1RK4 embryos into those with visible denticle belts and those missing denticle belts, we assayed the presence of beltless mRNA; no beltless mRNA was detectable in embryos with missing denticle belts. Conclusions We have identified a developmentally important novel Drosophila gene, beltless, which has been characterized in loss-of-function studies using RNA interference. The putative beltless protein shares homologies with the C. elegans nose resistant to fluoxetine (NRF NRF-6 gene, as well as with several uncharacterized C. elegans and Drosophila melanogaster genes, some with prominent acyltransferase domains. Future studies should

  20. GenomeRNAi: a database for cell-based RNAi phenotypes.

    Science.gov (United States)

    Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael

    2007-01-01

    RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at http://rnai.dkfz.de.

  1. The role of relA and spoT in Yersinia pestis KIM5 pathogenicity.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2009-08-01

    Full Text Available The ppGpp molecule is part of a highly conserved regulatory system for mediating the growth response to various environmental conditions. This mechanism may represent a common strategy whereby pathogens such as Yersinia pestis, the causative agent of plague, regulate the virulence gene programs required for invasion, survival and persistence within host cells to match the capacity for growth. The products of the relA and spoT genes carry out ppGpp synthesis. To investigate the role of ppGpp on growth, protein synthesis, gene expression and virulence, we constructed a Delta relA Delta spoT Y. pestis mutant. The mutant was no longer able to synthesize ppGpp in response to amino acid or carbon starvation, as expected. We also found that it exhibited several novel phenotypes, including a reduced growth rate and autoaggregation at 26 degrees C. In addition, there was a reduction in the level of secretion of key virulence proteins and the mutant was > 1,000-fold less virulent than its wild-type parent strain. Mice vaccinated subcutaneously (s.c. with 2.5x10(4 CFU of the Delta relA Delta spoT mutant developed high anti-Y. pestis serum IgG titers, were completely protected against s.c. challenge with 1.5x10(5 CFU of virulent Y. pestis and partially protected (60% survival against pulmonary challenge with 2.0x10(4 CFU of virulent Y. pestis. Our results indicate that ppGpp represents an important virulence determinant in Y. pestis and the Delta relA Delta spoT mutant strain is a promising vaccine candidate to provide protection against plague.

  2. Messenger RNA Interferase RelE Controls relBE Transcription by Conditional Cooperativity

    DEFF Research Database (Denmark)

    Overgaard, Martin; Borch, Jonas; Jørgensen, Mikkel G

    2008-01-01

    Prokaryotic toxin-antitoxin (TA) loci consist of two genes in an operon that encodes a metabolically stable toxin and an unstable antitoxin. The antitoxin neutralises its cognate toxin by forming a tight complex with it. In all cases known, the antitoxin autoregulates TA operon transcription by b...... operator DNA. A mutational analysis of the operator-sites showed that RelE in excess counteracted cooperative binding of the RelB(2)*RelE complexes to the operator-sites. Thus, RelE controls relBE transcription by conditional cooperativity.......Prokaryotic toxin-antitoxin (TA) loci consist of two genes in an operon that encodes a metabolically stable toxin and an unstable antitoxin. The antitoxin neutralises its cognate toxin by forming a tight complex with it. In all cases known, the antitoxin autoregulates TA operon transcription...... by binding to one or more operators in the promoter region while the toxin functions as a co-repressor of transcription. Interestingly, the toxin can also stimulate TA operon transcription. Here we analyse mechanistic aspects of how RelE of Escherichia coli can function both as a co-repressor and derepressor...

  3. MicroRNA-Mediated Gene Silencing in Plant Defense and Viral Counter-Defense

    Directory of Open Access Journals (Sweden)

    Sheng-Rui Liu

    2017-09-01

    Full Text Available MicroRNAs (miRNAs are non-coding RNAs of approximately 20–24 nucleotides in length that serve as central regulators of eukaryotic gene expression by targeting mRNAs for cleavage or translational repression. In plants, miRNAs are associated with numerous regulatory pathways in growth and development processes, and defensive responses in plant–pathogen interactions. Recently, significant progress has been made in understanding miRNA-mediated gene silencing and how viruses counter this defense mechanism. Here, we summarize the current knowledge and recent advances in understanding the roles of miRNAs involved in the plant defense against viruses and viral counter-defense. We also document the application of miRNAs in plant antiviral defense. This review discusses the current understanding of the mechanisms of miRNA-mediated gene silencing and provides insights on the never-ending arms race between plants and viruses.

  4. TRBP and eIF6 homologue in Marsupenaeus japonicus play crucial roles in antiviral response.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    Full Text Available Plants and invertebrates can suppress viral infection through RNA silencing, mediated by RNA-induced silencing complex (RISC. Trans-activation response RNA-binding protein (TRBP, consisting of three double-stranded RNA-binding domains, is a component of the RISC. In our previous paper, a TRBP homologue in Fenneropenaeus chinensis (Fc-TRBP was reported to directly bind to eukaryotic initiation factor 6 (Fc-eIF6. In this study, we further characterized the function of TRBP and the involvement of TRBP and eIF6 in antiviral RNA interference (RNAi pathway of shrimp. The double-stranded RNA binding domains (dsRBDs B and C of the TRBP from Marsupenaeus japonicus (Mj-TRBP were found to mediate the interaction of TRBP and eIF6. Gel-shift assays revealed that the N-terminal of Mj-TRBP dsRBD strongly binds to double-stranded RNA (dsRNA and that the homodimer of the TRBP mediated by the C-terminal dsRBD increases the affinity to dsRNA. RNAi against either Mj-TRBP or Mj-eIF6 impairs the dsRNA-induced sequence-specific RNAi pathway and facilitates the proliferation of white spot syndrome virus (WSSV. These results further proved the important roles of TRBP and eIF6 in the antiviral response of shrimp.

  5. Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 in Sporothrix schenckii: an RNAi and yeast two-hybrid study

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mendez Ricardo

    2011-07-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic dimorphic fungus of worldwide distribution. It grows in the saprophytic form with hyaline, regularly septated hyphae and pyriform conidia at 25°C and as the yeast or parasitic form at 35°C. Previously, we characterized a calcium/calmodulin kinase in this fungus. Inhibitors of this kinase were observed to inhibit the yeast cell cycle in S. schenckii. Results The presence of RNA interference (RNAi mechanism in this fungus was confirmed by the identification of a Dicer-1 homologue in S. schenckii DNA. RNAi technology was used to corroborate the role of calcium/calmodulin kinase I in S. schenckii dimorphism. Yeast cells were transformed with the pSilent-Dual2G (pSD2G plasmid w/wo inserts of the coding region of the calcium/calmodulin kinase I (sscmk1 gene. Transformants were selected at 35°C using resistance to geneticin. Following transfer to liquid medium at 35°C, RNAi transformants developed as abnormal mycelium clumps and not as yeast cells as would be expected. The level of sscmk1 gene expression in RNAi transformants at 35°C was less than that of cells transformed with the empty pSD2G at this same temperature. Yeast two-hybrid analysis of proteins that interact with SSCMK1 identified a homologue of heat shock protein 90 (HSP90 as interacting with this kinase. Growth of the fungus similar to that of the RNAi transformants was observed in medium with geldanamycin (GdA, 10 μM, an inhibitor of HSP90. Conclusions Using the RNAi technology we silenced the expression of sscmk1 gene in this fungus. RNAi transformants were unable to grow as yeast cells at 35°C showing decreased tolerance to this temperature. The interaction of SSCMK1 with HSP90, observed using the yeast two-hybrid assay suggests that this kinase is involved in thermotolerance through its interaction with HSP90. SSCMK1 interacted with the C terminal domain of HSP90 where effector proteins and co-chaperones interact. These

  6. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    Science.gov (United States)

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  7. RDE-1 slicer activity is required only for passenger-strand cleavage during RNAi in Caenorhabditis elegans.

    NARCIS (Netherlands)

    Steiner, F.A.; Okihara, K.L.; Hoogstrate, S.W.; Sijen, T.; Ketting, R.F.

    2009-01-01

    RNA interference (RNAi) is a process in which double-stranded RNA is cleaved into small interfering RNAs (siRNAs) that induce the destruction of homologous single-stranded mRNAs. Argonaute proteins are essential components of this silencing process; they bind siRNAs directly and can cleave RNA

  8. RNA interference-based (RNAi) suppression of AtMPK6, an Arabidopsis mitogen-activated protein kinase, results in hypersensitivity to ozone and misregulation of AtMPK3

    International Nuclear Information System (INIS)

    Miles, Godfrey P.; Samuel, Marcus A.; Zhang Yuelin; Ellis, Brian E.

    2005-01-01

    The recent increase in tropospheric ozone (O 3 ) concentrations promotes additional oxidative stress through the production of reactive oxygen species (ROS) in plant tissues, resulting in the activation of genes whose products enable the stressed cells to retain their integrity and function. This response is made possible by an integration of highly regulated signaling networks that mediate the perception of, and response to, this oxidative assault. In Arabidopsis thaliana, ROS-induced signaling has been shown to flow through a protein phosphorylation cascade involving the mitogen-activated protein kinases (MAPKs) AtMPK3 (MPK3) and AtMPK6 (MPK6). We found that RNAi-mediated silencing of MPK6 renders the plant more sensitive to ozone, as determined by visible leaf damage. The MPK6-RNAi genotype also displayed a more intense and prolonged activation of MPK3 compared to that of WT plants. An MPK3 loss-of-function genotype is similarly very sensitive to ozone, and displays an abnormally prolonged MPK6 activation profile, suggesting reciprocity in regulation between these two MAPKs. - MPK6 is pivotal in the overall response to oxidative stress and regulation of MPK3 in Arabidopsis thaliana

  9. RNAi-mediated knockdown of serine protease inhibitor genes increases the mortality of Plutella xylostella challenged by destruxin A.

    Science.gov (United States)

    Han, Pengfei; Fan, Jiqiao; Liu, Yu; Cuthbertson, Andrew G S; Yan, Shaoqiao; Qiu, Bao-Li; Ren, Shunxiang

    2014-01-01

    Destruxin A is a mycotoxin that is secreted by entomopathogenic fungi which has a broad-spectrum insecticidal effect. Previous transcript and protein profiling analysis showed that destruxin A has significant effects on the expression of serine protease inhibitor genes (serpin-2, 4, 5) in the larvae of Plutella xylostella. In the current study, we aimed to understand the role of serpins under application of destruxin A. We obtained two full-length cDNA sequences of P. xylostella serpins, named serpin-4 and serpin-5, and cloned the serpin-2 gene whose full-length has already been published. Phylogenetic analysis indicated that these two serpin genes were highly clustered with other serpins associated with the immune response in other insects. The temporal and spatial expression of serpin-2, serpin-4 and serpin-5 were determined to be the highest in the fat body and hemolymph of 4th larval stage using qRT-PCR and western blot detection techniques. RNA interference (RNAi) mediated knockdown of P. xylostella serpin genes was carried out by microinjection of double-stranded RNA (dsRNA). The expression levels of serpins decreased significantly after RNAi. Results showed that the depletion of serpins induced cecropins expression, increased phenoloxidase (PO) activity, body melanization and mortality in the larvae of P. xylostella under the same lethal concentration of destruxin A. The superimposed effects of serpins RNAi were similar with the destruxin A treatment upon mortality of P. xylostella larvae. We discovered for the first time that serpins play indispensable role in P. xylostella when challenged by destruxin A and deduced the possible function mechanism of destruxin A. Our findings are conducive to fully understanding the potential insecticidal mechanism of destruxin A and constitute a well-defined potential molecular target for novel insecticides.

  10. RNAi-Mediated Knockdown of Serine Protease Inhibitor Genes Increases the Mortality of Plutella xylostella Challenged by Destruxin A

    Science.gov (United States)

    Han, Pengfei; Fan, Jiqiao; Liu, Yu; Cuthbertson, Andrew G. S.; Yan, Shaoqiao; Qiu, Bao-Li; Ren, Shunxiang

    2014-01-01

    Destruxin A is a mycotoxin that is secreted by entomopathogenic fungi which has a broad-spectrum insecticidal effect. Previous transcript and protein profiling analysis showed that destruxin A has significant effects on the expression of serine protease inhibitor genes (serpin-2, 4, 5) in the larvae of Plutella xylostella. In the current study, we aimed to understand the role of serpins under application of destruxin A. We obtained two full-length cDNA sequences of P. xylostella serpins, named serpin-4 and serpin-5, and cloned the serpin-2 gene whose full-length has already been published. Phylogenetic analysis indicated that these two serpin genes were highly clustered with other serpins associated with the immune response in other insects. The temporal and spatial expression of serpin-2, serpin-4 and serpin-5 were determined to be the highest in the fat body and hemolymph of 4th larval stage using qRT-PCR and western blot detection techniques. RNA interference (RNAi) mediated knockdown of P. xylostella serpin genes was carried out by microinjection of double-stranded RNA (dsRNA). The expression levels of serpins decreased significantly after RNAi. Results showed that the depletion of serpins induced cecropins expression, increased phenoloxidase (PO) activity, body melanization and mortality in the larvae of P. xylostella under the same lethal concentration of destruxin A. The superimposed effects of serpins RNAi were similar with the destruxin A treatment upon mortality of P. xylostella larvae. We discovered for the first time that serpins play indispensable role in P. xylostella when challenged by destruxin A and deduced the possible function mechanism of destruxin A. Our findings are conducive to fully understanding the potential insecticidal mechanism of destruxin A and constitute a well-defined potential molecular target for novel insecticides. PMID:24837592

  11. Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests.

    Science.gov (United States)

    Knorr, Eileen; Fishilevich, Elane; Tenbusch, Linda; Frey, Meghan L F; Rangasamy, Murugesan; Billion, Andre; Worden, Sarah E; Gandra, Premchand; Arora, Kanika; Lo, Wendy; Schulenberg, Greg; Valverde-Garcia, Pablo; Vilcinskas, Andreas; Narva, Kenneth E

    2018-02-01

    RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T 0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests.

  12. New developments of RNAi in Paracoccidioides brasiliensis: prospects for high-throughput, genome-wide, functional genomics.

    Directory of Open Access Journals (Sweden)

    Tercio Goes

    2014-10-01

    Full Text Available The Fungal Genome Initiative of the Broad Institute, in partnership with the Paracoccidioides research community, has recently sequenced the genome of representative isolates of this human-pathogen dimorphic fungus: Pb18 (S1, Pb03 (PS2 and Pb01. The accomplishment of future high-throughput, genome-wide, functional genomics will rely upon appropriate molecular tools and straightforward techniques to streamline the generation of stable loss-of-function phenotypes. In the past decades, RNAi has emerged as the most robust genetic technique to modulate or to suppress gene expression in diverse eukaryotes, including fungi. These molecular tools and techniques, adapted for RNAi, were up until now unavailable for P. brasiliensis.In this paper, we report Agrobacterium tumefaciens mediated transformation of yeast cells for high-throughput applications with which higher transformation frequencies of 150±24 yeast cell transformants per 1×106 viable yeast cells were obtained. Our approach is based on a bifunctional selective marker fusion protein consisted of the Streptoalloteichus hindustanus bleomycin-resistance gene (Shble and the intrinsically fluorescent monomeric protein mCherry which was codon-optimized for heterologous expression in P. brasiliensis. We also report successful GP43 gene knock-down through the expression of intron-containing hairpin RNA (ihpRNA from a Gateway-adapted cassette (cALf which was purpose-built for gene silencing in a high-throughput manner. Gp43 transcript levels were reduced by 73.1±22.9% with this approach.We have a firm conviction that the genetic transformation technique and the molecular tools herein described will have a relevant contribution in future Paracoccidioides spp. functional genomics research.

  13. Suppression of Arabidopsis genes by terminator-less transgene constructs

    Science.gov (United States)

    Transgene-mediated gene silencing is an important biotechnological and research tool. There are several RNAi-mediated techniques available for silencing genes in plants. The basis of all these techniques is to generate double stranded RNA precursors in the cell, which are recognized by the cellula...

  14. Small RNA-Mediated Epigenetic Myostatin Silencing

    Directory of Open Access Journals (Sweden)

    Thomas C Roberts

    2012-01-01

    Full Text Available Myostatin (Mstn is a secreted growth factor that negatively regulates muscle mass and is therefore a potential pharmacological target for the treatment of muscle wasting disorders such as Duchenne muscular dystrophy. Here we describe a novel Mstn blockade approach in which small interfering RNAs (siRNAs complementary to a promoter-associated transcript induce transcriptional gene silencing (TGS in two differentiated mouse muscle cell lines. Silencing is sensitive to treatment with the histone deacetylase inhibitor trichostatin A, and the silent state chromatin mark H3K9me2 is enriched at the Mstn promoter following siRNA transfection, suggesting epigenetic remodeling underlies the silencing effect. These observations suggest that long-term epigenetic silencing may be feasible for Mstn and that TGS is a promising novel therapeutic strategy for the treatment of muscle wasting disorders.

  15. Nuclear import of transcription factor BR-C is mediated by its interaction with RACK1.

    Science.gov (United States)

    Cheng, Daojun; Qian, Wenliang; Wang, Yonghu; Meng, Meng; Wei, Ling; Li, Zhiqing; Kang, Lixia; Peng, Jian; Xia, Qingyou

    2014-01-01

    The transcription factor Broad Complex (BR-C) is an early ecdysone response gene in insects and contains two types of domains: two zinc finger domains for the activation of gene transcription and a Bric-a-brac/Tramtrack/Broad complex (BTB) domain for protein-protein interaction. Although the mechanism of zinc finger-mediated gene transcription is well studied, the partners interacting with the BTB domain of BR-C has not been elucidated until now. Here, we performed a yeast two-hybrid screen using the BTB domain of silkworm BR-C as bait and identified the receptor for activated C-kinase 1 (RACK1), a scaffolding/anchoring protein, as the novel partner capable of interacting with BR-C. The interaction between BR-C and RACK1 was further confirmed by far-western blotting and pull-down assays. Importantly, the disruption of this interaction, via RNAi against the endogenous RACK1 gene or deletion of the BTB domain, abolished the nuclear import of BR-C in BmN4 cells. In addition, RNAi against the endogenous PKC gene as well as phosphorylation-deficient mutation of the predicted PKC phosphorylation sites at either Ser373 or Thr406 in BR-C phenocopied RACK1 RNAi and altered the nuclear localization of BR-C. However, when BTB domain was deleted, phosphorylation mimics of either Ser373 or Thr406 had no effect on the nuclear import of BR-C. Moreover, mutating the PKC phosphorylation sites at Ser373 and Thr406 or deleting the BTB domain significantly decreased the transcriptional activation of a BR-C target gene. Given that RACK1 is necessary for recruiting PKC to close and phosphorylate target proteins, we suggest that the PKC-mediated phosphorylation and nuclear import of BR-C is determined by its interaction with RACK1. This novel finding will be helpful for further deciphering the mechanism underlying the role of BR-C proteins during insect development.

  16. Nuclear import of transcription factor BR-C is mediated by its interaction with RACK1.

    Directory of Open Access Journals (Sweden)

    Daojun Cheng

    Full Text Available The transcription factor Broad Complex (BR-C is an early ecdysone response gene in insects and contains two types of domains: two zinc finger domains for the activation of gene transcription and a Bric-a-brac/Tramtrack/Broad complex (BTB domain for protein-protein interaction. Although the mechanism of zinc finger-mediated gene transcription is well studied, the partners interacting with the BTB domain of BR-C has not been elucidated until now. Here, we performed a yeast two-hybrid screen using the BTB domain of silkworm BR-C as bait and identified the receptor for activated C-kinase 1 (RACK1, a scaffolding/anchoring protein, as the novel partner capable of interacting with BR-C. The interaction between BR-C and RACK1 was further confirmed by far-western blotting and pull-down assays. Importantly, the disruption of this interaction, via RNAi against the endogenous RACK1 gene or deletion of the BTB domain, abolished the nuclear import of BR-C in BmN4 cells. In addition, RNAi against the endogenous PKC gene as well as phosphorylation-deficient mutation of the predicted PKC phosphorylation sites at either Ser373 or Thr406 in BR-C phenocopied RACK1 RNAi and altered the nuclear localization of BR-C. However, when BTB domain was deleted, phosphorylation mimics of either Ser373 or Thr406 had no effect on the nuclear import of BR-C. Moreover, mutating the PKC phosphorylation sites at Ser373 and Thr406 or deleting the BTB domain significantly decreased the transcriptional activation of a BR-C target gene. Given that RACK1 is necessary for recruiting PKC to close and phosphorylate target proteins, we suggest that the PKC-mediated phosphorylation and nuclear import of BR-C is determined by its interaction with RACK1. This novel finding will be helpful for further deciphering the mechanism underlying the role of BR-C proteins during insect development.

  17. Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhang, Yu-Qin; Xiao, Chuan-Xing; Lin, Bi-Yun; Shi, Ying; Liu, Yun-Peng; Liu, Jing-Jing; Guleng, Bayasi; Ren, Jian-Lin

    2013-01-01

    The role of Pokemon (POK erythroid myeloid ontogenic actor), a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC) and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma) as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy.

  18. Silencing of Pokemon enhances caspase-dependent apoptosis via fas- and mitochondria-mediated pathways in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yu-Qin Zhang

    Full Text Available The role of Pokemon (POK erythroid myeloid ontogenic actor, a recently identified POK transcription factor with proto-oncogenic activity, in hepatocellular carcinogenesis has only been assessed by a few studies. Our previous study revealed that Pokemon is overexpressed in hepatocellular carcinomas (HCC and promotes HCC cell proliferation and migration via an AKT- and ERK- dependent manner. In the present study, we used the TUNEL assay and FACS analysis to demonstrate that oxaliplatin induced apoptosis was significantly increased in cells with silenced Pokemon. Western blots showed that p53 expression and phosphorylation were significantly increased in Pokemon defective cells, thereby initiating the mitochondria-mediated and death receptor-mediated apoptotic pathways. In the mitochondria-mediated pathway, expression of pro-apoptotic Bcl-2 family members (including Bad, Bid, Bim and Puma as well as AIF was increased and decreasing the mitochondrial membrane potential resulted in cytochrome C released from mitochondrial in HepG2 si-Pokemon cells. In addition, upon oxaliplatin treatment of Pokemon-silenced cells, the FAS receptor, FADD and their downstream targets caspase-10 and caspase-8 were activated, causing increased release of caspase-8 active fragments p18 and p10. Increased activated caspase-8-mediated cleavage and activation of downstream effector caspases such as caspase-9 and caspase-3 was observed in HepG2 si-Pokemon cells as compared to control. Therefore, Pokemon might serve as an important mediator of crosstalk between intrinsic and extrinsic apoptotic pathways in HCC cells. Moreover, our findings suggest that Pokemon could be an attractive therapeutic target gene for human cancer therapy.

  19. The RDE-10/RDE-11 complex triggers RNAi-induced mRNA degradation by association with target mRNA in C. elegans.

    Science.gov (United States)

    Yang, Huan; Zhang, Ying; Vallandingham, Jim; Li, Hua; Li, Hau; Florens, Laurence; Mak, Ho Yi

    2012-04-15

    The molecular mechanisms for target mRNA degradation in Caenorhabditis elegans undergoing RNAi are not fully understood. Using a combination of genetic, proteomic, and biochemical approaches, we report a divergent RDE-10/RDE-11 complex that is required for RNAi in C. elegans. Genetic analysis indicates that the RDE-10/RDE-11 complex acts in parallel to nuclear RNAi. Association of the complex with target mRNA is dependent on RDE-1 but not RRF-1, suggesting that target mRNA recognition depends on primary but not secondary siRNA. Furthermore, RDE-11 is required for mRNA degradation subsequent to target engagement. Deep sequencing reveals a fivefold decrease in secondary siRNA abundance in rde-10 and rde-11 mutant animals, while primary siRNA and microRNA biogenesis is normal. Therefore, the RDE-10/RDE-11 complex is critical for amplifying the exogenous RNAi response. Our work uncovers an essential output of the RNAi pathway in C. elegans.

  20. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    Directory of Open Access Journals (Sweden)

    Jiangyu Wu

    2013-01-01

    Full Text Available RNA interference (RNAi was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc. of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system.

  1. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    Science.gov (United States)

    Huang, Weizhe; He, Ziying

    2013-01-01

    RNA interference (RNAi) was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA) are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc.) of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system. PMID:24288498

  2. Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice: quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases.

    Science.gov (United States)

    Takahashi, Yuki; Nishikawa, Makiya; Kobayashi, Naoki; Takakura, Yoshinobu

    2005-07-20

    Silencing of oncogenes or other genes contributing to tumor malignancy or progression by RNA interference (RNAi) offers a promising approach to treating tumor patients. To achieve RNAi-based tumor therapy, a small interfering RNA (siRNA) or siRNA-expressing vector needs to be delivered to tumor cells, but little information about its in vivo delivery has been reported. In this study, we examined whether the expression of the target gene in tumor cells can be suppressed by the delivery of RNAi effectors to primary and metastatic tumor cells. To quantitatively evaluate the RNAi effects in tumor cells, mouse melanoma B16-BL6 cells were stably transfected with both firefly (a model target gene) and sea pansy (an internal standard gene) luciferase genes to obtain B16-BL6/dual Luc cells. The target gene expression in subcutaneous primary tumors of B16-BL6/dual Luc cells was significantly suppressed by direct injection of the RNAi effectors followed by electroporation. The expression in metastatic hepatic tumors was also significantly reduced by an intravenous injection of either RNAi effector by the hydrodynamics-based procedure. These results indicate that the both RNAi effectors have a potential to silence target gene in tumor cells in vivo when successfully delivered to tumor cells.

  3. Effective mRNA Inhibition in PANC-1 Cells in Vitro Mediated via an mPEG-SeSe-PEI Delivery System.

    Science.gov (United States)

    Zhang, Yuefeng; Yang, Bin; Liu, Yajie; Qin, Wenjie; Li, Chao; Wang, Lantian; Zheng, Wen; Wu, Yulian

    2016-05-01

    RNA interference (RNAi)-mediated gene therapy is a promising approach to cure various diseases. However, developing an effective, safe, specific RNAi delivery system remains a major challenge. In this study, a novel redox-responsive polyetherimide (PEI)-based nanovector, mPEG-SeSe-PEI, was developed and its efficacy evaluated. We prepared three mPEG-SeSe-PEI vector candidates for small interfering glyceraldehyde-3-phosphate dehydrogenase (siGADPH) and determined their physiochemical properties and transfection efficiency using flow cytometry and PEG11.6-SeSe-PEI polymer. We investigated the silencing efficacy of GADPH mRNA expression in PANC-1 cells and observed that PEG11.6-SeSe-PEI/siGADPH (N/P ratio=10) polyplexes possessed the appropriate size and zeta-potential and exhibited excellent in vitro gene silencing effects with the least cytotoxicity in PANC-1 cells. In conclusion, we present PEG11.6-SeSe-PEI as a potential therapeutic gene delivery system for small interfering RNA (siRNA).

  4. A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing.

    Science.gov (United States)

    Sun, Daoyang; Nandety, Raja Sekhar; Zhang, Yanlong; Reid, Michael S; Niu, Lixin; Jiang, Cai-Zhong

    2016-05-01

    Virus-induced RNA silencing is involved in plant antiviral defense and requires key enzyme components, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonaute proteins (AGOs). However, the transcriptional regulation of these critical components is largely unknown. In petunia (Petunia hybrida), an ethylene-responsive element binding factor, PhERF2, is induced by Tobacco rattle virus (TRV) infection. Inclusion of a PhERF2 fragment in a TRV silencing construct containing reporter fragments of phytoene desaturase (PDS) or chalcone synthase (CHS) substantially impaired silencing efficiency of both the PDS and CHS reporters. Silencing was also impaired in PhERF2- RNAi lines, where TRV-PhPDS infection did not show the expected silencing phenotype (photobleaching). In contrast, photobleaching in response to infiltration with the TRV-PhPDS construct was enhanced in plants overexpressing PhERF2 Transcript abundance of the RNA silencing-related genes RDR2, RDR6, DCL2, and AGO2 was lower in PhERF2-silenced plants but higher in PhERF2-overexpressing plants. Moreover, PhERF2-silenced lines showed higher susceptibility to Cucumber mosaic virus (CMV) than wild-type (WT) plants, while plants overexpressing PhERF2 exhibited increased resistance. Interestingly, growth and development of PhERF2-RNAi lines were substantially slower, whereas the overexpressing lines were more vigorous than the controls. Taken together, our results indicate that PhERF2 functions as a positive regulator in antiviral RNA silencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. SAD-3, a Putative Helicase Required for Meiotic Silencing by Unpaired DNA, Interacts with Other Components of the Silencing Machinery

    Science.gov (United States)

    Hammond, Thomas M.; Xiao, Hua; Boone, Erin C.; Perdue, Tony D.; Pukkila, Patricia J.; Shiu, Patrick K. T.

    2011-01-01

    In Neurospora crassa, genes lacking a pairing partner during meiosis are suppressed by a process known as meiotic silencing by unpaired DNA (MSUD). To identify novel MSUD components, we have developed a high-throughput reverse-genetic screen for use with the N. crassa knockout library. Here we describe the screening method and the characterization of a gene (sad-3) subsequently discovered. SAD-3 is a putative helicase required for MSUD and sexual spore production. It exists in a complex with other known MSUD proteins in the perinuclear region, a center for meiotic silencing activity. Orthologs of SAD-3 include Schizosaccharomyces pombe Hrr1, a helicase required for RNAi-induced heterochromatin formation. Both SAD-3 and Hrr1 interact with an RNA-directed RNA polymerase and an Argonaute, suggesting that certain aspects of silencing complex formation may be conserved between the two fungal species. PMID:22384347

  6. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells

    Science.gov (United States)

    Kraehling, Jan R.; Chidlow, John H.; Rajagopal, Chitra; Sugiyama, Michael G.; Fowler, Joseph W.; Lee, Monica Y.; Zhang, Xinbo; Ramírez, Cristina M.; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W.; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L.; Fernández-Hernando, Carlos; Sessa, William C.

    2016-01-01

    In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. PMID:27869117

  7. The status of RNAi-based transgenic research in plant nematology

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Dutta

    2015-01-01

    Full Text Available With the understanding of nematode-plant interactions at the molecular level, new avenues for engineering resistance have opened up, with RNA interference being one of them. Induction of RNAi by delivering double-stranded RNA (dsRNA has been very successful in the model non-parasitic nematode, Caenorhabditis elegans, while in plant nematodes, dsRNA delivery has been accomplished by soaking nematodes with dsRNA solution mixed with synthetic neurostimulants. The success of in vitro RNAi of target genes has inspired the use of in planta delivery of dsRNA to feeding nematodes. The most convincing success of host-delivered RNAi has been achieved against root-knot nematodes. Plant-mediated RNAi has been shown to lead to the specific down-regulation of target genes in invading nematodes, which had a profound effect on nematode development. RNAi-based transgenics are advantageous as they do not produce any functional foreign proteins and target organisms in a sequence-specific manner. Although the development of RNAi-based transgenics against plant nematodes is still in the preliminary stage, they offer novel management strategy for the future.

  8. Silencing honey bee naked cuticle (nkd) reduces Nosema ceranae replication and disease levels

    Science.gov (United States)

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera that has been implicated in alarming colony losses worldwide. RNA interference (RNAi), a post-transcriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling in...

  9. Different effects of antisense RelA p65 and NF-κB1 p50 oligonucleotides on the nuclear factor-κB mediated expression of ICAM-1 in human coronary endothelial and smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Both Anton

    2001-08-01

    Full Text Available Abstract Background Activation of nuclear factor-κB (NF-κB is one of the key events in early atherosclerosis and restenosis. We hypothesized that tumor necrosis factor-α (TNF-α induced and NF-κB mediated expression of intercellular adhesion molecule-1 (ICAM-1 can be inhibited by antisense RelA p65 and NF-κB1 p50 oligonucleotides (RelA p65 and NF-κB1 p50. Results Smooth muscle cells (SMC from human coronary plaque material (HCPSMC, plaque material of 52 patients, SMC from the human coronary media (HCMSMC, human endothelial cells (EC from umbilical veins (HUVEC, and human coronary EC (HCAEC were successfully isolated (HCPSMC, HUVEC, identified and cultured (HCPSMC, HCMSMC, HUVEC, HCAEC. 12 hrs prior to TNF-α stimulus (20 ng/mL, 6 hrs RelA p65 and NF-κB1 p50 (1, 2, 4, 10, 20, and 30 μM and controls were added for a period of 18 hrs. In HUVEC and HCAEC there was a dose dependent inhibition of ICAM-1 expression after adding of both RelA p65 and NF-κB1 p50. No inhibitory effect was seen after incubation of HCMSMC with RelA p65 and NF-κB1 p50. A moderate inhibition of ICAM-1 expression was found after simultaneous addition of RelA p65 and NF-κB1 p50 to HCPSMC, no inhibitory effect was detected after individual addition of RelA p65 and NF-κB1 p50. Conclusions The data point out that differences exist in the NF-κB mediated expression of ICAM-1 between EC and SMC. Experimental antisense strategies directed against RelA p65 and NF-κB1 p50 in early atherosclerosis and restenosis are promising in HCAEC but will be confronted with redundant pathways in HCMSMC and HCPSMC.

  10. Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing.

    Directory of Open Access Journals (Sweden)

    Mahmoud Kandeel

    Full Text Available RNA interference (RNAi is a highly specialized process of protein-siRNA interaction that results in the regulation of gene expression and cleavage of target mRNA. The PAZ domain of the Argonaute proteins binds to the 3' end of siRNA, and during RNAi the attaching end of the siRNA switches between binding and release from its binding pocket. This biphasic interaction of the 3' end of siRNA with the PAZ domain is essential for RNAi activity; however, it remains unclear whether stronger or weaker binding with PAZ domain will facilitate or hinder the overall RNAi process. Here we report the correlation between the binding of modified siRNA 3' overhang analogues and their in vivo RNAi efficacy. We found that higher RNAi efficacy was associated with the parameters of lower Ki value, lower total intermolecular energy, lower free energy, higher hydrogen bonding, smaller total surface of interaction and fewer van der Waals interactions. Electrostatic interaction was a minor contributor to compounds recognition, underscoring the presence of phosphate groups in the modified analogues. Thus, compounds with lower binding affinity are associated with better gene silencing. Lower binding strength along with the smaller interaction surface, higher hydrogen bonding and fewer van der Waals interactions were among the markers for favorable RNAi activity. Within the measured parameters, the interaction surface, van der Waals interactions and inhibition constant showed a statistically significant correlation with measured RNAi efficacy. The considerations provided in this report will be helpful in the design of new compounds with better gene silencing ability.

  11. Systems-wide RNAi analysis of CASP8AP2/FLASH shows transcriptional deregulation of the replication-dependent histone genes and extensive effects on the transcriptome of colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Hummon Amanda B

    2012-01-01

    Full Text Available Abstract Background Colorectal carcinomas (CRC carry massive genetic and transcriptional alterations that influence multiple cellular pathways. The study of proteins whose loss-of-function (LOF alters the growth of CRC cells can be used to further understand the cellular processes cancer cells depend upon for survival. Results A small-scale RNAi screen of ~400 genes conducted in SW480 CRC cells identified several candidate genes as required for the viability of CRC cells, most prominently CASP8AP2/FLASH. To understand the function of this gene in maintaining the viability of CRC cells in an unbiased manner, we generated gene specific expression profiles following RNAi. Silencing of CASP8AP2/FLASH resulted in altered expression of over 2500 genes enriched for genes associated with cellular growth and proliferation. Loss of CASP8AP2/FLASH function was significantly associated with altered transcription of the genes encoding the replication-dependent histone proteins as a result of the expression of the non-canonical polyA variants of these transcripts. Silencing of CASP8AP2/FLASH also mediated enrichment of changes in the expression of targets of the NFκB and MYC transcription factors. These findings were confirmed by whole transcriptome analysis of CASP8AP2/FLASH silenced cells at multiple time points. Finally, we identified and validated that CASP8AP2/FLASH LOF increases the expression of neurofilament heavy polypeptide (NEFH, a protein recently linked to regulation of the AKT1/ß-catenin pathway. Conclusions We have used unbiased RNAi based approaches to identify and characterize the function of CASP8AP2/FLASH, a protein not previously reported as required for cell survival. This study further defines the role CASP8AP2/FLASH plays in the regulating expression of the replication-dependent histones and shows that its LOF results in broad and reproducible effects on the transcriptome of colorectal cancer cells including the induction of

  12. Systems-wide RNAi analysis of CASP8AP2/FLASH shows transcriptional deregulation of the replication-dependent histone genes and extensive effects on the transcriptome of colorectal cancer cells.

    Science.gov (United States)

    Hummon, Amanda B; Pitt, Jason J; Camps, Jordi; Emons, Georg; Skube, Susan B; Huppi, Konrad; Jones, Tamara L; Beissbarth, Tim; Kramer, Frank; Grade, Marian; Difilippantonio, Michael J; Ried, Thomas; Caplen, Natasha J

    2012-01-04

    Colorectal carcinomas (CRC) carry massive genetic and transcriptional alterations that influence multiple cellular pathways. The study of proteins whose loss-of-function (LOF) alters the growth of CRC cells can be used to further understand the cellular processes cancer cells depend upon for survival. A small-scale RNAi screen of ~400 genes conducted in SW480 CRC cells identified several candidate genes as required for the viability of CRC cells, most prominently CASP8AP2/FLASH. To understand the function of this gene in maintaining the viability of CRC cells in an unbiased manner, we generated gene specific expression profiles following RNAi. Silencing of CASP8AP2/FLASH resulted in altered expression of over 2500 genes enriched for genes associated with cellular growth and proliferation. Loss of CASP8AP2/FLASH function was significantly associated with altered transcription of the genes encoding the replication-dependent histone proteins as a result of the expression of the non-canonical polyA variants of these transcripts. Silencing of CASP8AP2/FLASH also mediated enrichment of changes in the expression of targets of the NFκB and MYC transcription factors. These findings were confirmed by whole transcriptome analysis of CASP8AP2/FLASH silenced cells at multiple time points. Finally, we identified and validated that CASP8AP2/FLASH LOF increases the expression of neurofilament heavy polypeptide (NEFH), a protein recently linked to regulation of the AKT1/ß-catenin pathway. We have used unbiased RNAi based approaches to identify and characterize the function of CASP8AP2/FLASH, a protein not previously reported as required for cell survival. This study further defines the role CASP8AP2/FLASH plays in the regulating expression of the replication-dependent histones and shows that its LOF results in broad and reproducible effects on the transcriptome of colorectal cancer cells including the induction of expression of the recently described tumor suppressor gene NEFH.

  13. 5-Azacytidine mediated reactivation of silenced transgenes in potato (Solanum tuberosum) at the whole plant level.

    Science.gov (United States)

    Tyč, Dimitrij; Nocarová, Eva; Sikorová, Lenka; Fischer, Lukáš

    2017-08-01

    Transient 5-azacytidine treatment of leaf explants from potato plants with transcriptionally silenced transgenes allows de novo regeneration of plants with restored transgene expression at the whole plant level. Transgenes introduced into plant genomes frequently become silenced either at the transcriptional or the posttranscriptional level. Transcriptional silencing is usually associated with DNA methylation in the promoter region. Treatments with inhibitors of maintenance DNA methylation were previously shown to allow reactivation of transcriptionally silenced transgenes in single cells or tissues, but not at the whole plant level. Here we analyzed the effect of DNA methylation inhibitor 5-azacytidine (AzaC) on the expression of two silenced reporter genes encoding green fluorescent protein (GFP) and neomycin phosphotransferase (NPTII) in potato plants. Whereas no obvious reactivation was observed in AzaC-treated stem cuttings, transient treatment of leaf segments with 10 μM AzaC and subsequent de novo regeneration of shoots on the selective medium with kanamycin resulted in the production of whole plants with clearly reactivated expression of previously silenced transgenes. Reactivation of nptII expression was accompanied by a decrease in cytosine methylation in the promoter region of the gene. Using the plants with reactivated GFP expression, we found that re-silencing of this transgene can be accidentally triggered by de novo regeneration. Thus, testing the incidence of transgene silencing during de novo regeneration could be a suitable procedure for negative selection of transgenic lines (insertion events) which have an inclination to be silenced. Based on our analysis of non-specific inhibitory effects of AzaC on growth of potato shoots in vitro, we estimated that AzaC half-life in the culture media is approximately 2 days.

  14. RNAi-Mediated Reverse Genetic Screen Identified Drosophila Chaperones Regulating Eye and Neuromuscular Junction Morphology

    Directory of Open Access Journals (Sweden)

    Sandeep Raut

    2017-07-01

    Full Text Available Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila. Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.

  15. The introgression of RNAi silencing of γ-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough.

    Directory of Open Access Journals (Sweden)

    Javier Gil-Humanes

    Full Text Available In the present work the effects on dough quality by the down-regulation of γ-gliadins in different genetic backgrounds of bread wheat were investigated. RNAi-mediated silencing of γ-gliadins was introgressed by conventional crossing into three commercial bread wheat lines (namely 'Gazul', 'Podenco' and 'Arpain', and along with the transgenic line A1152 (cv. Bobwhite compared with their respective wild types. The protein fractions were quantified by RP-HPLC, whereas the technological and mixing properties were assessed by SDSS test and by the Mixograph instrument. Principal component analysis (PCA was carried out for both the wild types and the transgenic lines, showing differences in the factors affecting the technological and mixing properties of the dough as a consequence of the reduction of the γ-gliadins. In transgenic lines, the α- and ω-gliadins, and total gliadins negatively affected the dough strength and tolerance to over-mixing, whereas the L/H ratio showed the opposite effect, positively influencing the dough quality. The increase of the SDSS volume in the transgenic lines of 'Gazul', 'Podenco' and 'Arpain' indicates increased gluten strength and quality respect to the wild types. SDSS volume was found to be positively influenced by the amount of glutenins, which were also increased in the transgenic lines. In addition, a positive effect was observed in the MT, PR1 and RBD in some of the transgenic lines of 'Podenco' and 'Arpain'. In conclusion, the down-regulation of γ-gliadins resulted in stronger doughs and a better tolerance to over-mixing in some transgenic lines. Although the reduction of γ-gliadins seems not to have a direct effect on the mixing and bread-making properties, the compensatory effect on the synthesis of the other prolamins may result in stronger doughs with improved over-mixing resistance.

  16. The introgression of RNAi silencing of γ-gliadins into commercial lines of bread wheat changes the mixing and technological properties of the dough.

    Science.gov (United States)

    Gil-Humanes, Javier; Pistón, Fernando; Giménez, María J; Martín, Antonio; Barro, Francisco

    2012-01-01

    In the present work the effects on dough quality by the down-regulation of γ-gliadins in different genetic backgrounds of bread wheat were investigated. RNAi-mediated silencing of γ-gliadins was introgressed by conventional crossing into three commercial bread wheat lines (namely 'Gazul', 'Podenco' and 'Arpain'), and along with the transgenic line A1152 (cv. Bobwhite) compared with their respective wild types. The protein fractions were quantified by RP-HPLC, whereas the technological and mixing properties were assessed by SDSS test and by the Mixograph instrument. Principal component analysis (PCA) was carried out for both the wild types and the transgenic lines, showing differences in the factors affecting the technological and mixing properties of the dough as a consequence of the reduction of the γ-gliadins. In transgenic lines, the α- and ω-gliadins, and total gliadins negatively affected the dough strength and tolerance to over-mixing, whereas the L/H ratio showed the opposite effect, positively influencing the dough quality. The increase of the SDSS volume in the transgenic lines of 'Gazul', 'Podenco' and 'Arpain' indicates increased gluten strength and quality respect to the wild types. SDSS volume was found to be positively influenced by the amount of glutenins, which were also increased in the transgenic lines. In addition, a positive effect was observed in the MT, PR1 and RBD in some of the transgenic lines of 'Podenco' and 'Arpain'. In conclusion, the down-regulation of γ-gliadins resulted in stronger doughs and a better tolerance to over-mixing in some transgenic lines. Although the reduction of γ-gliadins seems not to have a direct effect on the mixing and bread-making properties, the compensatory effect on the synthesis of the other prolamins may result in stronger doughs with improved over-mixing resistance.

