WorldWideScience

Sample records for rna accumulation derived

  1. Asynchronous accumulation of lettuce infectious yellows virus RNAs 1 and 2 and identification of an RNA 1 trans enhancer of RNA 2 accumulation.

    Science.gov (United States)

    Yeh, H H; Tian, T; Rubio, L; Crawford, B; Falk, B W

    2000-07-01

    Time course and mutational analyses were used to examine the accumulation in protoplasts of progeny RNAs of the bipartite Crinivirus, Lettuce infectious yellow virus (LIYV; family Closteroviridae). Hybridization analyses showed that simultaneous inoculation of LIYV RNAs 1 and 2 resulted in asynchronous accumulation of progeny LIYV RNAs. LIYV RNA 1 progeny genomic and subgenomic RNAs could be detected in protoplasts as early as 12 h postinoculation (p.i.) and accumulated to high levels by 24 h p.i. The LIYV RNA 1 open reading frame 2 (ORF 2) subgenomic RNA was the most abundant of all LIYV RNAs detected. In contrast, RNA 2 progeny were not readily detected until ca. 36 h p.i. Mutational analyses showed that in-frame stop codons introduced into five of seven RNA 2 ORFs did not affect accumulation of progeny LIYV RNA 1 or RNA 2, confirming that RNA 2 does not encode proteins necessary for LIYV RNA replication. Mutational analyses also supported that LIYV RNA 1 encodes proteins necessary for replication of LIYV RNAs 1 and 2. A mutation introduced into the LIYV RNA 1 region encoding the overlapping ORF 1B and ORF 2 was lethal. However, mutations introduced into only LIYV RNA 1 ORF 2 resulted in accumulation of progeny RNA 1 near or equal to wild-type RNA 1. In contrast, the RNA 1 ORF 2 mutants did not efficiently support the trans accumulation of LIYV RNA 2. Three distinct RNA 1 ORF 2 mutants were analyzed and all exhibited a similar phenotype for progeny LIYV RNA accumulation. These data suggest that the LIYV RNA 1 ORF 2 encodes a trans enhancer for RNA 2 accumulation.

  2. Mutations that alter a conserved element upstream of the potato virus X triple block and coat protein genes affect subgenomic RNA accumulation.

    Science.gov (United States)

    Kim, K H; Hemenway, C

    1997-05-26

    The putative subgenomic RNA (sgRNA) promoter regions upstream of the potato virus X (PVX) triple block and coat protein (CP) genes contain sequences common to other potexviruses. The importance of these sequences to PVX sgRNA accumulation was determined by inoculation of Nicotiana tabacum NT1 cell suspension protoplasts with transcripts derived from wild-type and modified PVX cDNA clones. Analyses of RNA accumulation by S1 nuclease digestion and primer extension indicated that a conserved octanucleotide sequence element and the spacing between this element and the start-site for sgRNA synthesis are critical for accumulation of the two major sgRNA species. The impact of mutations on CP sgRNA levels was also reflected in the accumulation of CP. In contrast, genomic minus- and plus-strand RNA accumulation were not significantly affected by mutations in these regions. Studies involving inoculation of tobacco plants with the modified transcripts suggested that the conserved octanucleotide element functions in sgRNA accumulation and some other aspect of the infection process.

  3. 5S rRNA-derived and tRNA-derived SINEs in fruit bats.

    Science.gov (United States)

    Gogolevsky, Konstantin P; Vassetzky, Nikita S; Kramerov, Dmitri A

    2009-05-01

    Most short retroposons (SINEs) descend from cellular tRNA of 7SL RNA. Here, four new SINEs were found in megabats (Megachiroptera) but neither in microbats nor in other mammals. Two of them, MEG-RS and MEG-RL, descend from another cellular RNA, 5S rRNA; one (MEG-T2) is a tRNA-derived SINE; and MEG-TR is a hybrid tRNA/5S rRNA SINE. Insertion locus analysis suggests that these SINEs were active in the recent fruit bat evolution. Analysis of MEG-RS and MEG-RL in comparison with other few 5S rRNA-derived SINEs demonstrates that the internal RNA polymerase III promoter is their most invariant region, while the secondary structure is more variable. The mechanisms underlying the modular structure of these and other SINEs as well as their variation are discussed. The scenario of evolution of MEG SINEs is proposed.

  4. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda.

    Science.gov (United States)

    Yoon, June-Sun; Gurusamy, Dhandapani; Palli, Subba Reddy

    2017-11-01

    RNA interference (RNAi) efficiency varies among insects studied. The barriers for successful RNAi include the presence of double-stranded ribonucleases (dsRNase) in the lumen and hemolymph that could potentially digest double-stranded RNA (dsRNA) and the variability in the transport of dsRNA into and within the cells. We recently showed that the dsRNAs are transported into lepidopteran cells, but they are not processed into small interference RNAs (siRNAs) because they are trapped in acidic bodies. In the current study, we focused on the identification of acidic bodies in which dsRNAs accumulate in Sf9 cells. Time-lapse imaging studies showed that dsRNAs enter Sf9 cells and accumulate in acidic bodies within 20 min after their addition to the medium. CypHer-5E-labeled dsRNA also accumulated in the midgut and fat body dissected from Spodoptera frugiperda larvae with similar patterns observed in Sf9 cells. Pharmacological inhibitor assays showed that the dsRNAs use clathrin mediated endocytosis pathway for transport into the cells. We investigated the potential dsRNA accumulation sites employing LysoTracker and double labeling experiments using the constructs to express a fusion of green fluorescence protein with early or late endosomal marker proteins and CypHer-5E-labeled dsRNA. Interestingly, CypHer-5E-labeled dsRNA accumulated predominantly in early and late endosomes. These data suggest that entrapment of internalized dsRNA in endosomes is one of the major factors contributing to inefficient RNAi response in lepidopteran insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. High-Level Accumulation of Exogenous Small RNAs Not Affecting Endogenous Small RNA Biogenesis and Function in Plants

    Institute of Scientific and Technical Information of China (English)

    SHEN Wan-xia; Neil A Smith; ZHOU Chang-yong; WANG Ming-bo

    2014-01-01

    RNA silencing is a fundamental plant defence and gene control mechanism in plants that are directed by 20-24 nucleotide (nt) small interfering RNA (siRNA) and microRNA (miRNA). Infection of plants with viral pathogens or transformation of plants with RNA interference (RNAi) constructs is usually associated with high levels of exogenous siRNAs, but it is unclear if these siRNAs interfere with endogenous small RNA pathways and hence affect plant development. Here we provide evidence that viral satellite RNA (satRNA) infection does not affect siRNA and miRNA biogenesis or plant growth despite the extremely high level of satRNA-derived siRNAs. We generated transgenic Nicotiana benthamiana plants that no longer develop the speciifc yellowing symptoms generally associated with infection by Cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat). We then used these plants to show that CMV Y-Sat infection did not cause any visible phenotypic changes in comparison to uninfected plants, despite the presence of high-level Y-Sat siRNAs. Furthermore, we showed that the accumulation of hairpin RNA (hpRNA)-derived siRNAs or miRNAs, and the level of siRNA-directed transgene silencing, are not signiifcantly affected by CMV Y-Sat infection. Taken together, our results suggest that the high levels of exogenous siRNAs associated with viral infection or RNAi-inducing transgenes do not saturate the endogenous RNA silencing machineries and have no signiifcant impact on normal plant development.

  6. ncRNA consensus secondary structure derivation using grammar strings.

    Science.gov (United States)

    Achawanantakun, Rujira; Sun, Yanni; Takyar, Seyedeh Shohreh

    2011-04-01

    Many noncoding RNAs (ncRNAs) function through both their sequences and secondary structures. Thus, secondary structure derivation is an important issue in today's RNA research. The state-of-the-art structure annotation tools are based on comparative analysis, which derives consensus structure of homologous ncRNAs. Despite promising results from existing ncRNA aligning and consensus structure derivation tools, there is a need for more efficient and accurate ncRNA secondary structure modeling and alignment methods. In this work, we introduce a consensus structure derivation approach based on grammar string, a novel ncRNA secondary structure representation that encodes an ncRNA's sequence and secondary structure in the parameter space of a context-free grammar (CFG) and a full RNA grammar including pseudoknots. Being a string defined on a special alphabet constructed from a grammar, grammar string converts ncRNA alignment into sequence alignment. We derive consensus secondary structures from hundreds of ncRNA families from BraliBase 2.1 and 25 families containing pseudoknots using grammar string alignment. Our experiments have shown that grammar string-based structure derivation competes favorably in consensus structure quality with Murlet and RNASampler. Source code and experimental data are available at http://www.cse.msu.edu/~yannisun/grammar-string.

  7. Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.

    Science.gov (United States)

    Hamilton, Trinity L; Jacobson, Marty; Ludwig, Marcus; Boyd, Eric S; Bryant, Donald A; Dean, Dennis R; Peters, John W

    2011-09-01

    Northern analysis was employed to investigate mRNA produced by mutant strains of Azotobacter vinelandii with defined deletions in the nif structural genes and in the intergenic noncoding regions. The results indicate that intergenic RNA secondary structures effect the differential accumulation of transcripts, supporting the high Fe protein-to-MoFe protein ratio required for optimal diazotrophic growth.

  8. Long noncoding RNA TUG1 alleviates extracellular matrix accumulation via mediating microRNA-377 targeting of PPARγ in diabetic nephropathy.

    Science.gov (United States)

    Duan, Li-Jun; Ding, Min; Hou, Li-Jun; Cui, Yuan-Tao; Li, Chun-Jun; Yu, De-Min

    2017-03-11

    Long noncoding RNA taurine-upregulated gene 1 (lncRNA TUG1) has been reported to play a key role in the progression of diabetic nephropathy (DN). However, the role of lncRNA TUG1 in the regulation of diabetic nephropathy remains largely unknown. The aim of the present study is to identify the regulation of lncRNA TUG1 on extracellular matrix accumulation via mediating microRNA-377 targeting of PPARγ, and investigate the underlying mechanisms in progression of DN. Microarray was performed to screen differentially expressed miRNAs in db/db DN mice. Afterwards, computational prediction programs (TargetScan, miRanda, PicTar and miRGen) was applied to predict the target gene of miRNAs. The complementary binding of miRNA and lncRNA was assessed by luciferase assays. Protein and mRNA expression were detected by western blot and real time quantitate PCR. MiRNA-377 was screened by miRNA microarray and differentially up-regulated in db/db DN mice. PPARγ was predicted to be the target of miR-377 and the prediction was verified by luciferase assays. Expression of miR-377 was up-regulated in mesangial cell treated with high glucose (25 mM), and overexpression of miR-377 inhibited PPARγ expression and promoted PAI-1 and TGF-β1 expression. The expression of TUG1 antagonized the effect of miR-377 on the downregulation of its target PPARγ and inhibited extracellular matrix accumulation, including PAI-1, TGF-β1, fibronectin (FN) and collagen IV (Col IV), induced by high glucose. LncRNA TUG1 acts as an endogenous sponge of miR-377 and downregulates miR-377 expression levels, and thereby relieving the inhibition of its target gene PPARγ and alleviates extracellular matrix accumulation of mesangial cells, which provides a novel insight of diabetic nephropathy pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

    Directory of Open Access Journals (Sweden)

    Gwendal Le Martelot

    Full Text Available Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver.

  10. Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis.

    Science.gov (United States)

    Eungwanichayapant, P D; Popluechai, S

    2009-02-01

    Catechins are a group of polyphenols found in tea (Camellia sinensis var. sinensis) at high levels. They are beneficial for health. From the study on accumulation of catechins in shoots and mature leaves of a tea cultivar, Oolong No. 17, using high-performance liquid chromatography (HPLC), it was found that the amounts of most catechins in the shoots were higher than those in the mature leaves, with an exception of catechins gallate (CG) that was found in trace amounts in both the shoots and mature leaves. mRNA accumulation of genes involved in catechin synthesis was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that the mRNA accumulation of the genes were higher in the shoots than in the mature leaves. These genes included genes of phenylalanine ammonia-lyase 1 (PAL1; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), dihydroflavonol 4-reductase (DFR; EC 1.1.1.219), leucoanthocyanidin reductase (LCR; EC 1.17.1.3), and flavanone 3-hydroxylase (F3H; EC 1.14.11.9).

  11. Mal de Río Cuarto Virus Infection Triggers the Production of Distinctive Viral-Derived siRNA Profiles in Wheat and Its Planthopper Vector.

    Science.gov (United States)

    de Haro, Luis A; Dumón, Analía D; Mattio, María F; Argüello Caro, Evangelina Beatriz; Llauger, Gabriela; Zavallo, Diego; Blanc, Hervé; Mongelli, Vanesa C; Truol, Graciela; Saleh, María-Carla; Asurmendi, Sebastián; Del Vas, Mariana

    2017-01-01

    Plant reoviruses are able to multiply in gramineae plants and delphacid vectors encountering different defense strategies with unique features. This study aims to comparatively assess alterations of small RNA (sRNA) populations in both hosts upon virus infection. For this purpose, we characterized the sRNA profiles of wheat and planthopper vectors infected by Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae ) and quantified virus genome segments by quantitative reverse transcription PCR We provide evidence that plant and insect silencing machineries differentially recognize the viral genome, thus giving rise to distinct profiles of virus-derived small interfering RNAs (vsiRNAs). In plants, most of the virus genome segments were targeted preferentially within their upstream sequences and vsiRNAs mapped with higher density to the smaller genome segments than to the medium or larger ones. This tendency, however, was not observed in insects. In both hosts, vsiRNAs were equally derived from sense and antisense RNA strands and the differences in vsiRNAs accumulation did not correlate with mRNAs accumulation. We also established that the piwi-interacting RNA (piRNA) pathway was active in the delphacid vector but, contrary to what is observed in virus-infected mosquitoes, virus-specific piRNAs were not detected. This work contributes to the understanding of the silencing response in insect and plant hosts.

  12. The duck hepatitis B virus polymerase and core proteins accumulate in different patterns from their common mRNA

    International Nuclear Information System (INIS)

    Yao Ermei; Schaller, Heinz; Tavis, John E.

    2003-01-01

    Hepadnaviral reverse transcription occurs in capsids in which the core (C) protein surrounds the reverse transcriptase (P) and pregenomic RNA (pgRNA). We analyzed the accumulation patterns of duck hepatitis B virus P, C, and pgRNA in transfected LMH cells, infected primary duck hepatocytes (PDH), and infected duck liver. In all three systems, P accumulated over time in a different pattern compared with C, despite translation of both proteins from the pgRNA. Although the accumulation patterns of the proteins varied between the systems, in each case P became detectable at the same time or earlier than C and the ratio of P relative to C dropped with time. These accumulation patterns were consistent with the translation rates and half-lives of P and C. Comparing the translation rates of P and C with the pgRNA level over time revealed that translation of P and C was negatively regulated in LMH cells. These data provide a framework for comparing replication studies performed in LMH cells, PDHs and ducks

  13. RNA Futile Cycling in Model Persisters Derived from MazF Accumulation (Open Access)

    Science.gov (United States)

    2015-11-17

    the nature of antitoxins and mechanism by which they inhibit their cognate toxins (36). Each toxin can also target different cellular components...48). MazF accumulation depresses cellular energy levels. To fur- ther investigate the metabolic changes in cells during toxin- induced shutdown, we...We com- pared the abundance of metabolites extracted from MazF- accumulating cells with that of metabolites extracted from cells coexpressing MazE

  14. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates.

    Science.gov (United States)

    Kriegs, Jan Ole; Churakov, Gennady; Jurka, Jerzy; Brosius, Jürgen; Schmitz, Jürgen

    2007-04-01

    The evolutionary relationships of 7SL RNA-derived SINEs such as the primate Alu or the rodent B1 elements have hitherto been obscure. We established an unambiguous phylogenetic tree for Supraprimates, and derived intraordinal relationships of the 7SL RNA-derived SINEs. As well as new elements in Tupaia and primates, we also found that the purported ancestral fossil Alu monomer was restricted to Primates, and provide here the first description of a potential chimeric promoter box region in SINEs.

  15. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development.

    Science.gov (United States)

    Layat, Elodie; Cotterell, Sylviane; Vaillant, Isabelle; Yukawa, Yasushi; Tutois, Sylvie; Tourmente, Sylvette

    2012-07-01

    Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  16. Function and anatomy of plant siRNA pools derived from hairpin transgenes

    Directory of Open Access Journals (Sweden)

    Lee Kevin AW

    2007-11-01

    Full Text Available Abstract Background RNA interference results in specific gene silencing by small-interfering RNAs (siRNAs. Synthetic siRNAs provide a powerful tool for manipulating gene expression but high cost suggests that novel siRNA production methods are desirable. Strong evolutionary conservation of siRNA structure suggested that siRNAs will retain cross-species function and that transgenic plants expressing heterologous siRNAs might serve as useful siRNA bioreactors. Here we report a detailed evaluation of the above proposition and present evidence regarding structural features of siRNAs extracted from plants. Results Testing the gene silencing capacity of plant-derived siRNAs in mammalian cells proved to be very challenging and required partial siRNA purification and design of a highly sensitive assay. Using the above assay we found that plant-derived siRNAs are ineffective for gene silencing in mammalian cells. Plant-derived siRNAs are almost exclusively double-stranded and most likely comprise a mixture of bona fide siRNAs and aberrant partially complementary duplexes. We also provide indirect evidence that plant-derived siRNAs may contain a hitherto undetected physiological modification, distinct from 3' terminal 2-O-methylation. Conclusion siRNAs produced from plant hairpin transgenes and extracted from plants are ineffective for gene silencing in mammalian cells. Thus our findings establish that a previous claim that transgenic plants offer a cost-effective, scalable and sustainable source of siRNAs is unwarranted. Our results also indicate that the presence of aberrant siRNA duplexes and possibly a plant-specific siRNA modification, compromises the gene silencing capacity of plant-derived siRNAs in mammalian cells.

  17. MicroRNA-21 Increases Proliferation and Cisplatin Sensitivity of Osteosarcoma-Derived Cells.

    Directory of Open Access Journals (Sweden)

    Vanita Vanas

    Full Text Available Osteosarcoma is the most common primary bone tumor and poor prognosis for osteosarcoma patients is mainly due to chemotherapy resistance. MicroRNAs are important to maintain pathophysiological mechanisms of cancer and influence cell sensitivity to chemotherapy. In this study, we tested the functions of microRNA-21 for malignant features as well as for drug resistance of osteosarcoma. We used Northern blot to measure microRNA-21 levels in osteosarcoma-derived cell lines. MicroRNA-21 activity was modulated by either expressing a sponge to decrease its activity in an osteosarcoma-derived cell line expressing high levels of microRNA-21 or by introducing pri-microRNA-21 in a cell line with low endogenous levels. Cell migration was determined in a scratch assay and cell proliferation was measured by performing growth curve analysis. Sensitivity of the cells towards chemotherapeutics was investigated by performing cell viability assays and calculating the IC50 values. While cell migration was unaffected by modulated microRNA-21 levels, microRNA-21 inhibition slowed proliferation and exogenously expressed microRNA-21 promoted this process. Modulated microRNA-21 activity failed to effect sensitivity of osteosarcoma-derived cell lines to doxorubicin or methotrexate. Contrarily, reduction of microRNA-21 activity resulted in enhanced resistance towards cisplatin while ectopic expression of microRNA-21 showed the opposite effect. Increased microRNA-21 levels repressed the expression of Sprouty2 and ectopic expression of Sprouty2 was able to largely rescue the observed effects of microRNA-21 in osteosarcoma. In summary, our data indicate that in osteosarcoma microRNA-21 expression is an important component for regulation of cell proliferation and for determining sensitivity to cisplatin.

  18. Assessing the 5S ribosomal RNA heterogeneity in Arabidopsis thaliana using short RNA next generation sequencing data.

    Science.gov (United States)

    Szymanski, Maciej; Karlowski, Wojciech M

    2016-01-01

    In eukaryotes, ribosomal 5S rRNAs are products of multigene families organized within clusters of tandemly repeated units. Accumulation of genomic data obtained from a variety of organisms demonstrated that the potential 5S rRNA coding sequences show a large number of variants, often incompatible with folding into a correct secondary structure. Here, we present results of an analysis of a large set of short RNA sequences generated by the next generation sequencing techniques, to address the problem of heterogeneity of the 5S rRNA transcripts in Arabidopsis and identification of potentially functional rRNA-derived fragments.

  19. Defective RNA particles derived from Tomato black ring virus genome interfere with the replication of parental virus.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Minicka, Julia; Zarzyńska-Nowak, Aleksandra; Budzyńska, Daria; Elena, Santiago F

    2018-05-02

    Tomato black ring virus (TBRV) is the only member of the Nepovirus genus that is known to form defective RNA particles (D RNAs) during replication. Here, de novo generation of D RNAs was observed during prolonged passages of TBRV isolates originated from Solanum lycopersicum and Lactuca sativa in Chenopodium quinoa plants. D RNAs of about 500 nt derived by a single deletion in the RNA1 molecule and contained a portion of the 5' untranslated region and viral replicase, and almost the entire 3' non-coding region. Short regions of sequence complementarity were found at the 5' and 3' junction borders, which can facilitate formation of the D RNAs. Moreover, in this study we analyzed the effects of D RNAs on TBRV replication and symptoms development of infected plants. C. quinoa, S. lycopersicum, Nicotiana tabacum, and L. sativa were infected with the original TBRV isolates (TBRV-D RNA) and those containing additional D RNA particles (TBRV + D RNA). The viral accumulation in particular hosts was measured up to 28 days post inoculation by RT-qPCR. Statistical analyses revealed that D RNAs interfere with TBRV replication and thus should be referred to as defective interfering particles. The magnitude of the interference effect depends on the interplay between TBRV isolate and host species. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Genomic segments RNA1 and RNA2 of Prunus necrotic ringspot virus codetermine viral pathogenicity to adapt to alternating natural Prunus hosts.

    Science.gov (United States)

    Cui, Hongguang; Hong, Ni; Wang, Guoping; Wang, Aiming

    2013-05-01

    Prunus necrotic ringspot virus (PNRSV) affects Prunus fruit production worldwide. To date, numerous PNRSV isolates with diverse pathological properties have been documented. To study the pathogenicity of PNRSV, which directly or indirectly determines the economic losses of infected fruit trees, we have recently sequenced the complete genome of peach isolate Pch12 and cherry isolate Chr3, belonging to the pathogenically aggressive PV32 group and mild PV96 group, respectively. Here, we constructed the Chr3- and Pch12-derived full-length cDNA clones that were infectious in the experimental host cucumber and their respective natural Prunus hosts. Pch12-derived clones induced much more severe symptoms than Chr3 in cucumber, and the pathogenicity discrepancy between Chr3 and Pch12 was associated with virus accumulation. By reassortment of genomic segments, swapping of partial genomic segments, and site-directed mutagenesis, we identified the 3' terminal nucleotide sequence (1C region) in RNA1 and amino acid K at residue 279 in RNA2-encoded P2 as the severe virulence determinants in Pch12. Gain-of-function experiments demonstrated that both the 1C region and K279 of Pch12 were required for severe virulence and high levels of viral accumulation. Our results suggest that PNRSV RNA1 and RNA2 codetermine viral pathogenicity to adapt to alternating natural Prunus hosts, likely through mediating viral accumulation.

  1. RNA Nanoparticles Derived from Three-Way Junction of Phi29 Motor pRNA Are Resistant to I-125 and Cs-131 Radiation

    Science.gov (United States)

    Li, Hui; Rychahou, Piotr G.; Cui, Zheng; Pi, Fengmei; Evers, B. Mark; Shu, Dan

    2015-01-01

    Radiation reagents that specifically target tumors are in high demand for the treatment of cancer. The emerging field of RNA nanotechnology might provide new opportunities for targeted radiation therapy. This study investigates whether chemically modified RNA nanoparticles derived from the packaging RNA (pRNA) three-way junction (3WJ) of phi29 DNA-packaging motor are resistant to potent I-125 and Cs-131 radiation, which is a prerequisite for utilizing these RNA nanoparticles as carriers for targeted radiation therapy. pRNA 3WJ nanoparticles were constructed and characterized, and the stability of these nanoparticles under I-125 and Cs-131 irradiation with clinically relevant doses was examined. RNA nanoparticles derived from the pRNA 3WJ targeted tumors specifically and they were stable under irradiation of I-125 and Cs-131 with clinically relevant doses ranging from 1 to 90 Gy over a significantly long time up to 20 days, while control plasmid DNA was damaged at 20 Gy or higher. PMID:26017686

  2. A New Class of SINEs with snRNA Gene-Derived Heads.

    Science.gov (United States)

    Kojima, Kenji K

    2015-05-27

    Eukaryotic genomes are colonized by various transposons including short interspersed elements (SINEs). The 5' region (head) of the majority of SINEs is derived from one of the three types of RNA genes--7SL RNA, transfer RNA (tRNA), or 5S ribosomal RNA (rRNA)--and the internal promoter inside the head promotes the transcription of the entire SINEs. Here I report a new group of SINEs whose heads originate from either the U1 or U2 small nuclear RNA gene. These SINEs, named SINEU, are distributed among crocodilians and classified into three families. The structures of the SINEU-1 subfamilies indicate the recurrent addition of a U1- or U2-derived sequence onto the 5' end of SINEU-1 elements. SINEU-1 and SINEU-3 are ancient and shared among alligators, crocodiles, and gharials, while SINEU-2 is absent in the alligator genome. SINEU-2 is the only SINE family that was active after the split of crocodiles and gharials. All SINEU families, especially SINEU-3, are preferentially inserted into a family of Mariner DNA transposon, Mariner-N4_AMi. A group of Tx1 non-long terminal repeat retrotransposons designated Tx1-Mar also show target preference for Mariner-N4_AMi, indicating that SINEU was mobilized by Tx1-Mar. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. RNA:DNA Ratio and Other Nucleic Acid Derived Indices in Marine Ecology

    Directory of Open Access Journals (Sweden)

    Luis Chícharo

    2008-08-01

    Full Text Available Some of most used indicators in marine ecology are nucleic acid-derived indices. They can be divided by target levels in three groups: 1 at the organism level as ecophysiologic indicators, indicators such as RNA:DNA ratios, DNA:dry weight and RNA:protein, 2 at the population level, indicators such as growth rate, starvation incidence or fisheries impact indicators, and 3 at the community level, indicators such as trophic interactions, exergy indices and prey identification. The nucleic acids derived indices, especially RNA:DNA ratio, have been applied with success as indicators of nutritional condition, well been and growth in marine organisms. They are also useful as indicators of natural or anthropogenic impacts in marine population and communities, such as upwelling or dredge fisheries, respectively. They can help in understanding important issues of marine ecology such as trophic interactions in marine environment, fish and invertebrate recruitment failure and biodiversity changes, without laborious work of counting, measuring and identification of small marine organisms. Besides the objective of integrate nucleic acid derived indices across levels of organization, the paper will also include a general characterization of most used nucleic acid derived indices in marine ecology and also advantages and limitations of them. We can conclude that using indicators, such RNA:DNA ratios and other nucleic acids derived indices concomitantly with organism and ecosystems measures of responses to climate change (distribution, abundance, activity, metabolic rate, survival will allow for the development of more rigorous and realistic predictions of the effects of anthropogenic climate change on marine systems.

  4. Accumulation of RNA in blastocysts during embryonic diapause and the periimplantation period in the western spotted skunk

    International Nuclear Information System (INIS)

    Mead, R.A.; Rourke, A.W.

    1985-01-01

    The in vivo incorporation of 3 H-uridine into RNA was studied in delayed implanting and activated blastocysts obtained from 33 western spotted skunks. 3 H-uridine was incorporated into RNA by all blastocysts; however, significantly more label was incorporated as blastocyst diameter increased. Activated blastocysts with diameters of 1.6 mm or greater on average incorporated 65 times more 3 H-precursor in 5 hr than diapausing blastocysts with diameters of 1.1 mm or less. Polyadenylated RNA was likewise synthesized by delayed implanting and activated skunk blastocysts; however, the proportion of polyadenylated RNA synthesized by the former was greater than in the latter. The data suggest that the transition from embryonic diapause to fully activated blastocysts first occurs gradually for several days before entering a 1-2-day period of rapid development characterized by an abrupt increase in RNA accumulation

  5. Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna)

    Energy Technology Data Exchange (ETDEWEB)

    Hannas, Bethany R.; Wang, Ying H.; Thomson, Susanne; Kwon, Gwijun; Hong, Li [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633 (United States); LeBlanc, Gerald A., E-mail: Gerald_LeBlanc@ncsu.edu [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633 (United States)

    2011-01-25

    The induction of vitellogenin in oviparous vertebrates has become the gold standard biomarker of exposure to estrogenic chemicals in the environment. This biomarker of estrogen exposure also has been used in arthropods, however, little is known of the factors that regulate the expression of vitellogenin in these organisms. We investigated changes in accumulation of mRNA products of the vitellogenin gene Vtg2 in daphnids (Daphnia magna) exposed to a diverse array of chemicals. We further evaluated the involvement of hormonal factors in the regulation of vitellogenin expression that may be targets of xenobiotic chemicals. Expression of the Vtg2 gene was highly responsive to exposure to various chemicals with an expression range spanning approximately four orders of magnitude. Chemicals causing the greatest induction were piperonyl butoxide, chlordane, 4-nonylphenol, cadmium, and chloroform. Among these, only 4-nonylphenol is recognized to be estrogenic. Exposure to several chemicals also suppressed Vtg2 mRNA levels, as much as 100-fold. Suppressive chemicals included cyproterone acetate, acetone, triclosan, and atrazine. Exposure to the estrogens diethylstilbestrol and bisphenol A had little effect on vitellogenin mRNA levels further substantiating that these genes are not induced by estrogen exposure. Exposure to the potent ecdysteroids 20-hydroxyecdysone and ponasterone A revealed that Vtg2 was subject to strong suppressive control by these hormones. Vtg2 mRNA levels were not significantly affected from exposure to several juvenoid hormones. Results indicate that ecdysteroids are suppressors of vitellogenin gene expression and that vitellogenin mRNA levels can be elevated or suppressed in daphnids by xenobiotics that elicit antiecdysteroidal or ecdysteroidal activity, respectively. Importantly, daphnid Vtg2 is not elevated in response to estrogenic activity.

  6. Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna)

    International Nuclear Information System (INIS)

    Hannas, Bethany R.; Wang, Ying H.; Thomson, Susanne; Kwon, Gwijun; Li Hong; LeBlanc, Gerald A.

    2011-01-01

    The induction of vitellogenin in oviparous vertebrates has become the gold standard biomarker of exposure to estrogenic chemicals in the environment. This biomarker of estrogen exposure also has been used in arthropods, however, little is known of the factors that regulate the expression of vitellogenin in these organisms. We investigated changes in accumulation of mRNA products of the vitellogenin gene Vtg2 in daphnids (Daphnia magna) exposed to a diverse array of chemicals. We further evaluated the involvement of hormonal factors in the regulation of vitellogenin expression that may be targets of xenobiotic chemicals. Expression of the Vtg2 gene was highly responsive to exposure to various chemicals with an expression range spanning approximately four orders of magnitude. Chemicals causing the greatest induction were piperonyl butoxide, chlordane, 4-nonylphenol, cadmium, and chloroform. Among these, only 4-nonylphenol is recognized to be estrogenic. Exposure to several chemicals also suppressed Vtg2 mRNA levels, as much as 100-fold. Suppressive chemicals included cyproterone acetate, acetone, triclosan, and atrazine. Exposure to the estrogens diethylstilbestrol and bisphenol A had little effect on vitellogenin mRNA levels further substantiating that these genes are not induced by estrogen exposure. Exposure to the potent ecdysteroids 20-hydroxyecdysone and ponasterone A revealed that Vtg2 was subject to strong suppressive control by these hormones. Vtg2 mRNA levels were not significantly affected from exposure to several juvenoid hormones. Results indicate that ecdysteroids are suppressors of vitellogenin gene expression and that vitellogenin mRNA levels can be elevated or suppressed in daphnids by xenobiotics that elicit antiecdysteroidal or ecdysteroidal activity, respectively. Importantly, daphnid Vtg2 is not elevated in response to estrogenic activity.

  7. Fluence dependence of the ultraviolet-light-induced accumulation of chalcone synthase mRNA and effects of blue and far-red light in cultured parsley

    International Nuclear Information System (INIS)

    Bruns, B.; Hahlbrock, K.; Schäfer, E.

    1986-01-01

    The fluence dependence of the time course of accumulation of chalcone synthase mRNA in ultraviolet (UV)-light-irradiated cell suspension cultures of parsley (Petroselinum crispum) and the additional effects of blue and far-red light have been investigated. Variations of the UV fluence had no detectable influence on the initial rate of increase in mRNA amount or translational activity, nor on the preceding lag period of approximately 3 h, but strongly influenced the duration of the transient increase. The effects were the same whether the fluence rate or the time of irradiation was varied to obtain a given fluence. Blue-light pretreatment of the cells resulted in increased amounts of mRNA and abolished the apparent lag period. This effect remained cryptic without the subsequent UV-light treatment. Irradiation with long-wavelength far-red light following UV-light pulses shortened the duration of the mRNA accumulation period. This effect was not altered by a preceding blue-light treatment. Thus, three photoreceptors, a UV-B receptor, a blue-light receptor and phytochrome, participate in the regulation of chalcone synthase mRNA accumulation in this system

  8. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.

    Directory of Open Access Journals (Sweden)

    Kiwamu Hyodo

    2015-05-01

    Full Text Available Eukaryotic positive-strand RNA [(+RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA, a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids, but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+RNA virus, Red clover necrotic mosaic virus (RCNMV. We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.

  9. Identification and Characterization of 293T Cell-Derived Exosomes by Profiling the Protein, mRNA and MicroRNA Components.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available Cell-derived exosomes are leading candidates for in vivo drug delivery carriers. In particular, exosomes derived from 293T cells are used most frequently, although exosome dosing has varied greatly among studies. Considering their biological origin, it is crucial to characterize the molecular composition of exosomes if large doses are to be administered in clinical settings. In this study, we present the first comprehensive analysis of the protein, messenger RNA and microRNA profiles of 293T cell-derived exosomes; then, we characterized these data using Gene Ontology annotation and Kyoto Encyclopedia for Genes and Genomes pathway analysis. Our study will provide the basis for the selection of 293T cell-derived exosome drug delivery systems. Profiling the exosomal signatures of 293T cells will lead to a better understanding of 293T exosome biology and will aid in the identification of any harmful factors in exosomes that could cause adverse clinical effects.

  10. Exosomes Derived From Pancreatic Stellate Cells: MicroRNA Signature and Effects on Pancreatic Cancer Cells.

    Science.gov (United States)

    Takikawa, Tetsuya; Masamune, Atsushi; Yoshida, Naoki; Hamada, Shin; Kogure, Takayuki; Shimosegawa, Tooru

    2017-01-01

    Pancreatic stellate cells (PSCs) interact with pancreatic cancer cells in the tumor microenvironment. Cell constituents including microRNAs may be exported from cells within membranous nanovesicles termed exosomes. Exosomes might play a pivotal role in intercellular communication. This study aimed to clarify the microRNA signature of PSC-derived exosomes and their effects on pancreatic cancer cells. Exosomes were prepared from the conditioned medium of immortalized human PSCs. MicroRNAs were prepared from the exosomes and their source PSCs, and the microRNA expression profiles were compared by microarray. The effects of PSC-derived exosomes on proliferation, migration, and the mRNA expression profiles were examined in pancreatic cancer cells. Pancreatic stellate cell-derived exosomes contained a variety of microRNAs including miR-21-5p. Several microRNAs such as miR-451a were enriched in exosomes compared to their source PSCs. Pancreatic stellate cell-derived exosomes stimulated the proliferation, migration and expression of mRNAs for chemokine (C - X - C motif) ligands 1 and 2 in pancreatic cancer cells. The stimulation of proliferation, migration, and chemokine gene expression by the conditioned medium of PSCs was suppressed by GW4869, an exosome inhibitor. We clarified the microRNA expression profile in PSC-derived exosomes. Pancreatic stellate cell-derived exosomes might play a role in the interactions between PSCs and pancreatic cancer cells.

  11. RNA-Seq of the nucleolus reveals abundant SNORD44-derived small RNAs.

    Directory of Open Access Journals (Sweden)

    Baoyan Bai

    Full Text Available Small non-coding RNAs represent RNA species that are not translated to proteins, but which have diverse and broad functional activities in physiological and pathophysiological states. The knowledge of these small RNAs is rapidly expanding in part through the use of massive parallel (deep sequencing efforts. We present here the first deep sequencing of small RNomes in subcellular compartments with particular emphasis on small RNAs (sRNA associated with the nucleolus. The vast majority of the cellular, cytoplasmic and nuclear sRNAs were identified as miRNAs. In contrast, the nucleolar sRNAs had a unique size distribution consisting of 19-20 and 25 nt RNAs, which were predominantly composed of small snoRNA-derived box C/D RNAs (termed as sdRNA. Sequences from 47 sdRNAs were identified, which mapped to both 5' and 3' ends of the snoRNAs, and retained conserved box C or D motifs. SdRNA reads mapping to SNORD44 comprised 74% of all nucleolar sdRNAs, and were confirmed by Northern blotting as comprising both 20 and 25 nt RNAs. A novel 120 nt SNORD44 form was also identified. The expression of the SNORD44 sdRNA and 120 nt form was independent of Dicer/Drosha-mediated processing pathways but was dependent on the box C/D snoRNP proteins/sno-ribonucleoproteins fibrillarin and NOP58. The 120 nt SNORD44-derived RNA bound to fibrillarin suggesting that C/D sno-ribonucleoproteins are involved in regulating the stability or processing of SNORD44. This study reveals sRNA cell-compartment specific expression and the distinctive unique composition of the nucleolar sRNAs.

  12. Identification of a Recently Active Mammalian SINE Derived from Ribosomal RNA

    Science.gov (United States)

    Longo, Mark S.; Brown, Judy D.; Zhang, Chu; O’Neill, Michael J.; O’Neill, Rachel J.

    2015-01-01

    Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3′-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes. PMID:25637222

  13. Non-Target Effects of Green Fluorescent Protein (GFP-Derived Double-Stranded RNA (dsRNA-GFP Used in Honey Bee RNA Interference (RNAi Assays

    Directory of Open Access Journals (Sweden)

    Francis M. F. Nunes

    2013-01-01

    Full Text Available RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP-derived double-stranded RNA (dsRNA-GFP is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  14. Non-Target Effects of Green Fluorescent Protein (GFP)-Derived Double-Stranded RNA (dsRNA-GFP) Used in Honey Bee RNA Interference (RNAi) Assays.

    Science.gov (United States)

    Nunes, Francis M F; Aleixo, Aline C; Barchuk, Angel R; Bomtorin, Ana D; Grozinger, Christina M; Simões, Zilá L P

    2013-01-04

    RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.

  15. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  16. Tissue-specific regulation of mouse MicroRNA genes in endoderm-derived tissues

    OpenAIRE

    Gao, Yan; Schug, Jonathan; McKenna, Lindsay B.; Le Lay, John; Kaestner, Klaus H.; Greenbaum, Linda E.

    2010-01-01

    MicroRNAs fine-tune the activity of hundreds of protein-coding genes. The identification of tissue-specific microRNAs and their promoters has been constrained by the limited sensitivity of prior microRNA quantification methods. Here, we determine the entire microRNAome of three endoderm-derived tissues, liver, jejunum and pancreas, using ultra-high throughput sequencing. Although many microRNA genes are expressed at comparable levels, 162 microRNAs exhibited striking tissue-specificity. After...

  17. Emerging RNA-based drugs: siRNAs, microRNAs and derivates.

    Science.gov (United States)

    Pereira, Tiago Campos; Lopes-Cendes, Iscia

    2012-09-01

    An emerging new category of therapeutic agents based on ribonucleic acid has emerged and shown very promising in vitro, animal and pre-clinical results, known as small interfering RNAs (siRNAs), microRNAs mimics (miRNA mimics) and their derivates. siRNAs are small RNA molecules that promote potent and specific silencing of mutant, exogenous or aberrant genes through a mechanism known as RNA interference. These agents have called special attention to medicine since they have been used to experimentally treat a series of neurological conditions with distinct etiologies such as prion, viral, bacterial, fungal, genetic disorders and others. siRNAs have also been tested in other scenarios such as: control of anxiety, alcohol consumption, drug-receptor blockage and inhibition of pain signaling. Although in a much earlier stage, miRNAs mimics, anti-miRs and small activating RNAs (saRNAs) also promise novel therapeutic approaches to control gene expression. In this review we intend to introduce clinicians and medical researchers to the most recent advances in the world of siRNA- and miRNA-mediated gene control, its history, applications in cells, animals and humans, delivery methods (an yet unsolved hurdle), current status and possible applications in future clinical practice.

  18. Competitive accumulation of betaines by Escherichia coli K-12 and derivative strains lacking betaine porters.

    Science.gov (United States)

    Randall, K; Lever, M; Peddie, B A; Chambers, S T

    1995-08-17

    Escherichia coli was grown in hyperosmotic media containing both glycine betaine and one other betaine. E. coli K-12 derivative WG439 (putP- proP- proU-) did not accumulate any of 15 betaines. Strains WG445 (putP- proP- proU+), WG443 (putP- proP+ proU-) and the control strains all accumulated less betaine, (CH3)3N(+)-(CH2)n-COO-, when n was greater than 1. Accumulation was not detectable when n = 5. Both L- and D-isomers of alpha-substituted betaines were accumulated by both strains WG443 and WG445, the D-isomers more slowly. Hydroxylated alpha-substituted betaines were accumulated relatively more through the osmoregulated transport protein ProU than through ProP. In actively growing cultures glycine betaine appeared to be the preferred substrate for accumulation, but the proportion of the second accumulated betaine increased as cultures approached stationary phase.