  17. DISE: A Seed-Dependent RNAi Off-Target Effect That Kills Cancer Cells.

    Science.gov (United States)

    Putzbach, William; Gao, Quan Q; Patel, Monal; Haluck-Kangas, Ashley; Murmann, Andrea E; Peter, Marcus E

    2018-01-01

    Off-target effects (OTEs) represent a significant caveat for RNAi caused by substantial complementarity between siRNAs and unintended mRNAs. We now discuss the existence of three types of seed-dependent OTEs (sOTEs). Type I involves unintended targeting through the guide strand seed of an siRNA. Type II is caused by the activity of the seed on the designated siRNA passenger strand when loaded into the RNA-induced silencing complex (RISC). Both type I and II sOTEs will elicit unpredictable cellular responses. By contrast, in sOTE type III the guide strand seed preferentially targets essential survival genes resulting in death induced by survival gene elimination (DISE). In this Opinion article, we discuss DISE as a consequence of RNAi that may preferentially affect cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Fabiana Salm

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.

  19. RNA-mediated gene silencing signals are not graft transmissible from the rootstock to the scion in greenhouse-grown apple plants Malus sp.

    Science.gov (United States)

    Flachowsky, Henryk; Tränkner, Conny; Szankowski, Iris; Waidmann, Sascha; Hanke, Magda-Viola; Treutter, Dieter; Fischer, Thilo C

    2012-01-01

    RNA silencing describes the sequence specific degradation of RNA targets. Silencing is a non-cell autonomous event that is graft transmissible in different plant species. The present study is the first report on systemic acquired dsRNA-mediated gene silencing of transgenic and endogenous gene sequences in a woody plant like apple. Transgenic apple plants overexpressing a hairpin gene construct of the gusA reporter gene were produced. These plants were used as rootstocks and grafted with scions of the gusA overexpressing transgenic apple clone T355. After grafting, we observed a reduction of the gusA gene expression in T355 scions in vitro, but not in T355 scions grown in the greenhouse. Similar results were obtained after silencing of the endogenous Mdans gene in apple that is responsible for anthocyanin biosynthesis. Subsequently, we performed grafting experiments with Mdans silenced rootstocks and red leaf scions of TNR31-35 in order to evaluate graft transmitted silencing of the endogenous Mdans. The results obtained suggested a graft transmission of silencing signals in in vitro shoots. In contrast, no graft transmission of dsRNA-mediated gene silencing signals was detectable in greenhouse-grown plants and in plants grown in an insect protection tent.

  20. PCA3 Silencing Sensitizes Prostate Cancer Cells to Enzalutamide-mediated Androgen Receptor Blockade.

    Science.gov (United States)

    Özgür, Emre; Celik, Ayca Iribas; Darendeliler, Emin; Gezer, Ugur

    2017-07-01

    Prostate cancer (PCa) is an androgen-dependent disease. Novel anti-androgens (i.e. enzalutamide) have recently been developed for the treatment of patients with metastatic castration-resistant prostate cancer (CRPC). Evidence is accumulating that prostate cancer antigen 3 (PCA3) is involved in androgen receptor (AR) signaling. Here, in combination with enzalutamide-mediated AR blockade, we investigated the effect of PCA3 targeting on the viability of PCa cells. In hormone-sensitive LNCaP cells, AR-overexpressing LNCaP-AR + cells and VCaP cells (representing CRPC), PCA3 was silenced using siRNA oligonucleotides. Gene expression and cell viability was assessed in PCA3-silenced and/or AR-blocked cells. PCA3 targeting reduced the expression of AR-related genes (i.e. prostate-specific antigen (PSA) and prostate-specific transcript 1 (non-protein coding) (PCGEM1)) and potentiated the effect of enzalutamide. Proliferation of PCa cells was suppressed upon PCA3 silencing with a greater effect in LNCaP-AR + cells. Furthermore, PCA3 silencing sensitized PCa cells to enzalutamide-induced loss of cell growth. PCA3, as a therapeutic target in PCa, might be used to potentiate AR antagonists. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Interplays between soil-borne plant viruses and RNA silencing-mediated antiviral defense in roots

    Directory of Open Access Journals (Sweden)

    Ida Bagus Andika

    2016-09-01

    Full Text Available Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.

  2. Lentiviral Vector Mediated Claudin1 Silencing Inhibits Epithelial to Mesenchymal Transition in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xianqi Zhao

    2015-06-01

    Full Text Available Breast cancer has a high incidence and mortality rate worldwide. Several viral vectors including lentiviral, adenoviral and adeno-associated viral vectors have been used in gene therapy for various forms of human cancer, and have shown promising effects in controlling tumor development. Claudin1 (CLDN1 is a member of the tetraspan transmembrane protein family that plays a major role in tight junctions and is associated with tumor metastasis. However, the role of CLDN1 in breast cancer is largely unexplored. In this study, we tested the therapeutic potential of silencing CLDN1 expression in two breast cancer (MDA-MB-231 and MCF7 cell lines using lentiviral vector mediated RNA interference. We found that a CLDN1 short hairpin (shRNA construct efficiently silenced CLDN1 expression in both breast cancer cell lines, and CLDN1 knockdown resulted in reduced cell proliferation, survival, migration and invasion. Furthermore, silencing CLDN1 inhibited epithelial to mesenchymal transition (EMT by upregulating the epithelial cell marker, E-cadherin, and downregulating mesenchymal markers, smooth muscle cell alpha-actin (SMA and Snai2. Our data demonstrated that lentiviral vector mediated CLDN1 RNA interference has great potential in breast cancer gene therapy by inhibiting EMT and controlling tumor cell growth.

  3. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes.

    Science.gov (United States)

    Ramesh Kumar, D; Saravana Kumar, P; Gandhi, M Rajiv; Al-Dhabi, Naif Abdullah; Paulraj, M Gabriel; Ignacimuthu, S

    2016-05-01

    RNA interference (RNAi) has been used as a gene silencing strategy by the introduction of long double stranded RNA (dsRNA) for the control of pest insects. The aim of the present study was to examine whether the expression of vg gene which is responsible for wing development, can be repressed by chitosan/dsRNA based nanoparticles in Aedes aegypti. The vestigial gene (vg) was amplified from adult mosquito and cloned in pLitmus28i vector. Genetically engineered recombinant plasmid was transformed into RNase III deficient strain for synthesis of bacterially expressed dsRNA. Nanoparticles were prepared via electrostatic interaction between cationic polymer chitosan and anionic nucleic acids (dsRNA). The formation of chitosan/dsRNAnanoparticles and their size were confirmed by Atomic force microscopy (AFM). Chitosan/dsRNA mediated knockdown of Enhanced Green Fluorescence Protein (EGFP) was demonstrated in Sf21 cells. Further, we tested whether such an approach could be used to target vg gene in Ae. aegypti. The results showed that chitosan/dsRNA caused significant mortality, delayed growth development and caused adult wing-malformation. A qRT-PCR analysis confirmed that the chitosan/dsRNA mediated transcriptional level was downregulated. Our findings suggest that vg gene intervention strategies through RNAi can emerge as viable option for pest control. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. RNAi Mediated Silencing of LRRK2G2019S in Parkinson’s Disease

    Science.gov (United States)

    2013-08-01

    WT, but not LRRK2 mutant, protected 446 dopaminergic neurons against rotenone or paraquat toxicity, 447Q12 agents which compromise [52]. The...and animal models of G2019S-mediated neurotoxicity to establish a novel therapy for PD. To achieve this objective we proposed the following Specific...kinase domain (kinase dead mutants) diminishes neurotoxicity and basal kinase levels appear to be required for the toxicity of all LRRK2 mutants [6

  5. Presented by REL Pacific at McREL: Available Resources and Work in Progress. Research Digest. [Volume 1

    Science.gov (United States)

    Regional Educational Laboratory Pacific, 2014

    2014-01-01

    REL Pacific at McREL, one of 10 Regional Educational Laboratories (RELs) funded by the Institute of Education Sciences (IES), serves educators in American Samoa, the Commonwealth of the Northern Mariana Islands, the Federated States of Micronesia (Chuuk, Kosrae, Pohnpei, and Yap), Guam, Hawai'i, the Republic of the Marshall Islands, and the…

  6. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes

    Directory of Open Access Journals (Sweden)

    Masci Stefania

    2010-07-01

    Full Text Available Abstract Background High amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa were silenced using the RNA interference (RNAi technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium. Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter. Results Amylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS-PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls. Finally, pleiotropic effects on other starch genes were found by semi-quantitative and Real-Time reverse transcription-polymerase chain reaction (RT-PCR. Conclusion We have found that the silencing of SBEIIa genes in durum wheat causes obvious alterations in granule morphology and starch composition, leading to high amylose wheat. Results obtained with two different methods of transformation and in two durum wheat cultivars were comparable.

  7. The application of RNAi-based treatments for inflammatory bowel disease

    DEFF Research Database (Denmark)

    Olesen, Morten Tobias Jarlstad; Gonzalez, Borja Ballarin; Howard, Ken

    2014-01-01

    in which small interfering RNA (siRNA) mediates specific downregulation of key molecular targets of the IBD inflammatory process may offer a precise, potent and safer alternative to conventional treatments. This review describes the aetiology of Crohn’s disease and ulcerative colitis and the cellular...... and molecular basis for current treatments to highlight target candidates for an RNAi-based approach. Promising preclinical studies support an RNAi application; however, optimal siRNA designs that maximise potency and development of enabling technologies for site- and cellular-specific delivery......Inflammatory bowel disease (IBD) is a chronic, relapsing, idiopathic inflammation of the gastrointestinal tract with no permanent cure. Present immunosuppressive and anti-inflammatory therapies are often ineffective and associated with severe side effects. An RNA interference (RNAi)-based approach...

  8. Presented by REL Pacific at McREL: A Summary of Cross-Regional Educational Laboratory Studies. Research Digest

    Science.gov (United States)

    Regional Educational Laboratory Pacific, 2013

    2013-01-01

    REL Pacific at McREL, 1 of 10 Regional Educational Laboratories (RELs) funded by the Institute of Education Sciences (IES), serves educators in American Samoa, the Commonwealth of the Northern Mariana Islands, the Federated States of Micronesia (Chuuk, Kosrae, Pohnpei, and Yap), Guam, Hawai'i, the Republic of the Marshall Islands, and the Republic…

  9. Presented by REL Pacific at McREL: Available Resources and Work in Progress. Research Digest. Volume 2

    Science.gov (United States)

    Regional Educational Laboratory Pacific, 2014

    2014-01-01

    REL Pacific at McREL, one of 10 Regional Educational Laboratories (RELs) funded by the U.S. Department of Education's Institute of Education Sciences (IES), serves educators in American Samoa, the Commonwealth of the Northern Mariana Islands, the Federated States of Micronesia (Chuuk, Kosrae, Pohnpei, and Yap), Guam, Hawai'i, the Republic of the…

  10. Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco.

    Science.gov (United States)

    Alamillo, Josefa M; Saénz, Pilar; García, Juan Antonio

    2006-10-01

    Plum pox virus (PPV) is able to replicate in inoculated leaves of Nicotiana tabacum, but is defective in systemic movement in this host. However, PPV produces a systemic infection in transgenic tobacco expressing the silencing suppressor P1/HC-Pro from tobacco etch virus (TEV). In this work we show that PPV is able to move to upper non-inoculated leaves of tobacco plants expressing bacterial salicylate hydroxylase (NahG) that degrades salicylic acid (SA). Replication and accumulation of PPV is higher in the locally infected leaves of plants deficient in SA or expressing TEV P1/HC-Pro silencing suppressor. Accumulation of viral derived small RNAs was reduced in the NahG transgenic plants, suggesting that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco. Besides, expression of SA-mediated defense transcripts, such as those of pathogenesis-related (PR) proteins PR-1 and PR-2 or alternative oxidase-1, as well as that of the putative RNA-dependent RNA polymerase NtRDR1, is induced in response to PPV infection, and the expression patterns of these defense transcripts are altered in the TEV P1/HC-Pro transgenic plants. Long-distance movement of PPV is highly enhanced in NahG x P1/HC-Pro double-transgenic plants and systemic symptoms in these plants reveal that the expression of an RNA-silencing suppressor and the lack of SA produce additive but distinct effects. Our results suggest that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco, and that silencing suppressors, such as P1/HC-Pro, also alter the SA-mediated defense. Both an RNA-silencing and an SA-mediated defense mechanism could act together to limit PPV infection.

  11. Effects of TT8 and HB12 Silencing on the Relations between the Molecular Structures of Alfalfa ( Medicago sativa) Plants and Their Nutritional Profiles and In Vitro Gas Production.

    Science.gov (United States)

    Lei, Yaogeng; Hannoufa, Abdelali; Prates, Luciana Louzada; Shi, Haitao; Wang, Yuxi; Biligetu, Bill; Christensen, David; Yu, Peiqiang

    2018-06-06

    The objective of this study was to investigate the effects of silencing the TT8 and HB12 genes on the nutritive profiles and in vitro gas production of alfalfa in relation to the spectral molecular structures of alfalfa. TT8-silenced (TT8i, n = 5) and HB12-silenced (HB12i, n = 11) alfalfa were generated by RNA interference (RNAi) and grown with nontransgenic wild type controls (WT, n = 4) in a greenhouse. Alfalfa plants were harvested at early-to-mid vegetative stage. Samples were analyzed for their chemical compositions, CNCPS fractions, and in vitro gas production. Correlations and regressions of the nutritional profiles and in vitro gas production with the molecular spectral structures were also determined. The results showed that the transformed alfalfa had higher digestible fiber and lower crude protein with higher proportions of indigestible protein than WT. HB12 RNAi had lower gas production compared with those of the others. Some chemical, CNCPS, and gas-production profiles were closely correlated with spectral structures and could be well predicted from spectral parameters. In conclusion, the RNAi silencing of TT8 and HB12 in alfalfa altered the chemical, CNCPS and gas-production profiles of alfalfa, and such alterations were closely correlated with the inherent spectral structures of alfalfa.

  12. RNAi-mediated resistance to rice black-streaked dwarf virus in transgenic rice.

    Science.gov (United States)

    Ahmed, Mohamed M S; Bian, Shiquan; Wang, Muyue; Zhao, Jing; Zhang, Bingwei; Liu, Qiaoquan; Zhang, Changquan; Tang, Shuzhu; Gu, Minghong; Yu, Hengxiu

    2017-04-01

    Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Development of resistant varieties by using conventional breeding methods is limited, as germplasm with high level of resistance to RBSDV have not yet been found. One of the most promising methods to confer resistance against RBSDV is the use of RNA interference (RNAi) technology. RBSDV non-structural protein P7-2, encoded by S7-2 gene, is a potential F-box protein and involved in the plant-virus interaction through the ubiquitination pathway. P8, encoded by S8 gene, is the minor core protein that possesses potent active transcriptional repression activity. In this study, we transformed rice calli using a mini-twin T-DNA vector harboring RNAi constructs of the RBSDV genes S7-2 or S8, and obtained plants harboring the target gene constructs and the selectable marker gene, hygromycin phosphotransferase (HPT). From the offspring of these transgenic plants, we obtained selectable marker (HPT gene)-free plants. Homozygous T 5 transgenic lines which harbored either S7-2-RNAi or S8-RNAi exhibited high level resistance against RBSDV under field infection pressure from indigenous viruliferous small brown planthoppers. Thus, our results showed that RNA interference with the expression of S7-2 or S8 genes seemed an effective way to induce high level resistance in rice against RBSD disease.

  13. A factor in a wild isolated Neurospora crassa strain enables a ...

    Indian Academy of Sciences (India)

    in part, by a gene-silencing process called meiotic silencing by unpaired DNA, a presumed RNAi-mediated elimination of the transcripts of any gene not properly paired with a homolog in meiosis (Aramayo and Metzenberg 1996; Shiu et al. 2001, 2006). The semi-dominant Sad-1 suppressor of meiotic silencing was used to ...

  14. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera.

    Directory of Open Access Journals (Sweden)

    Smrati Mishra

    Full Text Available Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.

  15. RNAi-mediated resistance to SMV and BYMV in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Lo Thi Mai Thu

    2016-09-01

    Full Text Available Soybean mosaic virus (SMV and bean yellow mosaic virus (BYMV are two typical types of viruses that cause mosaic in soybean plants. Multiple viral infections at the same site can lead to 66% to 80% yield reduction. We have aimed to improve SMV and BYMV resistance in Vietnamese soybeans using gene transfer techniques under the mechanism of RNAi. In this study, we present newly generated transgenic tobacco plants carrying RNAi [CPi (SMV-BYMV] resistance to the two types of viruses; 73.08% of transgenic tobacco lines proved to be fully resistant to SMV and BYMV. In addition, the number of virus copies in transgenic tobacco plants was reduced on average by more than 51% compared to the control plants (wild type. This promising result shows the potential of transerring the CPi (SMV-BYMV structure in soybean to increase resistance of soybean to SMV and BYMV and advance the aims of antiviral soybean breeding in Vietnam.

  16. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  17. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus.

    Science.gov (United States)

    Kant, Ravi; Dasgupta, Indranil

    2017-07-01

    Target genes in rice can be optimally silenced if inserted in antisense or hairpin orientation in the RTBV-derived VIGS vector and plants grown at 28 °C and 80% humidity after inoculation. Virus induced gene silencing (VIGS) is a method used to transiently silence genes in dicot as well as monocot plants. For the important monocot species rice, the Rice tungro bacilliform virus (RTBV)-derived VIGS system (RTBV-VIGS), which uses agroinoculation to initiate silencing, has not been standardized for optimal use. Here, using RTBV-VIGS, three sets of conditions were tested to achieve optimal silencing of the rice marker gene phytoene desaturase (pds). The effect of orientation of the insert in the RTBV-VIGS plasmid (sense, antisense and hairpin) on the silencing of the target gene was then evaluated using rice magnesium chelatase subunit H (chlH). Finally, the rice Xa21 gene, conferring resistance against bacterial leaf blight disease (BLB) was silenced using RTBV-VIGS system. In each case, real-time PCR-based assessment indicated approximately 40-80% fall in the accumulation levels of the transcripts of pds, chlH and Xa21. In the case of pds, the appearance of white streaks in the emerging leaves, and for chlH, chlorophyll levels and F v /F m ratio were assessed as phenotypes for silencing. For Xa21, the resistance levels to BLB were assessed by measuring the lesion length and the percent diseased areas of leaves, following challenge inoculation with Xanthomonas oryzae. In each case, the RTBV-MVIGS system gave rise to a discernible phenotype indicating the silencing of the respective target gene using condition III (temperature 28 °C, humidity 80% and 1 mM MES and 20 µM acetosyringone in secondary agrobacterium culture), which revealed the robustness of this gene silencing system for rice.

  18. Cycloamylose-nanogel drug delivery system-mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tumor microenvironment.

    Science.gov (United States)

    Fujii, Hidetaka; Shin-Ya, Masaharu; Takeda, Shigeo; Hashimoto, Yoshihide; Mukai, Sada-atsu; Sawada, Shin-ichi; Adachi, Tetsuya; Akiyoshi, Kazunari; Miki, Tsuneharu; Mazda, Osam

    2014-12-01

    RNAi enables potent and specific gene silencing, potentially offering useful means for treatment of cancers. However, safe and efficient drug delivery systems (DDS) that are appropriate for intra-tumor delivery of siRNA or shRNA have rarely been established, hindering clinical application of RNAi technology to cancer therapy. We have devised hydrogel polymer nanoparticles, or nanogel, and shown its validity as a novel DDS for various molecules. Here we examined the potential of self-assembled nanogel of cholesterol-bearing cycloamylose with spermine group (CH-CA-Spe) to deliver vascular endothelial growth factor (VEGF)-specific short interfering RNA (siVEGF) into tumor cells. The siVEGF/nanogel complex was engulfed by renal cell carcinoma (RCC) cells through the endocytotic pathway, resulting in efficient knockdown of VEGF. Intra-tumor injections of the complex significantly suppressed neovascularization and growth of RCC in mice. The treatment also inhibited induction of myeloid-derived suppressor cells, while it decreased interleukin-17A production. Therefore, the CH-CA-Spe nanogel may be a feasible DDS for intra-tumor delivery of therapeutic siRNA. The results also suggest that local suppression of VEGF may have a positive impact on systemic immune responses against malignancies. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  19. RNAi-mediated double gene knockdown and gustatory perception measurement in honey bees (Apis mellifera).

    Science.gov (United States)

    Wang, Ying; Baker, Nicholas; Amdam, Gro V

    2013-07-25

    This video demonstrates novel techniques of RNA interference (RNAi) which downregulate two genes simultaneously in honey bees using double-stranded RNA (dsRNA) injections. It also presents a protocol of proboscis extension response (PER) assay for measuring gustatory perception. RNAi-mediated gene knockdown is an effective technique downregulating target gene expression. This technique is usually used for single gene manipulation, but it has limitations to detect interactions and joint effects between genes. In the first part of this video, we present two strategies to simultaneously knock down two genes (called double gene knockdown). We show both strategies are able to effectively suppress two genes, vitellogenin (vg) and ultraspiracle (usp), which are in a regulatory feedback loop. This double gene knockdown approach can be used to dissect interrelationships between genes and can be readily applied in different insect species. The second part of this video is a demonstration of proboscis extension response (PER) assay in honey bees after the treatment of double gene knockdown. The PER assay is a standard test for measuring gustatory perception in honey bees, which is a key predictor for how fast a honey bee's behavioral maturation is. Greater gustatory perception of nest bees indicates increased behavioral development which is often associated with an earlier age at onset of foraging and foraging specialization in pollen. In addition, PER assay can be applied to identify metabolic states of satiation or hunger in honey bees. Finally, PER assay combined with pairing different odor stimuli for conditioning the bees is also widely used for learning and memory studies in honey bees.

  20. Short-hairpin RNA-mediated Heat shock protein 90 gene silencing inhibits human breast cancer cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Zuo, Keqiang; Li, Dan; Pulli, Benjamin; Yu, Fei; Cai, Haidong; Yuan, Xueyu; Zhang, Xiaoping; Lv, Zhongwei

    2012-01-01

    Highlights: ► Hsp90 is over-expressed in human breast cancer. ► The shRNA-mediated gene silencing of Hsp90 resulted in inhibition of cell growth. ► Akt and NF-kB were down-regulation after transfection due to Hsp90 silencing. ► The tumor growth ratio was decline due to Hsp90 silencing. ► The PCNA expression was down-regulation due to Hsp90 silencing. -- Abstract: Hsp90 interacts with proteins that mediate signaling pathways involved in the regulation of essential processes such as proliferation, cell cycle control, angiogenesis and apoptosis. Hsp90 inhibition is therefore an attractive strategy for blocking abnormal pathways that are crucial for cancer cell growth. In the present study, the role of Hsp90 in human breast cancer MCF-7 cells was examined by stably silencing Hsp90 gene expression with an Hsp90-silencing vector (Hsp90-shRNA). RT-PCR and Western blot analyses showed that Hsp90-shRNA specifically and markedly down-regulated Hsp90 mRNA and protein expression. NF-kB and Akt protein levels were down-regulated in Hsp90-shRNA transfected cells, indicating that Hsp90 knockout caused a reduction of survival factors and induced apoptosis. Treatment with Hsp90-shRNA significantly increased apoptotic cell death and caused cell cycle arrest in the G1/S phase in MCF-7 cells, as shown by flow cytometry. Silencing of Hsp90 also reduced cell viability, as determined by MTT assay. In vivo experiments showed that MCF-7 cells stably transfected with Hsp90-shRNA grew slowly in nude mice as compared with control groups. In summary, the Hsp90-shRNA specifically silenced the Hsp90 gene, and inhibited MCF-7 cell growth in vitro and in vivo. Possible molecular mechanisms underlying the effects of Hsp90-shRNA include the degradation of Hsp90 breast cancer-related client proteins, the inhibition of survival signals and the upregulation of apoptotic pathways. shRNA-mediated interference may have potential therapeutic utility in human breast cancer.

  1. The DEAD box helicase RDE-12 promotes amplification of RNAi in cytoplasmic foci in C. elegans.

    Science.gov (United States)

    Yang, Huan; Vallandingham, Jim; Shiu, Philip; Li, Hua; Hunter, Craig P; Mak, Ho Yi

    2014-04-14

    RNAi is a potent mechanism for downregulating gene expression. Conserved RNAi pathway components are found in animals, plants, fungi, and other eukaryotes. In C. elegans, the RNAi response is greatly amplified by the synthesis of abundant secondary small interfering RNAs (siRNAs). Exogenous double-stranded RNA is processed by Dicer and RDE-1/Argonaute into primary siRNA that guides target mRNA recognition. The RDE-10/RDE-11 complex and the RNA-dependent RNA polymerase RRF-1 then engage the target mRNA for secondary siRNA synthesis. However, the molecular link between primary siRNA production and secondary siRNA synthesis remains largely unknown. Furthermore, it is unclear whether the subcellular sites for target mRNA recognition and degradation coincide with sites where siRNA synthesis and amplification occur. In the C. elegans germline, cytoplasmic P granules at the nuclear pores and perinuclear Mutator foci contribute to target mRNA surveillance and siRNA amplification, respectively. We report that RDE-12, a conserved phenylalanine-glycine (FG) domain-containing DEAD box helicase, localizes in P granules and cytoplasmic foci that are enriched in RSD-6 but are excluded from the Mutator foci. Our results suggest that RDE-12 promotes secondary siRNA synthesis by orchestrating the recruitment of RDE-10 and RRF-1 to primary siRNA-targeted mRNA in distinct cytoplasmic compartments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Caspase-3-mediated cleavage of p65/RelA results in a carboxy-terminal fragment that inhibits IκBα and enhances HIV-1 replication in human T lymphocytes

    Directory of Open Access Journals (Sweden)

    Alcamí José

    2008-12-01

    Full Text Available Abstract Background Degradation of p65/RelA has been involved in both the inhibition of NF-κB-dependent activity and the onset of apoptosis. However, the mechanisms of NF-κB degradation are unclear and can vary depending on the cell type. Cleavage of p65/RelA can produce an amino-terminal fragment that was shown to act as a dominant-negative inhibitor of NF-κB, thereby promoting apoptosis. However, the opposite situation has also been described and the production of a carboxy-terminal fragment that contains two potent transactivation domains has also been related to the onset of apoptosis. In this context, a carboxy-terminal fragment of p65/RelA (ΔNH2p65, detected in non-apoptotic human T lymphocytes upon activation, has been studied. T cells constitute one of the long-lived cellular reservoirs of the human immunodeficiency virus type 1 (HIV-1. Because NF-κB is the most important inducible element involved in initiation of HIV-1 transcription, an adequate control of NF-κB response is of paramount importance for both T cell survival and viral spread. Its major inhibitor IκBα constitutes a master terminator of NF-κB response that is complemented by degradation of p65/RelA. Results and conclusions In this study, the function of a caspase-3-mediated carboxy-terminal fragment of p65/RelA, which was detected in activated human peripheral blood lymphocytes (PBLs, was analyzed. Cells producing this truncated p65/RelA did not undergo apoptosis but showed a high viability, in spite of caspase-3 activation. ΔNH2p65 lacked most of DNA-binding domain but retained the dimerization domain, NLS and transactivation domains. Consequently, it could translocate to the nucleus, associate with NF-κB1/p50 and IκBα, but could not bind -κB consensus sites. However, although ΔNH2p65 lacked transcriptional activity by itself, it could increase NF-κB activity in a dose-dependent manner by hijacking IκBα. Thus, its expression resulted in a persistent

  3. RNA interference-mediated silencing of speckle-type POZ protein promotes apoptosis of renal cell cancer cells

    Directory of Open Access Journals (Sweden)

    Liu X

    2016-04-01

    Full Text Available Xiaoxia Liu, Guiling Sun, Xiuju Sun Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China Abstract: This study aimed to investigate the effects of silencing the speckle-type POZ protein (SPOP gene on renal cell cancer (RCC cells and to explore its possible mechanism. The A498 and ACHN RCC cells were transfected with small interference RNA (siRNA-SPOP by lipofection methods. The silencing efficiency was monitored by quantitative real-time polymerase chain reaction and Western blot. The effects of SPOP silencing on cell apoptosis, cell viability, colony formation ability, cell migration ability, and chemosensitivity to Sorafenib were assessed by flow cytometry, an MTT assay, a colony formation assay, a trans-well migration assay, and a CCK-8 assay, respectively. Its effects on the expression of several cytokines were determined by a protein microarray. Relevant signaling pathways were also analyzed. Compared with the control group, the cell apoptosis rate was significantly higher; the cell viability, the colony formation, and migration ability were significantly decreased in the siRNA-SPOP group. The protein microarray screening showed that the expression of vascular endothelial growth factor receptor, matrix metallopeptidase-9, vascular cell adhesion molecule-1, and stromal cell-derived factor-1 in the siRNA group was significantly decreased and that the expression of granulocyte–macrophage colony-stimulating factor and E-cadherin was significantly increased (P<0.05. The relevant signaling pathways were the integrin-mediated cell surface interactions pathway and extracellular matrix organization signal pathway. SPOP gene silencing induced cell apoptosis, decreased cell viability, colony formation, and migration ability, and elevated the drug sensitivity in the RCC cells. A possible mechanism is that silencing SPOP induces the differential expression of E-cadherin, vascular endothelial

  4. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  5. Differential Cotton leaf crumple virus-VIGS-mediated gene silencing and viral genome localization in different Gossypium hirsutum genetic backgrounds

    KAUST Repository

    Idris, Ali

    2010-12-01

    A Cotton leaf crumple virus (CLCrV)-based gene silencing vector containing a fragment of the Gossypium hirsutum Magnesium chelatase subunit I was used to establish endogenous gene silencing in cotton of varied genetic backgrounds. Biolistic inoculation resulted in systemic and persistent photo-bleaching of the leaves and bolls of the seven cultivars tested, however, the intensity of silencing was variable. CLCrV-VIGS-mediated expression of green fluorescent protein was used to monitor the in planta distribution of the vector, indicating successful phloem invasion in all cultivars tested. Acala SJ-1, one of the cotton cultivars, was identified as a particularly optimal candidate for CLCrV-VIGS-based cotton reverse-genetics. © 2010 Elsevier Ltd.

  6. Synthesis and Gene Silencing Properties of siRNAs Containing Terminal Amide Linkages

    Directory of Open Access Journals (Sweden)

    Maria Gaglione

    2014-01-01

    Full Text Available The active components of the RNAi are 21 nucleotides long dsRNAs containing a 2 nucleotide overhang at the 3′ end, carrying 5′-phosphate and 3′-hydroxyl groups (siRNAs. Structural analysis revealed that the siRNA is functionally bound at both ends to RISC. Terminal modifications are considered with interest as the introduction of chemical moieties interferes with the 3′ overhang recognition by the PAZ domain and the 5′-phosphate recognition by the MID and PIWI domains of RISC. Herein, we report the synthesis of modified siRNAs containing terminal amide linkages by introducing hydroxyethylglycine PNA (hegPNA moieties at 5′, and at 3′ positions and on both terminals. Results of gene silencing studies highlight that some of these modifications are compatible with the RNAi machinery and markedly increase the resistance to serum-derived nucleases even after 24 h of incubation. Molecular docking simulations were attained to give at atomistic level a clearer picture of the effect of the most performing modifications on the interactions with the human Argonaute 2 PAZ, MID, and PIWI domains. This study adds another piece to the puzzle of the heterogeneous chemical modifications that can be attained to enhance the silencing efficiency of siRNAs.

  7. Interferência por RNA: uma nova alternativa para terapia nas doenças reumáticas RNA interference: a new alternative for rheumatic diseases therapy

    Directory of Open Access Journals (Sweden)

    Natália Regine de França

    2010-12-01

    Full Text Available A interferência por RNA (RNAi é um mecanismo de silenciamento gênico pós-transcricional conservado durante a evolução. Esse mecanismo, recentemente descrito, é mediado por pequenos RNAs de fita dupla (dsRNAs capazes de reconhecer especificamente uma sequência de mRNA-alvo e mediar sua clivagem ou repressão traducional. O emprego da RNAi como uma ferramenta de terapia gênica tem sido muito estudado, especialmente em infecções virais, câncer, desordens genéticas herdadas, doenças cardiovasculares e mesmo em doenças reumáticas. Aliados aos dados do genoma humano, os conhecimentos do silenciamento gênico mediado por RNAi podem permitir a determinação funcional de praticamente qualquer gene expresso em uma célula e sua implicação para o funcionamento e homeostase celular. Vários estudos terapêuticos in vitro e in vivo em modelos de doenças autoimunes vêm sendo realizados com resultados encorajadores. As vias de quebra de tolerância e inflamação são alvos potenciais para terapia com RNAi em doenças inflamatórias e autoimunes. Nesta revisão vamos recordar os princípios básicos da RNAi e discutir os aspectos que levaram ao desenvolvimento de propostas terapêuticas baseadas em RNAi, começando pelos estudos in vitro de desenvolvimento de ferramentas e identificação de alvos, chegando até os estudos pré-clínicos de disponibilização da droga in vivo, e testes em células humanas e modelos animais de doenças autoimunes. Por fim, vamos revisar os últimos avanços da experiência clínica da terapia com RNAiRNA interference (RNAi is a post-transcriptional gene silencing mechanism preserved during evolution. This mechanism, recently described, is mediated by small double-stranded RNAs (dsRNAs that can specifically recognize a target mRNA sequence and mediate its cleavage or translational repression. The use of RNAi as a tool for gene therapy has been extensively studied, especially in viral infections, cancer

  8. Neuron-specific feeding RNAi in C. elegans and its use in a screen for essential genes required for GABA neuron function.

    Science.gov (United States)

    Firnhaber, Christopher; Hammarlund, Marc

    2013-11-01

    Forward genetic screens are important tools for exploring the genetic requirements for neuronal function. However, conventional forward screens often have difficulty identifying genes whose relevant functions are masked by pleiotropy. In particular, if loss of gene function results in sterility, lethality, or other severe pleiotropy, neuronal-specific functions cannot be readily analyzed. Here we describe a method in C. elegans for generating cell-specific knockdown in neurons using feeding RNAi and its application in a screen for the role of essential genes in GABAergic neurons. We combine manipulations that increase the sensitivity of select neurons to RNAi with manipulations that block RNAi in other cells. We produce animal strains in which feeding RNAi results in restricted gene knockdown in either GABA-, acetylcholine-, dopamine-, or glutamate-releasing neurons. In these strains, we observe neuron cell-type specific behavioral changes when we knock down genes required for these neurons to function, including genes encoding the basal neurotransmission machinery. These reagents enable high-throughput, cell-specific knockdown in the nervous system, facilitating rapid dissection of the site of gene action and screening for neuronal functions of essential genes. Using the GABA-specific RNAi strain, we screened 1,320 RNAi clones targeting essential genes on chromosomes I, II, and III for their effect on GABA neuron function. We identified 48 genes whose GABA cell-specific knockdown resulted in reduced GABA motor output. This screen extends our understanding of the genetic requirements for continued neuronal function in a mature organism.

  9. siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Keshava Mysore

    2015-11-01

    Full Text Available The development of sex-specific traits, including the female-specific ability to bite humans and vector disease, is critical for vector mosquito reproduction and pathogen transmission. Doublesex (Dsx, a terminal transcription factor in the sex determination pathway, is known to regulate sex-specific gene expression during development of the dengue fever vector mosquito Aedes aegypti. Here, the effects of developmental siRNA-mediated dsx silencing were assessed in adult females. Targeting of dsx during A. aegypti development resulted in decreased female wing size, a correlate for body size, which is typically larger in females. siRNA-mediated targeting of dsx also resulted in decreased length of the adult female proboscis. Although dsx silencing did not impact female membrane blood feeding or mating behavior in the laboratory, decreased fecundity and fertility correlated with decreased ovary length, ovariole length, and ovariole number in dsx knockdown females. Dsx silencing also resulted in disruption of olfactory system development, as evidenced by reduced length of the female antenna and maxillary palp and the sensilla present on these structures, as well as disrupted odorant receptor expression. Female lifespan, a critical component of the ability of A. aegypti to transmit pathogens, was also significantly reduced in adult females following developmental targeting of dsx. The results of this investigation demonstrate that silencing of dsx during A. aegypti development disrupts multiple sex-specific morphological, physiological, and behavioral traits of adult females, a number of which are directly or indirectly linked to mosquito reproduction and pathogen transmission. Moreover, the olfactory phenotypes observed connect Dsx to development of the olfactory system, suggesting that A. aegypti will be an excellent system in which to further assess the developmental genetics of sex-specific chemosensation.

  10. Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes

    Science.gov (United States)

    Kim, Kevin; Lee, Young Sik; Carthew, Richard W.

    2007-01-01

    In the Drosophila RNA interference (RNAi) pathway, small interfering RNAs (siRNAs) direct Argonaute2 (Ago2), an endonuclease, within the RNA-induced silencing complex (RISC) to cleave complementary mRNA targets. In vitro studies have shown that, for each siRNA duplex, RISC retains only one strand, the guide, and releases the other, the passenger, to form a holo-RISC complex. Here, we have isolated a new Ago2 mutant allele and provide, for the first time, in vivo evidence that endogenous Ago2 slicer activity is important to mount an RNAi response in Drosophila. We demonstrate in vivo that efficient removal of the passenger strand from RISC requires the cleavage activity of Ago2. We have also identified a new intermediate complex in the RISC assembly pathway, pre-RISC, in which Ago2 is stably bound to double-stranded siRNA. PMID:17123955

  11. APC/C-mediated degradation of dsRNA-binding protein 4 (DRB4 involved in RNA silencing.

    Directory of Open Access Journals (Sweden)

    Katia Marrocco

    Full Text Available Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome is a master ubiquitin protein ligase (E3 that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized.In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA. This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2 of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed.Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular-protein concentrations and homeostasis of DRB4.

  12. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC

    Science.gov (United States)

    Castanotto, Daniela; Sakurai, Kumi; Lingeman, Robert; Li, Haitang; Shively, Louise; Aagaard, Lars; Soifer, Harris; Gatignol, Anne; Riggs, Arthur; Rossi, John J.

    2007-01-01

    Despite the great potential of RNAi, ectopic expression of shRNA or siRNAs holds the inherent risk of competition for critical RNAi components, thus altering the regulatory functions of some cellular microRNAs. In addition, specific siRNA sequences can potentially hinder incorporation of other siRNAs when used in a combinatorial approach. We show that both synthetic siRNAs and expressed shRNAs compete against each other and with the endogenous microRNAs for transport and for incorporation into the RNA induced silencing complex (RISC). The same siRNA sequences do not display competition when expressed from a microRNA backbone. We also show that TAR RNA binding protein (TRBP) is one of the sensors for selection and incorporation of the guide sequence of interfering RNAs. These findings reveal that combinatorial siRNA approaches can be problematic and have important implications for the methodology of expression and use of therapeutic interfering RNAs. PMID:17660190

  13. Effect of RNAi p21 gene on uncoupling of EL-4 cells induced by X-irradiation

    International Nuclear Information System (INIS)

    Ju Guizhi; Yan Fengqin; Fu Shibo; Shen Bo; Sun Shilong; Yang Ying; Li Pengwu

    2008-01-01

    Objective: To investigate the effect of RNAi p21 gene on uncoupling of EL-4 cells induced by X-irradiation. Methods: Construction of RNAi p21 plasmid of pSileneer3.1-H1 neo-p21 was performed. Lipofectamine transfection assay was used to transfer the p21siBNA into EL-4 cells. Fluorescent staining and flow cytometry (FCM) analysis were employed for measurement of protein expression. Fluorescent staining of propidium iodide (PI) and FCM were used for measurement of potyploid cells. Results: In dose-effect experiment it was found that the expression of P21 protein of EL-4 cells increased significantly 24 h after X- irradiation with different doses compared with sham-inadiated control. In time course experiment it was found that the expression of P21 protein of EL-4 cells increased significantly at 8 h to 72 h after 4.0 Gy X-irradiation compared with sham-irradiated control. The results showed that the number of polyploid cells in EL-4 cells was not changed markedly after X-irradiation with doses of 0.5-6.0 Gy. After RNA interference with p21 gene, the expression of P21 protein of EL-4 cells decreased significantly 24 h and 48 h after 4.0 Gy X-irradiation in transfection of plasmid of pSilencer3.1-H1 neo-p21 compared with transfection of plasmid of pSilencer3.1-H1 nco control. And at the same time, the number of polyploid cells in EL-4 cells was increased significantly in transfection of plasmid of pSilencer3.1-H1 neo-p21 compared with transfection of plasmid of pSilencer3.1-H1 nco control. Conclusions: Uncoupling could be induced by X-irradiation in EL-4 cells following BNAi p21 gene, suggesting that P21 protein may play an important role in uncoupling induced by X-rays. (authors)

  14. Identification of neural outgrowth genes using genome-wide RNAi.

    Directory of Open Access Journals (Sweden)

    Katharine J Sepp

    2008-07-01

    Full Text Available While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new

  15. Validation of RNAi Silencing Efficiency Using Gene Array Data shows 18.5% Failure Rate across 429 Independent Experiments

    Directory of Open Access Journals (Sweden)

    Gyöngyi Munkácsy

    2016-01-01

    Full Text Available No independent cross-validation of success rate for studies utilizing small interfering RNA (siRNA for gene silencing has been completed before. To assess the influence of experimental parameters like cell line, transfection technique, validation method, and type of control, we have to validate these in a large set of studies. We utilized gene chip data published for siRNA experiments to assess success rate and to compare methods used in these experiments. We searched NCBI GEO for samples with whole transcriptome analysis before and after gene silencing and evaluated the efficiency for the target and off-target genes using the array-based expression data. Wilcoxon signed-rank test was used to assess silencing efficacy and Kruskal–Wallis tests and Spearman rank correlation were used to evaluate study parameters. All together 1,643 samples representing 429 experiments published in 207 studies were evaluated. The fold change (FC of down-regulation of the target gene was above 0.7 in 18.5% and was above 0.5 in 38.7% of experiments. Silencing efficiency was lowest in MCF7 and highest in SW480 cells (FC = 0.59 and FC = 0.30, respectively, P = 9.3E−06. Studies utilizing Western blot for validation performed better than those with quantitative polymerase chain reaction (qPCR or microarray (FC = 0.43, FC = 0.47, and FC = 0.55, respectively, P = 2.8E−04. There was no correlation between type of control, transfection method, publication year, and silencing efficiency. Although gene silencing is a robust feature successfully cross-validated in the majority of experiments, efficiency remained insufficient in a significant proportion of studies. Selection of cell line model and validation method had the highest influence on silencing proficiency.

  16. Mimic Phosphorylation of a βC1 Protein Encoded by TYLCCNB Impairs Its Functions as a Viral Suppressor of RNA Silencing and a Symptom Determinant.

    Science.gov (United States)

    Zhong, Xueting; Wang, Zhan Qi; Xiao, Ruyuan; Cao, Linge; Wang, Yaqin; Xie, Yan; Zhou, Xueping

    2017-08-15

    Phosphorylation of the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNB-βC1) by SNF1-related protein kinase 1 (SnRK1) plays a critical role in defense of host plants against geminivirus infection in Nicotiana benthamiana However, how phosphorylation of TYLCCNB-βC1 impacts its pathogenic functions during viral infection remains elusive. In this study, we identified two additional tyrosine residues in TYLCCNB-βC1 that are phosphorylated by SnRK1. The effects of TYLCCNB-βC1 phosphorylation on its functions as a viral suppressor of RNA silencing (VSR) and a symptom determinant were investigated via phosphorylation mimic mutants in N. benthamiana plants. Mutations that mimic phosphorylation of TYLCCNB-βC1 at tyrosine 5 and tyrosine 110 attenuated disease symptoms during viral infection. The phosphorylation mimics weakened the ability of TYLCCNB-βC1 to reverse transcriptional gene silencing and to suppress posttranscriptional gene silencing and abolished its interaction with N. benthamiana ASYMMETRIC LEAVES 1 in N. benthamiana leaves. The mimic phosphorylation of TYLCCNB-βC1 had no impact on its protein stability, subcellular localization, or self-association. Our data establish an inhibitory effect of phosphorylation of TYLCCNB-βC1 on its pathogenic functions as a VSR and a symptom determinant and provide a mechanistic explanation of how SnRK1 functions as a host defense factor. IMPORTANCE Tomato yellow leaf curl China virus (TYLCCNV), which causes a severe yellow leaf curl disease in China, is a monopartite geminivirus associated with the betasatellite (TYLCCNB). TYLCCNB encodes a single pathogenicity protein, βC1 (TYLCCNB-βC1), which functions as both a viral suppressor of RNA silencing (VSR) and a symptom determinant. Here, we show that mimicking phosphorylation of TYLCCNB-βC1 weakens its ability to reverse transcriptional gene silencing, to suppress posttranscriptional gene silencing, and to interact with N

  17. Induction of RNA interference in dendritic cells.

    Science.gov (United States)

    Li, Mu; Qian, Hua; Ichim, Thomas E; Ge, Wei-Wen; Popov, Igor A; Rycerz, Katarzyna; Neu, John; White, David; Zhong, Robert; Min, Wei-Ping

    2004-01-01

    Dendritic cells (DC) reside at the center of the immunological universe, possessing the ability both to stimulate and inhibit various types of responses. Tolerogenic/regulatory DC with therapeutic properties can be generated through various means of manipulations in vitro and in vivo. Here we describe several attractive strategies for manipulation of DC using the novel technique of RNA interference (RNAi). Additionally, we overview some of our data regarding yet undescribed characteristics of RNAi in DC such as specific transfection strategies, persistence of gene silencing, and multi-gene silencing. The advantages of using RNAi for DC genetic manipulation gives rise to the promise of generating tailor-made DC that can be used effectively to treat a variety of immunologically mediated diseases.

  18. Silencing of Soybean Raffinose Synthase Gene Reduced Raffinose Family Oligosaccharides and Increased True Metabolizable Energy of Poultry Feed

    Directory of Open Access Journals (Sweden)

    Michelle F. Valentine

    2017-05-01

    Full Text Available Soybean [Glycine max (L. Merr.] is the number one oil and protein crop in the United States, but the seed contains several anti-nutritional factors that are toxic to both humans and livestock. RNA interference technology has become an increasingly popular technique in gene silencing because it allows for both temporal and spatial targeting of specific genes. The objective of this research is to use RNA-mediated gene silencing to down-regulate the soybean gene raffinose synthase 2 (RS2, to reduce total raffinose content in mature seed. Raffinose is a trisaccharide that is indigestible to humans and monogastric animals, and as monogastric animals are the largest consumers of soy products, reducing raffinose would improve the nutritional quality of soybean. An RNAi construct targeting RS2 was designed, cloned, and transformed to the soybean genome via Agrobacterium-mediated transformation. Resulting plants were analyzed for the presence and number of copies of the transgene by PCR and Southern blot. The efficiency of mRNA silencing was confirmed by real-time quantitative PCR. Total raffinose content was determined by HPLC analysis. Transgenic plant lines were recovered that exhibited dramatically reduced levels of raffinose in mature seed, and these lines were further analyzed for other phenotypes such as development and yield. Additionally, a precision-fed rooster assay was conducted to measure the true metabolizable energy (TME in full-fat soybean meal made from the wild-type or transgenic low-raffinose soybean lines. Transgenic low-raffinose soy had a measured TME of 2,703 kcal/kg, an increase as compared with 2,411 kcal/kg for wild-type. As low digestible energy is a major limiting factor in the percent of soybean meal that can be used in poultry diets, these results may substantiate the use of higher concentrations of low-raffinose, full-fat soy in formulated livestock diets.

  19. Silencing of Soybean Raffinose Synthase Gene Reduced Raffinose Family Oligosaccharides and Increased True Metabolizable Energy of Poultry Feed

    Science.gov (United States)

    Valentine, Michelle F.; De Tar, Joann R.; Mookkan, Muruganantham; Firman, Jeffre D.; Zhang, Zhanyuan J.

    2017-01-01

    Soybean [Glycine max (L.) Merr.] is the number one oil and protein crop in the United States, but the seed contains several anti-nutritional factors that are toxic to both humans and livestock. RNA interference technology has become an increasingly popular technique in gene silencing because it allows for both temporal and spatial targeting of specific genes. The objective of this research is to use RNA-mediated gene silencing to down-regulate the soybean gene raffinose synthase 2 (RS2), to reduce total raffinose content in mature seed. Raffinose is a trisaccharide that is indigestible to humans and monogastric animals, and as monogastric animals are the largest consumers of soy products, reducing raffinose would improve the nutritional quality of soybean. An RNAi construct targeting RS2 was designed, cloned, and transformed to the soybean genome via Agrobacterium-mediated transformation. Resulting plants were analyzed for the presence and number of copies of the transgene by PCR and Southern blot. The efficiency of mRNA silencing was confirmed by real-time quantitative PCR. Total raffinose content was determined by HPLC analysis. Transgenic plant lines were recovered that exhibited dramatically reduced levels of raffinose in mature seed, and these lines were further analyzed for other phenotypes such as development and yield. Additionally, a precision-fed rooster assay was conducted to measure the true metabolizable energy (TME) in full-fat soybean meal made from the wild-type or transgenic low-raffinose soybean lines. Transgenic low-raffinose soy had a measured TME of 2,703 kcal/kg, an increase as compared with 2,411 kcal/kg for wild-type. As low digestible energy is a major limiting factor in the percent of soybean meal that can be used in poultry diets, these results may substantiate the use of higher concentrations of low-raffinose, full-fat soy in formulated livestock diets. PMID:28559898

  20. RNAi Therapeutics in Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Seunghee Cha

    2013-03-01

    Full Text Available Since the discovery of RNA interference (RNAi, excitement has grown over its potential therapeutic uses. Targeting RNAi pathways provides a powerful tool to change biological processes post-transcriptionally in various health conditions such as cancer or autoimmune diseases. Optimum design of shRNA, siRNA, and miRNA enhances stability and specificity of RNAi-based approaches whereas it has to reduce or prevent undesirable immune responses or off-target effects. Recent advances in understanding pathogenesis of autoimmune diseases have allowed application of these tools in vitro as well as in vivo with some degree of success. Further research on the design and delivery of effectors of RNAi pathway and underlying molecular basis of RNAi would warrant practical use of RNAi-based therapeutics in human applications. This review will focus on the approaches used for current therapeutics and their applications in autoimmune diseases, including rheumatoid arthritis and Sjögren’s syndrome.

  1. Creating Transgenic shRNA Mice by Recombinase-Mediated Cassette Exchange

    Science.gov (United States)

    Premsrirut, Prem K.; Dow, Lukas E.; Park, Youngkyu; Hannon, Gregory J.; Lowe, Scott W.

    2014-01-01

    RNA interference (RNAi) enables sequence-specific, experimentally induced silencing of virtually any gene by tapping into innate regulatory mechanisms that are conserved among most eukaryotes. The principles that enable transgenic RNAi in cell lines can also be used to create transgenic animals, which express short-hairpin RNAs (shRNAs) in a regulated or tissue-specific fashion. However, RNAi in transgenic animals is somewhat more challenging than RNAi in cultured cells. The activities of promoters that are commonly used for shRNA expression in cell culture can vary enormously in different tissues, and founder lines also typically vary in transgene expression due to the effects of their single integration sites. There are many ways to produce mice carrying shRNA transgenes and the method described here uses recombinase-mediated cassette exchange (RMCE). RMCE permits insertion of the shRNA transgene into a well-characterized locus that gives reproducible and predictable expression in each founder and enhances the probability of potent expression in many cell types. This procedure is more involved and complex than simple pronuclear injection, but if even a few shRNA mice are envisioned, for example, to probe the functions of several genes, the effort of setting up the processes outlined below are well worthwhile. Note that when creating a transgenic mouse, one should take care to use the most potent shRNA possible. As a rule of thumb, the sequence chosen should provide >90% knockdown when introduced into cultured cells at single copy (e.g., on retroviral infection at a multiplicity of ≤0.3). PMID:24003198

  2. Silencing of the Mitogen-Activated Protein Kinases (MAPK) Fus3 and Slt2 in Pseudocercospora fijiensis Reduces Growth and Virulence on Host Plants.

    Science.gov (United States)

    Onyilo, Francis; Tusiime, Geoffrey; Tripathi, Jaindra N; Chen, Li-Hung; Falk, Bryce; Stergiopoulos, Ioannis; Tushemereirwe, Wilberforce; Kubiriba, Jerome; Tripathi, Leena

    2018-01-01

    Pseudocercospora fijiensis , causal agent of the black Sigatoka disease (BSD) of Musa spp., has spread globally since its discovery in Fiji 1963 to all the banana and plantain growing areas across the globe. It is becoming the most damaging and economically important disease of this crop. The identification and characterization of genes that regulate infection processes and pathogenicity in P. fijiensis will provide important knowledge for the development of disease-resistant cultivars. In many fungal plant pathogens, the Fus3 and Slt2 are reported to be essential for pathogenicity. Fus3 regulates filamentous-invasion pathways including the formation of infection structures, sporulation, virulence, and invasive and filamentous growth, whereas Slt2 is involved in the cell-wall integrity pathway, virulence, invasive growth, and colonization in host tissues. Here, we used RNAi-mediated gene silencing to investigate the role of the Slt2 and Fus3 homologs in P. fijiensis in pathogen invasiveness, growth and pathogenicity. The PfSlt2 and PfFus3 silenced P. fijiensis transformants showed significantly lower gene expression and reduced virulence, invasive growth, and lower biomass in infected leaf tissues of East African Highland Banana (EAHB). This study suggests that Slt2 and Fus3 MAPK signaling pathways play important roles in plant infection and pathogenic growth of fungal pathogens. The silencing of these vital fungal genes through host-induced gene silencing (HIG) could be an alternative strategy for developing transgenic banana and plantain resistant to BSD.

  3. Silencing of the Mitogen-Activated Protein Kinases (MAPK Fus3 and Slt2 in Pseudocercospora fijiensis Reduces Growth and Virulence on Host Plants

    Directory of Open Access Journals (Sweden)

    Francis Onyilo

    2018-03-01

    Full Text Available Pseudocercospora fijiensis, causal agent of the black Sigatoka disease (BSD of Musa spp., has spread globally since its discovery in Fiji 1963 to all the banana and plantain growing areas across the globe. It is becoming the most damaging and economically important disease of this crop. The identification and characterization of genes that regulate infection processes and pathogenicity in P. fijiensis will provide important knowledge for the development of disease-resistant cultivars. In many fungal plant pathogens, the Fus3 and Slt2 are reported to be essential for pathogenicity. Fus3 regulates filamentous-invasion pathways including the formation of infection structures, sporulation, virulence, and invasive and filamentous growth, whereas Slt2 is involved in the cell-wall integrity pathway, virulence, invasive growth, and colonization in host tissues. Here, we used RNAi-mediated gene silencing to investigate the role of the Slt2 and Fus3 homologs in P. fijiensis in pathogen invasiveness, growth and pathogenicity. The PfSlt2 and PfFus3 silenced P. fijiensis transformants showed significantly lower gene expression and reduced virulence, invasive growth, and lower biomass in infected leaf tissues of East African Highland Banana (EAHB. This study suggests that Slt2 and Fus3 MAPK signaling pathways play important roles in plant infection and pathogenic growth of fungal pathogens. The silencing of these vital fungal genes through host-induced gene silencing (HIG could be an alternative strategy for developing transgenic banana and plantain resistant to BSD.

  4. Epigenetic Silencing and Resistance to Imatinib Mesylate in CML

    National Research Council Canada - National Science Library

    Issa, Jean-Pierre

    2004-01-01

    ...). In this project, we are exploring the hypothesis that epigenetic silencing associated with promoter DNA methylation mediates resistance in selected cases, and that reversal of silencing by decitabine...

  5. Epigenetic Silencing and Resistance to Imatinib Mesylate in CML

    National Research Council Canada - National Science Library

    Issa, Jean-Pierre

    2005-01-01

    ...). In this project, we are exploring the hypothesis that epigenetic silencing associated with promoter DNA methylation mediates resistance in selected cases, and that reversal of silencing by decitabine...

  6. Epigenetic Silencing and Resistance to Imatinib Mesylate in CML

    National Research Council Canada - National Science Library

    Issa, Jean-Pierre

    2006-01-01

    ...). In this project we are exploring the hypothesis that epigenetic silencing associated with promoter DNA methylation mediates resistance in selected cases and that reversal of silencing by decitabine...

  7. Isolating genes involved with genotoxic drug response in the nematode Caenorhabditis elegans using genome-wide RNAi screening

    DEFF Research Database (Denmark)

    Schøler, Lone Vedel; Møller, Tine Hørning; Nørgaard, Steffen

    2012-01-01

    The soil nematode Caenorhabditis elegans has become a popular genetic model organism used to study a broad range of complex biological processes, including development, aging, apoptosis, and DNA damage responses. Many genetic tools and tricks have been developed in C. elegans including knock down...... of gene expression via RNA interference (RNAi). In C. elegans RNAi can effectively be administrated via feeding the nematodes bacteria expressing double-stranded RNA targeting the gene of interest. Several commercial C. elegans RNAi libraries are available and hence gene inactivation using RNAi can...

  8. Differential Cotton leaf crumple virus-VIGS-mediated gene silencing and viral genome localization in different Gossypium hirsutum genetic backgrounds

    KAUST Repository

    Idris, Ali; Tuttle, John Richard; Robertson, Dominique Niki; Haigler, Candace H.; Brown, Judith K.

    2010-01-01

    inoculation resulted in systemic and persistent photo-bleaching of the leaves and bolls of the seven cultivars tested, however, the intensity of silencing was variable. CLCrV-VIGS-mediated expression of green fluorescent protein was used to monitor

  9. Blocking c-myc and stat3 by E. coli expressed and enzyme digested siRNA in mouse melanoma

    International Nuclear Information System (INIS)

    Hong Jie; Zhao Yingchun; Huang Weida

    2006-01-01

    Tumour cells often show alteration in the signal-transduction pathways, leading to proliferation in response to external signals. Oncogene overexpression and constitutive expression is a common phenomenon in the development and progression of many human cancers. Therefore oncogenes provide potential targets for cancer therapy. RNA interference (RNAi), mediated by small interfering RNA (siRNA), silences genes with a high degree of specificity and potentially represents a general approach for molecularly targeted anti-cancer therapy. The data presented in this report evaluated the method of systemically administering combined esiRNAs to multiple targets as compared with the method of using a single kind of esiRNA to a single target. Our experimental data revealed that the mixed treatment of esiC-MYC and esiSTAT3 had a better inhibition effect than the single treatment of esiC-MYC or esiSTAT3 on mouse B16 melanoma

  10. Structural and thermodynamic characterization of the Escherichia coli RelBE toxin-antitoxin system: indication for a functional role of differential stability

    DEFF Research Database (Denmark)

    Cherny, Izhack; Overgaard, Martin; Borch, Jonas

    2007-01-01

    on the folding and stability of the protein pair in solution. Here we structurally and thermodynamically characterize the RelBE system components from E. coli in solution, both separately and in their complexed state. The RelB antitoxin, an alpha-helical protein according to circular dichroism and infrared.......5 degrees C, and exhibits exceptional sensitivity to heat. Complex formation, accompanied by a structural transition, leads to a 12 degrees C increase in the TM and substantial heat resistance. Moreover, in vivo interaction and protein footprint experiments indicate that the C-terminal part of Rel...

  11. Targeted modification of storage protein content resulting in improved amino acid composition of barley grain

    DEFF Research Database (Denmark)

    Sikdar, Md. Shafiqul Islam; Bowra, S; Schmidt, Daiana

    2016-01-01

    family members. Analysis of the AA composition of the transgenic lines showed that the level of essential amino acids increased with a concomitant reduction in proline and glutamine. Both the barley C-hordein and wheat ω-gliadin genes proved successful for RNAi-gene mediated suppression of barley C......C-hordein in barley and ω-gliadins in wheat are members of the prolamins protein families. Prolamins are the major component of cereal storage proteins and composed of non-essential amino acids (AA) such as proline and glutamine therefore have low nutritional value. Using double stranded RNAi...... silencing technology directed towards C-hordein we obtained transgenic barley lines with up to 94.7 % reduction in the levels of C-hordein protein relative to the parental line. The composition of the prolamin fraction of the barley parental line cv. Golden Promise was resolved using SDS...

  12. Disease Control in Animals Using Molecular Technology by Inactivation of ASO, RNAi and ss-siRNA Genes

    Directory of Open Access Journals (Sweden)

    Muhamad Ali

    2014-03-01

    Full Text Available Globalization causes high mobility of human and livestock, hence increase the transmission of infectious diseases, including avian influenza, severe acute respiratory syndrome (SARS, and swine influenza. Therefore, prevention of those diseases is required. Vaccines are effective to prevent infectious diseases; however, their development takes a long time and they cannot provide immediate protection in pandemic cases. This paper describes several gene silencing technologies including antisense oligonucleotide (ASO, RNA interference (RNAi and single strand-small interfering RNA (ss-siRNA for controlling diseases. The primary mechanism of these technologies is inhibition of gene expression, typically by causing the destruction of specific RNA molecule of the pathogen. The use of gene silencing technologies is expected to give new alternative that is more effective in eradication of infectious diseases in animals before threaten human being.

  13. Novel RNA Duplex Locks HIV-1 in a Latent State via Chromatin-mediated Transcriptional Silencing

    Directory of Open Access Journals (Sweden)

    Chantelle Ahlenstiel

    2015-01-01

    Full Text Available Transcriptional gene silencing (TGS of mammalian genes can be induced by short interfering RNA (siRNA targeting promoter regions. We previously reported potent TGS of HIV-1 by siRNA (PromA, which targets tandem NF-κB motifs within the viral 5′LTR. In this study, we screened a siRNA panel with the aim of identifying novel 5′LTR targets, to provide multiplexing potential with enhanced viral silencing and application toward developing alternate therapeutic strategies. Systematic examination identified a novel siRNA target, si143, confirmed to induce TGS as the silencing mechanism. TGS was prolonged with virus suppression >12 days, despite a limited ability to induce post- TGS. Epigenetic changes associated with silencing were suggested by partial reversal by histone deacetylase inhibitors and confirmed by chromatin immunoprecipitation analyses, which showed induction of H3K27me3 and H3K9me3, reduction in H3K9Ac, and recruitment of argonaute-1, all characteristic marks of heterochromatin and TGS. Together, these epigenetic changes mimic those associated with HIV-1 latency. Further, robust resistance to reactivation was observed in the J-Lat 9.2 cell latency model, when transduced with shPromA and/or sh143. These data support si/shRNA-mediated TGS approaches to HIV-1 and provide alternate targets to pursue a functional cure, whereby the viral reservoir is locked in latency following antiretroviral therapy cessation.

  14. mTOR inhibition in macrophages of asymptomatic HIV+ persons reverses the decrease in TLR4-mediated TNFα release through prolongation of MAPK pathway activation1

    Science.gov (United States)

    Li, Xin; Han, Xinbing; Llano, Juliana; Bole, Medhavi; Zhou, Xiuqin; Swan, Katharine; Anandaiah, Asha; Nelson, Benjamin; Patel, Naimish R.; Reinach, Peter S.; Koziel, Henry; Tachado, Souvenir D.

    2011-01-01

    Toll-like receptor 4 (TLR4) mediated signaling is significantly impaired in macrophages from HIV+ persons predominantly due to altered MyD88-dependent pathway signaling caused in part by constitutive activation of PI3K. Here we assessed in these macrophages if the blunted increase in TLR4-mediated TNFα release induced by lipid A are associated with PI3K-induced upregulation of mammalian target of rapamycin (mTOR) activity. mTOR inhibition with rapamycin enhanced TLR4-mediated TNFα release, but instead suppressed anti-inflammatory IL-10 release. Targeted gene silencing of mTOR in macrophages resulted in lipid A-induced TNFα and IL-10 release patterns similar to those induced by rapamycin. Rapamycin restored MyD88-IRAK interaction in a dose-dependent manner. Targeted gene silencing of MyD88 (shRNA) and mTOR (RNAi) inhibition resulted in TLR4-mediated p70s6K activation and enhanced TNFα release, whereas IL-10 release was inhibited in both silenced and non-silenced HIV+ macrophages. Furthermore, mTOR inhibition augmented lipid A-induced TNFα release through enhanced and prolonged phosphorylation of ERK1/2 and JNK1/2 MAP kinases, which was associated with time-dependent MKP-1 destabilization. Taken together, impaired TLR4-mediated TNFα release in HIV+ macrophages is attributable in part to mTOR activation by constitutive PI3K expression in a MyD88-dependent signaling pathway. These changes result in MKP-1 stabilization, which shortens and blunts MAP kinase activation. mTOR inhibition may serve as a potential therapeutic target to upregulate macrophage innate immune host defense responsiveness in HIV+ persons. PMID:22025552

  15. An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing.

    Science.gov (United States)

    Bienk, Konrad; Hvam, Michael Lykke; Pakula, Malgorzata Maria; Dagnæs-Hansen, Frederik; Wengel, Jesper; Malle, Birgitte Mølholm; Kragh-Hansen, Ulrich; Cameron, Jason; Bukrinski, Jens Thostrup; Howard, Kenneth A

    2016-06-28

    Major challenges for the clinical translation of small interfering RNA (siRNA) include overcoming the poor plasma half-life, site-specific delivery and modulation of gene silencing. In this work, we exploit the intrinsic transport properties of human serum albumin to tune the blood circulatory half-life, hepatic accumulation and gene silencing; based on the number of siRNA cholesteryl modifications. We demonstrate by a gel shift assay a strong and specific affinity of recombinant human serum albumin (rHSA) towards cholesteryl-modified siRNA (Kd>1×10(-7)M) dependent on number of modifications. The rHSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies using multiple cholesteryl modifications. A structural-activity-based screen of in vitro EGFP-silencing was used to select optimal siRNA designs containing cholesteryl modifications within the sense strand that were used for in vivo studies. We demonstrate plasma half-life extension in NMRI mice from t1/2 12min (naked) to t1/2 45min (single cholesteryl) and t1/2 71min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing of 28% (rHSA/siRNA) compared to 4% (naked siRNA) 6days post-injection. This work presents a novel albumin-mediated cholesteryl design-based strategy for tuning pharmacokinetics and systemic gene silencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. RNAi down-regulation of cinnamate-4-hydroxylase increases artemisinin biosynthesis in Artemisia annua.

    Science.gov (United States)

    Kumar, Ritesh; Vashisth, Divya; Misra, Amita; Akhtar, Md Qussen; Jalil, Syed Uzma; Shanker, Karuna; Gupta, Madan Mohan; Rout, Prashant Kumar; Gupta, Anil Kumar; Shasany, Ajit Kumar

    2016-05-25

    Cinnamate-4-hydroxylase (C4H) converts trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthesis pathway. Earlier we reported increased expression of AaCYP71AV1 (an important gene of artemisinin biosynthesis pathway) caused by CA treatment in Artemisia annua. Hence, AaC4H gene was identified, cloned, characterized and silenced in A. annua with the assumption that the elevated internal CA due to knock down may increase the artemisinin yield. Accumulation of trans-cinnamic acid in the plant due to AaC4H knockdown was accompanied with the reduction of p-coumaric acid, total phenolics, anthocyanin, cinnamate-4-hydroxylase (C4H) and phenylalanine ammonia lyase (PAL) activities but increase in salicylic acid (SA) and artemisinin. Interestingly, feeding trans-cinnamic acid to the RNAi line increased the level of artemisinin along with benzoic (BA) and SA with no effect on the downstream metabolites p-coumaric acid, coniferylaldehyde and sinapaldehyde, whereas p-coumaric acid feeding increased the content of downstream coniferylaldehyde and sinapaldehyde with no effect on BA, SA, trans-cinnamic acid or artemisinin. SA is reported earlier to be inducing the artemisinin yield. This report demonstrates the link between the phenylpropanoid/lignin pathway with artemisinin pathway through SA, triggered by accumulation of trans-cinnamic acid because of the blockage at C4H.

  17. RelAp43, a member of the NF-κB family involved in innate immune response against Lyssavirus infection.

    Science.gov (United States)

    Luco, Sophie; Delmas, Olivier; Vidalain, Pierre-Olivier; Tangy, Frédéric; Weil, Robert; Bourhy, Hervé

    2012-01-01

    NF-κB transcription factors are crucial for many cellular processes. NF-κB is activated by viral infections to induce expression of antiviral cytokines. Here, we identified a novel member of the human NF-κB family, denoted RelAp43, the nucleotide sequence of which contains several exons as well as an intron of the RelA gene. RelAp43 is expressed in all cell lines and tissues tested and exhibits all the properties of a NF-κB protein. Although its sequence does not include a transactivation domain, identifying it as a class I member of the NF-κB family, it is able to potentiate RelA-mediated transactivation and stabilize dimers comprising p50. Furthermore, RelAp43 stimulates the expression of HIAP1, IRF1, and IFN-β - three genes involved in cell immunity against viral infection. It is also targeted by the matrix protein of lyssaviruses, the agents of rabies, resulting in an inhibition of the NF-κB pathway. Taken together, our data provide the description of a novel functional member of the NF-κB family, which plays a key role in the induction of anti-viral innate immune response.

  18. RelAp43, a member of the NF-κB family involved in innate immune response against Lyssavirus infection.

    Directory of Open Access Journals (Sweden)

    Sophie Luco

    Full Text Available NF-κB transcription factors are crucial for many cellular processes. NF-κB is activated by viral infections to induce expression of antiviral cytokines. Here, we identified a novel member of the human NF-κB family, denoted RelAp43, the nucleotide sequence of which contains several exons as well as an intron of the RelA gene. RelAp43 is expressed in all cell lines and tissues tested and exhibits all the properties of a NF-κB protein. Although its sequence does not include a transactivation domain, identifying it as a class I member of the NF-κB family, it is able to potentiate RelA-mediated transactivation and stabilize dimers comprising p50. Furthermore, RelAp43 stimulates the expression of HIAP1, IRF1, and IFN-β - three genes involved in cell immunity against viral infection. It is also targeted by the matrix protein of lyssaviruses, the agents of rabies, resulting in an inhibition of the NF-κB pathway. Taken together, our data provide the description of a novel functional member of the NF-κB family, which plays a key role in the induction of anti-viral innate immune response.

  19. RNA interference-mediated silencing of speckle-type POZ protein promotes apoptosis of renal cell cancer cells.

    Science.gov (United States)

    Liu, Xiaoxia; Sun, Guiling; Sun, Xiuju

    2016-01-01

    This study aimed to investigate the effects of silencing the speckle-type POZ protein (SPOP) gene on renal cell cancer (RCC) cells and to explore its possible mechanism. The A498 and ACHN RCC cells were transfected with small interference RNA (siRNA)-SPOP by lipofection methods. The silencing efficiency was monitored by quantitative real-time polymerase chain reaction and Western blot. The effects of SPOP silencing on cell apoptosis, cell viability, colony formation ability, cell migration ability, and chemosensitivity to Sorafenib were assessed by flow cytometry, an MTT assay, a colony formation assay, a trans-well migration assay, and a CCK-8 assay, respectively. Its effects on the expression of several cytokines were determined by a protein microarray. Relevant signaling pathways were also analyzed. Compared with the control group, the cell apoptosis rate was significantly higher; the cell viability, the colony formation, and migration ability were significantly decreased in the siRNA-SPOP group. The protein microarray screening showed that the expression of vascular endothelial growth factor receptor, matrix metallopeptidase-9, vascular cell adhesion molecule-1, and stromal cell-derived factor-1 in the siRNA group was significantly decreased and that the expression of granulocyte-macrophage colony-stimulating factor and E-cadherin was significantly increased (Pmatrix organization signal pathway. SPOP gene silencing induced cell apoptosis, decreased cell viability, colony formation, and migration ability, and elevated the drug sensitivity in the RCC cells. A possible mechanism is that silencing SPOP induces the differential expression of E-cadherin, vascular endothelial growth factor receptor, matrix metallopeptidase-9, and vascular cell adhesion molecule, which are related to the integrin-mediated cell surface interactions and extracellular matrix organization signaling pathway.

  20. From early lessons to new frontiers: The worm as a treasure trove of small RNA biology

    Directory of Open Access Journals (Sweden)

    Elaine M. Youngman

    2014-11-01

    Full Text Available In the past twenty years, the tiny soil nematode C. elegans has provided critical insights into our understanding of the breadth of small RNA-mediated gene regulatory activities. The first microRNA was identified in C. elegans in 1993, and the understanding that dsRNA was the driving force behind RNA-mediated gene silencing came from experiments performed in C. elegans in 1998. Likewise, early genetic screens in C. elegans for factors involved in RNAi pointed to conserved mechanisms for small RNA-mediated gene silencing pathways, placing the worm squarely among the founding fathers of a now extensive field of molecular biology. Today, the worm continues to be at the forefront of ground-breaking insight into small RNA-mediated biology. Recent studies have revealed with increasing mechanistic clarity that C. elegans possesses an extensive nuclear small RNA regulatory network that encompasses not only gene silencing but also gene activating roles. Further, a portrait is emerging whereby small RNA pathways play key roles in integrating responses to environmental stimuli and transmitting epigenetic information about such responses from one generation to the next. Here we discuss endogenous small RNA pathways in C. elegans and the insight worm biology has provided into the mechanisms employed by these pathways. We touch on the increasingly spectacular diversity of small RNA biogenesis and function, and discuss the relevance of lessons learned in the worm for human biology.

  1. Reliability analysis of the Ahringer Caenorhabditis elegans RNAi feeding library: a guide for genome-wide screens

    Directory of Open Access Journals (Sweden)

    Lu Yiming

    2011-03-01

    Full Text Available Abstract Background The Ahringer C. elegans RNAi feeding library prepared by cloning genomic DNA fragments has been widely used in genome-wide analysis of gene function. However, the library has not been thoroughly validated by direct sequencing, and there are potential errors, including: 1 mis-annotation (the clone with the retired gene name should be remapped to the actual target gene; 2 nonspecific PCR amplification; 3 cross-RNAi; 4 mis-operation such as sample loading error, etc. Results Here we performed a reliability analysis on the Ahringer C. elegans RNAi feeding library, which contains 16,256 bacterial strains, using a bioinformatics approach. Results demonstrated that most (98.3% of the bacterial strains in the library are reliable. However, we also found that 2,851 (17.54% bacterial strains need to be re-annotated even they are reliable. Most of these bacterial strains are the clones having the retired gene names. Besides, 28 strains are grouped into unreliable category and 226 strains are marginal because of probably expressing unrelated double-stranded RNAs (dsRNAs. The accuracy of the prediction was further confirmed by direct sequencing analysis of 496 bacterial strains. Finally, a freely accessible database named CelRNAi (http://biocompute.bmi.ac.cn/CelRNAi/ was developed as a valuable complement resource for the feeding RNAi library by providing the predicted information on all bacterial strains. Moreover, submission of the direct sequencing result or any other annotations for the bacterial strains to the database are allowed and will be integrated into the CelRNAi database to improve the accuracy of the library. In addition, we provide five candidate primer sets for each of the unreliable and marginal bacterial strains for users to construct an alternative vector for their own RNAi studies. Conclusions Because of the potential unreliability of the Ahringer C. elegans RNAi feeding library, we strongly suggest the user examine

  2. Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine.

    Science.gov (United States)

    Tang, Wei; Newton, Ronald J; Weidner, Douglas A

    2007-01-01

    An efficient transgenic eastern white pine (Pinus strobus L.) plant regeneration system has been established using Agrobacterium tumefaciens strain GV3850-mediated transformation and the green fluorescent protein (gfp) gene as a reporter in this investigation. Stable integration of transgenes in the plant genome of pine was confirmed by polymerase chain reaction (PCR), Southern blot, and northern blot analyses. Transgene expression was analysed in pine T-DNA transformants carrying different numbers of copies of T-DNA insertions. Post-transcriptional gene silencing (PTGS) was mostly obtained in transgenic lines with more than three copies of T-DNA, but not in transgenic lines with one copy of T-DNA. In situ hybridization chromosome analysis of transgenic lines demonstrated that silenced transgenic lines had two or more T-DNA insertions in the same chromosome. These results suggest that two or more T-DNA insertions in the same chromosome facilitate efficient gene silencing in transgenic pine cells expressing green fluorescent protein. There were no differences in shoot differentiation and development between transgenic lines with multiple T-DNA copies and transgenic lines with one or two T-DNA copies.

  3. Establishment of an efficient virus-induced gene silencing (VIGS) assay in Arabidopsis by Agrobacterium-mediated rubbing infection.

    Science.gov (United States)

    Manhães, Ana Marcia E de A; de Oliveira, Marcos V V; Shan, Libo

    2015-01-01

    Several VIGS protocols have been established for high-throughput functional genomic screens as it bypasses the time-consuming and laborious process of generation of transgenic plants. The silencing efficiency in this approach is largely hindered by a technically demanding step in which the first pair of newly emerged true leaves at the 2-week-old stage are infiltrated with a needleless syringe. To further optimize VIGS efficiency and achieve rapid inoculation for a large-scale functional genomic study, here we describe a protocol of an efficient VIGS assay in Arabidopsis using Agrobacterium-mediated rubbing infection. The Agrobacterium inoculation is performed by simply rubbing the leaves with Filter Agent Celite(®) 545. The highly efficient and uniform silencing effect was indicated by the development of a visibly albino phenotype due to silencing of the Cloroplastos alterados 1 (CLA1) gene in the newly emerged leaves. In addition, the albino phenotype could be observed in stems and flowers, indicating its potential application for gene functional studies in the late vegetative development and flowering stages.

  4. AGO6 functions in RNA-mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Changho Eun

    Full Text Available RNA-directed DNA methylation (RdDM is a small interfering RNA (siRNA-mediated epigenetic modification that contributes to transposon silencing in plants. RdDM requires a complex transcriptional machinery that includes specialized RNA polymerases, named Pol IV and Pol V, as well as chromatin remodelling proteins, transcription factors, RNA binding proteins, and other plant-specific proteins whose functions are not yet clarified. In Arabidopsis thaliana, DICER-LIKE3 and members of the ARGONAUTE4 group of ARGONAUTE (AGO proteins are involved, respectively, in generating and using 24-nt siRNAs that trigger methylation and transcriptional gene silencing of homologous promoter sequences. AGO4 is the main AGO protein implicated in the RdDM pathway. Here we report the identification of the related AGO6 in a forward genetic screen for mutants defective in RdDM and transcriptional gene silencing in shoot and root apical meristems in Arabidopsis thaliana. The identification of AGO6, and not AGO4, in our screen is consistent with the primary expression of AGO6 in shoot and root growing points.

  5. A dominant mutation in mediator of paramutation2, one of three second-largest subunits of a plant-specific RNA polymerase, disrupts multiple siRNA silencing processes.

    Science.gov (United States)

    Sidorenko, Lyudmila; Dorweiler, Jane E; Cigan, A Mark; Arteaga-Vazquez, Mario; Vyas, Meenal; Kermicle, Jerry; Jurcin, Diane; Brzeski, Jan; Cai, Yu; Chandler, Vicki L

    2009-11-01

    Paramutation involves homologous sequence communication that leads to meiotically heritable transcriptional silencing. We demonstrate that mop2 (mediator of paramutation2), which alters paramutation at multiple loci, encodes a gene similar to Arabidopsis NRPD2/E2, the second-largest subunit of plant-specific RNA polymerases IV and V. In Arabidopsis, Pol-IV and Pol-V play major roles in RNA-mediated silencing and a single second-largest subunit is shared between Pol-IV and Pol-V. Maize encodes three second-largest subunit genes: all three genes potentially encode full length proteins with highly conserved polymerase domains, and each are expressed in multiple overlapping tissues. The isolation of a recessive paramutation mutation in mop2 from a forward genetic screen suggests limited or no functional redundancy of these three genes. Potential alternative Pol-IV/Pol-V-like complexes could provide maize with a greater diversification of RNA-mediated transcriptional silencing machinery relative to Arabidopsis. Mop2-1 disrupts paramutation at multiple loci when heterozygous, whereas previously silenced alleles are only up-regulated when Mop2-1 is homozygous. The dramatic reduction in b1 tandem repeat siRNAs, but no disruption of silencing in Mop2-1 heterozygotes, suggests the major role for tandem repeat siRNAs is not to maintain silencing. Instead, we hypothesize the tandem repeat siRNAs mediate the establishment of the heritable silent state-a process fully disrupted in Mop2-1 heterozygotes. The dominant Mop2-1 mutation, which has a single nucleotide change in a domain highly conserved among all polymerases (E. coli to eukaryotes), disrupts both siRNA biogenesis (Pol-IV-like) and potentially processes downstream (Pol-V-like). These results suggest either the wild-type protein is a subunit in both complexes or the dominant mutant protein disrupts both complexes. Dominant mutations in the same domain in E. coli RNA polymerase suggest a model for Mop2-1 dominance

  6. The effectiveness of RNAi in Caenorhabditis elegans is maintained during spaceflight.

    Directory of Open Access Journals (Sweden)

    Timothy Etheridge

    Full Text Available BACKGROUND: Overcoming spaceflight-induced (pathophysiologic adaptations is a major challenge preventing long-term deep space exploration. RNA interference (RNAi has emerged as a promising therapeutic for combating diseases on Earth; however the efficacy of RNAi in space is currently unknown. METHODS: Caenorhabditis elegans were prepared in liquid media on Earth using standard techniques and treated acutely with RNAi or a vector control upon arrival in Low Earth Orbit. After culturing during 4 and 8 d spaceflight, experiments were stopped by freezing at -80°C until analysis by mRNA and microRNA array chips, microscopy and Western blot on return to Earth. Ground controls (GC on Earth were simultaneously grown under identical conditions. RESULTS: After 8 d spaceflight, mRNA expression levels of components of the RNAi machinery were not different from that in GC (e.g., Dicer, Argonaute, Piwi; P>0.05. The expression of 228 microRNAs, of the 232 analysed, were also unaffected during 4 and 8 d spaceflight (P>0.05. In spaceflight, RNAi against green fluorescent protein (gfp reduced chromosomal gfp expression in gonad tissue, which was not different from GC. RNAi against rbx-1 also induced abnormal chromosome segregation in the gonad during spaceflight as on Earth. Finally, culture in RNAi against lysosomal cathepsins prevented degradation of the muscle-specific α-actin protein in both spaceflight and GC conditions. CONCLUSIONS: Treatment with RNAi works as effectively in the space environment as on Earth within multiple tissues, suggesting RNAi may provide an effective tool for combating spaceflight-induced pathologies aboard future long-duration space missions. Furthermore, this is the first demonstration that RNAi can be utilised to block muscle protein degradation, both on Earth and in space.

  7. BIOLOGICAL FUNCTION OF TOMBUSVIRUS-ENCODED SUPPRESSOR OF RNA SILENCING IN PLANTS

    Directory of Open Access Journals (Sweden)

    Omarov R.T.

    2012-08-01

    Full Text Available RNA interference (RNAi plays multiple biological roles in eukaryotic organisms to regulate gene expression. RNAi also operates as a conserved adaptive molecular immune mechanism against invading viruses. The antiviral RNAi pathway is initiated with the generation of virus-derived short-interfering RNAs (siRNAs that are used for subsequent sequence-specific recognition and degradation of the cognate viral RNA molecules. As an efficient counter-defensive strategy, most plant viruses evolved the ability to encode specific proteins capable of interfering with RNAi, and this process is commonly known as RNA silencing suppression. Virus-encoded suppressors of RNAi (VSRs operate at different steps in the RNAi pathway and display distinct biochemical properties that enable these proteins to efficiently interfere with the host-defense system. Tombusvirus-encoded P19 is an important pathogenicity factor, required for symptom development and elicitation of a hypersensitive response in a host-dependent manner. Protein plays a crucial role of TBSV P19 in protecting viral RNA during systemic infection on Nicotiana benthamiana. The X-ray crystallographic studies conducted by two independent groups revealed the existence of a P19-siRNA complex; a conformation whereby caliper tryptophan residues on two subunits of P19 dimers measure and bind 21-nt siRNA duplexes. These structural studies provided the first details on the possible molecular mechanism of any viral suppressor to block RNAi. The association between P19 and siRNAs was also shown to occur in infected plants These and related studies revealed that in general the ability of P19 to efficiently sequester siRNAs influences symptom severity, however this is not a strict correlation in all hosts.The current working model is that during TBSV infection of plants, P19 appropriates abundantly circulating Tombusvirus-derived siRNAs thereby rendering these unavailable to program RISC, to prevent degradation of

  8. Differential RNAi responses of Nicotiana benthamiana individuals transformed with a hairpin-inducing construct during Plum pox virus challenge.

    Science.gov (United States)

    Montes, Christian; Castro, Álvaro; Barba, Paola; Rubio, Julia; Sánchez, Evelyn; Carvajal, Denisse; Aguirre, Carlos; Tapia, Eduardo; DelÍ Orto, Paola; Decroocq, Veronique; Prieto, Humberto

    2014-10-01

    Gene silencing and large-scale small RNA analysis can be used to develop RNA interference (RNAi)-based resistance strategies for Plum pox virus (PPV), a high impact disease of Prunus spp. In this study, a pPPViRNA hairpin-inducing vector harboring two silencing motif-rich regions of the PPV coat protein (CP) gene was evaluated in transgenic Nicotiana benthamiana (NB) plants. Wild-type NB plants infected with a chimeric PPV virus (PPV::GFP) exhibited affected leaves with mosaic chlorosis congruent to GFP fluorescence at 21 day post-inoculation; transgenic lines depicted a range of phenotypes from fully resistant to susceptible. ELISA values and GFP fluorescence intensities were used to select transgenic-resistant (TG-R) and transgenic-susceptible (TG-S) lines for further characterization of small interfering RNAs (siRNAs) by large-scale small RNA sequencing. In infected TG-S and untransformed (WT) plants, the observed siRNAs were nearly exclusively 21- and 22-nt siRNAs that targeted the whole PPV::GFP genome; 24-nt siRNAs were absent in these individuals. Challenged TG-R plants accumulated a full set of 21- to 24-nt siRNAs that were primarily associated with the selected motif-rich regions, indicating that a trans-acting siRNAs process prevented viral multiplication. BLAST analysis identified 13 common siRNA clusters targeting the CP gene. 21-nt siRNA sequences were associated with the 22-nt siRNAs and the scarce 23- and 24-nt molecules in TG-S plants and with most of the observed 22-, 23-, and 24-nt siRNAs in TG-R individuals. These results validate the use of a multi-hot spot silencing vector against PPV and elucidate the molecules by which hairpin-inducing vectors initiate RNAi in vivo.

  9. Alterations in the expression of the NF-κB family member RelB as a novel marker of cardiovascular outcomes during acute exacerbations of chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Laura Labonté

    Full Text Available Chronic obstructive pulmonary disease (COPD exacerbations are acute events of worsened respiratory symptoms and enhanced inflammation partly mediated by NF-κB activation. RelB, an NF-κB family member, suppresses cigarette smoke-induced inflammation but its expression in COPD is unknown. Moreover, there is no information on its association with clinical features of COPD. The objectives of this study were to assess RelB expression relative to markers of inflammation as well as its association with cardiovascular and pulmonary features of COPD patients at stable-state and exacerbation.Data from 48 COPD patients were analyzed. Blood samples were collected from stable-state and exacerbating patients. After RNA isolation, quantitative real-time polymerase chain reaction (qRT-PCR was performed to assess RelB, Cox-2, IL-8 and IL-1β mRNA expression and their associations with measured clinical variables.Of the 48 COPD subjects, 18 were in stable-state and 30 were in exacerbation. RelB mRNA expression was lower than that of Cox-2, IL-8, and IL-1β in all cases (all p<0.001, except for IL-8 at exacerbation (p = 0.22. Cox-2, IL-8 and IL-1β were significantly associated with clinical features of patients in both stable-state and at exacerbation. There was no association with RelB expression and any clinical features in COPD subjects at stable-state. RelB mRNA levels were significantly associated with cardiovascular events such as systolic blood pressure during exacerbation.RelB mRNA expression is lower than that of the other inflammatory mediators. Expression of Cox-2, IL-8 and IL-1β were related to clinical features in both stable-state and at exacerbation. However, RelB expression was associated with clinical features of patients only during exacerbation, suggesting that RelB may represent a novel marker of health outcomes, in particular cardiovascular, during exacerbation in COPD.