  19. Efficient delivery of Notch1 siRNA to SKOV3 cells by cationic cholesterol derivative-based liposome

    Directory of Open Access Journals (Sweden)

    Zhao Y

    2016-10-01

    Full Text Available Yun-Chun Zhao,1 Li Zhang,2 Shi-Sen Feng,3 Lu Hong,3 Hai-Li Zheng,3 Li-Li Chen,4 Xiao-Ling Zheng,1 Yi-Qing Ye,1 Meng-Dan Zhao,1 Wen-Xi Wang,3 Cai-Hong Zheng1 1Pharmacy Department, Women’s Hospital, 2Pharmacy Department, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China; 3Department of Pharmaceutic Preparation, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 4Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China Abstract: A novel cationic cholesterol derivative-based small interfering RNA (siRNA interference strategy was suggested to inhibit Notch1 activation in SKOV3 cells for the gene therapy of ovarian cancer. The cationic cholesterol derivative, N-(cholesterylhemisuccinoyl-amino-3-propyl-N, N-dimethylamine (DMAPA-chems liposome, was incubated with siRNA at different nitrogen-to-phosphate ratios to form stabilized, near-spherical siRNA/DMAPA-chems nanoparticles with sizes of 100–200 nm and zeta potentials of 40–50 mV. The siRNA/DMAPA-chems nanoparticles protected siRNA from nuclease degradation in 25% fetal bovine serum. The nanoparticles exhibited high cell uptake and Notch1 gene knockdown efficiency in SKOV3 cells at an nitrogen-to-phosphate ratio of 100 and an siRNA concentration of 50 nM. They also inhibited the growth and promoted the apoptosis of SKOV3 cells. These results may provide the potential for using cationic cholesterol derivatives as efficient nonviral siRNA carriers for the suppression of Notch1 activation in ovarian cancer cells. Keywords: siRNA, cationic cholesterol derivative, Notch1, ovarian cancer cells

  20. Accumulation and altered localization of telomere-associated protein TRF2 in immortally transformed and tumor-derived human breast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nijjar, Tarlochan; Bassett, Ekaterina; Garbe, James; Takenaka, Yasuhiro; Stampfer, Martha R.; Gilley, David; Yaswen, Paul

    2004-12-23

    We have used cultured human mammary epithelial cells (HMEC) and breast tumor-derived lines to gain information on defects that occur during breast cancer progression. HMEC immortalized by a variety of agents (the chemical carcinogen benzo(a)pyrene, oncogenes c-myc and ZNF217, and/or dominant negative p53 genetic suppressor element GSE22) displayed marked up regulation (10-15 fold) of the telomere binding protein, TRF2. Up-regulation of TRF2 protein was apparently due to differences in post-transcriptional regulation, as mRNA levels remained comparable in finite life span and immortal HMEC. TRF2 protein was not up-regulated by the oncogenic agents alone in the absence of immortalization, nor by expression of exogenously introduced hTERT genes. We found TRF2 levels to be at least 2-fold higher than in control cells in 11/15 breast tumor cell lines, suggesting that elevated TRF2 levels are a frequent occurrence during the transformation of breast tumor cells in vivo. The dispersed distribution of TRF2 throughout the nuclei in some immortalized and tumor-derived cells indicated that not all the TRF2 was associated with telomeres in these cells. The process responsible for accumulation of TRF2 in immortalized HMEC and breast tumor-derived cell lines may promote tumorigenesis by contributing to the cells ability to maintain an indefinite life span.

  1. Accumulation of the coumarin scopolin under abiotic stress conditions is mediated by the Arabidopsis thaliana THO/TREX complex

    KAUST Repository

    Döll, Stefanie

    2017-12-09

    Secondary metabolites are involved in the plant stress response. Among these are scopolin and its active form scopoletin, which are coumarin derivatives associated with reactive oxygen species scavenging and pathogen defence. Here we show that scopolin accumulation can be induced in the root by osmotic stress and in the leaf by low-temperature stress in Arabidopsis thaliana. A genetic screen for altered scopolin levels in A. thaliana revealed a mutant compromised in scopolin accumulation in response to stress; the lesion was present in a homologue of THO1 coding for a subunit of the THO/TREX complex. The THO/TREX complex contributes to RNA silencing, supposedly by trafficking precursors of small RNAs. Mutants defective in THO, AGO1, SDS3 and RDR6 were impaired with respect to scopolin accumulation in response to stress, suggesting a mechanism based on RNA silencing such as the trans-acting small interfering RNA pathway, which requires THO/TREX function.

  2. DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Willson Richard C

    2010-12-01

    Full Text Available Abstract Background Manufacturing large quantities of recombinant RNAs by overexpression in a bacterial host is hampered by their instability in intracellular environment. To overcome this problem, an RNA of interest can be fused into a stable bacterial RNA for the resulting chimeric construct to accumulate in the cytoplasm to a sufficiently high level. Being supplemented with cost-effective procedures for isolation of the chimera from cells and recovery of the recombinant RNA from stabilizing scaffold, this strategy might become a viable alternative to the existing methods of chemical or enzymatic RNA synthesis. Results Sequence encoding a 71-nucleotide recombinant RNA was inserted into a plasmid-borne deletion mutant of the Vibrio proteolyticus 5S rRNA gene in place of helix III - loop C segment of the original 5S rRNA. After transformation into Escherichia coli, the chimeric RNA (3×pen aRNA was expressed constitutively from E. coli rrnB P1 and P2 promoters. The RNA chimera accumulated to levels that exceeded those of the host's 5S rRNA. A novel method relying on liquid-solid partitioning of cellular constituents was developed for isolation of total RNA from bacterial cells. This protocol avoids toxic chemicals, and is therefore more suitable for large scale RNA purification than traditional methods. A pair of biotinylated 8-17 DNAzymes was used to bring about the quantitative excision of the 71-nt recombinant RNA from the chimera. The recombinant RNA was isolated by sequence-specific capture on beads with immobilized complementary deoxyoligonucleotide, while DNAzymes were recovered by biotin affinity chromatography for reuse. Conclusions The feasibility of a fermentation-based approach for manufacturing large quantities of small RNAs in vivo using a "5S rRNA scaffold" strategy is demonstrated. The approach provides a route towards an economical method for the large-scale production of small RNAs including shRNAs, siRNAs and aptamers for use

  3. Structural-conformational aspects of tRNA complexation with chloroethyl nitrosourea derivatives: A molecular modeling and spectroscopic investigation.

    Science.gov (United States)

    Agarwal, Shweta; Tyagi, Gunjan; Chadha, Deepti; Mehrotra, Ranjana

    2017-01-01

    Chloroethyl nitrosourea derivatives (CENUs) represent an important family of anticancer chemotherapeutic agents, which are used in the treatment of different types of cancer such as brain tumors, resistant or relapsed Hodgkin's disease, small cell lung cancer and malignant melanoma. This work focuses towards understanding the interaction of chloroethyl nitrosourea derivatives; lomustine, nimustine and semustine with tRNA using spectroscopic approach in order to elucidate their auxiliary anticancer action mechanism inside the cell. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), Fourier transform infrared difference spectroscopy, circular dichroism spectroscopy and UV-visible spectroscopy were employed to investigate the binding parameters of tRNA-CENUs complexation. Results of present study demonstrate that all CENUs, studied here, interact with tRNA through guanine nitrogenous base residues and possibly further crosslink cytosine residues in paired region of tRNA. Moreover, spectral data collected for nimustine-tRNA and semustine-tRNA complex formation indicates towards the groove-directed-alkylation as their anti-malignant action, which involves the participation of uracil moiety located in major groove of tRNA. Besides this, tRNA-CENUs adduct formation did not alter the native conformation of biopolymer and tRNA remains in A-form after its interaction with all three nitrosourea derivatives studied. The binding constants (K a ) estimated for tRNA complexation with lomustine, nimustine and semustine are 2.55×10 2 M -1 , 4.923×10 2 M -1 and 4.223×10 2 M -1 respectively, which specify weak type of CENU's binding with tRNA. Moreover, molecular modeling simulations were also performed to predict preferential binding orientation of CENUs with tRNA that corroborates well with spectral outcomes. The findings, presented here, recognize tRNA binding properties of CENUs that can further help in rational designing of more specific and

  4. A Two-Piece Derivative of a Group I Intron RNA as a Platform for Designing Self-Assembling RNA Templates to Promote Peptide Ligation

    Directory of Open Access Journals (Sweden)

    Takahiro Tanaka

    2012-01-01

    Full Text Available Multicomponent RNA-peptide complexes are attractive from the viewpoint of artificial design of functional biomacromolecular systems. We have developed self-folding and self-assembling RNAs that serve as templates to assist chemical ligation between two reactive peptides with RNA-binding capabilities. The design principle of previous templates, however, can be applied only to limited classes of RNA-binding peptides. In this study, we employed a two-piece derivative of a group I intron RNA from the Tetrahymena large subunit ribosomal RNA (LSU rRNA as a platform for new template RNAs. In this group I intron-based self-assembling platform, modules for the recognition of substrate peptides can be installed independently from modules holding the platform structure. The new self-assembling platform allows us to expand the repertoire of substrate peptides in template RNA design.

  5. Mutations that alter a repeated ACCA element located at the 5' end of the Potato virus X genome affect RNA accumulation.

    Science.gov (United States)

    Park, Mi-Ri; Kwon, Sun-Jung; Choi, Hong-Soo; Hemenway, Cynthia L; Kim, Kook-Hyung

    2008-08-15

    The repeated ACCA or AC-rich sequence and structural (SL1) elements in the 5' non-translated region (NTR) of the Potato virus X (PVX) RNA play vital roles in the PVX life cycle by controlling translation, RNA replication, movement, and assembly. It has already been shown that the repeated ACCA or AC-rich sequence affect both gRNA and sgRNA accumulation, while not affecting minus-strand RNA accumulation, and are also required for host protein binding. The functional significance of the repeated ACCA sequence elements in the 5' NTR region was investigated by analyzing the effects of deletion and site-directed mutations on PVX replication in Nicotiana benthamiana plants and NT1 protoplasts. Substitution (ACCA into AAAA or UUUU) mutations introduced in the first (nt 10-13) element in the 5' NTR of the PVX RNA significantly affected viral replication, while mutations introduced in the second (nt 17-20) and third (nt 20-23) elements did not. The fourth (nt 29-32) ACCA element weakly affected virus replication, whereas mutations in the fifth (nt 38-41) significantly reduced virus replication due to the structure disruption of SL1 by AAAA and/or UUUU substitutions. Further characterization of the first ACCA element indicated that duplication of ACCA at nt 10-13 (nt 10-17, ACCAACCA) caused severe symptom development as compared to that of wild type, while deletion of the single element (nt 10-13), DeltaACCA) or tripling of this element caused reduced symptom development. Single- and double-nucleotide substitutions introduced into the first ACCA element revealed the importance of CC located at nt positions 11 and 12. Altogether, these results indicate that the first ACCA element is important for PVX replication.

  6. The Human Nuclear Exosome Targeting Complex Is Loaded onto Newly Synthesized RNA to Direct Early Ribonucleolysis

    Directory of Open Access Journals (Sweden)

    Michal Lubas

    2015-01-01

    Full Text Available The RNA exosome complex constitutes the major nuclear eukaryotic 3′-5′ exonuclease. Outside of nucleoli, the human nucleoplasmic exosome is directed to some of its substrates by the nuclear exosome targeting (NEXT complex. How NEXT targets RNA has remained elusive. Using an in vivo crosslinking approach, we report global RNA binding sites of RBM7, a key component of NEXT. RBM7 associates broadly with RNA polymerase II-derived RNA, including pre-mRNA and short-lived exosome substrates such as promoter upstream transcripts (PROMPTs, enhancer RNAs (eRNAs, and 3′-extended products from snRNA and replication-dependent histone genes. Within pre-mRNA, RBM7 accumulates at the 3′ ends of introns, and pulse-labeling experiments demonstrate that RBM7/NEXT defines an early exosome-targeting pathway for 3′-extended snoRNAs derived from such introns. We propose that RBM7 is generally loaded onto newly synthesized RNA to accommodate exosome action in case of available unprotected RNA 3′ ends.

  7. The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins.

    Science.gov (United States)

    López-Carrasco, Amparo; Flores, Ricardo

    2017-07-01

    Avocado sunblotch viroid (ASBVd), the type member of the family Avsunviroidae, replicates and accumulates in chloroplasts. Whether this minimal non-protein-coding circular RNA of 246-250 nt exists in vivo as a free nucleic acid or closely associated with host proteins remains unknown. To tackle this issue, the secondary structures of the monomeric circular (mc) (+) and (-) strands of ASBVd have been examined in silico by searching those of minimal free energy, and in vitro at single-nucleotide resolution by selective 2'-hydroxyl acylation analysed by primer extension (SHAPE). Both approaches resulted in predominant rod-like secondary structures without tertiary interactions, with the mc (+) RNA being more compact than its (-) counterpart as revealed by non-denaturing polyacryamide gel electrophoresis. Moreover, in vivo SHAPE showed that the mc ASBVd (+) form accumulates in avocado leaves as a free RNA adopting a similar rod-shaped conformation unprotected by tightly bound host proteins. Hence, the mc ASBVd (+) RNA behaves in planta like the previously studied mc (+) RNA of potato spindle tuber viroid, the type member of nuclear viroids (family Pospiviroidae), indicating that two different viroids replicating and accumulating in distinct subcellular compartments, have converged into a common structural solution. Circularity and compact secondary structures confer to these RNAs, and probably to all viroids, the intrinsic stability needed to survive in their natural habitats. However, in vivo SHAPE has not revealed the (possibly transient or loose) interactions of the mc ASBVd (+) RNA with two host proteins observed previously by UV irradiation of infected avocado leaves.

  8. Regulatory RNAs derived from transfer RNA?

    Science.gov (United States)

    Pederson, Thoru

    2010-10-01

    Four recent studies suggest that cleavages of transfer RNAs generate products with microRNA-like features, with some evidence of function. If their regulatory functions were to be confirmed, these newly revealed RNAs would add to the expanding repertoire of small noncoding RNAs and would also provide new perspectives on the coevolution of transfer RNA and messenger RNA.

  9. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma.

    Directory of Open Access Journals (Sweden)

    Elaine M Morazzani

    2012-01-01

    Full Text Available The natural maintenance cycles of many mosquito-borne pathogens require establishment of persistent non-lethal infections in the invertebrate host. The mechanism by which this occurs is not well understood, but we have previously shown that an antiviral response directed by small interfering RNAs (siRNAs is important in modulating the pathogenesis of alphavirus infections in the mosquito. However, we report here that infection of mosquitoes with an alphavirus also triggers the production of another class of virus-derived small RNAs that exhibit many similarities to ping-pong-dependent piwi-interacting RNAs (piRNAs. However, unlike ping-pong-dependent piRNAs that have been described previously from repetitive elements or piRNA clusters, our work suggests production in the soma. We also present evidence that suggests virus-derived piRNA-like small RNAs are capable of modulating the pathogenesis of alphavirus infections in dicer-2 null mutant mosquito cell lines defective in viral siRNA production. Overall, our results suggest that a non-canonical piRNA pathway is present in the soma of vector mosquitoes and may be acting redundantly to the siRNA pathway to target alphavirus replication.

  10. Defining the RNA Internal Loops Preferred by Benzimidazole Derivatives via Two-Dimensional Combinatorial Screening and Computational Analysis

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Seedhouse, Steven J.; French, Jonathan

    2011-01-01

    RNA is an important therapeutic target, however, RNA targets are generally underexploited due to a lack of understanding of the small molecules that bind RNA and the RNA motifs that bind small molecules. Herein, we describe the identification of the RNA internal loops derived from a 4096-member 3×3 nucleotide loop library that are the most specific and highest affinity binders to a series of four designer, drug-like benzimidazoles. These studies establish a potentially general protocol to define the highest affinity and most specific RNA motif targets for heterocyclic small molecules. Such information could be used to target functionally important RNAs in genomic sequence. PMID:21604752

  11. microRNA expression profile in human coronary smooth muscle cell-derived microparticles is a source of biomarkers.

    Science.gov (United States)

    de Gonzalo-Calvo, David; Cenarro, Ana; Civeira, Fernando; Llorente-Cortes, Vicenta

    2016-01-01

    microRNA (miRNA) expression profile of extracellular vesicles is a potential tool for clinical practice. Despite the key role of vascular smooth muscle cells (VSMC) in cardiovascular pathology, there is limited information about the presence of miRNAs in microparticles secreted by this cell type, including human coronary artery smooth muscle cells (HCASMC). Here, we tested whether HCASMC-derived microparticles contain miRNAs and the value of these miRNAs as biomarkers. HCASMC and explants from atherosclerotic or non-atherosclerotic areas were obtained from coronary arteries of patients undergoing heart transplant. Plasma samples were collected from: normocholesterolemic controls (N=12) and familial hypercholesterolemia (FH) patients (N=12). Both groups were strictly matched for age, sex and cardiovascular risk factors. Microparticle (0.1-1μm) isolation and characterization was performed using standard techniques. VSMC-enriched miRNAs expression (miR-21-5p, -143-3p, -145-5p, -221-3p and -222-3p) was analyzed using RT-qPCR. Total RNA isolated from HCASMC-derived microparticles contained small RNAs, including VSMC-enriched miRNAs. Exposition of HCASMC to pathophysiological conditions, such as hypercholesterolemia, induced a decrease in the expression level of miR-143-3p and miR-222-3p in microparticles, not in cells. Expression levels of miR-222-3p were lower in circulating microparticles from FH patients compared to normocholesterolemic controls. Microparticles derived from atherosclerotic plaque areas showed a decreased level of miR-143-3p and miR-222-3p compared to non-atherosclerotic areas. We demonstrated for the first time that microparticles secreted by HCASMC contain microRNAs. Hypercholesterolemia alters the microRNA profile of HCASMC-derived microparticles. The miRNA signature of HCASMC-derived microparticles is a source of cardiovascular biomarkers. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights

  12. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants

    Directory of Open Access Journals (Sweden)

    Aleksandra eObrępalska-Stęplowska

    2015-10-01

    Full Text Available Temperature is an important environmental factor influencing plant development in natural and diseased conditions. The growth rate of plants grown at 27°C is more rapid than for plants grown at 21°C. Thus, temperature affects the rate of pathogenesis progression in individual plants. We have analyzed the effect of temperature conditions (either 21°C or 27°C during the day on the accumulation rate of the virus and satellite RNA (satRNA in Nicotiana benthamiana plants infected by peanut stunt virus (PSV with and without its satRNA, at four time points. In addition, we extracted proteins from PSV and PSV+satRNA-infected plants harvested at 21 dpi, when disease symptoms began to appear on plants grown at 21°C and were well developed on those grown at 27°C, to assess the proteome profile in infected plants compared to mock-inoculated plants grown at these two temperatures, using 2D-gel electrophoresis and mass spectrometry approaches. The accumulation rate of the viral RNAs and satRNA was more rapid at 27°C at the beginning of the infection and then rapidly decreased in PSV-infected plants. At 21 dpi, PSV and satRNA accumulation was higher at 21°C and had a tendency to increase further. In all studied plants grown at 27°C, we observed a significant drop in the identified proteins participating in photosynthesis and carbohydrate metabolism at the proteome level, in comparison to plants maintained at 21°C. On the other hand, the proteins involved in protein metabolic processes were all more abundant in plants grown at 27°C. This was especially evident when PSV-infected plants were analyzed, where increase in abundance of proteins involved in protein synthesis, degradation, and folding was revealed. In mock-inoculated and PSV-infected plants we found an increase in abundance of the majority of stress-related differently-regulated proteins and those associated with protein metabolism. In contrast, in PSV+satRNA-infected plants the shift in the

  13. RNA interference targeting carbohydrate sulfotransferase 3 diminishes macrophage accumulation, inhibits MMP-9 expression and promotes lung recovery in murine pulmonary emphysema.

    Science.gov (United States)

    Kai, Yoshiro; Tomoda, Koichi; Yoneyama, Hiroyuki; Yoshikawa, Masanori; Kimura, Hiroshi

    2015-12-09

    Chondroitin sulfate proteoglycans are an important mediators in inflammation and leukocyte trafficking. However, their roles in pulmonary emphysema have not been explored. In a murine model of elastase-induced pulmonary emphysema, we found increased carbohydrate sulfotransferase 3 (CHST3), a specific enzyme that synthesizes chondroitin 6-sulfate proteoglycan (C6SPG). To elucidate the role of C6SPG, we investigated the effect of small interfering RNA (siRNA) targeting CHST3 that inhibits C6SPG-synthesis on the pathogenesis of pulmonary emphysema. Mice were intraperitoneally injected with CHST3 siRNA or negative control siRNA on day0 and 7 after intratracheal instillation of elastase. Histology, respiratory function, glycosaminoglycans (GAGs) content, bronchoalveolar lavage (BAL), elastin staining and gene expressions of tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP)-9 mRNA were evaluated on day7 and/or day21. CHST3 mRNA increased at day 7 and decreased thereafter in lung. CHST3 siRNA successfully inhibited the expression of CHST3 mRNA throughout the study and this was associated with significant reduction of GAGs and C6SPG. Airway destruction and respiratory function were improved by the treatment with CHST3 siRNA. CHST3 siRNA reduced the number of macrophages both in BAL and lung parenchyma and also suppressed the increased expressions of TNF-α and MMP-9 mRNA. Futhermore, CHST3 siRNA improved the reduction of the elastin in the alveolar walls. CHST3 siRNA diminishes accumulation of excessive macrophages and the mediators, leading to accelerate the functional recovery from airway damage by repair of the elastin network associated with pulmonary emphysema.

  14. The Regulatory Effects of Long Noncoding RNA-ANCR on Dental Tissue-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Qian Jia

    2016-01-01

    Full Text Available Long noncoding RNAs (lncRNA have been recognized as important regulators in diverse biological processes, such as transcriptional regulation, stem cell proliferation, and differentiation. Previous study has demonstrated that lncRNA-ANCR (antidifferentiation ncRNA plays a key role in regulating the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs. However, little is known about the role of ANCR in regulating other types of dental tissue-derived stem cells (DTSCs behaviours (including proliferation and multiple-potential of differentiation. In this study, we investigated the regulatory effects of lncRNA-ANCR on the proliferation and differentiation (including osteogenic, adipogenic, and neurogenic differentiation of DTSCs, including dental pulp stem cells (DPSCs, PDLSCs, and stem cells from the apical papilla (SCAP by downregulation of lncRNA-ANCR. We found that downregulation of ANCR exerted little effect on proliferation of DPSCs and SCAP but promoted the osteogenic, adipogenic, and neurogenic differentiation of DTSCs. These data provide an insight into the regulatory effects of long noncoding RNA-ANCR on DTSCs and indicate that ANCR is a very important regulatory factor in stem cell differentiation.

  15. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Cao, Yi; Roursgaard, Martin

    2016-01-01

    PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity...... to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation. METHODS: THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different...... concentrations (from 0.05 to 10 μg mL(-1)) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red. RESULTS: Lipid accumulation was reduced...

  16. Safety assessment of food and feed from biotechnology-derived crops employing RNA-mediated gene regulation to achieve desired traits: a scientific review.

    Science.gov (United States)

    Petrick, Jay S; Brower-Toland, Brent; Jackson, Aimee L; Kier, Larry D

    2013-07-01

    Gene expression can be modulated in plants to produce desired traits through agricultural biotechnology. Currently, biotechnology-derived crops are compared to their conventional counterparts, with safety assessments conducted on the genetic modification and the intended and unintended differences. This review proposes that this comparative safety assessment paradigm is appropriate for plants modified to express mediators of RNA-mediated gene regulation, including RNA interference (RNAi), a gene suppression mechanism that naturally occurs in plants and animals. The molecular mediators of RNAi, including long double-stranded RNAs (dsRNA), small interfering RNAs (siRNA), and microRNAs (miRNA), occur naturally in foods; therefore, there is an extensive history of safe consumption. Systemic exposure following consumption of plants containing dsRNAs that mediate RNAi is limited in higher organisms by extensive degradation of ingested nucleic acids and by biological barriers to uptake and efficacy of exogenous nucleic acids. A number of mammalian RNAi studies support the concept that a large margin of safety will exist for any small fraction of RNAs that might be absorbed following consumption of foods from biotechnology-derived plants that employ RNA-mediated gene regulation. Food and feed derived from these crops utilizing RNA-based mechanisms is therefore expected to be as safe as food and feed derived through conventional plant breeding. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. RNA processing and ribonucleoprotein assembly studied in vivo by RNA transfection

    International Nuclear Information System (INIS)

    Kleinschmidt, A.M.; Pederson, T.

    1990-01-01

    The authors present a method for studying RNA processing and ribonucleoprotein assembly in vivo, by using RNA synthesized in vitro. SP6-transcribed 32 P-labeled U2 small nuclear RNA precursor molecules were introduced into cultured human 293 cells by calcium phosphate-mediated uptake, as in standard DNA transfection experiments. RNase protection mapping demonstrated that the introduced pre-U2 RNA underwent accurate 3' end processing. The introduced U2 RNA was assembled into ribonucleoprotein particles that reacted with an antibody specific for proteins known to be associated with the U2 small nuclear ribonucleoprotein particle. The 3' end-processed, ribonucleoprotein-assembled U2 RNA accumulated in the nuclear fraction. When pre-U2 RNA with a 7-methylguanosine group at the 5' end was introduced into cells, it underwent conversion to a 2,2,7-trimethylguanosine cap structure, a characteristic feature of the U-small nuclear RNAs. Pre-U2 RNA introduced with an adenosine cap (Ap-ppG) also underwent processing, small nuclear ribonucleoprotein assembly, and nuclear accumulation, establishing that a methylated guanosine cap structure is not required for these steps in U2 small nuclear ribonucleprotein biosynthesis. Beyond its demonstrated usefulness in the study of small nuclear ribonucleoprotein biosynthesis, RNA transfection may be of general applicability to the investigation of eukaryotic RNA processing in vivo and may also offer opportunities for introducing therapeutically targeted RNAs (ribozymes or antisense RNA) into cells

  18. RNA interference of GhPEPC2 enhanced seed oil accumulation and salt tolerance in Upland cotton.

    Science.gov (United States)

    Zhao, Yanpeng; Huang, Yi; Wang, Yumei; Cui, Yupeng; Liu, Zhengjie; Hua, Jinping

    2018-06-01

    Phosphoenolpyruvate carboxylase (PEPCase) mainly produces oxaloacetic acid for tricarboxylic acid (TCA) cycle. Here we reported that GhPEPC2 silencing with PEPC2-RNAi vector could regulate oil and protein accumulation in cottonseeds. In GhPEPC2 transgenic plants, PEPCase activities in immature embryos were significantly reduced, and the oil content in seed kernel was increased 7.3 percentages, whereas total proteins decreased 5.65 percentages. Compared to wild type, agronomical traits of transgenic plant were obviously unaffected. Furthermore, gene expression profile of GhPEPC2 transgenic seeds were investigated using RNA-seq, most lipid synthesis related genes were up-regulated, but amino acid metabolic related genes were down-regulated. In addition, the GhPEPC2 transgenic cotton seedlings were stressed using sodium salts at seedling stage, and the salt tolerance was significantly enhanced. Our observations of GhPEPC2 in cotton would shade light on understanding the regulation of oil content, protein accumulation and salt tolerance enhancement in other plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Root transcripts associated with arsenic accumulation in ...

    Indian Academy of Sciences (India)

    Rasika M Potdukhe

    2018-02-06

    Feb 6, 2018 ... an option for development of a sustainable phytoremediation process for As mitigation. Accumulation of ... People living in areas contaminated with. As suffer .... RNA was used to enrich mRNA and cDNA library construc- tion.

  20. Role of adipocyte-derived lipoprotein lipase in adipocyte hypertrophy

    Directory of Open Access Journals (Sweden)

    Orlando Robert A

    2007-10-01

    Full Text Available Abstract Background A major portion of available fatty acids for adipocyte uptake is derived from lipoprotein lipase (LPL-mediated hydrolysis of circulating lipoprotein particles. In vivo studies aimed at identifying the precise role of adipocyte-derived LPL in fat storage function of adipose tissue have been unable to provide conclusive evidence due to compensatory mechanisms that activate endogenous fatty acid synthesis. To address this gap in knowledge, we have measured the effect of reducing adipocyte LPL expression on intracellular lipid accumulation using a well-established cultured model of adipocyte differentiation. Methods siRNA specific for mouse LPL was transfected into 3T3-L1 adipocytes. Expression of LPL was measured by quantitative real-time PCR and cell surface-associated LPL enzymatic activity was measured by colorimetric detection following substrate (p-nitrophenyl butyrate hydrolysis. Apolipoprotein CII and CIII expression ratios were also measured by qRT-PCR. Intracellular lipid accumulation was quantified by Nile Red staining. Results During differentiation of 3T3-L1 pre-adipocytes, LPL mRNA expression increases 6-fold resulting in a 2-fold increase in cell surface-associated LPL enzymatic activity. Parallel to this increase in LPL expression, we found that intracellular lipids increased ~10-fold demonstrating a direct correlation between adipocyte-derived LPL expression and lipid storage. We next reduced LPL expression in adipocytes using siRNA transfections to directly quantify the contributions of adipocyte-derived LPL to lipid storage, This treatment reduced LPL mRNA expression and cell surface-associated LPL enzymatic activity to ~50% of non-treated controls while intracellular lipid levels were reduced by 80%. Exogenous addition of purified LPL (to restore extracellular lipolytic activity or palmitate (as a source of free fatty acids to siRNA-treated cells restored intracellular lipid levels to those measured for non

  1. Production and processing of siRNA precursor transcripts from the highly repetitive maize genome.

    Directory of Open Access Journals (Sweden)

    Christopher J Hale

    2009-08-01

    Full Text Available Mutations affecting the maintenance of heritable epigenetic states in maize identify multiple RNA-directed DNA methylation (RdDM factors including RMR1, a novel member of a plant-specific clade of Snf2-related proteins. Here we show that RMR1 is necessary for the accumulation of a majority of 24 nt small RNAs, including those derived from Long-Terminal Repeat (LTR retrotransposons, the most common repetitive feature in the maize genome. A genetic analysis of DNA transposon repression indicates that RMR1 acts upstream of the RNA-dependent RNA polymerase, RDR2 (MOP1. Surprisingly, we show that non-polyadenylated transcripts from a sampling of LTR retrotransposons are lost in both rmr1 and rdr2 mutants. In contrast, plants deficient for RNA Polymerase IV (Pol IV function show an increase in polyadenylated LTR RNA transcripts. These findings support a model in which Pol IV functions independently of the small RNA accumulation facilitated by RMR1 and RDR2 and support that a loss of Pol IV leads to RNA Polymerase II-based transcription. Additionally, the lack of changes in general genome homeostasis in rmr1 mutants, despite the global loss of 24 nt small RNAs, challenges the perceived roles of siRNAs in maintaining functional heterochromatin in the genomes of outcrossing grass species.

  2. Accumulation of hydroxyproline-rich glycoprotein mRNAs in response to fungal elicitor and infection.

    Science.gov (United States)

    Showalter, A M; Bell, J N; Cramer, C L; Bailey, J A; Varner, J E; Lamb, C J

    1985-10-01

    Hydroxyproline-rich glycoproteins (HRGPs) are important structural components of plant cell walls and also accumulate in response to infection as an apparent defense mechanism. Accumulation of HRGP mRNA in biologically stressed bean (Phaseolus vulgaris L.) cells was monitored by blot hybridization with (32)P-labeled tomato genomic HRGP sequences. Elicitor treatment of suspension-cultured cells caused a marked increase in hybridizable HRGP mRNA. The response was less rapid but more prolonged than that observed for mRNAs encoding enzymes of phytoalexin biosynthesis. HRGP mRNA also accumulated during race:cultivar-specific interactions between bean hypocotyls and the partially biotrophic fungus Colletotrichum lindemuthianum, the causal agent of anthracnose. In an incompatible interaction (host resistant) there was an early increase in HRGP mRNA correlated with expression of hypersensitive resistance; whereas, in a compatible interaction (host susceptible), marked accumulation of HRGP mRNA occurred as a delayed response at the onset of lesion formation. In both interactions, mRNA accumulation was observed in uninfected cells distant from the site of fungal inoculation, indicating intercellular transmission of an elicitation signal.

  3. Taurine Promotes the Cartilaginous Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro.

    Science.gov (United States)

    Yao, Xiuhua; Huang, Huiling; Li, Zhou; Liu, Xiaohua; Fan, Weijia; Wang, Xinping; Sun, Xuelian; Zhu, Jianmin; Zhou, Hongrui; Wei, Huaying

    2017-08-01

    Taurine has been reported to influence osteogenic differentiation, but the role of taurine on cartilaginous differentiation using human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) remains unclear. In this study, we investigated the effect of taurine (0, 1, 5 and 10 mM) on the proliferation and chondrogenesis of hUC-MSCs by analyzing cell proliferation, accumulation of glycosaminoglycans and expression of cartilage specific mRNA. The results show though taurine did not affected the proliferation of hUC-MSCs, 5 mM of taurine is sufficient to enhanced the accumulation of glycosaminoglycans and up-regulate cartilage specific mRNA expression, namely collagen type II, aggrecan and SOX9. Taurine also inhibits chondrocyte dedifferentiation by reducing expression of collagen type I mRNA. Taken together, our study reveals that taurine promotes and maintains the chondrogenesis of hUC-MSCs.

  4. Evaluation of hepatocyte-derived microRNA-122 for diagnosis of acute and chronic hepatitis of dogs

    Directory of Open Access Journals (Sweden)

    S. R. Eman

    2018-05-01

    Full Text Available Aim: This study was performed to evaluate the diagnostic value of hepatocyte-derived microRNA (miRNA-122 in acute and chronic hepatitis of dogs. Materials and Methods: A total of 26 dogs presented at Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Cairo University, 16 dogs out of 26 showing clinical signs of hepatic insufficiency were subjected to clinical, ultrasonographic, hematobiochemical and ultrasound-guided fine-needle biopsy for cytological and histopathological investigations. On the basis of these results, 7 dogs out of 16 dogs were found to be suffering from acute hepatitis and 9 dogs suffering from chronic hepatitis. 10 clinically healthy dogs were kept as control. Serum hepatocyte-derived miRNA-122 was analyzed by real-time quantitative polymerase chain reaction in all dogs. Results: The dogs suffering from acute hepatitis manifested jaundice, vomiting, and depression while dogs with chronic hepatitis manifested anorexia, abdominal distension, weight loss, and melena. Hematological parameters showed normocytic normochromic anemia and thrombocytopenia in both acute and chronic hepatitis groups. Alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP, and total bilirubin were significantly higher than control values in acute hepatitis. In chronic hepatitis, total protein and albumin were significantly lower than control values with normal ALT, AST, ALP, and gamma-glutamyltransferase values. Ultrasonography revealed a diffuse decrease in hepatic echogenicity in acute hepatitis while the increase in hepatic echogenicity and anechoic ascetic fluid in chronic hepatitis. Cytology revealed hepatic vacuolar degeneration and histopathology revealed necrosis and apoptosis of hepatocyte in acute hepatitis while revealed massive fibrous tissue proliferation in hepatic parenchyma in chronic hepatitis. Serum miRNA-122 analysis, normalized for glyceraldehyde-3- phosphate dehydrogenase expression

  5. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer

    Science.gov (United States)

    Lei, Yifeng; Tang, Lixue; Xie, Yangzhouyun; Xianyu, Yunlei; Zhang, Lingmin; Wang, Peng; Hamada, Yoh; Jiang, Kai; Zheng, Wenfu; Jiang, Xingyu

    2017-01-01

    Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC–siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC–siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC–siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer. PMID:28440296

  6. Long Noncoding RNA HOXC-AS1 Suppresses Ox-LDL-Induced Cholesterol Accumulation Through Promoting HOXC6 Expression in THP-1 Macrophages.

    Science.gov (United States)

    Huang, Chuan; Hu, Yan-Wei; Zhao, Jing-Jing; Ma, Xin; Zhang, Yuan; Guo, Feng-Xia; Kang, Chun-Min; Lu, Jing-Bo; Xiu, Jian-Cheng; Sha, Yan-Hua; Gao, Ji-Juan; Wang, Yan-Chao; Li, Pan; Xu, Bang-Ming; Zheng, Lei; Wang, Qian

    2016-11-01

    Atherosclerosis is a common pathological basis of cardiovascular disease, which remains the leading cause of mortality. Long noncoding RNAs (lncRNAs) are newly studied non-protein-coding RNAs involved in gene regulation, but how lncRNAs exert regulatory effect on atherosclerosis remains unclear. In this study, we found that lncRNA HOXC cluster antisense RNA 1 (HOXC-AS1) and homeobox C6 (HOXC6) were downregulated in carotid atherosclerosis by performing microarray analysis. The results were verified in atherosclerotic plaques and normal arterial intima tissues by quantitative reverse transcription PCR and western blot analysis. Lentivirus-mediated overexpression of HOXC-AS1 induced HOXC6 expression at mRNA and protein levels in THP-1 macrophages. Besides, oxidized low-density lipoprotein (Ox-LDL) decreased expression of HOXC-AS1 and HOXC6 in a time-dependent manner. Induction of cholesterol accumulation by Ox-LDL could be partly suppressed by overexpression of HOXC-AS1.

  7. Overexpression and RNA interference of TwDXR regulate the accumulation of terpenoid active ingredients in Tripterygium wilfordii.

    Science.gov (United States)

    Zhang, Yifeng; Zhao, Yujun; Wang, Jiadian; Hu, Tianyuan; Tong, Yuru; Zhou, Jiawei; Song, Yadi; Gao, Wei; Huang, Luqi

    2018-02-01

    To examine the putative regulatory role of TwDXR in terpenoid biosynthesis and terpenoid biosynthetic pathway-related gene expression, through overexpression and RNA interference with TwDXR. We obtained 1410 and 454 bp TwDXR-specific fragments to construct overexpression and RNAi vectors. qRT-PCR was used to detect the expression of TwDXR and terpenoid biosynthesis pathway-related genes. The overexpression of TwDXR led to a 285% upregulation and the TwDXR RNAi led to a reduction to 26% of the control (empty vector-transformed cells) levels. However, pathway-related genes displayed different trends. When TwDXR was overexpressed, TwDXS expression decreased by 31% but increased to 198% when TwDXR expression was inhibited. The accumulation of terpenoids was also assayed. In the overexpression group, differences were not significant whereas the contents of triptolide and celastrol in the TwDXR RNAi samples were diminished by 27.3 and 24.0%, respectively. The feedback regulation of gene transcription and the accumulation of terpenoids in terpenoid biosynthesis in Tripterygium wilfordii were verified by TwDXR overexpression and RNAi experiments.

  8. High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L..

    Directory of Open Access Journals (Sweden)

    Livia Donaire

    Full Text Available Small RNAs (sRNAs of 20 to 25 nucleotides (nt in length maintain genome integrity and control gene expression in a multitude of developmental and physiological processes. Despite RNA silencing has been primarily studied in model plants, the advent of high-throughput sequencing technologies has enabled profiling of the sRNA component of more than 40 plant species. Here, we used deep sequencing and molecular methods to report the first inventory of sRNAs in olive (Olea europaea L.. sRNA libraries prepared from juvenile and adult shoots revealed that the 24-nt class dominates the sRNA transcriptome and atypically accumulates to levels never seen in other plant species, suggesting an active role of heterochromatin silencing in the maintenance and integrity of its large genome. A total of 18 known miRNA families were identified in the libraries. Also, 5 other sRNAs derived from potential hairpin-like precursors remain as plausible miRNA candidates. RNA blots confirmed miRNA expression and suggested tissue- and/or developmental-specific expression patterns. Target mRNAs of conserved miRNAs were computationally predicted among the olive cDNA collection and experimentally validated through endonucleolytic cleavage assays. Finally, we use expression data to uncover genetic components of the miR156, miR172 and miR390/TAS3-derived trans-acting small interfering RNA (tasiRNA regulatory nodes, suggesting that these interactive networks controlling developmental transitions are fully operational in olive.

  9. Characterization of rice black-streaked dwarf virus- and rice stripe virus-derived siRNAs in singly and doubly infected insect vector Laodelphax striatellus.

    Directory of Open Access Journals (Sweden)

    Junmin Li

    Full Text Available Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi which generates viral-derived small interfering RNAs (siRNAs. However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus was infected by Rice black-streaked dwarf virus (RBSDV (Reoviridae; Fijivirus, more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV, a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5'- and 3'-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.

  10. Cholesterol-Containing Nuclease-Resistant siRNA Accumulates in Tumors in a Carrier-free Mode and Silences MDR1 Gene

    Directory of Open Access Journals (Sweden)

    Ivan V. Chernikov

    2017-03-01

    Full Text Available Chemical modifications are an effective way to improve the therapeutic properties of small interfering RNAs (siRNAs, making them more resistant to degradation in serum and ensuring their delivery to target cells and tissues. Here, we studied the carrier-free biodistribution and biological activity of a nuclease-resistant anti-MDR1 cholesterol-siRNA conjugate in healthy and tumor-bearing severe combined immune deficiency (SCID mice. The attachment of cholesterol to siRNA provided its efficient accumulation in the liver and in tumors, and reduced its retention in the kidneys after intravenous and intraperitoneal injection. The major part of cholesterol-siRNA after intramuscular and subcutaneous injections remained in the injection place. Confocal microscopy data demonstrated that cholesterol-siRNA spread deep in the tissue and was present in the cytoplasm of almost all the liver and tumor cells. The reduction of P-glycoprotein level in human KB-8-5 xenograft overexpressing the MDR1 gene by 60% was observed at days 5–6 after injection. Then, its initial level recovered by the eighth day. The data showed that, regardless of the mode of administration (intravenous, intraperitoneal, or peritumoral, cholesterol-siMDR efficiently reduced the P-glycoprotein level in tumors. The designed anti-MDR1 conjugate has potential as an adjuvant therapeutic for the reversal of multiple drug resistance of cancer cells.

  11. Constitutive Transcription and Stable RNA Accumulation in Plastids during the Conversion of Chloroplasts to Chromoplasts in Ripening Tomato Fruits 1

    Science.gov (United States)

    Marano, María Rosa; Carrillo, Néstor

    1992-01-01

    The size distribution of plastid transcripts during chromoplast differentiation in ripening tomato (Lycopersicon esculentum L.) fruits was determined using northern blot analysis. Hybridization of total cellular RNA from leaves and fruits with several tobacco chloroplast DNA probes showed distinct transcript patterns in chloroplasts and chromoplasts. We also compared transcriptional rates by probing immobilized DNA fragments of small size (representing about 85% of the plastid genome) with run-on transcripts from tomato plastids. The relative rates of transcription of the various DNA regions were very similar in chloro- and chromoplasts. Parallel determination of the steady-state levels of plastid RNA showed no strict correlation between synthesis rate and RNA accumulation. Differences in the relative abundance of transcripts between chloro- and chromoplasts were not very pronounced and were limited to a small number of genes. The results indicate that the conversion of chloroplasts to chromoplasts at the onset of tomato fruit ripening proceeds with no important variations in the relative transcription rates and with only moderate changes in the relative stability of plastid-encoded transcripts. Images Figure 1 Figure 4 PMID:16653091

  12. Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants.

    Directory of Open Access Journals (Sweden)

    Gustavo Gómez

    Full Text Available Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5'UTR-end mediates the functional import of Green Fluorescent Protein (GFP mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5'UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells.

  13. Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules.

    Science.gov (United States)

    Schnettler, Esther; Hemmes, Hans; Huismann, Rik; Goldbach, Rob; Prins, Marcel; Kormelink, Richard

    2010-11-01

    The tospovirus NSs protein was previously shown to suppress the antiviral RNA silencing mechanism in plants. Here the biochemical analysis of NSs proteins from different tospoviruses, using purified NSs or NSs containing cell extracts, is described. The results showed that all tospoviral NSs proteins analyzed exhibited affinity to small double-stranded RNA molecules, i.e., small interfering RNAs (siRNAs) and micro-RNA (miRNA)/miRNA* duplexes. Interestingly, the NSs proteins from tomato spotted wilt virus (TSWV), impatiens necrotic spot virus (INSV), and groundnut ringspot virus (GRSV) also showed affinity to long double-stranded RNA (dsRNA), whereas tomato yellow ring virus (TYRV) NSs did not. The TSWV NSs protein was shown to be capable of inhibiting Dicer-mediated cleavage of long dsRNA in vitro. In addition, it suppressed the accumulation of green fluorescent protein (GFP)-specific siRNAs during coinfiltration with an inverted-repeat-GFP RNA construct in Nicotiana benthamiana. In vivo interference of TSWV NSs in the miRNA pathway was shown by suppression of an enhanced GFP (eGFP) miRNA sensor construct. The ability to stabilize miRNA/miRNA* by different tospovirus NSs proteins in vivo was demonstrated by increased accumulation and detection of both miRNA171c and miRNA171c* in tospovirus-infected N. benthamiana. All together, these data suggest that tospoviruses interfere in the RNA silencing pathway by sequestering siRNA and miRNA/miRNA* molecules before they are uploaded into their respective RNA-induced silencing complexes. The observed affinity to long dsRNA for only a subset of the tospoviruses studied is discussed in light of evolutional divergence and their ancestral relation to the animal-infecting members of the Bunyaviridae.

  14. Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells

    DEFF Research Database (Denmark)

    Guzzi, Nicola; Cieśla, Maciej; Ngoc, Phuong Cao Thi

    2018-01-01

    early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein...... biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing...

  15. TCDD induces dermal accumulation of keratinocyte-derived matrix metalloproteinase-10 in an organotypic model of human skin

    Energy Technology Data Exchange (ETDEWEB)

    De Abrew, K. Nadira [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Thomas-Virnig, Christina L.; Rasmussen, Cathy A. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Bolterstein, Elyse A. [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Schlosser, Sandy J. [Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States); Allen-Hoffmann, B. Lynn, E-mail: blallenh@wisc.edu [Molecular and Environmental Toxicology Center, University of Wisconsin—Madison, Madison, WI 53706 (United States); Department of Pathology, University of Wisconsin—Madison, Madison, WI 53706 (United States)

    2014-05-01

    The epidermis of skin is the first line of defense against the environment. A three dimensional model of human skin was used to investigate tissue-specific phenotypes induced by the environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Continuous treatment of organotypic cultures of human keratinocytes with TCDD resulted in intracellular spaces between keratinocytes of the basal and immediately suprabasal layers as well as thinning of the basement membrane, in addition to the previously reported hyperkeratinization. These tissue remodeling events were preceded temporally by changes in expression of the extracellular matrix degrading enzyme, matrix metalloproteinase-10 (MMP-10). In organotypic cultures MMP-10 mRNA and protein were highly induced following TCDD treatment. Q-PCR and immunoblot results from TCDD-treated monolayer cultures, as well as indirect immunofluorescence and immunoblot analysis of TCDD-treated organotypic cultures, showed that MMP-10 was specifically contributed by the epidermal keratinocytes but not the dermal fibroblasts. Keratinocyte-derived MMP-10 protein accumulated over time in the dermal compartment of organotypic cultures. TCDD-induced epidermal phenotypes in organotypic cultures were attenuated by the keratinocyte-specific expression of tissue inhibitor of metalloproteinase-1, a known inhibitor of MMP-10. These studies suggest that MMP-10 and possibly other MMP-10-activated MMPs are responsible for the phenotypes exhibited in the basement membrane, the basal keratinocyte layer, and the cornified layer of TCDD-treated organotypic cultures. Our studies reveal a novel mechanism by which the epithelial–stromal microenvironment is altered in a tissue-specific manner thereby inducing structural and functional pathology in the interfollicular epidermis of human skin. - Highlights: • TCDD causes hyperkeratosis and basement membrane changes in a model of human skin. • TCDD induces MMP-10 expression in organotypic cultures

  16. Early changes of placenta-derived messenger RNA in maternal plasma – potential value for preeclampsia prediction?

    Directory of Open Access Journals (Sweden)

    Surugiu Sebastian

    2015-12-01

    Full Text Available Objective: the pourpose of the study was to determine if there are any differences between placenta derived plasmatic levels of messenger RNA in normal and future preeclamptic pregnancies and if these placental transcripts can predict preeclampsia long before clinical onset

  17. Human DMBT1-Derived Cell-Penetrating Peptides for Intracellular siRNA Delivery

    DEFF Research Database (Denmark)

    Tuttolomondo, Martina; Casella, Cinzia; Hansen, Pernille Lund

    2017-01-01

    tumor 1) is a pattern recognition molecule that interacts with polyanions and recognizes and aggregates bacteria. Taking advantage of these properties, we investigated whether specific synthetic DMBT1-derived peptides could be used to formulate nanoparticles for siRNA administration. Using......-potential, circular dichroism, dynamic light scattering, and transmission electron microscopy revealed negatively charged nanoparticles with an average diameter of 10-800 nm, depending on the reaction conditions, and a spherical or rice-shaped morphology, depending on the peptide and β-helix conformation. We...

  18. AtRH57, a DEAD-box RNA helicase, is involved in feedback inhibition of glucose-mediated abscisic acid accumulation during seedling development and additively affects pre-ribosomal RNA processing with high glucose.

    Science.gov (United States)

    Hsu, Yi-Feng; Chen, Yun-Chu; Hsiao, Yu-Chun; Wang, Bing-Jyun; Lin, Shih-Yun; Cheng, Wan-Hsing; Jauh, Guang-Yuh; Harada, John J; Wang, Co-Shine

    2014-01-01

    The Arabidopsis thaliana T-DNA insertion mutant rh57-1 exhibited hypersensitivity to glucose (Glc) and abscisic acid (ABA). The other two rh57 mutants also showed Glc hypersensitivity similar to rh57-1, strongly suggesting that the Glc-hypersensitive feature of these mutants results from mutation of AtRH57. rh57-1 and rh57-3 displayed severely impaired seedling growth when grown in Glc concentrations higher than 3%. The gene, AtRH57 (At3g09720), was expressed in all Arabidopsis organs and its transcript was significantly induced by ABA, high Glc and salt. The new AtRH57 belongs to class II DEAD-box RNA helicase gene family. Transient expression of AtRH57-EGFP (enhanced green fluorescent protein) in onion cells indicated that AtRH57 was localized in the nucleus and nucleolus. Purified AtRH57-His protein was shown to unwind double-stranded RNA independent of ATP in vitro. The ABA biosynthesis inhibitor fluridone profoundly redeemed seedling growth arrest mediated by sugar. rh57-1 showed increased ABA levels when exposed to high Glc. Quantitative real time polymerase chain reaction analysis showed that AtRH57 acts in a signaling network downstream of HXK1. A feedback inhibition of ABA accumulation mediated by AtRH57 exists within the sugar-mediated ABA signaling. AtRH57 mutation and high Glc conditions additively caused a severe defect in small ribosomal subunit formation. The accumulation of abnormal pre-rRNA and resistance to protein synthesis-related antibiotics were observed in rh57 mutants and in the wild-type Col-0 under high Glc conditions. These results suggested that AtRH57 plays an important role in rRNA biogenesis in Arabidopsis and participates in response to sugar involving Glc- and ABA signaling during germination and seedling growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  19. Branched RNA: A New Architecture for RNA Interference

    Directory of Open Access Journals (Sweden)

    Anna Aviñó

    2011-01-01

    Full Text Available Branched RNAs with two and four strands were synthesized. These structures were used to obtain branched siRNA. The branched siRNA duplexes had similar inhibitory capacity as those of unmodified siRNA duplexes, as deduced from gene silencing experiments of the TNF-α protein. Branched RNAs are considered novel structures for siRNA technology, and they provide an innovative tool for specific gene inhibition. As the method described here is compatible with most RNA modifications described to date, these compounds may be further functionalized to obtain more potent siRNA derivatives and can be attached to suitable delivery systems.

  20. Comparison of the transcriptomes of mouse skin derived precursors (SKPs and SKP-derived fibroblasts (SFBs by RNA-Seq.

    Directory of Open Access Journals (Sweden)

    Yujie Mao

    Full Text Available Skin-derived precursors (SKPs from dermis possess the capacities of self-renewal and multipotency. In vitro and in vivo studies demonstrated that they can differentiate into fibroblasts. However, little is known about the molecular mechanism of the differentiation of SKPs into fibroblasts. Here we compare the transcriptomes of mouse SKPs and SKP-derived fibroblasts (SFBs by RNA-Seq analysis, trying to find differences in gene expression between the two kinds of cells and then elucidate the candidate genes that may play important roles in the differentiation of SKPs into fibroblasts. A total of 1971 differentially expressed genes (DEGs were identified by RNA-Seq, which provided abundant data for further analysis. Gene Ontology enrichment analysis revealed that genes related to cell differentiation, cell proliferation, protein binding, transporter activity and membrane were significantly enriched. The most significantly up-regulated genes Wnt4, Wisp2 and Tsp-1 and down-regulated genes Slitrk1, Klk6, Agtr2, Ivl, Msx1, IL15, Atp6v0d2, Kcne1l and Thbs4 may play important roles in the differentiation of SKPs into fibroblasts. KEGG analysis showed that DEGs were significantly enriched in the TGF-β signaling pathway, Wnt signaling pathway and Notch signaling pathway, which have been previously proven to regulate the differentiation and self-renewal of various stem cells. These identified DEGs and pathways could facilitate further investigations of the detailed molecular mechanisms, making it possible to take advantage of the potential therapeutic applications of SKPs in skin regeneration in the future.

  1. MET-2-Dependent H3K9 Methylation Suppresses Transgenerational Small RNA Inheritance.

    Science.gov (United States)

    Lev, Itamar; Seroussi, Uri; Gingold, Hila; Bril, Roberta; Anava, Sarit; Rechavi, Oded

    2017-04-24

    In C. elegans, alterations to chromatin produce transgenerational effects, such as inherited increase in lifespan and gradual loss of fertility. Inheritance of histone modifications can be induced by double-stranded RNA-derived heritable small RNAs. Here, we show that the mortal germline phenotype, which is typical of met-2 mutants, defective in H3K9 methylation, depends on HRDE-1, an argonaute that carries small RNAs across generations, and is accompanied by accumulated transgenerational misexpression of heritable small RNAs. We discovered that MET-2 inhibits small RNA inheritance, and, as a consequence, induction of RNAi in met-2 mutants leads to permanent RNAi responses that do not terminate even after more than 30 generations. We found that potentiation of heritable RNAi in met-2 animals results from global hyperactivation of the small RNA inheritance machinery. Thus, changes in histone modifications can give rise to drastic transgenerational epigenetic effects, by controlling the overall potency of small RNA inheritance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Appearance of newly formed mRNA and rRNA as ribonucleoprotein-particles in the cytoplasmic subribosomal fraction of pea embryos

    International Nuclear Information System (INIS)

    Takahashi, Noribumi; Takaiwa, Fumio; Fukuei, Keisuke; Sakamaki, Tadashi; Tanifuji, Shigeyuki

    1977-01-01

    Incorporation studies with 3 H-uridine or 3 H-adenosine showed that germinating pea embryos synthesize all types of poly A(+) RNA, rRNA and 4-5S RNA at the early stage of germination. After the pulse labeling for 30 min, only heterodisperse RNA and 4-5S RNA appeared in the cytoplasm as labeled RNA species. At this time the radioactivity was associated with cytoplasmic structures heavier than 80S and RNP particles of 68-70S, 52-55S, 36-38S and 20-22S which are presumed to be free mRNP particles in plants. When the pulse-labeled embryos were incubated for a further 60 min in an isotope-free medium, the labeled 17S and 25S rRNA emerged in the cytoplasm, together with labeled heterodisperse and 4-5S RNAs. More radioactivity accumulated in the regions of the polysome, 62-65S and 38-42S particles. The results of analysis of RNAs extracted from the whole cytoplasm, polysome or subribosomal fractions indicated that small subunits of newly formed ribosomes appear more rapidly in the cytoplasm than new large subunits, which accumulate for a while as free particles in the cytoplasm than are incorporated into polysomes. The actinomycin treatment which caused preferential inhibition of rRNA synthesis reduced the accumulation of free, newly formed ribosome subunits and partially permitted detection of the presumed mRNP particles in the subribosomal region even after the chase treatment. (auth.)

  3. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes

    Science.gov (United States)

    Pantano, Lorena; Jodar, Meritxell; Bak, Mads; Ballescà, Josep Lluís; Tommerup, Niels; Oliva, Rafael; Vavouri, Tanya

    2015-01-01

    At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline. PMID:25904136

  4. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes.

    Directory of Open Access Journals (Sweden)

    Laura Camacho

    Full Text Available Exosomes are small membrane vesicles released by most cell types including tumor cells. The intercellular exchange of proteins and genetic material via exosomes is a potentially effective approach for cell-to-cell communication and it may perform multiple functions aiding to tumor survival and metastasis. We investigated microRNA and protein profiles of brain metastatic (BM versus non-brain metastatic (non-BM cell-derived exosomes. We studied the cargo of exosomes isolated from brain-tropic 70W, MDA-MB-231BR, and circulating tumor cell brain metastasis-selected markers (CTC1BMSM variants, and compared them with parental non-BM MeWo, MDA-MB-231P and CTC1P cells, respectively. By performing microRNA PCR array we identified one up-regulated (miR-210 and two down-regulated miRNAs (miR-19a and miR-29c in BM versus non-BM exosomes. Second, we analyzed the proteomic content of cells and exosomes isolated from these six cell lines, and detected high expression of proteins implicated in cell communication, cell cycle, and in key cancer invasion and metastasis pathways. Third, we show that BM cell-derived exosomes can be internalized by non-BM cells and that they effectively transport their cargo into cells, resulting in increased cell adhesive and invasive potencies. These results provide a strong rationale for additional investigations of exosomal proteins and miRNAs towards more profound understandings of exosome roles in brain metastasis biogenesis, and for the discovery and application of non-invasive biomarkers for new therapies combating brain metastasis.

  5. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat.

    Science.gov (United States)

    Luna, Celina M; Pastori, Gabriela M; Driscoll, Simon; Groten, Karin; Bernard, Stephanie; Foyer, Christine H

    2005-01-01

    Plants co-ordinate information derived from many diverse external and internal signals to ensure appropriate control of gene expression under optimal and stress conditions. In this work, the relationships between catalase (CAT) and H2O2 during drought in wheat (Triticum aestivum L.) are studied. Drought-induced H2O2 accumulation correlated with decreases in soil water content and CO2 assimilation. Leaf H2O2 content increased even though total CAT activity doubled under severe drought conditions. Diurnal regulation of CAT1 and CAT2 mRNA abundance was apparent in all conditions and day/night CAT1 and CAT2 expression patterns were modified by mild and severe drought. The abundance of CAT1 transcripts was regulated by circadian controls that persisted in continuous darkness, while CAT2 was modulated by light. Drought decreased abundance, and modified the pattern, of CAT1 and CAT2 mRNAs. It was concluded that the complex regulation of CAT mRNA, particularly at the level of translation, allows precise control of leaf H2O2 accumulation.

  6. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections.

    Science.gov (United States)

    Yu, Jisuk; Lee, Kyung-Mi; Cho, Won Kyong; Park, Ju Yeon; Kim, Kook-Hyung

    2018-05-01

    The mechanisms of RNA interference (RNAi) as a defense response against viruses remain unclear in many plant-pathogenic fungi. In this study, we used reverse genetics and virus-derived small RNA profiling to investigate the contributions of RNAi components to the antiviral response against Fusarium graminearum viruses 1 to 3 (FgV1, -2, and -3). Real-time reverse transcription-quantitative PCR (qRT-PCR) indicated that infection of Fusarium graminearum by FgV1, -2, or -3 differentially induces the gene expression of RNAi components in F. graminearum Transcripts of the DICER-2 and AGO-1 genes of F. graminearum ( FgDICER-2 and FgAGO-1 ) accumulated at lower levels following FgV1 infection than following FgV2 or FgV3 infection. We constructed gene disruption and overexpression mutants for each of the Argonaute and dicer genes and for two RNA-dependent RNA polymerase (RdRP) genes and generated virus-infected strains of each mutant. Interestingly, mycelial growth was significantly faster for the FgV1-infected FgAGO-1 overexpression mutant than for the FgV1-infected wild type, while neither FgV2 nor FgV3 infection altered the colony morphology of the gene deletion and overexpression mutants. FgV1 RNA accumulation was significantly decreased in the FgAGO-1 overexpression mutant. Furthermore, the levels of induction of FgAGO-1 , FgDICER-2 , and some of the FgRdRP genes caused by FgV2 and FgV3 infection were similar to those caused by hairpin RNA-induced gene silencing. Using small RNA sequencing analysis, we documented different patterns of virus-derived small interfering RNA (vsiRNA) production in strains infected with FgV1, -2, and -3. Our results suggest that the Argonaute protein encoded by FgAGO-1 is required for RNAi in F. graminearum , that FgAGO-1 induction differs in response to FgV1, -2, and -3, and that FgAGO-1 might contribute to the accumulation of vsiRNAs in FgV1-infected F. graminearum IMPORTANCE To increase our understanding of how RNAi components in Fusarium

  7. Hepatitis A virus-encoded miRNAs attenuate the accumulation of viral genomic RNAs in infected cells.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wu, Meini; Hu, Ningzhu; Hu, Yunzhang

    2016-06-01

    The establishment of persistent infection with hepatitis A virus (HAV) is the common result of most HAV/cell culture systems. Previous observations show that the synthesis of viral RNAs is reduced during infection. However, the underlying mechanism is poorly understood. We characterized three HAV-encoded miRNAs in our previous study. In this study, we aim to investigate the impact of these miRNAs on the accumulation of viral RNAs. The results indicated that the synthesis of viral genomic RNAs was dramatically reduced (more than 75 % reduction, P viral miRNA mimics. Conversely, they were significantly increased (more than 3.3-fold addition, P viral miRNA inhibitors. The luciferase reporter assay of miRNA targets showed that viral miRNAs were fully complementary to specific sites of the viral plus or minus strand RNA and strongly inhibited their expressions. Further data showed that the relative abundance of viral genomic RNA fragments that contain miRNA targets was also dramatically reduced (more than 80 % reduction, P viral miRNAs were overexpressed with miRNA mimics. In contrast, they were significantly increased (approximately 2-fold addition, P viral miRNAs were inhibited with miRNA inhibitors. In conclusion, these data suggest a possible mechanism for the reduction of viral RNA synthesis during HAV infection. Thus, we propose that it is likely that RNA virus-derived miRNA could serve as a self-mediated feedback regulator during infection.

  8. Cerebral Accumulation of Dietary Derivable Plant Sterols does not Interfere with Memory and Anxiety Related Behavior in Abcg5-/- Mice

    NARCIS (Netherlands)

    Vanmierlo, Tim; Rutten, Kris; van Vark-van der Zee, Leonie C.; Friedrichs, Silvia; Bloks, Vincent W.; Blokland, Arjan; Ramaekers, Frans C.; Sijbrands, Eric; Steinbusch, Harry; Prickaerts, Jos; Kuipers, Folkert; Luetjohann, Dieter; Mulder, Monique

    Plant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associated with alterations

  9. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    International Nuclear Information System (INIS)

    Toki, Yasumichi; Sasaki, Katsunori; Tanaka, Hiroki; Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro; Torimoto, Yoshihiro; Ohtake, Takaaki; Kohgo, Yutaka

    2016-01-01

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  10. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Toki, Yasumichi [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp [Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Tanaka, Hiroki [Department of Legal Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido 078-8510 (Japan); Torimoto, Yoshihiro [Oncology Center, Asahikawa Medical University Hospital, Hokkaido 078-8510 (Japan); Ohtake, Takaaki; Kohgo, Yutaka [Department of Gastroenterology, International University of Health and Welfare Hospital, Tochigi 329-2763 (Japan)

    2016-08-05

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.

  11. A Regulatory RNA Inducing Transgenerationally Inherited Phenotypes

    DEFF Research Database (Denmark)

    Jensen, Lea Møller

    . The variation in Arabidopsis enables different regulatory networks and mechanisms to shape the phenotypic characteristics. The thesis describes the identification of regulatory RNA encoded by an enzyme encoding gene. The RNA regulates by inducing transgenerationally inherited phenotypes. The function of the RNA...... is dependent on the genetic background illustrating that polymorphisms are found in either interactors or target genes of the RNA. Furthermore, the RNA provides a mechanistic link between accumulation of glucosinolate and onset of flowering....

  12. Cerebral Accumulation of Dietary Derivable Plant Sterols does not Interfere with Memory and Anxiety Related Behavior in Abcg5-/- Mice

    NARCIS (Netherlands)

    T. Vanmierlo (Tim); K. Rutten (Kris); L.C. van Vark-van der Zee (Leonie); S. Friedrichs (Silvia); V.W. Bloks (Vincent ); A. Blokland (Arjan); F.C.S. Ramaekers (Franks); E.J.G. Sijbrands (Eric); H. Steinbusch; J. Prickaerts (Jos); F. Kuipers (Folkert); D. Lütjohann; M.T. Mulder (Monique)

    2011-01-01

    textabstractPlant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associ/+ mice for

  13. Stars and Symbiosis: MicroRNA- and MicroRNA*-Mediated Transcript Cleavage Involved in Arbuscular Mycorrhizal Symbiosis1[W][OA

    Science.gov (United States)

    Devers, Emanuel A.; Branscheid, Anja; May, Patrick; Krajinski, Franziska

    2011-01-01

    The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleavage on root cell reprogramming during AM symbiosis, we carried out high-throughput (Illumina) sequencing of small RNAs and degradome tags of Medicago truncatula roots. This led to the annotation of 243 novel miRNAs. An increased accumulation of several novel and conserved miRNAs in mycorrhizal roots suggest a role of these miRNAs during AM symbiosis. The degradome analysis led to the identification of 185 root transcripts as mature miRNA and also miRNA*-mediated mRNA cleavage targets. Several of the identified miRNA targets are known to be involved in root symbioses. In summary, the increased accumulation of specific miRNAs and the miRNA-mediated cleavage of symbiosis-relevant genes indicate that miRNAs are an important part of the regulatory network leading to symbiosis development. PMID:21571671

  14. Nonsense and sense suppression abilities of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNA(Pyl pairs in the Escherichia coli BL21(DE3 cell strain.

    Directory of Open Access Journals (Sweden)

    Keturah A Odoi

    Full Text Available Systematic studies of nonsense and sense suppression of the original and three derivative Methanosarcina mazei PylRS-tRNA(Pyl pairs and cross recognition between nonsense codons and various tRNA(Pyl anticodons in the Escherichia coli BL21(DE3 cell strain are reported. tRNA(CUA(Pyl is orthogonal in E. coli and able to induce strong amber suppression when it is co-expressed with pyrrolysyl-tRNA synthetase (PylRS and charged with a PylRS substrate, N(ε-tert-butoxycarbonyl-L-lysine (BocK. Similar to tRNA(CUA(Pyl, tRNA(UUA(Pyl is also orthogonal in E. coli and can be coupled with PylRS to genetically incorporate BocK at an ochre mutation site. Although tRNA(UUA(Pyl is expected to recognize a UAG codon based on the wobble hypothesis, the PylRS-tRNA(UUA(Pyl pair does not give rise to amber suppression that surpasses the basal amber suppression level in E. coli. E. coli itself displays a relatively high opal suppression level and tryptophan (Trp is incorporated at an opal mutation site. Although the PylRS-tRNA(UCA(Pyl pair can be used to encode BocK at an opal codon, the pair fails to suppress the incorporation of Trp at the same site. tRNA(CCU(Pyl fails to deliver BocK at an AGG codon when co-expressed with PylRS in E. coli.

  15. Light-stimulated accumulation of transcripts of nuclear and chloroplast genes for ribulosebisphosphate carboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S M; Ellis, R J

    1981-01-01

    The chloroplast enzyme, ribulosebisphosphate carboxylase, consists of large subunit polypeptides encoded in the chloroplast genome and small subunit polypeptides encoded in the nuclear genome. Cloned DNA complementary to the small subunit mRNA hybridizes to a single RNA species of 900-1000 nucleotides in both total and poly(A)-containing RNA from leaves of Pisum sativum, but does not hybridize to chloroplast RNA. Small subunit cDNA hybridizes to at least three RNA species from nuclei, two of which are of higher molecular weight than the mature mRNA. A cloned large subunit DNA sequence hybridizes to a single species of Pisum chloroplast RNA containing approximately 1700 nucleotides, but does not hybridize to nuclear RNA. The light-stimulation of carboxylase accumulation reflects increases in the amounts of transcripts for both subunits in total leaf RNA. Transcripts of the small subunit gene are more abundant in nuclear RNA from light-grown leaves than in that from dark-grown leaves. These results suggest that the stimulation of carboxylase accumulation by light is mediated at the level of either transcription or RNA turnover in both nucleus and chloroplast.

  16. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes.

    Science.gov (United States)

    Gómez-Zorita, Saioa; Lasa, Arrate; Abendaño, Naiara; Fernández-Quintela, Alfredo; Mosqueda-Solís, Andrea; Garcia-Sobreviela, Maria Pilar; Arbonés-Mainar, Jose M; Portillo, Maria P

    2017-11-21

    Adipocytes derived from human mesenchymal stem cells (MSCs) are widely used to investigate adipogenesis. Taking into account both the novelty of these MSCs and the scarcity of studies focused on the effects of phenolic compounds, the aim of the present study was to analyze the effect of apigenin, hesperidin and kaempferol on pre-adipocyte and mature adipocytes derived from this type of cells. In addition, the expression of genes involved in TG accumulation was also measured. Pre-adipocytes were cultured from day 0 to day 8 and mature adipocytes for 48 h with the polyphenols at doses of 1, 10 and 25 µM. Apigenin did not show an anti-adipogenic action. Pre-adipocytes treated with hesperidin and kaempferol showed reduced TG content at the three experimental doses. Apigenin did not modify the expression of the main adipogenic genes (c/ebpβ, c/ebpα, pparγ and srebp1c), hesperidin inhibited genes involved in the three phases of adipogenesis (c/ebpβ, srebp1c and perilipin) and kaempferol reduced c/ebpβ. In mature adipocytes, the three polyphenols reduced TG accumulation at the dose of 25 µM, but not at lower doses. All compounds increased mRNA levels of atgl. Apigenin and hesperidin decreased fasn expression. The present study shows the anti-adipogenic effect and delipidating effects of apigenin, hesperidin and kaempferol in human adipocytes derived from hMSCs. While hesperidin blocks all the stages of adipogenesis, kaempferol only inhibits the early stage. Regarding mature adipocytes, the three compounds reduce TG accumulation by activating, at least in part, lipolysis, and in the case of hesperidin and apigenin, also by reducing lipogenesis. The present study shows for the first time the anti-adipogenic effect and delipidating effect of apigenin, hesperidin and kaempferol in human adipocytes derived from MSCs for the first time.

  17. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export.

    Science.gov (United States)

    Copeland, Anna Maria; Van Deusen, Nicole M; Schmaljohn, Connie S

    2015-12-01

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NSS gene, but not the N, GN or NSM genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NSS, confirming that expression of NSS is likely responsible for this phenomenon. Published by Elsevier Inc.

  18. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis.

    Science.gov (United States)

    Bell, E; Creelman, R A; Mullet, J E

    1995-09-12

    Plant lipoxygenases are thought to be involved in the biosynthesis of lipid-derived signaling molecules. The potential involvement of a specific Arabidopsis thaliana lipoxygenase isozyme, LOX2, in the biosynthesis of the plant growth regulators jasmonic acid (JA) and abscisic acid was investigated. Our characterization of LOX2 indicates that the protein is targeted to chloroplasts. The physiological role of this chloroplast lipoxygenase was analyzed in transgenic plants where cosuppression reduced LOX2 accumulation. The reduction in LOX2 levels caused no obvious changes in plant growth or in the accumulation of abscisic acid. However, the wound-induced accumulation of JA observed in control plants was absent in leaves of transgenic plants that lacked LOX2. Thus, LOX2 is required for the wound-induced synthesis of the plant growth regulator JA in leaves. We also examined the expression of a wound- and JA-inducible Arabidopsis gene, vsp, in transgenic and control plants. Leaves of transgenic plants lacking LOX2 accumulated less vsp mRNA than did control leaves in response to wounding. This result suggests that wound-induced JA (or some other LOX2-requiring component of the wound response pathway) is involved in the wound-induced regulation of this gene.

  19. Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Pasarica, Magdalena; Mashtalir, Nazar; McAllister, Emily J

    2008-01-01

    Human adenovirus Ad-36 is causatively and correlatively linked with animal and human obesity, respectively. Ad-36 enhances differentiation of rodent preadipocytes, but its effect on adipogenesis in humans is unknown. To indirectly assess the role of Ad-36-induced adipogenesis in human obesity......, the effect of the virus on commitment, differentiation, and lipid accumulation was investigated in vitro in primary human adipose-derived stem/stromal cells (hASC). Ad-36 infected hASC in a time- and dose-dependent manner. Even in the presence of osteogenic media, Ad-36-infected hASC showed significantly...... greater lipid accumulation, suggestive of their commitment to the adipocyte lineage. Even in the absence of adipogenic inducers, Ad-36 significantly increased hASC differentiation, as indicated by a time-dependent expression of genes within the adipogenic cascade-CCAAT/Enhancer binding protein...

  20. Visualization of enhancer-derived noncoding RNA

    CSIR Research Space (South Africa)

    Shibayama, Y

    2017-01-01

    Full Text Available component of enhancer function, their expression has not been broadly analyzed at a single cell level via imaging techniques. This protocol describes a method to image eRNA in single cells by in situ hybridization followed by tyramide signal amplifi cation...

  1. Experimental evidence that RNA recombination occurs in the Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Chuang, C.-K.; Chen, W.-J.

    2009-01-01

    Due to the lack of a proofreading function and error-repairing ability of genomic RNA, accumulated mutations are known to be a force driving viral evolution in the genus Flavivirus, including the Japanese encephalitis (JE) virus. Based on sequencing data, RNA recombination was recently postulated to be another factor associated with genomic variations in these viruses. We herein provide experimental evidence to demonstrate the occurrence of RNA recombination in the JE virus using two local pure clones (T1P1-S1 and CJN-S1) respectively derived from the local strains, T1P1 and CJN. Based on results from a restriction fragment length polymorphism (RFLP) assay on the C/preM junction comprising a fragment of 868 nucleotides (nt 10-877), the recombinant progeny virus was primarily formed in BHK-21 cells that had been co-infected with the two clones used in this study. Nine of 20 recombinant forms of the JE virus had a crossover in the nt 123-323 region. Sequencing data derived from these recombinants revealed that no nucleotide deletion or insertion occurred in this region favoring crossovers, indicating that precisely, not aberrantly, homologous recombination was involved. With site-directed mutagenesis, three stem-loop secondary structures were destabilized and re-stabilized in sequence, leading to changes in the frequency of recombination. This suggests that the conformation, not the free energy, of the secondary structure is important in modulating RNA recombination of the virus. It was concluded that because RNA recombination generates genetic diversity in the JE virus, this must be considered particularly in studies of viral evolution, epidemiology, and possible vaccine safety.

  2. Small RNA sequence analysis of adenovirus VA RNA-derived miRNAs reveals an unexpected serotype-specific difference in structure and abundance.

    Directory of Open Access Journals (Sweden)

    Wael Kamel

    Full Text Available Human adenoviruses (HAds encode for one or two highly abundant virus-associated RNAs, designated VA RNAI and VA RNAII, which fold into stable hairpin structures resembling miRNA precursors. Here we show that the terminal stem of the VA RNAs originating from Ad4, Ad5, Ad11 and Ad37, all undergo Dicer dependent processing into virus-specific miRNAs (so-called mivaRNAs. We further show that the mivaRNA duplex is subjected to a highly asymmetric RISC loading with the 3'-strand from all VA RNAs being the favored strand, except for the Ad37 VA RNAII, where the 5'-mivaRNAII strand was preferentially assembled into RISC. Although the mivaRNA seed sequences are not fully conserved between the HAds a bioinformatics prediction approach suggests that a large fraction of the VA RNAII-, but not the VA RNAI-derived mivaRNAs still are able to target the same cellular genes. Using small RNA deep sequencing we demonstrate that the Dicer processing event in the terminal stem of the VA RNAs is not unique and generates 3'-mivaRNAs with a slight variation of the position of the 5' terminal nucleotide in the RISC loaded guide strand. Also, we show that all analyzed VA RNAs, except Ad37 VA RNAI and Ad5 VA RNAII, utilize an alternative upstream A start site in addition to the classical +1 G start site. Further, the 5'-mivaRNAs with an A start appears to be preferentially incorporated into RISC. Although the majority of mivaRNA research has been done using Ad5 as the model system our analysis demonstrates that the mivaRNAs expressed in Ad11- and Ad37-infected cells are the most abundant mivaRNAs associated with Ago2-containing RISC. Collectively, our results show an unexpected variability in Dicer processing of the VA RNAs and a serotype-specific loading of mivaRNAs into Ago2-based RISC.

  3. Mutations in Cytosine-5 tRNA Methyltransferases Impact Mobile Element Expression and Genome Stability at Specific DNA Repeats

    Directory of Open Access Journals (Sweden)

    Bianca Genenncher

    2018-02-01

    Full Text Available The maintenance of eukaryotic genome stability is ensured by the interplay of transcriptional as well as post-transcriptional mechanisms that control recombination of repeat regions and the expression and mobility of transposable elements. We report here that mutations in two (cytosine-5 RNA methyltransferases, Dnmt2 and NSun2, impact the accumulation of mobile element-derived sequences and DNA repeat integrity in Drosophila. Loss of Dnmt2 function caused moderate effects under standard conditions, while heat shock exacerbated these effects. In contrast, NSun2 function affected mobile element expression and genome integrity in a heat shock-independent fashion. Reduced tRNA stability in both RCMT mutants indicated that tRNA-dependent processes affected mobile element expression and DNA repeat stability. Importantly, further experiments indicated that complex formation with RNA could also contribute to the impact of RCMT function on gene expression control. These results thus uncover a link between tRNA modification enzymes, the expression of repeat DNA, and genomic integrity.

  4. A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer.

    Science.gov (United States)

    Torrent, C; Gabus, C; Darlix, J L

    1994-02-01

    Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.

  5. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S., E-mail: Connie.s.schmaljohn.civ@mail.mil

    2015-12-15

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Rift Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.

  6. Predicting plant biomass accumulation from image-derived parameters

    Science.gov (United States)

    Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian

    2018-01-01

    Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559

  7. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    International Nuclear Information System (INIS)

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-01-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b + Gr-1 + MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b + Gr-1 + MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs

  8. Free energy minimization to predict RNA secondary structures and computational RNA design.

    Science.gov (United States)

    Churkin, Alexander; Weinbrand, Lina; Barash, Danny

    2015-01-01

    Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.

  9. The Conserved RNA Exonuclease Rexo5 Is Required for 3′ End Maturation of 28S rRNA, 5S rRNA, and snoRNAs

    Directory of Open Access Journals (Sweden)

    Stefanie Gerstberger

    2017-10-01

    Full Text Available Non-coding RNA biogenesis in higher eukaryotes has not been fully characterized. Here, we studied the Drosophila melanogaster Rexo5 (CG8368 protein, a metazoan-specific member of the DEDDh 3′-5′ single-stranded RNA exonucleases, by genetic, biochemical, and RNA-sequencing approaches. Rexo5 is required for small nucleolar RNA (snoRNA and rRNA biogenesis and is essential in D. melanogaster. Loss-of-function mutants accumulate improperly 3′ end-trimmed 28S rRNA, 5S rRNA, and snoRNA precursors in vivo. Rexo5 is ubiquitously expressed at low levels in somatic metazoan cells but extremely elevated in male and female germ cells. Loss of Rexo5 leads to increased nucleolar size, genomic instability, defective ribosome subunit export, and larval death. Loss of germline expression compromises gonadal growth and meiotic entry during germline development.

  10. rRNA and Poly-β-Hydroxybutyrate Dynamics in Bioreactors Subjected to Feast and Famine Cycles

    Science.gov (United States)

    Frigon, Dominic; Muyzer, Gerard; van Loosdrecht, Mark; Raskin, Lutgarde

    2006-01-01

    Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-β-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be hypothesized that bacteria accumulate more rRNA when they are subjected to feast and famine cycles. However, PHB-accumulating bacteria can form biomass (grow) throughout a feast and famine cycle and thus have a lower peak biomass formation rate during the cycle. Consequently, PHB-accumulating bacteria may accumulate less rRNA when they are subjected to feast and famine cycles than bacteria that are not capable of PHB accumulation. These hypotheses were tested with Wautersia eutropha H16 (wild type) and W. eutropha PHB-4 (a mutant not capable of accumulating PHB) grown in chemostat and semibatch reactors. For both strains, the cellular RNA level was higher when the organism was grown in semibatch reactors than when it was grown in chemostats, and the specific biomass formation rates during the feast phase were linearly related to the cellular RNA levels for cultures. Although the two strains exhibited maximum uptake rates when they were grown in semibatch reactors, the wild-type strain responded much more rapidly to the addition of fresh medium than the mutant responded. Furthermore, the chemostat-grown mutant culture was unable to exhibit maximum substrate uptake rates when it was subjected to pulse-wise addition of fresh medium. These data show that the ability to accumulate PHB does not prevent bacteria from accumulating high levels of rRNA when they are subjected to feast and famine cycles. Our results also demonstrate that the ability to accumulate PHB makes the bacteria more responsive to sudden increases in substrate concentrations, which explains their ecological

  11. rRNA and poly-beta-hydroxybutyrate dynamics in bioreactors subjected to feast and famine cycles.

    Science.gov (United States)

    Frigon, Dominic; Muyzer, Gerard; van Loosdrecht, Mark; Raskin, Lutgarde

    2006-04-01

    Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-beta-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be hypothesized that bacteria accumulate more rRNA when they are subjected to feast and famine cycles. However, PHB-accumulating bacteria can form biomass (grow) throughout a feast and famine cycle and thus have a lower peak biomass formation rate during the cycle. Consequently, PHB-accumulating bacteria may accumulate less rRNA when they are subjected to feast and famine cycles than bacteria that are not capable of PHB accumulation. These hypotheses were tested with Wautersia eutropha H16 (wild type) and W. eutropha PHB-4 (a mutant not capable of accumulating PHB) grown in chemostat and semibatch reactors. For both strains, the cellular RNA level was higher when the organism was grown in semibatch reactors than when it was grown in chemostats, and the specific biomass formation rates during the feast phase were linearly related to the cellular RNA levels for cultures. Although the two strains exhibited maximum uptake rates when they were grown in semibatch reactors, the wild-type strain responded much more rapidly to the addition of fresh medium than the mutant responded. Furthermore, the chemostat-grown mutant culture was unable to exhibit maximum substrate uptake rates when it was subjected to pulse-wise addition of fresh medium. These data show that the ability to accumulate PHB does not prevent bacteria from accumulating high levels of rRNA when they are subjected to feast and famine cycles. Our results also demonstrate that the ability to accumulate PHB makes the bacteria more responsive to sudden increases in substrate concentrations, which explains their ecological

  12. RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea.

    Science.gov (United States)

    Kumar, Sanjeev; Tanti, Bhaben; Patil, Basavaprabhu L; Mukherjee, Sunil Kumar; Sahoo, Lingaraj

    2017-01-01

    Cowpea is an important grain legume crop of Africa, Latin America, and Southeast Asia. Leaf curl and golden mosaic diseases caused by Mungbean yellow mosaic India virus (MYMIV) have emerged as most devastating viral diseases of cowpea in Southeast Asia. In this study, we employed RNA interference (RNAi) strategy to control cowpea-infecting MYMIV. For this, we generated transgenic cowpea plants harbouring three different intron hairpin RNAi constructs, containing the AC2, AC4 and fusion of AC2 and AC4 (AC2+AC4) of seven cowpea-infecting begomoviruses. The T0 and T1 transgenic cowpea lines of all the three constructs accumulated transgene-specific siRNAs. Transgenic plants were further assayed up to T1 generations, for resistance to MYMIV using agro-infectious clones. Nearly 100% resistance against MYMIV infection was observed in transgenic lines, expressing AC2-hp and AC2+AC4-hp RNA, when compared with untransformed controls and plants transformed with empty vectors, which developed severe viral disease symptoms within 3 weeks. The AC4-hp RNA expressing lines displayed appearance of milder symptoms after 5 weeks of MYMIV-inoculation. Northern blots revealed a positive correlation between the level of transgene-specific siRNAs accumulation and virus resistance. The MYMIV-resistant transgenic lines accumulated nearly zero or very low titres of viral DNA. The transgenic cowpea plants had normal phenotype with no yield penalty in greenhouse conditions. This is the first demonstration of RNAi-derived resistance to MYMIV in cowpea.

  13. Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families

    International Nuclear Information System (INIS)

    Carbonell, Alberto; Martinez de Alba, Angel-Emilio; Flores, Ricardo; Gago, Selma

    2008-01-01

    Infection by viroids, non-protein-coding circular RNAs, occurs with the accumulation of 21-24 nt viroid-derived small RNAs (vd-sRNAs) with characteristic properties of small interfering RNAs (siRNAs) associated to RNA silencing. The vd-sRNAs most likely derive from dicer-like (DCL) enzymes acting on viroid-specific dsRNA, the key elicitor of RNA silencing, or on the highly structured genomic RNA. Previously, viral dsRNAs delivered mechanically or agroinoculated have been shown to interfere with virus infection in a sequence-specific manner. Here, we report similar results with members of the two families of nuclear- and chloroplast-replicating viroids. Moreover, homologous vd-sRNAs co-delivered mechanically also interfered with one of the viroids examined. The interference was sequence-specific, temperature-dependent and, in some cases, also dependent on the dose of the co-inoculated dsRNA or vd-sRNAs. The sequence-specific nature of these effects suggests the involvement of the RNA induced silencing complex (RISC), which provides sequence specificity to RNA silencing machinery. Therefore, viroid titer in natural infections might be regulated by the concerted action of DCL and RISC. Viroids could have evolved their secondary structure as a compromise between resistance to DCL and RISC, which act preferentially against RNAs with compact and relaxed secondary structures, respectively. In addition, compartmentation, association with proteins or active replication might also help viroids to elude their host RNA silencing machinery

  14. Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro

    Science.gov (United States)

    Sharwood, Robert E.; Hotto, Amber M.; Bollenbach, Thomas J.; Stern, David B.