  10. Histone deacetylase mediated silencing of AMWAP expression contributes to cisplatin nephrotoxicity

    Science.gov (United States)

    Ranganathan, Punithavathi; Hamad, Rania; Mohamed, Riyaz; Jayakumar, Calpurnia; Muthusamy, Thangaraju; Ramesh, Ganesan

    2015-01-01

    Cisplatin-induced acute kidney injury is a serious problem in cancer patients during treatment of solid tumors. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Since histone deacetylase (HDAC) inhibition augments cisplatin anti-tumor activity, we tested whether HDAC inhibitors can prevent cisplatin-induced nephrotoxicity and determined the underlying mechanism. Cisplatin up-regulated the expression of several HDACs in the kidney. Inhibition of HDAC with clinically used trichostatin A suppressed cisplatin-induced kidney injury, inflammation and epithelial cell apoptosis. Moreover, trichostatin A upregulated the novel anti-inflammatory protein, activated microglia/macrophage WAP domain protein (AMWAP), in epithelial cells which was enhanced with cisplatin treatment. Interestingly, HDAC1 and -2 specific inhibitors are sufficient to potently up-regulate AMWAP in epithelial cells. Administration of recombinant AMWAP or its epithelial cell-specific overexpression reduced cisplatin-induced kidney dysfunction. Moreover, AMWAP treatment suppressed epithelial cell apoptosis, and siRNA-based knockdown of AMWAP expression abolished trichostatin A-mediated suppression of epithelial cell apoptosis in vitro. Thus, HDAC-mediated silencing of AMWAP may contribute to cisplatin nephrotoxicity. Hence, HDAC1 and -2 specific inhibitors or AMWAP could be useful therapeutic agents for the prevention of cisplatin nephrotoxicity. PMID:26509586

  11. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression.

    Science.gov (United States)

    Seth, Meetu; Shirayama, Masaki; Gu, Weifeng; Ishidate, Takao; Conte, Darryl; Mello, Craig C

    2013-12-23

    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

  12. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-03-28

    The "target of rapamycin" (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens.

  13. Characterization of the TRBP domain required for Dicer interaction and function in RNA interference

    Directory of Open Access Journals (Sweden)

    El Far Mohamed

    2009-05-01

    Full Text Available Abstract Background Dicer, Ago2 and TRBP are the minimum components of the human RNA-induced silencing complex (RISC. While Dicer and Ago2 are RNases, TRBP is the double-stranded RNA binding protein (dsRBP that loads small interfering RNA into the RISC. TRBP binds directly to Dicer through its C-terminal domain. Results We show that the TRBP binding site in Dicer is a 165 amino acid (aa region located between the ATPase and the helicase domains. The binding site in TRBP is a 69 aa domain, called C4, located at the C-terminal end of TRBP. The TRBP1 and TRBP2 isoforms, but not TRBPs lacking the C4 site (TRBPsΔC4, co-immunoprecipitated with Dicer. The C4 domain is therefore necessary to bind Dicer, irrespective of the presence of RNA. Immunofluorescence shows that while full-length TRBPs colocalize with Dicer, TRBPsΔC4 do not. tarbp2-/- cells, which do not express TRBP, do not support RNA interference (RNAi mediated by short hairpin or micro RNAs against EGFP. Both TRBPs, but not TRBPsΔC4, were able to rescue RNAi function. In human cells with low RNAi activity, addition of TRBP1 or 2, but not TRBPsΔC4, rescued RNAi function. Conclusion The mapping of the interaction sites between TRBP and Dicer show unique domains that are required for their binding. Since TRBPsΔC4 do not interact or colocalize with Dicer, we suggest that TRBP and Dicer, both dsRBPs, do not interact through bound dsRNA. TRBPs, but not TRBPsΔC4, rescue RNAi activity in RNAi-compromised cells, indicating that the binding of Dicer to TRBP is critical for RNAi function.

  14. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance.

    Science.gov (United States)

    Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping

    2015-07-01

    Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1-4) encoding 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Amino acid sequence motifs essential for P0-mediated suppression of RNA silencing in an isolate of potato leafroll virus from Inner Mongolia.

    Science.gov (United States)

    Zhuo, Tao; Li, Yuan-Yuan; Xiang, Hai-Ying; Wu, Zhan-Yu; Wang, Xian-Bin; Wang, Ying; Zhang, Yong-Liang; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2014-06-01

    Polerovirus P0 suppressors of host gene silencing contain a consensus F-box-like motif with Leu/Pro (L/P) requirements for suppressor activity. The Inner Mongolian Potato leafroll virus (PLRV) P0 protein (P0(PL-IM)) has an unusual F-box-like motif that contains a Trp/Gly (W/G) sequence and an additional GW/WG-like motif (G139/W140/G141) that is lacking in other P0 proteins. We used Agrobacterium infiltration-mediated RNA silencing assays to establish that P0(PL-IM) has a strong suppressor activity. Mutagenesis experiments demonstrated that the P0(PL-IM) F-box-like motif encompasses amino acids 76-LPRHLHYECLEWGLLCG THP-95, and that the suppressor activity is abolished by L76A, W87A, or G88A substitution. The suppressor activity is also weakened substantially by mutations within the G139/W140/G141 region and is eliminated by a mutation (F220R) in a C-terminal conserved sequence of P0(PL-IM). As has been observed with other P0 proteins, P0(PL-IM) suppression is correlated with reduced accumulation of the host AGO1-silencing complex protein. However, P0(PL-IM) fails to bind SKP1, which functions in a proteasome pathway that may be involved in AGO1 degradation. These results suggest that P0(PL-IM) may suppress RNA silencing by using an alternative pathway to target AGO1 for degradation. Our results help improve our understanding of the molecular mechanisms involved in PLRV infection.

  16. Considering RNAi experimental design in parasitic helminths.

    Science.gov (United States)

    Dalzell, Johnathan J; Warnock, Neil D; McVeigh, Paul; Marks, Nikki J; Mousley, Angela; Atkinson, Louise; Maule, Aaron G

    2012-04-01

    Almost a decade has passed since the first report of RNA interference (RNAi) in a parasitic helminth. Whilst much progress has been made with RNAi informing gene function studies in disparate nematode and flatworm parasites, substantial and seemingly prohibitive difficulties have been encountered in some species, hindering progress. An appraisal of current practices, trends and ideals of RNAi experimental design in parasitic helminths is both timely and necessary for a number of reasons: firstly, the increasing availability of parasitic helminth genome/transcriptome resources means there is a growing need for gene function tools such as RNAi; secondly, fundamental differences and unique challenges exist for parasite species which do not apply to model organisms; thirdly, the inherent variation in experimental design, and reported difficulties with reproducibility undermine confidence. Ideally, RNAi studies of gene function should adopt standardised experimental design to aid reproducibility, interpretation and comparative analyses. Although the huge variations in parasite biology and experimental endpoints make RNAi experimental design standardization difficult or impractical, we must strive to validate RNAi experimentation in helminth parasites. To aid this process we identify multiple approaches to RNAi experimental validation and highlight those which we deem to be critical for gene function studies in helminth parasites.

  17. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Tetsushi, E-mail: tiida@nig.ac.jp [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Iida, Naoko [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Tsutsui, Yasuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda-cho, Midori-ku, Yokohama 226-8501 (Japan); Yamao, Fumiaki [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Kobayashi, Takehiko [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  18. Silencing the SpMPK1, SpMPK2, and SpMPK3 Genes in Tomato Reduces Abscisic Acid—Mediated Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2013-11-01

    Full Text Available Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA-induced and hydrogen peroxide (H2O2-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants’ drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway.

  19. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation

    International Nuclear Information System (INIS)

    Fusaro, Adriana F.; Correa, Regis L.; Nakasugi, Kenlee; Jackson, Craig; Kawchuk, Lawrence; Vaslin, Maite F.S.; Waterhouse, Peter M.

    2012-01-01

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0 PE , in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0 PE has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0 PE destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

  20. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation

    Energy Technology Data Exchange (ETDEWEB)

    Fusaro, Adriana F. [University of Sydney, NSW 2006 (Australia); CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia); Correa, Regis L. [CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia); Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil); Nakasugi, Kenlee; Jackson, Craig [University of Sydney, NSW 2006 (Australia); Kawchuk, Lawrence [Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J4B1 (Canada); Vaslin, Maite F.S. [Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil); Waterhouse, Peter M., E-mail: peter.waterhouse@sydney.edu.au [University of Sydney, NSW 2006 (Australia); CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia)

    2012-05-10

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0{sup PE}, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0{sup PE} has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0{sup PE} destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

  1. Marie Nimier, au cœur du silence

    Directory of Open Access Journals (Sweden)

    Joëlle Papillon

    2012-01-01

    Full Text Available Dans La Reine du silence, Marie Nimier se confronte à la figure de son père, l’écrivain Roger Nimier, mort lorsqu’elle avait cinq ans. Elle y montre le poids qui pèse sur l’enfant d’écrivain, mais aussi celui de l’héritage du secret familial et de l’injonction au silence. La difficulté de l’élaboration de son récit de filiation se révèle dans les constants recommencements et reformulations, qui constituent la marque de la tension angoissante entre l’obligation de dire et celle de taire. In La Reine du silence, Marie Nimier confronts her father’s memory – the writer Roger Nimier, who died when she was five years old. The novel describes the burden of being a writer’s child, along with that of inheriting family secrets and submitting to a code of silence. The difficulty of recounting her relationship with her late father is evidenced by the narrator’s numerous “false starts” and her constant rewritings. The hesitant nature of the narration captures an anguish born of two irreconcilable obligations : the need to put things into words and the pressure to remain silent.

  2. Asian citrus psyllid RNAi pathway - RNAi evidence

    Science.gov (United States)

    In silico analyses of the draft genome of Diaphorina citri, the Asian citrus psyllid, for genes within the Ribonucleic acid interference(RNAi), pathway was successful. The psyllid is the vector of the plant-infecting bacterium, Candidatus Liberibacter asiaticus (CLas), which is linked to citrus gree...

  3. Conditional RNAi: towards a silent gene therapy.

    Science.gov (United States)

    Lee, Sang-Kyung; Kumar, Priti

    2009-07-02

    RNA interference (RNAi) has the potential to permit the downregulation of virtually any gene. While transgenic RNAi enables stable propagation of the resulting phenotype to progeny, the dominant nature of RNAi limits its use to applications where the continued suppression of gene expression does not disturb normal cell functioning. This is of particular importance when the target gene product is essential for cell survival, development or differentiation. It is therefore desirable that knockdown be externally regulatable. This review is aimed at providing an overview of the approaches for conditional RNAi in mammalian systems, with a special mention of studies employing these approaches to target therapeutically/biologically relevant molecules, their advantages and disadvantages, and a pointer towards approaches best suited for RNAi-based gene therapy.

  4. Silencing, positive selection and parallel evolution: busy history of primate cytochromes C.

    Science.gov (United States)

    Pierron, Denis; Opazo, Juan C; Heiske, Margit; Papper, Zack; Uddin, Monica; Chand, Gopi; Wildman, Derek E; Romero, Roberto; Goodman, Morris; Grossman, Lawrence I

    2011-01-01

    Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades.

  5. Silencing, positive selection and parallel evolution: busy history of primate cytochromes C.

    Directory of Open Access Journals (Sweden)

    Denis Pierron

    Full Text Available Cytochrome c (cyt c participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i loss of the paralogous testis isoform, (ii an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades.

  6. The Role of piRNA-Mediated Epigenetic Silencing in the Population Dynamics of Transposable Elements in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Yuh Chwen G Lee

    2015-06-01

    Full Text Available The piwi-interacting RNAs (piRNA are small RNAs that target selfish transposable elements (TEs in many animal genomes. Until now, piRNAs' role in TE population dynamics has only been discussed in the context of their suppression of TE transposition, which alone is not sufficient to account for the skewed frequency spectrum and stable containment of TEs. On the other hand, euchromatic TEs can be epigenetically silenced via piRNA-dependent heterochromatin formation and, similar to the widely known "Position-effect variegation", heterochromatin induced by TEs can "spread" into nearby genes. We hypothesized that the piRNA-mediated spread of heterochromatin from TEs into adjacent genes has deleterious functional effects and leads to selection against individual TEs. Unlike previously identified deleterious effects of TEs due to the physical disruption of DNA, the functional effect we investigated here is mediated through the epigenetic influences of TEs. We found that the repressive chromatin mark, H3K9me, is elevated in sequences adjacent to euchromatic TEs at multiple developmental stages in Drosophila melanogaster. Furthermore, the heterochromatic states of genes depend not only on the number of and distance from adjacent TEs, but also on the likelihood that their nearest TEs are targeted by piRNAs. These variations in chromatin status probably have functional consequences, causing genes near TEs to have lower expression. Importantly, we found stronger selection against TEs that lead to higher H3K9me enrichment of adjacent genes, demonstrating the pervasive evolutionary consequences of TE-induced epigenetic silencing. Because of the intrinsic biological mechanism of piRNA amplification, spread of TE heterochromatin could result in the theoretically required synergistic deleterious effects of TE insertions for stable containment of TE copy number. The indirect deleterious impact of piRNA-mediated epigenetic silencing of TEs is a previously

  7. Effects of RNAi-mediated cathepsin L gene silencing on bionomics ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... melanoma, gastric cancer, and pancreatic cancer. The main function of ... successfully applied in various areas of biological research, and its main ... molecule, the corresponding target gene mRNA is cut under RNA-induced ...

  8. RNA interference: Applications and advances in insect toxicology and insect pest management.

    Science.gov (United States)

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides.

    Science.gov (United States)

    Calo, Silvia; Nicolás, Francisco E; Lee, Soo Chan; Vila, Ana; Cervantes, Maria; Torres-Martinez, Santiago; Ruiz-Vazquez, Rosa M; Cardenas, Maria E; Heitman, Joseph

    2017-03-01

    Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip) and a Sad-3-like helicase (rnhA), as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.

  10. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides.

    Directory of Open Access Journals (Sweden)

    Silvia Calo

    2017-03-01

    Full Text Available Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip and a Sad-3-like helicase (rnhA, as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.

  11. Silence in the Communication or Communicating through Silence: Silence in Psychoanalysis

    Directory of Open Access Journals (Sweden)

    Rita Marta

    2014-10-01

    Full Text Available This paper is a reflection upon the meaning and importance of silence in the psychoanalytical relationship. Beginning with the silence in the “normal” relationship between people, we show how silence can be experienced as confortable or unconfortable, and how it can be used to achieve a bigger proximity or distance in the relationship with others. We show these same aspects in the psychoanalytical relationship, and the evolution of the regard towards silence along the development of psychoanalysis. We end, presenting the Nacht’s thinking about silence, who emphasizes its integrative and fundamental role in the psychoanalytical relationship. Thus, only through silence certain affects can be born, and silence allows the patient to internalize the analyst.

  12. Regulation of the activity of the promoter of RNA-induced silencing, C3PO.

    Science.gov (United States)

    Sahu, Shriya; Williams, Leo; Perez, Alberto; Philip, Finly; Caso, Giuseppe; Zurawsky, Walter; Scarlata, Suzanne

    2017-09-01

    RNA-induced silencing is a process which allows cells to regulate the synthesis of specific proteins. RNA silencing is promoted by the protein C3PO (component 3 of RISC). We have previously found that phospholipase Cβ, which increases intracellular calcium levels in response to specific G protein signals, inhibits C3PO activity towards certain genes. Understanding the parameters that control C3PO activity and which genes are impacted by G protein activation would help predict which genes are more vulnerable to downregulation. Here, using a library of 10 18 oligonucleotides, we show that C3PO binds oligonucleotides with structural specificity but little sequence specificity. Alternately, C3PO hydrolyzes oligonucleotides with a rate that is sensitive to substrate stability. Importantly, we find that oligonucleotides with higher Tm values are inhibited by bound PLCβ. This finding is supported by microarray analysis in cells over-expressing PLCβ1. Taken together, this study allows predictions of the genes whose post-transcriptional regulation is responsive to the G protein/phospholipase Cβ/calcium signaling pathway. © 2017 The Protein Society.

  13. Flavivirus RNAi suppression: decoding non-coding RNA.

    Science.gov (United States)

    Pijlman, Gorben P

    2014-08-01

    Flaviviruses are important human pathogens that are transmitted by invertebrate vectors, mostly mosquitoes and ticks. During replication in their vector, flaviviruses are subject to a potent innate immune response known as antiviral RNA interference (RNAi). This defense mechanism is associated with the production of small interfering (si)RNA that lead to degradation of viral RNA. To what extent flaviviruses would benefit from counteracting antiviral RNAi is subject of debate. Here, the experimental evidence to suggest the existence of flavivirus RNAi suppressors is discussed. I will highlight the putative role of non-coding, subgenomic flavivirus RNA in suppression of RNAi in insect and mammalian cells. Novel insights from ongoing research will reveal how arthropod-borne viruses modulate innate immunity including antiviral RNAi. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield.

    Science.gov (United States)

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-08-30

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3 , a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA- HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing ds HaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera . Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls.

  15. Dynamic phosphorylation of RelA on Ser42 and Ser45 in response to TNFα stimulation regulates DNA binding and transcription.

    Science.gov (United States)

    Lanucara, Francesco; Lam, Connie; Mann, Jelena; Monie, Tom P; Colombo, Stefano A P; Holman, Stephen W; Boyd, James; Dange, Manohar C; Mann, Derek A; White, Michael R H; Eyers, Claire E

    2016-07-01

    The NF-κB signalling module controls transcription through a network of protein kinases such as the IKKs, as well as inhibitory proteins (IκBs) and transcription factors including RelA/p65. Phosphorylation of the NF-κB subunits is critical for dictating system dynamics. Using both non-targeted discovery and quantitative selected reaction monitoring-targeted proteomics, we show that the cytokine TNFα induces dynamic multisite phosphorylation of RelA at a number of previously unidentified residues. Putative roles for many of these phosphorylation sites on RelA were predicted by modelling of various crystal structures. Stoichiometry of phosphorylation determination of Ser45 and Ser42 revealed preferential early phosphorylation of Ser45 in response to TNFα. Quantitative analyses subsequently confirmed differential roles for pSer42 and pSer45 in promoter-specific DNA binding and a role for both of these phosphosites in regulating transcription from the IL-6 promoter. These temporal dynamics suggest that RelA-mediated transcription is likely to be controlled by functionally distinct NF-κB proteoforms carrying different combinations of modifications, rather than a simple 'one modification, one effect' system. © 2016 The Authors.

  16. Current issues of RNAi therapeutics delivery and development.

    Science.gov (United States)

    Haussecker, D

    2014-12-10

    12 years following the discovery of the RNAi mechanism in Man, a number of RNAi therapeutics development candidates have emerged with profiles suggesting that they could become drugs of significant medical importance for diseases like TTR amyloidosis, HBV, solid cancers, and hemophilia. Despite this robust progress, the perception of RNAi therapeutics has been on a roller-coaster ride driven not only by science, but also regulatory trends, the stock markets, and Big Pharma business development decisions [1]. This presentation provides an update on the current state of RNAi therapeutics development with a particular focus on what RNAi delivery can achieve today and key challenges to be overcome to expand therapeutic opportunities. The delivery of RNAi triggers to disease-relevant cell types clearly represents the rate-limiting factor in broadly expanding the applicability of RNAi therapeutics. Today, with at least 3 delivery options (lipid nanoparticles/LNPs, GalNAc-siRNA conjugates, Dynamic PolyConjugates/DPCs) for which profound gene knockdowns have been demonstrated in non-human primates and in the clinic, RNAi therapeutics should in principle be able to address most diseases related to gene expression in the liver. Given the central importance of the liver in systemic physiology, this already represents a significant therapeutic and commercial opportunity rivaling that of e.g. monoclonal antibodies. Beyond the liver, there is a reason to believe that current RNAi therapeutics technologies can address a number of solid tumors (e.g. LNPs), diseases of the eye (e.g. self-delivering RNAi triggers) as well as diseases involving the respiratory epithelium (e.g. aerosolized LNPs), certain phagocytic cells (LNPs), hematopoietic stem cells and their progeny (lentiviral DNA-directed RNAi), vascular endothelial cells (cationic lipoplexes), and certain cell types in the kidney (self-delivering RNAi triggers, DPCs; Table 1). Despite this success, there has been a sense that

  17. Development of RNAi method for screening candidate genes to control emerald ash borer, Agrilus planipennis.

    Science.gov (United States)

    Rodrigues, Thais B; Rieske, Lynne K; J Duan, Jian; Mogilicherla, Kanakachari; Palli, Subba R

    2017-08-07

    The ingestion of double-strand RNAs (dsRNA) targeting essential genes in an insect could cause mortality. Based on this principle, a new generation of insect control methods using RNA interference (RNAi) are being developed. In this work, we developed a bioassay for oral delivery of dsRNA to an invasive forest and urban tree pest, the emerald ash borer (EAB, Agrilus planipennis). EAB feeds and develops beneath the bark, killing trees rapidly. This behavior, coupled with the lack of a reliable artificial diet for rearing larvae and adults, make them difficult to study. We found that dsRNA is transported and processed to siRNAs by EAB larvae within 72 h after ingestion. Also, feeding neonate larvae with IAP (inhibitor of apoptosis) or COP (COPI coatomer, β subunit) dsRNA silenced their target genes and caused mortality. Both an increase in the concentration of dsRNA fed and sequential feeding of two different dsRNAs increased mortality. Here we provide evidence for successful RNAi in EAB, and demonstrate the development of a rapid and effective bioassay for oral delivery of dsRNA to screen additional genes.

  18. RNAi-mediated silencing of CD147 inhibits tumor cell proliferation, invasion and increases chemosensitivity to cisplatin in SGC7901 cells in vitro

    Directory of Open Access Journals (Sweden)

    Zhu Chan

    2010-06-01

    Full Text Available Abstract Background CD147 is a widely distributed cell surface glycoprotein that belongs to the Ig superfamily. CD147 has been implicated in numerous physiological and pathological activities. Enriched on the surface of many tumor cells, CD147 promotes tumor growth, invasion, metastasis and angiogenesis and confers resistance to some chemotherapeutic drugs. In this study, we investigated the possible role of CD147 in the progression of gastric cancer. Methods Short hairpin RNA (shRNA expressing vectors targeting CD147 were constructed and transfected into human gastric cancer cells SGC7901 and CD147 expression was monitored by quantitative realtime RT-PCR and Western blot. Cell proliferation, the activities of MMP-2 and MMP-9, the invasive potential and chemosensitivity to cisplatin of SGC7901 cells were determined by MTT, gelatin zymography, Transwell invasion assay and MTT, respectively. Results Down-regulation of CD147 by RNAi approach led to decreased cell proliferation, MMP-2 and MMP-9 activities and invasive potential of SGC7901 cells as well as increased chemosensitivity to cisplatin. Conclusion CD147 involves in proliferation, invasion and chemosensitivity of human gastric cancer cell line SGC7901, indicating that CD147 may be a promising therapeutic target for gastric cancer.

  19. Persistent ER stress induces the spliced leader RNA silencing pathway (SLS, leading to programmed cell death in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Hanoch Goldshmidt

    2010-01-01

    Full Text Available Trypanosomes are parasites that cycle between the insect host (procyclic form and mammalian host (bloodstream form. These parasites lack conventional transcription regulation, including factors that induce the unfolded protein response (UPR. However, they possess a stress response mechanism, the spliced leader RNA silencing (SLS pathway. SLS elicits shut-off of spliced leader RNA (SL RNA transcription by perturbing the binding of the transcription factor tSNAP42 to its cognate promoter, thus eliminating trans-splicing of all mRNAs. Induction of endoplasmic reticulum (ER stress in procyclic trypanosomes elicits changes in the transcriptome similar to those induced by conventional UPR found in other eukaryotes. The mechanism of up-regulation under ER stress is dependent on differential stabilization of mRNAs. The transcriptome changes are accompanied by ER dilation and elevation in the ER chaperone, BiP. Prolonged ER stress induces SLS pathway. RNAi silencing of SEC63, a factor that participates in protein translocation across the ER membrane, or SEC61, the translocation channel, also induces SLS. Silencing of these genes or prolonged ER stress led to programmed cell death (PCD, evident by exposure of phosphatidyl serine, DNA laddering, increase in reactive oxygen species (ROS production, increase in cytoplasmic Ca(2+, and decrease in mitochondrial membrane potential, as well as typical morphological changes observed by transmission electron microscopy (TEM. ER stress response is also induced in the bloodstream form and if the stress persists it leads to SLS. We propose that prolonged ER stress induces SLS, which serves as a unique death pathway, replacing the conventional caspase-mediated PCD observed in higher eukaryotes.

  20. Short-hairpin RNA-mediated stable silencing of Grb2 impairs cell growth and DNA synthesis

    International Nuclear Information System (INIS)

    Di Fulvio, Mauricio; Henkels, Karen M.; Gomez-Cambronero, Julian

    2007-01-01

    Grb2 is an SH2-SH3 protein adaptor responsible for linking growth factor receptors with intracellular signaling cascades. To study the role of Grb2 in cell growth, we have generated a new COS7 cell line (COS7 shGrb2 ), based on RNAi technology, as null mutations in mammalian Grb2 genes are lethal in early development. This novel cell line continuously expresses a short hairpin RNA that targets endogenous Grb2. Stable COS7 shGrb2 cells had the shGrb2 integrated into the genomic DNA and carried on SiL construct (made refractory to the shRNA-mediated interference), but not with an SH2-deficient mutant (R86K). Thus, a viable knock-down and rescue protocol has demonstrated that Grb2 is crucial for cell proliferation

  1. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells.

    Science.gov (United States)

    Qin, Guiqi; Zhao, ChuBiao; Zhang, Lili; Liu, Hongyu; Quan, Yingyao; Chai, Liuying; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2015-08-01

    This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.

  2. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs.

    Science.gov (United States)

    van Wolfswinkel, Josien C; Claycomb, Julie M; Batista, Pedro J; Mello, Craig C; Berezikov, Eugene; Ketting, René F

    2009-10-02

    We have studied the function of a conserved germline-specific nucleotidyltransferase protein, CDE-1, in RNAi and chromosome segregation in C. elegans. CDE-1 localizes specifically to mitotic chromosomes in embryos. This localization requires the RdRP EGO-1, which physically interacts with CDE-1, and the Argonaute protein CSR-1. We found that CDE-1 is required for the uridylation of CSR-1 bound siRNAs, and that in the absence of CDE-1 these siRNAs accumulate to inappropriate levels, accompanied by defects in both meiotic and mitotic chromosome segregation. Elevated siRNA levels are associated with erroneous gene silencing, most likely through the inappropriate loading of CSR-1 siRNAs into other Argonaute proteins. We propose a model in which CDE-1 restricts specific EGO-1-generated siRNAs to the CSR-1 mediated, chromosome associated RNAi pathway, thus separating it from other endogenous RNAi pathways. The conserved nature of CDE-1 suggests that similar sorting mechanisms may operate in other animals, including mammals.

  3. Human GW182 Paralogs Are the Central Organizers for RNA-Mediated Control of Transcription.

    Science.gov (United States)

    Hicks, Jessica A; Li, Liande; Matsui, Masayuki; Chu, Yongjun; Volkov, Oleg; Johnson, Krystal C; Corey, David R

    2017-08-15

    In the cytoplasm, small RNAs can control mammalian translation by regulating the stability of mRNA. In the nucleus, small RNAs can also control transcription and splicing. The mechanisms for RNA-mediated nuclear regulation are not understood and remain controversial, hindering the effective application of nuclear RNAi and investigation of its natural regulatory roles. Here, we reveal that the human GW182 paralogs TNRC6A/B/C are central organizing factors critical to RNA-mediated transcriptional activation. Mass spectrometry of purified nuclear lysates followed by experimental validation demonstrates that TNRC6A interacts with proteins involved in protein degradation, RNAi, the CCR4-NOT complex, the mediator complex, and histone-modifying complexes. Functional analysis implicates TNRC6A, NAT10, MED14, and WDR5 in RNA-mediated transcriptional activation. These findings describe protein complexes capable of bridging RNA-mediated sequence-specific recognition of noncoding RNA transcripts with the regulation of gene transcription. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. CSR-1 RNAi pathway positively regulates histone expression in C. elegans.

    Science.gov (United States)

    Avgousti, Daphne C; Palani, Santhosh; Sherman, Yekaterina; Grishok, Alla

    2012-10-03

    Endogenous small interfering RNAs (endo-siRNAs) have been discovered in many organisms, including mammals. In C. elegans, depletion of germline-enriched endo-siRNAs found in complex with the CSR-1 Argonaute protein causes sterility and defects in chromosome segregation in early embryos. We discovered that knockdown of either csr-1, the RNA-dependent RNA polymerase (RdRP) ego-1, or the dicer-related helicase drh-3, leads to defects in histone mRNA processing, resulting in severe depletion of core histone proteins. The maturation of replication-dependent histone mRNAs, unlike that of other mRNAs, requires processing of their 3'UTRs through an endonucleolytic cleavage guided by the U7 snRNA, which is lacking in C. elegans. We found that CSR-1-bound antisense endo-siRNAs match histone mRNAs and mRNA precursors. Consistently, we demonstrate that CSR-1 directly binds to histone mRNA in an ego-1-dependent manner using biotinylated 2'-O-methyl RNA oligonucleotides. Moreover, we demonstrate that increasing the dosage of histone genes rescues the lethality associated with depletion of CSR-1 and EGO-1. These results support a positive and direct effect of RNAi on histone gene expression.

  5. Identification, RNAi knockdown, and functional analysis of an ejaculate protein that mediates a postmating, prezygotic phenotype in a cricket.

    Directory of Open Access Journals (Sweden)

    Jeremy L Marshall

    2009-10-01

    Full Text Available Postmating, prezygotic phenotypes, especially those that underlie reproductive isolation between closely related species, have been a central focus of evolutionary biologists over the past two decades. Such phenotypes are thought to evolve rapidly and be nearly ubiquitous among sexually reproducing eukaryotes where females mate with multiple partners. Because these phenotypes represent interplay between the male ejaculate and female reproductive tract, they are fertile ground for reproductive senescence--as ejaculate composition and female physiology typically change over an individual's life span. Although these phenotypes and their resulting dynamics are important, we have little understanding of the proteins that mediate these phenotypes, particularly for species groups where postmating, prezygotic traits are the primary mechanism of reproductive isolation. Here, we utilize proteomics, RNAi, mating experiments, and the Allonemobius socius complex of crickets, whose members are primarily isolated from one another by postmating, prezygotic phenotypes (including the ability of a male to induce a female to lay eggs, to demonstrate that one of the most abundant ejaculate proteins (a male accessory gland-biased protein similar to a trypsin-like serine protease decreases in abundance over a male's reproductive lifetime and mediates the induction of egg-laying in females. These findings represent one of the first studies to identify a protein that plays a role in mediating both a postmating, prezygotic isolation pathway and reproductive senescence.

  6. A Single Argonaute Gene Participates in Exogenous and Endogenous RNAi and Controls Cellular Functions in the Basal Fungus Mucor circinelloides

    Science.gov (United States)

    Nicolás, Francisco E.; Moxon, Simon; de Haro, Juan P.; Dalmay, Tamas; Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M

    2013-01-01

    The mechanism of RNAi is well described in metazoans where it plays a role in diverse cellular functions. However, although different classes of endogenous small RNAs (esRNAs) have been identified in fungi, their biological roles are poorly described due, in part, to the lack of phenotype of mutants affected in the biogenesis of these esRNAs. Argonaute proteins are one of the key components of the RNAi pathways, in which different members of this protein family participate in the biogenesis of a wide repertoire of esRNAs molecules. Here we identified three argonaute genes of the fungus Mucor circinelloides and investigated their participation in exogenous and endogenous RNAi. We found that only one of the ago genes, ago-1, is involved in RNAi during vegetative growth and is required for both transgene-induced RNA silencing and the accumulation of distinct classes of esRNAs derived from exons (ex-siRNAs). Classes I and II ex-siRNAs bind to Ago-1 to control mRNA accumulation of the target protein coding genes. Class III ex-siRNAs do not specifically bind to Ago-1, but requires this protein for their production, revealing the complexity of the biogenesis pathways of ex-siRNAs. We also show that ago-1 is involved in the response to environmental signals, since vegetative development and autolysis induced by nutritional stress are affected in ago-1 − M. circinelloides mutants. Our results demonstrate that a single Ago protein participates in the production of different classes of esRNAs that are generated through different pathways. They also highlight the role of ex-siRNAs in the regulation of endogenous genes in fungi and expand the range of biological functions modulated by RNAi. PMID:23935973

  7. Silêncios Silences

    Directory of Open Access Journals (Sweden)

    Luciano Marcondes Godoy

    1999-01-01

    Full Text Available Muitas são as vivências que se expressarão em SILÊNCIOS. Muitos são os silêncios. No Bloco A, o silêncio denuncia a retirada para um outro mundo, a queda num abismo. No bloco B, o silêncio é controlador, exigindo a fala do analista, um jogo em que o que é falado não tem a menor importância. Surge ainda como expressão da necessidade de discriminar-se do analista e, na sua evolução, como um enfrentamento a um estado sem sentido. No Bloco C, o silêncio é agressivo, e a sobrevivência do analisando e analista ao mesmo criará um espaço que propiciará sonhos que surgirão no Bloco D. Esses momentos de silêncio-sonho são situações em que não há discriminação eu-não eu.Many are the experiences which are expressed through silences. Many are the silences. In Block A, silence denounces a pretreatment to another world, a fall into an abysm. In Block B, silence is a controlling factor, demanding the words of the analyst, a game where what is said does not have any importance what so ever. It emerges also as an expression of the analyst's necessity to discriminate himself, and within his evolution the revision of a senseless state. In Block C, the silence is aggressive. As a response, the survival of the patient and of the analyst will create a place in which dreams will come up. Block D analyses these moments of dream-silence situations, where there aren't any forms of self-non self discrimination.

  8. Investigating Gene Function in Cereal Rust Fungi by Plant-Mediated Virus-Induced Gene Silencing.

    Science.gov (United States)

    Panwar, Vinay; Bakkeren, Guus

    2017-01-01

    Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.

  9. Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats

    NARCIS (Netherlands)

    Fitzgerald, A.; Kan, van J.A.L.; Plummer, K.M.

    2004-01-01

    RNA-mediated gene silencing has been demonstrated in plants, animals, and more recently in filamentous fungi. Here, we report high frequency, RNA-mediated gene silencing in the apple scab fungus, Venturia inaequalis. The green fluorescent protein (GFP) transgene was silenced in a GFP-expressing

  10. A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system.

    Science.gov (United States)

    Wang, Shaowei; Wei, Xiaochun; Sun, Xiaojuan; Chen, Chongwei; Zhou, Jingming; Zhang, Ge; Wu, Heng; Guo, Baosheng; Wei, Lei

    2018-01-01

    Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. The objective of this study was to develop and validate a novel lipid nanoparticle (LNP)-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog ( Ihh ) has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA). In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative impact on catabolic metabolism. This study demonstrates that our LNP-RNAi delivery system has a significantly chondroprotective effect that attenuates cartilage degeneration and holds great promise as a powerful tool for treatment of cartilage diseases by knocking down specific genes.

  11. The development and application of a multiple gene co-silencing system using endogenous URA3 as a reporter gene in Ganoderma lucidum.

    Directory of Open Access Journals (Sweden)

    Dashuai Mu

    Full Text Available Ganoderma lucidum is one of the most important medicinal mushrooms; however, molecular genetics research on this species has been limited due to a lack of reliable reverse genetic tools. In this study, the endogenous orotidine 5'-monophosphate decarboxylase gene (URA3 was cloned as a silencing reporter, and four gene-silencing methods using hairpin, sense, antisense, and dual promoter constructs, were introduced into G. lucidum through a simple electroporation procedure. A comparison and evaluation of silencing efficiency demonstrated that all of the four methods differentially suppressed the expression of URA3. Our data unequivocally indicate that the dual promoter silencing vector yields the highest rate of URA3 silencing compared with other vectors (up to 81.9%. To highlight the advantages of the dual promoter system, we constructed a co-silencing system based on the dual promoter method and succeeded in co-silencing URA3 and laccase in G. lucidum. The reduction of the mRNA levels of the two genes were correlated. Thus, the screening efficiency for RNAi knockdown of multiple genes may be improved by the co-silencing of an endogenous reporter gene. The molecular tools developed in this study should facilitate the isolation of genes and the characterization of the functions of multiple genes in this pharmaceutically important species, and these tools should be highly useful for the study of other basidiomycetes.

  12. Rel/Nuclear factor-kappa B apoptosis pathways in human cervical cancer cells

    Science.gov (United States)

    Shehata, Marlene F

    2005-01-01

    Cervical cancer is considered a common yet preventable cause of death in women. It has been estimated that about 420 women out of the 1400 women diagnosed with cervical cancer will die during 5 years from diagnosis. This review addresses the pathogenesis of cervical cancer in humans with a special emphasis on the human papilloma virus as a predominant cause of cervical cancer in humans. The current understanding of apoptosis and regulators of apoptosis as well as their implication in carcinogenesis will follow. A special focus will be given to the role of Rel/NF-κB family of genes in the growth and chemotherapeutic treatment of the malignant HeLa cervical cells emphasizing on Xrel3, a cRel homologue. PMID:15857509

  13. Functional studies of signaling pathways in peri-implantation development of the mouse embryo by RNAi

    Directory of Open Access Journals (Sweden)

    Bell Graham

    2005-12-01

    Full Text Available Abstract Background Studies of gene function in the mouse have relied mainly on gene targeting via homologous recombination. However, this approach is difficult to apply in specific windows of time, and to simultaneously knock-down multiple genes. Here we report an efficient method for dsRNA-mediated gene silencing in late cleavage-stage mouse embryos that permits examination of phenotypes at post-implantation stages. Results We show that introduction of Bmp4 dsRNA into intact blastocysts by electroporation recapitulates the genetic Bmp4 null phenotype at gastrulation. It also reveals a novel role for Bmp4 in the regulation the anterior visceral endoderm specific gene expression and its positioning. We also show that RNAi can be used to simultaneously target several genes. When applied to the three murine isoforms of Dishevelled, it leads to earlier defects than previously observed in double knock-outs. These include severe delays in post-implantation development and defects in the anterior midline and neural folds at headfold stages. Conclusion Our results indicate that the BMP4 signalling pathway contributes to the development of the anterior visceral endoderm, and reveal an early functional redundancy between the products of the murine Dishevelled genes. The proposed approach constitutes a powerful tool to screen the functions of genes that govern the development of the mouse embryo.

  14. Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1.

    OpenAIRE

    Taiko Kim To; Jong-Myong Kim; Akihiro Matsui; Yukio Kurihara; Taeko Morosawa; Junko Ishida; Maho Tanaka; Takaho Endo; Tetsuji Kakutani; Tetsuro Toyoda; Hiroshi Kimura; Shigeyuki Yokoyama; Kazuo Shinozaki; Motoaki Seki

    2011-01-01

    Heterochromatin silencing is pivotal for genome stability in eukaryotes. In Arabidopsis, a plant-specific mechanism called RNA–directed DNA methylation (RdDM) is involved in heterochromatin silencing. Histone deacetylase HDA6 has been identified as a component of such machineries; however, its endogenous targets and the silencing mechanisms have not been analyzed globally. In this study, we investigated the silencing mechanism mediated by HDA6. Genome-wide transcript profiling revealed that t...

  15. Emerging strategies for RNA interference (RNAi) applications in insects.

    Science.gov (United States)

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.

  16. Silencing hyperoxia-induced C/EBPα in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells

    Science.gov (United States)

    Yang, Guang; Hinson, Maurice D.; Bordner, Jessica E.; Lin, Qing S.; Fernando, Amal P.; La, Ping; Wright, Clyde J.

    2011-01-01

    Postnatal lung development requires proliferation and differentiation of specific cell types at precise times to promote proper alveolar formation. Hyperoxic exposure can disrupt alveolarization by inhibiting cell growth; however, it is not fully understood how this is mediated. The transcription factor CCAAT/enhancer binding protein-α (C/EBPα) is highly expressed in the lung and plays a role in cell proliferation and differentiation in many tissues. After 72 h of hyperoxia, C/EBPα expression was significantly enhanced in the lungs of newborn mice. The increased C/EBPα protein was predominantly located in alveolar type II cells. Silencing of C/EBPα with a transpulmonary injection of C/EBPα small interfering RNA (siRNA) prior to hyperoxic exposure reduced expression of markers of type I cell and differentiation typically observed after hyperoxia but did not rescue the altered lung morphology at 72 h. Nevertheless, when C/EBPα hyperoxia-exposed siRNA-injected mice were allowed to recover for 2 wk in room air, lung epithelial cell proliferation was increased and lung morphology was restored compared with hyperoxia-exposed control siRNA-injected mice. These data suggest that C/EBPα is an important regulator of postnatal alveolar epithelial cell proliferation and differentiation during injury and repair. PMID:21571903

  17. Analysis of energetically biased transcripts of viruses and transposable elements

    Directory of Open Access Journals (Sweden)

    Rodrigo Secolin

    2012-01-01

    Full Text Available RNA interference (RNAi is a natural endogenous process by which double-stranded RNA molecules trigger potent and specific gene silencing in eukaryotic cells and is characterized by target RNA cleavage. In mammals, small interfering RNAs (siRNAs are the trigger molecules of choice and constitute a new class of RNA-based antiviral agents. In an efficient RNAi response, the antisense strand of siRNAs must enter the RNA-induced silencing complex (RISC in a process mediated by thermodynamic features. In this report, we hypothesize that silent mutations capable of inverting thermodynamic properties can promote resistance to siRNAs. Extensive computational analyses were used to assess whether continuous selective pressure that promotes such mutations could lead to the emergence of viral strains completely resistant to RNAi (i.e., prone to transfer only the sense strands to RISC. Based on our findings, we propose that, although synonymous mutations may produce functional resistance, this strategy cannot be systematically adopted by viruses since the longest RNAi-refractory sequence is only 10 nt long. This finding also suggests that all mRNAs display fluctuating thermodynamic landscapes and that, in terms of thermodynamic features, RNAi is a very efficient antiviral system since there will always be sites susceptible to siRNAs.

  18. Analysis of energetically biased transcripts of viruses and transposable elements

    Science.gov (United States)

    Secolin, Rodrigo; Pascoal, Vinícius D’Ávila Bitencourt; Lopes-Cendes, Iscia; Pereira, Tiago Campos

    2012-01-01

    RNA interference (RNAi) is a natural endogenous process by which double-stranded RNA molecules trigger potent and specific gene silencing in eukaryotic cells and is characterized by target RNA cleavage. In mammals, small interfering RNAs (siRNAs) are the trigger molecules of choice and constitute a new class of RNA-based antiviral agents. In an efficient RNAi response, the antisense strand of siRNAs must enter the RNA-induced silencing complex (RISC) in a process mediated by thermodynamic features. In this report, we hypothesize that silent mutations capable of inverting thermodynamic properties can promote resistance to siRNAs. Extensive computational analyses were used to assess whether continuous selective pressure that promotes such mutations could lead to the emergence of viral strains completely resistant to RNAi (i.e., prone to transfer only the sense strands to RISC). Based on our findings, we propose that, although synonymous mutations may produce functional resistance, this strategy cannot be systematically adopted by viruses since the longest RNAi-refractory sequence is only 10 nt long. This finding also suggests that all mRNAs display fluctuating thermodynamic landscapes and that, in terms of thermodynamic features, RNAi is a very efficient antiviral system since there will always be sites susceptible to siRNAs. PMID:23271949

  19. The P0 protein encoded by cotton leafroll dwarf virus (CLRDV) inhibits local but not systemic RNA silencing.

    Science.gov (United States)

    Delfosse, Verónica C; Agrofoglio, Yamila C; Casse, María F; Kresic, Iván Bonacic; Hopp, H Esteban; Ziegler-Graff, Véronique; Distéfano, Ana J

    2014-02-13

    Plants employ RNA silencing as a natural defense mechanism against viruses. As a counter-defense, viruses encode silencing suppressor proteins (SSPs) that suppress RNA silencing. Most, but not all, the P0 proteins encoded by poleroviruses have been identified as SSP. In this study, we demonstrated that cotton leafroll dwarf virus (CLRDV, genus Polerovirus) P0 protein suppressed local silencing that was induced by sense or inverted repeat transgenes in Agrobacterium co-infiltration assay in Nicotiana benthamiana plants. A CLRDV full-length infectious cDNA clone that is able to infect N. benthamiana through Agrobacterium-mediated inoculation also inhibited local silencing in co-infiltration assays, suggesting that the P0 protein exhibits similar RNA silencing suppression activity when expressed from the full-length viral genome. On the other hand, the P0 protein did not efficiently inhibit the spread of systemic silencing signals. Moreover, Northern blotting indicated that the P0 protein inhibits the generation of secondary but not primary small interfering RNAs. The study of CLRDV P0 suppression activity may contribute to understanding the molecular mechanisms involved in the induction of cotton blue disease by CLRDV infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Towards a durable RNAi gene therapy for HIV-AIDS

    NARCIS (Netherlands)

    Berkhout, Ben; ter Brake, Olivier

    2009-01-01

    Background: RNA interference (RNAi) can be employed as a potent antiviral mechanism Objective: To discuss RNAi approaches to target pathogenic human viruses causing acute or chronic infections, in particular RNAi gene therapy against HIV-1. Methods: A review of relevant literature.