    2011-01-01

    Post-transcriptional regulation in the chloroplast is exerted by nucleus-encoded ribonucleases and RNA-binding proteins. One of these ribonucleases is RNR1, a 3′-to-5′ exoribonuclease of the RNase II family. We have previously shown that Arabidopsis rnr1-null mutants exhibit specific abnormalities in the expression of the rRNA operon, including the accumulation of precursor 23S, 16S, and 4.5S species and a concomitant decrease in the mature species. 5S rRNA transcripts, however, accumulate to a very low level in both precursor and mature forms, suggesting that they are unstable in the rnr1 background. Here we demonstrate that rnr1 plants overaccumulate an antisense RNA, AS5, that is complementary to the 5S rRNA, its intergenic spacer, and the downstream trnR gene, which encodes tRNAArg, raising the possibility that AS5 destabilizes 5S rRNA or its precursor and/or blocks rRNA maturation. To investigate this, we used an in vitro system that supports 5S rRNA and trnR processing. We show that AS5 inhibits 5S rRNA maturation from a 5S-trnR precursor, and shorter versions of AS5 demonstrate that inhibition requires intergenic sequences. To test whether the sense and antisense RNAs form double-stranded regions in vitro, treatment with the single-strand-specific mung bean nuclease was used. These results suggest that 5S–AS5 duplexes interfere with a sense-strand secondary structure near the endonucleolytic cleavage site downstream from the 5S rRNA coding region. We hypothesize that these duplexes are degraded by a dsRNA-specific ribonuclease in vivo, contributing to the 5S rRNA deficiency observed in rnr1. PMID:21148395

  15. Transfer RNA Derived Small RNAs Targeting Defense Responsive Genes Are Induced during Phytophthora capsici Infection in Black Pepper (Piper nigrum L.).

    Science.gov (United States)

    Asha, Srinivasan; Soniya, Eppurath V

    2016-01-01

    Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5'tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5'tRFs in the infected leaf and root. The abundance of 5'tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5'Ala(CGC) tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5'Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper.

  16. PRELIMINARY STUDY OF SEDIMENT AGES AND ACCUMULATION RATES IN JAKARTA BAY DERIVED FROM DEPTH PROFILES OF UNSUPPORTED 210Pb

    Directory of Open Access Journals (Sweden)

    Ali Arman Lubis

    2010-06-01

    Full Text Available Preliminary study of sediment ages and accumulation rates has been carried out in Jakarta Bay using unsupported 210Pb. 210Pb occurs naturally in sediments as one of the radioisotopes in the 238U decay series. The total 210Pb activity in sediments has two components, namely; supported and unsupported. The latter derives from dissociation of 210Pb from 226Ra through diffusion of the intermediate gaseous isotope 222Rn which diffuse into the atmosphere and decay to 210Pb. 210Pb falling directly into seawater and deposit on the bed of the marine with sediments. 210Pb has half-life of 22.26 years makes it well suited to dating and determining the accumulation rate of sediments laid down over the past 100 - 150 years. Two cores samples with diameter 7.5 cm were taken by scuba divers from Jakarta Bay and were analyzed of 210Pb using α-spectrometer equipped with PIPS detector. The sediment ages and range of sediment accumulation rates of core I and II are up to 169 years and (0.25 - 1.93 kg/m2y and up to 157 years and (0.15 - 2.68 kg/m2y, respectively.  Keywords: sediment ages, accumulation rates, marine sediment, 210Pb

  17. Analyses of carnivore microsatellites and their intimate association with tRNA-derived SINEs.

    Science.gov (United States)

    López-Giráldez, Francesc; Andrés, Olga; Domingo-Roura, Xavier; Bosch, Montserrat

    2006-10-23

    The popularity of microsatellites has greatly increased in the last decade on account of their many applications. However, little is currently understood about the factors that influence their genesis and distribution among and within species genomes. In this work, we analyzed carnivore microsatellite clones from GenBank to study their association with interspersed repeats and elucidate the role of the latter in microsatellite genesis and distribution. We constructed a comprehensive carnivore microsatellite database comprising 1236 clones from GenBank. Thirty-three species of 11 out of 12 carnivore families were represented, although two distantly related species, the domestic dog and cat, were clearly overrepresented. Of these clones, 330 contained tRNALys-derived SINEs and 357 contained other interspersed repeats. Our rough estimates of tRNA SINE copies per haploid genome were much higher than published ones. Our results also revealed a distinct juxtaposition of AG and A-rich repeats and tRNALys-derived SINEs suggesting their coevolution. Both microsatellites arose repeatedly in two regions of the interspersed repeat. Moreover, microsatellites associated with tRNALys-derived SINEs showed the highest complexity and less potential instability. Our results suggest that tRNALys-derived SINEs are a significant source for microsatellite generation in carnivores, especially for AG and A-rich repeat motifs. These observations indicate two modes of microsatellite generation: the expansion and variation of pre-existing tandem repeats and the conversion of sequences with high cryptic simplicity into a repeat array; mechanisms which are not specific to tRNALys-derived SINEs. Microsatellite and interspersed repeat coevolution could also explain different distribution of repeat types among and within species genomes.Finally, due to their higher complexity and lower potential informative content of microsatellites associated with tRNALys-derived SINEs, we recommend avoiding

  18. Analyses of carnivore microsatellites and their intimate association with tRNA-derived SINEs

    Directory of Open Access Journals (Sweden)

    Bosch Montserrat

    2006-10-01

    Full Text Available Abstract Background The popularity of microsatellites has greatly increased in the last decade on account of their many applications. However, little is currently understood about the factors that influence their genesis and distribution among and within species genomes. In this work, we analyzed carnivore microsatellite clones from GenBank to study their association with interspersed repeats and elucidate the role of the latter in microsatellite genesis and distribution. Results We constructed a comprehensive carnivore microsatellite database comprising 1236 clones from GenBank. Thirty-three species of 11 out of 12 carnivore families were represented, although two distantly related species, the domestic dog and cat, were clearly overrepresented. Of these clones, 330 contained tRNALys-derived SINEs and 357 contained other interspersed repeats. Our rough estimates of tRNA SINE copies per haploid genome were much higher than published ones. Our results also revealed a distinct juxtaposition of AG and A-rich repeats and tRNALys-derived SINEs suggesting their coevolution. Both microsatellites arose repeatedly in two regions of the insterspersed repeat. Moreover, microsatellites associated with tRNALys-derived SINEs showed the highest complexity and less potential instability. Conclusion Our results suggest that tRNALys-derived SINEs are a significant source for microsatellite generation in carnivores, especially for AG and A-rich repeat motifs. These observations indicate two modes of microsatellite generation: the expansion and variation of pre-existing tandem repeats and the conversion of sequences with high cryptic simplicity into a repeat array; mechanisms which are not specific to tRNALys-derived SINEs. Microsatellite and interspersed repeat coevolution could also explain different distribution of repeat types among and within species genomes. Finally, due to their higher complexity and lower potential informative content of microsatellites

  19. Surface-enhanced Raman Scattering Study of the Binding Modes of a Dibenzotetraaza[14]annulene Derivative with DNA/RNA Polynucleotides

    OpenAIRE

    Miljanić, Snežana; Dijanošić, Adriana; Kalac, Matea; Radić Stojković, Marijana; Piantanida, Ivo; Pawlica, Dariusz; Eilmes, Julita

    2012-01-01

    Binding modes of a dibenzotetraaza14annulene (DBTAA) derivative with synthetic nucleic acids were studied using surface-enhanced Raman spectroscopy (SERS). Changes in SERS intensity and appearance of new bands in spectra were attributed to different complexes formed between the DBTAA molecules and DNA/RNA polynucleotides. A decrease in intensity pointed to intercalation as the dominant binding mode of the annulene derivative with poly dGdC-poly dGdC and poly rA-poly rU, whereas new bands in...

  20. Small activating RNA induces myogenic differentiation of rat adipose-derived stem cells by upregulating MyoD

    Directory of Open Access Journals (Sweden)

    Chenghe Wang

    2015-08-01

    Full Text Available ABSTRACTPurpose:RNA activation (RNAa is a mechanism of gene activation triggered by promoter-targeted small double stranded RNAs (dsRNAs, also known as small activating RNAs (saRNAs. Myogenic regulatory factor MyoD is regarded as the master activator of myogenic differentiation cascade by binding to enhancer of muscle specific genes. Stress urinary incontinence (SUI is a condition primarily resulted from urethral sphincter deficiency. It is thus expected that by promoting differentiation of adipose-derived stem cells (ADSCs into myoblasts by activating MyoD gene through RNAa may offer benefits to SUI.Materials and Methods:Rats ADSCs were isolated, proliferated in vitro, and identified by flow cytometry. Purified ADSCs were then transfected with a MyoD saRNA or control transfected. Real-time polymerase chain reaction (RT-PCR and western blotting were used to detect MyoD mRNA and protein expression, respectively. Immunocytochemical staining was applied to determine the expression of desmin protein in transfected cells. Cell viability was measured by using CellTiter 96® AQueous One Solution Cell Proliferation Assay kit.Results:Transfection of a MyoD saRNA (dsMyoD into ADSCs significantly induced the expression of MyoD at both the mRNA and protein levels, and inhibited cell proliferation. Desmin protein expression was detected in dsMyoD treated ADSCs 2 weeks later.Conclusion:Our findings show that RNAa mediated overexpression of MyoD can promote transdifferentiation of ADSCs into myoblasts and may help treat stress urinary incontinence (SUI–a condition primarily resulted from urethral sphincter deficiency.

  1. Beet Necrotic Yellow Vein Virus Noncoding RNA Production Depends on a 5′→3′ Xrn Exoribonuclease Activity

    Directory of Open Access Journals (Sweden)

    Alyssa Flobinus

    2018-03-01

    Full Text Available The RNA3 species of the beet necrotic yellow vein virus (BNYVV, a multipartite positive-stranded RNA phytovirus, contains the ‘core’ nucleotide sequence required for its systemic movement in Beta macrocarpa. Within this ‘core’ sequence resides a conserved “coremin” motif of 20 nucleotides that is absolutely essential for long-distance movement. RNA3 undergoes processing steps to yield a noncoding RNA3 (ncRNA3 possessing “coremin” at its 5′ end, a mandatory element for ncRNA3 accumulation. Expression of wild-type (wt or mutated RNA3 in Saccharomyces cerevisiae allows for the accumulation of ncRNA3 species. Screening of S. cerevisiae ribonuclease mutants identified the 5′-to-3′ exoribonuclease Xrn1 as a key enzyme in RNA3 processing that was recapitulated both in vitro and in insect cell extracts. Xrn1 stalled on ncRNA3-containing RNA substrates in these decay assays in a similar fashion as the flavivirus Xrn1-resistant structure (sfRNA. Substitution of the BNYVV-RNA3 ‘core’ sequence by the sfRNA sequence led to the accumulation of an ncRNA species in yeast in vitro but not in planta and no viral long distance occurred. Interestingly, XRN4 knockdown reduced BNYVV RNA accumulation suggesting a dual role for the ribonuclease in the viral cycle.

  2. p53 Represses the Oncogenic Sno-MiR-28 Derived from a SnoRNA.

    Directory of Open Access Journals (Sweden)

    Feng Yu

    Full Text Available p53 is a master tumour repressor that participates in vast regulatory networks, including feedback loops involving microRNAs (miRNAs that regulate p53 and that themselves are direct p53 transcriptional targets. We show here that a group of polycistronic miRNA-like non-coding RNAs derived from small nucleolar RNAs (sno-miRNAs are transcriptionally repressed by p53 through their host gene, SNHG1. The most abundant of these, sno-miR-28, directly targets the p53-stabilizing gene, TAF9B. Collectively, p53, SNHG1, sno-miR-28 and TAF9B form a regulatory loop which affects p53 stability and downstream p53-regulated pathways. In addition, SNHG1, SNORD28 and sno-miR-28 are all significantly upregulated in breast tumours and the overexpression of sno-miR-28 promotes breast epithelial cell proliferation. This research has broadened our knowledge of the crosstalk between small non-coding RNA pathways and roles of sno-miRNAs in p53 regulation.

  3. Non-coding, mRNA-like RNAs database Y2K.

    Science.gov (United States)

    Erdmann, V A; Szymanski, M; Hochberg, A; Groot, N; Barciszewski, J

    2000-01-01

    In last few years much data has accumulated on various non-translatable RNA transcripts that are synthesised in different cells. They are lacking in protein coding capacity and it seems that they work mainly or exclusively at the RNA level. All known non-coding RNA transcripts are collected in the database: http://www. man.poznan.pl/5SData/ncRNA/index.html

  4. Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability.

    Science.gov (United States)

    Zago, Michela; Sheridan, Jared A; Traboulsi, Hussein; Hecht, Emelia; Zhang, Yelu; Guerrina, Necola; Matthews, Jason; Nair, Parameswaran; Eidelman, David H; Hamid, Qutayba; Baglole, Carolyn J

    2017-01-01

    Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients.

  5. Creation / accumulation city

    NARCIS (Netherlands)

    Doevendans, C.H.; Schram, A.L.

    2005-01-01

    A distinction between basic archetypes of urban form was made by Bruno Fortier: the accumulation city as opposed to the creation city. These archetypes derive from archaeology - being based on the Roman and the Egyptian city - but are interpreted as morphological paradigms, as a set of assumptions

  6. Topographic heterogeneity effect on the accumulation of Fukushima-derived radiocesium on forest floor driven by biologically mediated processes

    Science.gov (United States)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Takeuchi, Erina; Nishimura, Syusaku

    2014-10-01

    The accident at the Fukushima Daiichi nuclear power plant caused serious radiocesium (137Cs) contamination of forest ecosystems located in mountainous and hilly regions with steep terrain. To understand topographic effects on the redistribution and accumulation of 137Cs on forest floor, we investigated the distribution of Fukushima-derived 137Cs in forest-floor litter layers on a steep hillslope in a Japanese deciduous forest in August 2013 (29 months after the accident). Both leaf-litter materials and litter-associated 137Cs were accumulated in large amounts at the bottom of the hillslope. At the bottom, a significant fraction (65%) of the 137Cs inventory was observed to be associated with newly shed and less degraded leaf-litter materials, with estimated mean ages of 0.5-1.5 years, added via litterfall after the accident. Newly emerged leaves were contaminated with Fukushima-derived 137Cs in May 2011 (two months after the accident) and 137Cs concentration in them decreased with time. However, the concentrations were still two orders of magnitude higher than the pre-accident level in 2013 and 2014. These observations are the first to show that 137Cs redistribution on a forested hillslope is strongly controlled by biologically mediated processes and continues to supply 137Cs to the bottom via litterfall at a reduced rate.

  7. Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy.

    Science.gov (United States)

    Gumucio, Jonathan P; Davis, Max E; Bradley, Joshua R; Stafford, Patrick L; Schiffman, Corey J; Lynch, Evan B; Claflin, Dennis R; Bedi, Asheesh; Mendias, Christopher L

    2012-12-01

    Full-thickness tears to the rotator cuff can cause severe pain and disability. Untreated tears progress in size and are associated with muscle atrophy and an infiltration of fat to the area, a condition known as "fatty degeneration." To improve the treatment of rotator cuff tears, a greater understanding of the changes in the contractile properties of muscle fibers and the molecular regulation of fatty degeneration is essential. Using a rat model of rotator cuff injury, we measured the force generating capacity of individual muscle fibers and determined changes in muscle fiber type distribution that develop after a full thickness rotator cuff tear. We also measured the expression of mRNA and miRNA transcripts involved in muscle atrophy, lipid accumulation, and matrix synthesis. We hypothesized that a decrease in specific force of rotator cuff muscle fibers, an accumulation of type IIb fibers, and an upregulation in fibrogenic, adipogenic, and inflammatory gene expression occur in torn rotator cuff muscles. Thirty days following rotator cuff tear, we observed a reduction in muscle fiber force production, an induction of fibrogenic, adipogenic, and autophagocytic mRNA and miRNA molecules, and a dramatic accumulation of macrophages in areas of fat accumulation. Copyright © 2012 Orthopaedic Research Society.

  8. Electroporated Antigen-Encoding mRNA Is Not a Danger Signal to Human Mature Monocyte-Derived Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Stefanie Hoyer

    2015-01-01

    Full Text Available For therapeutic cancer vaccination, the adoptive transfer of mRNA-electroporated dendritic cells (DCs is frequently performed, usually with monocyte-derived, cytokine-matured DCs (moDCs. However, DCs are rich in danger-sensing receptors which could recognize the exogenously delivered mRNA and induce DC activation, hence influencing the DCs’ immunogenicity. Therefore, we examined whether electroporation of mRNA with a proper cap and a poly-A tail of at least 64 adenosines had any influence on cocktail-matured moDCs. We used 16 different RNAs, encoding tumor antigens (MelanA, NRAS, BRAF, GNAQ, GNA11, and WT1, and variants thereof. None of those RNAs induced changes in the expression of CD25, CD40, CD83, CD86, and CD70 or the secretion of the cytokines IL-8, IL-6, and TNFα of more than 1.5-fold compared to the control condition, while an mRNA encoding an NF-κB-activation protein as positive control induced massive secretion of the cytokines. To determine whether mRNA electroporation had any effect on the whole transcriptome of the DCs, we performed microarray analyses of DCs of 6 different donors. None of 60,000 probes was significantly different between mock-electroporated DCs and MelanA-transfected DCs. Hence, we conclude that no transcriptional programs were induced within cocktail-matured DCs by electroporation of single tumor-antigen-encoding mRNAs.

  9. RNA-Seq analysis uncovers non-coding small RNA system of Mycobacterium neoaurum in the metabolism of sterols to accumulate steroid intermediates.

    Science.gov (United States)

    Liu, Min; Zhu, Zhan-Tao; Tao, Xin-Yi; Wang, Feng-Qing; Wei, Dong-Zhi

    2016-04-25

    Understanding the metabolic mechanism of sterols to produce valuable steroid intermediates in mycobacterium by a noncoding small RNA (sRNA) view is still limited. In the work, RNA-seq was implemented to investigate the noncoding transcriptome of Mycobacterium neoaurum (Mn) in the transformation process of sterols to valuable steroid intermediates, including 9α-hydroxy-4-androstene-3,17-dione (9OHAD), 1,4-androstadiene-3,17-dione (ADD), and 22-hydroxy-23, 24-bisnorchola-1,4-dien-3-one (1,4-BNA). A total of 263 sRNA candidates were predicted from the intergenic regions in Mn. Differential expression of sRNA candidates was explored in the wide type Mn with vs without sterol addition, and the steroid intermediate producing Mn strains vs wide type Mn with sterol addition, respectively. Generally, sRNA candidates were differentially expressed in various strains, but there were still some shared candidates with outstandingly upregulated or downregulated expression in these steroid producing strains. Accordingly, four regulatory networks were constructed to reveal the direct and/or indirect interactions between sRNA candidates and their target genes in four groups, including wide type Mn with vs without sterol addition, 9OHAD, ADD, and BNA producing strains vs wide type Mn with sterol addition, respectively. Based on these constructed networks, several highly focused sRNA candidates were discovered to be prevalent in the networks, which showed comprehensive regulatory roles in various cellular processes, including lipid transport and metabolism, amino acid transport and metabolism, signal transduction, cell envelope biosynthesis and ATP synthesis. To explore the functional role of sRNA candidates in Mn cells, we manipulated the overexpression of candidates 131 and 138 in strain Mn-9OHAD, which led to enhanced production of 9OHAD from 1.5- to 2.3-fold during 6 d' fermentation and a slight effect on growth rate. This study revealed the complex and important regulatory

  10. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells

    Science.gov (United States)

    Shu, Yi; Shu, Dan; Haque, Farzin; Guo, Peixuan

    2013-01-01

    RNA nanotechnology is a term that refers to the design, fabrication, and utilization of nanoparticles mainly composed of ribonucleic acids via bottom-up self-assembly. The packaging RNA (pRNA) of the bacteriophage phi29 DNA packaging motor has been developed into a nano-delivery platform. This protocol describes the synthesis, assembly, and functionalization of pRNA nanoparticles based on three ‘toolkits’ derived from pRNA structural features: interlocking loops for hand-in-hand interactions, palindrome sequences for foot-to-foot interactions, and an RNA three-way junction for branch-extension. siRNAs, ribozymes, aptamers, chemical ligands, fluorophores, and other functionalities can also be fused to the pRNA prior to the assembly of the nanoparticles, so as to ensure the production of homogeneous nanoparticles and the retention of appropriate folding and function of the incorporated modules. The resulting self-assembled multivalent pRNA nanoparticles are thermodynamically and chemically stable, and they remain intact at ultra-low concentrations. Gene silencing effects are progressively enhanced with increasing number of siRNA in each pRNA nanoparticle. Systemic injection of the pRNA nanoparticles into xenograft-bearing mice has revealed strong binding to tumors without accumulation in vital organs or tissues. The pRNA-based nano-delivery scaffold paves a new way towards nanotechnological application of pRNA-based nanoparticles for disease detection and treatment. The time required for completing one round of this protocol is 3–4 weeks, including in vitro functional assays, or 2–3 months including in vivo studies. PMID:23928498

  11. An Archaea 5S rRNA analog is stably expressed in Escherichia coli

    Science.gov (United States)

    Yang, Y.; Fox, G. E.

    1996-01-01

    Mini-genes for 5S-like rRNA were constructed. These genes had a sequence which largely resembles that of the naturally occurring 5S rRNA of a bacterium, Halococcus morrhuae, which phylogenetically belongs to the Archaea. Plasmids carrying the mini-genes were transformed into Escherichia coli (Ec). Ribosomal incorporation was not a prerequisite for stable accumulation of the RNA product. However, only those constructs with a well-base-paired helix I accumulated RNA product. This result strongly implies that this aspect of the structure is likely to be an important condition for stabilizing 5S rRNA-like products. The results are consistent with our current understanding of 5S rRNA processing in Ec. When used in conjunction with rRNA probe technology, the resulting chimeric RNA may be useful as a monitoring tool for genetically engineered microorganisms or naturally occurring organisms that are released into the environment.

  12. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases.

    Science.gov (United States)

    Hunter, Lydia J R; Brockington, Samuel F; Murphy, Alex M; Pate, Adrienne E; Gruden, Kristina; MacFarlane, Stuart A; Palukaitis, Peter; Carr, John P

    2016-03-16

    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7.

  13. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing.

    Science.gov (United States)

    Goldfarb, Katherine C; Cech, Thomas R

    2017-01-01

    MRP RNA is an abundant, essential noncoding RNA whose functions have been proposed in yeast but are incompletely understood in humans. Mutations in the genomic locus for MRP RNA cause pleiotropic human diseases, including cartilage hair hypoplasia (CHH). Here we applied CRISPR-Cas9 genome editing to disrupt the endogenous human MRP RNA locus, thereby attaining what has eluded RNAi and RNase H experiments: elimination of MRP RNA in the majority of cells. The resulting accumulation of ribosomal RNA (rRNA) precursor-analyzed by RNA fluorescent in situ hybridization (FISH), Northern blots, and RNA sequencing-implicates MRP RNA in pre-rRNA processing. Amelioration of pre-rRNA imbalance is achieved through rescue of MRP RNA levels by ectopic expression. Furthermore, affinity-purified MRP ribonucleoprotein (RNP) from HeLa cells cleaves the human pre-rRNA in vitro at at least one site used in cells, while RNP isolated from cells with CRISPR-edited MRP loci loses this activity, and ectopic MRP RNA expression restores cleavage activity. Thus, a role for RNase MRP in human pre-rRNA processing is established. As demonstrated here, targeted CRISPR disruption is a valuable tool for functional studies of essential noncoding RNAs that are resistant to RNAi and RNase H-based degradation. © 2017 Goldfarb and Cech; Published by Cold Spring Harbor Laboratory Press.

  14. MicroRNA-29 facilitates transplantation of bone marrow-derived mesenchymal stem cells to alleviate pelvic floor dysfunction by repressing elastin.

    Science.gov (United States)

    Jin, Minfei; Wu, Yuelin; Wang, Jun; Ye, Weiping; Wang, Lei; Yin, Peipei; Liu, Wei; Pan, Chenhao; Hua, Xiaolin

    2016-11-17

    Pelvic floor dysfunction (PFD) is a condition affecting many women worldwide, with symptoms including stress urinary incontinence (SUI) and pelvic organ prolapse (POP). We have previously demonstrated stable elastin-expressing bone marrow-derived mesenchymal stem cells (BMSCs) attenuated PFD in rats, and aim to further study the effect of microRNA-29a-3p regulation on elastin expression and efficacy of BMSC transplantation therapy. We inhibited endogenous microRNA-29a-3p in BMSCs and investigated its effect on elastin expression by RT-PCR and Western blot. MicroRNA-29-inhibited BMSCs were then transplanted into PFD rats, accompanied by sustained release of bFGF using formulated bFGF in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP), followed by evaluation of urodynamic tests. MicroRNA-29a-3p inhibition resulted in upregulated expression and secretion of elastin in in vitro culture of BMSCs. After co-injection with PLGA-loaded bFGF NP into the PFD rats in vivo, microRNA-29a-3p-inhibited BMSCs significantly improved the urodynamic test results. Our multidisciplinary study, combining microRNA biology, genetically engineered BMSCs, and nanoparticle technology, provides an excellent stem cell-based therapy for repairing connective tissues and treating PFD.

  15. Clusters of basic amino acids contribute to RNA binding and nucleolar localization of ribosomal protein L22.

    Directory of Open Access Journals (Sweden)

    Jennifer L Houmani

    Full Text Available The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80-93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80-93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA.

  16. A microRNA feedback loop regulates global microRNA abundance during aging.

    Science.gov (United States)

    Inukai, Sachi; Pincus, Zachary; de Lencastre, Alexandre; Slack, Frank J

    2018-02-01

    Expression levels of many microRNAs (miRNAs) change during aging, notably declining globally in a number of organisms and tissues across taxa. However, little is known about the mechanisms or the biological relevance for this change. We investigated the network of genes that controls miRNA transcription and processing during C. elegans aging. We found that miRNA biogenesis genes are highly networked with transcription factors and aging-associated miRNAs. In particular, miR-71, known to influence life span and itself up-regulated during aging, represses alg-1 /Argonaute expression post-transcriptionally during aging. Increased ALG-1 abundance in mir-71 loss-of-function mutants led to globally increased miRNA expression. Interestingly, these mutants demonstrated widespread mRNA expression dysregulation and diminished levels of variability both in gene expression and in overall life span. Thus, the progressive molecular decline often thought to be the result of accumulated damage over an organism's life may be partially explained by a miRNA-directed mechanism of age-associated decline. © 2018 Inukai et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication.

    Science.gov (United States)

    Qin, Yiwen; Peng, Yuanzhen; Zhao, Wei; Pan, Jianping; Ksiezak-Reding, Hanna; Cardozo, Christopher; Wu, Yingjie; Divieti Pajevic, Paola; Bonewald, Lynda F; Bauman, William A; Qin, Weiping

    2017-06-30

    Muscle and bone are closely associated in both anatomy and function, but the mechanisms that coordinate their synergistic action remain poorly defined. Myostatin, a myokine secreted by muscles, has been shown to inhibit muscle growth, and the disruption of the myostatin gene has been reported to cause muscle hypertrophy and increase bone mass. Extracellular vesicle-exosomes that carry microRNA (miRNA), mRNA, and proteins are known to perform an important role in cell-cell communication. We hypothesized that myostatin may play a crucial role in muscle-bone interactions and may promote direct effects on osteocytes and on osteocyte-derived exosomal miRNAs, thereby indirectly influencing the function of other bone cells. We report herein that myostatin promotes expression of several bone regulators such as sclerostin (SOST), DKK1, and RANKL in cultured osteocytic (Ocy454) cells, concomitant with the suppression of miR-218 in both parent Ocy454 cells and derived exosomes. Exosomes produced by Ocy454 cells that had been pretreated with myostatin could be taken up by osteoblastic MC3T3 cells, resulting in a marked reduction of Runx2, a key regulator of osteoblastic differentiation, and in decreased osteoblastic differentiation via the down-regulation of the Wnt signaling pathway. Importantly, the inhibitory effect of myostatin-modified osteocytic exosomes on osteoblast differentiation is completely reversed by expression of exogenous miR-218, through a mechanism involving miR-218-mediated inhibition of SOST. Together, our findings indicate that myostatin directly influences osteocyte function and thereby inhibits osteoblastic differentiation, at least in part, through the suppression of osteocyte-derived exosomal miR-218, suggesting a novel mechanism in muscle-bone communication. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Evolutionarily conserved 5'-3' exoribonuclease Xrn1 accumulates at plasma membrane-associated eisosomes in post-diauxic yeast.

    Directory of Open Access Journals (Sweden)

    Tomas Grousl

    Full Text Available Regulation of gene expression on the level of translation and mRNA turnover is widely conserved evolutionarily. We have found that the main mRNA decay enzyme, exoribonuclease Xrn1, accumulates at the plasma membrane-associated eisosomes after glucose exhaustion in a culture of the yeast S. cerevisiae. Eisosomal localization of Xrn1 is not achieved in cells lacking the main component of eisosomes, Pil1, or Sur7, the protein accumulating at the membrane compartment of Can1 (MCC - the eisosome-organized plasma membrane microdomain. In contrast to the conditions of diauxic shift, when Xrn1 accumulates in processing bodies (P-bodies, or acute heat stress, in which these cytosolic accumulations of Xrn1 associate with eIF3a/Rpg1-containing stress granules, Xrn1 is not accompanied by other mRNA-decay machinery components when it accumulates at eisosomes in post-diauxic cells. It is important that Xrn1 is released from eisosomes after addition of fermentable substrate. We suggest that this spatial segregation of Xrn1 from the rest of the mRNA-decay machinery reflects a general regulatory mechanism, in which the key enzyme is kept separate from the rest of mRNA decay factors in resting cells but ready for immediate use when fermentable nutrients emerge and appropriate metabolism reprogramming is required. In particular, the localization of Xrn1 to the eisosome, together with previously published data, accents the relevance of this plasma membrane-associated compartment as a multipotent regulatory site.

  19. Annual Greenland Accumulation Rates (2009-2012) from Airborne Snow Radar

    Science.gov (United States)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joseph R.; hide

    2016-01-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 gigahertz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semi-automated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 percent. A comparison of the radarderived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and longterm mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR - Modele Atmospherique Regional for Greenland and vicinity) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  20. APC/C-mediated degradation of dsRNA-binding protein 4 (DRB4 involved in RNA silencing.

    Directory of Open Access Journals (Sweden)

    Katia Marrocco

    Full Text Available Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome is a master ubiquitin protein ligase (E3 that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized.In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA. This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2 of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed.Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular-protein concentrations and homeostasis of DRB4.

  1. Cyclophilin B stimulates RNA synthesis by the HCV RNA dependent RNA polymerase.

    Science.gov (United States)

    Heck, Julie A; Meng, Xiao; Frick, David N

    2009-04-01

    Cyclophilins are cellular peptidyl isomerases that have been implicated in regulating hepatitis C virus (HCV) replication. Cyclophilin B (CypB) is a target of cyclosporin A (CsA), an immunosuppressive drug recently shown to suppress HCV replication in cell culture. Watashi et al. recently demonstrated that CypB is important for efficient HCV replication, and proposed that it mediates the anti-HCV effects of CsA through an interaction with NS5B [Watashi K, Ishii N, Hijikata M, Inoue D, Murata T, Miyanari Y, et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell 2005;19:111-22]. We examined the effects of purified CypB proteins on the enzymatic activity of NS5B. Recombinant CypB purified from insect cells directly stimulated NS5B-catalyzed RNA synthesis. CypB increased RNA synthesis by NS5B derived from genotype 1a, 1b, and 2a HCV strains. Stimulation appears to arise from an increase in productive RNA binding. NS5B residue Pro540, a previously proposed target of CypB peptidyl-prolyl isomerase activity, is not required for stimulation of RNA synthesis.

  2. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance

    Science.gov (United States)

    Kempf, Brian J.; Peersen, Olve B.

    2016-01-01

    ABSTRACT RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3Dpol, as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3Dpol may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3Dpol-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3Dpol decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3Dpol increased the frequency of recombination. The 3Dpol Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3Dpol Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. IMPORTANCE Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a

  3. Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes.

    Science.gov (United States)

    Sittka, Alexandra; Sharma, Cynthia M; Rolle, Katarzyna; Vogel, Jörg

    2009-01-01

    The bacterial Sm-like protein, Hfq, is a key factor for the stability and function of small non-coding RNAs (sRNAs) in Escherichia coli. Homologues of this protein have been predicted in many distantly related organisms yet their functional conservation as sRNA-binding proteins has not entirely been clear. To address this, we expressed in Salmonella the Hfq proteins of two eubacteria (Neisseria meningitides, Aquifex aeolicus) and an archaeon (Methanocaldococcus jannaschii), and analyzed the associated RNA by deep sequencing. This in vivo approach identified endogenous Salmonella sRNAs as a major target of the foreign Hfq proteins. New Salmonella sRNA species were also identified, and some of these accumulated specifically in the presence of a foreign Hfq protein. In addition, we observed specific RNA processing defects, e.g., suppression of precursor processing of SraH sRNA by Methanocaldococcus Hfq, or aberrant accumulation of extracytoplasmic target mRNAs of the Salmonella GcvB, MicA or RybB sRNAs. Taken together, our study provides evidence of a conserved inherent sRNA-binding property of Hfq, which may facilitate the lateral transmission of regulatory sRNAs among distantly related species. It also suggests that the expression of heterologous RNA-binding proteins combined with deep sequencing analysis of RNA ligands can be used as a molecular tool to dissect individual steps of RNA metabolism in vivo.

  4. The host-dependent interaction of alpha-importins with influenza PB2 polymerase subunit is required for virus RNA replication.

    Directory of Open Access Journals (Sweden)

    Patricia Resa-Infante

    Full Text Available The influenza virus polymerase is formed by the PB1, PB2 and PA subunits and is required for virus transcription and replication in the nucleus of infected cells. As PB2 is a relevant host-range determinant we expressed a TAP-tagged PB2 in human cells and isolated intracellular complexes. Alpha-importin was identified as a PB2-associated factor by proteomic analyses. To study the relevance of this interaction for virus replication we mutated the PB2 NLS and analysed the phenotype of mutant subunits, polymerase complexes and RNPs. While mutant PB2 proteins showed reduced nuclear accumulation, they formed polymerase complexes normally when co expressed with PB1 and PA. However, mutant RNPs generated with a viral CAT replicon showed up to hundred-fold reduced CAT accumulation. Rescue of nuclear localisation of mutant PB2 by insertion of an additional SV40 TAg-derived NLS did not revert the mutant phenotype of RNPs. Furthermore, determination of recombinant RNP accumulation in vivo indicated that PB2 NLS mutations drastically reduced virus RNA replication. These results indicate that, above and beyond its role in nuclear accumulation, PB2 interaction with alpha-importins is required for virus RNA replication. To ascertain whether PB2-alpha-importin binding could contribute to the adaptation of H5N1 avian viruses to man, their association in vivo was determined. Human alpha importin isoforms associated efficiently to PB2 protein of an H3N2 human virus but bound to diminished and variable extents to PB2 from H5N1 avian or human strains, suggesting that the function of alpha importin during RNA replication is important for the adaptation of avian viruses to the human host.

  5. Nuclear accumulation of SHIP1 mutants derived from AML patients leads to increased proliferation of leukemic cells.

    Science.gov (United States)

    Nalaskowski, Marcus M; Ehm, Patrick; Rehbach, Christoph; Nelson, Nina; Täger, Maike; Modest, Kathrin; Jücker, Manfred

    2018-05-28

    The inositol 5-phosphatase SHIP1 acts as negative regulator of intracellular signaling in myeloid cells and is a tumor suppressor in myeloid leukemogenesis. After relocalization from the cytoplasm to the plasma membrane SHIP1 terminates PI3-kinase mediated signaling processes. Furthermore, SHIP1 is also found in distinct puncta in the cell nucleus and nuclear SHIP1 has a pro-proliferative function. Here we report the identification of five nuclear export signals (NESs) which regulate together with the two known nuclear localization signals (NLSs) the nucleocytoplasmic shuttling of SHIP1. Mutation of NLSs reduced the nuclear import and mutation of NESs decreased the nuclear export of SHIP1 in the acute myeloid leukemia (AML) cell line UKE-1. Interestingly, four SHIP1 mutants (K210R, N508D, V684E, Q1153L) derived from AML patients showed a nuclear accumulation after expression in UKE-1 cells. In addition, overexpression of the AML patient-derived mutation N508D caused an increased proliferation rate of UKE-1 cells in comparison to wild type SHIP1. Furthermore, we identified serine and tyrosine phosphorylation as a molecular mechanism for the regulation of nucleocytoplasmic shuttling of SHIP1 where tyrosine phosphorylation of distinct residues i.e. Y864, Y914, Y1021 reduces nuclear localization, whereas serine phosphorylation at S933 enhances nuclear localization of SHIP1. In summary, our data further implicate nuclear SHIP1 in cellular signaling and suggest that enhanced accumulation of SHIP1 mutants in the nucleus may be a contributory factor of abnormally high proliferation of AML cells. Copyright © 2017. Published by Elsevier Inc.

  6. Personalized RNA Medicine for Pancreatic Cancer.

    Science.gov (United States)

    Gilles, Maud-Emmanuelle; Hao, Liangliang; Huang, Ling; Rupaimoole, Rajesha; Lopez-Casas, Pedro P; Pulver, Emilia; Jeong, Jong Cheol; Muthuswamy, Senthil K; Hidalgo, Manuel; Bhatia, Sangeeta N; Slack, Frank J

    2018-04-01

    Purpose: Since drug responses vary between patients, it is crucial to develop pre-clinical or co-clinical strategies that forecast patient response. In this study, we tested whether RNA-based therapeutics were suitable for personalized medicine by using patient-derived-organoid (PDO) and patient-derived-xenograft (PDX) models. Experimental Design: We performed microRNA (miRNA) profiling of PDX samples to determine the status of miRNA deregulation in individual pancreatic ductal adenocarcinoma (PDAC) patients. To deliver personalized RNA-based-therapy targeting oncogenic miRNAs that form part of this common PDAC miRNA over-expression signature, we packaged antimiR oligonucleotides against one of these miRNAs in tumor-penetrating nanocomplexes (TPN) targeting cell surface proteins on PDAC tumors. Results: As a validation for our pre-clinical strategy, the therapeutic potential of one of our nano-drugs, TPN-21, was first shown to decrease tumor cell growth and survival in PDO avatars for individual patients, then in their PDX avatars. Conclusions: This general approach appears suitable for co-clinical validation of personalized RNA medicine and paves the way to prospectively identify patients with eligible miRNA profiles for personalized RNA-based therapy. Clin Cancer Res; 24(7); 1734-47. ©2018 AACR . ©2018 American Association for Cancer Research.

  7. Henry's law and accumulation of weak source for crust-derived helium: A case study of Weihe Basin, China

    Directory of Open Access Journals (Sweden)

    Yuhong Li

    2017-12-01

    Full Text Available Crust-derived helium is generated from the radioactive decay of uranium, thorium and other radioactive elements in geological bodies. Compared with conventional natural gas, helium is a typical weak source gas as a result of extremely slow generation rate and absence of helium-generating peak. It is associated with methane or carbon dioxide reservoirs frequently and related to groundwater closely. Helium can meet the industry standard with 0.1% in volume fraction. In order to study the accumulation mechanism of helium, the previous research on Henry's coefficient and solubility of helium, nitrogen and methane are summarized and the key roles of Henry's Law in the helium migration, accumulation and preservation are discussed by simulating calculation taking Weihe Basin as an example. According to the Law, the gas solubility in dilute solution is controlled by the gas partial pressure and the Henry's coefficient. Compared with the carrier gases, the Henry's constant of helium is high, with striking difference at low and high temperature. In addition, the helium partial pressure is greatly different in helium source rocks and gas reservoirs, resulting in the great differences of helium solubility in the two places. The accumulation progresses are as follows. Firstly, helium can dissolve into water and migrate out of helium source rocks due to the high helium solubility, which is caused by high helium partial pressure and high temperature in source rock. Secondly, when dissolved helium is transported to the shallow gas reservoir, it is prone to be out of solution and into reservoir due to the extremely low partial pressure and low temperature. Meanwhile part of carrier gases dissolves into water, as if helium is “replaced” out. Furthermore, the low concentration funnel of dissolved helium is formed near the gas reservoir, then other dissolved helium continues to migrate towards the gas reservoir, which greatly improves the helium accumulation

  8. Abscisic Acid accumulates at positive turgor potential in excised soybean seedling growing zones.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1991-04-01

    Abscisic acid (ABA) accumulated in soybean (Glycine max [L.] Merr. cv Williams) hypocotyl elongating regions when seedlings were transferred to low water potential vermiculite (Psi = -0.3 megapascals) even though positive turgor is retained in this tissue. Accumulation of ABA in growing zones could occur from de novo biosynthesis within this tissue or transport from adjacent nongrowing zones. Both growing and nongrowing hypocotyl and root tissues accumulated significant levels of ABA when excised and dehydrated to reduce turgor. Surprisingly, excised growing zones (which experienced no water loss) also accumulated ABA when incubated in darkness for 4 hours at 100% relative humidity and 29 degrees C. Induction of ABA accumulation in the excised elongating region of the hypocotyl was not caused by disruption of root pressure or wounding. While excision of hypocotyl elongating regions induced ABA accumulation, no change in either extensin or p33 mRNA levels was observed. Accumulation of extensin or p33 mRNA required more severe wounding. This suggests that ABA is not involved in the response of these genes in wounded tissue and that wound signals are not causing ABA accumulation in excised tissue. Accumulation of ABA in excised elongating regions was correlated with growth inhibition and a decline in turgor to the yield threshold (Psi;(p) = 0.37 megapascals; R Matyssek, S Maruyama, JS Boyer [1988] Plant Physiol 86: 1163-1167). Inhibiting hypocotyl growth by transferring seedlings to lower temperatures or light did not cause ABA accumulation. We conclude that induction of ABA accumulation in growing zones is more sensitive to changes in turgor than the induction which occurs in mature tissues.

  9. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA

    Science.gov (United States)

    Zhu, Yanglong; Stribinskis, Vilius; Ramos, Kenneth S.; Li, Yong

    2006-01-01

    RNase MRP is a eukaryote-specific endoribonuclease that generates RNA primers for mitochondrial DNA replication and processes precursor rRNA. RNase P is a ubiquitous endoribonuclease that cleaves precursor tRNA transcripts to produce their mature 5′ termini. We found extensive sequence homology of catalytic domains and specificity domains between their RNA subunits in many organisms. In Candida glabrata, the internal loop of helix P3 is 100% conserved between MRP and P RNAs. The helix P8 of MRP RNA from microsporidia Encephalitozoon cuniculi is identical to that of P RNA. Sequence homology can be widely spread over the whole molecule of MRP RNA and P RNA, such as those from Dictyostelium discoideum. These conserved nucleotides between the MRP and P RNAs strongly support the hypothesis that the MRP RNA is derived from the P RNA molecule in early eukaryote evolution. PMID:16540690

  10. RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database

    Directory of Open Access Journals (Sweden)

    Andronescu Mirela

    2008-08-01

    Full Text Available Abstract Background The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures. Results In this paper we describe RNA STRAND – the RNA secondary STRucture and statistical ANalysis Database, a curated database containing known secondary structures of any type and organism. Our new database provides a wide collection of known RNA secondary structures drawn from public databases, searchable and downloadable in a common format. Comprehensive statistical information on the secondary structures in our database is provided using the RNA Secondary Structure Analyser, a new tool we have developed to analyse RNA secondary structures. The information thus obtained is valuable for understanding to which extent and with which probability certain structural motifs can appear. We outline several ways in which the data provided in RNA STRAND can facilitate research on RNA structure, including the improvement of RNA energy models and evaluation of secondary structure prediction programs. In order to keep up-to-date with new RNA secondary structure experiments, we offer the necessary tools to add solved RNA secondary structures to our database and invite researchers to contribute to RNA STRAND. Conclusion RNA STRAND is a carefully assembled database of trusted RNA secondary structures, with easy on-line tools for searching, analyzing and downloading user selected entries, and is publicly available at http://www.rnasoft.ca/strand.

  11. MiR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells.

    Science.gov (United States)

    Lin, Xian-Zi; Luo, Jun; Zhang, Li-Ping; Wang, Wei; Shi, Heng-Bo; Zhu, Jiang-Jiang

    2013-05-25

    MicroRNAs (miRNAs), a well-defined group of small RNAs containing about 22 nucleotides, participate in various biological metabolic processes. miR-27a is a miRNA that is known to regulate fat synthesis and differentiation in preadipocyte cells. However, little is known regarding the role that miR-27a plays in regulating goat milk fat synthesis. In this study, we determined the miR-27a expression profile in goat mammary gland and found that miR-27a expression was correlated with the lactation cycle. Additionally, prolactin promoted miR-27a expression in goat mammary gland epithelial cells. Further functional analysis showed that over-expression of miR-27a down-regulated triglyceride accumulation and decreased the ratio of unsaturated/saturated fatty acid in mammary gland epithelial cells. miR-27a also significantly affected mRNA expression related to milk fat metabolism. Specifically, over-expression of miR-27a reduced gene mRNA expression associated with triglyceride synthesis by suppressing PPARγ protein levels. This study provides the first experimental evidence that miR-27a regulates triglyceride synthesis in goat mammary gland epithelial cells and improves our understanding about the importance of miRNAs in milk fat synthesis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  12. Formation of RNA Granule-Derived Capsid Assembly Intermediates Appears To Be Conserved between Human Immunodeficiency Virus Type 1 and the Nonprimate Lentivirus Feline Immunodeficiency Virus.

    Science.gov (United States)

    Reed, Jonathan C; Westergreen, Nick; Barajas, Brook C; Ressler, Dylan T B; Phuong, Daryl J; Swain, John V; Lingappa, Vishwanath R; Lingappa, Jaisri R

    2018-05-01

    During immature capsid assembly in cells, human immunodeficiency virus type 1 (HIV-1) Gag co-opts a host RNA granule, forming a pathway of intracellular assembly intermediates containing host components, including two cellular facilitators of assembly, ABCE1 and DDX6. A similar assembly pathway has been observed for other primate lentiviruses. Here we asked whether feline immunodeficiency virus (FIV), a nonprimate lentivirus, also forms RNA granule-derived capsid assembly intermediates. First, we showed that the released FIV immature capsid and a large FIV Gag-containing intracellular complex are unstable during analysis, unlike for HIV-1. We identified harvest conditions, including in situ cross-linking, that overcame this problem, revealing a series of FIV Gag-containing complexes corresponding in size to HIV-1 assembly intermediates. Previously, we showed that assembly-defective HIV-1 Gag mutants are arrested at specific assembly intermediates; here we identified four assembly-defective FIV Gag mutants, including three not previously studied, and demonstrated that they appear to be arrested at the same intermediate as the cognate HIV-1 mutants. Further evidence that these FIV Gag-containing complexes correspond to assembly intermediates came from coimmunoprecipitations demonstrating that endogenous ABCE1 and the RNA granule protein DDX6 are associated with FIV Gag, as shown previously for HIV-1 Gag, but are not associated with a ribosomal protein, at steady state. Additionally, we showed that FIV Gag associates with another RNA granule protein, DCP2. Finally, we validated the FIV Gag-ABCE1 and FIV Gag-DCP2 interactions with proximity ligation assays demonstrating colocalization in situ Together, these data support a model in which primate and nonprimate lentiviruses form intracellular capsid assembly intermediates derived from nontranslating host RNA granules. IMPORTANCE Like HIV-1 Gag, FIV Gag assembles into immature capsids; however, it is not known whether

  13. RNA content in the nucleolus alters p53 acetylation via MYBBP1A

    Science.gov (United States)

    Kuroda, Takao; Murayama, Akiko; Katagiri, Naohiro; Ohta, Yu-mi; Fujita, Etsuko; Masumoto, Hiroshi; Ema, Masatsugu; Takahashi, Satoru; Kimura, Keiji; Yanagisawa, Junn

    2011-01-01

    A number of external and internal insults disrupt nucleolar structure, and the resulting nucleolar stress stabilizes and activates p53. We show here that nucleolar disruption induces acetylation and accumulation of p53 without phosphorylation. We identified three nucleolar proteins, MYBBP1A, RPL5, and RPL11, involved in p53 acetylation and accumulation. MYBBP1A was tethered to the nucleolus through nucleolar RNA. When rRNA transcription was suppressed by nucleolar stress, MYBBP1A translocated to the nucleoplasm and facilitated p53–p300 interaction to enhance p53 acetylation. We also found that RPL5 and RPL11 were required for rRNA export from the nucleolus. Depletion of RPL5 or RPL11 blocked rRNA export and counteracted reduction of nucleolar RNA levels caused by inhibition of rRNA transcription. As a result, RPL5 or RPL11 depletion inhibited MYBBP1A translocation and p53 activation. Our observations indicated that a dynamic equilibrium between RNA generation and export regulated nucleolar RNA content. Perturbation of this balance by nucleolar stress altered the nucleolar RNA content and modulated p53 activity. PMID:21297583

  14. N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit.

    Science.gov (United States)

    Borel, C; Audran, C; Frey, A; Marion-Poll, A; Tardieu, F; Simonneau, T

    2001-03-01

    A series of transgenic lines of Nicotiana plumbaginifolia with modified expression of zeaxanthin epoxidase gene (ZEP) provided contrasting ABA accumulation in roots and xylem sap. For mild water stress, concentration of ABA in the xylem sap ([ABA](xylem)) was clearly lower in plants underexpressing ZEP mRNA (complemented mutants and antisense transgenic lines) than in wild-type. In well-watered conditions, all lines presented similar [ABA](xylem) and similar ABA accumulation rates in detached roots. Plants could, therefore, be grown under normal light intensities and evaporative demand. Both ZEP mRNA abundance and ABA accumulation rate in roots increased with water deficit in all transgenic lines, except in complemented aba2-s1 mutants in which the ZEP gene was controlled by a constitutive promoter which does not respond to water deficit. These lines presented no change in root ABA content either with time or dehydration. The increase in ZEP mRNA abundance in roots with decreasing RWC was more pronounced in detached roots than in whole plants, suggesting a difference in mechanism. In all transgenic lines, a linear relationship was observed between predawn leaf water potential and [ABA](xylem), which could be reproduced in several experiments in the greenhouse and in the growth chamber. It is therefore possible to represent the effect of the transformation by a single parameter, thereby allowing the use of a quantitative approach to assist understanding of the behaviour of transgenic lines.

  15. Alfalfa dwarf cytorhabdovirus P protein is a local and systemic RNA silencing supressor which inhibits programmed RISC activity and prevents transitive amplification of RNA silencing.

    Science.gov (United States)

    Bejerman, Nicolás; Mann, Krin S; Dietzgen, Ralf G

    2016-09-15

    Plants employ RNA silencing as an innate defense mechanism against viruses. As a counter-defense, plant viruses have evolved to express RNA silencing suppressor proteins (RSS), which target one or more steps of the silencing pathway. In this study, we show that the phosphoprotein (P) encoded by the negative-sense RNA virus alfalfa dwarf virus (ADV), a species of the genus Cytorhabdovirus, family Rhabdoviridae, is a suppressor of RNA silencing. ADV P has a relatively weak local RSS activity, and does not prevent siRNA accumulation. On the other hand, ADV P strongly suppresses systemic RNA silencing, but does not interfere with the short-distance spread of silencing, which is consistent with its lack of inhibition of siRNA accumulation. The mechanism of suppression appears to involve ADV P binding to RNA-induced silencing complex proteins AGO1 and AGO4 as shown in protein-protein interaction assays when ectopically expressed. In planta, we demonstrate that ADV P likely functions by inhibiting miRNA-guided AGO1 cleavage and prevents transitive amplification by repressing the production of secondary siRNAs. As recently described for lettuce necrotic yellows cytorhabdovirus P, but in contrast to other viral RSS known to disrupt AGO activity, ADV P sequence does not contain any recognizable GW/WG or F-box motifs, which suggests that cytorhabdovirus P proteins may use alternative motifs to bind to AGO proteins. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  16. Effect of electroacupuncture on brain-derived neurotrophic factor mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Zhao, Jianxin; Xu, Huazhou; Tian, Yuanxiang; Hu, Manxiang; Xiao, Hongling

    2013-04-01

    This work aims to observe the effects of electroacupuncture on brain-derived neurotrophic factor (BDNF) mRNA expression in mouse hippocampus following cerebral ischemia-reperfusion injury. The models of mouse cerebral ischemia-reperfusion injury were established. A total of 96 healthy mice were randomly assigned into 4 groups, namely, the sham surgery, model, model + electroacupuncture, and mode + hydergine groups. Mice in the model + electroacupuncture group were treated through electroacupuncture at the Shenshu (BL 23), Geshu (BL 17), and Baihui (GV 20) acupoints. Mice in the model+hydergine group were intragastrically administered with hydergine (0.77 mg/kg(-1) x day(-1)). The levels of BDNF mRNA expressions in the hippocampus were ana lyzed through a semi-quantitative reverse transcription-polymerase chain reaction assay on days 1 and 7 after the surgeries. BDNF mRNA expressions in the mouse hippocampus of the model group on days 1 and 7 after the surgery were higher than those of the sham surgery group (both P electroacupuncture treatment, BDNF mRNA expression in the mouse hippocampus of the model + electroacupuncture group was significantly elevated compared with the model group (both P 0.05). Electroacupuncture treatment enhances endogenous BDNF expression, which may improve the survival environment for intracerebral neurons and inhibit the apoptosis of hippocampal cells.

  17. Modulation of microRNA activity by semi-microRNAs (smiRNAs

    Directory of Open Access Journals (Sweden)

    Isabelle ePlante

    2012-06-01

    Full Text Available The ribonuclease Dicer plays a central role in the microRNA pathway by catalyzing the formation of 19 to 24-nucleotide (nt long microRNAs. Subsequently incorporated into Ago2 effector complexes, microRNAs are known to regulate messenger RNA (mRNA translation. Whether shorter RNA species derived from microRNAs exist and play a role in mRNA regulation remains unknown. Here, we report the serendipitous discovery of a 12-nt long RNA species corresponding to the 5’ region of the microRNA let-7, and tentatively termed semi-microRNA, or smiRNA. Using a smiRNA derived from the precursor of miR-223 as a model, we show that 12-nt long smiRNA species are devoid of any direct mRNA regulatory activity, as assessed in a reporter gene activity assay in transfected cultured human cells. However, smiR-223 was found to modulate the ability of the microRNA from which it derives to mediate translational repression or cleavage of reporter mRNAs. Our findings suggest that smiRNAs may be generated along the microRNA pathway and participate to the control of gene expression by regulating the activity of the related full-length mature microRNA in vivo.

  18. Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Ploug, Thorkil; Størling, Joachim

    2014-01-01

    Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design. In t...... accumulation and attenuates peripheral insulin resistance in obese mice........ In this study, we investigated whether expression of a human apoB transgene affects triglyceride accumulation and insulin sensitivity in skeletal muscle in fat fed obese mice. Results. Expression of apoB and MTP mRNA and the human apoB transgene was seen in skeletal muscle of the transgene mice. Human apo......Abstract Background. Lipid accumulation in skeletal muscle is associated with impaired insulin sensitivity in type 2 diabetes. In cardiac myocytes, lipoprotein secretion controlled by apolipoproteinB (apoB) and microsomal triglyceride transfer protein (MTP) affects lipid homeostasis. Design...

  19. Accumulation and potential dissolution of Chernobyl-derived radionuclides in river bottom sediment

    International Nuclear Information System (INIS)

    Sanada, Yukihisa; Matsunaga, Takeshi; Yanase, Nobuyuki; Nagao, Seiya; Amano, Hikaru; Takada, Hideshige; Tkachenko, Yuri

    2002-01-01

    Areas contaminated with radionuclides from the Chernobyl nuclear accident have been identified in Pripyat River near the Chernobyl Nuclear Power Plant. The river bottom sediment cores contained 137 Cs (10 5 - 10 6 Bq/m 2 ) within 0-30 cm depth, whose concentration is comparable to that in the ground soil in the vicinity of the nuclear power plant (the Exclusion Zone). The sediment cores also accumulated 90 Sr (10 5 Bq/m 2 ), 239,240 Pu (10 4 Bq/m 2 ) and 241 Am (10 4 Bq/m 2 ) derived from the accident. Several nuclear fuel particles have been preserved at 20-25 cm depth that is the peak area of the concentrations of the radionuclides. Th ese inventories in the bottom sediments were compared with those of the released radionuclides during the accident. An analysis using a selective sequential extraction technique was applied for the radionuclides in the sediments. Results suggest that the possibility of release of 137 Cs and 239,240 Pu from the bottom sediment was low compared with 90 Sr. The potential dissolution and subsequent transport of 90 Sr from the river bottom sediment should be taken into account with respect to the long-term radiological influence on the aquatic environment

  20. A long natural-antisense RNA is accumulated in the conidia of Aspergillus oryzae.

    Science.gov (United States)

    Tsujii, Masaru; Okuda, Satoshi; Ishi, Kazutomo; Madokoro, Kana; Takeuchi, Michio; Yamagata, Youhei

    2016-01-01

    Analysis of expressed sequence tag libraries from various culture conditions revealed the existence of conidia-specific transcripts assembled to putative conidiation-specific reductase gene (csrA) in Aspergillus oryzae. However, the all transcripts were transcribed with opposite direction to the gene csrA. The sequence analysis of the transcript revealed that the RNA overlapped mRNA of csrA with 3'-end, and did not code protein longer than 60 amino acid residues. We designated the transcript Conidia Specific Long Natural-antisense RNA (CSLNR). The real-time PCR analysis demonstrated that the CSLNR is conidia-specific transcript, which cannot be transcribed in the absence of brlA, and the amount of CSLNR was much more than that of the transcript from csrA in conidia. Furthermore, the csrA deletion, also lacking coding region of CSLNR in A. oryzae reduced the number of conidia. Overexpression of CsrA demonstrated the inhibition of growth and conidiation, while CSLNR did not affect conidiation.

  1. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Amiodarone increases the accumulation of DEA in a human alveolar epithelium-derived cell line.

    Science.gov (United States)

    Seki, Satoru; Itagaki, Shirou; Kobayashi, Masaki; Hirano, Takeshi; Iseki, Ken

    2008-07-01

    Amiodarone (AMD)-induced pulmonary toxicity (AIPT) is the most life-threatening side-effect of AMD treatment. N-Monodesethylamiodarone (DEA), an active metabolite of AMD, also exhibits cytotoxicity and tends to accumulate in the lung more intensively than AMD. In this study, we characterized the mechanism of DEA accumulation using A549 cells as a model of the alveolar epithelium. Typical ATP-depletion compounds caused an approximately 30% increase in the accumulation of DEA in A549 cells, although these effects were less than those in Caco-2 cells. Triiodothyronine (T(3)), which exhibited an inhibitory effect on DEA efflux in Caco-2 cells, did not affect the accumulation of DEA in A549 cells. On the other hand, 100 microM AMD caused an approximately 200% increase in DEA content in A549 cells, although AMD accumulation was not affected by 100 microM DEA. Since the reducing effect of AMD on cellular ATP levels and that of FCCP were similar, the mechanism by which DEA accumulation is increased by AMD might be different from the ATP-dependent DEA efflux mechanism. The decrease in cell viability by DEA in the presence of AMD (IC(50) value of DEA for A549 cell viability: 25.4+/-2.4 microM) was more pronounced than that by DEA alone (IC(50) value: 11.5+/-3.0 microM). This further DEA accumulation by AMD might be a factor responsible for the greater accumulation of DEA than that of AMD in the lung in long-term AMD-treated patients.

  3. Abscisic Acid Accumulates at Positive Turgor Potential in Excised Soybean Seedling Growing Zones 1

    Science.gov (United States)

    Creelman, Robert A.; Mullet, John E.

    1991-01-01

    Abscisic acid (ABA) accumulated in soybean (Glycine max [L.] Merr. cv Williams) hypocotyl elongating regions when seedlings were transferred to low water potential vermiculite (Ψ = −0.3 megapascals) even though positive turgor is retained in this tissue. Accumulation of ABA in growing zones could occur from de novo biosynthesis within this tissue or transport from adjacent nongrowing zones. Both growing and nongrowing hypocotyl and root tissues accumulated significant levels of ABA when excised and dehydrated to reduce turgor. Surprisingly, excised growing zones (which experienced no water loss) also accumulated ABA when incubated in darkness for 4 hours at 100% relative humidity and 29°C. Induction of ABA accumulation in the excised elongating region of the hypocotyl was not caused by disruption of root pressure or wounding. While excision of hypocotyl elongating regions induced ABA accumulation, no change in either extensin or p33 mRNA levels was observed. Accumulation of extensin or p33 mRNA required more severe wounding. This suggests that ABA is not involved in the response of these genes in wounded tissue and that wound signals are not causing ABA accumulation in excised tissue. Accumulation of ABA in excised elongating regions was correlated with growth inhibition and a decline in turgor to the yield threshold (Ψ;p = 0.37 megapascals; R Matyssek, S Maruyama, JS Boyer [1988] Plant Physiol 86: 1163-1167). Inhibiting hypocotyl growth by transferring seedlings to lower temperatures or light did not cause ABA accumulation. We conclude that induction of ABA accumulation in growing zones is more sensitive to changes in turgor than the induction which occurs in mature tissues. Images Figure 2 PMID:16668113

  4. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    International Nuclear Information System (INIS)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E.; Eghbalnia, Hamid R.

    2012-01-01

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ( 1 H– 15 N 2D HMQC) and proton–proton nuclear Overhauser enhancement spectroscopy ( 1 H– 1 H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a

  5. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E. [National Magnetic Resonance Facility at Madison (United States); Eghbalnia, Hamid R., E-mail: eghbalhd@uc.edu [University of Cincinnati, Department of Molecular and Cellular Physiology (United States)

    2012-04-15

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ({sup 1}H-{sup 15}N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ({sup 1}H-{sup 1}H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino

  6. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression.

    Science.gov (United States)

    Creelman, R A; Tierney, M L; Mullet, J E

    1992-06-01

    Jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are plant lipid derivatives that resemble mammalian eicosanoids in structure and biosynthesis. These compounds are proposed to play a role in plant wound and pathogen responses. Here we report the quantitative determination of JA/MeJA in planta by a procedure based on the use of [13C,2H3]MeJA as an internal standard. Wounded soybean (Glycine max [L] Merr. cv. Williams) stems rapidly accumulated MeJA and JA. Addition of MeJA to soybean suspension cultures also increased mRNA levels for three wound-responsive genes (chalcone synthase, vegetative storage protein, and proline-rich cell wall protein) suggesting a role for MeJA/JA in the mediation of several changes in gene expression associated with the plants' response to wounding.

  7. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are curre......Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies...

  8. DCL2- and RDR6-dependent transitive silencing of SMXL4 and SMXL5 in Arabidopsis dcl4 mutants causes defective phloem transport and carbohydrate over-accumulation.

    Science.gov (United States)

    Wu, Yu-Yi; Hou, Bo-Han; Lee, Wen-Chi; Lu, Shin-Hua; Yang, Chen-Jui; Vaucheret, Hervé; Chen, Ho-Ming

    2017-06-01

    DICER-LIKE (DCL) enzymes process double-stranded RNA into small RNAs that act as regulators of gene expression. Arabidopsis DCL4 and DCL2 each allow the post-transcriptional gene silencing (PTGS) of viruses and transgenes, but primary PTGS-prone DCL4 outcompetes transitive PTGS-prone DCL2 in wild-type plants. This hierarchy likely prevents DCL2 having any detrimental effects on endogenous genes. Indeed, dcl4 mutants exhibit developmental defects and increased sensitivity to genotoxic stress. In this study, the mechanism underlying dcl4 defects was investigated using genetic, biochemical and high-throughput sequencing approaches. We show that the purple phenotype of dcl4 leaves correlates with carbohydrate over-accumulation and defective phloem transport, and depends on the activity of SUPPRESSOR OF GENE SILENCING 3, RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) and DCL2. This phenotype correlates with the downregulation of two genes expressed in the apex and the vasculature, SMAX1-LIKE 4 (SMXL4) and SMXL5, and the accumulation of DCL2- and RDR6-dependent small interfering RNAs derived from these two genes. Supporting a causal effect, smxl4 smxl5 double mutants exhibit leaf pigmentation, enhanced starch accumulation and defective phloem transport, similar to dcl4 plants. Overall, this study elucidates the detrimental action of DCL2 when DCL4 is absent, and indicates that DCL4 outcompeting DCL2 in wild-type plants is crucial to prevent the degradation of endogenous transcripts by DCL2- and RDR6-dependent transitive PTGS. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. Bone Marrow-Derived Cell Accumulation in the Spinal Cord Is Independent of Peripheral Mobilization in a Mouse Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Peake, Kyle; Manning, John; Lewis, Coral-Ann; Tran, Kevin; Rossi, Fabio; Krieger, Charles

    2017-01-01

    Bone marrow-derived cells (BMDCs) are capable of migrating across the blood–brain barrier (BBB) and accumulating in the central nervous system (CNS) when transplanted into recipients conditioned with whole-body irradiation or chemotherapy. We used the chemotherapeutic agents busulfan and treosulfan to condition recipient mice for transplantation with bone marrow (BM) cells isolated from donor mice ubiquitously expressing green fluorescent protein. We attempted to increase the accumulation of BMDCs in the CNS by mobilization of BMDCs using either, or both, granulocyte colony-stimulating factor (GCSF) or plerixafor (AMD3100). We also used several concentrations of busulfan. We hypothesized that higher concentrations of busulfan and BMDC mobilization would increase numbers of GFP+ cells in the CNS. The doses of busulfan employed (60–125 mg/kg) all resulted in high levels of sustained chimerism (>85% 1 year post-transplant) in both the blood and BM of wild-type (WT) mice and an amyotrophic lateral sclerosis (ALS) mouse model. Moreover, cells accumulated within the CNS in a dose-, time-, and disease-dependent manner. Conditioning with the hydrophilic busulfan analog treosulfan, which is unable to cross the BBB efficiently, also resulted in a high degree of BM chimerism. However, few GFP+ BMDCs were found within the CNS of WT or ALS mice of treosulfan-conditioned mice. Mobilization of BMDCs into the circulation using GCSF and/or AMD3100 did not lead to increased accumulation of GFP+ BMDCs within the CNS of WT or ALS mice. Weekly analysis of BMDC accumulation revealed that BMDCs accumulated more rapidly and to a greater extent in the CNS of ALS mice conditioned with a high dose (125 mg/kg) of busulfan compared to a lower dose (80 mg/kg). The number of GFP+ BMDCs in the CNS labeling with the proliferation marker Ki67 increased in parallel with BMDC accumulation within the CNS. Our results indicate that establishment of high levels of blood and BM chimerism

  10. Hybridization Properties of RNA Containing 8-Methoxyguanosine and 8-Benzyloxyguanosine.

    Directory of Open Access Journals (Sweden)

    Daniel Sylwester Baranowski

    Full Text Available Modified nucleobase analogues can serve as powerful tools for changing physicochemical and biological properties of DNA or RNA. Guanosine derivatives containing bulky substituents at 8 position are known to adopt syn conformation of N-glycoside bond. On the contrary, in RNA the anti conformation is predominant in Watson-Crick base pairing. In this paper two 8-substituted guanosine derivatives, 8-methoxyguanosine and 8-benzyloxyguanosine, were synthesized and incorporated into oligoribonucleotides to investigate their influence on the thermodynamic stability of RNA duplexes. The methoxy and benzyloxy substituents are electron-donating groups, decreasing the rate of depurination in the monomers, as confirmed by N-glycoside bond stability assessments. Thermodynamic stability studies indicated that substitution of guanosine by 8-methoxy- or 8-benzyloxyguanosine significantly decreased the thermodynamic stability of RNA duplexes. Moreover, the presence of 8-substituted guanosine derivatives decreased mismatch discrimination. Circular dichroism spectra of modified RNA duplexes exhibited patterns typical for A-RNA geometry.

  11. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    Science.gov (United States)

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  12. Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+ selection versus rRNA depletion.

    Science.gov (United States)

    Zhao, Shanrong; Zhang, Ying; Gamini, Ramya; Zhang, Baohong; von Schack, David

    2018-03-19

    To allow efficient transcript/gene detection, highly abundant ribosomal RNAs (rRNA) are generally removed from total RNA either by positive polyA+ selection or by rRNA depletion (negative selection) before sequencing. Comparisons between the two methods have been carried out by various groups, but the assessments have relied largely on non-clinical samples. In this study, we evaluated these two RNA sequencing approaches using human blood and colon tissue samples. Our analyses showed that rRNA depletion captured more unique transcriptome features, whereas polyA+ selection outperformed rRNA depletion with higher exonic coverage and better accuracy of gene quantification. For blood- and colon-derived RNAs, we found that 220% and 50% more reads, respectively, would have to be sequenced to achieve the same level of exonic coverage in the rRNA depletion method compared with the polyA+ selection method. Therefore, in most cases we strongly recommend polyA+ selection over rRNA depletion for gene quantification in clinical RNA sequencing. Our evaluation revealed that a small number of lncRNAs and small RNAs made up a large fraction of the reads in the rRNA depletion RNA sequencing data. Thus, we recommend that these RNAs are specifically depleted to improve the sequencing depth of the remaining RNAs.

  13. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp

    Science.gov (United States)

    Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli

    2016-01-01

    In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015

  14. MicroRNA silencing in primates: towards development of novel therapeutics

    DEFF Research Database (Denmark)

    Petri, Andreas; Lindow, Morten; Kauppinen, Sakari

    2009-01-01

    MicroRNAs (miRNA) comprise an abundant class of small noncoding RNAs that act as important posttranscriptional regulators of gene expression. Accumulating evidence showing that aberrantly expressed miRNAs play important roles in human cancers underscores them as potential targets for therapeutic ...... intervention. Recent reports on efficient miRNA silencing in rodents and nonhuman primates using high-affinity targeting by chemically modified antisense oligonucleotides highlight the utility of such compounds in the development of miRNA-based cancer therapeutics....

  15. Influence of conversion of penicillin G into a basic derivative on its accumulation and subcellular localization in cultured macrophages

    International Nuclear Information System (INIS)

    Renard, C.; Vanderhaeghe, H.J.; Claes, P.J.; Zenebergh, A.; Tulkens, P.M.

    1987-01-01

    beta-Lactam antibiotics do not accumulate in phagocytes, probably because of their acidic character. We therefore synthesized a basic derivative of penicillin G, namely, 14 C-labeled N-(3-dimethylamino-propyl)benzylpenicillinamide (ABP), and studied its uptake and subcellular localization in J774 macrophages compared with that of 14 C-labeled penicillin G. Whereas the intracellular concentration (Ci) of penicillin G remained lower than its extracellular concentration (Ce), ABP reached a Ci/Ce ratio of 4 to 5. Moreover, approximately 50% of intracellular ABP was found associated with lysosomes after isopycnic centrifugation of cell homogenates in isoosmotic Percoll or hyperosmotic sucrose gradients. The behavior of ABP was thus partly consistent with the model of de Duve et al., in which they described the intralysosomal accumulation of weak organic bases in lysosomes. Although ABP is microbiologically inactive, our results show that beta-lactam antibiotics can be driven into cells by appropriate modification. Further efforts therefore may be warranted in the design of active compounds or prodrugs that may prove useful in the chemotherapy of intracellular infections

  16. Iron accumulation with age, oxidative stress and functional decline.

    Directory of Open Access Journals (Sweden)

    Jinze Xu

    2008-08-01

    Full Text Available Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength in male Fischer 344 X Brown Norway rats fed ad libitum (AL or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects.

  17. A 3' UTR-derived non-coding RNA RibS increases expression of cfa and promotes biofilm formation of Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Zhao, Xin; Liu, Rui; Tang, Hao; Osei-Adjei, George; Xu, Shungao; Zhang, Ying; Huang, Xinxiang

    2018-05-08

    Bacterial non-coding RNAs (ncRNAs) are widely studied and found to play important roles in regulating various cellular processes. Recently, many ncRNAs have been discovered to be transcribed or processed from 3' untranslated regions (3' UTRs). Here we reported a novel 3' UTR-derived ncRNA, RibS, which could influence biofilm formation of Salmonella enterica serovar Typhi (S. Typhi). RibS was confirmed to be a ∼700 nt processed product produced by RNase III-catalyzed cleavage from the 3' UTR of riboflavin synthase subunit alpha mRNA, RibE. Overexpression of RibS increased the expression of the cyclopropane fatty acid synthase gene, cfa, which was located at the antisense strand. Biofilm formation of S. Typhi was enhanced by overexpressing RibS both in the wild type strain and cfa deletion mutant. Deletion of cfa attenuated biofilm formation of S. Typhi, while complementation of cfa partly restored the phenotype. Moreover, overexpressing cfa enhanced the biofilm formation of S. Typhi. In summary, RibS has been identified as a novel ncRNA derived from the 3' UTR of RibE that promotes biofilm formation of S. Typhi, and it appears to do so, at least in part, by increasing the expression of cfa. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Functional analysis of the cloverleaf-like structure in the 3' untranslated region of bamboo mosaic potexvirus RNA revealed dual roles in viral RNA replication and long distance movement

    International Nuclear Information System (INIS)

    Chen, I-H.; Meng Hsiao; Hsu, Y.-H.; Tsai, C.-H.

    2003-01-01

    The 3' untranslated region (UTR) of bamboo mosaic potexvirus (BaMV) RNA was identified to fold into a tertiary structure comprising a cloverleaf-like structure designated ABC domain followed by a major stem-loop D, which in turn is followed by a pseudoknot E and a poly(A) tail. The coat protein accumulation level of the mutant, BaMV40A/ΔABC, lacking ABC domain was just 15% that of wild-type when inoculated into protoplasts of Nicotiana benthamiana. This suggested that ABC domain might play an important role in BaMV RNA replication. To define the precise role of each of the three stem-loops of ABC domain in RNA replication, three mutants BaMV40B and C each lacking stem-loop A, B, and C, respectively, were created. Our results showed that accumulation of viral products of mutants BaMV40B and C were not as efficient as wild-type. On the contrary, level of accumulation of viral products of BaMVA was similar to that of wild-type in protoplasts and inoculated leaves. Interestingly, the accumulation of viral products was not as efficient as that of wild-type in systemic leaves, implying that stem-loop A is dispensable for replication, but signifies a role in systemic accumulation. Using UV cross-linking and competition experiments, it was demonstrated that the E. coli expressed helicase domain of BaMV ORF1 can preferentially interact with the ABC domain

  19. Amelioration of cirrhotic portal hypertension by targeted cyclooxygenase-1 siRNA delivery to liver sinusoidal endothelium with polyethylenimine grafted hyaluronic acid.

    Science.gov (United States)

    Lin, Liteng; Cai, Mingyue; Deng, Shaohui; Huang, Wensou; Huang, Jingjun; Huang, Xinghua; Huang, Mingsheng; Wang, Yong; Shuai, Xintao; Zhu, Kangshun

    2017-10-01

    Portal hypertension (PH), a leading cause of mortality in cirrhosis, lacks effective clinical therapeutic strategies. The increased thromboxane A 2 (TXA 2 ), derived primarily from the upregulation of cyclooxygenase-1 (COX-1) in cirrhotic liver sinusoidal endothelial cells (LSECs), is responsible for hepatic endothelial dysfunction and PH. Thus, blocking the COX-1 pathway in cirrhotic LSECs may benefit the treatment of PH. In this study, hyaluronate-graft-polyethylenimine (HA-PEI) was synthesized for the targeted delivery of COX-1 siRNA to LSECs. Compared to non-targeted PEI, HA-PEI mediated much more efficient siRNA delivery, which resulted in potent targeted gene silencing in LSECs. In vivo, HA-PEI notably increased the accumulation of siRNA along the sinusoidal lining of the liver, inhibited over-activation of the COX-1/TXA 2 pathway in LSECs, and successfully reduced portal pressure in cirrhotic mice. These results highlight the potential of HA-PEI complexed siRNA to serve as a LSECs-specific nanomedical system for effective gene therapy in PH. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco.

    Science.gov (United States)

    Alamillo, Josefa M; Saénz, Pilar; García, Juan Antonio

    2006-10-01

    Plum pox virus (PPV) is able to replicate in inoculated leaves of Nicotiana tabacum, but is defective in systemic movement in this host. However, PPV produces a systemic infection in transgenic tobacco expressing the silencing suppressor P1/HC-Pro from tobacco etch virus (TEV). In this work we show that PPV is able to move to upper non-inoculated leaves of tobacco plants expressing bacterial salicylate hydroxylase (NahG) that degrades salicylic acid (SA). Replication and accumulation of PPV is higher in the locally infected leaves of plants deficient in SA or expressing TEV P1/HC-Pro silencing suppressor. Accumulation of viral derived small RNAs was reduced in the NahG transgenic plants, suggesting that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco. Besides, expression of SA-mediated defense transcripts, such as those of pathogenesis-related (PR) proteins PR-1 and PR-2 or alternative oxidase-1, as well as that of the putative RNA-dependent RNA polymerase NtRDR1, is induced in response to PPV infection, and the expression patterns of these defense transcripts are altered in the TEV P1/HC-Pro transgenic plants. Long-distance movement of PPV is highly enhanced in NahG x P1/HC-Pro double-transgenic plants and systemic symptoms in these plants reveal that the expression of an RNA-silencing suppressor and the lack of SA produce additive but distinct effects. Our results suggest that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco, and that silencing suppressors, such as P1/HC-Pro, also alter the SA-mediated defense. Both an RNA-silencing and an SA-mediated defense mechanism could act together to limit PPV infection.

  1. Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from plasma and cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Melissa A McAlexander

    2013-05-01

    Full Text Available Interest in extracellular RNA has intensified as evidence accumulates that these molecules may be useful as indicators of a wide variety of biological conditions. To establish specific extracellular RNA molecules as clinically relevant biomarkers, reproducible recovery from biological samples and reliable measurements of the isolated RNA are paramount. Towards these ends, careful and rigorous comparisons of technical procedures are needed at all steps from sample handling to RNA isolation to RNA measurement protocols. In the investigations described in this methods paper, RT-qPCR was used to examine the apparent recovery of specific endogenous miRNAs and a spiked-in synthetic RNA from blood plasma samples. RNA was isolated using several widely used RNA isolation kits, with or without the addition of glycogen as a carrier. Kits examined included total RNA isolation systems that have been commercially available for several years and commonly adapted for extraction of biofluid RNA, as well as more recently introduced biofluids-specific RNA methods. Our conclusions include the following: some RNA isolation methods appear to be superior to others for the recovery of RNA from biological fluids; addition of a carrier molecule seems to be beneficial for some but not all isolation methods; and partially or fully quantitative recovery of RNA is observed from increasing volumes of plasma and cerebrospinal fluid.

  2. Studies on bio-accumulation of 51Cr by Piper Nigrum

    International Nuclear Information System (INIS)

    Ghosh, Kalpita; Nayak, Dalia; Lahiri, Susanta

    2007-01-01

    The present study is performed to accumulate 51 Cr(III) and 51 Cr(VI) using the alkaloid piperine, derived from the fruits of Piper nigrum (Family Piperaceae) as well as by the fruit commonly known as black pepper by radiometric technique. The pH dependence and the effect of concentration of chromium on the accumulation have also been examined. The maximum accumulation (52%) of Cr(III) is found by black pepper at pH 4 whereas piperine shows slight accumulation at this condition. Accumulation of Cr(VI) by black pepper is negligible. (author)

  3. RNA CoMPASS: a dual approach for pathogen and host transcriptome analysis of RNA-seq datasets.

    Directory of Open Access Journals (Sweden)

    Guorong Xu

    Full Text Available High-throughput RNA sequencing (RNA-seq has become an instrumental assay for the analysis of multiple aspects of an organism's transcriptome. Further, the analysis of a biological specimen's associated microbiome can also be performed using RNA-seq data and this application is gaining interest in the scientific community. There are many existing bioinformatics tools designed for analysis and visualization of transcriptome data. Despite the availability of an array of next generation sequencing (NGS analysis tools, the analysis of RNA-seq data sets poses a challenge for many biomedical researchers who are not familiar with command-line tools. Here we present RNA CoMPASS, a comprehensive RNA-seq analysis pipeline for the simultaneous analysis of transcriptomes and metatranscriptomes from diverse biological specimens. RNA CoMPASS leverages existing tools and parallel computing technology to facilitate the analysis of even very large datasets. RNA CoMPASS has a web-based graphical user interface with intrinsic queuing to control a distributed computational pipeline. RNA CoMPASS was evaluated by analyzing RNA-seq data sets from 45 B-cell samples. Twenty-two of these samples were derived from lymphoblastoid cell lines (LCLs generated by the infection of naïve B-cells with the Epstein Barr virus (EBV, while another 23 samples were derived from Burkitt's lymphomas (BL, some of which arose in part through infection with EBV. Appropriately, RNA CoMPASS identified EBV in all LCLs and in a fraction of the BLs. Cluster analysis of the human transcriptome component of the RNA CoMPASS output clearly separated the BLs (which have a germinal center-like phenotype from the LCLs (which have a blast-like phenotype with evidence of activated MYC signaling and lower interferon and NF-kB signaling in the BLs. Together, this analysis illustrates the utility of RNA CoMPASS in the simultaneous analysis of transcriptome and metatranscriptome data. RNA CoMPASS is freely

  4. The integrated analysis of RNA-seq and microRNA-seq depicts miRNA-mRNA networks involved in Japanese flounder (Paralichthys olivaceus) albinism.

    Science.gov (United States)

    Wang, Na; Wang, Ruoqing; Wang, Renkai; Tian, Yongsheng; Shao, Changwei; Jia, Xiaodong; Chen, Songlin

    2017-01-01

    Albinism, a phenomenon characterized by pigmentation deficiency on the ocular side of Japanese flounder (Paralichthys olivaceus), has caused significant damage. Limited mRNA and microRNA (miRNA) information is available on fish pigmentation deficiency. In this study, a high-throughput sequencing strategy was employed to identify the mRNA and miRNAs involved in P. olivaceus albinism. Based on P. olivaceus genome, RNA-seq identified 21,787 know genes and 711 new genes by transcripts assembly. Of those, 235 genes exhibited significantly different expression pattern (fold change ≥2 or ≤0.5 and q-value≤0.05), including 194 down-regulated genes and 41 up-regulated genes in albino versus normally pigmented individuals. These genes were enriched to 81 GO terms and 9 KEGG pathways (p≤0.05). Among those, the pigmentation related pathways-Melanogenesis and tyrosine metabolism were contained. High-throughput miRNA sequencing identified a total of 475 miRNAs, including 64 novel miRNAs. Furthermore, 33 differentially expressed miRNAs containing 13 up-regulated and 20 down-regulated miRNAs were identified in albino versus normally pigmented individuals (fold change ≥1.5 or ≤0.67 and p≤0.05). The next target prediction discovered a variety of putative target genes, of which, 134 genes including Tyrosinase (TYR), Tyrosinase-related protein 1 (TYRP1), Microphthalmia-associated transcription factor (MITF) were overlapped with differentially expressed genes derived from RNA-seq. These target genes were significantly enriched to 254 GO terms and 103 KEGG pathways (p<0.001). Of those, tyrosine metabolism, lysosomes, phototransduction pathways, etc., attracted considerable attention due to their involvement in regulating skin pigmentation. Expression patterns of differentially expressed mRNA and miRNAs were validated in 10 mRNA and 10 miRNAs by qRT-PCR. With high-throughput mRNA and miRNA sequencing and analysis, a series of interested mRNA and miRNAs involved in fish

  5. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation

    Directory of Open Access Journals (Sweden)

    Sun Young Chung

    2016-10-01

    Full Text Available Parkinson's disease (PD is characterized by the selective loss of dopamine neurons in the substantia nigra; however, the mechanism of neurodegeneration in PD remains unclear. A subset of familial PD is linked to mutations in PARK2 and PINK1, which lead to dysfunctional mitochondria-related proteins Parkin and PINK1, suggesting that pathways implicated in these monogenic forms could play a more general role in PD. We demonstrate that the identification of disease-related phenotypes in PD-patient-specific induced pluripotent stem cell (iPSC-derived midbrain dopamine (mDA neurons depends on the type of differentiation protocol utilized. In a floor-plate-based but not a neural-rosette-based directed differentiation strategy, iPSC-derived mDA neurons recapitulate PD phenotypes, including pathogenic protein accumulation, cell-type-specific vulnerability, mitochondrial dysfunction, and abnormal neurotransmitter homeostasis. We propose that these form a pathogenic loop that contributes to disease. Our study illustrates the promise of iPSC technology for examining PD pathogenesis and identifying therapeutic targets.

  6. Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation.