  1. Validation of the REL2005 code package on Gd-poisoned PWR type assemblies through the CAMELEON experimental program

    International Nuclear Information System (INIS)

    Blaise, Patrick; Vidal, Jean-Francois; Santamarina, Alain

    2009-01-01

    This paper details the validation of Gd-poisoned 17x17 PWR lattices, through several configurations of the CAMELEON experimental program, by using the newly qualified REL2005 French code package. After a general presentation of the CAMELEON program that took place in the EOLE critical Facility in Cadarache, one describes the new REL2005 code package relying on the deterministic transport code APOLLO2.8 based on characteristics method (MOC), and its new CEA2005 library based on the latest JEFF-3.1.1 nuclear data evaluation. For critical masses, the average Calculation-to-Experiment C/E's on the k eff are (136 ± 80) pcm and (300 ± 76) pcm for the reference 281 groups MOC and optimized 26 groups MOC schemes respectively. These values include also a drastic improvement of about 250 pcm due to the change in the library from JEF2.2 to JEFF3.1. For pin-by-pin radial power distributions, reference and REL2005 results are very close, with maximum discrepancies of the order of 2%, i.e., in the experimental uncertainty limits. The Optimized REL2005 code package allows to predict the reactivity worth of the Gd-clusters (averaged on 9 experimental configurations) to be C/E Δρ(Gd clusters) = +1.3% ± 2.3%. (author)

  2. RNAi Screening Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Small interfering RNA (siRNA) molecules are pieces of RNA that block the activity of genes through a natural process called RNA interference (RNAi). This process has...

  3. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    RNA interference (RNAi)-mediated gene silencing was explored for the control of sap-sucking pest Bemisia tabaci, commonly known as whitefly. dsRNAs and siRNAs were synthesized from five different genes – actin ortholog, ADP/ATP translocase, -tubulin, ribosomal protein L9 (RPL9) and V-ATPase A subunit.

  4. HTLV-1 Tax mediated downregulation of miRNAs associated with chromatin remodeling factors in T cells with stably integrated viral promoter.

    Directory of Open Access Journals (Sweden)

    Saifur Rahman

    Full Text Available RNA interference (RNAi is a natural cellular mechanism to silence gene expression and is predominantly mediated by microRNAs (miRNAs that target messenger RNA. Viruses can manipulate the cellular processes necessary for their replication by targeting the host RNAi machinery. This study explores the effect of human T-cell leukemia virus type 1 (HTLV-1 transactivating protein Tax on the RNAi pathway in the context of a chromosomally integrated viral long terminal repeat (LTR using a CD4(+ T-cell line, Jurkat. Transcription factor profiling of the HTLV-1 LTR stably integrated T-cell clone transfected with Tax demonstrates increased activation of substrates and factors associated with chromatin remodeling complexes. Using a miRNA microarray and bioinformatics experimental approach, Tax was also shown to downregulate the expression of miRNAs associated with the translational regulation of factors required for chromatin remodeling. These observations were validated with selected miRNAs and an HTLV-1 infected T cells line, MT-2. miR-149 and miR-873 were found to be capable of directly targeting p300 and p/CAF, chromatin remodeling factors known to play critical role in HTLV-1 pathogenesis. Overall, these results are first in line establishing HTLV-1/Tax-miRNA-chromatin concept and open new avenues toward understanding retroviral latency and/or replication in a given cell type.

  5. RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's sarcoma.

    Science.gov (United States)

    Arora, Shilpi; Gonzales, Irma M; Hagelstrom, R Tanner; Beaudry, Christian; Choudhary, Ashish; Sima, Chao; Tibes, Raoul; Mousses, Spyro; Azorsa, David O

    2010-08-18

    Ewing's sarcomas are aggressive musculoskeletal tumors occurring most frequently in the long and flat bones as a solitary lesion mostly during the teen-age years of life. With current treatments, significant number of patients relapse and survival is poor for those with metastatic disease. As part of novel target discovery in Ewing's sarcoma, we applied RNAi mediated phenotypic profiling to identify kinase targets involved in growth and survival of Ewing's sarcoma cells. Four Ewing's sarcoma cell lines TC-32, TC-71, SK-ES-1 and RD-ES were tested in high throughput-RNAi screens using a siRNA library targeting 572 kinases. Knockdown of 25 siRNAs reduced the growth of all four Ewing's sarcoma cell lines in replicate screens. Of these, 16 siRNA were specific and reduced proliferation of Ewing's sarcoma cells as compared to normal fibroblasts. Secondary validation and preliminary mechanistic studies highlighted the kinases STK10 and TNK2 as having important roles in growth and survival of Ewing's sarcoma cells. Furthermore, knockdown of STK10 and TNK2 by siRNA showed increased apoptosis. In summary, RNAi-based phenotypic profiling proved to be a powerful gene target discovery strategy, leading to successful identification and validation of STK10 and TNK2 as two novel potential therapeutic targets for Ewing's sarcoma.

  6. RelB+ Steady-State Migratory Dendritic Cells Control the Peripheral Pool of the Natural Foxp3+ Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Anja Döhler

    2017-06-01

    Full Text Available Thymus-derived natural Foxp3+ CD4+ regulatory T cells (nTregs play a key role in maintaining immune tolerance and preventing autoimmune disease. Several studies indicate that dendritic cells (DCs are critically involved in the maintenance and proliferation of nTregs. However, the mechanisms how DCs manage to keep the peripheral pool at constant levels remain poorly understood. Here, we describe that the NF-κB/Rel family transcription factor RelB controls the frequencies of steady-state migratory DCs (ssmDCs in peripheral lymph nodes and their numbers control peripheral nTreg homeostasis. DC-specific RelB depletion was investigated in CD11c-Cre × RelBfl/fl mice (RelBDCko, which showed normal frequencies of resident DCs in lymph nodes and spleen while the subsets of CD103− Langerin− dermal DCs (dDCs and Langerhans cells but not CD103+ Langerin+ dDC of the ssmDCs in skin-draining lymph nodes were increased. Enhanced frequencies and proliferation rates were also observed for nTregs and a small population of CD4+ CD44high CD25low memory-like T cells (Tml. Interestingly, only the Tml but not DCs showed an increase in IL-2-producing capacity in lymph nodes of RelBDCko mice. Blocking of IL-2 in vivo reduced the frequency of nTregs but increased the Tml frequencies, followed by a recovery of nTregs. Taken together, by employing RelBDCko mice with increased frequencies of ssmDCs our data indicate a critical role for specific ssmDC subsets for the peripheral nTreg and IL-2+ Tml frequencies during homeostasis.

  7. A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system

    Science.gov (United States)

    Wang, Shaowei; Wei, Xiaochun; Sun, Xiaojuan; Chen, Chongwei; Zhou, Jingming; Zhang, Ge; Wu, Heng; Guo, Baosheng

    2018-01-01

    Background Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi) has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. Purpose The objective of this study was to develop and validate a novel lipid nanoparticle (LNP)-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. Methods LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog (Ihh) has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA). Results In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative impact on catabolic metabolism. Conclusion This study demonstrates that our LNP-RNAi delivery system has a significantly chondroprotective effect that attenuates cartilage degeneration and holds great promise as a powerful tool for treatment of cartilage diseases by knocking down specific genes. PMID:29440889

  8. A heritable antiviral RNAi response limits Orsay virus infection in Caenorhabditis elegans N2.

    Directory of Open Access Journals (Sweden)

    Mark G Sterken

    Full Text Available Orsay virus (OrV is the first virus known to be able to complete a full infection cycle in the model nematode species Caenorhabditis elegans. OrV is transmitted horizontally and its infection is limited by antiviral RNA interference (RNAi. However, we have no insight into the kinetics of OrV replication in C. elegans. We developed an assay that infects worms in liquid, allowing precise monitoring of the infection. The assay revealed a dual role for the RNAi response in limiting Orsay virus infection in C. elegans. Firstly, it limits the progression of the initial infection at the step of recognition of dsRNA. Secondly, it provides an inherited protection against infection in the offspring. This establishes the heritable RNAi response as anti-viral mechanism during OrV infections in C. elegans. Our results further illustrate that the inheritance of the anti-viral response is important in controlling the infection in the canonical wild type Bristol N2. The OrV replication kinetics were established throughout the worm life-cycle, setting a standard for further quantitative assays with the OrV-C. elegans infection model.

  9. Clathrin Heavy Chain Is Important for Viability, Oviposition, Embryogenesis and, Possibly, Systemic RNAi Response in the Predatory Mite Metaseiulus occidentalis

    Science.gov (United States)

    Wu, Ke; Hoy, Marjorie A.

    2014-01-01

    Clathrin heavy chain has been shown to be important for viability, embryogenesis, and RNA interference (RNAi) in arthropods such as Drosophila melanogaster. However, the functional roles of clathrin heavy chain in chelicerate arthropods, such as the predatory mite Metaseiulus occidentalis, remain unknown. We previously showed that dsRNA ingestion, followed by feeding on spider mites, induced systemic and robust RNAi in M. occidentalis females. In the current study, we performed a loss-of-function analysis of the clathrin heavy chain gene in M. occidentalis using RNAi. We showed that ingestion of clathrin heavy chain dsRNA by M. occidentalis females resulted in gene knockdown and reduced longevity. In addition, clathrin heavy chain dsRNA treatment almost completely abolished oviposition by M. occidentalis females and the few eggs produced did not hatch. Finally, we demonstrated that clathrin heavy chain gene knockdown in M. occidentalis females significantly reduced a subsequent RNAi response induced by ingestion of cathepsin L dsRNA. The last finding suggests that clathrin heavy chain may be involved in systemic RNAi responses mediated by orally delivered dsRNAs in M. occidentalis. PMID:25329675

  10. Inhibition of human esophageal squamous cell carcinomas by targeted silencing of tumor enhancer genes: an overview

    International Nuclear Information System (INIS)

    Islamian, Jalil Pirayesh; Mohammadi, Mohsen; Baradaran, Behzad

    2014-01-01

    Esophageal cancer has been reported as the ninth most common malignancy and ranks as the sixth most frequent cause of death worldwide. Esophageal cancer treatment involves surgery, chemotherapy, radiation therapy, or combination therapy. Novel strategies are needed to boost the oncologic outcome. Recent advances in the molecular biology of esophageal cancer have documented the role of genetic alterations in tumorigenesis. Oncogenes serve a pivotal function in tumorigenesis. Targeted therapies are directed at the unique molecular signature of cancer cells for enhanced efficacy with low toxicity. RNA interference (RNAi) technology is a powerful tool for silencing endogenous or exogenous genes in mammalian cells. Related results have shown that targeting oncogenes with siRNAs, specifically the mRNA, effectively reduces tumor cell proliferation and induces apoptotic cell death. This article will briefly review studies on silencing tumor enhancer genes related to the induction of esophageal cancer

  11. UV-C-Induced alleviation of transcriptional gene silencing through plant–plant communication: Key roles of jasmonic acid and salicylic acid pathways

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Wang, Ting [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Hefei, Anhui, 230031 (China); Xu, Shaoxin [School of physics and materials science, Anhui University, Hefei, Anhui, 230601 (China); Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Hefei, Anhui, 230031 (China); Bian, Po, E-mail: bianpo@ipp.ac.cn [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1138, Hefei, Anhui, 230031 (China)

    2016-08-15

    Highlights: • Transcriptional gene silencing (TGS) in plants can be epigenetically alleviated by volatile signals from UV-C- irradiated neighboring plants. • Alleviation of TGS can be induced by UV-C irradiation through plant–plant–plant communication. • JA and SA signals take part in interplant communication for alleviation of TGS. - Abstract: Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant–plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant–plant and plant–plant–plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant–plant and plant–plant–plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant–plant–plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA.

  12. UV-C-Induced alleviation of transcriptional gene silencing through plant–plant communication: Key roles of jasmonic acid and salicylic acid pathways

    International Nuclear Information System (INIS)

    Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po

    2016-01-01

    Highlights: • Transcriptional gene silencing (TGS) in plants can be epigenetically alleviated by volatile signals from UV-C- irradiated neighboring plants. • Alleviation of TGS can be induced by UV-C irradiation through plant–plant–plant communication. • JA and SA signals take part in interplant communication for alleviation of TGS. - Abstract: Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant–plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant–plant and plant–plant–plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant–plant and plant–plant–plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant–plant–plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA.

  13. Mono-(2-Ethylhexyl Phthalate Promotes Pro-Labor Gene Expression in the Human Placenta.

    Directory of Open Access Journals (Sweden)

    Ximi K Wang

    Full Text Available Women exposed to phthalates during pregnancy are at increased risk for delivering preterm, but the mechanism behind this relationship is unknown. Placental corticotropin-releasing hormone (CRH and cyclooxygenase-2 (COX-2 are key mediators of parturition and are regulated by the non-canonical NF-kB (RelB/p52 signaling pathway. In this study, we demonstrate that one of the major phthalate metabolites, mono-(2-ethylhexyl-phthalate (MEHP, increased CRH and COX-2 mRNA and protein abundance in a dose-dependent manner in primary cultures of cytotrophoblast. This was coupled with an increase in nuclear import of RelB/p52 and its association with the CRH and COX-2 promoters. Silencing of NF-kB inducing kinase, a central signaling component of the non-canonical NF-kB pathway, blocked MEHP-induced upregulation of CRH and COX-2. These results suggest a potential mechanism mediated by RelB/p52 by which phthalates could prematurely induce pro-labor gene activity and lead to preterm birth.

  14. Charging Levels of Four tRNA Species in Escherichia coli Rel+ and REL- Strains during Amino Acid Starvation: A Simple Model for the Effect of ppGpp on Translational Accuracy

    DEFF Research Database (Denmark)

    Sørensen, M.A.

    2001-01-01

    Escherichia coli strains mutated in the relA gene lack the ability to produce ppGpp during amino acid starvation. One consequence of this deficiency is a tenfold increase in misincorporation at starved codons compared to the wild-type. Previous work had shown that the charging levels of tRNAs were...... the same in Rel+ and Rel- strains and reduced, at most, two- to fivefold in both strains during starvation. The present reinvestigation of the charging levels of tRNA2Arg, tRNA1Thr, tRNA1Leu and tRNAHis during starvation of isogenic Rel+ and Rel- strains showed that starvation reduced charging levels...... tenfold to 40-fold. This reduction corresponds much better with the decreased rate of protein synthesis during starvation than that reported earlier. The determination of the charging levels of tRNA2Arg and tRNA1Thr during starvation were accurate enough to demonstrate that charging levels were at least...

  15. Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties.

    Science.gov (United States)

    Ogita, Shinjiro; Uefuji, Hirotaka; Morimoto, Masayuki; Sano, Hiroshi

    2004-04-01

    The caffeine biosynthetic pathway in coffee plants has been proposed to involve three distinct N -methyltransferases, xanthosine methyltransferase (XMT), 7- N -methylxanthine methyltransferase (MXMT; theobromine synthase), and 3,7-dimethylxanthine methyltransferase (DXMT; caffeine synthase). We previously isolated all corresponding cDNAs designated as CaXMT1 , CaMXMT1 , CaMXMT2 and CaDXMT1 , respectively, and showed that caffeine was indeed synthesized in vitro by the combination of their gene products. In order to regulate caffeine biosynthesis in planta , we suppressed expression of CaMXMT1 by the double stranded RNA interference (RNAi) method. For this purpose, we first established a protocol for efficient somatic embryogenesis of Coffea arabica and C. canephora , and then Agrobacterium -mediated transformation techniques. The RNAi transgenic lines of embryogenic tissues derived from C. arabica and transgenic plantlets of C. canephora demonstrated a clear reduction in transcripts for CaMXMT1 in comparison with the control plants. Transcripts for CaXMT1 and CaDXMT1 were also reduced in the most cases. Both embryonic tissues and plantlets exhibited a concomitant reduction of theobromine and caffeine contents to a range between 30% and 50% of that of the control. These results suggest that the CaMXMT1 -RNAi sequence affected expression of not only CaMXMT1 itself, but also CaXMT1 and CaDXMT1 , and that, since the reduction in theobromine content was proportional to that for caffeine, it is involved in the major synthetic pathway in coffee plants. The results also indicate that the method can be practically applied to produce decaffeinated coffee plants.

  16. Lentviral-mediated RNAi to inhibit target gene expression of the porcine integrin αv subunit, the FMDV receptor, and against FMDV infection in PK-15 cells

    Directory of Open Access Journals (Sweden)

    Lin Tong

    2011-09-01

    Full Text Available Abstract Background shRNA targeting the integrin αv subunit, which is the foot-and-mouth disease virus (FMDV receptor, plays a key role in virus attachment to susceptible cells. We constructed a RNAi lentiviral vector, iαv pLenti6/BLOCK -iT™, which expressed siRNA targeting the FMDV receptor, the porcine integrin αv subunit, on PK-15 cells. We also produced a lentiviral stock, established an iαv-PK-15 cell line, evaluated the gene silencing efficiency of mRNA using real-time qRT-PCR, integrand αv expression by indirect immunofluorescence assay (IIF and cell enzyme linked immunosorbent assays (cell ELISA, and investigated the in vivo inhibitory effect of shRNA on FMDV replication in PK-15 cells. Results Our results indicated successful establishment of the iαv U6 RNAi entry vector and the iαv pLenti6/BLOCK -iT expression vector. The functional titer of obtained virus was 1.0 × 106 TU/mL. To compare with the control and mock group, the iαv-PK-15 group αv mRNA expression rate in group was reduced by 89.5%, whilst IIF and cell ELISA clearly indicated suppression in the experimental group. Thus, iαv-PK-15 cells could reduce virus growth by more than three-fold and there was a > 99% reduction in virus titer when cells were challenged with 102 TCID50 of FMDV. Conclusions Iαv-PK-15 cells were demonstrated as a cell model for anti-FMDV potency testing, and this study suggests that shRNA could be a viable therapeutic approach for controlling the severity of FMD infection and spread.

  17. Structural basis for (p)ppGpp synthesis by thesmall alarmone synthetase RelP

    DEFF Research Database (Denmark)

    Manav, Melek Cemre; Beljantseva, Jelena; Bojer, Martin S

    2018-01-01

    Q (SAS1) and RelP (SAS2). InBacillus subtilis, RelQ (SAS1) was shown to form a tetramer that is activated by pppGpp and inhibited by single-stranded RNA, but the structural and functional regulation of RelP (SAS2) is unexplored. Here, we present crystal structures ofS. aureusRelP in two major functional......The stringent response is a global reprogramming of bacterial physiology that renders cells more tolerant to antibiotics and induces virulence gene expression in pathogens in response to stress. This process is driven by accumulation of the intracellular alarmone guanosine-5'-di(tri)phosphate-3...

  18. Quantitative proteomics by amino acid labeling in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Engholm-Keller, Kasper; Giessing, Anders

    2011-01-01

    We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi-med......-mediated knockdown of the nuclear hormone receptor 49 in C. elegans. The combined use of quantitative proteomics and selective gene knockdown is a powerful tool for C. elegans biology.......We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi...

  19. Silencing alpha-fetoprotein inhibits VEGF and MMP-2/9 production in human hepatocellular carcinoma cell.

    Science.gov (United States)

    Meng, Wenbo; Li, Xun; Bai, Zhongtian; Li, Yan; Yuan, Jinqiu; Liu, Tao; Yan, Jun; Zhou, Wence; Zhu, Kexiang; Zhang, Hui; Li, Yumin

    2014-01-01

    Alpha-fetoprotein not only serves as a diagnostic marker for liver cancer, but also posses a variety of biological functions. However, the role of Alpha-fetoprotein on tumor angiogenesis and cell invasion remains incompletely understood. In this study, we aimed to evaluate if Alpha-fetoprotein can regulate the major angiogenic factors and matrix metalloproteinases in human liver cancer cells. Alpha-fetoprotein silencing was achieved by Stealth RNAi. Expression of Alpha-fetoprotein was examined by a full-automatic electrochemistry luminescence immunity analyzer. Expression of VEGF, VEGFR-2, MMP-9, and MMP-2 was examined by Western blot and immunocytochemistry. Apoptosis was detected by TUNEL assay. Angiogenesis was detected by in vitro angiogenesis assay kit. Silencing of Alpha-fetoprotein led to an increased apoptosis, which was associated with a decreased expression of vascular endothelial growth factor, vascular endothelial growth factor receptor 2, matrix metalloproteinases-2/9. These results suggest that Alpha-fetoprotein may play a regulatory role on angiogenesis and cell invasion during liver cancer development.

  20. DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Sizolwenkosi Mlotshwa

    2008-03-01

    Full Text Available Dicer-like (DCL enzymes play a pivotal role in RNA silencing in plants, processing the long double-stranded RNA (dsRNA that triggers silencing into the primary short interfering RNAs (siRNAs that mediate it. The siRNA population can be augmented and silencing amplified via transitivity, an RNA-dependent RNA polymerase (RDR-dependent pathway that uses the target RNA as substrate to generate secondary siRNAs. Here we report that Arabidopsis DCL2-but not DCL4-is required for transitivity in cell-autonomous, post-transcriptional silencing of transgenes. An insertion mutation in DCL2 blocked sense transgene-induced silencing and eliminated accumulation of the associated RDR-dependent siRNAs. In hairpin transgene-induced silencing, the dcl2 mutation likewise eliminated accumulation of secondary siRNAs and blocked transitive silencing, but did not block silencing mediated by primary siRNAs. Strikingly, in all cases, the dcl2 mutation eliminated accumulation of all secondary siRNAs, including those generated by other DCL enzymes. In contrast, mutations in DCL4 promoted a dramatic shift to transitive silencing in the case of the hairpin transgene and enhanced silencing induced by the sense transgene. Suppression of hairpin and sense transgene silencing by the P1/HC-Pro and P38 viral suppressors was associated with elimination of secondary siRNA accumulation, but the suppressors did not block processing of the stem of the hairpin transcript into primary siRNAs. Thus, these viral suppressors resemble the dcl2 mutation in their effects on siRNA biogenesis. We conclude that DCL2 plays an essential, as opposed to redundant, role in transitive silencing of transgenes and may play a more important role in silencing of viruses than currently thought.

  1. Ribosome•RelA structures reveal the mechanism of stringent response activation

    Science.gov (United States)

    Loveland, Anna B; Bah, Eugene; Madireddy, Rohini; Zhang, Ying; Brilot, Axel F; Grigorieff, Nikolaus; Korostelev, Andrei A

    2016-01-01

    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 Å wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit 'closure', providing insights into the dynamics of high-fidelity tRNA decoding. DOI: http://dx.doi.org/10.7554/eLife.17029.001 PMID:27434674

  2. Smuggling gold nanoparticles across cell types - A new role for exosomes in gene silencing.

    Science.gov (United States)

    Roma-Rodrigues, Catarina; Pereira, Francisca; Alves de Matos, António P; Fernandes, Marta; Baptista, Pedro V; Fernandes, Alexandra R

    2017-05-01

    Once released to the extracellular space, exosomes enable the transfer of proteins, lipids and RNA between different cells, being able to modulate the recipient cells' phenotypes. Members of the Rab small GTP-binding protein family, such as RAB27A, are responsible for the coordination of several steps in vesicle trafficking, including budding, mobility, docking and fusion. The use of gold nanoparticles (AuNPs) for gene silencing is considered a cutting-edge technology. Here, AuNPs were functionalized with thiolated oligonucleotides anti-RAB27A (AuNP@PEG@anti-RAB27A) for selective silencing of the gene with a consequent decrease of exosomes´ release by MCF-7 and MDA-MB-453 cells. Furthermore, communication between tumor and normal cells was observed both in terms of alterations in c-Myc gene expression and transportation of the AuNPs, mediating gene silencing in secondary cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Inhibition of Oncogenic Transcription Factor REL by the Natural Product Derivative Calafianin Monomer 101 Induces Proliferation Arrest and Apoptosis in Human B-Lymphoma Cell Lines.

    Science.gov (United States)

    Yeo, Alan T; Chennamadhavuni, Spandan; Whitty, Adrian; Porco, John A; Gilmore, Thomas D

    2015-04-23

    Increased activity of transcription factor NF-κB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-κB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-κB subunits REL (human c-Rel) and p65 as compared to NF-κB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-κB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-κB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells.

  4. An Algorithm for Generating Small RNAs Capable of Epigenetically Modulating Transcriptional Gene Silencing and Activation in Human Cells

    Directory of Open Access Journals (Sweden)

    Amanda Ackley

    2013-01-01

    Full Text Available Small noncoding antisense RNAs (sasRNAs guide epigenetic silencing complexes to target loci in human cells and modulate gene transcription. When these targeted loci are situated within a promoter, long-term, stable epigenetic silencing of transcription can occur. Recent studies suggest that there exists an endogenous form of such epigenetic regulation in human cells involving long noncoding RNAs. In this article, we present and validate an algorithm for the generation of highly effective sasRNAs that can mimic the endogenous noncoding RNAs involved in the epigenetic regulation of gene expression. We validate this algorithm by targeting several oncogenes including AKT-1, c-MYC, K-RAS, and H-RAS. We also target a long antisense RNA that mediates the epigenetic repression of the tumor suppressor gene DUSP6, silenced in pancreatic cancer. An algorithm that can efficiently design small noncoding RNAs for the epigenetic transcriptional silencing or activation of specific genes has potential therapeutic and experimental applications.

  5. Genetic Dissection of Anopheles gambiae Gut Epithelial Responses to Serratia marcescens

    Science.gov (United States)

    Stathopoulos, Stavros; Neafsey, Daniel E.; Lawniczak, Mara K. N.; Muskavitch, Marc A. T.; Christophides, George K.

    2014-01-01

    Genetic variation in the mosquito Anopheles gambiae profoundly influences its ability to transmit malaria. Mosquito gut bacteria are shown to influence the outcome of infections with Plasmodium parasites and are also thought to exert a strong drive on genetic variation through natural selection; however, a link between antibacterial effects and genetic variation is yet to emerge. Here, we combined SNP genotyping and expression profiling with phenotypic analyses of candidate genes by RNAi-mediated silencing and 454 pyrosequencing to investigate this intricate biological system. We identified 138 An. gambiae genes to be genetically associated with the outcome of Serratia marcescens infection, including the peptidoglycan recognition receptor PGRPLC that triggers activation of the antibacterial IMD/REL2 pathway and the epidermal growth factor receptor EGFR. Silencing of three genes encoding type III fibronectin domain proteins (FN3Ds) increased the Serratia load and altered the gut microbiota composition in favor of Enterobacteriaceae. These data suggest that natural genetic variation in immune-related genes can shape the bacterial population structure of the mosquito gut with high specificity. Importantly, FN3D2 encodes a homolog of the hypervariable pattern recognition receptor Dscam, suggesting that pathogen-specific recognition may involve a broader family of immune factors. Additionally, we showed that silencing the gene encoding the gustatory receptor Gr9 that is also associated with the Serratia infection phenotype drastically increased Serratia levels. The Gr9 antibacterial activity appears to be related to mosquito feeding behavior and to mostly rely on changes of neuropeptide F expression, together suggesting a behavioral immune response following Serratia infection. Our findings reveal that the mosquito response to oral Serratia infection comprises both an epithelial and a behavioral immune component. PMID:24603764

  6. Molecular evidence for the existence of lipopolysaccharide-induced TNF-alpha factor (LITAF) and Rel/NF-kB pathways in disk abalone (Haliotis discus discus).

    Science.gov (United States)

    De Zoysa, Mahanama; Nikapitiya, Chamilani; Oh, Chulhong; Whang, Ilson; Lee, Jae-Seong; Jung, Sung-Ju; Choi, Cheol Young; Lee, Jehee

    2010-01-01

    The lipopolysaccharide-induced TNF-alpha factor (LITAF) and Rel family nuclear factor kappaB (Rel/NF-kB) are two important transcription factors which play major roles in the regulating inflammatory cytokine, apoptosis and immune related genes. Here, we report the discovery of disk abalone LITAF (AbLITAF) and Rel/NF-kB (AbRel/NF-kB) homologues and their immune responses. Full-length cDNA of AbLITAF consists of 441 bp open reading frame (ORF) that translates into putative peptide of 147 aa. Analysis of AbLITAF sequence showed it has characteristic LITAF (Zn(+2)) binding domain with two CXXC motifs. Phylogenetic analysis results further revealed that AbLITAF is a member of LITAF family. AbRel/NF-kB is 584 aa protein that contains several characteristic motifs including Rel homology domain (RHD), Rel protein signature, DNA binding motif, nuclear localization signal (NLS) and transcription factor immunoglobulin - like fold (TIG) similar to their invertebrate and vertebrate counterparts. Tissue specific analysis results showed that both AbLITAF and AbRel/NF-kB mRNA was expressed ubiquitously in all selected tissues in constitutive manner. However, constitutive expression of AbLITAF was higher than AbRel/NF-kB in all tissues except mantle. Upon immune challenge by bacteria (Vibrio alginolyticus, Vibrio parahemolyticus and Lysteria monocytogenes) and viral hemoragic septicemia virus (VHSV), AbLITAF showed the significant up-regulation in gills while AbRel/NF-kB transcription was not change significantly. Based on transcriptional response against immune challenge, we could suggest that regulation of TNF-alpha expression may have occurred mainly by LITAF activation rather than NF-kB in disk abalone. The cumulative data from other molluscs and our data with reference to TNF-alpha, LITAF and Rel/NF-kB from disk abalone provide strong evidence that LITAF and NF-kB are independent pathways likely to occur throughout the Phylum mollusca. 2010 Elsevier Ltd. All rights reserved.

  7. Towards RNAi based therapy of liver diseases : diversity and complexity of shRNA and miRNA processing and functions

    NARCIS (Netherlands)

    Maczuga, Piotr

    2013-01-01

    Familial hypercholesterolemia (FH) is a genetic disorder characterized by high levels of low density lipoprotein cholesterol (LDL-C) and increasing the risk of cardio vascular diseases. FH and many other liver diseases can possibly be treated with RNA interference (RNAi). RNAi is a natural process

  8. Stability of RNA silencing-based traits after virus infection

    DEFF Research Database (Denmark)

    Jørgensen, Bodil; Albrechtsen, Merete

    2007-01-01

    with constructs based on virus coat protein (CP) genes or other viral genes has been successfully used to engineer PTGS-mediated virus resistance into a large number of crop plants and some transgenic lines have been commercially exploited. However the discovery that plant viruses encode suppressors of gene...... silencing has raised concerns that virus infection of crop plants might reverse the new silencing-based traits. Most studies of virus suppression of silencing have used model systems based on silencing of reporter genes. A few studies have analysed the effects of virus infections on plants with genetically...... engineered virus resistance based on either a simple sense or an inverted repeat construct. We decided to use genetically engineered virus resistance in potato as a model system for further studies of the effect of virus infection on genetically engineered traits. We present for the first time a comparison...

  9. Reexamining the P-Element Invasion of Drosophila melanogaster Through the Lens of piRNA Silencing

    Science.gov (United States)

    Kelleher, Erin S.

    2016-01-01

    Transposable elements (TEs) are both important drivers of genome evolution and genetic parasites with potentially dramatic consequences for host fitness. The recent explosion of research on regulatory RNAs reveals that small RNA-mediated silencing is a conserved genetic mechanism through which hosts repress TE activity. The invasion of the Drosophila melanogaster genome by P elements, which happened on a historical timescale, represents an incomparable opportunity to understand how small RNA-mediated silencing of TEs evolves. Repression of P-element transposition emerged almost concurrently with its invasion. Recent studies suggest that this repression is implemented in part, and perhaps predominantly, by the Piwi-interacting RNA (piRNA) pathway, a small RNA-mediated silencing pathway that regulates TE activity in many metazoan germlines. In this review, I consider the P-element invasion from both a molecular and evolutionary genetic perspective, reconciling classic studies of P-element regulation with the new mechanistic framework provided by the piRNA pathway. I further explore the utility of the P-element invasion as an exemplar of the evolution of piRNA-mediated silencing. In light of the highly-conserved role for piRNAs in regulating TEs, discoveries from this system have taxonomically broad implications for the evolution of repression. PMID:27516614

  10. RelA Mutant Enterococcus faecium with Multiantibiotic Tolerance Arising in an Immunocompromised Host.

    Science.gov (United States)

    Honsa, Erin S; Cooper, Vaughn S; Mhaissen, Mohammed N; Frank, Matthew; Shaker, Jessica; Iverson, Amy; Rubnitz, Jeffrey; Hayden, Randall T; Lee, Richard E; Rock, Charles O; Tuomanen, Elaine I; Wolf, Joshua; Rosch, Jason W

    2017-01-03

    despite multiple front-line antibiotics. The consecutive bloodstream isolates were sequenced, and a single missense mutation identified in the relA gene, the mediator of the stringent response. Strains harboring the mutation had elevated baseline levels of the alarmone and displayed heightened resistance to the bactericidal activity of multiple antibiotics, particularly in a biofilm. Using a new class of compounds that modulate ClpP activity, the biofilms were successfully eradicated. These data represent the first clinical emergence of mutations in the stringent response in vancomycin-resistant entereococci. Copyright © 2017 Honsa et al.

  11. Silencing of HaAce1 gene by host-delivered artificial microRNA disrupts growth and development of Helicoverpa armigera.

    Science.gov (United States)

    Saini, Ravi Prakash; Raman, Venkat; Dhandapani, Gurusamy; Malhotra, Era Vaidya; Sreevathsa, Rohini; Kumar, Polumetla Ananda; Sharma, Tilak R; Pattanayak, Debasis

    2018-01-01

    The polyphagous insect-pest, Helicoverpa armigera, is a serious threat to a number of economically important crops. Chemical application and/or cultivation of Bt transgenic crops are the two strategies available now for insect-pest management. However, environmental pollution and long-term sustainability are major concerns against these two options. RNAi is now considered as a promising technology to complement Bt to tackle insect-pests menace. In this study, we report host-delivered silencing of HaAce1 gene, encoding the predominant isoform of H. armigera acetylcholinesterase, by an artificial microRNA, HaAce1-amiR1. Arabidopsis pre-miRNA164b was modified by replacing miR164b/miR164b* sequences with HaAce1-amiR1/HaAce1-amiR1* sequences. The recombinant HaAce1-preamiRNA1 was put under the control of CaMV 35S promoter and NOS terminator of plant binary vector pBI121, and the resultant vector cassette was used for tobacco transformation. Two transgenic tobacco lines expressing HaAce1-amiR1 was used for detached leaf insect feeding bioassays. Larval mortality of 25% and adult deformity of 20% were observed in transgenic treated insect group over that control tobacco treated insect group. The reduction in the steady-state level of HaAce1 mRNA was 70-80% in the defective adults compared to control. Our results demonstrate promise for host-delivered amiRNA-mediated silencing of HaAce1 gene for H. armigera management.

  12. SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes viral RNA replication.

    Directory of Open Access Journals (Sweden)

    Maarit Neuvonen

    2011-11-01

    Full Text Available Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3 domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV, Sindbis (SINV, and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication.

  13. RNAi strategies to suppress insects of fruit and tree crops

    Science.gov (United States)

    Use of ribonucleic acid interference, RNAi, to reduce plant feeding Hemiptera in fruit tree and grapevines. The successful use of RNAi strategies to reduce insect pests, psyllids and leafhoppers was demonstrated. An RNAi bioassay which absorbs dsRNA into plant tissues provided up to 40 days of act...

  14. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit.

    Science.gov (United States)

    Mulero, Maria Carmen; Shahabi, Shandy; Ko, Myung Soo; Schiffer, Jamie M; Huang, De-Bin; Wang, Vivien Ya-Fan; Amaro, Rommie E; Huxford, Tom; Ghosh, Gourisankar

    2018-05-22

    Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.

  15. Silence multiple

    DEFF Research Database (Denmark)

    Søndergaard, Katia Dupret

    The article highlights the importance of silences in the processes of innovation in organizations, and the claim is that silence and the absence of talk distribute authority, responsibility and decisions. The act of silencing is conceptualised as a central “configurating actor”. Using an Actor......-Network Theoretical approach to organization studies silence is conceptualised as both a means and an effect of innovative efforts. It is a way of ordering practices. Thus silencing is thought of as a central potential change agent both in composing a kind of specific organizational collectivity and in composing new...... working practices more generally. In line with the approach to destabilise the mundane, invisible and taken-for-granted aspects of innovative efforts in organisations (crucial for ANT and foucauldian post-structuralism more broadly), this article suggests to non-silence the silence and make...

  16. Automated microscopy for high-content RNAi screening

    Science.gov (United States)

    2010-01-01

    Fluorescence microscopy is one of the most powerful tools to investigate complex cellular processes such as cell division, cell motility, or intracellular trafficking. The availability of RNA interference (RNAi) technology and automated microscopy has opened the possibility to perform cellular imaging in functional genomics and other large-scale applications. Although imaging often dramatically increases the content of a screening assay, it poses new challenges to achieve accurate quantitative annotation and therefore needs to be carefully adjusted to the specific needs of individual screening applications. In this review, we discuss principles of assay design, large-scale RNAi, microscope automation, and computational data analysis. We highlight strategies for imaging-based RNAi screening adapted to different library and assay designs. PMID:20176920

  17. Induction of C-Mip by IL-17 Plays an Important Role in Adriamycin-Induced Podocyte Damage

    Directory of Open Access Journals (Sweden)

    Yanbo Liu

    2015-07-01

    Full Text Available Background/Aims: Although the disturbance of T lymphocyte and glomerular podocyte exerts a crucial function in the pathogenesis of proteinuria, the potential link is still unclear. Methods: The balance of Treg and Th17 cells, and the expression of IL-17/IL-17R and c-mip were investigated in adrimycin-induced nephropathy (AN mice. The effect and mechanism of IL-17 on podocyte were explored in cultured podocytes. Results: The proportion of Th17 cells in peripheral blood mononuclear cells, the amount of IL-17 in serum and kidney cortical homogenates, and the expression of IL-17R and c-mip in glomerular podocyte were increased obviously in AN mice. In cultured podocytes, recombinant IL-17 led to an induction of apoptosis and cytoskeletal disorganization, an overproduction of c-mip while down-regulation of phosphor-nephrin, and an increased binding of c-mip to NF-κB/RelA. Silence of c-mip prevented podocyte apoptosis and reduction of phosphor-nephrin by prompting nuclear translocation of NF-κB/RelA in IL-17 treated cells. Persistent activation of NF-κB up-regulated pro-survival protein Bcl-2 and decreased podocyte apoptosis, but had no effect on phosphor-nephrin level. Conclusion: These findings demonstrated that induction of IL-17 released by Th17 cells plays a key role in podocytopathy most likely through down-regulation of phosphor-nephrin and Bcl-2 level via overproduction of c-mip.

  18. Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1

    DEFF Research Database (Denmark)

    Hansen, K. R.; Ibarra, P. T.; Thon, G.

    2006-01-01

    . Mutations and conditions perturbing histone acetylation had similar effects further demonstrating that the tlh genes are normally repressed by heterochromatin. In contrast, mutations in the RNAi factors Dcr1, Ago1 or Rdp1 led only to a modest derepression of the tlh genes indicating an alternate pathway...

  19. The tumor suppressors p33ING1 and p33ING2 interact with alien in vivo and enhance alien-mediated gene silencing.

    Science.gov (United States)

    Fegers, Inga; Kob, Robert; Eckey, Maren; Schmidt, Oliver; Goeman, Frauke; Papaioannou, Maria; Escher, Niko; von Eggeling, Ferdinand; Melle, Christian; Baniahmad, Aria

    2007-11-01

    The tumor suppressor p33ING1 is involved in DNA repair and cell cycle regulation. Furthermore, p33ING1 is a transcriptional silencer that recognizes the histone mark for trimethylated lysine 4 at histone H3. Interestingly, expression of p33ING1 and p33ING2 is able to induce premature senescence in primary human fibroblasts. The corepressor Alien is involved in gene silencing mediated by selected members of nuclear hormone receptors. In addition, Alien acts as a corepressor for E2F1, a member of the E2F cell cycle regulatory family. Furthermore, recent findings suggest that Alien is complexed with transcription factors participating in DNA repair and chromatin. Here, using a proteomic approach by surface-enhanced laser desorption ionization and mass spectrometry (SELDI-MS) combined with immunological techniques, we show that Alien interacts in vivo with the tumor suppressor p33ING1 as well as with the related tumor suppressor candidate p33ING2. The interaction of Alien with p33ING1 and p33ING2 was confirmed in vitro with GST-pull-down, suggesting a direct binding of Alien to these factors. The binding domain was mapped to a central region of Alien. Functionally, the expression of p33ING1 or p33ING2 enhances the Alien-mediated silencing, suggesting that the interaction plays a role in transcriptional regulation. Thus, the findings suggest that the identified interaction between Alien and the tumor suppressors p33ING1 and p33ING2 reveals a novel cellular protein network.

  20. NF-kappaB mediates FGF signal regulation of msx-1 expression.

    Science.gov (United States)

    Bushdid, P B; Chen, C L; Brantley, D M; Yull, F; Raghow, R; Kerr, L D; Barnett, J V

    2001-09-01

    The nuclear factor-kappaB (NF-kappaB) family of transcription factors is involved in proliferation, differentiation, and apoptosis in a stage- and cell-dependent manner. Recent evidence has shown that NF-kappaB activity is necessary for both chicken and mouse limb development. We report here that the NF-kappaB family member c-rel and the homeodomain gene msx-1 have partially overlapping expression patterns in the developing chick limb. In addition, inhibition of NF-kappaB activity resulted in a decrease in msx-1 mRNA expression. Sequence analysis of the msx-1 promoter revealed three potential kappaB-binding sites similar to the interferon-gamma (IFN-gamma) kappaB-binding site. These sites bound to c-Rel, as shown by electrophoretic mobility shift assay (EMSA). Furthermore, inhibition of NF-kappaB activity significantly reduced transactivation of the msx-1 promoter in response to FGF-2/-4, known stimulators of msx-1 expression. These results suggest that NF-kappaB mediates the FGF-2/-4 signal regulation of msx-1 gene expression. Copyright 2001 Academic Press.

  1. Contribuições ao estudo de circuitos interruptores com relés polarizados

    OpenAIRE

    Jose Carlos Felizatti

    1991-01-01

    No presente trabalho estudam-se os circuitos interruptores com relés polarizados, enfocando-se quatro tópicos principais, a saber: a tecnologia e os comandos múltiplo, combinatório e seqüencial. Em relação à tecnologia, propõe-se um dispositivo eletromecânico de comando e chaveamento denominado quantor, com características construtiva e operacional superiores aos relés polarizados tradicionais. Os diversos sistemas desenvolvidos utilizando relés polarizados, mostram a extraordinária flexibili...

  2. Regulation of Endothelial Cell Inflammation and Lung PMN Infiltration by Transglutaminase 2

    Science.gov (United States)

    Bijli, Kaiser M.; Kanter, Bryce G.; Minhajuddin, Mohammad; Leonard, Antony; Xu, Lei; Fazal, Fabeha; Rahman, Arshad

    2014-01-01

    We addressed the role of transglutaminase2 (TG2), a calcium-dependent enzyme that catalyzes crosslinking of proteins, in the mechanism of endothelial cell (EC) inflammation and lung PMN infiltration. Exposure of EC to thrombin, a procoagulant and proinflammatory mediator, resulted in activation of the transcription factor NF-κB and its target genes, VCAM-1, MCP-1, and IL-6. RNAi knockdown of TG2 inhibited these responses. Analysis of NF-κB activation pathway showed that TG2 knockdown was associated with inhibition of thrombin-induced DNA binding as well as serine phosphorylation of RelA/p65, a crucial event that controls transcriptional capacity of the DNA-bound RelA/p65. These results implicate an important role for TG2 in mediating EC inflammation by promoting DNA binding and transcriptional activity of RelA/p65. Because thrombin is released in high amounts during sepsis and its concentration is elevated in plasma and lavage fluids of patients with Acute Respiratory Distress Syndrome (ARDS), we determined the in vivo relevance of TG2 in a mouse model of sepsis-induced lung PMN recruitment. A marked reduction in NF-κB activation, adhesion molecule expression, and lung PMN sequestration was observed in TG2 knockout mice compared to wild type mice exposed to endotoxemia. Together, these results identify TG2 as an important mediator of EC inflammation and lung PMN sequestration associated with intravascular coagulation and sepsis. PMID:25057925

  3. Expression profiling and cross-species RNA interference (RNAi of desiccation-induced transcripts in the anhydrobiotic nematode Aphelenchus avenae

    Directory of Open Access Journals (Sweden)

    Culleton Bridget A

    2010-01-01

    Full Text Available Abstract Background Some organisms can survive extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living mycophagous nematode Aphelenchus avenae can be induced to enter anhydrobiosis by pre-exposure to moderate reductions in relative humidity (RH prior to extreme desiccation. This preconditioning phase is thought to allow modification of the transcriptome by activation of genes required for desiccation tolerance. Results To identify such genes, a panel of expressed sequence tags (ESTs enriched for sequences upregulated in A. avenae during preconditioning was created. A subset of 30 genes with significant matches in databases, together with a number of apparently novel sequences, were chosen for further study. Several of the recognisable genes are associated with water stress, encoding, for example, two new hydrophilic proteins related to the late embryogenesis abundant (LEA protein family. Expression studies confirmed EST panel members to be upregulated by evaporative water loss, and the majority of genes was also induced by osmotic stress and cold, but rather fewer by heat. We attempted to use RNA interference (RNAi to demonstrate the importance of this gene set for anhydrobiosis, but found A. avenae to be recalcitrant with the techniques used. Instead, therefore, we developed a cross-species RNAi procedure using A. avenae sequences in another anhydrobiotic nematode, Panagrolaimus superbus, which is amenable to gene silencing. Of 20 A. avenae ESTs screened, a significant reduction in survival of desiccation in treated P. superbus populations was observed with two sequences, one of which was novel, while the other encoded a glutathione peroxidase. To confirm a role for glutathione peroxidases in anhydrobiosis, RNAi with cognate sequences from P. superbus was performed and was also shown to reduce desiccation tolerance in this species. Conclusions This study has identified and characterised the

  4. An RNAi-mediated screen identifies novel targets for next-generation antiepileptic drugs based on increased expression of the homeostatic regulator pumilio.

    Science.gov (United States)

    Lin, Wei-Hsiang; He, Miaomiao; Fan, Yuen Ngan; Baines, Richard A

    2018-05-02

    Despite availability of a diverse range of anti-epileptic drugs (AEDs), only about two-thirds of epilepsy patients respond well to drug treatment. Thus, novel targets are required to catalyse the design of next-generation AEDs. Manipulation of neuron firing-rate homoeostasis, through enhancing Pumilio (Pum) activity, has been shown to be potently anticonvulsant in Drosophila. In this study, we performed a genome-wide RNAi screen in S2R + cells, using a luciferase-based dPum activity reporter and identified 1166 genes involved in dPum regulation. Of these genes, we focused on 699 genes that, on knock-down, potentiate dPum activity/expression. Of this subgroup, 101 genes are activity-dependent based on comparison with genes previously identified as activity-dependent by RNA-sequencing. Functional cluster analysis shows these genes are enriched in pathways involved in DNA damage, regulation of cell cycle and proteasomal protein catabolism. To test for anticonvulsant activity, we utilised an RNA-interference approach in vivo. RNAi-mediated knockdown showed that 57/101 genes (61%) are sufficient to significantly reduce seizure duration in the characterized seizure mutant, para bss . We further show that chemical inhibitors of protein products of some of the genes targeted are similarly anticonvulsant. Finally, to establish whether the anticonvulsant activity of identified compounds results from increased dpum transcription, we performed a luciferase-based assay to monitor dpum promoter activity. Third instar larvae exposed to sodium fluoride, gemcitabine, metformin, bestatin, WP1066 or valproic acid all showed increased dpum promoter activity. Thus, this study validates Pum as a favourable target for AED design and, moreover, identifies a number of lead compounds capable of increasing the expression of this homeostatic regulator.

  5. SGS3 Cooperates with RDR6 in Triggering Geminivirus-Induced Gene Silencing and in Suppressing Geminivirus Infection in Nicotiana Benthamiana

    Directory of Open Access Journals (Sweden)

    Fangfang Li

    2017-09-01

    Full Text Available RNA silencing has an important role in defending against virus infection in plants. Plants with the deficiency of RNA silencing components often show enhanced susceptibility to viral infections. RNA-dependent RNA polymerase (RDRs mediated-antiviral defense has a pivotal role in resistance to many plant viruses. In RDR6-mediated defense against viral infection, a plant-specific RNA binding protein, Suppressor of Gene Silencing 3 (SGS3, was also found to fight against some viruses in Arabidopsis. In this study, we showed that SGS3 from Nicotiana benthamiana (NbSGS3 is required for sense-RNA induced post-transcriptional gene silencing (S-PTGS and initiating sense-RNA-triggered systemic silencing. Further, the deficiency of NbSGS3 inhibited geminivirus-induced endogenous gene silencing (GIEGS and promoted geminivirus infection. During TRV-mediated NbSGS3 or N. benthamiana RDR6 (NbRDR6 silencing process, we found that their expression can be effectively fine-tuned. Plants with the knock-down of both NbSGS3 and NbRDR6 almost totally blocked GIEGS, and were more susceptible to geminivirus infection. These data suggest that NbSGS3 cooperates with NbRDR6 against GIEGS and geminivirus infection in N. benthamiana, which provides valuable information for breeding geminivirus-resistant plants.

  6. Effect of specific silencing of EMMPRIN on the growth and cell cycle distribution of MCF-7 breast cancer cells.

    Science.gov (United States)

    Yang, X Q; Yang, J; Wang, R; Zhang, S; Tan, Q W; Lv, Q; Meng, W T; Mo, X M; Li, H J

    2015-12-02

    The extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a member of the immunoglobulin family and shows increased expression in tumor cells. We examined the effect of RNAi-mediated EMMPRIN gene silencing induced by lentiviral on the growth and cycle distribution of MCF-7 breast cancer cells. Lentiviral expressing EMMPRIN-short hairpin RNA were packaged to infect MCF-7 cells. The inhibition efficiency of EMMPRIN was validated by real-time fluorescent quantitation polymerase chain reaction and western blotting. The effect of EMMPRIN on cell proliferation ability was detected using the MTT assay and clone formation experiments. Changes in cell cycle were detected by flow cytometry. EMMPRIN-short hairpin RNA-packaged lentiviral significantly down-regulated EMMPRIN mRNA and protein expression, significantly inhibited cell proliferation and in vitro tumorigenicity, and induced cell cycle abnormalities. Cells in the G0/G1 and G2/M phases were increased, while cells in the S phase were decreased after infection of MCF-7 cells for 3 days. The EMMPRIN gene facilitates breast cancer cell malignant proliferation by regulating cell cycle distribution and may be a molecular target for breast cancer gene therapy.

  7. Optical silencing of C. elegans cells with light-driven proton pumps.

    Science.gov (United States)

    Okazaki, Ayako; Takahashi, Megumi; Toyoda, Naoya; Takagi, Shin

    2014-08-01

    Recent development of optogenetic techniques, which utilize light-driven ion channels or ion pumps for controlling the activity of excitable cells, has greatly facilitated the investigation of nervous systems in vivo. A new generation of optical silencers includes outward-directed proton pumps, such as Arch, which have several advantages over currently widely used halorhodopsin (NpHR). These advantages include the resistance to inactivation during prolonged illumination and the ability to generate a larger optical current from low intensity light. C. elegans, with its small transparent body and well-characterized neural circuits, is especially suitable for optogenetic analyses. In this article, we will outline the practical aspects of using of Arch and other proton pumps as optogenetic tools in C. elegans. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Regulation of development and function of different T cell subtypes by Rel/NF-κB family members

    International Nuclear Information System (INIS)

    Vallabhapurapu, S.

    2004-09-01

    This study reveals the requirement of distinct members of the Rel/NF-κB family in both hematopoietic and non-hematopoietic cells for the development of thymic NKT cells. Activation of NF-κB via the classical IκBα-regulated pathway is required within the NKT precursors for their efficient maturation from NK1.1 - precursors to mature NK1.1 + NKT cells. The Rel/NF-κB family member RelB, on the other hand, is required in thymic stromal cells for the generation of very early NK1.1 - precursors. NF-κB-inducing kinase (NIK) has also been shown to be required in thymic stromal cells for NKT cell development and this study demonstrates that NIK specifically regulates both constitutive and signal-induced DNA binding of RelB, but not RelA. Moreover, NIK-induced DNA binding of RelB depends on the processing of inhibitory p100 to p52, revealing an alternate pathway of NF-κB induction. Thus, Rel/NF-κB complexes activated by the classical IκBα-regulated pathway in NKT precursors and an alternate NIK/p100/RelB pathway in thymic stromal cells regulate different stages of NKT cell development. (orig.)

  9. Regulation of development and function of different T cell subtypes by Rel/NF-{kappa}B family members

    Energy Technology Data Exchange (ETDEWEB)

    Vallabhapurapu, S.

    2004-09-01

    This study reveals the requirement of distinct members of the Rel/NF-{kappa}B family in both hematopoietic and non-hematopoietic cells for the development of thymic NKT cells. Activation of NF-{kappa}B via the classical I{kappa}B{alpha}-regulated pathway is required within the NKT precursors for their efficient maturation from NK1.1{sup -} precursors to mature NK1.1{sup +} NKT cells. The Rel/NF-{kappa}B family member RelB, on the other hand, is required in thymic stromal cells for the generation of very early NK1.1{sup -} precursors. NF-{kappa}B-inducing kinase (NIK) has also been shown to be required in thymic stromal cells for NKT cell development and this study demonstrates that NIK specifically regulates both constitutive and signal-induced DNA binding of RelB, but not RelA. Moreover, NIK-induced DNA binding of RelB depends on the processing of inhibitory p100 to p52, revealing an alternate pathway of NF-{kappa}B induction. Thus, Rel/NF-{kappa}B complexes activated by the classical I{kappa}B{alpha}-regulated pathway in NKT precursors and an alternate NIK/p100/RelB pathway in thymic stromal cells regulate different stages of NKT cell development. (orig.)

  10. Genetic Tools for Self-Organizing Culture of Mouse Embryonic Stem Cells via Small Regulatory RNA-Mediated Technologies, CRISPR/Cas9, and Inducible RNAi.

    Science.gov (United States)

    Takata, Nozomu; Sakakura, Eriko; Sakuma, Tetsushi; Yamamoto, Takashi

    2017-01-01

    Approaches to investigate gene functions in experimental biology are becoming more diverse and reliable. Furthermore, several kinds of tissues and organs that possess their original identities can be generated in petri dishes from stem cells including embryonic, adult and induced pluripotent stem cells. Researchers now have several choices of experimental methods and their combinations to analyze gene functions in various biological systems. Here, as an example we describe one of the better protocols, which combines three-dimensional embryonic stem cell culture with small regulatory RNA-mediated technologies, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), and inducible RNA interference (RNAi). This protocol allows investigation of genes of interest to better understand gene functions in target tissues (or organs) during in vitro development.

  11. RNAiFold 2.0: a web server and software to design custom and Rfam-based RNA molecules.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Dotu, Ivan; Clote, Peter

    2015-07-01

    Several algorithms for RNA inverse folding have been used to design synthetic riboswitches, ribozymes and thermoswitches, whose activity has been experimentally validated. The RNAiFold software is unique among approaches for inverse folding in that (exhaustive) constraint programming is used instead of heuristic methods. For that reason, RNAiFold can generate all sequences that fold into the target structure or determine that there is no solution. RNAiFold 2.0 is a complete overhaul of RNAiFold 1.0, rewritten from the now defunct COMET language to C++. The new code properly extends the capabilities of its predecessor by providing a user-friendly pipeline to design synthetic constructs having the functionality of given Rfam families. In addition, the new software supports amino acid constraints, even for proteins translated in different reading frames from overlapping coding sequences; moreover, structure compatibility/incompatibility constraints have been expanded. With these features, RNAiFold 2.0 allows the user to design single RNA molecules as well as hybridization complexes of two RNA molecules. the web server, source code and linux binaries are publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold2.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  13. Beyond insects: current status, achievements and future perspectives of RNAi in mite pests.

    Science.gov (United States)

    Niu, Jinzhi; Shen, Guangmao; Christiaens, Olivier; Smagghe, Guy; He, Lin; Wang, Jinjun

    2018-05-11

    Mites comprise a group of key agricultural pests on a wide range of crops. They cause harm through feeding on the plant and transferring dangerous pathogens, and the rapid evolution of pesticide resistance in mites highlights the need for novel control methods. Currently, RNA interference (RNAi) shows a great potential for insect pest control. Here, we review the literature associated with RNAi in mite pests. We discuss different target genes and RNAi efficiency in various mite species, a promising Varroa control program through RNAi, the synergy of RNAi with plant defense mechanisms and microorganisms, and the current understandings of systemic movement of dsRNA. Based on this, we can conclude that there is a clear potential for an RNAi-based mite control application but further research on several aspects is needed, including: (i) the factors influencing the RNAi efficiency, (ii) the mechanism of environmental RNAi and cross-kingdom dsRNA trafficking, (iii) the mechanism of possible systemic and parental RNAi, and (iv) non-target effects, specifically in predatory mites, should be considered during the RNAi target selection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. TmSR-C, scavenger receptor class C, plays a pivotal role in antifungal and antibacterial immunity in the coleopteran insect Tenebrio molitor.

    Science.gov (United States)

    Kim, Soo Gon; Jo, Yong Hun; Seong, Jeong Hwan; Park, Ki Beom; Noh, Mi Young; Cho, Jun Ho; Ko, Hye Jin; Kim, Chang Eun; Tindwa, Hamisi; Patnaik, Bharat Bhusan; Bang, In Seok; Lee, Yong Seok; Han, Yeon Soo

    2017-10-01

    Scavenger receptors (SRs) constitute a family of membrane-bound receptors that bind to multiple ligands. The SR family of proteins is involved in removing cellular debris, oxidized low-density lipoproteins, and pathogens. Specifically, class C scavenger receptors (SR-C) have also been reported to be involved in phagocytosis of gram-positive and -negative bacteria in Drosophila and viruses in shrimp. However, reports are unavailable regarding the role of SR-C in antifungal immune mechanisms in insects. In this study, a full-length Tenebrio molitor SR-C (TmSR-C) sequence was obtained by 5'- and 3'-Rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The TmSR-C full-length cDNA comprised 1671 bp with 5'- and 3'-untranslated regions of 23- and 107-bp, respectively. TmSR-C encodes a putative protein of 556 amino acid residues that is constitutively expressed in all tissues of late instar larvae and 2-day-old adults, with the highest transcript levels observed in hemocytes of larvae and adults. TmSR-C mRNA showed a 2.5-fold and 3-fold increase at 24 and 6 h after infection with Candida albicans and β-glucan, respectively. Immunoassay with TmSR-C polyclonal antibody showed induction of the putative protein in the cytosols of hemocytes at 3 h after inoculation of C. albicans. RNA interference (RNAi)-based gene silencing and phagocytosis assays were used to understand the role of TmSR-C in antifungal immunity. Silencing of TmSR-C transcripts reduced the survivability of late instar larvae at 2 days post-inoculation of C. albicans, Escherichia coli, or Staphylococcus aureus. Furthermore, in TmSR-C-silenced larvae, there was a decline in the rate of microorganism phagocytosis. Taken together, results of this study suggest that TmSR-C plays a pivotal role in phagocytosing not only fungi but also gram-negative and -positive bacteria in T. molitor. Copyright © 2017. Published by Elsevier Ltd.

  15. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2.

    Science.gov (United States)

    Guha, Manti; Fang, Ji-Kang; Monks, Robert; Birnbaum, Morris J; Avadhani, Narayan G

    2010-10-15

    Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca(2+)/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1(-/-) mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.

  16. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae.

    Directory of Open Access Journals (Sweden)

    Wayne Hunter

    Full Text Available The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the world's food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD, which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi has been used successfully to silence endogenous insect (including honey bee genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania. To our knowledge, this is the first successful large-scale real world use of RNAi for disease control.

  17. Focusing on RISC assembly in mammalian cells.

    Science.gov (United States)

    Hong, Junmei; Wei, Na; Chalk, Alistair; Wang, Jue; Song, Yutong; Yi, Fan; Qiao, Ren-Ping; Sonnhammer, Erik L L; Wahlestedt, Claes; Liang, Zicai; Du, Quan

    2008-04-11

    RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5' end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5' end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi.

  18. Focusing on RISC assembly in mammalian cells

    International Nuclear Information System (INIS)

    Hong Junmei; Wei Na; Chalk, Alistair; Wang Jue; Song, Yutong; Yi Fan; Qiao Renping; Sonnhammer, Erik L.L.; Wahlestedt, Claes; Liang Zicai; Du, Quan

    2008-01-01

    RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5' end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5' end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi

  19. Antisense-mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile, and amino acid composition

    DEFF Research Database (Denmark)

    Hansen, Mette; Lange, Marianne; Friis, Carsten

    2007-01-01

    Antisense- or RNAi-mediated suppression of the biosynthesis of nutritionally inferior storage proteins is a promising strategy for improving the amino acid profile of seeds. However, the potential pleiotropic effects of this on interconnected pathways and the agronomic quality traits need...... to be addressed. In the current study, a transcriptomic analysis of an antisense C-hordein line of barley was performed, using a grain-specific cDNA array. The C-hordein antisense line is characterized by marked changes in storage protein and amino acid profiles, while the seed weight is within the normal range...... and no external morphological irregularities were observed. The results of the transcriptome analysis showed excellent correlation with data on changes in the relative proportions of storage proteins and amino acid composition. The antisense line had a lower C-hordein level and down-regulated transcript encoding...

  20. PHTS, a novel putative tumor suppressor, is involved in the transformation reversion of HeLaHF cells independently of the p53 pathway

    International Nuclear Information System (INIS)

    Yu Dehua; Fan, Wufang; Liu, Guohong; Nguy, Vivian; Chatterton, Jon E.; Long Shilong; Ke, Ning; Meyhack, Bernd; Bruengger, Adrian; Brachat, Arndt; Wong-Staal, Flossie; Li, Qi-Xiang

    2006-01-01

    HeLaHF is a non-transformed revertant of HeLa cells, likely resulting from the activation of a putative tumor suppressor(s). p53 protein was stabilized in this revertant and reactivated for certain transactivation functions. Although p53 stabilization has not conclusively been linked to the reversion, it is clear that the genes in p53 pathway are involved. The present study confirms the direct role of p53 in HeLaHF reversion by demonstrating that RNAi-mediated p53 silencing partially restores anchorage-independent growth potential of the revertant through the suppression of anoikis. In addition, we identified a novel gene, named PHTS, with putative tumor suppressor properties, and showed that this gene is also involved in HeLaHF reversion independently of the p53 pathway. Expression profiling revealed that PHTS is one of the genes that is up-regulated in HeLaHF but not in HeLa. It encodes a putative protein with CD59-like domains. RNAi-mediated PHTS silencing resulted in the partial restoration of transformation (anchorage-independent growth) in HeLaHF cells, similar to that of p53 gene silencing, implying its tumor suppressor effect. However, the observed increased transformation potential by PHTS silencing appears to be due to an increased anchorage-independent proliferation rate rather than suppression of anoikis, unlike the effect of p53 silencing. p53 silencing did not affect PHTS gene expression, and vice versa, suggesting PHTS may function in a new and p53-independent tumor suppressor pathway. Furthermore, over-expression of PHTS in different cancer cell lines, in addition to HeLa, reduces cell growth likely via induced apoptosis, confirming the broad PHTS tumor suppressor properties

  1. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    International Nuclear Information System (INIS)

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, André; Gnanasekar, Munirathinam

    2012-01-01

    Highlights: ► Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. ► Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. ► Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. ► Knock down of RAGE abrogates prostate tumor growth in vivo. ► Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  2. TAF11 assembles RISC loading complex to enhance RNAi efficiency

    Science.gov (United States)

    Liang, Chunyang; Wang, Yibing; Murota, Yukiko; Liu, Xiang; Smith, Dean; Siomi, Mikiko C.; Liu, Qinghua

    2015-01-01

    SUMMARY Assembly of the RNA-induced silencing complex (RISC) requires formation of the RISC loading complex (RLC), which contains Dicer-2(Dcr-2)-R2D2 complex and recruits duplex siRNA to Ago2 in Drosophila melanogaster. However, the precise composition and action mechanism of Drosophila RLC remain unclear. Here, we identified the missing factor of RLC as TATA-binding protein associated factor 11 (TAF11) by genetic screen. Although an annotated nuclear transcription factor, we found that TAF11 also associated with Dcr-2/R2D2 and localized to cytoplasmic D2 bodies. Consistent with defective RLC assembly in taf11−/− ovary extract, we reconstituted the RLC in vitro using recombinant Dcr-2-R2D2 complex, TAF11, and duplex siRNA. Furthermore, we showed that TAF11 tetramer facilitates Dcr-2-R2D2 tetramerization to enhance siRNA binding and RISC loading activities. Together, our genetic and biochemical studies define the molecular nature of Drosophila RLC and elucidate a novel cytoplasmic function of TAF11 in organizing RLC assembly to enhance RNAi efficiency. PMID:26257286

  3. Identification, Validation and Utilization of Novel Nematode-Responsive Root-Specific Promoters in Arabidopsis for Inducing Host-Delivered RNAi Mediated Root-Knot Nematode Resistance

    Directory of Open Access Journals (Sweden)

    Atul Kakrana

    2017-12-01

    Full Text Available The root-knot nematode (RKN, Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsRNAs, specifically in roots for disrupting the parasitic process, offer an effective and efficient means of producing resistant crops. We identified nematode-responsive and root-specific (NRRS promoters by using microarray data from the public domain and known conserved cis-elements. A set of 51 NRRS genes was identified which was narrowed down further on the basis of presence of cis-elements combined with minimal expression in the absence of nematode infection. The comparative analysis of promoters from the enriched NRRS set, along with earlier reported nematode-responsive genes, led to the identification of specific cis-elements. The promoters of two candidate genes were used to generate transgenic plants harboring promoter GUS constructs and tested in planta against nematodes. Both promoters showed preferential expression upon nematode infection, exclusively in the root in one and galls in the other. One of these NRRS promoters was used to drive the expression of splicing factor, a nematode-specific gene, for generating host-delivered RNAi-mediated nematode-resistant plants. Transgenic lines expressing dsRNA of splicing factor under the NRRS promoter exhibited upto a 32% reduction in number of galls compared to control plants.

  4. RNAi-Mediated Functional Analysis of Bursicon Genes Related to Adult Cuticle Formation and Tanning in the Honeybee, Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Claudinéia Pereira Costa

    Full Text Available Bursicon is a heterodimeric neurohormone that acts through a G protein-coupled receptor named rickets (rk, thus inducing an increase in cAMP and the activation of tyrosine hydroxylase, the rate-limiting enzyme in the cuticular tanning pathway. In insects, the role of bursicon in the post-ecdysial tanning of the adult cuticle and wing expansion is well characterized. Here we investigated the roles of the genes encoding the bursicon subunits during the adult cuticle development in the honeybee, Apis mellifera. RNAi-mediated knockdown of AmBurs α and AmBurs β bursicon genes prevented the complete formation and tanning (melanization/sclerotization of the adult cuticle. A thinner, much less tanned cuticle was produced, and ecdysis toward adult stage was impaired. Consistent with these results, the knockdown of bursicon transcripts also interfered in the expression of genes encoding its receptor, AmRk, structural cuticular proteins, and enzymes in the melanization/sclerotization pathway, thus evidencing roles for bursicon in adult cuticle formation and tanning. Moreover, the expression of AmBurs α, AmBurs β and AmRk is contingent on the declining ecdysteroid titer that triggers the onset of adult cuticle synthesis and deposition. The search for transcripts of AmBurs α, AmBurs β and candidate targets in RNA-seq libraries prepared with brains and integuments strengthened our data on transcript quantification through RT-qPCR. Together, our results support our premise that bursicon has roles in adult cuticle formation and tanning, and are in agreement with other recent studies pointing for roles during the pharate-adult stage, in addition to the classical post-ecdysial ones.

  5. DNA microarray revealed and RNAi plants confirmed key genes conferring low Cd accumulation in barley grains

    DEFF Research Database (Denmark)

    Sun, Hongyan; Chen, Zhong-Hua; Chen, Fei

    2015-01-01

    Background Understanding the mechanism of low Cd accumulation in crops is crucial for sustainable safe food production in Cd-contaminated soils. Results Confocal microscopy, atomic absorption spectrometry, gas exchange and chlorophyll fluorescence analyses revealed a distinct difference in Cd...... with a substantial difference between the two genotypes. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd...... accumulation. Quantitative RT-PCR confirmed our microarray data. Furthermore, suppression of the zinc transporter genes HvZIP3 and HvZIP8 by RNAi silencing showed increased Cd accumulation and reduced Zn and Mn concentrations in barley grains. Thus, HvZIP3 and HvZIP8 could be candidate genes related to low...

  6. Epigenetic silencing of CYP24 in the tumor microenvironment

    Science.gov (United States)

    Johnson, Candace S.; Chung, Ivy; Trump, Donald L.

    2010-01-01

    Calcitriol (1,25 dihydroxycholecalciferol) has significant antitumor activity in vitro and in vivo in a number of tumor model systems. We developed a system for isolation of fresh endothelial cells from tumors and Matrigel environments which demonstrate that CYP24, the catabolic enzyme involved in vitamin D signaling, is epigenetically silenced selectively in tumor-derived endothelial cells (TDEC). TDEC maintain phenotypic characteristics which are distinct from endothelial cells isolated from normal tissues and from Matrigel plugs (MDEC). In TDEC, calcitriol induces G0/G1 arrest, modulates p27 and p21, and induces apoptotic cell death and decreases P-Erk and P-Akt. In contrast, endothelial cells isolated from normal tissues and MDEC are unresponsive to calcitriol-mediated anti-proliferative effects despite intact signaling through the vitamin D receptor (VDR). In TDEC, which is sensitive to calcitriol, the CYP24 promoter is hypermethylated in two CpG island regions located at the 5′end; this hypermethylation may contribute to gene silencing of CYP24. The extent of methylation in these two regions is significantly less in MDEC. Lastly, treatment of TDEC with a DNA methyltransferase inhibitor restores calcitriol-mediated induction of CYP24 and resistance to calcitriol. These data suggest that epigenetic silencing of CYP24 modulates cellular responses to calcitriol. PMID:20304059

  7. RNAi nanomedicines: challenges and opportunities within the immune system

    International Nuclear Information System (INIS)

    Weinstein, Shiri; Peer, Dan

    2010-01-01

    RNAi, as a novel therapeutic modality, has an enormous potential to bring the era of personalized medicine one step further from notion into reality. However, delivery of RNAi effector molecules into their target tissues and cells remain extremely challenging. Major attempts have been made in recent years to develop sophisticated nanocarriers that could overcome these hurdles. This review will present the recent progress with the challenges and opportunities in this emerging field, focusing mostly on the in vivo applications with special emphasis on the strategies for RNAi delivery into immune cells. (topical review)

  8. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting.

    Science.gov (United States)

    Sherman, James H; Munyikwa, Tichafa; Chan, Stephen Y; Petrick, Jay S; Witwer, Kenneth W; Choudhuri, Supratim

    2015-11-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The meeting session described herein focused on the technology of RNA interference (RNAi) in agriculture. The general process by which RNAi works, currently registered RNAi-based plant traits, example RNAi-based traits in development, potential use of double stranded RNA (dsRNA) as topically applied pesticide active ingredients, research related to the safety of RNAi, biological barriers to ingested dsRNA, recent regulatory RNAi science reviews, and regulatory considerations related to the use of RNAi in agriculture were discussed. Participants generally agreed that the current regulatory framework is robust and appropriate for evaluating the safety of RNAi employed in agricultural biotechnology and were also supportive of the use of RNAi to develop improved crop traits. However, as with any emerging technology, the potential range of future products, potential future regulatory frameworks, and public acceptance of the technology will continue to evolve. As such, continuing dialogue was encouraged to promote education of consumers and science-based regulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    International Nuclear Information System (INIS)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  10. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  11. Functional diversification of Argonautes in nematodes: an expanding universe.

    Science.gov (United States)

    Buck, Amy H; Blaxter, Mark

    2013-08-01

    In the last decade, many diverse RNAi (RNA interference) pathways have been discovered that mediate gene silencing at epigenetic, transcriptional and post-transcriptional levels. The diversity of RNAi pathways is inherently linked to the evolution of Ago (Argonaute) proteins, the central protein component of RISCs (RNA-induced silencing complexes). An increasing number of diverse Agos have been identified in different species. The functions of most of these proteins are not yet known, but they are generally assumed to play roles in development, genome stability and/or protection against viruses. Recent research in the nematode Caenorhabditis elegans has expanded the breadth of RNAi functions to include transgenerational epigenetic memory and, possibly, environmental sensing. These functions are inherently linked to the production of secondary siRNAs (small interfering RNAs) that bind to members of a clade of WAGOs (worm-specific Agos). In the present article, we review briefly what is known about the evolution and function of Ago proteins in eukaryotes, including the expansion of WAGOs in nematodes. We postulate that the rapid evolution of WAGOs enables the exceptional functional plasticity of nematodes, including their capacity for parasitism.

  12. [Small interfering RNA-mediated COX-2 gene silencing enhances chemosensitivity of KB/VCR cells by suppressing MDR-1 gene expression and P-glycoprotein activity].

    Science.gov (United States)

    Mo, Xianchao; Li, Weizhong

    2014-05-01

    To investigate the effect of small interfering RNA (siRNA)-mediated COX-2 gene silencing in enhancing the chemosensitivity of KB/VCR cell lines. KB/VCR cells were trasnfected with COX-2 siRNA were examined for expressions of COX-2 and MDR-1 mRNAs with RT-PCR and for Rho-123 accumulation using flow cytometry. MTT assay was used to analyze the proliferation of the transfected KB/VCR cells. Compared with the negative and blank control groups, COX-2 siRNA transfection resulted in significant growth inhibition of KB/VCR cells exposed to vincristine (PKB/VCR cells. COX-2 gene silencing can enhance the chemosensitivity of KB/VCR cells to vincristine, the mechanism of which may involve down-regulated MDR-1 gene expression and inhibition of P-glycoprotein activity.

  13. In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus.

    Science.gov (United States)

    Watanabe, Tsunamasa; Hatakeyama, Hiroto; Matsuda-Yasui, Chiho; Sato, Yusuke; Sudoh, Masayuki; Takagi, Asako; Hirata, Yuichi; Ohtsuki, Takahiro; Arai, Masaaki; Inoue, Kazuaki; Harashima, Hideyoshi; Kohara, Michinori

    2014-04-23

    The development of RNA interference (RNAi)-based therapy faces two major obstacles: selecting small interfering RNA (siRNA) sequences with strong activity, and identifying a carrier that allows efficient delivery to target organs. Additionally, conservative region at nucleotide level must be targeted for RNAi in applying to virus because hepatitis C virus (HCV) could escape from therapeutic pressure with genome mutations. In vitro preparation of Dicer-generated siRNAs targeting a conserved, highly ordered HCV 5' untranslated region are capable of inducing strong RNAi activity. By dissecting the 5'-end of an RNAi-mediated cleavage site in the HCV genome, we identified potent siRNA sequences, which we designate as Dicer-hunting siRNAs (dh-siRNAs). Furthermore, formulation of the dh-siRNAs in an optimized multifunctional envelope-type nano device inhibited ongoing infectious HCV replication in human hepatocytes in vivo. Our efforts using both identification of optimal siRNA sequences and delivery to human hepatocytes suggest therapeutic potential of siRNA for a virus.

  14. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes.

    Science.gov (United States)

    Valli, Adrian; Busnadiego, Idoia; Maliogka, Varvara; Ferrero, Diego; Castón, José R; Rodríguez, José Francisco; García, Juan Antonio

    2012-01-01

    RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV) displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.

  15. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    Directory of Open Access Journals (Sweden)

    Tatsuya eKon

    2014-11-01

    Full Text Available Apple latent spherical virus (ALSV is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the CaMV 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation 0 plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification.

  16. Carbon dioxide-dependent regulation of NF-κB family members RelB and p100 gives molecular insight into CO2-dependent immune regulation.

    Science.gov (United States)

    Keogh, Ciara E; Scholz, Carsten C; Rodriguez, Javier; Selfridge, Andrew C; von Kriegsheim, Alexander; Cummins, Eoin P

    2017-07-07

    CO 2 is a physiological gas normally produced in the body during aerobic respiration. Hypercapnia (elevated blood pCO 2 >≈50 mm Hg) is a feature of several lung pathologies, e.g. chronic obstructive pulmonary disease. Hypercapnia is associated with increased susceptibility to bacterial infections and suppression of inflammatory signaling. The NF-κB pathway has been implicated in these effects; however, the molecular mechanisms underpinning cellular sensitivity of the NF-κB pathway to CO 2 are not fully elucidated. Here, we identify several novel CO 2 -dependent changes in the NF-κB pathway. NF-κB family members p100 and RelB translocate to the nucleus in response to CO 2 A cohort of RelB protein-protein interactions ( e.g. with Raf-1 and IκBα) are altered by CO 2 exposure, although others are maintained ( e.g. with p100). RelB is processed by CO 2 in a manner dependent on a key C-terminal domain located in its transactivation domain. Loss of the RelB transactivation domain alters NF-κB-dependent transcriptional activity, and loss of p100 alters sensitivity of RelB to CO 2 Thus, we provide molecular insight into the CO 2 sensitivity of the NF-κB pathway and implicate altered RelB/p100-dependent signaling in the CO 2 -dependent regulation of inflammatory signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.

    Science.gov (United States)

    Krenek, Pavel; Samajova, Olga; Luptovciak, Ivan; Doskocilova, Anna; Komis, George; Samaj, Jozef

    2015-11-01

    Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Can RNAi-mediated hsp90α knockdown in combination with 17-AAG be a therapy for glioma?

    Science.gov (United States)

    Mehta, Adi; Shervington, Amal; Howl, John; Jones, Sarah; Shervington, Leroy

    2013-01-01

    Heat shock protein 90 promotes tumor progression and survival and has emerged as a vital therapeutic target. Previously we reported that the combinatorial treatment of 17AAG/sihsp90α significantly downregulated Hsp90α mRNA and protein levels in Glioblastoma Multiforme (GBM). Here we investigated the ability of cell penetrating peptide (Tat48-60 CPP)-mediated siRNA-induced hsp90α knockdown as a single agent and in combination with 17-allylamino-17-demethoxygeldanamycin (17-AAG) to induce tumor growth inhibition in GBM and whether it possessed therapeutic implications. GBM and non-tumorigenic cells exposed to siRNA and/or 17-AAG were subsequently assessed by qRT-PCR, immunofluorescence, FACS analysis, quantitative Akt, LDH leakage and cell viability assays. PAGE was performed for serum stability assessment. A combination of siRNA/17-AAG treatment significantly induced Hsp90α gene and protein knockdown by 95% and 98%, respectively, concomitant to 84% Akt kinase activity attenuation, induced cell cycle arrest and tumor-specific cytotoxicity by 88%. Efficient complex formation between CPP and siRNA exhibited improved serum stability of the siRNA with minimal intrinsic toxicity in vitro. The preliminary in vivo results showed that combination therapy induced hsp90α knockdown and attenuated Akt kinase activity in intracranial glioblastoma mouse models. The results imply that RNAi-mediated hsp90α knockdown increases 17-AAG treatment efficacy in GBM. In addition, the cytotoxic response observed was the consequence of downregulation of hsp90α gene expression, reduced Akt kinase activity and S-G2/M cell cycle arrest. These results are novel and highlight the ability of Tat to efficiently deliver siRNA in GBM and suggest that the dual inhibition of Hsp90 has therapeutic potentials.

  19. Application of RNAi to Genomic Drug Target Validation in Schistosomes.

    Directory of Open Access Journals (Sweden)

    Alessandra Guidi

    2015-05-01

    Full Text Available Concerns over the possibility of resistance developing to praziquantel (PZQ, has stimulated efforts to develop new drugs for schistosomiasis. In addition to the development of improved whole organism screens, the success of RNA interference (RNAi in schistosomes offers great promise for the identification of potential drug targets to initiate drug discovery. In this study we set out to contribute to RNAi based validation of putative drug targets. Initially a list of 24 target candidates was compiled based on the identification of putative essential genes in schistosomes orthologous of C. elegans essential genes. Knockdown of Calmodulin (Smp_026560.2 (Sm-Calm, that topped this list, produced a phenotype characterised by waves of contraction in adult worms but no phenotype in schistosomula. Knockdown of the atypical Protein Kinase C (Smp_096310 (Sm-aPKC resulted in loss of viability in both schistosomula and adults and led us to focus our attention on other kinase genes that were identified in the above list and through whole organism screening of known kinase inhibitor sets followed by chemogenomic evaluation. RNAi knockdown of these kinase genes failed to affect adult worm viability but, like Sm-aPKC, knockdown of Polo-like kinase 1, Sm-PLK1 (Smp_009600 and p38-MAPK, Sm-MAPK p38 (Smp_133020 resulted in an increased mortality of schistosomula after 2-3 weeks, an effect more marked in the presence of human red blood cells (hRBC. For Sm-PLK-1 the same effects were seen with the specific inhibitor, BI2536, which also affected viable egg production in adult worms. For Sm-PLK-1 and Sm-aPKC the in vitro effects were reflected in lower recoveries in vivo. We conclude that the use of RNAi combined with culture with hRBC is a reliable method for evaluating genes important for larval development. However, in view of the slow manifestation of the effects of Sm-aPKC knockdown in adults and the lack of effects of Sm-PLK-1 and Sm-MAPK p38 on adult viability

  20. McREL Leadership Responsibilities through the Lens of Data: The Critical Nine

    Directory of Open Access Journals (Sweden)

    Cheryl James-Ward

    2015-09-01

    Full Text Available In the United States, the beginning of the 21st century also ushered in a new era of school accountability and reform with the No Child Left Behind Act [NCLB] (US Department of Education, 2010. Although the law is no longer in effect, the district and school level accountability that it brought remains. The accountability and need for ongoing improvement rest squarely on the shoulders of school principals, many of whom have no skill sets or experience with the use of data to improve student outcomes. This article utilizes the research studies and findings from the Mid-Continent Research for Education and Learning (McREL lab, in order to examine those leadership responsibilities intertwined with the use of data to improve student achievement. McREL has identified 21 leadership responsibilities that describe the knowledge and skills school leaders need to positively impact student achievement. This analysis focuses on the McREL leadership responsibilities with an effect size of .25 or higher that require a focus on data. The use of hard and soft data to focus improvement is then analyzed and expanded upon through the McREL lens.

  1. [Construction of recombinant lentiviral vector of Tie2-RNAi and its influence on malignant melanoma cells in vitro].

    Science.gov (United States)

    Shan, Xiu-ying; Liu, Zhao-liang; Wang, Biao; Guo, Guo-xiang; Wang, Mei-shui; Zhuang, Fu-lian; Cai, Chuan-shu; Zhang, Ming-feng; Zhang, Yan-ding

    2011-07-01

    To construct lentivector carrying Tie2-Small interfering RNA (SiRNA), so as to study its influence on malignant melanoma cells. Recombinant plasmid pSilencer 1.0-U6-Tie2-siRNA and plasmid pNL-EGFP were digested with XbaI, ligated a target lentiviral transfer plasmid of pNL-EGFP-U6-Tie2-I or pNL-EGFP-U6-Tie2-II, and then the electrophoresis clones was sequenced. Plasmids of pNL-EGFP-U6-Tie2-I and pNL-EGFP-U6-Tie2-II were constructed and combined with pVSVG and pHelper, respectively, to constitute lentiviral vector system of three plasmids. The Lentiviral vector system was transfected into 293T cell to produce pNL-EGFP-U6-Tie2- I and pNL-EGFP-U6-Tie2-II lentivirus. Then the supernatant was collected to determine the titer. Malignant melanoma cells were infected by both lentiviruses and identified by Realtime RT-PCR to assess inhibitory efficiency. The recombinant lentiviral vectors of Tie2-RNAi were constructed successfully which were analyzed with restriction enzyme digestion and identified by sequencing. And the titer of lentiviral vector was 8.8 x 10(3)/ml, which was determined by 293T cell. The results of Realtime RT-PCR demonstrated that the lentiviral vectors of Tie2-RNAi could infect malignant melanoma cells and inhibit the expression of Tie2 genes in malignant melanoma cells (P0.05) between the two lentiviral vectors of Tie2-RNAi. Lentivector carrying Tie2-SiRNA can be constructed successfully and inhibit the expression of Tie2 gene in vitro significantly. The study will supply the theory basis for the further research on the inhibition of tumor growth in vivo.

  2. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system

    Directory of Open Access Journals (Sweden)

    Verhaagen Joost

    2010-02-01

    Full Text Available Abstract Background After a spinal cord lesion, axon regeneration is inhibited by the presence of a diversity of inhibitory molecules in the lesion environment. At and around the lesion site myelin-associated inhibitors, chondroitin sulfate proteoglycans (CSPGs and several axon guidance molecules, including all members of the secreted (class 3 Semaphorins, are expressed. Interfering with multiple inhibitory signals could potentially enhance the previously reported beneficial effects of blocking single molecules. RNA interference (RNAi is a tool that can be used to simultaneously silence expression of multiple genes. In this study we aimed to employ adeno-associated virus (AAV mediated expression of short hairpin RNAs (shRNAs to target all Semaphorin class 3 signaling by knocking down its receptors, Neuropilin 1 (Npn-1 and Neuropilin 2 (Npn-2. Results We have successfully generated shRNAs that knock down Npn-1 and Npn-2 in a neuronal cell line. We detected substantial knockdown of Npn-2 mRNA when AAV5 viral vector particles expressing Npn-2 specific shRNAs were injected in dorsal root ganglia (DRG of the rat. Unexpectedly however, AAV1-mediated expression of Npn-2 shRNAs and a control shRNA in the red nucleus resulted in an adverse tissue response and neuronal degeneration. The observed toxicity was dose dependent and was not seen with control GFP expressing AAV vectors, implicating the shRNAs as the causative toxic agents. Conclusions RNAi is a powerful tool to knock down Semaphorin receptor expression in neuronal cells in vitro and in vivo. However, when shRNAs are expressed at high levels in CNS neurons, they trigger an adverse tissue response leading to neuronal degradation.

  3. Protective Role of Complement C3 Against Cytokine-Mediated beta-Cell Apoptosis

    DEFF Research Database (Denmark)

    Dos Santos, Reinaldo S.; Marroqui, Laura; Grieco, Fabio A.

    2017-01-01

    silencing exacerbates apoptosis under both basal condition and following exposure to cytokines, and it increases chemokine expression upon cytokine treatment. C3 exerts its prosurvival effects via AKT activation and c-Jun N-terminal kinase inhibition. Exogenously added C3 also protects against cytokine...

  4. Pathogenic effects of Rift Valley fever virus NSs gene are alleviated in cultured cells by expressed antiviral short hairpin RNAs.