    Science.gov (United States)

    Chung, Sun Young; Kishinevsky, Sarah; Mazzulli, Joseph R; Graziotto, John; Mrejeru, Ana; Mosharov, Eugene V; Puspita, Lesly; Valiulahi, Parvin; Sulzer, David; Milner, Teresa A; Taldone, Tony; Krainc, Dimitri; Studer, Lorenz; Shim, Jae-Won

    2016-10-11

    Parkinson's disease (PD) is characterized by the selective loss of dopamine neurons in the substantia nigra; however, the mechanism of neurodegeneration in PD remains unclear. A subset of familial PD is linked to mutations in PARK2 and PINK1, which lead to dysfunctional mitochondria-related proteins Parkin and PINK1, suggesting that pathways implicated in these monogenic forms could play a more general role in PD. We demonstrate that the identification of disease-related phenotypes in PD-patient-specific induced pluripotent stem cell (iPSC)-derived midbrain dopamine (mDA) neurons depends on the type of differentiation protocol utilized. In a floor-plate-based but not a neural-rosette-based directed differentiation strategy, iPSC-derived mDA neurons recapitulate PD phenotypes, including pathogenic protein accumulation, cell-type-specific vulnerability, mitochondrial dysfunction, and abnormal neurotransmitter homeostasis. We propose that these form a pathogenic loop that contributes to disease. Our study illustrates the promise of iPSC technology for examining PD pathogenesis and identifying therapeutic targets. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A patient-derived mutant form of the Fanconi anemia protein, FANCA, is defective in nuclear accumulation.

    Science.gov (United States)

    Kupfer, G; Naf, D; Garcia-Higuera, I; Wasik, J; Cheng, A; Yamashita, T; Tipping, A; Morgan, N; Mathew, C G; D'Andrea, A D

    1999-04-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A-H). Three FA genes, corresponding to complementation groups A, C, and G, have been cloned, but the function of the encoded FA proteins remains unknown. We recently demonstrated that the FANCA and FANCC proteins bind and form a nuclear complex. In the current study, we identified a homozygous mutation in the FANCA gene (3329A>C) in an Egyptian FA patient from a consanguineous family. This mutant FANCA allele is predicted to encode a mutant FANCA protein, FANCA(H1110P), in which histidine 1110 is changed to proline. Initially, we characterized the FANCA(H1110P) protein, expressed in an Epstein Barr virus (EBV)-immortalized lymphoblast line derived from the patient. Unlike wild-type FANCA protein expressed in normal lymphoblasts, FANCA(H1110P) was not phosphorylated and failed to bind to FANCC. To test directly the effect of this mutation on FANCA function, we used retroviral-mediated transduction to express either wild-type FANCA or FANCA(H1110P) protein in the FA-A fibroblast line, GM6914. Unlike wild-type FANCA, the mutant protein failed to complement the mitomycin C sensitivity of these cells. In addition, the FANCA(H1110P) protein was defective in nuclear accumulation in the transduced cells. The characteristics of this mutant protein underscore the importance of FANCA phosphorylation, FANCA/FANCC binding, and nuclear accumulation in the function of the FA pathway.

  8. Lipophilic ester and amide derivatives of rosmarinic acid protect cells against H2O2-induced DNA damage and apoptosis: The potential role of intracellular accumulation and labile iron chelation

    Directory of Open Access Journals (Sweden)

    Paraskevi S. Gerogianni

    2018-05-01

    Full Text Available Phenolic acids represent abundant components contained in human diet. However, the negative charge in their carboxylic group limits their capacity to diffuse through biological membranes, thus hindering their access to cell interior. In order to promote the diffusion of rosmarinic acid through biological membranes, we synthesized several lipophilic ester- and amide-derivatives of this compound and evaluated their capacity to prevent H2O2-induced DNA damage and apoptosis in cultured human cells. Esterification of the carboxylic moiety with lipophilic groups strongly enhanced the capacity of rosmarinic acid to protect cells. On the other hand, the amide-derivatives were somewhat less effective but exerted less cytotoxicity at high concentrations. Cell uptake experiments, using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS, illustrated different levels of intracellular accumulation among the ester- and amide-derivatives, with the first being more effectively accumulated, probably due to their extensive hydrolysis inside the cells. In conclusion, these results highlight the hitherto unrecognized fundamental importance of derivatization of diet-derived phenolic acids to unveil their biological potential.

  9. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida.

    Directory of Open Access Journals (Sweden)

    Yulong Guo

    Full Text Available Although artificial microRNA (amiRNA technology has been used frequently in gene silencing in plants, little research has been devoted to investigating the accuracy of amiRNA precursor processing. In this work, amiRNAchs1 (amiRchs1, based on the Arabidopsis miR319a precursor, was expressed in order to suppress the expression of CHS genes in petunia. The transgenic plants showed the CHS gene-silencing phenotype. A modified 5' RACE technique was used to map small-RNA-directed cleavage sites and to detect processing intermediates of the amiRchs1 precursor. The results showed that the target CHS mRNAs were cut at the expected sites and that the amiRchs1 precursor was processed from loop to base. The accumulation of small RNAs in amiRchs1 transgenic petunia petals was analyzed using the deep-sequencing technique. The results showed that, alongside the accumulation of the desired artificial microRNAs, additional small RNAs that originated from other regions of the amiRNA precursor were also accumulated at high frequency. Some of these had previously been found to be accumulated at low frequency in the products of ath-miR319a precursor processing and some of them were accompanied by 3'-tailing variant. Potential targets of the undesired small RNAs were discovered in petunia and other Solanaceae plants. The findings draw attention to the potential occurrence of undesired target silencing induced by such additional small RNAs when amiRNA technology is used. No appreciable production of secondary small RNAs occurred, despite the fact that amiRchs1 was designed to have perfect complementarity to its CHS-J target. This confirmed that perfect pairing between an amiRNA and its targets is not the trigger for secondary small RNA production. In conjunction with the observation that amiRNAs with perfect complementarity to their target genes show high efficiency and specificity in gene silencing, this finding has an important bearing on future applications of ami

  10. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida).

    Science.gov (United States)

    Guo, Yulong; Han, Yao; Ma, Jing; Wang, Huiping; Sang, Xianchun; Li, Mingyang

    2014-01-01

    Although artificial microRNA (amiRNA) technology has been used frequently in gene silencing in plants, little research has been devoted to investigating the accuracy of amiRNA precursor processing. In this work, amiRNAchs1 (amiRchs1), based on the Arabidopsis miR319a precursor, was expressed in order to suppress the expression of CHS genes in petunia. The transgenic plants showed the CHS gene-silencing phenotype. A modified 5' RACE technique was used to map small-RNA-directed cleavage sites and to detect processing intermediates of the amiRchs1 precursor. The results showed that the target CHS mRNAs were cut at the expected sites and that the amiRchs1 precursor was processed from loop to base. The accumulation of small RNAs in amiRchs1 transgenic petunia petals was analyzed using the deep-sequencing technique. The results showed that, alongside the accumulation of the desired artificial microRNAs, additional small RNAs that originated from other regions of the amiRNA precursor were also accumulated at high frequency. Some of these had previously been found to be accumulated at low frequency in the products of ath-miR319a precursor processing and some of them were accompanied by 3'-tailing variant. Potential targets of the undesired small RNAs were discovered in petunia and other Solanaceae plants. The findings draw attention to the potential occurrence of undesired target silencing induced by such additional small RNAs when amiRNA technology is used. No appreciable production of secondary small RNAs occurred, despite the fact that amiRchs1 was designed to have perfect complementarity to its CHS-J target. This confirmed that perfect pairing between an amiRNA and its targets is not the trigger for secondary small RNA production. In conjunction with the observation that amiRNAs with perfect complementarity to their target genes show high efficiency and specificity in gene silencing, this finding has an important bearing on future applications of amiRNAs in gene

  11. Bisphenol A accumulation in eggs disrupts the endocrine regulation of growth in rainbow trout larvae

    Energy Technology Data Exchange (ETDEWEB)

    Birceanu, Oana; Servos, Mark R.; Vijayan, Mathilakath M., E-mail: matt.vijayan@ucalgary.ca

    2015-04-15

    Highlights: • BPA in eggs reduces growth and increases food conversion ratio in trout larvae. • BPA in eggs disrupts larval transcript abundance of genes involved in GH/IGF axis. • BPA in eggs disrupts thyroid hormone receptor mRNA levels. • BPA in eggs consistently suppressed IGF-1rb mRNA levels during early development. - Abstract: Bisphenol A (BPA), a monomer used in the production of plastics and epoxy resins, is ubiquitously present in the aquatic environment. BPA is considered a weak estrogen in fish, but the effects of this chemical on early developmental events are far from clear. We tested the hypothesis that BPA accumulation in eggs, mimicking maternal transfer, disrupts growth hormone/insulin-like growth factor (GH/IGF) axis function, leading to defects in larval growth in rainbow trout. Trout oocytes were exposed to 0 (control), 0.3, 3, and 30 μg ml{sup −1} BPA for 3 h, which led to an accumulation of around 0, 1, 4 and 40 ng BPA per egg, respectively. All treatment groups were fertilized with clean milt and reared in clean water for the rest of the experiment. The embryo BPA content declined over time in all groups and was completely eliminated by 42 days post-fertilization (dpf). Hatchlings from BPA accumulated eggs had higher water content and reduced total energy levels prior to first feed. There was an overall reduction in the specific growth rate and food conversion ratio in larvae reared from BPA-laden eggs. BPA accumulation disrupted the mRNA abundance of genes involved in GH/IGF axis function, including GH isoforms and their receptors, IGF-1 and -2 and IGF receptors, in a life stage-dependent manner. Also, there was a temporal disruption in the mRNA levels of thyroid hormone receptors in the larvae raised from BPA-laden eggs. Altogether, BPA accumulation in eggs, mimicking maternal transfer, affects larval growth and the mode of action involves disruption of genes involved in the GH/IGF and thyroid axes function in trout.

  12. Bisphenol A accumulation in eggs disrupts the endocrine regulation of growth in rainbow trout larvae

    International Nuclear Information System (INIS)

    Birceanu, Oana; Servos, Mark R.; Vijayan, Mathilakath M.

    2015-01-01

    Highlights: • BPA in eggs reduces growth and increases food conversion ratio in trout larvae. • BPA in eggs disrupts larval transcript abundance of genes involved in GH/IGF axis. • BPA in eggs disrupts thyroid hormone receptor mRNA levels. • BPA in eggs consistently suppressed IGF-1rb mRNA levels during early development. - Abstract: Bisphenol A (BPA), a monomer used in the production of plastics and epoxy resins, is ubiquitously present in the aquatic environment. BPA is considered a weak estrogen in fish, but the effects of this chemical on early developmental events are far from clear. We tested the hypothesis that BPA accumulation in eggs, mimicking maternal transfer, disrupts growth hormone/insulin-like growth factor (GH/IGF) axis function, leading to defects in larval growth in rainbow trout. Trout oocytes were exposed to 0 (control), 0.3, 3, and 30 μg ml −1 BPA for 3 h, which led to an accumulation of around 0, 1, 4 and 40 ng BPA per egg, respectively. All treatment groups were fertilized with clean milt and reared in clean water for the rest of the experiment. The embryo BPA content declined over time in all groups and was completely eliminated by 42 days post-fertilization (dpf). Hatchlings from BPA accumulated eggs had higher water content and reduced total energy levels prior to first feed. There was an overall reduction in the specific growth rate and food conversion ratio in larvae reared from BPA-laden eggs. BPA accumulation disrupted the mRNA abundance of genes involved in GH/IGF axis function, including GH isoforms and their receptors, IGF-1 and -2 and IGF receptors, in a life stage-dependent manner. Also, there was a temporal disruption in the mRNA levels of thyroid hormone receptors in the larvae raised from BPA-laden eggs. Altogether, BPA accumulation in eggs, mimicking maternal transfer, affects larval growth and the mode of action involves disruption of genes involved in the GH/IGF and thyroid axes function in trout

  13. Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells

    Science.gov (United States)

    Xiao, Peng; Wan, Xiaopeng; Cui, Bijun; Liu, Yang; Qiu, Chenyang; Rong, Jiabing; Zheng, Mingzhu; Song, Yinjing; Chen, Luoquan; He, Jia; Tan, Qinchun; Wang, Xiaojia; Shao, Xiying; Liu, Yuhua; Cao, Xuetao; Wang, Qingqing

    2016-01-01

    ABSTRACT Tumor-induced, myeloid-derived suppressor cells (MDSCs)-mediated immune dysfunction is an important mechanism that leads to tumor immune escape and the inefficacy of cancer immunotherapy. Importantly, tumor-infiltrating MDSCs have much stronger ability compared to MDSCs in the periphery. However, the mechanisms that tumor microenvironment induces the accumulation and function of MDSCs are poorly understood. Here, we report that Interleukin-33 (IL-33) – a cytokine which can be abundantly released in tumor tissues both in 4T1-bearing mice and breast cancer patients, is crucial for facilitating the expansion of MDSCs. IL-33 in tumor microenvironment reduces the apoptosis and sustains the survival of MDSCs through induction of autocrine secretion of GM-CSF, which forms a positive amplifying loop for MDSC accumulation. This is in conjunction with IL-33-driven induction of arginase-1 expression and activation of NF-κB and MAPK signaling in MDSCs which augments their immunosuppressive ability, and histone modifications were involved in IL-33 signaling in MDSCs. In ST2−/− mice, the defect of IL-33 signaling in MDSCs attenuates the immunosuppressive and pro-tumoral capacity of MDSCs. Our results identify IL-33 as a critical mediator that contributes to the abnormal expansion and enhanced immunosuppressive function of MDSCs within tumor microenvironment, which can be potentially targeted to reverse MDSC-mediated tumor immune evasion. PMID:26942079

  14. Footprints of a trypanosomatid RNA world: pre-small subunit rRNA processing by spliced leader addition trans-splicing

    Directory of Open Access Journals (Sweden)

    Mario Gustavo Mayer

    2012-06-01

    Full Text Available The addition of a capped mini-exon [spliced leader (SL] through trans-splicing is essential for the maturation of RNA polymerase (pol II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS region. Additionally, we detected the SL-5'ETS molecule using three distinct methods and located the acceptor site between two known 5'ETS rRNA processing sites (A' and A1 in four different trypanosomatids. Moreover, we detected a polyadenylated 5'ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin, we observed SL-5'ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA led to the accumulation of SL-5'ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.

  15. DNA methyltransferase 1-targeting miRNA-148aof dairymilk: apotential bioactive modifier of thehumanepigenome

    Directory of Open Access Journals (Sweden)

    Bodo C. Melnik

    2017-09-01

    Full Text Available Background: The perception of milk has changed from a “simple food” to a more sophisticated bioactive functional signaling system that promotes mTORC1-driven postnatal anabolism, growth, and development of the newborn infant. Accumulating evidence supports the view that milk´s miRNAs significantly contribute to these processes. The most abundant miRNA of milk found in milk fat and milk exosomes is miRNA-148a, which targets DNA methyltransferase 1 (DNMT1, a pivotal epigenetic regulator that suppresses transcription. Furthermore, milk-derived miRNA-125b, miRNA-30d, and miRNA-25 target TP53, the guardian of the genome that interacts with DNMT1 and regulates metabolism, cell kinetics, and apoptosis. Thus, the question arose whether cow´s milk-derived miRNAs may modify epigenetic regulation of the human milk consumer. Methods: To understand the potential impact of dairy milk consumption on human epigenetics, we have analyzed all relevant research-based bioinformatics data related to milk, milk miRNAs, epigenetic regulation, and lactation performance with special attention to bovine miRNAs that modify gene expression of DNA methyltransferase 1 (DNMT1 and p53 (TP53, the two guardians of the mammalian genome. By means of translational research and comparative functional genomics, we investigated the potential impact of cow´s milk miRNAs on epigenetic regulation of human DNMT1, TP53, FOXP3, and FTO, which are critically involved in immunologic and metabolic programming respectively. miRNA sequences have been obtained from mirbase.org. miRNA-target site prediction has been performed using TargetScan release 7.0. Results: The most abundant miRNA of cow´s milk is miRNA-148a, which represents more than 10% of all miRNAs of cow´s milk, survives pasteurization and refrigerated storage. The seed sequence of human and bovine miRNA-148a-3p is identical. Furthermore, human and bovine DNMT1 mRNA share 88% identity. The miRNA-148a 7mer seed is conserved in

  16. Fox-2 protein regulates the alternative splicing of scleroderma-associated lysyl hydroxylase 2 messenger RNA.

    Science.gov (United States)

    Seth, Puneet; Yeowell, Heather N

    2010-04-01

    Scleroderma (systemic sclerosis [SSc]) is a complex connective tissue disorder characterized by hardening and thickening of the skin. One hallmark of scleroderma is excessive accumulation of collagen accompanied by increased levels of pyridinoline collagen crosslinks derived from hydroxylysine residues in the collagen telopeptide domains. Lysyl hydroxylase 2 (LH2), an important alternatively spliced enzyme in collagen biosynthesis, acts as a collagen telopeptide hydroxylase. Changes in the pattern of LH2 alternative splicing, favoring increased inclusion of the alternatively spliced LH2 exon 13A, thereby increasing the levels of the long transcript of LH2 (LH2[long]), are linked to scleroderma disease. This study was undertaken to examine the role played by RNA binding protein Fox-2 in regulating exon 13A inclusion, which leads to the generation of scleroderma-associated LH2(long) messenger RNA (mRNA). Phylogenetic sequence analysis of introns flanking exon 13A was performed. A tetracycline-inducible system in T-Rex 293 cells was used to induce Fox-2 protein, and endogenous LH2(long) mRNA was determined by reverse transcriptase-polymerase chain reaction. An LH2 minigene was designed, validated, and used in Fox-2 overexpression and mutagenesis experiments. Knockdown of Fox-2 was performed in mouse embryonic fibroblasts and in fibroblasts from SSc patients. Overexpression of Fox-2 enhanced the inclusion of exon 13A and increased the generation of LH2(long) mRNA, whereas knockdown of Fox-2 decreased LH2(long) transcripts. Mutational analysis of an LH2 minigene demonstrated that 2 of the 4 Fox binding motifs flanking LH2 exon 13A are required for inclusion of exon 13A. In early passage fibroblasts derived from patients with scleroderma, the knockdown of Fox-2 protein significantly decreased the endogenous levels of LH2(long) mRNA. Our findings indicate that Fox-2 plays an integral role in the regulation of LH2 splicing. Knockdown of Fox-2 and other methods to decrease

  17. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    International Nuclear Information System (INIS)

    Baserga, S.J.; Benz, E.J. Jr.

    1988-01-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β 0 -thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  18. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  19. Potyviral VPg enhances viral RNA Translation and inhibits reporter mRNA translation in planta.

    Science.gov (United States)

    Eskelin, Katri; Hafrén, Anders; Rantalainen, Kimmo I; Mäkinen, Kristiina

    2011-09-01

    Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5' untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation.

  20. Potyviral VPg Enhances Viral RNA Translation and Inhibits Reporter mRNA Translation In Planta▿

    Science.gov (United States)

    Eskelin, Katri; Hafrén, Anders; Rantalainen, Kimmo I.; Mäkinen, Kristiina

    2011-01-01

    Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5′ untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation. PMID:21697470

  1. Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Norlaily Mohd Ali

    2016-01-01

    Full Text Available Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (60 years donors were expanded under hypoxic (5% O2 and normal (20% O2 culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor’s age group and culture conditions can be categorized in the following order: young (hypoxia > young (normoxia > old aged (hypoxia > old aged (normoxia.

  2. Purification, crystallization and preliminary X-ray diffraction analysis of the RNA-dependent RNA polymerase from Thosea asigna virus

    International Nuclear Information System (INIS)

    Ferrero, Diego; Buxaderas, Mònica; Rodriguez, José F.; Verdaguer, Núria

    2012-01-01

    The RNA-dependent RNA polymerase of Thosea asigna virus has been purified and crystallized in two different crystal forms. Preliminary characterization of P2 1 2 1 2 and C222 1 crystals is reported. Co-crystallization experiments in the presence of lutetium produced a heavy-atom derivative suitable for structure determination. Thosea asigna virus (TaV) is a positive-sense, single-stranded RNA (ssRNA) virus that belongs to the Permutotetravirus genera within the recently created Permutotetraviridae family. The genome of TaV consists of an RNA segment of about 5.700 nucleotides with two open reading frames, encoding for the replicase and capsid protein. The particular TaV replicase does not contain N7-methyl transferase and helicase domains but includes a structurally unique RNA-dependent RNA polymerase (RdRp) with a sequence permutation in the domain where the active site is anchored. This architecture is also found in double-stranded RNA viruses of the Birnaviridae family. Here we report the purification and preliminary crystallographic studies TaV RdRp. The enzyme was crystallized by the sitting-drop vapour diffusion method using PEG 8K and lithium sulfate as precipitants. Two different crystal forms were obtained: native RdRp crystallized in space group P2 1 2 1 2 and diffracts up to 2.1 Å and the RdRp-Lu 3+ derivative co-crystals belong to the C222 1 space group, diffracting to 3.0 Å resolution. The structure of TaV RdRp represents the first structure of a non-canonical RdRp from ssRNA viruses

  3. The Caenorhabditis elegans RDE-10/RDE-11 complex regulates RNAi by promoting secondary siRNA amplification.

    Science.gov (United States)

    Zhang, Chi; Montgomery, Taiowa A; Fischer, Sylvia E J; Garcia, Susana M D A; Riedel, Christian G; Fahlgren, Noah; Sullivan, Christopher M; Carrington, James C; Ruvkun, Gary

    2012-05-22

    In nematodes, plants, and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary small interfering RNAs (siRNAs) and the target messenger RNA (mRNA) leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10, and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, and other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage but sensitive to high dosage of double-stranded RNAs. We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6, and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. An Ancient Transcription Factor Initiates the Burst of piRNA Production During Early Meiosis in Mouse Testes

    Science.gov (United States)

    Li, Xin Zhiguo; Roy, Christian K.; Dong, Xianjun; Bolcun-Filas, Ewelina; Wang, Jie; Han, Bo W.; Xu, Jia; Moore, Melissa J.; Schimenti, John C.; Weng, Zhiping; Zamore, Phillip D.

    2013-01-01

    SUMMARY Animal germ cells produce PIWI-interacting RNAs (piRNAs), small silencing RNAs that suppress transposons and enable gamete maturation. Mammalian transposon-silencing piRNAs accumulate early in spermatogenesis, whereas pachytene piRNAs are produced later during post-natal spermatogenesis and account for >95% of all piRNAs in the adult mouse testis. Mutants defective for pachytene piRNA pathway proteins fail to produce mature sperm, but neither the piRNA precursor transcripts nor the trigger for pachytene piRNA production is known. Here, we show that the transcription factor A-MYB initiates pachytene piRNA production. A-MYB drives transcription of both pachytene piRNA precursor RNAs and the mRNAs for core piRNA biogenesis factors, including MIWI, the protein through which pachytene piRNAs function. A-MYB regulation of piRNA pathway proteins and piRNA genes creates a coherent feed-forward loop that ensures the robust accumulation of pachytene piRNAs. This regulatory circuit, which can be detected in rooster testes, likely predates the divergence of birds and mammals. PMID:23523368

  5. Integration analysis of microRNA and mRNA paired expression profiling identifies deregulated microRNA-transcription factor-gene regulatory networks in ovarian endometriosis.

    Science.gov (United States)

    Zhao, Luyang; Gu, Chenglei; Ye, Mingxia; Zhang, Zhe; Li, Li'an; Fan, Wensheng; Meng, Yuanguang

    2018-01-22

    The etiology and pathophysiology of endometriosis remain unclear. Accumulating evidence suggests that aberrant microRNA (miRNA) and transcription factor (TF) expression may be involved in the pathogenesis and development of endometriosis. This study therefore aims to survey the key miRNAs, TFs and genes and further understand the mechanism of endometriosis. Paired expression profiling of miRNA and mRNA in ectopic endometria compared with eutopic endometria were determined by high-throughput sequencing techniques in eight patients with ovarian endometriosis. Binary interactions and circuits among the miRNAs, TFs, and corresponding genes were identified by the Pearson correlation coefficients. miRNA-TF-gene regulatory networks were constructed using bioinformatic methods. Eleven selected miRNAs and TFs were validated by quantitative reverse transcription-polymerase chain reaction in 22 patients. Overall, 107 differentially expressed miRNAs and 6112 differentially expressed mRNAs were identified by comparing the sequencing of the ectopic endometrium group and the eutopic endometrium group. The miRNA-TF-gene regulatory network consists of 22 miRNAs, 12 TFs and 430 corresponding genes. Specifically, some key regulators from the miR-449 and miR-34b/c cluster, miR-200 family, miR-106a-363 cluster, miR-182/183, FOX family, GATA family, and E2F family as well as CEBPA, SOX9 and HNF4A were suggested to play vital regulatory roles in the pathogenesis of endometriosis. Integration analysis of the miRNA and mRNA expression profiles presents a unique insight into the regulatory network of this enigmatic disorder and possibly provides clues regarding replacement therapy for endometriosis.

  6. Long-term treatment with haloperidol affects neuropeptide S and NPSR mRNA levels in the rat brain.

    Science.gov (United States)

    Palasz, Artur; Rojczyk, Ewa; Golyszny, Milosz; Filipczyk, Lukasz; Worthington, John J; Wiaderkiewicz, Ryszard

    2016-04-01

    The brainstem-derived neuropeptide S (NPS) has a multidirectional regulatory activity, especially as a potent anxiolytic factor. Accumulating data suggests that neuroleptics affect peptidergic signalling in various brain structures. However, there is no information regarding the influence of haloperidol on NPS and NPS receptor (NPSR) expression. We assessed NPS and NPSR mRNA levels in brains of rats treated with haloperidol using quantitative real-time polymerase chain reaction. Chronic haloperidol treatment (4 weeks) led to a striking upregulation of NPS and NPSR expression in the rat brainstem. Conversely, the NPSR mRNA expression was decreased in the hippocampus and striatum. This stark increase of NPS in response to haloperidol treatment supports the hypothesis that this neuropeptide is involved in the dopamine-dependent anxiolytic actions of neuroleptics and possibly also in the pathophysiology of mental disorders. Furthermore, our findings underline the complex nature of potential interactions between dopamine receptors and brain peptidergic pathways, which has potential clinical applications.

  7. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization.

    Science.gov (United States)

    Chen, Xin; Ying, Xiang; Wang, Xinjing; Wu, Xiaoli; Zhu, Qinyi; Wang, Xipeng

    2017-07-01

    Hypoxia is a common feature of solid tumors. It is closely related to tumor progression. Exosomal microRNAs derived from cancers are considered to be mediators between cancer cells and the tumor microenvironment. In addition, the number of tumor-associated macrophages (TAMs) in the tumor microenvironment has also been demonstrated to correlate with tumor development. However, the relationship between tumor-secreted exosomes and TAM polarization under hypoxic conditions during tumor progression is not clear. Herein, we demonstrated that hypoxia induces the high expression of microRNA-940 (miR‑940) in exosomes derived from epithelial ovarian cancer (EOC). We also found that miR‑940 is highly expressed in exosomes isolated from ascites of EOC patients. Moreover, the overexpression of miR‑940 in macrophages delivered by exosomes stimulated M2 phenotype polarization, while the M2 subtype macrophages promoted EOC proliferation and migration. These results highlight the function of hypoxia in enhancing the high level of expression of miR‑940 in tumor exosomes taken up by macrophages. We also showed that the tumor-promoting function of miR‑940 is mediated by TAM polarization in EOC. These findings show that tumor-derived exosomal miR‑940 induced by hypoxia plays an important role in stimulating TAM polarization in the progression of EOC.

  8. [In silico CRISPR-based sgRNA design].

    Science.gov (United States)

    Wang, Yuanli; Chuai, Guohui; Yan, Jifang; Shi, Lei; Liu, Qi

    2017-10-25

    CRISPR-based genome editing has been widely implemented in various cell types. In-silico single guide RNA (sgRNA) design is a key step for successful gene editing using CRISPR system. Continuing efforts are made to refine in-silico sgRNA design with high on-target efficacy and reduced off-target effects. In this paper, we summarize the present sgRNA design tools, and show that efficient in-silico models can be built that integrate current heterogeneous genome-editing data to derive unbiased sgRNA design rules and identify key features for improving sgRNA design. Our review shows that systematic comparisons and evaluation of on-target and off-target effects of sgRNA will allow more precise genome editing and gene therapies using the CRISPR system.

  9. In C. elegans, high levels of dsRNA allow RNAi in the absence of RDE-4.

    Science.gov (United States)

    Habig, Jeffrey W; Aruscavage, P Joseph; Bass, Brenda L

    2008-01-01

    C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to specific environmental signals.

  10. In C. elegans, high levels of dsRNA allow RNAi in the absence of RDE-4.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Habig

    Full Text Available C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to specific environmental signals.

  11. Accumulation of defence-related transcripts and cloning of a chitinase mRNA from pea leaves (Pisum sativum L.) inoculated with Ascochyta pisi Lib

    DEFF Research Database (Denmark)

    Vad, Knud; de Neergaard, Eigil; Madriz-Ordeñana, Kenneth

    1993-01-01

    The race specific resistance of pea to Ascochyta pisi Lib. was shown to be exhibited as a hypersensitive response associated with the production of polyphenolic substances in epidermal and mesophyll cells. The levels of transcripts representing a pathogenesis-related (PR) protein (chitinase......) and an enzyme of phytoalexin biosynthesis (chalcone synthase) were shown to accumulate more rapidly during the hypersensitive response than during lesion development in the compatible interaction. A full-length (1143 bp) cDNA sequence of a pea chitinase (EC 3.2.1.14) (coding for an approx. 34 500 Da protein......) was deduced by combining the overlapping sequences of three clones obtained following PCR amplification of cDNA prepared from mRNA isolated 24 h after inoculation of pea leaves with Ascochyta pisi. The combined sequences were identified as a class I chitinase corresponding to the basic A1-chitinase enzyme...

  12. Analysis of classical swine fever virus RNA replication determinants using replicons

    DEFF Research Database (Denmark)

    Risager, Peter Christian; Fahnøe, Ulrik; Gullberg, Maria

    2013-01-01

    Self-replicating RNAs (replicons), with or without reporter gene sequences, derived from the genome of the Paderborn strain of classical swine fever virus (CSFV) have been produced. The full-length viral cDNA, propagated within a bacterial artificial chromosome (BAC), was modified by targeted...... recombination within E. coli. RNA transcripts were produced in vitro and introduced into cells by electroporation. The translation and replication of the replicon RNAs could be followed by the accumulation of luciferase (from Renilla reniformis or Gaussia princeps) protein expression (where appropriate......), as well as by detection of the CSFV NS3 protein production within the cells. Inclusion of the viral E2 coding region within the replicon was advantageous for the replication efficiency. Production of chimeric RNAs, substituting the NS2 and NS3 coding regions (as a unit) from the Paderborn strain...

  13. Targeted siRNA Delivery and mRNA Knockdown Mediated by Bispecific Digoxigenin-binding Antibodies

    Directory of Open Access Journals (Sweden)

    Britta Schneider

    2012-01-01

    Full Text Available Bispecific antibodies (bsAbs that bind to cell surface antigens and to digoxigenin (Dig were used for targeted small interfering RNA (siRNA delivery. They are derivatives of immunoglobulins G (IgGs that bind tumor antigens, such as Her2, IGF1-R, CD22, and LeY, with stabilized Dig-binding variable domains fused to the C-terminal ends of the heavy chains. siRNA that was digoxigeninylated at its 3′end was bound in a 2:1 ratio to the bsAbs. These bsAb–siRNA complexes delivered siRNAs specifically to cells that express the corresponding antigen as demonstrated by flow cytometry and confocal microscopy. The complexes internalized into endosomes and Dig-siRNAs separated from bsAbs, but Dig-siRNA was not released into the cytoplasm; bsAb-targeting alone was thus not sufficient for effective mRNA knockdown. This limitation was overcome by formulating the Dig-siRNA into nanoparticles consisting of dynamic polyconjugates (DPCs or into lipid-based nanoparticles (LNPs. The resulting complexes enabled bsAb-targeted siRNA-specific messenger RNA (mRNA knockdown with IC50 siRNA values in the low nanomolar range for a variety of bsAbs, siRNAs, and target cells. Furthermore, pilot studies in mice bearing tumor xenografts indicated mRNA knockdown in endothelial cells following systemic co-administration of bsAbs and siRNA formulated in LNPs that were targeted to the tumor vasculature.

  14. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding

    Directory of Open Access Journals (Sweden)

    Adami Christoph

    2003-02-01

    Full Text Available Background The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect has been observed. Results We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances. Conclusions Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.

  15. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding.

    Science.gov (United States)

    Wilke, Claus O; Lenski, Richard E; Adami, Christoph

    2003-02-05

    The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect) has been observed. We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances. Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.

  16. A novel link between Sus1 and the cytoplasmic mRNA decay machinery suggests a broad role in mRNA metabolism

    Directory of Open Access Journals (Sweden)

    Llopis Ana

    2010-03-01

    Full Text Available Abstract Background Gene expression is achieved by the coordinated action of multiple factors to ensure a perfect synchrony from chromatin epigenetic regulation through to mRNA export. Sus1 is a conserved mRNA export/transcription factor and is a key player in coupling transcription initiation, elongation and mRNA export. In the nucleus, Sus1 is associated to the transcriptional co-activator SAGA and to the NPC associated complex termed TREX2/THSC. Through these associations, Sus1 mediates the nuclear dynamics of different gene loci and facilitate the export of the new transcripts. Results In this study, we have investigated whether the yeast Sus1 protein is linked to factors involved in mRNA degradation pathways. We provide evidence for genetic interactions between SUS1 and genes coding for components of P-bodies such as PAT1, LSM1, LSM6 and DHH1. We demonstrate that SUS1 deletion is synthetic lethal with 5'→3' decay machinery components LSM1 and PAT1 and has a strong genetic interaction with LSM6 and DHH1. Interestingly, Sus1 overexpression led to an accumulation of Sus1 in cytoplasmic granules, which can co-localise with components of P-bodies and stress granules. In addition, we have identified novel physical interactions between Sus1 and factors associated to P-bodies/stress granules. Finally, absence of LSM1 and PAT1 slightly promotes the Sus1-TREX2 association. Conclusions In this study, we found genetic and biochemical association between Sus1 and components responsible for cytoplasmic mRNA metabolism. Moreover, Sus1 accumulates in discrete cytoplasmic granules, which partially co-localise with P-bodies and stress granules under specific conditions. These interactions suggest a role for Sus1 in gene expression during cytoplasmic mRNA metabolism in addition to its nuclear function.

  17. Inhibition of bovine viral diarrhea virus RNA synthesis by thiosemicarbazone derived from 5,6-dimethoxy-1-indanone.

    Science.gov (United States)

    Castro, Eliana F; Fabian, Lucas E; Caputto, María E; Gagey, Dolores; Finkielsztein, Liliana M; Moltrasio, Graciela Y; Moglioni, Albertina G; Campos, Rodolfo H; Cavallaro, Lucía V

    2011-06-01

    In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV).

  18. Transdermal Delivery of siRNA through Microneedle Array

    Science.gov (United States)

    Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J.; Gale, Bruce K.; Tang, Tao

    2016-02-01

    Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.

  19. Nanoscale polysaccharide derivative as an AEG-1 siRNA carrier for effective osteosarcoma therapy

    Directory of Open Access Journals (Sweden)

    Wang F

    2018-02-01

    Full Text Available Fen Wang,1,* Jia-Dong Pang,2,* Lei-lei Huang,1 Ran Wang,1 Dan Li,3 Kang Sun,4 Lian-tang Wang,1,* Li-Ming Zhang2,* 1Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 2PCFM Lab and GDHPPC Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 3Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 4School of Engineering, Sun Yat-sen University, Guangzhou, China *These authors contributed equally to this work Background: Nanomedicine, which is the application of nanotechnology in medicine to make medical diagnosis and treatment more accurate, has great potential for precision medicine. Despite some improvements in nanomedicine, the lack of efficient and low-toxic vectors remains a major obstacle. Objective: The aim of this study was to prepare an efficient and low-toxic vector which could deliver astrocyte elevated gene-1 (AEG-1 small interfering RNA (siRNA; siAEG-1 into osteosarcoma cells effectively and silence the targeted gene both in vitro and in vivo. Materials and methods: We prepared a novel polysaccharide derivative by click conjugation of azidized chitosan with propargyl focal point poly (L-lysine dendrons (PLLD and subsequent coupling with folic acid (FA; Cs-g-PLLD-FA. We confirmed the complexation of siAEG-1and Cs-g-PLLD or Cs-g-PLLD-FA by gel retardation assay. We examined the cell cytotoxicity, cell uptake, cell proliferation and invasion abilities of Cs-g-PLLD-FA/siAEG-1 in osteosarcoma cells. In osteosarcoma 143B cells tumor-bearing mice models, we established the therapeutic efficacy and safety of Cs-g-PLLD-FA/siAEG-1. Results: Cs-g-PLLD-FA could completely encapsulate siAEG-1 and showed low cytotoxicity in osteosarcoma cells and tumour-bearing mice. The Cs-g-PLLD-FA/siAEG-1 nanocomplexes were capable of transferring siAEG-1 into osteosarcoma cells efficiently, and the knockdown of AEG-1

  20. The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during MicroRNA biogenesis

    KAUST Repository

    Liu, Chenggang; Axtell, Michael J.; Fedoroff, Nina V.

    2012-01-01

    Dicer-Like1 (DCL1), an RNaseIII endonuclease, and Hyponastic Leaves1 (HYL1), a double-stranded RNA-binding protein, are core components of the plant microRNA (miRNA) biogenesis machinery. hyl1 mutants accumulate low levels of miRNAs and display

  1. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1.

    Science.gov (United States)

    Xue, Mei; Chen, Wei; Xiang, An; Wang, Ruiqi; Chen, He; Pan, Jingjing; Pang, Huan; An, Hongli; Wang, Xiang; Hou, Huilian; Li, Xu

    2017-08-25

    To overcome the hostile hypoxic microenvironment of solid tumors, tumor cells secrete a large number of non-coding RNA-containing exosomes that facilitate tumor development and metastasis. However, the precise mechanisms of tumor cell-derived exosomes during hypoxia are unknown. Here, we aim to clarify whether hypoxia affects tumor growth and progression by transferring long non-coding RNA-urothelial cancer-associated 1 (lncRNA-UCA1) enriched exosomes secreted from bladder cancer cells. We used bladder cancer 5637 cells with high expression of lncRNA-UCA1 as exosome-generating cells and bladder cancer UMUC2 cells with low expression of lncRNA-UCA1 as recipient cells. Exosomes derived from 5637 cells cultured under normoxic or hypoxic conditions were isolated and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting analysis. These exosomes were co-cultured with UMUC2 cells to evaluate cell proliferation, migration and invasion. We further investigated the roles of exosomal lncRNA-UCA1 derived from hypoxic 5637 cells by xenograft models. The availability of lncRNA-UCA1 in serum-derived exosomes as a biomarker for bladder cancer was also assessed. We found that hypoxic exosomes derived from 5637 cells promoted cell proliferation, migration and invasion, and hypoxic exosomal RNAs could be internalized by three bladder cancer cell lines. Importantly, lncRNA-UCA1 was secreted in hypoxic 5637 cell-derived exosomes. Compared with normoxic exosomes, hypoxic exosomes derived from 5637 cells showed the higher expression levels of lncRNA-UCA1. Moreover, Hypoxic exosomal lncRNA-UCA1 could promote tumor growth and progression though epithelial-mesenchymal transition, in vitro and in vivo. In addition, the expression levels of lncRNA-UCA1 in the human serum-derived exosomes of bladder cancer patients were higher than that in the healthy controls. Together, our results demonstrate that hypoxic bladder cancer cells remodel tumor

  2. Vitamin A-coupled liposome system targeting free cholesterol accumulation in hepatic stellate cells offers a beneficial therapeutic strategy for liver fibrosis.

    Science.gov (United States)

    Furuhashi, Hirotaka; Tomita, Kengo; Teratani, Toshiaki; Shimizu, Motonori; Nishikawa, Makoto; Higashiyama, Masaaki; Takajo, Takeshi; Shirakabe, Kazuhiko; Maruta, Koji; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Aosasa, Suefumi; Nagao, Shigeaki; Yamamoto, Junji; Miura, Soichiro; Hokari, Ryota

    2018-04-01

    Liver fibrosis is a life-threatening disorder for which no approved therapy is available. Recently, we reported that mouse hepatic stellate cell (HSC) activation increased free cholesterol (FC) accumulation, partly by enhancing signaling through sterol regulatory element-binding protein 2 (SREBP2) and microRNA-33a (miR-33a), which resulted in HSC sensitization to transforming growth factor-β (TGFβ)-induced activation in a "vicious cycle" of liver fibrosis. Human HSCs were isolated from surgical liver specimens from control patients and patients with liver fibrosis. C57BL/6 mice were treated with carbon tetrachloride for 4 weeks and concurrently given SREBP2-siRNA- or anti-miR-33a-bearing vitamin A-coupled liposomes. In human activated HSCs obtained from patients with liver fibrosis, FC accumulation was enhanced independently of serum cholesterol levels through increased signaling by both SREBP2 and miR-33a. This increased FC accumulation enhanced Toll-like receptor 4 (TLR4) protein levels and lowered the TGFβ-pseudoreceptor Bambi (bone morphogenetic protein and activin membrane-bound inhibitor) mRNA levels in HSCs. Notably, in a mouse liver fibrosis model, reduction of FC accumulation, specifically in activated HSCs by suppression of SREBP2 or miR-33a expression using SREBP2-siRNA- or anti-miR-33a-bearing vitamin A-coupled liposomes, downregulated TLR4 signaling, increased Bambi expression, and consequently ameliorated liver fibrosis. Our results suggest that FC accumulation in HSCs, as an intracellular mediator promoting HSC activation, contributes to a vicious cycle of HSC activation in human and mouse liver fibrosis independent of serum cholesterol levels. Targeting FC accumulation-related molecules in HSCs through a vitamin A-coupled liposomal system represents a favorable therapeutic strategy for liver fibrosis. © 2017 The Japan Society of Hepatology.

  3. Complementation and recombination between alfalfa mosaic virus RNA3 mutants in tobacco plants

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Neeleman, L.; Bol, J. F.