    Science.gov (United States)

    Scott, Tristan; Paweska, Janusz T; Arbuthnot, Patrick; Weinberg, Marc S

    2012-01-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, may cause severe hepatitis, encephalitis and haemorrhagic fever in humans. There are currently no available licensed vaccines or therapies to treat the viral infection in humans. RNA interference (RNAi)-based viral gene silencing offers a promising approach to inhibiting replication of this highly pathogenic virus. The small (S) segment of the RVFV tripartite genome carries the genetic determinates for pathogenicity during infection. This segment encodes the non-structural S (NSs) and essential nucleocapsid (N) genes. To advance RNAi-based inhibition of RVFV replication, we designed several Pol III short hairpin RNA (shRNA) expression cassettes against the NSs and N genes, including a multimerized plasmid vector that included four shRNA expression cassettes. Effective target silencing was demonstrated using full- and partial-length target reporter assays, and confirmed by western blot analysis of exogenous N and NSs expression. Small RNA northern blots showed detectable RNAi guide strand formation from single and multimerized shRNA constructs. Using a cell culture model of RVFV replication, shRNAs targeting the N gene decreased intracellular nucleocapsid protein concentration and viral replication. The shRNAs directed against the NSs gene reduced NSs protein concentrations and alleviated NSs-mediated cytotoxicity, which may be caused by host transcription suppression. These data are the first demonstration that RNAi activators have a potential therapeutic benefit for countering RVFV infection.

  5. Sina and Sinb genes in triticale do not determine grain hardness contrary to their orthologs Pina and Pinb in wheat.

    Science.gov (United States)

    Gasparis, Sebastian; Orczyk, Waclaw; Nadolska-Orczyk, Anna

    2013-11-26

    Secaloindoline a (Sina) and secaloindoline b (Sinb) genes of hexaploid triticale (x Triticosecale Wittmack) are orthologs of puroindoline a (Pina) and puroindoline b (Pinb) in hexaploid wheat (Triticum aestivum L.). It has already been proven that RNA interference (RNAi)-based silencing of Pina and Pinb genes significantly decreased the puroindoline a and puroindoline b proteins in wheat and essentially increased grain hardness (J Exp Bot 62:4025-4036, 2011). The function of Sina and Sinb in triticale was tested by means of RNAi silencing and compared to wheat. Novel Sina and Sinb alleles in wild-type plants of cv. Wanad were identified and their expression profiles characterized. Alignment with wheat Pina-D1a and Pinb-D1a alleles showed 95% and 93.3% homology with Sina and Sinb coding sequences. Twenty transgenic lines transformed with two hpRNA silencing cassettes directed to silence Sina or Sinb were obtained by the Agrobacterium-mediated method. A significant decrease of expression of both Sin genes in segregating progeny of tested T1 lines was observed independent of the silencing cassette used. The silencing was transmitted to the T4 kernel generation. The relative transcript level was reduced by up to 99% in T3 progeny with the mean for the sublines being around 90%. Silencing of the Sin genes resulted in a substantial decrease of secaloindoline a and secaloindoline b content. The identity of SIN peptides was confirmed by mass spectrometry. The hardness index, measured by the SKCS (Single Kernel Characterization System) method, ranged from 22 to 56 in silent lines and from 37 to 49 in the control, and the mean values were insignificantly lower in the silent ones, proving increased softness. Additionally, the mean total seed protein content of silenced lines was about 6% lower compared with control lines. Correlation coefficients between hardness and transcript level were weakly positive. We documented that RNAi-based silencing of Sin genes resulted in

  6. Türkiye Ekonomisinde Sektörel Enerji Tüketiminin Ayrıştırma Yöntemiyle Analizi

    Directory of Open Access Journals (Sweden)

    Alper Yılmaz

    2016-12-01

    Full Text Available Bu çalışma 1970-2013 yılları arasında Türkiye ekonomisi için sektörel enerji tüketimini ayrıştırma yöntemiyle analiz etmeyi amaçlamaktadır. Çalışmanın sonuçlarına göre sektörel enerji tüketiminin çıktı ve yapısal etki nedeniyle arttığı, yoğunluk etkisi nedeniyle ise düştüğü görülür. Ayrıca diğer iki etkiye göre çıktı etkisi sektörel enerji tüketimi üzerinde en güçlü etkiye sahiptir. Sektörel enerji tüketiminin üretim artışı ile oldukça yakın ilişkili (doğrusal olduğu görülür. Benzer şekilde yapısal etkinin, Türkiye ekonomisindeki enerji yoğun sektörlerinin ağırlığının artmasına bağlı olarak sektörel enerji tüketimini arttırıcı yönde etki yaptığı görülür. Ancak yoğunluk etkisine bakıldığında 1980 sonrasında Türkiye ekonomisi enerji yoğunluğunun yavaş bir düşme eğilimi içinde olduğu görülür.

  7. Caenorhabditis elegans histone methyltransferase MET-2 shields the male X chromosome from checkpoint machinery and mediates meiotic sex chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Paula M Checchi

    2011-09-01

    Full Text Available Meiosis is a specialized form of cellular division that results in the precise halving of the genome to produce gametes for sexual reproduction. Checkpoints function during meiosis to detect errors and subsequently to activate a signaling cascade that prevents the formation of aneuploid gametes. Indeed, asynapsis of a homologous chromosome pair elicits a checkpoint response that can in turn trigger germline apoptosis. In a heterogametic germ line, however, sex chromosomes proceed through meiosis with unsynapsed regions and are not recognized by checkpoint machinery. We conducted a directed RNAi screen in Caenorhabditis elegans to identify regulatory factors that prevent recognition of heteromorphic sex chromosomes as unpaired and uncovered a role for the SET domain histone H3 lysine 9 histone methyltransferase (HMTase MET-2 and two additional HMTases in shielding the male X from checkpoint machinery. We found that MET-2 also mediates the transcriptional silencing program of meiotic sex chromosome inactivation (MSCI but not meiotic silencing of unsynapsed chromatin (MSUC, suggesting that these processes are distinct. Further, MSCI and checkpoint shielding can be uncoupled, as double-strand breaks targeted to an unpaired, transcriptionally silenced extra-chromosomal array induce checkpoint activation in germ lines depleted for met-2. In summary, our data uncover a mechanism by which repressive chromatin architecture enables checkpoint proteins to distinguish between the partnerless male X chromosome and asynapsed chromosomes thereby shielding the lone X from inappropriate activation of an apoptotic program.

  8. Defense and counterdefense in the RNAi-based antiviral immune system in insects

    NARCIS (Netherlands)

    van Mierlo, J.T.; van Cleef, K.W.; Rij, R.P. van

    2011-01-01

    RNA interference (RNAi) is an important pathway to combat virus infections in insects and plants. Hallmarks of antiviral RNAi in these organisms are: (1) an increase in virus replication after inactivation of major actors in the RNAi pathway, (2) production of virus-derived small interfering RNAs

  9. A Computational model for compressed sensing RNAi cellular screening

    Directory of Open Access Journals (Sweden)

    Tan Hua

    2012-12-01

    Full Text Available Abstract Background RNA interference (RNAi becomes an increasingly important and effective genetic tool to study the function of target genes by suppressing specific genes of interest. This system approach helps identify signaling pathways and cellular phase types by tracking intensity and/or morphological changes of cells. The traditional RNAi screening scheme, in which one siRNA is designed to knockdown one specific mRNA target, needs a large library of siRNAs and turns out to be time-consuming and expensive. Results In this paper, we propose a conceptual model, called compressed sensing RNAi (csRNAi, which employs a unique combination of group of small interfering RNAs (siRNAs to knockdown a much larger size of genes. This strategy is based on the fact that one gene can be partially bound with several small interfering RNAs (siRNAs and conversely, one siRNA can bind to a few genes with distinct binding affinity. This model constructs a multi-to-multi correspondence between siRNAs and their targets, with siRNAs much fewer than mRNA targets, compared with the conventional scheme. Mathematically this problem involves an underdetermined system of equations (linear or nonlinear, which is ill-posed in general. However, the recently developed compressed sensing (CS theory can solve this problem. We present a mathematical model to describe the csRNAi system based on both CS theory and biological concerns. To build this model, we first search nucleotide motifs in a target gene set. Then we propose a machine learning based method to find the effective siRNAs with novel features, such as image features and speech features to describe an siRNA sequence. Numerical simulations show that we can reduce the siRNA library to one third of that in the conventional scheme. In addition, the features to describe siRNAs outperform the existing ones substantially. Conclusions This csRNAi system is very promising in saving both time and cost for large-scale RNAi

  10. CSN-associated USP48 confers stability to nuclear NF-κB/RelA by trimming K48-linked Ub-chains.

    Science.gov (United States)

    Schweitzer, Katrin; Naumann, Michael

    2015-02-01

    Diligent balance of nuclear factor kappa B (NF-κB) activity is essential owing to NF-κB's decisive role in cellular processes including inflammation, immunity and cell survival. Ubiquitin/proteasome-system (UPS)-dependent degradation of activated NF-κB/RelA involves the cullin-RING-ubiquitin-ligase (CRL) ECS(SOCS1). The COP9 signalosome (CSN) controls ubiquitin (Ub) ligation by CRLs through the removal of the CRL-activating Ub-like modifier NEDD8 from their cullin subunits and through deubiquitinase (DUB) activity of associated DUBs. However, knowledge about DUBs involved in the regulation of NF-κB activity within the nucleus is scarce. In this study we observed that USP48, a DUB of hitherto ill-defined function identified through a siRNA screen, associates with the CSN and RelA in the nucleus. We show that USP48 trims rather than completely disassembles long K48-linked free and substrate-anchored Ub-chains, a catalytic property only shared with ataxin-3 (Atx3) and otubain-1 (OTU1), and that USP48 Ub-chain-trimming activity is regulated by casein-kinase-2 (CK2)-mediated phosphorylation in response to cytokine-stimulation. Functionally, we demonstrate for the first time the CSN and USP48 to cooperatively stabilize the nuclear pool of RelA, thereby facilitating timely induction and shutoff of NF-κB target genes. In summary, this study demonstrates that USP48, a nuclear DUB regulated by CK2, controls the UPS-dependent turnover of activated NF-κB/RelA in the nucleus together with the CSN. Thereby USP48 contributes to a timely control of immune responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Musashi-2 Silencing Exerts Potent Activity against Acute Myeloid Leukemia and Enhances Chemosensitivity to Daunorubicin.

    Directory of Open Access Journals (Sweden)

    Yixiang Han

    Full Text Available RNA-binding protein Musashi-2 (Msi2 is known to play a critical role in leukemogenesis and contributes to poor clinical prognosis in acute myeloid leukemia (AML. However, the effect of Msi2 silencing on treatment for AML still remains poorly understood. In this study, we used lentivirus-mediated RNA interference targeting Msi2 to investigate the resulting changes in cellular processes and the underlying mechanisms in AML cell lines as well as primary AML cells isolated from AML patients. We found that Msi2 was highly expressed in AML cells, and its depletion inhibited Ki-67 expression and resulted in decreased in vitro and in vivo proliferation. Msi2 silencing induced cell cycle arrest in G0/G1 phase, with decreased Cyclin D1 and increased p21 expression. Msi2 silencing induced apoptosis through down-regulation of Bcl-2 expression and up-regulation of Bax expression. Suppression of Akt, Erk1/2 and p38 phosphorylation also contributed to apoptosis mediated by Msi2 silencing. Finally, Msi2 silencing in AML cells also enhanced their chemosensitivity to daunorubicin. Conclusively, our data suggest that Msi2 is a promising target for gene therapy to optimize conventional chemotherapeutics in AML treatment.

  12. Neuronal migration is regulated by endogenous RNAi and chromatin-binding factor ZFP-1/AF10 in Caenorhabditis elegans.

    Science.gov (United States)

    Kennedy, Lisa M; Grishok, Alla

    2014-05-01

    Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Moreover, we have demonstrated that the insulin/IGF-1-PI3K-signaling pathway regulates the activity of the DAF-16/FOXO transcription factor in the hypodermis to nonautonomously promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. In this study, we implicate the PHD-containing isoform of ZFP-1 and endogenous RNAi in the regulation of HSN migration. ZFP-1 affects HSN migration in part through its negative effect on pdk-1 transcription and modulation of downstream DAF-16 activity. We also identify a novel role for ZFP-1 and RNAi pathway components, including RDE-4, in the regulation of HSN migration in parallel with DAF-16. Therefore, the coordinated activities of DAF-16, ZFP-1, and endogenous RNAi contribute to gene regulation during development to ensure proper neuronal positioning.

  13. TAF11 Assembles the RISC Loading Complex to Enhance RNAi Efficiency.

    Science.gov (United States)

    Liang, Chunyang; Wang, Yibing; Murota, Yukiko; Liu, Xiang; Smith, Dean; Siomi, Mikiko C; Liu, Qinghua

    2015-09-03

    Assembly of the RNA-induced silencing complex (RISC) requires formation of the RISC loading complex (RLC), which contains the Dicer-2 (Dcr-2)-R2D2 complex and recruits duplex siRNA to Ago2 in Drosophila melanogaster. However, the precise composition and action mechanism of Drosophila RLC remain unclear. Here we identified the missing factor of RLC as TATA-binding protein-associated factor 11 (TAF11) by genetic screen. Although it is an annotated nuclear transcription factor, we found that TAF11 also associated with Dcr-2/R2D2 and localized to cytoplasmic D2 bodies. Consistent with defective RLC assembly in taf11(-/-) ovary extract, we reconstituted the RLC in vitro using the recombinant Dcr-2-R2D2 complex, TAF11, and duplex siRNA. Furthermore, we showed that TAF11 tetramer facilitates Dcr-2-R2D2 tetramerization to enhance siRNA binding and RISC loading activities. Together, our genetic and biochemical studies define the molecular nature of the Drosophila RLC and elucidate a cytoplasmic function of TAF11 in organizing RLC assembly to enhance RNAi efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Nano-siRNA Particles and Combination Therapies for Ovarian Tumor Targeting

    Science.gov (United States)

    2014-08-01

    accumulate in tumors, and can silence gene expression in cancer cells. The sponge-like microporous particles we refer to as RNAi microsponges (RNAi MS...Transmission electron microscopy (JEOL 2010 and 2000FX) was utilized to observe the internal structure of the ODN-MSs and LbL-ODN-NPs. Images were...C.; Chan, V.; Pal, A.; Mayes, A.; Rubner, M. Fabrication of microporous thin films from polyelectrolyte multilayers. Langmuir 2000, 16, 5017-5023

  15. The VP3 factor from viruses of Birnaviridae family suppresses RNA silencing by binding both long and small RNA duplexes.

    Directory of Open Access Journals (Sweden)

    Adrian Valli

    Full Text Available RNA silencing is directly involved in antiviral defense in a wide variety of eukaryotic organisms, including plants, fungi, invertebrates, and presumably vertebrate animals. The study of RNA silencing-mediated antiviral defences in vertebrates is hampered by the overlap with other antiviral mechanisms; thus, heterologous systems are often used to study the interplay between RNA silencing and vertebrate-infecting viruses. In this report we show that the VP3 protein of the avian birnavirus Infectious bursal disease virus (IBDV displays, in addition to its capacity to bind long double-stranded RNA, the ability to interact with double-stranded small RNA molecules. We also demonstrate that IBDV VP3 prevents the silencing mediated degradation of a reporter mRNA, and that this silencing suppression activity depends on its RNA binding ability. Furthermore, we find that the anti-silencing activity of IBDV VP3 is shared with the homologous proteins expressed by both insect- and fish-infecting birnaviruses. Finally, we show that IBDV VP3 can functionally replace the well-characterized HCPro silencing suppressor of Plum pox virus, a potyvirus that is unable to infect plants in the absence of an active silencing suppressor. Altogether, our results support the idea that VP3 protects the viral genome from host sentinels, including those of the RNA silencing machinery.

  16. RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi?

    Directory of Open Access Journals (Sweden)

    Unnikrishnan Unniyampurath

    2016-02-01

    Full Text Available The recent emergence of multiple technologies for modifying gene structure has revolutionized mammalian biomedical research and enhanced the promises of gene therapy. Over the past decade, RNA interference (RNAi based technologies widely dominated various research applications involving experimental modulation of gene expression at the post-transcriptional level. Recently, a new gene editing technology, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR and the CRISPR-associated protein 9 (Cas9 (CRISPR/Cas9 system, has received unprecedented acceptance in the scientific community for a variety of genetic applications. Unlike RNAi, the CRISPR/Cas9 system is bestowed with the ability to introduce heritable precision insertions and deletions in the eukaryotic genome. The combination of popularity and superior capabilities of CRISPR/Cas9 system raises the possibility that this technology may occupy the roles currently served by RNAi and may even make RNAi obsolete. We performed a comparative analysis of the technical aspects and applications of the CRISPR/Cas9 system and RNAi in mammalian systems, with the purpose of charting out a predictive picture on whether the CRISPR/Cas9 system will eclipse the existence and future of RNAi. The conclusion drawn from this analysis is that RNAi will still occupy specific domains of biomedical research and clinical applications, under the current state of development of these technologies. However, further improvements in CRISPR/Cas9 based technology may ultimately enable it to dominate RNAi in the long term.

  17. Utilization of a tobacco rattle virus vector to clone an Nicotiana benthamiana cDNA library for VIGS

    Science.gov (United States)

    Virus-induced gene silencing (VIGS) is an efficient and rapid method to identify plant gene functions. One of the most widely used VIGS vectors is Tobacco rattle virus (TRV) which has been used successfully for RNA interference (RNAi) in N. benthamiana and tomato. We previously modified a TRV VIGS v...

  18. RNAi Technique in Stem Cell Research: Current Status and Future Perspectives.

    Science.gov (United States)

    Zou, Gang-Ming

    2017-01-01

    RNAi is a mechanism displayed by most eukaryotic cells to rid themselves of foreign double-strand RNA molecules. In the 18 years since the initial report, RNAi has now been demonstrated to function in mammalian cells to alter gene expression and has been used as a means for genetic discovery as well as a possible strategy for genetic correction and genetic therapy in cancer and other disease. The aim of this review is to provide a general overview of how RNAi suppresses gene expression and to examine some published RNAi approaches that have resulted in changes in stem cell function and suggest the possible clinical relevance of this work in cancer therapy through targeting cancer stem cells.

  19. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.

    Science.gov (United States)

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M; Young, Patrick

    2011-02-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

  20. In Silico Design and Experimental Validation of siRNAs Targeting Conserved Regions of Multiple Hepatitis C Virus Genotypes.

    Directory of Open Access Journals (Sweden)

    Mahmoud ElHefnawi

    Full Text Available RNA interference (RNAi is a post-transcriptional gene silencing mechanism that mediates the sequence-specific degradation of targeted RNA and thus provides a tremendous opportunity for development of oligonucleotide-based drugs. Here, we report on the design and validation of small interfering RNAs (siRNAs targeting highly conserved regions of the hepatitis C virus (HCV genome. To aim for therapeutic applications by optimizing the RNAi efficacy and reducing potential side effects, we considered different factors such as target RNA variations, thermodynamics and accessibility of the siRNA and target RNA, and off-target effects. This aim was achieved using an in silico design and selection protocol complemented by an automated MysiRNA-Designer pipeline. The protocol included the design and filtration of siRNAs targeting highly conserved and accessible regions within the HCV internal ribosome entry site, and adjacent core sequences of the viral genome with high-ranking efficacy scores. Off-target analysis excluded siRNAs with potential binding to human mRNAs. Under this strict selection process, two siRNAs (HCV353 and HCV258 were selected based on their predicted high specificity and potency. These siRNAs were tested for antiviral efficacy in HCV genotype 1 and 2 replicon cell lines. Both in silico-designed siRNAs efficiently inhibited HCV RNA replication, even at low concentrations and for short exposure times (24h; they also exceeded the antiviral potencies of reference siRNAs targeting HCV. Furthermore, HCV353 and HCV258 siRNAs also inhibited replication of patient-derived HCV genotype 4 isolates in infected Huh-7 cells. Prolonged treatment of HCV replicon cells with HCV353 did not result in the appearance of escape mutant viruses. Taken together, these results reveal the accuracy and strength of our integrated siRNA design and selection protocols. These protocols could be used to design highly potent and specific RNAi-based therapeutic

  1. Genetic Variation in the REL Gene Increases Risk of Behcet's Disease in a Chinese Han Population but That of PRKCQ Does Not.

    Directory of Open Access Journals (Sweden)

    Feilan Chen

    Full Text Available Genome-wide association studies (GWAS and candidate gene studies have identified the REL and PRKCQ genes as risk loci for various autoimmune diseases. The purpose of the present study was to investigate the association of the REL and PRKCQ genes with Behcet's disease (BD in a Chinese Han population. A case-control study was conducted on three single nucleotide polymorphisms (SNPs, rs13031237, rs702873, and rs842647 of the REL gene and three SNPs (rs4750316, rs11258747, and rs947474 of the PRKCQ gene using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP in a total of 623 BD patients and 1,074 healthy controls. Multiple variables were assessed, including age, sex distribution, and extra-ocular findings. In the present study, the frequencies of rs842647 GG genotypes and rs842647 G alleles were significantly higher in patients than in controls and those of the rs842647 AG genotypes were lower in patients than in controls [GG genotype: Bonferroni corrected P-value for gender adjustment (Pc(a = 0.0074, odds ratio (OR = 1.63; G allele: Pc(a = 0.0072, OR = 1.57; AG genotype: Pc(a = 0.024, OR = 0.63, respectively]. No statistically significant differences in the frequencies of rs702873, rs13031237, rs4750316, rs11258747, and rs947474 between BD patients and controls were observed. Stratification analysis indicated that the REL rs842647 polymorphism was associated with BD patients with skin lesions. No significant association of the other five SNPs between BD patients with other extra-ocular findings, including genital ulcer, arthritis, and positive pathergy test results was found. The REL rs842647 polymorphism may be a susceptibility factor for BD pathogenesis and skin lesions, which indicate that c-Rel may be involved in the pathogenesis and skin lesions of BD through the NF-κB pathway.

  2. A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system

    Directory of Open Access Journals (Sweden)

    Wang S

    2018-01-01

    Full Text Available Shaowei Wang,1 Xiaochun Wei,1 Xiaojuan Sun,1 Chongwei Chen,1 Jingming Zhou,2 Ge Zhang,3 Heng Wu,3 Baosheng Guo,3 Lei Wei1,2 1Department of Orthopaedics, The 2nd Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; 2Department of Orthopaedics, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA; 3Integrated Traditional Chinese and Western Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Background: Cartilage degeneration affects millions of people but preventing its degeneration is a big challenge. Although RNA interference (RNAi has been used in human trials via silencing specific genes, the cartilage RNAi has not been possible to date because the cartilage is an avascular and very dense tissue with very low permeability. Purpose: The objective of this study was to develop and validate a novel lipid nanoparticle (LNP-siRNA delivery system that can prevent cartilage degeneration by knocking down specific genes. Methods: LNP transfection efficiency was evaluated in vitro and ex vivo. Indian Hedgehog (Ihh has been correlated with cartilage degeneration. The in vivo effects of LNP-Ihh siRNA complexes on cartilage degeneration were evaluated in a rat model of surgery-induced osteoarthritis (OA. Results: In vitro, 100% of chondrocytes were transfected with siRNA in the LNP-siRNA group. In accordance with the cell culture results, red positive signals could be detected even in the deep layer of cartilage tissue cultures treated by LNP-beacon. In vivo data showed that LNP is specific for cartilage, since positive signals were detected by fluorescence molecular tomography and confocal microscopy in joint cartilage injected with LNP-beacon, but not on the surface of the synovium. In the rat model of OA, intraarticular injection of LNP-Ihh siRNA attenuated OA progression, and PCR results showed LNP-Ihh siRNA exerted a positive impact on anabolic metabolism and negative

  3. Silencing of the Rice Gene LRR1 Compromises Rice Xa21 Transcript Accumulation and XA21-Mediated Immunity.

    Science.gov (United States)

    Caddell, Daniel F; Park, Chang-Jin; Thomas, Nicholas C; Canlas, Patrick E; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. We previously demonstrated that an auxilin-like protein, XA21 BINDING PROTEIN 21 (XB21), positively regulates resistance to Xoo. To further investigate the function of XB21, we performed a yeast two-hybrid screen. We identified 22 unique XB21 interacting proteins, including LEUCINE-RICH REPEAT PROTEIN 1 (LRR1), which we selected for further analysis. Silencing of LRR1 in the XA21 genetic background (XA21-LRR1Ri) compromises resistance to Xoo compared with control XA21 plants. XA21-LRR1Ri plants have reduced Xa21 transcript levels and reduced expression of genes that serve as markers of XA21-mediated activation. Overexpression of LRR1 is insufficient to alter resistance to Xoo in rice lines lacking XA21. Taken together, our results indicate that LRR1 is required for wild-type Xa21 transcript expression and XA21-mediated immunity.

  4. Histone methylation-mediated silencing of miR-139 enhances invasion of non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Watanabe, Kousuke; Amano, Yosuke; Ishikawa, Rie; Sunohara, Mitsuhiro; Kage, Hidenori; Ichinose, Junji; Sano, Atsushi; Nakajima, Jun; Fukayama, Masashi; Yatomi, Yutaka; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2015-01-01

    MicroRNA expression is frequently altered in human cancers, and some microRNAs act as oncogenes or tumor suppressors. MiR-139-5p (denoted thereafter as miR-139) has recently been reported to function as a tumor suppressor in several types of human cancer (hepatocellular carcinoma, colorectal cancer, breast cancer, and gastric cancer), but its function in non-small-cell lung cancer (NSCLC) and the mechanism of its suppression have not been studied in detail. MiR-139 was suppressed frequently in primary NSCLCs. MiR-139 is located within the intron of PDE2A and its expression was significantly correlated with the expression of PDE2A. A chromatin immunoprecipitation assay revealed that miR-139 was epigenetically silenced by histone H3 lysine 27 trimethylation (H3K27me3) of its host gene PDE2A and this process was independent of promoter DNA methylation. Pharmacological inhibition of both histone methylation and deacetylation-induced miR-139 with its host gene PDE2A. Ectopic expression of miR-139 in lung cancer cell lines did not affect the proliferation nor the migration but significantly suppressed the invasion through the extracellular matrix. In primary NSCLCs, decreased expression of miR-139 was significantly associated with distant lymph node metastasis and histological invasiveness (lymphatic invasion and vascular invasion) on both univariate and multivariate analyses. Collectively, these results suggest that H3K27me3-mediated silencing of miR-139 enhances an invasive and metastatic phenotype of NSCLC

  5. Isonicotinamide Enhances Sir2 Protein-mediated Silencing and Longevity in Yeast by Raising Intracellular NAD+ Concentration*

    Science.gov (United States)

    McClure, Julie M.; Wierman, Margaret B.; Maqani, Nazif; Smith, Jeffrey S.

    2012-01-01

    Sirtuins are an evolutionarily conserved family of NAD+-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD+ concentration through the combined action of NAD+ biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD+ precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD+ salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD+ concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD+. The INAM-induced increase in NAD+ was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD+ salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD+. We also provide evidence suggesting that INAM influences the expression of multiple NAD+ biosynthesis and salvage pathways to promote homeostasis during stationary phase. PMID:22539348

  6. Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration.

    Science.gov (United States)

    McClure, Julie M; Wierman, Margaret B; Maqani, Nazif; Smith, Jeffrey S

    2012-06-15

    Sirtuins are an evolutionarily conserved family of NAD(+)-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD(+) concentration through the combined action of NAD(+) biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD(+) precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD(+) salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD(+) concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD(+). The INAM-induced increase in NAD(+) was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD(+) salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD(+). We also provide evidence suggesting that INAM influences the expression of multiple NAD(+) biosynthesis and salvage pathways to promote homeostasis during stationary phase.

  7. The RNAi Universe in Fungi: A Varied Landscape of Small RNAs and Biological Functions.

    Science.gov (United States)

    Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M

    2017-09-08

    RNA interference (RNAi) is a conserved eukaryotic mechanism that uses small RNA molecules to suppress gene expression through sequence-specific messenger RNA degradation, translational repression, or transcriptional inhibition. In filamentous fungi, the protective function of RNAi in the maintenance of genome integrity is well known. However, knowledge of the regulatory role of RNAi in fungi has had to wait until the recent identification of different endogenous small RNA classes, which are generated by distinct RNAi pathways. In addition, RNAi research on new fungal models has uncovered the role of small RNAs and RNAi pathways in the regulation of diverse biological functions. In this review, we give an up-to-date overview of the different classes of small RNAs and RNAi pathways in fungi and their roles in the defense of genome integrity and regulation of fungal physiology and development, as well as in the interaction of fungi with biotic and abiotic environments.

  8. Technique originale de relèvement enclouage à foyer fermé d'une ...

    African Journals Online (AJOL)

    Le relèvement enclouage à foyer fermé (R.E.F.F) est une technique originale de traitement des fractures thalamiques du calcanéum. Il s'agit d'un patient âgé de 40 ans sans antécédents, victime d'une chute domestique sur le talon droit, d'une hauteur de 3 mètres. Le patient présentait un 'dème et une ecchymose du talon ...

  9. The silencing of cathepsin K used in gene therapy for periodontal disease reveals the role of cathepsin K in chronic infection and inflammation.

    Science.gov (United States)

    Chen, W; Gao, B; Hao, L; Zhu, G; Jules, J; MacDougall, M J; Wang, J; Han, X; Zhou, X; Li, Y-P

    2016-10-01

    Periodontitis is a severe chronic inflammatory disease and one of the most prevalent non-communicable chronic diseases that affects the majority of the world's adult population. While great efforts have been devoted toward understanding the pathogenesis of periodontitis, there remains a pressing need for developing potent therapeutic strategies for targeting this dreadful disease. In this study, we utilized adeno-associated virus (AAV) expressing cathepsin K (Ctsk) small hairpin (sh)RNA (AAV-sh-Ctsk) to silence Ctsk in vivo and subsequently evaluated its impact in periodontitis as a potential therapeutic strategy for this disease. We used a known mouse model of periodontitis, in which wild-type BALB/cJ mice were infected with Porphyromonas gingivalis W50 in the maxillary and mandibular periodontium to induce the disease. AAV-sh-Ctsk was then administrated locally into the periodontal tissues in vivo, followed by analyses to assess progression of the disease. AAV-mediated Ctsk silencing drastically protected mice (> 80%) from P. gingivalis-induced bone resorption by osteoclasts. In addition, AAV-sh-Ctsk administration drastically reduced inflammation by impacting the expression of many inflammatory cytokines as well as T-cell and dendritic cell numbers in periodontal lesions. AAV-mediated Ctsk silencing can simultaneously target both the inflammation and bone resorption associated with periodontitis through its inhibitory effect on immune cells and osteoclast function. Thereby, AAV-sh-Ctsk administration can efficiently protect against periodontal tissue damage and alveolar bone loss, establishing this AAV-mediated local silencing of Ctsk as an important therapeutic strategy for effectively treating periodontal disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. RNAi-mediated knockdown of pituitary tumor-transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Huang, S.Q.; Liao, Q.J.; Wang, X.W.; Xin, D.Q.; Chen, S.X.; Wu, Q.J.; Ye, G.

    2012-01-01

    Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy

  11. Pnc1p-mediated nicotinamide clearance modifies the epigenetic properties of rDNA silencing in Saccharomyces cerevisiae.

    Science.gov (United States)

    McClure, Julie M; Gallo, Christopher M; Smith, Daniel L; Matecic, Mirela; Hontz, Robert D; Buck, Stephen W; Racette, Frances G; Smith, Jeffrey S

    2008-10-01

    The histone deacetylase activity of Sir2p is dependent on NAD(+) and inhibited by nicotinamide (NAM). As a result, Sir2p-regulated processes in Saccharomyces cerevisiae such as silencing and replicative aging are susceptible to alterations in cellular NAD(+) and NAM levels. We have determined that high concentrations of NAM in the growth medium elevate the intracellular NAD(+) concentration through a mechanism that is partially dependent on NPT1, an important gene in the Preiss-Handler NAD(+) salvage pathway. Overexpression of the nicotinamidase, Pnc1p, prevents inhibition of Sir2p by the excess NAM while maintaining the elevated NAD(+) concentration. This growth condition alters the epigenetics of rDNA silencing, such that repression of a URA3 reporter gene located at the rDNA induces growth on media that either lacks uracil or contains 5-fluoroorotic acid (5-FOA), an unusual dual phenotype that is reminiscent of telomeric silencing (TPE) of URA3. Despite the similarities to TPE, the modified rDNA silencing phenotype does not require the SIR complex. Instead, it retains key characteristics of typical rDNA silencing, including RENT and Pol I dependence, as well as a requirement for the Preiss-Handler NAD(+) salvage pathway. Exogenous nicotinamide can therefore have negative or positive impacts on rDNA silencing, depending on the PNC1 expression level.

  12. Subinhibitory Concentrations of Bacteriostatic Antibiotics Induce relA-Dependent and relA-Independent Tolerance to beta-Lactams

    Czech Academy of Sciences Publication Activity Database

    Kudrin, P.; Varik, V.; Oliveira, S. R. A.; Beljantseva, J.; Del Peso Santos, T.; Dzhygyr, I.; Rejman, Dominik; Cava, F.; Tenson, T.; Hauryliuk, V.

    2017-01-01

    Roč. 61, č. 4 (2017), č. článku e02173-16. ISSN 0066-4804 R&D Projects: GA ČR GA15-11711S Institutional support: RVO:61388963 Keywords : beta-lactam * RelA * antibiotics * mupirocin * persistence * ppGpp Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.302, year: 2016 http://aac.asm.org/content/61/4/e02173-16.full

  13. Preclinical Development of a Subcutaneous ALAS1 RNAi Therapeutic for Treatment of Hepatic Porphyrias Using Circulating RNA Quantification

    Directory of Open Access Journals (Sweden)

    Amy Chan

    2015-01-01

    Full Text Available The acute hepatic porphyrias are caused by inherited enzymatic deficiencies in the heme biosynthesis pathway. Induction of the first enzyme 5-aminolevulinic acid synthase 1 (ALAS1 by triggers such as fasting or drug exposure can lead to accumulation of neurotoxic heme intermediates that cause disease symptoms. We have demonstrated that hepatic ALAS1 silencing using siRNA in a lipid nanoparticle effectively prevents and treats induced attacks in a mouse model of acute intermittent porphyria. Herein, we report the development of ALN-AS1, an investigational GalNAc-conjugated RNAi therapeutic targeting ALAS1. One challenge in advancing ALN-AS1 to patients is the inability to detect liver ALAS1 mRNA in the absence of liver biopsies. We here describe a less invasive circulating extracellular RNA detection assay to monitor RNAi drug activity in serum and urine. A striking correlation in ALAS1 mRNA was observed across liver, serum, and urine in both rodents and nonhuman primates (NHPs following treatment with ALN-AS1. Moreover, in donor-matched human urine and serum, we demonstrate a notable correspondence in ALAS1 levels, minimal interday assay variability, low interpatient variability from serial sample collections, and the ability to distinguish between healthy volunteers and porphyria patients with induced ALAS1 levels. The collective data highlight the potential utility of this assay in the clinical development of ALN-AS1, and in broadening our understanding of acute hepatic porphyrias disease pathophysiology.

  14. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals.

    Science.gov (United States)

    Fagard, M; Boutet, S; Morel, J B; Bellini, C; Vaucheret, H

    2000-10-10

    Introduction of transgene DNA may lead to specific degradation of RNAs that are homologous to the transgene transcribed sequence through phenomena named post-transcriptional gene silencing (PTGS) in plants, quelling in fungi, and RNA interference (RNAi) in animals. It was shown previously that PTGS, quelling, and RNAi require a set of related proteins (SGS2, QDE-1, and EGO-1, respectively). Here we report the isolation of Arabidopsis mutants impaired in PTGS which are affected at the Argonaute1 (AGO1) locus. AGO1 is similar to QDE-2 required for quelling and RDE-1 required for RNAi. Sequencing of ago1 mutants revealed one amino acid essential for PTGS that is also present in QDE-2 and RDE-1 in a highly conserved motif. Taken together, these results confirm the hypothesis that these processes derive from a common ancestral mechanism that controls expression of invading nucleic acid molecules at the post-transcriptional level. As opposed to rde-1 and qde-2 mutants, which are viable, ago1 mutants display several developmental abnormalities, including sterility. These results raise the possibility that PTGS, or at least some of its elements, could participate in the regulation of gene expression during development in plants.

  15. The Transgenic RNAi Project at Harvard Medical School: Resources and Validation.

    Science.gov (United States)

    Perkins, Lizabeth A; Holderbaum, Laura; Tao, Rong; Hu, Yanhui; Sopko, Richelle; McCall, Kim; Yang-Zhou, Donghui; Flockhart, Ian; Binari, Richard; Shim, Hye-Seok; Miller, Audrey; Housden, Amy; Foos, Marianna; Randkelv, Sakara; Kelley, Colleen; Namgyal, Pema; Villalta, Christians; Liu, Lu-Ping; Jiang, Xia; Huan-Huan, Qiao; Wang, Xia; Fujiyama, Asao; Toyoda, Atsushi; Ayers, Kathleen; Blum, Allison; Czech, Benjamin; Neumuller, Ralph; Yan, Dong; Cavallaro, Amanda; Hibbard, Karen; Hall, Don; Cooley, Lynn; Hannon, Gregory J; Lehmann, Ruth; Parks, Annette; Mohr, Stephanie E; Ueda, Ryu; Kondo, Shu; Ni, Jian-Quan; Perrimon, Norbert

    2015-11-01

    To facilitate large-scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome-scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT-qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently composed of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT-qPCR or phenotype is available on a dedicated website, the RNAi Stock Validation and Phenotypes Project (RSVP, http://www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (United States), National Institute of Genetics (Japan), and TsingHua Fly Center (China). Copyright © 2015 by the Genetics Society of America.

  16. The Transgenic RNAi Project at Harvard Medical School: Resources and Validation

    Science.gov (United States)

    Perkins, Lizabeth A.; Holderbaum, Laura; Tao, Rong; Hu, Yanhui; Sopko, Richelle; McCall, Kim; Yang-Zhou, Donghui; Flockhart, Ian; Binari, Richard; Shim, Hye-Seok; Miller, Audrey; Housden, Amy; Foos, Marianna; Randkelv, Sakara; Kelley, Colleen; Namgyal, Pema; Villalta, Christians; Liu, Lu-Ping; Jiang, Xia; Huan-Huan, Qiao; Wang, Xia; Fujiyama, Asao; Toyoda, Atsushi; Ayers, Kathleen; Blum, Allison; Czech, Benjamin; Neumuller, Ralph; Yan, Dong; Cavallaro, Amanda; Hibbard, Karen; Hall, Don; Cooley, Lynn; Hannon, Gregory J.; Lehmann, Ruth; Parks, Annette; Mohr, Stephanie E.; Ueda, Ryu; Kondo, Shu; Ni, Jian-Quan; Perrimon, Norbert

    2015-01-01

    To facilitate large-scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome-scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT–qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently composed of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT–qPCR or phenotype is available on a dedicated website, the RNAi Stock Validation and Phenotypes Project (RSVP, http://www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (United States), National Institute of Genetics (Japan), and TsingHua Fly Center (China). PMID:26320097

  17. Cathepsin X Cleaves Profilin 1 C-Terminal Tyr139 and Influences Clathrin-Mediated Endocytosis.

    Directory of Open Access Journals (Sweden)

    Urša Pečar Fonović

    Full Text Available Cathepsin X, a cysteine carboxypeptidase, is upregulated in several types of cancer. Its molecular target in tumor cells is profilin 1, a known tumor suppressor and regulator of actin cytoskeleton dynamics. Cathepsin X cleaves off the C-terminal Tyr139 of profilin 1, affecting binding of poly-L-proline ligands and, consequently, tumor cell migration and invasion. Profilin 1 with mutations at the C-terminus, transiently expressed in prostate cancer cells PC-3, showed that Tyr139 is important for proper function of profilin 1 as a tumor suppressor. Cleaving off Tyr139 prevents the binding of clathrin, a poly-L-proline ligand involved in endocytosis. More profilin 1-clathrin complexes were present in PC-3 cells when cathepsin X was inhibited by its specific inhibitor AMS36 or silenced by siRNA. As a consequence, the endocytosis of FITC-labeled dextran and transferrin conjugate was significantly increased. These results constitute the first report of the regulation of clathrin-mediated endocytosis in tumor cells through proteolytic processing of profilin 1.

  18. Cathepsin X Cleaves Profilin 1 C-Terminal Tyr139 and Influences Clathrin-Mediated Endocytosis

    Science.gov (United States)

    Pečar Fonović, Urša; Kos, Janko

    2015-01-01

    Cathepsin X, a cysteine carboxypeptidase, is upregulated in several types of cancer. Its molecular target in tumor cells is profilin 1, a known tumor suppressor and regulator of actin cytoskeleton dynamics. Cathepsin X cleaves off the C-terminal Tyr139 of profilin 1, affecting binding of poly-L-proline ligands and, consequently, tumor cell migration and invasion. Profilin 1 with mutations at the C-terminus, transiently expressed in prostate cancer cells PC-3, showed that Tyr139 is important for proper function of profilin 1 as a tumor suppressor. Cleaving off Tyr139 prevents the binding of clathrin, a poly-L-proline ligand involved in endocytosis. More profilin 1—clathrin complexes were present in PC-3 cells when cathepsin X was inhibited by its specific inhibitor AMS36 or silenced by siRNA. As a consequence, the endocytosis of FITC-labeled dextran and transferrin conjugate was significantly increased. These results constitute the first report of the regulation of clathrin-mediated endocytosis in tumor cells through proteolytic processing of profilin 1. PMID:26325675

  19. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Tasleem Arif

    2014-01-01

    Full Text Available Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1, a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA. A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF. VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs.

  20. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.

    Science.gov (United States)

    Kimura, Tomomi E; Duggirala, Aparna; Smith, Madeleine C; White, Stephen; Sala-Newby, Graciela B; Newby, Andrew C; Bond, Mark

    2016-01-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Epigenetic modification of histone 3 lysine 27: mediator subunit MED25 is required for the dissociation of polycomb repressive complex 2 from the promoter of cytochrome P450 2C9.

    Science.gov (United States)

    Englert, Neal A; Luo, George; Goldstein, Joyce A; Surapureddi, Sailesh

    2015-01-23

    The Mediator complex is vital for the transcriptional regulation of eukaryotic genes. Mediator binds to nuclear receptors at target response elements and recruits chromatin-modifying enzymes and RNA polymerase II. Here, we examine the involvement of Mediator subunit MED25 in the epigenetic regulation of human cytochrome P450 2C9 (CYP2C9). MED25 is recruited to the CYP2C9 promoter through association with liver-enriched HNF4α, and we show that MED25 influences the H3K27 status of the HNF4α binding region. This region was enriched for the activating marker H3K27ac and histone acetyltransferase CREBBP after MED25 overexpression but was trimethylated when MED25 expression was silenced. The epigenetic regulator Polycomb repressive complex (PRC2), which represses expression by methylating H3K27, plays an important role in target gene regulation. Silencing MED25 correlated with increased association of PRC2 not only with the promoter region chromatin but with HNF4α itself. We confirmed the involvement of MED25 for fully functional preinitiation complex recruitment and transcriptional output in vitro. Formaldehyde-assisted isolation of regulatory elements (FAIRE) revealed chromatin conformation changes that were reliant on MED25, indicating that MED25 induced a permissive chromatin state that reflected increases in CYP2C9 mRNA. For the first time, we showed evidence that a functionally relevant human gene is transcriptionally regulated by HNF4α via MED25 and PRC2. CYP2C9 is important for the metabolism of many exogenous chemicals including pharmaceutical drugs as well as endogenous substrates. Thus, MED25 is important for regulating the epigenetic landscape resulting in transcriptional activation of a highly inducible gene, CYP2C9. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Performative Silences

    DEFF Research Database (Denmark)

    Dupret, Katia

    2018-01-01

    static nor neutral. It has performative effects. Silencing as an act, rather than a noun, is conceptualised as a central ‘configurating actor’ of change. Through the description of minute details from a videotaped supervision session in the mental healthcare sector, it is shown how different performative...... configurations of silence makes people relate to each other in new ways and influence new work practices. In spite of its somewhat immaterial connotations, using an Actor-Network Theory approach to organization studies, silencing is conceptualised as both a means and an effect of change efforts, which are socio...