    1991-01-01

    Deletions were made in an infectious cDNA clone of alfalfa mosaic virus (AIMV) RNA3 and the replication of RNA transcripts of these cDNAs was studied in tobacco plants transformed with AIMV replicase genes (P12 plants). Previously, we found that deletions in the P3 gene did not affect accumulation

  4. Transformation of cell-derived microparticles into quantum-dot-labeled nanovectors for antitumor siRNA delivery.

    Science.gov (United States)

    Chen, Gang; Zhu, Jun-Yi; Zhang, Zhi-Ling; Zhang, Wei; Ren, Jian-Gang; Wu, Min; Hong, Zheng-Yuan; Lv, Cheng; Pang, Dai-Wen; Zhao, Yi-Fang

    2015-01-12

    Cell-derived microparticles (MPs) have been recently recognized as critical intercellular information conveyors. However, further understanding of their biological behavior and potential application has been hampered by the limitations of current labeling techniques. Herein, a universal donor-cell-assisted membrane biotinylation strategy was proposed for labeling MPs by skillfully utilizing the natural membrane phospholipid exchange of their donor cells. This innovative strategy conveniently led to specific, efficient, reproducible, and biocompatible quantum dot (QD) labeling of MPs, thereby reliably conferring valuable traceability on MPs. By further loading with small interference RNA, QD-labeled MPs that had inherent cell-targeting and biomolecule-conveying ability were successfully employed for combined bioimaging and tumor-targeted therapy. This study provides the first reliable and biofriendly strategy for transforming biogenic MPs into functionalized nanovectors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Unique Preservation of Neural Cells in Hutchinson- Gilford Progeria Syndrome Is Due to the Expression of the Neural-Specific miR-9 MicroRNA

    Directory of Open Access Journals (Sweden)

    Xavier Nissan

    2012-07-01

    Full Text Available One puzzling observation in patients affected with Hutchinson-Gilford progeria syndrome (HGPS, who overall exhibit systemic and dramatic premature aging, is the absence of any conspicuous cognitive impairment. Recent studies based on induced pluripotent stem cells derived from HGPS patient cells have revealed a lack of expression in neural derivatives of lamin A, a major isoform of LMNA that is initially produced as a precursor called prelamin A. In HGPS, defective maturation of a mutated prelamin A induces the accumulation of toxic progerin in patient cells. Here, we show that a microRNA, miR-9, negatively controls lamin A and progerin expression in neural cells. This may bear major functional correlates, as alleviation of nuclear blebbing is observed in nonneural cells after miR-9 overexpression. Our results support the hypothesis, recently proposed from analyses in mice, that protection of neural cells from progerin accumulation in HGPS is due to the physiologically restricted expression of miR-9 to that cell lineage.

  6. Hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-2) in the accumulation of hyaluronan in endometrioid endometrial carcinoma

    International Nuclear Information System (INIS)

    Nykopp, Timo K; Rilla, Kirsi; Tammi, Markku I; Tammi, Raija H; Sironen, Reijo; Hämäläinen, Kirsi; Kosma, Veli-Matti; Heinonen, Seppo; Anttila, Maarit

    2010-01-01

    Hyaluronan accumulation correlates with the degree of malignancy in many solid tumor types, including malignant endometrial carcinomas. To elucidate the mechanism of hyaluronan accumulation, we examined the expression levels of the hyaluronan synthases (HAS1, HAS2 and HAS3) and hyaluronidases (HYAL1 and HYAL2), and correlated them with hyaluronan content and HAS1-3 immunoreactivity. A total of 35 endometrial tissue biopsies from 35 patients, including proliferative and secretory endometrium (n = 10), post-menopausal proliferative endometrium (n = 5), complex atypical hyperplasia (n = 4), grade 1 (n = 8) and grade 2 + 3 (n = 8) endometrioid adenocarcinomas were divided for gene expression by real-time RT-PCR, and paraffin embedded blocks for hyaluronan and HAS1-3 cytochemistry. The mRNA levels of HAS1-3 were not consistently changed, while the immunoreactivity of all HAS proteins was increased in the cancer epithelium. Interestingly, HAS3 mRNA, but not HAS3 immunoreactivity, was increased in post-menopausal endometrium compared to normal endometrium (p = 0.003). The median of HYAL1 mRNA was 10-fold and 15-fold lower in both grade 1 and grade 2+3 endometrioid endometrial cancers, as compared to normal endometrium (p = 0.004-0.006), and post-menopausal endometrium (p = 0.002), respectively. HYAL2 mRNA was also reduced in cancer (p = 0.02) and correlated with HYAL1 (r = 0.8, p = 0.0001). There was an inverse correlation between HYAL1 mRNA and the epithelial hyaluronan staining intensity (r = -0.6; P = 0.001). The results indicated that HYAL1 and HYAL2 were coexpressed and significantly downregulated in endometrioid endometrial cancer and correlated with the accumulation of hyaluronan. While immunoreactivity for HASs increased in the cancer cells, tumor mRNA levels for HASs were not changed, suggesting that reduced turnover of HAS protein may also have contributed to the accumulation of hyaluronan

  7. Dramatically improved RNA in situ hybridization signals using LNA-modified probes

    DEFF Research Database (Denmark)

    Thomsen, Rune; Nielsen, Peter Stein; Jensen, Torben Heick

    2005-01-01

    . This increases the thermal stability of hybrids formed with RNA. The LNA-based probes detect specific RNAs in fixed yeast cells with an efficiency far better than conventional DNA oligonucleotide probes of the same sequence. Using this probe design, we were also able to detect poly(A)+ RNA accumulation within......In situ detection of RNA by hybridization with complementary probes is a powerful technique. Probe design is a critical parameter in successful target detection. We have evaluated the efficiency of fluorescent DNA oligonucleotides modified to contain locked nucleic acid (LNA) residues...

  8. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    Science.gov (United States)

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: Evidence for differential gene expression

    International Nuclear Information System (INIS)

    Kim, Sunyoung; Baltimore, D.; Byrn, R.; Groopman, J.

    1989-01-01

    The kinetics of retroviral DNA and RNA synthesis are parameters vital to understanding viral growth, especially for human immunodeficiency virus (HIV), which encodes several of its own regulatory genes. The authors have established a single-cycle growth condition for HIV in H9 cells, a human CD4 + lymphocyte line. The full-length viral linear DNA is first detectable by 4 h postinfection. During a one-step growth of HIV, amounts of viral DNA gradually increase until 8 to 12 h postinfection and then decrease. The copy number of unintegrated viral DNA is not extraordinarily high even at its peak. Most strikingly, there is a temporal program of RNA accumulation: the earliest RNA is greatly enriched in the 2-kilobase subgenomic mRNA species, while the level of 9.2-kilobase RNA which is both genomic RNA and mRNA remains low until after 24 h of infection. Virus production begins at about 24 h postinfection. Thus, viral DNA synthesis is as rapid as for other retroviruses, but viral RNA synthesis involves temporal alteration in the species that accumulate, presumably as a consequence of viral regulatory genes

  10. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection

    DEFF Research Database (Denmark)

    Lanford, Robert E; Hildebrandt-Eriksen, Elisabeth S; Petri, Andreas

    2010-01-01

    The liver-expressed microRNA-122 (miR-122) is essential for hepatitis C virus (HCV) RNA accumulation in cultured liver cells, but its potential as a target for antiviral intervention has not been assessed. We found that treatment of chronically infected chimpanzees with a locked nucleic acid (LNA...

  11. RNA interference targets arbovirus replication in Culicoides cells.

    Science.gov (United States)

    Schnettler, Esther; Ratinier, Maxime; Watson, Mick; Shaw, Andrew E; McFarlane, Melanie; Varela, Mariana; Elliott, Richard M; Palmarini, Massimo; Kohl, Alain

    2013-03-01

    Arboviruses are transmitted to vertebrate hosts by biting arthropod vectors such as mosquitoes, ticks, and midges. These viruses replicate in both arthropods and vertebrates and are thus exposed to different antiviral responses in these organisms. RNA interference (RNAi) is a sequence-specific RNA degradation mechanism that has been shown to play a major role in the antiviral response against arboviruses in mosquitoes. Culicoides midges are important vectors of arboviruses, known to transmit pathogens of humans and livestock such as bluetongue virus (BTV) (Reoviridae), Oropouche virus (Bunyaviridae), and likely the recently discovered Schmallenberg virus (Bunyaviridae). In this study, we investigated whether Culicoides cells possess an antiviral RNAi response and whether this is effective against arboviruses, including those with double-stranded RNA (dsRNA) genomes, such as BTV. Using reporter gene-based assays, we established the presence of a functional RNAi response in Culicoides sonorensis-derived KC cells which is effective in inhibiting BTV infection. Sequencing of small RNAs from KC and Aedes aegypti-derived Aag2 cells infected with BTV or the unrelated Schmallenberg virus resulted in the production of virus-derived small interfering RNAs (viRNAs) of 21 nucleotides, similar to the viRNAs produced during arbovirus infections of mosquitoes. In addition, viRNA profiles strongly suggest that the BTV dsRNA genome is accessible to a Dicer-type nuclease. Thus, we show for the first time that midge cells target arbovirus replication by mounting an antiviral RNAi response mainly resembling that of other insect vectors of arboviruses.

  12. TAM 2.0: tool for MicroRNA set analysis.

    Science.gov (United States)

    Li, Jianwei; Han, Xiaofen; Wan, Yanping; Zhang, Shan; Zhao, Yingshu; Fan, Rui; Cui, Qinghua; Zhou, Yuan

    2018-06-06

    With the rapid accumulation of high-throughput microRNA (miRNA) expression profile, the up-to-date resource for analyzing the functional and disease associations of miRNAs is increasingly demanded. We here describe the updated server TAM 2.0 for miRNA set enrichment analysis. Through manual curation of over 9000 papers, a more than two-fold growth of reference miRNA sets has been achieved in comparison with previous TAM, which covers 9945 and 1584 newly collected miRNA-disease and miRNA-function associations, respectively. Moreover, TAM 2.0 allows users not only to test the functional and disease annotations of miRNAs by overrepresentation analysis, but also to compare the input de-regulated miRNAs with those de-regulated in other disease conditions via correlation analysis. Finally, the functions for miRNA set query and result visualization are also enabled in the TAM 2.0 server to facilitate the community. The TAM 2.0 web server is freely accessible at http://www.scse.hebut.edu.cn/tam/ or http://www.lirmed.com/tam2/.

  13. 8-Oxo-7,8-dihydroadenine and 8-Oxo-7,8-dihydroadenosine-Chemistry, Structure, and Function in RNA and Their Presence in Natural Products and Potential Drug Derivatives.

    Science.gov (United States)

    Choi, Yu Jung; Chang, Stephanie J; Gibala, Krzysztof S; Resendiz, Marino J E

    2017-05-17

    A description and history of the role that 8-oxo-7,8-dihydroadenine (8-oxoAde) and 8-oxo-7,8-dihydroadenosine (8-oxoA) have in various fields has been compiled. This Review focusses on 1) the formation of this oxidatively generated modification in RNA, its interactions with other biopolymers, and its potential role in the development/progression of disease; 2) the independent synthesis and incorporation of this modified nucleoside into oligonucleotides of RNA to display the progress that has been made in establishing its behavior in biologically relevant systems; 3) reported synthetic routes, which date back to 1890, along with the progress that has been made in the total synthesis of the nucleobase, nucleoside, and their corresponding derivatives; and 4) the isolation, total synthesis, and biological activity of natural products containing these moieties as the backbone. The current state of research regarding this oxidatively generated lesion as well as its importance in the context of RNA, natural products, and potential as drug derivatives is illustrated using all available examples reported to date. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  15. RNA Thermodynamic Structural Entropy.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  16. Circulating microRNA Profile throughout the menstrual cycle.

    Directory of Open Access Journals (Sweden)

    Kadri Rekker

    Full Text Available Normal physiological variables, such as age and gender, contribute to alterations in circulating microRNA (miRNA expression levels. The changes in the female body during the menstrual cycle can also be reflected in plasma miRNA expression levels. Therefore, this study aimed to determine the plasma miRNA profile of healthy women during the menstrual cycle and to assess which circulating miRNAs are derived from blood cells. The plasma miRNA expression profiles in nine healthy women were determined by quantitative real time PCR using Exiqon Human Panel I assays from four time-points of the menstrual cycle. This platform was also used for studying miRNAs from pooled whole blood RNA samples at the same four time-points. Our results indicated that circulating miRNA expression levels in healthy women were not significantly altered by the processes occurring during the menstrual cycle. No significant differences in plasma miRNA expression levels were observed between the menstrual cycle time-points, but the number of detected miRNAs showed considerable variation among the studied individuals. miRNA analysis from whole blood samples revealed that majority of miRNAs in plasma are derived from blood cells. The most abundant miRNA in plasma and blood was hsa-miR-451a, but a number of miRNAs were only detected in one or the other sample type. In conclusion, our data suggest that the changes in the female body during the menstrual cycle do not affect the expression of circulating miRNAs at measurable levels.

  17. Marijuana-derived Δ-9-tetrahydrocannabinol suppresses Th1/Th17 cell-mediated delayed-type hypersensitivity through microRNA regulation.

    Science.gov (United States)

    Sido, Jessica M; Jackson, Austin R; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2016-09-01

    ∆(9)-Tetrahydrocannabinol (THC) is one of the major bioactive cannabinoids derived from the Cannabis sativa plant and is known for its anti-inflammatory properties. Delayed-type hypersensitivity (DTH) is driven by proinflammatory T helper cells including the classic inflammatory Th1 lineage as well as the more recently discovered Th17 lineage. In the current study, we investigated whether THC can alter the induction of Th1/Th17 cells involved in mBSA-induced DTH response. THC treatment (20 mg/kg) of C57BL/6 mice with DTH caused decreased swelling and infiltration of immune cells at the site of antigen rechallenge. Additionally, THC treatment decreased lymphocyte activation as well as Th1/Th17 lineage commitment, including reduced lineage-specific transcription factors and cytokines. Interestingly, while DTH caused an overexpression of miR-21, which increases Th17 differentiation via SMAD7 inhibition, and downregulation of miR-29b, an IFN-γ inhibitor, THC treatment reversed this microRNA (miR) dysregulation. Furthermore, when we transfected primary cells from DTH mice with miR-21 inhibitor or miR-29b mimic, as seen with THC treatment, the expression of target gene message was directly impacted increasing SMAD7 and decreasing IFN-γ expression, respectively. In summary, the current study suggests that THC treatment during DTH response can simultaneously inhibit Th1/Th17 activation via regulation of microRNA (miRNA) expression. • THC treatment inhibits simultaneous Th1/Th17 driven inflammation. • THC treatment corrects DTH-mediated microRNA dysregulation. • THC treatment regulates proinflammatory cytokines and transcription factors.

  18. Permuted tRNA genes of Cyanidioschyzon merolae, the origin of the tRNA molecule and the root of the Eukarya domain.

    Science.gov (United States)

    Di Giulio, Massimo

    2008-08-07

    An evolutionary analysis is conducted on the permuted tRNA genes of Cyanidioschyzon merolae, in which the 5' half of the tRNA molecule is codified at the 3' end of the gene and its 3' half is codified at the 5' end. This analysis has shown that permuted genes cannot be considered as derived traits but seem to possess characteristics that suggest they are ancestral traits, i.e. they originated when tRNA molecule genes originated for the first time. In particular, if the hypothesis that permuted genes are a derived trait were true, then we should not have been able to observe that the most frequent class of permuted genes is that of the anticodon loop type, for the simple reason that this class would derive by random permutation from a class of non-permuted tRNA genes, which instead is the rarest. This would not explain the high frequency with which permuted tRNA genes with perfectly separate 5' and 3' halves were observed. Clearly the mechanism that produced this class of permuted genes would envisage the existence, in an advanced stage of evolution, of minigenes codifying for the 5' and 3' halves of tRNAs which were assembled in a permuted way at the origin of the tRNA molecule, thus producing a high frequency of permuted genes of the class here referred. Therefore, this evidence supports the hypothesis that the genes of the tRNA molecule were assembled by minigenes codifying for hairpin-like RNA molecules, as suggested by one model for the origin of tRNA [Di Giulio, M., 1992. On the origin of the transfer RNA molecule. J. Theor. Biol. 159, 199-214; Di Giulio, M., 1999. The non-monophyletic origin of tRNA molecule. J. Theor. Biol. 197, 403-414]. Moreover, the late assembly of the permuted genes of C. merolae, as well as their ancestrality, strengthens the hypothesis of the polyphyletic origins of these genes. Finally, on the basis of the uniqueness and the ancestrality of these permuted genes, I suggest that the root of the Eukarya domain is in the super

  19. Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang

    2014-10-01

    MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs. © FASEB.

  20. Agrobacterium-mediated transformation of grapefruit with the wild-type and mutant RNA-dependent RNA polymerase genes of Citrus tristeza virus

    Science.gov (United States)

    Citrus paradisi Macf. cv. Duncan was transformed with constructs coding for the wild-type and mutant RNA-dependent RNA polymerase (RdRp) of Citrus tristeza virus (CTV) for exploring replicase-mediated pathogen-derived resistance (RM-PDR). The RdRp gene was amplified from CTV genome and used to gener...

  1. Antiviral RNA silencing initiated in the absence of RDE-4, a double-stranded RNA binding protein, in Caenorhabditis elegans.

    Science.gov (United States)

    Guo, Xunyang; Zhang, Rui; Wang, Jeffrey; Lu, Rui

    2013-10-01

    Small interfering RNAs (siRNAs) processed from double-stranded RNA (dsRNA) of virus origins mediate potent antiviral defense through a process referred to as RNA interference (RNAi) or RNA silencing in diverse organisms. In the simple invertebrate Caenorhabditis elegans, the RNAi process is initiated by a single Dicer, which partners with the dsRNA binding protein RDE-4 to process dsRNA into viral siRNAs (viRNAs). Notably, in C. elegans this RNA-directed viral immunity (RDVI) also requires a number of worm-specific genes for its full antiviral potential. One such gene is rsd-2 (RNAi spreading defective 2), which was implicated in RDVI in our previous studies. In the current study, we first established an antiviral role by showing that rsd-2 null mutants permitted higher levels of viral RNA accumulation, and that this enhanced viral susceptibility was reversed by ectopic expression of RSD-2. We then examined the relationship of rsd-2 with other known components of RNAi pathways and established that rsd-2 functions in a novel pathway that is independent of rde-4 but likely requires the RNA-dependent RNA polymerase RRF-1, suggesting a critical role for RSD-2 in secondary viRNA biogenesis, likely through coordinated action with RRF-1. Together, these results suggest that RDVI in the single-Dicer organism C. elegans depends on the collective actions of both RDE-4-dependent and RDE-4-independent mechanisms to produce RNAi-inducing viRNAs. Our study reveals, for the first time, a novel siRNA-producing mechanism in C. elegans that bypasses the need for a dsRNA-binding protein.

  2. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    Science.gov (United States)

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  3. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions.

    NARCIS (Netherlands)

    Nolte-'t Hoen, E.N.M.; Buermans, H.P.; Waasdorp, M.; Stoorvogel, W.; Wauben, M.H.M.; `t Hoen, P.A.C.

    2012-01-01

    Cells release RNA-carrying vesicles and membrane-free RNA/protein complexes into the extracellular milieu. Horizontal vesicle-mediated transfer of such shuttle RNA between cells allows dissemination of genetically encoded messages, which may modify the function of target cells. Other studies used

  4. Sequestration of DROSHA and DGCR8 by Expanded CGG RNA Repeats Alters MicroRNA Processing in Fragile X-Associated Tremor/Ataxia Syndrome

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    2013-03-01

    Full Text Available Fragile X-associated tremor/ataxia syndrome (FXTAS is an inherited neurodegenerative disorder caused by the expansion of 55–200 CGG repeats in the 5′ UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of microRNAs (miRNAs is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery.

  5. Long Distance Metabolic Regulation through Adipose-Derived Circulating Exosomal miRNAs: A Trail for RNA-Based Therapies?

    Directory of Open Access Journals (Sweden)

    Farah Fatima

    2017-08-01

    Full Text Available The contribution of non-coding RNAs, such as microRNAs (miRNAs in regulating physiological and pathological states has been intensively elucidated during last 15 years. The discovery of circulating miRNAs (cir-miRNAs in variety of body fluids, is, however a recent focus of interest in understanding pathophysiological states of their originating cells/organs. Yet another stimulating debate that takes miRNAs to the next level is their presence in exosomes, and this is truly interesting area of research. Exosomes are cell-derived extracellular vesicles, and are naturally equipped biological vehicles that not only enable functional transfer of miRNAs between cells (horizontal transfer but also foster inter-organ communication, presumably guided by organ specific receptors—decorated on their surface. However, understandings on inter-organ communication elicited by tissue specific exosomal-miRNA fingerprints remain elusive. Recently, Thomou et al., has discovered that adipose tissue contributes a large fraction of adipose specific exosomal-miRNA fingerprints in blood circulation. Experimental evidence emphasize adipose tissue as major depot of cir-miRNAs that sail through blood flow and reach to distal organs—primarily in the liver, where they regulate gene expression of host tissue and elicit metabolic control. This appears to be a genetic form of adipokines (endocrine factors secreted from adipose tissue. We review such offshore metabolic insults, and make an effort to address few important missing links between miRNAs processing and their incorporation into exosomes. We provide potential perspectives on how this knowledge could be steered towards RNA-based therapeutics for monitoring complex metabolic diseases and beyond.

  6. Inhibition of Bovine Viral Diarrhea Virus RNA Synthesis by Thiosemicarbazone Derived from 5,6-Dimethoxy-1-Indanone▿

    Science.gov (United States)

    Castro, Eliana F.; Fabian, Lucas E.; Caputto, María E.; Gagey, Dolores; Finkielsztein, Liliana M.; Moltrasio, Graciela Y.; Moglioni, Albertina G.; Campos, Rodolfo H.; Cavallaro, Lucía V.

    2011-01-01

    In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV). PMID:21430053

  7. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    Energy Technology Data Exchange (ETDEWEB)

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C., E-mail: prabhat-goswami@uiowa.edu

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  8. Changes in growth, carbon and nitrogen enzyme activity and mRNA accumulation in the halophilic microalga Dunaliella viridis in response to NaCl stress

    Science.gov (United States)

    Wang, Dongmei; Wang, Weiwei; Xu, Nianjun; Sun, Xue

    2016-12-01

    Many species of microalga Dunaliella exhibit a remarkable tolerance to salinity and are therefore ideal for probing the effects of salinity. In this work, we assessed the effects of NaCl stress on the growth, activity and mRNA level of carbon and nitrogen metabolism enzymes of D. viridis. The alga could grow over a salinity range of 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the most rapid growth was observed at 1.00 mol L-1 NaCl, followed by 2.00 mol L-1 NaCl. Paralleling these growth patterns, the highest initial and total Rubisco activities were detected in the presence of 1.00 mol L-1 NaCl, decreasing to 37.33% and 26.39% of those values, respectively, in the presence of 3.00 mol L-1 NaCl, respectively. However, the highest extracellular carbonic anhydrase (CA) activity was measured in the presence of 2.00 mol L-1 NaCl, followed by 1.00 mol L-1 NaCl. Different from the two carbon enzymes, nitrate reductase (NR) activity showed a slight change under different NaCl concentrations. At the transcriptional level, the mRNAs of Rubisco large subunit ( rbcL), and small subunit ( rbcS), attained their highest abundances in the presence of 1.00 and 2.00 mol L-1 NaCl, respectively. The CA mRNA accumulation was induced from 0.44 mol L-1 to 3.00 mol L-1 NaCl, but the NR mRNA showed the decreasing tendency with the increasing salinity. In conclusion, the growth and carbon fixation enzyme of Rubisco displayed similar tendency in response to NaCl stress, CA was proved be salt-inducible within a certain salinity range and NR showed the least effect by NaCl in D. viridis.

  9. Cytoplasmic viral RNA-dependent RNA polymerase disrupts the intracellular splicing machinery by entering the nucleus and interfering with Prp8.

    Directory of Open Access Journals (Sweden)

    Yen-Chin Liu

    2014-06-01

    Full Text Available The primary role of cytoplasmic viral RNA-dependent RNA polymerase (RdRp is viral genome replication in the cellular cytoplasm. However, picornaviral RdRp denoted 3D polymerase (3D(pol also enters the host nucleus, where its function remains unclear. In this study, we describe a novel mechanism of viral attack in which 3D(pol enters the nucleus through the nuclear localization signal (NLS and targets the pre-mRNA processing factor 8 (Prp8 to block pre-mRNA splicing and mRNA synthesis. The fingers domain of 3D(pol associates with the C-terminal region of Prp8, which contains the Jab1/MPN domain, and interferes in the second catalytic step, resulting in the accumulation of the lariat form of the splicing intermediate. Endogenous pre-mRNAs trapped by the Prp8-3D(pol complex in enterovirus-infected cells were identified and classed into groups associated with cell growth, proliferation, and differentiation. Our results suggest that picornaviral RdRp disrupts pre-mRNA splicing processes, that differs from viral protease shutting off cellular transcription and translation which contributes to the pathogenesis of viral infection.

  10. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Mingyan Lin

    Full Text Available Genome-wide expression analysis using next generation sequencing (RNA-Seq provides an opportunity for in-depth molecular profiling of fundamental biological processes, such as cellular differentiation and malignant transformation. Differentiating human neurons derived from induced pluripotent stem cells (iPSCs provide an ideal system for RNA-Seq since defective neurogenesis caused by abnormalities in transcription factors, DNA methylation, and chromatin modifiers lie at the heart of some neuropsychiatric disorders. As a preliminary step towards applying next generation sequencing using neurons derived from patient-specific iPSCs, we have carried out an RNA-Seq analysis on control human neurons. Dramatic changes in the expression of coding genes, long non-coding RNAs (lncRNAs, pseudogenes, and splice isoforms were seen during the transition from pluripotent stem cells to early differentiating neurons. A number of genes that undergo radical changes in expression during this transition include candidates for schizophrenia (SZ, bipolar disorder (BD and autism spectrum disorders (ASD that function as transcription factors and chromatin modifiers, such as POU3F2 and ZNF804A, and genes coding for cell adhesion proteins implicated in these conditions including NRXN1 and NLGN1. In addition, a number of novel lncRNAs were found to undergo dramatic changes in expression, one of which is HOTAIRM1, a regulator of several HOXA genes during myelopoiesis. The increase we observed in differentiating neurons suggests a role in neurogenesis as well. Finally, several lncRNAs that map near SNPs associated with SZ in genome wide association studies also increase during neuronal differentiation, suggesting that these novel transcripts may be abnormally regulated in a subgroup of patients.

  11. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell

    Directory of Open Access Journals (Sweden)

    Hyouta eHimeno

    2014-04-01

    Full Text Available tmRNA (transfer messenger RNA; also known as 10Sa RNA or SsrA RNA is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon-anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of nonfunctional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.

  12. Knockdown of long noncoding antisense RNA brain-derived neurotrophic factor attenuates hypoxia/reoxygenation-induced nerve cell apoptosis through the BDNF-TrkB-PI3K/Akt signaling pathway.

    Science.gov (United States)

    Zhong, Jian-Bin; Li, Xie; Zhong, Si-Ming; Liu, Jiu-Di; Chen, Chi-Bang; Wu, Xiao-Yan

    2017-09-27

    Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal cell apoptosis. The antisense RNA of brain-derived neurotrophic factor (BDNF-AS) is a natural antisense transcript that is transcribed opposite the gene that encodes BDNF. The aim of this study was to determine whether knockdown of BDNF-AS can suppress hypoxia/reoxygenation (H/R)-induced neuronal cell apoptosis and whether this is mediated by the BDNF-TrkB-PI3K/Akt pathway. We detected the expression of BDNF and BDNF-AS in brain tissue from 20 patients with cerebral infarction and five patients with other diseases (but no cerebral ischemia). We found that BDNF expression was significantly downregulated in patients with cerebral infarction, whereas the expression of BDNF-AS was significantly upregulated. In both human cortical neurons (HCN2) and human astrocytes, H/R significantly induced the expression of BDNF-AS, but significantly decreased BDNF expression. H/R also significantly induced apoptosis and reduced the mitochondrial membrane potential in these cells. Following downregulation of BDNF-AS by siRNA in human cortical neurons and human astrocyte cells, BDNF expression was significantly upregulated and the H/R-induced upregulation of BDNF-AS was significantly attenuated. BDNF-AS siRNA inhibited H/R-induced cell apoptosis and ameliorated the H/R-induced suppression of mitochondrial membrane potential. H/R inhibited the expression of BDNF, p-AKT/AKT, and TrKB, and this inhibition was recovered by BDNF-AS siRNA. In summary, this study indicates that BDNF-AS siRNA induces activation of the BDNF-TrkB-PI3K/Akt pathway following H/R-induced neurotoxicity. These findings will be useful toward the application of BDNF-AS siRNA for the treatment of neurodegenerative diseases.

  13. Structural and mutational analyses of cis-acting sequences in the 5'-untranslated region of satellite RNA of bamboo mosaic potexvirus

    International Nuclear Information System (INIS)

    Annamalai, Padmanaban; Hsu, Y.-H.; Liu, Y.-P.; Tsai, C.-H.; Lin, N.-S.

    2003-01-01

    The satellite RNA of Bamboo mosaic virus (satBaMV) contains on open reading frame for a 20-kDa protein that is flanked by a 5'-untranslated region (UTR) of 159 nucleotides (nt) and a 3'-UTR of 129 nt. A secondary structure was predicted for the 5'-UTR of satBaMV RNA, which folds into a large stem-loop (LSL) and a small stem-loop. Enzymatic probing confirmed the existence of LSL (nt 8-138) in the 5'-UTR. The essential cis-acting sequences in the 5'-UTR required for satBaMV RNA replication were determined by deletion and substitution mutagenesis. Their replication efficiencies were analyzed in Nicotiana benthamiana protoplasts and Chenopodium quinoa plants coinoculated with helper BaMV RNA. All deletion mutants abolished the replication of satBaMV RNA, whereas mutations introduced in most of the loop regions and stems showed either no replication or a decreased replication efficiency. Mutations that affected the positive-strand satBaMV RNA accumulation also affected the accumulation of negative-strand RNA; however, the accumulation of genomic and subgenomic RNAs of BaMV were not affected. Moreover, covariation analyses of natural satBaMV variants provide substantial evidence that the secondary structure in the 5'-UTR of satBaMV is necessary for efficient replication

  14. RNA and RNP as Building Blocks for Nanotechnology and Synthetic Biology.

    Science.gov (United States)

    Ohno, Hirohisa; Saito, Hirohide

    2016-01-01

    Recent technologies that aimed to elucidate cellular function have revealed essential roles for RNA molecules in living systems. Our knowledge concerning functional and structural information of naturally occurring RNA and RNA-protein (RNP) complexes is increasing rapidly. RNA and RNP interaction motifs are structural units that function as building blocks to constitute variety of complex structures. RNA-central synthetic biology and nanotechnology are constructive approaches that employ the accumulated information and build synthetic RNA (RNP)-based circuits and nanostructures. Here, we describe how to design and construct synthetic RNA (RNP)-based devices and structures at the nanometer-scale for biological and future therapeutic applications. RNA/RNP nanostructures can also be utilized as the molecular scaffold to control the localization or interactions of target molecule(s). Moreover, RNA motifs recognized by RNA-binding proteins can be applied to make protein-responsive translational "switches" that can turn gene expression "on" or "off" depending on the intracellular environment. This "synthetic RNA and RNP world" will expand tools for nanotechnology and synthetic biology. In addition, these reconstructive approaches would lead to a greater understanding of building principle in naturally occurring RNA/RNP molecules and systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction.

    Science.gov (United States)

    Boniecki, Michal J; Lach, Grzegorz; Dawson, Wayne K; Tomala, Konrad; Lukasz, Pawel; Soltysinski, Tomasz; Rother, Kristian M; Bujnicki, Janusz M

    2016-04-20

    RNA molecules play fundamental roles in cellular processes. Their function and interactions with other biomolecules are dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is laborious and challenging, and therefore, the majority of known RNAs remain structurally uncharacterized. Here, we present SimRNA: a new method for computational RNA 3D structure prediction, which uses a coarse-grained representation, relies on the Monte Carlo method for sampling the conformational space, and employs a statistical potential to approximate the energy and identify conformations that correspond to biologically relevant structures. SimRNA can fold RNA molecules using only sequence information, and, on established test sequences, it recapitulates secondary structure with high accuracy, including correct prediction of pseudoknots. For modeling of complex 3D structures, it can use additional restraints, derived from experimental or computational analyses, including information about secondary structure and/or long-range contacts. SimRNA also can be used to analyze conformational landscapes and identify potential alternative structures. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export.

    Science.gov (United States)

    Kristó, Ildikó; Bajusz, Csaba; Borsos, Barbara N; Pankotai, Tibor; Dopie, Joseph; Jankovics, Ferenc; Vartiainen, Maria K; Erdélyi, Miklós; Vilmos, Péter

    2017-10-01

    Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of an anti-oxidative ACAT inhibitor on apoptosis/necrosis and cholesterol accumulation under oxidative stress in THP-1 cell-derived foam cells.

    Science.gov (United States)

    Miike, Tomohiro; Shirahase, Hiroaki; Jino, Hiroshi; Kunishiro, Kazuyoshi; Kanda, Mamoru; Kurahashi, Kazuyoshi

    2008-01-02

    THP-1 cell-derived foam cells were exposed to oxidative stress through combined treatment with acetylated LDL (acLDL) and copper ions (Cu2+). The foam cells showed caspase-dependent apoptotic changes on exposure to oxidative stress for 6 h, and necrotic changes with the leakage of LDH after 24 h. KY-455, an anti-oxidative ACAT inhibitor, and ascorbic acid (VC) but not YM-750, an ACAT inhibitor, prevented apoptotic and necrotic changes. These preventive effects of KY-455 and VC were accompanied by the inhibition of lipid peroxidation in culture medium containing acLDL and Cu2+, suggesting the involvement of oxidized acLDL in apoptosis and necrosis. Foam cells accumulated esterified cholesterol (EC) for 24 h in the presence of acLDL without Cu2+, which was suppressed by KY-455 and YM-750. Foam cells showed necrotic changes and died in the presence of acLDL and Cu2+. KY-455 but not YM-750 prevented cell death and reduced the amount of EC accumulated. The foam cells treated with VC further accumulated EC without necrotic changes for 24 h even in the presence of acLDL and Cu2+. YM-750 as well as KY-455 inhibited lipid accumulation when co-incubated with VC in foam cells exposed to oxidative stress. It is concluded that an anti-oxidative ACAT inhibitor or the combination of an antioxidant and an ACAT inhibitor protects foam cells from oxidative stress and effectively reduces cholesterol levels, which would be a promising approach in anti-atherosclerotic therapy.

  18. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    Science.gov (United States)

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  19. An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions

    Directory of Open Access Journals (Sweden)

    Daisy W. Leung

    2015-04-01

    Full Text Available During viral RNA synthesis, Ebola virus (EBOV nucleoprotein (NP alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20–48 that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.

  20. An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions.

    Science.gov (United States)

    Leung, Daisy W; Borek, Dominika; Luthra, Priya; Binning, Jennifer M; Anantpadma, Manu; Liu, Gai; Harvey, Ian B; Su, Zhaoming; Endlich-Frazier, Ariel; Pan, Juanli; Shabman, Reed S; Chiu, Wah; Davey, Robert A; Otwinowski, Zbyszek; Basler, Christopher F; Amarasinghe, Gaya K

    2015-04-21

    During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20-48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. A novel method for RNA extraction from FFPE samples reveals significant differences in biomarker expression between orthotopic and subcutaneous pancreatic cancer patient-derived xenografts.

    Science.gov (United States)

    Hoover, Malachia; Adamian, Yvess; Brown, Mark; Maawy, Ali; Chang, Alexander; Lee, Jacqueline; Gharibi, Armen; Katz, Matthew H; Fleming, Jason; Hoffman, Robert M; Bouvet, Michael; Doebler, Robert; Kelber, Jonathan A

    2017-01-24

    Next-generation sequencing (NGS) can identify and validate new biomarkers of cancer onset, progression and therapy resistance. Substantial archives of formalin-fixed, paraffin-embedded (FFPE) cancer samples from patients represent a rich resource for linking molecular signatures to clinical data. However, performing NGS on FFPE samples is limited by poor RNA purification methods. To address this hurdle, we developed an improved methodology for extracting high-quality RNA from FFPE samples. By briefly integrating a newly-designed micro-homogenizing (mH) tool with commercially available FFPE RNA extraction protocols, RNA recovery is increased by approximately 3-fold while maintaining standard A260/A280 ratios and RNA quality index (RQI) values. Furthermore, we demonstrate that the mH-purified FFPE RNAs are longer and of higher integrity. Previous studies have suggested that pancreatic ductal adenocarcinoma (PDAC) gene expression signatures vary significantly under in vitro versus in vivo and in vivo subcutaneous versus orthotopic conditions. By using our improved mH-based method, we were able to preserve established expression patterns of KRas-dependency genes within these three unique microenvironments. Finally, expression analysis of novel biomarkers in KRas mutant PDAC samples revealed that PEAK1 decreases and MST1R increases by over 100-fold in orthotopic versus subcutaneous microenvironments. Interestingly, however, only PEAK1 levels remain elevated in orthotopically grown KRas wild-type PDAC cells. These results demonstrate the critical nature of the orthotopic tumor microenvironment when evaluating the clinical relevance of new biomarkers in cells or patient-derived samples. Furthermore, this new mH-based FFPE RNA extraction method has the potential to enhance and expand future FFPE-RNA-NGS cancer biomarker studies.

  2. Characterization of long noncoding RNA and messenger RNA signatures in melanoma tumorigenesis and metastasis.

    Directory of Open Access Journals (Sweden)

    Siqi Wang

    Full Text Available The incidence of melanoma, the most aggressive and life-threatening form of skin cancer, has significantly risen over recent decades. Therefore, it is essential to identify the mechanisms that underlie melanoma tumorigenesis and metastasis and to explore novel and effective melanoma treatment strategies. Accumulating evidence s uggests that aberrantly expressed long noncoding RNAs (lncRNAs have vital functions in multiple cancers. However, lncRNA functions in melanoma tumorigenesis and metastasis remain unclear. In this study, we investigated lncRNA and messenger RNA (mRNA expression profiles in primary melanomas, metastatic melanomas and normal skin samples from the Gene Expression Omnibus database. We used GSE15605 as the training set (n = 74 and GSE7553 as the validation set (n = 58. In three comparisons (primary melanoma versus normal skin, metastatic melanoma versus normal skin, and metastatic melanoma versus primary melanoma, 178, 295 and 48 lncRNAs and 847, 1758, and 295 mRNAs were aberrantly expressed, respectively. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses to examine the differentially expressed mRNAs, and potential core lncRNAs were predicted by lncRNA-mRNA co-expression networks. Based on our results, 15 lncRNAs and 144 mRNAs were significantly associated with melanoma tumorigenesis and metastasis. A subsequent analysis suggested a critical role for a five-lncRNA signature during melanoma tumorigenesis and metastasis. Low expression of U47924.27 was significantly associated with decreased survival of patients with melanoma. To the best of our knowledge, this study is the first to explore the expression patterns of lncRNAs and mRNAs during melanoma tumorigenesis and metastasis by re-annotating microarray data from the Gene Expression Omnibus (GEO microarray dataset. These findings reveal potential roles for lncRNAs during melanoma tumorigenesis and metastasis and provide a rich candidate

  3. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Tetsushi, E-mail: tiida@nig.ac.jp [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 (Japan); Iida, Naoko [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Tsutsui, Yasuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda-cho, Midori-ku, Yokohama 226-8501 (Japan); Yamao, Fumiaki [Division of Mutagenesis, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan); Kobayashi, Takehiko [Division of Cytogenetics, National Institute of Genetics, Mishima, 1111 Yata, Mishima 411-8540 (Japan); The Graduate University for Advanced Studies, Sokendai, Mishima, 1111 Yata, Mishima 411-8540 (Japan)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  4. Development of the nested polymerase chain reaction (PCR) for detection of hepatitis C virus RNA in blood derivatives. Final report for the period 15 December 1994 - 15 December 1995

    International Nuclear Information System (INIS)

    Pavelic, J.

    1996-07-01

    Testing for the presence of hepatitis C virus (HCV) in blood derivatives used in clinical medicine is important to ensure the safety of such preparations. A reliable and reproducible method is described for the isolation of HCV RNA, subsequent reverse transcription and nested polymerase chain reaction (PCR) from blood derivatives. Of 17 batches of blood derivatives (14 negative for anti-HCV and 3 of unknown anti-HCV status) five were found to be positive in the nested PCR. (author). 4 refs, 3 figs, 1 tab

  5. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles.

    Science.gov (United States)

    Boerneke, Mark A; Dibrov, Sergey M; Hermann, Thomas

    2016-03-14

    RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base-pair interactions. Herein, we report the crystal-structure-guided design of highly stable RNA nanotriangles that self-assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so-far smallest circularly closed nanoobject made entirely of double-stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand-responsive RNA switches, which offer the opportunity to control self-assembly and dissociation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Analysis of the bovine monocyte-derived macrophage response to Mycobacterium avium subspecies paratuberculosis infection using RNA-seq

    Directory of Open Access Journals (Sweden)

    Maura E Casey

    2015-02-01

    Full Text Available Johne’s disease, caused by infection with Mycobacterium avium subsp. paratuberculosis, (MAP, is a chronic intestinal disease of ruminants with serious economic consequences for cattle production in the United States and elsewhere. During infection, MAP bacilli are phagocytosed and subvert host macrophage processes, resulting in subclinical infections that can lead to immunopathology and dissemination of disease. Analysis of the host macrophage transcriptome during infection can therefore shed light on the molecular mechanisms and host-pathogen interplay associated with Johne’s disease. Here we describe results of an in vitro study of the bovine monocyte-derived macrophage (MDM transcriptome response during MAP infection using RNA-seq. MDM were obtained from seven age- and sex-matched Holstein-Friesian cattle and were infected with MAP across a six-hour infection time course with non-infected controls. We observed 245 and 574 differentially expressed genes in MAP-infected versus non-infected control samples (adjusted P value ≤ 0.05 at 2 and 6 hours post-infection, respectively. Functional analyses of these differentially expressed genes, including biological pathway enrichment, highlighted potential functional roles for genes that have not been previously described in the host response to infection with MAP bacilli. In addition, differential expression of pro- and anti-inflammatory cytokine genes, such as those associated with the IL-10 signaling pathway, and other immune-related genes that encode proteins involved in the bovine macrophage response to MAP infection emphasize the balance between protective host immunity and bacilli survival and proliferation. Systematic comparisons of RNA-seq gene expression results with Affymetrix® microarray data generated from the same experimental samples also demonstrated that RNA-seq represents a superior technology for studying host transcriptional responses to intracellular infection.

  7. Glia to axon RNA transfer.

    Science.gov (United States)

    Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A

    2014-03-01

    The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased. Copyright © 2013 Wiley Periodicals, Inc.