  3. NIK is involved in constitutive activation of the alternative NF-κB pathway and proliferation of pancreatic cancer cells

    International Nuclear Information System (INIS)

    Nishina, Takashi; Yamaguchi, Noritaka; Gohda, Jin; Semba, Kentaro; Inoue, Jun-ichiro

    2009-01-01

    Pancreatic cancer has one of the poorest prognoses among human neoplasms. Constitutive activation of NF-κB is frequently observed in pancreatic cancer cells and is involved in their malignancy. However, little is known about the molecular mechanism of this constitutive NF-κB activation. Here, we show that the alternative pathway is constitutively activated and NF-κB-inducing kinase (NIK), a mediator of the alternative pathway, is significantly expressed in pancreatic cancer cells. siRNA-mediated silencing of NIK expression followed by subcellular fractionation revealed that NIK is constitutively involved in the processing of p100 and nuclear transport of p52 and RelB in pancreatic cancer cells. In addition, NIK silencing significantly suppressed proliferation of pancreatic cancer cells. These results clearly indicate that NIK is involved in the constitutive activation of the alternative pathway and controls cell proliferation in pancreatic cancer cells. Therefore, NIK might be a novel target for the treatment of pancreatic cancer.

  4. NIK is involved in constitutive activation of the alternative NF-{kappa}B pathway and proliferation of pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishina, Takashi [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Yamaguchi, Noritaka [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041 (Japan); Gohda, Jin [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Semba, Kentaro [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480 (Japan); Inoue, Jun-ichiro, E-mail: jun-i@ims.u-tokyo.ac.jp [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)

    2009-10-09

    Pancreatic cancer has one of the poorest prognoses among human neoplasms. Constitutive activation of NF-{kappa}B is frequently observed in pancreatic cancer cells and is involved in their malignancy. However, little is known about the molecular mechanism of this constitutive NF-{kappa}B activation. Here, we show that the alternative pathway is constitutively activated and NF-{kappa}B-inducing kinase (NIK), a mediator of the alternative pathway, is significantly expressed in pancreatic cancer cells. siRNA-mediated silencing of NIK expression followed by subcellular fractionation revealed that NIK is constitutively involved in the processing of p100 and nuclear transport of p52 and RelB in pancreatic cancer cells. In addition, NIK silencing significantly suppressed proliferation of pancreatic cancer cells. These results clearly indicate that NIK is involved in the constitutive activation of the alternative pathway and controls cell proliferation in pancreatic cancer cells. Therefore, NIK might be a novel target for the treatment of pancreatic cancer.

  5. The DinJ/RelE Toxin-Antitoxin System Suppresses Bacterial Proliferation and Virulence of Xylella fastidiosa in Grapevine.

    Science.gov (United States)

    Burbank, Lindsey P; Stenger, Drake C

    2017-04-01

    Xylella fastidiosa, the causal agent of Pierce's disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf-scorching symptoms, senescence, and vine decline. It appears to be advantageous to this pathogen to avoid excessive blockage of xylem vessels, because living bacterial cells are generally found in plant tissue with low bacterial cell density and minimal scorching symptoms. The DinJ/RelE toxin-antitoxin system is characterized here for a role in controlling bacterial proliferation and population size during plant colonization. The DinJ/RelE locus is transcribed from two separate promoters, allowing for coexpression of antitoxin DinJ with endoribonuclease toxin RelE, in addition to independent expression of RelE. The ratio of antitoxin/toxin expressed is dependent on bacterial growth conditions, with lower amounts of antitoxin present under conditions designed to mimic grapevine xylem sap. A knockout mutant of DinJ/RelE exhibits a hypervirulent phenotype, with higher bacterial populations and increased symptom development and plant decline. It is likely that DinJ/RelE acts to prevent excessive population growth, contributing to the ability of the pathogen to spread systemically without completely blocking the xylem vessels and increasing probability of acquisition by the insect vector.

  6. RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis.

    Directory of Open Access Journals (Sweden)

    Trung Anh Trieu

    2017-01-01

    Full Text Available Mucorales are an emerging group of human pathogens that are responsible for the lethal disease mucormycosis. Unfortunately, functional studies on the genetic factors behind the virulence of these organisms are hampered by their limited genetic tractability, since they are reluctant to classical genetic tools like transposable elements or gene mapping. Here, we describe an RNAi-based functional genomic platform that allows the identification of new virulence factors through a forward genetic approach firstly described in Mucorales. This platform contains a whole-genome collection of Mucor circinelloides silenced transformants that presented a broad assortment of phenotypes related to the main physiological processes in fungi, including virulence, hyphae morphology, mycelial and yeast growth, carotenogenesis and asexual sporulation. Selection of transformants with reduced virulence allowed the identification of mcplD, which encodes a Phospholipase D, and mcmyo5, encoding a probably essential cargo transporter of the Myosin V family, as required for a fully virulent phenotype of M. circinelloides. Knock-out mutants for those genes showed reduced virulence in both Galleria mellonella and Mus musculus models, probably due to a delayed germination and polarized growth within macrophages. This study provides a robust approach to study virulence in Mucorales and as a proof of concept identified new virulence determinants in M. circinelloides that could represent promising targets for future antifungal therapies.

  7. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense.

    Directory of Open Access Journals (Sweden)

    Jinhuan Pang

    Full Text Available Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species. These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum.

  8. RNAi-mediated knockdown of the voltage gated sodium ion channel TcNav causes mortality in Tribolium castaneum.

    Science.gov (United States)

    Abd El Halim, Hesham M; Alshukri, Baida M H; Ahmad, Munawar S; Nakasu, Erich Y T; Awwad, Mohammed H; Salama, Elham M; Gatehouse, Angharad M R; Edwards, Martin G

    2016-07-14

    The voltage-gated sodium ion channel (VGSC) belongs to the largest superfamily of ion channels. Since VGSCs play key roles in physiological processes they are major targets for effective insecticides. RNA interference (RNAi) is widely used to analyse gene function, but recently, it has shown potential to contribute to novel strategies for selectively controlling agricultural insect pests. The current study evaluates the delivery of dsRNA targeted to the sodium ion channel paralytic A (TcNav) gene in Tribolium castaneum as a viable means of controlling this insect pest. Delivery of TcNav dsRNA caused severe developmental arrest with larval mortalities up to 73% post injection of dsRNA. Injected larvae showed significant (p < 0.05) knockdown in gene expression between 30-60%. Expression was also significantly (p < 0.05) reduced in pupae following injection causing 30% and 42% knockdown for early and late pupal stages, respectively. Oral delivery of dsRNA caused dose-dependant mortalities of between 19 and 51.34%; this was accompanied by significant (p < 0.05) knockdown in gene expression following 3 days of continuous feeding. The majority of larvae injected with, or fed, dsRNA died during the final larval stage prior to pupation. This work provides evidence of a viable RNAi-based strategy for insect control.

  9. Respiratory syncytial virus and TNFalpha induction of chemokine gene expression involves differential activation of Rel A and NF-kappaB1

    Directory of Open Access Journals (Sweden)

    Roebuck Kenneth A

    2002-03-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV infection of airway epithelial cells stimulates the expression and secretion of a variety of cytokines including the chemotactic cytokines interleukin-8 (IL-8, monocyte chemoattractant protein-1 (MCP-1, and RANTES (regulated upon activation, normal T cell expressed and secreted. Chemokines are important chemoattractants for the recruitment of distinct sets of leukocytes to airway sites of inflammation. Results We have shown previously that chemokine expression is regulated in airway epithelial cells (A549 in a stimulus-specific manner in part through the redox-responsive transcription factors AP-1 and NF-κB. In this study, we examined the NF-κB-mediated effects of RSV and the proinflammatory cytokine TNFα on the induction of IL-8, MCP-1 and RANTES chemokine gene expression in A549 epithelial cells. The results demonstrate that RSV induces chemokine expression with distinct kinetics that is associated with a specific pattern of NF-κB binding activity. This distinction was further demonstrated by the differential effects of the NF-κB inhibitors dexamethasone (DEX and N-acetyl-L-cysteine (NAC. NAC preferentially inhibited RSV induced chemokine expression, whereas DEX preferentially inhibited TNFα induced chemokine expression. DNA binding studies using NF-κB subunit specific binding ELISA demonstrated that RSV and TNFα induced different NF-κB binding complexes containing Rel A (p65 and NF-κB1 (p50. Both TNFα and RSV strongly induced Rel A the activation subunit of NF-κB, whereas only TNFα was able to substantially induce the p50 subunit. Consistent with the expression studies, RSV but not TNFα induction of Rel A and p50 were markedly inhibited by NAC, providing a mechanism by which TNFα and RSV can differentially activate chemokine gene expression via NF-κB. Conclusions These data suggest that RSV induction of chemokine gene expression, in contrast to TNFα, involves redox

  10. Silencing the epigenetic silencer KDM4A for TRAIL and DR5 simultaneous induction and antitumor therapy.

    Science.gov (United States)

    Wang, Junjian; Wang, Haibin; Wang, Ling-Yu; Cai, Demin; Duan, Zhijian; Zhang, Yanhong; Chen, Peng; Zou, June X; Xu, Jianzhen; Chen, Xinbin; Kung, Hsing-Jien; Chen, Hong-Wu

    2016-11-01

    Recombinant TRAIL and agonistic antibodies to death receptors (DRs) have been in clinical trial but displayed limited anti-cancer efficacy. Lack of functional DR expression in tumors is a major limiting factor. We report here that chromatin regulator KDM4A/JMJD2A, not KDM4B, has a pivotal role in silencing tumor cell expression of both TRAIL and its receptor DR5. In TRAIL-sensitive and -resistant cancer cells of lung, breast and prostate, KDM4A small-molecule inhibitor compound-4 (C-4) or gene silencing strongly induces TRAIL and DR5 expression, and causes TRAIL-dependent apoptotic cell death. KDM4A inhibition also strongly sensitizes cells to TRAIL. C-4 alone potently inhibits tumor growth with marked induction of TRAIL and DR5 expression in the treated tumors and effectively sensitizes them to the newly developed TRAIL-inducer ONC201. Mechanistically, C-4 does not appear to act through the Akt-ERK-FOXO3a pathway. Instead, it switches histone modifying enzyme complexes at promoters of TRAIL and DR5 transcriptional activator CHOP gene by dissociating KDM4A and nuclear receptor corepressor (NCoR)-HDAC complex and inducing the recruitment of histone acetylase CBP. Thus, our results reveal KDM4A as a key epigenetic silencer of TRAIL and DR5 in tumors and establish inhibitors of KDM4A as a novel strategy for effectively sensitizing tumors to TRAIL pathway-based therapeutics.

  11. Expression profiling of c-kit and its impact after esiRNA silencing during gonadal development in catfish.

    Science.gov (United States)

    Laldinsangi, C; Senthilkumaran, B

    2018-04-03

    C-kit receptor is a member of a family of growth factor receptors that have tyrosine kinase activity, and are involved in the transduction of growth regulatory signals across plasma membrane by activation of its ligand, kitl/scf. The present study analysed mRNA and protein expression profiles of c-kit in the gonads of catfish, Clarias gariepinus, using real time PCR, in situ hybridization and immunohistochemistry. Tissue distribution analysis revealed higher expression mainly in the catfish gonads. Ontogeny studies showed minimal expression during early developmental stages and highest during 50-75 days post hatch, and the dimorphic expression in gonads decreased gradually till adulthood, which might suggest an important role for this gene around later stages of sex differentiation and gonadal development. Expression of C-kit was analysed at various phases of gonadal cycle in both male and female, which showed minimal expression during the resting phase, and higher expression in male compared to females during the pre-spawning phase. In vitro and in vivo induction using human chorionic gonadotropin elevated the expression of c-kit indicating the regulatory influence of hypothalamo-hypophyseal axis. In vivo transient gene silencing using c-kit-esiRNA in adult catfish during gonadal recrudescence showed a decrease in c-kit expression, which affected the expression level of germ cell meiotic marker sycp3, as well as several factors and steroidogenic enzyme genes involved in germ cell development. Decrease in the levels of serum 11-KT and T were also observed after esiRNA silencing. The findings of this study suggest that c-kit has an important role in the process of germ cell proliferation, development and maturation during gonadal development and recrudescence in catfish. Copyright © 2018. Published by Elsevier Inc.

  12. Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi-SlPH tomato line with reduced fruit acidity and higher pH.

    Science.gov (United States)

    Barad, Shiri; Sela, Noa; Dubey, Amit K; Kumar, Dilip; Luria, Neta; Ment, Dana; Cohen, Shahar; Schaffer, Arthur A; Prusky, Dov

    2017-08-04

    The destructive phytopathogen Colletotrichum gloeosporioides causes anthracnose disease in fruit. During host colonization, it secretes ammonia, which modulates environmental pH and regulates gene expression, contributing to pathogenicity. However, the effect of host pH environment on pathogen colonization has never been evaluated. Development of an isogenic tomato line with reduced expression of the gene for acidity, SlPH (Solyc10g074790.1.1), enabled this analysis. Total RNA from C. gloeosporioides colonizing wild-type (WT) and RNAi-SlPH tomato lines was sequenced and gene-expression patterns were compared. C. gloeosporioides inoculation of the RNAi-SlPH line with pH 5.96 compared to the WT line with pH 4.2 showed 30% higher colonization and reduced ammonia accumulation. Large-scale comparative transcriptome analysis of the colonized RNAi-SlPH and WT lines revealed their different mechanisms of colonization-pattern activation: whereas the WT tomato upregulated 13-LOX (lipoxygenase), jasmonic acid and glutamate biosynthesis pathways, it downregulated processes related to chlorogenic acid biosynthesis II, phenylpropanoid biosynthesis and hydroxycinnamic acid tyramine amide biosynthesis; the RNAi-SlPH line upregulated UDP-D-galacturonate biosynthesis I and free phenylpropanoid acid biosynthesis, but mainly downregulated pathways related to sugar metabolism, such as the glyoxylate cycle and L-arabinose degradation II. Comparison of C. gloeosporioides gene expression during colonization of the WT and RNAi-SlPH lines showed that the fungus upregulates ammonia and nitrogen transport and the gamma-aminobutyric acid metabolic process during colonization of the WT, while on the RNAi-SlPH tomato, it mainly upregulates the nitrate metabolic process. Modulation of tomato acidity and pH had significant phenotypic effects on C. gloeosporioides development. The fungus showed increased colonization on the neutral RNAi-SlPH fruit, and limited colonization on the WT acidic fruit

  13. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing.

    Science.gov (United States)

    Fusaro, Adriana F; Barton, Deborah A; Nakasugi, Kenlee; Jackson, Craig; Kalischuk, Melanie L; Kawchuk, Lawrence M; Vaslin, Maite F S; Correa, Regis L; Waterhouse, Peter M

    2017-10-10

    The plant viral family Luteoviridae is divided into three genera: Luteovirus , Polerovirus and Enamovirus . Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.

  14. Dietary Blueberry and Bifidobacteria Attenuate Nonalcoholic Fatty Liver Disease in Rats by Affecting SIRT1-Mediated Signaling Pathway

    Science.gov (United States)

    Ren, Tingting; Huang, Chao; Cheng, Mingliang

    2014-01-01

    NAFLD model rats were established and divided into NAFLD model (MG group), SIRT1 RNAi (SI group), blueberry juice (BJ group), blueberry juice + bifidobacteria (BJB group), blueberry juice + SIRT1 RNAi (BJSI group), and blueberry juice + bifidobacteria + SIRT1 RNAi groups (BJBSI group). A group with normal rats was a control group (CG). BJB group ameliorated NAFLD, which was better than BJ group (P Blueberry juice and bifidobacteria improve NAFLD by activating SIRTI-mediating signaling pathway. PMID:25544867

  15. STAT3 Gene Silencing by Aptamer-siRNA Chimera as Selective Therapeutic for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Carla Lucia Esposito

    2018-03-01

    Full Text Available Glioblastoma (GBM is the most frequent and aggressive primary brain tumor in adults, and despite advances in neuro-oncology, the prognosis for patients remains dismal. The signal transducer and activator of transcription-3 (STAT3 has been reported as a key regulator of the highly aggressive mesenchymal GBM subtype, and its direct silencing (by RNAi oligonucleotides has revealed a great potential as an anti-cancer therapy. However, clinical use of oligonucleotide-based therapies is dependent on safer ways for tissue-specific targeting and increased membrane penetration. The objective of this study is to explore the use of nucleic acid aptamers as carriers to specifically drive a STAT3 siRNA to GBM cells in a receptor-dependent manner. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase PDGFRβ (Gint4.T, here we describe the design of a novel aptamer-siRNA chimera (Gint4.T-STAT3 to target STAT3. We demonstrate the efficient delivery and silencing of STAT3 in PDGFRβ+ GBM cells. Importantly, the conjugate reduces cell viability and migration in vitro and inhibits tumor growth and angiogenesis in vivo in a subcutaneous xenograft mouse model. Our data reveals Gint4.T-STAT3 conjugate as a novel molecule with great translational potential for GBM therapy.

  16. F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function

    Science.gov (United States)

    Pazhouhandeh, Maghsoud; Dieterle, Monika; Marrocco, Katia; Lechner, Esther; Berry, Bassam; Brault, Véronique; Hemmer, Odile; Kretsch, Thomas; Richards, Kenneth E.; Genschik, Pascal; Ziegler-Graff, Véronique

    2006-01-01

    Plants employ small RNA-mediated posttranscriptional gene silencing as a virus defense mechanism. In response, plant viruses encode proteins that can suppress RNA silencing, but the mode of action of most such proteins is poorly understood. Here, we show that the silencing suppressor protein P0 of two Arabidopsis-infecting poleroviruses interacts by means of a conserved minimal F-box motif with Arabidopsis thaliana orthologs of S-phase kinase-related protein 1 (SKP1), a component of the SCF family of ubiquitin E3 ligases. Point mutations in the F-box-like motif abolished the P0–SKP1 ortholog interaction, diminished virus pathogenicity, and inhibited the silencing suppressor activity of P0. Knockdown of expression of a SKP1 ortholog in Nicotiana benthamiana rendered the plants resistant to polerovirus infection. Together, the results support a model in which P0 acts as an F-box protein that targets an essential component of the host posttranscriptional gene silencing machinery. PMID:16446454

  17. Essential role of cofilin-1 in regulating thrombin-induced RelA/p65 nuclear translocation and intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells.

    Science.gov (United States)

    Fazal, Fabeha; Bijli, Kaiser M; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N; Rahman, Arshad

    2009-07-31

    Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-kappaB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-kappaB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser(3) phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-kappaB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-kappaB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-kappaB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-kappaB activity and ICAM-1 expression occurred downstream of IkappaBalpha degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells.

  18. Essential Role of Cofilin-1 in Regulating Thrombin-induced RelA/p65 Nuclear Translocation and Intercellular Adhesion Molecule 1 (ICAM-1) Expression in Endothelial Cells*

    Science.gov (United States)

    Fazal, Fabeha; Bijli, Kaiser M.; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N.; Rahman, Arshad

    2009-01-01

    Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-κB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-κB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser3 phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-κB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-κB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-κB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-κB activity and ICAM-1 expression occurred downstream of IκBα degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells. PMID:19483084

  19. [Effect of silencing Bmi-1 expression in reversing cisplatin resistance in lung cancer cells and its mechanism].

    Science.gov (United States)

    Mao, Nan; He, Guansheng; Rao, Jinjun; Lv, Lin

    2014-06-01

    To investigate the effect of silencing Bmi-1 expression in reversing cisplatin resistance in human lung cancer cells and explore the possible mechanisms. Cisplatin-resistant A549/DDP cells with small interference RNA (siRNA)-mediated Bmi-1 expression silencing were examined for cisplatin sensitivity using MTT assay and alterations in cell cycle distribution and apoptosis with flow cytometry, and the changes in cell senescence was assessed using β-galactosidase staining. The protein expressions of Bmi-1, P14(ARF), P16(INK4a), P53, P21, Rb and ubi-H2AK119 in the cells were determined with Western blotting. A549/DDP cells showed significantly higher Bmi-1 expression than A549 cells. After siRNA-mediated Bmi-1 silencing, A549/DDP cells showed significantly enhanced cisplatin sensitivity with an increased IC50 from 40.3±4.1 µmol/L to 18.3±2.8 µmol/L (Pcisplatin possibly by regulating INK4a/ARF/Rb senescence pathway.

  20. Involvement of activation of PKR in HBx-siRNA-mediated innate immune effects on HBV inhibition.

    Directory of Open Access Journals (Sweden)

    Qiuju Han

    Full Text Available RNA interference (RNAi of virus-specific genes offers the possibility of developing a new anti-hepatitis B virus (anti-HBV therapy. Recent studies have revealed that siRNAs can induce an innate immune response in vitro and in vivo. Here, HBVx (HBx mRNA expression and HBV replication were significantly inhibited, followed by the enhancement of expression of type I interferons (IFNs, IFN-stimulated genes (ISG15 and ISG56 and proinflammatory cytokines after HepG2.2.15 cells were transfected with chemically synthesized HBx-siRNAs. Transfection with HBx-siRNAs also significantly increased expression of dsRNA-dependent protein kinase R (PKR in HepG2.2.15 cells, followed by activation of downstream signaling events such as eukaryotic initiation factor 2α (eIF2-α. In PKR-over-expressing HepG2.2.15 cells, HBx-siRNAs exerted more potent inhibitory effects on HBV replication and greater production of type I IFNs. By contrast, the inhibitory effect of HBx-siRNAs on HBV replication was attenuated when PKR was inhibited or silenced, demonstrating that HBx-siRNAs greatly promoted PKR activation, leading to the higher production of type I IFN. Therefore, we concluded that PKR is involved in the innate immune effects mediated by HBx-siRNAs and further contributes to HBV inhibition. The bifunctional siRNAs with both gene silencing and innate immune activation properties may represent a new potential strategy for treatment of HBV.

  1. A genome-wide RNAi screen identifies novel targets of neratinib sensitivity leading to neratinib and paclitaxel combination drug treatments.

    Science.gov (United States)

    Seyhan, Attila A; Varadarajan, Usha; Choe, Sung; Liu, Yan; McGraw, John; Woods, Matthew; Murray, Stuart; Eckert, Amy; Liu, Wei; Ryan, Terence E

    2011-06-01

    ErbB2 is frequently activated in tumors, and influences a wide array of cellular functions, including proliferation, apoptosis, cell motility and adhesion. HKI-272 (neratinib) is a small molecule pan-kinase inhibitor of the ErbB family of receptor tyrosine kinases, and shows strong antiproliferative activity in ErbB2-overexpressing breast cancer cells. We undertook a genome-wide pooled lentiviral RNAi screen to identify synthetic lethal or enhancer (synthetic modulator screen) genes that interact with neratinib in a human breast cancer cell line (SKBR-3). These genes upon knockdown would modulate cell viability in the presence of subeffective concentrations of neratinib. We discovered a diverse set of genes whose depletion selectively impaired or enhanced the viability of SKBR-3 cells in the presence of neratinib. We observed diverse pathways including EGFR, hypoxia, cAMP, and protein ubiquitination that, when co-treated with RNAi and neratinib, resulted in arrest of cell proliferation. Examining the changes of these genes and their protein products also led to a rationale for clinically relevant drug combination treatments. Treatment of cells with either paclitaxel or cytarabine in combination with neratinib resulted in a strong antiproliferative effect. The identification of novel mediators of cellular response to neratinib and the development of potential drug combination treatments have expanded our understanding of neratinib's mode-of-action for the development of more effective therapeutic regimens. Notably, our findings support a paclitaxel and neratinib phase III clinical trial in breast cancer patients.

  2. Safety assessment of food and feed from biotechnology-derived crops employing RNA-mediated gene regulation to achieve desired traits: a scientific review.

    Science.gov (United States)

    Petrick, Jay S; Brower-Toland, Brent; Jackson, Aimee L; Kier, Larry D

    2013-07-01

    Gene expression can be modulated in plants to produce desired traits through agricultural biotechnology. Currently, biotechnology-derived crops are compared to their conventional counterparts, with safety assessments conducted on the genetic modification and the intended and unintended differences. This review proposes that this comparative safety assessment paradigm is appropriate for plants modified to express mediators of RNA-mediated gene regulation, including RNA interference (RNAi), a gene suppression mechanism that naturally occurs in plants and animals. The molecular mediators of RNAi, including long double-stranded RNAs (dsRNA), small interfering RNAs (siRNA), and microRNAs (miRNA), occur naturally in foods; therefore, there is an extensive history of safe consumption. Systemic exposure following consumption of plants containing dsRNAs that mediate RNAi is limited in higher organisms by extensive degradation of ingested nucleic acids and by biological barriers to uptake and efficacy of exogenous nucleic acids. A number of mammalian RNAi studies support the concept that a large margin of safety will exist for any small fraction of RNAs that might be absorbed following consumption of foods from biotechnology-derived plants that employ RNA-mediated gene regulation. Food and feed derived from these crops utilizing RNA-based mechanisms is therefore expected to be as safe as food and feed derived through conventional plant breeding. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The homeobox protein CEH-23 mediates prolonged longevity in response to impaired mitochondrial electron transport chain in C. elegans.

    Directory of Open Access Journals (Sweden)

    Ludivine Walter

    2011-06-01

    Full Text Available Recent findings indicate that perturbations of the mitochondrial electron transport chain (METC can cause extended longevity in evolutionarily diverse organisms. To uncover the molecular basis of how altered METC increases lifespan in C. elegans, we performed an RNAi screen and revealed that three predicted transcription factors are specifically required for the extended longevity of mitochondrial mutants. In particular, we demonstrated that the nuclear homeobox protein CEH-23 uniquely mediates the longevity but not the slow development, reduced brood size, or resistance to oxidative stress associated with mitochondrial mutations. Furthermore, we showed that ceh-23 expression levels are responsive to altered METC, and enforced overexpression of ceh-23 is sufficient to extend lifespan in wild-type background. Our data point to mitochondria-to-nucleus communications to be key for longevity determination and highlight CEH-23 as a novel longevity factor capable of responding to mitochondrial perturbations. These findings provide a new paradigm for how mitochondria impact aging and age-dependent diseases.

  4. RNA interference: its use as antiviral therapy

    NARCIS (Netherlands)

    Haasnoot, J.; Berkhout, B.

    2006-01-01

    RNA interference (RNAi) is a sequence-specific gene-silencing mechanism that has been proposed to function as a defence mechanism of eukaryotic cells against viruses and transposons. RNAi was first observed in plants in the form of a mysterious immune response to viral pathogens. But RNAi is more

  5. Transformation of PRT6 RNAi construct into tomato (Solanum lycopersicum) cv. Micro-Tom

    Science.gov (United States)

    Suka, Intan Elya; Chew, Bee Lynn; Goh, Hoe-Han; Isa, Nurulhikma Md

    2018-04-01

    PROTEOLYSIS 6 plays major role in the N-end rule pathway as N-recognin which functions as E3 ligase enzyme. It mediates ubiquitin processes that lead to degradation of unstable substrate protein. The aim of the current study is to transform the PRT6 gene into tomato (Solanum lycopersicum) from the cultivar Micro-Tom and to investigate its function in regulating ripening in tomato fruits. The PRT6_RNAi construct was successfully transformed into Agrobacterium C58 via heat shock method and transformed into seven days old cotyledon explants. Factors affecting transformation efficiency such as co-cultivation time and type of plant growth regulator combination were evaluated. Results from this study found that pre-cultured cotyledons from seven days old seedlings incubated for 2 days in co-cultivation medium increased shoot regeneration. Plant growth hormones zeatin combine with auxin produced a higher number of callus formation but lower shoot proliferation and transformation frequency compared to treatments of single plant hormone in the selection medium. Polymerase chain reaction (PCR) was performed on the regenerated shoots to confirm the integration of PRT6 fragment into the genome of transgenic plants. Based on PCR analysis, all putative shoots were positive transformants.

  6. Analysis of Tospovirus NSs Proteins in Suppression of Systemic Silencing.

    Science.gov (United States)

    Hedil, Marcio; Sterken, Mark G; de Ronde, Dryas; Lohuis, Dick; Kormelink, Richard

    2015-01-01

    RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS. Although the tomato spotted wilt virus (TSWV) tospovirus NSs protein has been shown to exhibit affinity to long and small dsRNA molecules, its ability to suppress the non-cell autonomous part of RNA silencing has only been studied to a limited extent. Here, the NSs proteins of TSWV, groundnut ringspot virus (GRSV) and tomato yellow ring virus (TYRV), representatives for three distinct tospovirus species, have been studied on their ability and strength to suppress local and systemic silencing. A system has been developed to quantify suppression of GFP silencing in Nicotiana benthamiana 16C lines, to allow a comparison of relative RNA silencing suppressor strength. It is shown that NSs of all three tospoviruses are suppressors of local and systemic silencing. Unexpectedly, suppression of systemic RNA silencing by NSsTYRV was just as strong as those by NSsTSWV and NSsGRSV, even though NSsTYRV was expressed in lower amounts. Using the system established, a set of selected NSsTSWV gene constructs mutated in predicted RNA binding domains, as well as NSs from TSWV isolates 160 and 171 (resistance breakers of the Tsw resistance gene), were analyzed for their ability to suppress systemic GFP silencing. The results indicate another mode of RNA silencing suppression by NSs that acts further downstream the biogenesis of siRNAs and their sequestration. The findings are discussed in light of the affinity of NSs for small and long dsRNA, and recent mutant screen of NSsTSWV to map domains required for RSS activity and triggering of Tsw-governed resistance.

  7. Organizational Silence in Universities as the Predictor of Organizational Culture

    Directory of Open Access Journals (Sweden)

    Erkan YAMAN

    2014-04-01

    Full Text Available The aim of this study is to determine the relationship between the sense of organizational silence and the organizational culture the instructors perceived. In this study, the scale for determining organizational culture developed by İpek (1999 and the scale for measuring organizational silence developed by Çakıcı (2007 and adapted by Soycan (2010 are used. No remarkable difference was found in the academic staff's sense of organizational silence degree according to their genders and educational backgrounds. It was seen that the instructors' sense of organizational silence had remarkable differences according to their age group, faculty, sense of administration type in their institutions, frequency of their face-to-face communication with their administrators and their thoughts of speaking clearly with their administrators. It was observed that research assistants had a significantly higher sense of organizational silence than the lecturers in the sense of ‘Lack of Experience'. It was seen that academicians who had 1-5 years of employment period had the highest sense of organizational silence while those who had 21 years or more employment period had the lowest sense of organizational silence in the sense of ‘Lack of Experience' of organizational silence. When the points that participant academicians got from organizational silence and organizational culture scales analyzed in the correlation table, it was found out that there was a remarkable relationship between the academicians' sense of organizational silence and sense of organizational culture. This relationship was a medium-level negative relationship between subdimensions of two scales. A medium-level negative relationship between the organizational silence (total and the organizational culture was also seen. Based on the findings, university administrators were proposed to create a participant culture in their institutions as well as to encourage instructors to speak clearly and

  8. "Listening Silence" and Its Discursive Effects

    Science.gov (United States)

    Applebaum, Barbara

    2016-01-01

    While researchers have studied how white silence protects white innocence and white ignorance, in this essay Barbara Applebaum explores a form of white silence that she refers to as "listening silence" in which silence protects white innocence but does not necessarily promote resistance to learning. White listening silence can appear to…

  9. RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans.

    Science.gov (United States)

    Grishok, Alla; Hoersch, Sebastian; Sharp, Phillip A

    2008-12-23

    In Caenorhabditis elegans, a vast number of endogenous short RNAs corresponding to thousands of genes have been discovered recently. This finding suggests that these short interfering RNAs (siRNAs) may contribute to regulation of many developmental and other signaling pathways in addition to silencing viruses and transposons. Here, we present a microarray analysis of gene expression in RNA interference (RNAi)-related mutants rde-4, zfp-1, and alg-1 and the retinoblastoma (Rb) mutant lin-35. We found that a component of Dicer complex RDE-4 and a chromatin-related zinc finger protein ZFP-1, not implicated in endogenous RNAi, regulate overlapping sets of genes. Notably, genes a) up-regulated in the rde-4 and zfp-1 mutants and b) up-regulated in the lin-35(Rb) mutant, but not the down-regulated genes are highly represented in the set of genes with corresponding endogenous siRNAs (endo-siRNAs). Our study suggests that endogenous siRNAs cooperate with chromatin factors, either C. elegans ortholog of acute lymphoblastic leukemia-1 (ALL-1)-fused gene from chromosome 10 (AF10), ZFP-1, or tumor suppressor Rb, to regulate overlapping sets of genes and predicts a large role for RNAi-based chromatin silencing in control of gene expression in C. elegans.

  10. The relBE2Spn toxin-antitoxin system of Streptococcus pneumoniae: role in antibiotic tolerance and functional conservation in clinical isolates.

    Directory of Open Access Journals (Sweden)

    Concha Nieto

    2010-06-01

    Full Text Available Type II (proteic chromosomal toxin-antitoxin systems (TAS are widespread in Bacteria and Archaea but their precise function is known only for a limited number of them. Out of the many TAS described, the relBE family is one of the most abundant, being present in the three first sequenced strains of Streptococcus pneumoniae (D39, TIGR4 and R6. To address the function of the pneumococcal relBE2Spn TAS in the bacterial physiology, we have compared the response of the R6-relBE2Spn wild type strain with that of an isogenic derivative, Delta relB2Spn under different stress conditions such as carbon and amino acid starvation and antibiotic exposure. Differences on viability between the wild type and mutant strains were found only when treatment directly impaired protein synthesis. As a criterion for the permanence of this locus in a variety of clinical strains, we checked whether the relBE2Spn locus was conserved in around 100 pneumococcal strains, including clinical isolates and strains with known genomes. All strains, although having various types of polymorphisms at the vicinity of the TA region, contained a functional relBE2Spn locus and the type of its structure correlated with the multilocus sequence type. Functionality of this TAS was maintained even in cases where severe rearrangements around the relBE2Spn region were found. We conclude that even though the relBE2Spn TAS is not essential for pneumococcus, it may provide additional advantages to the bacteria for colonization and/or infection.

  11. Okupeeritud Eestist Saksa Reich'i: täiendusi 1941. aasta järelümberasumise uurimisse / Olev Liivik, Triin Tark

    Index Scriptorium Estoniae

    Liivik, Olev, 1975-

    2016-01-01

    Ümberasustamise operatsiooni allikatest. Saksamaa ja NSV Liidu kokkuleppest välissakslaste järelümberasumise suhtes. Riigisakslastest ja rahvussakslastest, nende jagamisest ümberasujateks ja põgenikeks. Märtsi keskpaigaks 1941 oli enamik järelümberasujaid Saksamaale lahkunud. Järelümberasujate vastuvõtmisest ja käsitlemisest Saksa Reich'is. Mittesakslastest ümberasujad ei olnud Saksa Reich'is oodatud, kuid samal ajal tehti keeruliseks ka nende tagasipöördumine kodumaale

  12. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    Science.gov (United States)

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.

  13. Paramutation of tobacco transgenes by small RNA-mediated transcriptional gene silencing

    Czech Academy of Sciences Publication Activity Database

    Crhák Khaitová, Lucie; Fojtová, M.; Křížová, Kateřina; Lunerová Bedřichová, Jana; Fulneček, Jaroslav; Depicker, A.; Kovařík, Aleš

    2011-01-01

    Roč. 6, č. 5 (2011), s. 650-660 ISSN 1559-2294 R&D Projects: GA ČR(CZ) GD204/09/H002; GA MŠk(CZ) LC06004 Grant - others:GA ČR(CZ) GPP501/11/P667 Program:GP Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : transcriptional gene silencing * transgene epialleles * DNA methylation Subject RIV: BO - Biophysics Impact factor: 4.318, year: 2011

  14. A Nematode Calreticulin, Rs-CRT, Is a Key Effector in Reproduction and Pathogenicity of Radopholus similis.

    Science.gov (United States)

    Li, Yu; Wang, Ke; Xie, Hui; Wang, Yan-Tao; Wang, Dong-Wei; Xu, Chun-Lin; Huang, Xin; Wang, De-Sen

    2015-01-01

    Radopholus similis is a migratory plant-parasitic nematode that causes severe damage to many agricultural and horticultural crops. Calreticulin (CRT) is a Ca2+-binding multifunctional protein that plays key roles in the parasitism, immune evasion, reproduction and pathogenesis of many animal parasites and plant nematodes. Therefore, CRT is a promising target for controlling R. similis. In this study, we obtained the full-length sequence of the CRT gene from R. similis (Rs-crt), which is 1,527-bp long and includes a 1,206-bp ORF that encodes 401 amino acids. Rs-CRT and Mi-CRT from Meloidogyne incognita showed the highest similarity and were grouped on the same branch of the phylogenetic tree. Rs-crt is a multi-copy gene that is expressed in the oesophageal glands and gonads of females, the gonads of males, the intestines of juveniles and the eggs of R. similis. The highest Rs-crt expression was detected in females, followed by juveniles, eggs and males. The reproductive capability and pathogenicity of R. similis were significantly reduced after treatment with Rs-crt dsRNA for 36 h. Using plant-mediated RNAi, we confirmed that Rs-crt expression was significantly inhibited in the nematodes, and resistance to R. similis was significantly improved in transgenic tomato plants. Plant-mediated RNAi-induced silencing of Rs-crt could be effectively transmitted to the F2 generation of R. similis; however, the silencing effect of Rs-crt induced by in vitro RNAi was no longer detectable in F1 and F2 nematodes. Thus, Rs-crt is essential for the reproduction and pathogenicity of R. similis.

  15. A Nematode Calreticulin, Rs-CRT, Is a Key Effector in Reproduction and Pathogenicity of Radopholus similis.

    Directory of Open Access Journals (Sweden)

    Yu Li

    Full Text Available Radopholus similis is a migratory plant-parasitic nematode that causes severe damage to many agricultural and horticultural crops. Calreticulin (CRT is a Ca2+-binding multifunctional protein that plays key roles in the parasitism, immune evasion, reproduction and pathogenesis of many animal parasites and plant nematodes. Therefore, CRT is a promising target for controlling R. similis. In this study, we obtained the full-length sequence of the CRT gene from R. similis (Rs-crt, which is 1,527-bp long and includes a 1,206-bp ORF that encodes 401 amino acids. Rs-CRT and Mi-CRT from Meloidogyne incognita showed the highest similarity and were grouped on the same branch of the phylogenetic tree. Rs-crt is a multi-copy gene that is expressed in the oesophageal glands and gonads of females, the gonads of males, the intestines of juveniles and the eggs of R. similis. The highest Rs-crt expression was detected in females, followed by juveniles, eggs and males. The reproductive capability and pathogenicity of R. similis were significantly reduced after treatment with Rs-crt dsRNA for 36 h. Using plant-mediated RNAi, we confirmed that Rs-crt expression was significantly inhibited in the nematodes, and resistance to R. similis was significantly improved in transgenic tomato plants. Plant-mediated RNAi-induced silencing of Rs-crt could be effectively transmitted to the F2 generation of R. similis; however, the silencing effect of Rs-crt induced by in vitro RNAi was no longer detectable in F1 and F2 nematodes. Thus, Rs-crt is essential for the reproduction and pathogenicity of R. similis.

  16. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    Science.gov (United States)

    Zanotto-Filho, Alfeu; Dashnamoorthy, Ravi; Loranc, Eva; de Souza, Luis H T; Moreira, José C F; Suresh, Uthra; Chen, Yidong; Bishop, Alexander J R

    2016-01-01

    Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray) prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair), DNA-mRNA-protein metabolism (transcription/translation) and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH)-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress)/Unfolded Protein Responses (UPR) in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

  17. Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

    Directory of Open Access Journals (Sweden)

    Alfeu Zanotto-Filho

    Full Text Available Alkylating agents are a key component of cancer chemotherapy. Several cellular mechanisms are known to be important for its survival, particularly DNA repair and xenobiotic detoxification, yet genomic screens indicate that additional cellular components may be involved. Elucidating these components has value in either identifying key processes that can be modulated to improve chemotherapeutic efficacy or may be altered in some cancers to confer chemoresistance. We therefore set out to reevaluate our prior Drosophila RNAi screening data by comparison to gene expression arrays in order to determine if we could identify any novel processes in alkylation damage survival. We noted a consistent conservation of alkylation survival pathways across platforms and species when the analysis was conducted on a pathway/process level rather than at an individual gene level. Better results were obtained when combining gene lists from two datasets (RNAi screen plus microarray prior to analysis. In addition to previously identified DNA damage responses (p53 signaling and Nucleotide Excision Repair, DNA-mRNA-protein metabolism (transcription/translation and proteasome machinery, we also noted a highly conserved cross-species requirement for NRF2, glutathione (GSH-mediated drug detoxification and Endoplasmic Reticulum stress (ER stress/Unfolded Protein Responses (UPR in cells exposed to alkylation. The requirement for GSH, NRF2 and UPR in alkylation survival was validated by metabolomics, protein studies and functional cell assays. From this we conclude that RNAi/gene expression fusion is a valid strategy to rapidly identify key processes that may be extendable to other contexts beyond damage survival.

  18. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing

    Directory of Open Access Journals (Sweden)

    Adriana F. Fusaro

    2017-10-01

    Full Text Available The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant’s vascular system. The first open reading frame (ORF of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs against the plant’s viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV, however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant’s silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant’s anti-viral defense.

  19. The oncoprotein gankyrin interacts with RelA and suppresses NF-κB activity

    International Nuclear Information System (INIS)

    Higashitsuji, Hiroaki; Higashitsuji, Hisako; Liu, Yu; Masuda, Tomoko; Fujita, Takanori; Abdel-Aziz, H. Ismail; Kongkham, Supranee; Dawson, Simon; John Mayer, R.; Itoh, Yoshito; Sakurai, Toshiharu; Itoh, Katsuhiko; Fujita, Jun

    2007-01-01

    Gankyrin is an oncoprotein commonly overexpressed in hepatocellular carcinomas. It interacts with multiple proteins and accelerates degradation of tumor suppressors Rb and p53. Since gankyrin consists of 7 ankyrin repeats and is structurally similar to IκBs, we investigated its interaction with NF-κB. We found that gankyrin directly binds to RelA. In HeLa and 293 cells, overexpression of gankyrin suppressed the basal as well as TNFα-induced transcriptional activity of NF-κB, whereas down-regulation of gankyrin increased it. Gankyrin did not affect the NF-κB DNA-binding activity or nuclear translocation of RelA induced by TNFα in these cells. Leptomycin B that inhibits nuclear export of RelA suppressed the NF-κB activity, which was further suppressed by gankyrin. The inhibitory effect of gankyrin was abrogated by nicotinamide as well as down-regulation of SIRT1, a class III histone deacetylase. Thus, gankyrin binds to NF-κB and suppresses its activity at the transcription level by modulating acetylation via SIRT1

  20. Assessment of potential risks of dietary RNAi to a soil micro-arthropod, Sinella curviseta Brook (Collembola: Entomobryidae

    Directory of Open Access Journals (Sweden)

    Huipeng Pan

    2016-07-01

    Full Text Available RNAi-based genetically engineered (GE crops for the management of insect pests are likely to be commercialized by the end of this decade. Without a workable framework for conducting the ecological risk assessment (ERA and a standardized ERA protocol, however, the utility of RNAi transgenic crops in pest management remains uncertain. The overall goal of this study is to assess the risks of RNAi-based GE crops on a non-target soil micro-arthropod, Sinella curviseta, which could be exposed to plant-protected dsRNAs deposited in crop residues. Based on the preliminary research, we hypothesized that insecticidal dsRNAs targeting at the western corn rootworm, Diabrotica virgifera virgifera, a billion-dollar insect pest, has no adverse impacts on S. curviseta, a soil decomposer. Following a tiered approach, we tested this risk hypothesis using a well-designed dietary RNAi toxicity assay. To create the worst-case scenario, the full-length cDNA of v-ATPase subunit A from S. curviseta were cloned and a 400 bp fragment representing the highest sequence similarity between target pest and non-target arthropods was selected as the template to synthesize insecticidal dsRNAs. Specifically, 10-day old S. curviseta larvae were subjected to artificial diets containing v-ATPase A dsRNAs from both D. v. virgifera (dsDVV and S. curviseta (dsSC, respectively, a dsRNA control, β-glucuronidase, from plant (dsGUS, and a vehicle control, H2O. The endpoint measurements included gene expression profiles, survival, and life history traits, such as developmental time, fecundity, hatching rate, and body length. Although S. curviseta larvae developed significantly faster under the treatments of dsDVV and dsSC than the vehicle control, the combined results from both temporal RNAi effect study and dietary RNAi toxicity assay support the risk hypothesis, suggesting that the impacts of ingested arthropod-active dsRNAs on this representative soil decomposer are negligible.