  8. Circular RNA (circRNA) was an important bridge in the switch from the RNA world to the DNA world.

    Science.gov (United States)

    Soslau, Gerald

    2018-06-14

    The concept that life on Earth began as an RNA world has been built upon extensive experimentation demonstrating that many of the building blocks required for living cells could be synthesized in the laboratory under conditions approximating our primordial world. Many of the building blocks for life have also been found in meteorites indicating that meteors may have been a source for these molecules, or more likely, that they represent the chemical library present in most/all bodies in the universe after the big bang. Perhaps the most important support for the concept comes from the fact that some RNA species possess catalytic activity, ribozymes, and that RNA could be reverse transcribe to DNA. The thrust of numerous papers on this topic has been to explore how the available molecules on Earth, at its birth, gave rise to life as we know it today. This paper focuses more on a reverse view of the topic. The "how" molecular building blocks were synthesized is not addressed nor how the "first" RNA molecules were synthesized. We can clearly speculate on the variable environmental conditions and chemistry available on Earth billions of years ago. However, we can never truly replicate the changing conditions or know the chemical composition of Earth at the beginning of time. We can, however, confirm that over millions, perhaps billions of years the basic building blocks for life accumulated sufficiently to initiate evolution to an RNA world followed by our RNA/DNA world. Here we are attempting to take the information from our current knowledge of biology and by inference and extrapolation work backward to hypothesize biological events in the march forward from RNA to DNA. It is proposed that the primordial replicating RNA cell, the ribocyte, evolved from liposomes encompassing required reactants and products for "life" and that ribonucleopeptide complexes formed membrane pores to support bidirectional ion and molecular transport to maintain biological functions and

  9. The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage

    DEFF Research Database (Denmark)

    Lafuente-Barquero, Juan; Luke-Glaser, Sarah; Graf, Marco

    2017-01-01

    of Fanconi anemia protein M (FANCM), is required for cell viability in the absence of RNase H enzymes. The integrity of the Mph1 helicase domain is crucial to prevent the accumulation of RNA-DNA hybrids and RNA-DNA hybrid-dependent DNA damage, as determined by Rad52 foci. Mph1 forms foci when RNA-DNA hybrids...

  10. MOLECULAR-GENETIC BASIS OF HIGHER PLANTS TOLERANCE TO, AND ACCUMULATION OF, CADMIUM

    Directory of Open Access Journals (Sweden)

    Olga A Kulaeva

    2010-09-01

    Full Text Available Cadmium (Cd is one of the most wide-ranged and dangerous pollutants for all living organisms, including plants. At present time the intensive studies of mechanisms of Cd accumulation in plant tissues and plant tolerance to its toxic influence are performed. Data about variation of Cd tolerance and accumulation traits in natural populations of hyperaccumulators species as well as important crops were obtained. A series of mutants with changed sensitivity to Cd was obtained. In recent decade several classes of proteins involving in cell responses to Cd ions were revealed. An important role of microRNA in plant adaptation to Cd was recently demonstrated. Studies of molecular-genetic mechanisms of Cd accumulation and plant tolerance to it are theoretical basis for development of phytoremediation technologies of soil contaminated with heavy metals and breeding of crop varieties with decreased Cd accumulation.

  11. Evolutionary rate variation and RNA secondary structure prediction

    DEFF Research Database (Denmark)

    Knudsen, B.; Andersen, E.S.; Damgaard, C.

    2004-01-01

    Predicting RNA secondary structure using evolutionary history can be carried out by using an alignment of related RNA sequences with conserved structure. Accurately determining evolutionary substitution rates for base pairs and single stranded nucleotides is a concern for methods based on this type...... by applying rates derived from tRNA and rRNA to the prediction of the much more rapidly evolving 5'-region of HIV-1. We find that the HIV-1 prediction is in agreement with experimental data, even though the relative evolutionary rate between A and G is significantly increased, both in stem and loop regions...

  12. A long and abundant non-coding RNA in Lactobacillus salivarius.

    Science.gov (United States)

    Cousin, Fabien J; Lynch, Denise B; Chuat, Victoria; Bourin, Maxence J B; Casey, Pat G; Dalmasso, Marion; Harris, Hugh M B; McCann, Angela; O'Toole, Paul W

    2017-09-01

    Lactobacillus salivarius , found in the intestinal microbiota of humans and animals, is studied as an example of the sub-dominant intestinal commensals that may impart benefits upon their host. Strains typically harbour at least one megaplasmid that encodes functions contributing to contingency metabolism and environmental adaptation. RNA sequencing (RNA-seq)transcriptomic analysis of L. salivarius strain UCC118 identified the presence of a novel unusually abundant long non-coding RNA (lncRNA) encoded by the megaplasmid, and which represented more than 75 % of the total RNA-seq reads after depletion of rRNA species. The expression level of this 520 nt lncRNA in L. salivarius UCC118 exceeded that of the 16S rRNA, it accumulated during growth, was very stable over time and was also expressed during intestinal transit in a mouse. This lncRNA sequence is specific to the L. salivarius species; however, among 45 L . salivarius genomes analysed, not all (only 34) harboured the sequence for the lncRNA. This lncRNA was produced in 27 tested L. salivarius strains, but at strain-specific expression levels. High-level lncRNA expression correlated with high megaplasmid copy number. Transcriptome analysis of a deletion mutant lacking this lncRNA identified altered expression levels of genes in a number of pathways, but a definitive function of this new lncRNA was not identified. This lncRNA presents distinctive and unique properties, and suggests potential basic and applied scientific developments of this phenomenon.

  13. Comparative analysis of virus-derived small RNAs within cassava (Manihot esculenta Crantz) infected with cassava brown streak viruses.

    Science.gov (United States)

    Ogwok, Emmanuel; Ilyas, Muhammad; Alicai, Titus; Rey, Marie E C; Taylor, Nigel J

    2016-04-02

    Infection of plant cells by viral pathogens triggers RNA silencing, an innate antiviral defense mechanism. In response to infection, small RNAs (sRNAs) are produced that associate with Argonaute (AGO)-containing silencing complexes which act to inactivate viral genomes by posttranscriptional gene silencing (PTGS). Deep sequencing was used to compare virus-derived small RNAs (vsRNAs) in cassava genotypes NASE 3, TME 204 and 60444 infected with the positive sense single-stranded RNA (+ssRNA) viruses cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), the causal agents of cassava brown streak disease (CBSD). An abundance of 21-24nt vsRNAs was detected and mapped, covering the entire CBSV and UCBSV genomes. The 21nt vsRNAs were most predominant, followed by the 22 nt class with a slight bias toward sense compared to antisense polarity, and a bias for adenine and uracil bases present at the 5'-terminus. Distribution and frequency of vsRNAs differed between cassava genotypes and viral genomes. In susceptible genotypes TME 204 and 60444, CBSV-derived sRNAs were seen in greater abundance than UCBSV-derived sRNAs. NASE 3, known to be resistant to UCBSV, accumulated negligible UCBSV-derived sRNAs but high populations of CBSV-derived sRNAs. Transcript levels of cassava homologues of AGO2, DCL2 and DCL4, which are central to the gene-silencing complex, were found to be differentially regulated in CBSV- and UCBSV-infected plants across genotypes, suggesting these proteins play a role in antiviral defense. Irrespective of genotype or viral pathogen, maximum populations of vsRNAs mapped to the cytoplasmic inclusion, P1 and P3 protein-encoding regions. Our results indicate disparity between CBSV and UCBSV host-virus interaction mechanisms, and provide insight into the role of virus-induced gene silencing as a mechanism of resistance to CBSD. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs.

    Directory of Open Access Journals (Sweden)

    Federica Collino

    Full Text Available BACKGROUND: Cell-derived microvesicles (MVs have been described as a new mechanism of cell-to-cell communication. MVs after internalization within target cells may deliver genetic information. Human bone marrow derived mesenchymal stem cells (MSCs and liver resident stem cells (HLSCs were shown to release MVs shuttling functional mRNAs. The aim of the present study was to evaluate whether MVs derived from MSCs and HLSCs contained selected micro-RNAs (miRNAs. METHODOLOGY/PRINCIPAL FINDINGS: MVs were isolated from MSCs and HLSCs. The presence in MVs of selected ribonucleoproteins involved in the traffic and stabilization of RNA was evaluated. We observed that MVs contained TIA, TIAR and HuR multifunctional proteins expressed in nuclei and stress granules, Stau1 and 2 implicated in the transport and stability of mRNA and Ago2 involved in miRNA transport and processing. RNA extracted from MVs and cells of origin was profiled for 365 known human mature miRNAs by real time PCR. Hierarchical clustering and similarity analysis of miRNAs showed 41 co-expressed miRNAs in MVs and cells. Some miRNAs were accumulated within MVs and absent in the cells after MV release; others were retained within the cells and not secreted in MVs. Gene ontology analysis of predicted and validated targets showed that the high expressed miRNAs in cells and MVs could be involved in multi-organ development, cell survival and differentiation. Few selected miRNAs shuttled by MVs were also associated with the immune system regulation. The highly expressed miRNAs in MVs were transferred to target cells after MV incorporation. CONCLUSIONS: This study demonstrated that MVs contained ribonucleoproteins involved in the intracellular traffic of RNA and selected pattern of miRNAs, suggesting a dynamic regulation of RNA compartmentalization in MVs. The observation that MV-highly expressed miRNAs were transferred to target cells, rises the possibility that the biological effect of stem

  15. Low Doses of Cadmium Chloride and Methallothionein-1-Bound Cadmium Display Different Accumulation Kinetics and Induce Different Genes in Cells of the Human Nephron

    Directory of Open Access Journals (Sweden)

    Dana Cucu

    2011-08-01

    Full Text Available Background/Aims: The present study was conducted to investigate the renal tubular handling of inorganic cadmium (Cd2+ by exposing primary human tubular cell cultures to physiologically relevant doses of cadmium chloride (CdCl2. Furthermore, the cellular accumulation of Cd2+ was compared to that of metallothionein-1-bound Cd (Cd7MT-1. Finally, this study aimed to investigate the effect of the accumulation of Cd (both Cd2+ and Cd7MT-1 in renal cells on the expression of genes relevant to nephrotoxic processes. Methods: Cd concentration was measured using atomic absorption spectrometry. mRNA expression was evaluated by quantitative real-time RT-PCR. Results: Cd2+ accumulated into human tubular cells in a concentration- and time-dependent way. Furthermore, cellular accumulation of Cd2+ was different from the cellular accumulation of Cd7MT-1, indicative for different uptake routes. Finally, mRNA expression of the genes encoding the anti-oxidative proteins metallothionein-1 (MT-1 and heme-oxygenase-1 (HO-1 as well as the pro-apoptotic Bcl-2-associated X protein (Bax were upregulated by CdCl2 and not by Cd7MT1. Conclusion: In the presence of physiologically relevant Cd concentrations, tubular accumulation of the element in its inorganic form is different from that of Cd7MT-1. Furthermore, the tubular accumulation of inorganic Cd induces mRNA expression of genes of which the protein products may play a role in Cd-associated renal toxicity.

  16. A Specific Hepatic Transfer RNA for Phosphoserine*

    Science.gov (United States)

    Mäenpää, Pekka H.; Bernfield, Merton R.

    1970-01-01

    Radioactive O-phosphoryl-L-serine was detected after alkaline deacylation of rat and rooster liver [3H]seryl-tRNA acylated in vitro with homologous synthetases. Ribonuclease treatment of this tRNA yielded a compound with the properties of phosphoseryl-adenosine. Benzoylated DEAE-cellulose chromatography of seryl-tRNA yielded four distinct peaks, only one of which contained phosphoserine. A unique fraction for phosphoserine was also found on chromatography of nonacylated tRNA. In ribosome binding studies, this fraction responded very slightly with poly(U,C), but not with any of the known serine trinucleotide codons. Substantial incorporation of [3H]-serine into protein from this tRNA species was observed in an aminoacyl-tRNA dependent polysomal system derived from chick oviducts. No phosphoserine was found in Escherichia coli or yeast seryl-tRNA acylated with homologous enzymes, nor in E. coli seryl-tRNA acylated with liver synthetase. In the absence of tRNA, free phosphoserine was not formed in reaction mixtures, which suggests that phosphoseryl-tRNA arises by phosphorylation of the unique seryl-tRNA species. These results demonstrate a discrete tRNASer species in rat and rooster liver containing phosphoserine and suggest that this tRNA is involved in ribosomal polypeptide synthesis. PMID:4943179

  17. Is TNF-a-targeted short hairpin RNA (shRNA) a novel potential therapeutic tool in psoriasis treatment?

    DEFF Research Database (Denmark)

    Stenderup, Karin; Jakobsen, Maria; Rosada, Cecilia

    2008-01-01

      TNF-α is a well known target in psoriasis treatment and biological treatments targeting TNF-a are already clinically used against psoriasis and psoriasis arthritis. Attention is however given to a novel therapeutic tool: RNA interference that controls gene silencing. This study investigates...... the efficiency of targeting TNF-a with specific short hairpin RNA (shRNA) and explores its potential in treating psoriasis. ShRNAs targeting human TNF-α mRNA were generated. Their efficiency in down-regulating TNF-a protein expression was evaluated using a Renilla luciferase screening-assay and a transient co...... TNF-a shRNA was used to transduce HEK293 cells and verify vector-derived TNF-a knockdown in vitro. In vivo, psoriasis skin was exposed to lentiviral TNF-a shRNAs by a single intra-dermal injection. Psoriasis skin for the in vivo study was obtained from psoriatic plaque skin biopsies that were...

  18. Analysis of intermolecular RNA-RNA recombination by rubella virus

    International Nuclear Information System (INIS)

    Adams, Sandra D.; Tzeng, W.-P.; Chen, M.-H.; Frey, Teryl K.

    2003-01-01

    To investigate whether rubella virus (RUB) undergoes intermolecular RNA-RNA recombination, cells were cotransfected with pairs of in vitro transcripts from genomic cDNA plasmid vectors engineered to contain nonoverlapping deletions: the replicative transcript maintained the 5'-proximal nonstructural (NS) ORF (which contained the replicase, making it RNA replication competent), had a deletion in the 3'-proximal structural protein (SP) ORF, and maintained the 3' end of the genome, including the putative 3' cis-acting elements (CSE), while the nonreplicative transcript consisted of the 3' half of the genome including the SP-ORF and 3' CSE. Cotransfection yielded plaque-forming virus that synthesized the standard genomic and subgenomic RNAs and thus was generated by RNA-RNA recombination. Using transcripts tagged with a 3'-terminal deletion, it was found that recombinants contained the 3' end derived from the replicative strand, indicating a cis-preference for initiation of negative-strand synthesis. In cotransfections in which the replicative transcript lacked the 3' CSE, recombination occurred, albeit at lower efficiency, indicating that initiation in trans from the NS-ORF can occur. The 3' CSE was sufficient as a nonreplicative transcript, showing that it can serve as a promoter for negative-strand RNA synthesis. While deletion mutagenesis showed that the presence of the junction untranslated region (J-UTR) between the ORFs appeared to be necessary on both transcripts for recombination in this region of the genome, analysis with transcripts tagged with restriction sites showed that the J-UTR was not a hot spot for recombination compared to neighboring regions in both ORFs. Sequence analysis of recombinants revealed that both precise (homologous) and imprecise recombination (aberrant, homologous resulting in duplications) occurred; however, imprecise recombination only involved the J-UTR or the 3' end of the NS-ORF and the J-UTR (maintaining the NS-ORF), indicating

  19. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction

    Science.gov (United States)

    Puton, Tomasz; Kozlowski, Lukasz P.; Rother, Kristian M.; Bujnicki, Janusz M.

    2013-01-01

    We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks. PMID:23435231

  20. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction.

    Science.gov (United States)

    Puton, Tomasz; Kozlowski, Lukasz P; Rother, Kristian M; Bujnicki, Janusz M

    2013-04-01

    We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks.

  1. Evolution of the RNase P RNA structural domain in Leptospira spp

    NARCIS (Netherlands)

    Ravishankar, Vigneshwaran; Ahmed, Ahmed; Sivagnanam, Ulaganathan; Muthuraman, Krishnaraja; Karthikaichamy, Anbarasu; Wilson, Herald A.; Devendran, Ajay; Hartskeerl, Rudy A.; Raj, Stephen M. L.

    2014-01-01

    We have employed the RNase P RNA (RPR) gene, which is present as single copy in chromosome I of Leptospira spp. to investigate the phylogeny of structural domains present in the RNA subunit of the tRNA processing enzyme, RNase P. RPR gene sequences of 150 strains derived from NCBI database along

  2. Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Eiko E Kuramae

    Full Text Available We assessed soil fungal diversity and community structure at two sampling times (t1 = 47 days and t2 = 104 days of plant age in pots associated with four maize cultivars, including two genetically modified (GM cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA templates. We detected no significant differences in soil fungal diversity and community structure associated with different plant cultivars. However, DNA-based analyses yielded lower fungal OTU richness as compared to RNA-based analyses. Clear differences in fungal community structure were also observed in relation to sampling time and the nucleic acid pool targeted (DNA versus RNA. The most abundant soil fungi, as recovered by DNA-based methods, did not necessary represent the most "active" fungi (as recovered via RNA. Interestingly, RNA-derived community compositions at t1 were highly similar to DNA-derived communities at t2, based on presence/absence measures of OTUs. We recovered large proportions of fungal sequences belonging to arbuscular mycorrhizal fungi and Basidiomycota, especially at the RNA level, suggesting that these important and potentially beneficial fungi are not affected by the plant cultivars nor by GM traits (Bt toxin production. Our results suggest that even though DNA- and RNA-derived soil fungal communities can be very different at a given time, RNA composition may have a predictive power of fungal community development through time.

  3. Identification of miR-27b as a novel signature from the mRNA profiles of adipose-derived mesenchymal stem cells involved in the tolerogenic response.

    Directory of Open Access Journals (Sweden)

    Kuang-Den Chen

    Full Text Available Adipose-derived mesenchymal stem cells (adipose-derived MSCs, ASCs possess the ability to differentiate into multiple tissue types and have immune-modulatory properties similar to those of MSCs from other origins. However, the regulation of the MSC-elicited immune-modulatory activity by specific microRNA (miRNA mechanisms remains unexplored. Gene expression profiling with knowledge-based functional enrichment analysis is an appropriate approach for unraveling these mechanisms. This tool can be used to examine the transcripts and miRNA regulators that differentiate the rat tolerogenic orthotopic liver transplantation (OLT; DA liver into PVG and rejection OLT (DA liver into LEW models. In both models, the rejection reaction was observed on postoperative day 7∼14 (rejection phase but was overcome only by the PVG recipients. Thus, the global gene expression patterns of ASCs from spontaneously tolerant (PVG and acute rejecting (LEW rats in response to LPS activation were compared. In this study, we performed miRNA enrichment analysis based on the analysis of pathway, gene ontology (GO terms and transcription factor binding site (TFBS motif annotations. We found that the top candidate, miR-27, was specifically enriched and had the highest predicted frequency. We also identified a greater than 3-fold increase of miR-27b expression in the ASCs of tolerant recipients (DA to PVG compared to those of rejecting recipients (DA to LEW during the rejection phase in the rat OLT model. Furthermore, our data showed that miR-27b knockdown has a positive influence on the allosuppressive activity that inhibits T-cell proliferation. We found that miR-27 knockdown significantly induced the expression of CXCL12 in cultured ASCs and the expression of CXCL12 was responsible for the miR-27b antagomir-mediated inhibition of T-cell proliferation. These results, which through a series of comprehensive miRNA enrichment analyses, might be relevant for stem cell

  4. The CRM domain: an RNA binding module derived from an ancient ribosome-associated protein.

    Science.gov (United States)

    Barkan, Alice; Klipcan, Larik; Ostersetzer, Oren; Kawamura, Tetsuya; Asakura, Yukari; Watkins, Kenneth P

    2007-01-01

    The CRS1-YhbY domain (also called the CRM domain) is represented as a stand-alone protein in Archaea and Bacteria, and in a family of single- and multidomain proteins in plants. The function of this domain is unknown, but structural data and the presence of the domain in several proteins known to interact with RNA have led to the proposal that it binds RNA. Here we describe a phylogenetic analysis of the domain, its incorporation into diverse proteins in plants, and biochemical properties of a prokaryotic and eukaryotic representative of the domain family. We show that a bacterial member of the family, Escherichia coli YhbY, is associated with pre-50S ribosomal subunits, suggesting that YhbY functions in ribosome assembly. GFP fused to a single-domain CRM protein from maize localizes to the nucleolus, suggesting that an analogous activity may have been retained in plants. We show further that an isolated maize CRM domain has RNA binding activity in vitro, and that a small motif shared with KH RNA binding domains, a conserved "GxxG" loop, contributes to its RNA binding activity. These and other results suggest that the CRM domain evolved in the context of ribosome function prior to the divergence of Archaea and Bacteria, that this function has been maintained in extant prokaryotes, and that the domain was recruited to serve as an RNA binding module during the evolution of plant genomes.

  5. The effect on dose accumulation accuracy of inverse-consistency and transitivity error reduced deformation maps

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Bender, Edward T.; Tomé, Wolfgang A.

    2014-01-01

    It has previously been shown that deformable image registrations (DIRs) often result in deformation maps that are neither inverse-consistent nor transitive, and that the dose accumulation based on these deformation maps can be inconsistent if different image pathways are used for dose accumulation. A method presented to reduce inverse consistency and transitivity errors has been shown to result in more consistent dose accumulation, regardless of the image pathway selected for dose accumulation. The present study investigates the effect on the dose accumulation accuracy of deformation maps processed to reduce inverse consistency and transitivity errors. A set of lung 4DCT phases were analysed, consisting of four images on which a dose grid was created. Dose to 75 corresponding anatomical locations was manually tracked. Dose accumulation was performed between all image sets with Demons derived deformation maps as well as deformation maps processed to reduce inverse consistency and transitivity errors. The ground truth accumulated dose was then compared with the accumulated dose derived from DIR. Two dose accumulation image pathways were considered. The post-processing method to reduce inverse consistency and transitivity errors had minimal effect on the dose accumulation accuracy. There was a statistically significant improvement in dose accumulation accuracy for one pathway, but for the other pathway there was no statistically significant difference. A post-processing technique to reduce inverse consistency and transitivity errors has a positive, yet minimal effect on the dose accumulation accuracy. Thus the post-processing technique improves consistency of dose accumulation with minimal effect on dose accumulation accuracy.

  6. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP1 and the viral early proteins

    International Nuclear Information System (INIS)

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-01-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP 1 protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP 1 protein stimulated [ 3 H]thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins

  7. Enhanced accumulation of Kir4.1 protein, but not mRNA, in a murine model of cuprizone-induced demyelination.

    Science.gov (United States)

    Nakajima, Mitsunari; Kawamura, Takuya; Tokui, Ryuji; Furuta, Kohei; Sugino, Mami; Nakanishi, Masayuki; Okuyama, Satoshi; Furukawa, Yoshiko

    2013-11-06

    Two channel proteins, inwardly rectifying potassium channel 4.1 (Kir4.1) and water channel aquaporin-4 (AQP4), were recently identified as targets of an autoantibody response in patients with multiple sclerosis and neuromyelitis optica, respectively. In the present study, we examined the expression patterns of Kir4.1 and AQP4 in a mouse model of demyelination induced by cuprizone, a copper chelator. Demyelination was confirmed by immunohistochemistry using an anti-proteolipid protein antibody in various brain regions, including the corpus callosum, of cuprizone-fed mice. Activation of microglial and astroglial cells was also confirmed by immunohistochemistry, using an anti-ionized calcium binding adapter molecule and a glial fibrillary acidic protein antibody. Western blot analysis revealed the induction of Kir4.1 protein, but not AQP4, in the cortex of cuprizone-fed mice. Immunohistochemical analysis confirmed the Kir4.1 protein induction in microvessels of the cerebral cortex. Real-time polymerase chain reaction analysis revealed that mRNA levels of Kir4.1 and AQP4 in the cortex did not change during cuprizone administration. These findings suggest that enhanced accumulation of Kir4.1 protein in the brain with an inflammatory condition facilitates the autoantibody formation against Kir4.1 in patients with multiple sclerosis. © 2013 Published by Elsevier B.V.

  8. MicroRNA expression characterizes oligometastasis(es).

    Science.gov (United States)

    Lussier, Yves A; Xing, H Rosie; Salama, Joseph K; Khodarev, Nikolai N; Huang, Yong; Zhang, Qingbei; Khan, Sajid A; Yang, Xinan; Hasselle, Michael D; Darga, Thomas E; Malik, Renuka; Fan, Hanli; Perakis, Samantha; Filippo, Matthew; Corbin, Kimberly; Lee, Younghee; Posner, Mitchell C; Chmura, Steven J; Hellman, Samuel; Weichselbaum, Ralph R

    2011-01-01

    Cancer staging and treatment presumes a division into localized or metastatic disease. We proposed an intermediate state defined by ≤ 5 cumulative metastasis(es), termed oligometastases. In contrast to widespread polymetastases, oligometastatic patients may benefit from metastasis-directed local treatments. However, many patients who initially present with oligometastases progress to polymetastases. Predictors of progression could improve patient selection for metastasis-directed therapy. Here, we identified patterns of microRNA expression of tumor samples from oligometastatic patients treated with high-dose radiotherapy. Patients who failed to develop polymetastases are characterized by unique prioritized features of a microRNA classifier that includes the microRNA-200 family. We created an oligometastatic-polymetastatic xenograft model in which the patient-derived microRNAs discriminated between the two metastatic outcomes. MicroRNA-200c enhancement in an oligometastatic cell line resulted in polymetastatic progression. These results demonstrate a biological basis for oligometastases and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment.

  9. SiRNA Crosslinked Nanoparticles for the Treatment of Inflammation-induced Liver Injury.

    Science.gov (United States)

    Tang, Yaqin; Zeng, Ziying; He, Xiao; Wang, Tingting; Ning, Xinghai; Feng, Xuli

    2017-02-01

    RNA interference mediated by small interfering RNA (siRNA) provides a powerful tool for gene regulation, and has a broad potential as a promising therapeutic strategy. However, therapeutics based on siRNA have had limited clinical success due to their undesirable pharmacokinetic properties. This study presents pH-sensitive nanoparticles-based siRNA delivery systems (PNSDS), which are positive-charge-free nanocarriers, composed of siRNA chemically crosslinked with multi-armed poly(ethylene glycol) carriers via acid-labile acetal linkers. The unique siRNA crosslinked structure of PNSDS allows it to have minimal cytotoxicity, high siRNA loading efficiency, and a stimulus-responsive property that enables the selective intracellular release of siRNA in response to pH conditions. This study demonstrates that PNSDS can deliver tumor necrosis factor alpha (TNF-α) siRNA into macrophages and induce the efficient down regulation of the targeted gene in complete cell culture media. Moreover, PNSDS with mannose targeting moieties can selectively accumulate in mice liver, induce specific inhibition of macrophage TNF-α expression in vivo, and consequently protect mice from inflammation-induced liver damages. Therefore, this novel siRNA delivering platform would greatly improve the therapeutic potential of RNAi based therapies.

  10. Investigation of a miRNA-Induced Gene Silencing Technique in Petunia Reveals Alterations in miR173 Precursor Processing and the Accumulation of Secondary siRNAs from Endogenous Genes.

    Directory of Open Access Journals (Sweden)

    Yao Han

    Full Text Available MIGS (miRNA-induced gene silencing is a straightforward and efficient gene silencing technique in Arabidopsis. It works by exploiting miR173 to trigger the production of phasiRNAs (phased small interfering RNAs. MIGS can be used in plant species other than Arabidopsis by co-expression of miR173 and target gene fragments fused to an upstream miR173 target site. However, the efficiency and technical mechanisms have not been thoroughly investigated in other plants. In this work, two vectors, pMIGS-chs and pMIGS-pds, were constructed and transformed into petunia plants. The transgenic plants showed CHS (chalcone synthase and PDS (phytoene desaturase gene-silencing phenotypes respectively, indicating that MIGS functions in petunia. MIGS-chs plants were used to investigate the mechanisms of this technique in petunia. Results of 5'- RACE showed that the miR173 target site was cleaved at the expected position and that endogenous CHS genes were cut at multiple positions. Small RNA deep sequencing analysis showed that the processing of Arabidopsis miR173 precursors in MIGS-chs transgenic petunia plants did not occur in exactly the same way as in Arabidopsis, suggesting differences in the machinery of miRNA processing between plant species. Small RNAs in-phase with the miR173 cleavage register were produced immediately downstream from the cleavage site and out-of-phase small RNAs were accumulated at relatively high levels from processing cycle 5 onwards. Secondary siRNAs were generated from multiple sites of endogenous CHS-A and CHS-J genes, indicating that miR173 cleavage induced siRNAs have the same ability to initiate siRNA transitivity as the siRNAs functioning in co-suppression and hpRNA silencing. On account of the simplicity of vector construction and the transitive amplification of signals from endogenous transcripts, MIGS is a good alternative gene silencing method for plants, especially for silencing a cluster of homologous genes with redundant

  11. Investigation of a miRNA-Induced Gene Silencing Technique in Petunia Reveals Alterations in miR173 Precursor Processing and the Accumulation of Secondary siRNAs from Endogenous Genes.

    Science.gov (United States)

    Han, Yao; Zhang, Bin; Qin, Xiaoting; Li, Mingyang; Guo, Yulong

    2015-01-01

    MIGS (miRNA-induced gene silencing) is a straightforward and efficient gene silencing technique in Arabidopsis. It works by exploiting miR173 to trigger the production of phasiRNAs (phased small interfering RNAs). MIGS can be used in plant species other than Arabidopsis by co-expression of miR173 and target gene fragments fused to an upstream miR173 target site. However, the efficiency and technical mechanisms have not been thoroughly investigated in other plants. In this work, two vectors, pMIGS-chs and pMIGS-pds, were constructed and transformed into petunia plants. The transgenic plants showed CHS (chalcone synthase) and PDS (phytoene desaturase) gene-silencing phenotypes respectively, indicating that MIGS functions in petunia. MIGS-chs plants were used to investigate the mechanisms of this technique in petunia. Results of 5'- RACE showed that the miR173 target site was cleaved at the expected position and that endogenous CHS genes were cut at multiple positions. Small RNA deep sequencing analysis showed that the processing of Arabidopsis miR173 precursors in MIGS-chs transgenic petunia plants did not occur in exactly the same way as in Arabidopsis, suggesting differences in the machinery of miRNA processing between plant species. Small RNAs in-phase with the miR173 cleavage register were produced immediately downstream from the cleavage site and out-of-phase small RNAs were accumulated at relatively high levels from processing cycle 5 onwards. Secondary siRNAs were generated from multiple sites of endogenous CHS-A and CHS-J genes, indicating that miR173 cleavage induced siRNAs have the same ability to initiate siRNA transitivity as the siRNAs functioning in co-suppression and hpRNA silencing. On account of the simplicity of vector construction and the transitive amplification of signals from endogenous transcripts, MIGS is a good alternative gene silencing method for plants, especially for silencing a cluster of homologous genes with redundant functions.

  12. Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment.

    Directory of Open Access Journals (Sweden)

    Aaron J Saathoff

    Full Text Available Cinnamyl alcohol dehydrogenase (CAD catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switchgrass, RNA mediated silencing of CAD was induced through Agrobacterium mediated transformation of cv. "Alamo" with an inverted repeat construct containing a fragment derived from the coding sequence of PviCAD2. The resulting primary transformants accumulated less CAD RNA transcript and protein than control transformants and were demonstrated to be stably transformed with between 1 and 5 copies of the T-DNA. CAD activity against coniferaldehyde, and sinapaldehyde in stems of silenced lines was significantly reduced as was overall lignin and cutin. Glucose release from ground samples pretreated with ammonium hydroxide and digested with cellulases was greater than in control transformants. When stained with the lignin and cutin specific stain phloroglucinol-HCl the staining intensity of one line indicated greater incorporation of hydroxycinnamyl aldehydes in the lignin.

  13. Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment.

    Science.gov (United States)

    Saathoff, Aaron J; Sarath, Gautam; Chow, Elaine K; Dien, Bruce S; Tobias, Christian M

    2011-01-27

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switchgrass, RNA mediated silencing of CAD was induced through Agrobacterium mediated transformation of cv. "Alamo" with an inverted repeat construct containing a fragment derived from the coding sequence of PviCAD2. The resulting primary transformants accumulated less CAD RNA transcript and protein than control transformants and were demonstrated to be stably transformed with between 1 and 5 copies of the T-DNA. CAD activity against coniferaldehyde, and sinapaldehyde in stems of silenced lines was significantly reduced as was overall lignin and cutin. Glucose release from ground samples pretreated with ammonium hydroxide and digested with cellulases was greater than in control transformants. When stained with the lignin and cutin specific stain phloroglucinol-HCl the staining intensity of one line indicated greater incorporation of hydroxycinnamyl aldehydes in the lignin.

  14. Ordinary differential equation for local accumulation time.

    Science.gov (United States)

    Berezhkovskii, Alexander M

    2011-08-21

    Cell differentiation in a developing tissue is controlled by the concentration fields of signaling molecules called morphogens. Formation of these concentration fields can be described by the reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be characterized by the local accumulation time, defined in terms of the local relaxation function. Here, we show that this time satisfies an ordinary differential equation. Using this equation one can straightforwardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation function by solving the partial differential equation, as was done in previous studies. We derive this ordinary differential equation together with the accompanying boundary conditions and demonstrate that the earlier obtained results for the local accumulation time can be recovered by solving this equation. © 2011 American Institute of Physics

  15. Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection.

    Directory of Open Access Journals (Sweden)

    Evgeny A Glazov

    Full Text Available MicroRNA (miRNA and other types of small regulatory RNAs play a crucial role in the regulation of gene expression in eukaryotes. Several distinct classes of small regulatory RNAs have been discovered in recent years. To extend the repertoire of small RNAs characterized in mammals and to examine relationship between host miRNA expression and viral infection we used Illumina's ultrahigh throughput sequencing approach. We sequenced three small RNA libraries prepared from cell line derived from the adult bovine kidney under normal conditions and upon infection of the cell line with Bovine herpesvirus 1. We used a bioinformatics approach to distinguish authentic mature miRNA sequences from other classes of small RNAs and short RNA fragments represented in the sequencing data. Using this approach we detected 219 out of 356 known bovine miRNAs and 115 respective miRNA* sequences. In addition we identified five new bovine orthologs of known mammalian miRNAs and discovered 268 new cow miRNAs many of which are not identifiable in other mammalian genomes and thus might be specific to the ruminant lineage. In addition we found seven new bovine mirtron candidates. We also discovered 10 small nucleolar RNA (snoRNA loci that give rise to small RNA with possible miRNA-like function. Results presented in this study extend our knowledge of the biology and evolution of small regulatory RNAs in mammals and illuminate mechanisms of small RNA biogenesis and function. New miRNA sequences and the original sequencing data have been submitted to miRNA repository (miRBase and NCBI GEO archive respectively. We envisage that these resources will facilitate functional annotation of the bovine genome and promote further functional and comparative genomics studies of small regulatory RNA in mammals.

  16. Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA–microRNA regulatory network in nasopharyngeal carcinoma model systems

    Directory of Open Access Journals (Sweden)

    Carol Ying-Ying Szeto

    2014-01-01

    Full Text Available Nasopharyngeal carcinoma (NPC is a prevalent malignancy in Southeast Asia among the Chinese population. Aberrant regulation of transcripts has been implicated in many types of cancers including NPC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing (RNASeq of NPC model systems. Matched total mRNA and small RNA of undifferentiated Epstein–Barr virus (EBV-positive NPC xenograft X666 and its derived cell line C666, well-differentiated NPC cell line HK1, and the immortalized nasopharyngeal epithelial cell line NP460 were sequenced by Solexa technology. We found 2812 genes and 149 miRNAs (human and EBV to be differentially expressed in NP460, HK1, C666 and X666 with RNASeq; 533 miRNA–mRNA target pairs were inversely regulated in the three NPC cell lines compared to NP460. Integrated mRNA/miRNA expression profiling and pathway analysis show extracellular matrix organization, Beta-1 integrin cell surface interactions, and the PI3K/AKT, EGFR, ErbB, and Wnt pathways were potentially deregulated in NPC. Real-time quantitative PCR was performed on selected mRNA/miRNAs in order to validate their expression. Transcript sequence variants such as short insertions and deletions (INDEL, single nucleotide variant (SNV, and isomiRs were characterized in the NPC model systems. A novel TP53 transcript variant was identified in NP460, HK1, and C666. Detection of three previously reported novel EBV-encoded BART miRNAs and their isomiRs were also observed. Meta-analysis of a model system to a clinical system aids the choice of different cell lines in NPC studies. This comprehensive characterization of mRNA and miRNA transcriptomes in NPC cell lines and the xenograft provides insights on miRNA regulation of mRNA and valuable resources on transcript variation and regulation in NPC, which are potentially useful for mechanistic and preclinical studies.

  17. Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Daniel Lepe-Soltero

    2017-12-01

    Full Text Available The genome annotation for the model plant Arabidopsis thaliana does not include the primary transcripts from which MIRNAs are processed. Here we present and analyze the raw mRNA sequencing data from wild type and serrate-1 globular stage embryos of A. thaliana, ecotype Columbia. Because SERRATE is required for pri-miRNA processing, these precursors accumulate in serrate-1 mutants, facilitating their detection using standard RNA-Seq protocols. We first use the mapping of the RNA-Seq reads to the reference genome to annotate the potential primary transcripts of MIRNAs expressed in the embryo. We then quantify these pri-miRNAs in wild type and serrate-1 mutants. Finally, we use differential expression analysis to determine which are up-regulated in serrate-1 compared to wild type, to select the best candidates for bona fide pri-miRNAs expressed in the globular stage embryos. In addition, we analyze a previously published RNA-Seq dataset of wild type and dicer-like 1 mutant embryos at the globular stage [1]. Our data are interpreted and discussed in a separate article [2].

  18. Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana.

    Science.gov (United States)

    Lepe-Soltero, Daniel; Armenta-Medina, Alma; Xiang, Daoquan; Datla, Raju; Gillmor, C Stewart; Abreu-Goodger, Cei

    2017-12-01

    The genome annotation for the model plant Arabidopsis thaliana does not include the primary transcripts from which MIRNAs are processed. Here we present and analyze the raw mRNA sequencing data from wild type and serrate-1 globular stage embryos of A. thaliana , ecotype Columbia. Because SERRATE is required for pri-miRNA processing, these precursors accumulate in serrate-1 mutants, facilitating their detection using standard RNA-Seq protocols. We first use the mapping of the RNA-Seq reads to the reference genome to annotate the potential primary transcripts of MIRNAs expressed in the embryo. We then quantify these pri-miRNAs in wild type and serrate-1 mutants. Finally, we use differential expression analysis to determine which are up-regulated in serrate-1 compared to wild type, to select the best candidates for bona fide pri-miRNAs expressed in the globular stage embryos. In addition, we analyze a previously published RNA-Seq dataset of wild type and dicer-like 1 mutant embryos at the globular stage [1]. Our data are interpreted and discussed in a separate article [2].

  19. Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability

    NARCIS (Netherlands)

    Fernandez, J.; Yaman, I.; Mishra, R.; Merrick, W. C.; Snider, M. D.; Lamers, W. H.; Hatzoglou, M.

    2001-01-01

    The cationic amino acid transporter, Cat-1, facilitates the uptake of the essential amino acids arginine and lysine. Amino acid starvation causes accumulation and increased translation of cat-1 mRNA, resulting in a 58-fold increase in protein levels and increased arginine uptake. A bicistronic mRNA

  20. Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered MicroRNA expression in solid tumors

    DEFF Research Database (Denmark)

    Sempere, Lorenzo F; Preis, Meir; Yezefski, Todd

    2010-01-01

    of altered miRNA expression in solid tumors, we developed a sensitive fluorescence-based in situ hybridization (ISH) method to visualize miRNA accumulation within individual cells in formalin-fixed, paraffin-embedded tissue specimens. This ISH method was implemented to be compatible with routine clinical...

  1. Isolation of Exosome-Like Nanoparticles and Analysis of MicroRNAs Derived from Coconut Water Based on Small RNA High-Throughput Sequencing.

    Science.gov (United States)

    Zhao, Zhehao; Yu, Siran; Li, Min; Gui, Xin; Li, Ping

    2018-03-21

    In this study, the presence of microRNAs in coconut water was identified by real-time polymerase chain reaction (PCR) based on the results of high-throughput small RNA sequencing. In addition, the differences in microRNA content between immature and mature coconut water were compared. A total of 47 known microRNAs belonging to 25 families and 14 new microRNAs were identified in coconut endosperm. Through analysis using a target gene prediction software, potential microRNA target genes were identified in the human genome. Real-time PCR showed that the level of most microRNAs was higher in mature coconut water than in immature coconut water. Then, exosome-like nanoparticles were isolated from coconut water. After ultracentrifugation, some particle structures were seen in coconut water samples using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate fluorescence staining. Subsequent scanning electron microscopy observation and dynamic light scattering analysis also revealed some exosome-like nanoparticles in coconut water, and the mean diameters of the particles detected by the two methods were 13.16 and 59.72 nm, respectively. In conclusion, there are extracellular microRNAs in coconut water, and their levels are higher in mature coconut water than in immature coconut water. Some exosome-like nanoparticles were isolated from coconut water, and the diameter of these particles was smaller than that of animal-derived exosomes.

  2. An RNA polymerase II-and AGO4-associated protein acts in RNA-directed DNA methylation

    KAUST Repository

    Gao, Zhihuan

    2010-04-21

    DNA methylation is an important epigenetic mark in many eukaryotes. In plants, 24-nucleotide small interfering RNAs (siRNAs) bound to the effector protein, Argonaute 4 (AGO4), can direct de novo DNA methylation by the methyltransferase DRM2 (refs 2, 4-6). Here we report a new regulator of RNA-directed DNA methylation (RdDM) in Arabidopsis: RDM1. Loss-of-function mutations in the RDM1 gene impair the accumulation of 24-nucleotide siRNAs, reduce DNA methylation, and release transcriptional gene silencing at RdDM target loci. RDM1 encodes a small protein that seems to bind single-stranded methyl DNA, and associates and co-localizes with RNA polymerase II (Pol II, also known as NRPB), AGO4 and DRM2 in the nucleus. Our results indicate that RDM1 is a component of the RdDM effector complex and may have a role in linking siRNA production with pre-existing or de novo cytosine methylation. Our results also indicate that, although RDM1 and Pol V (also known as NRPE) may function together at some RdDM target sites in the peri-nucleolar siRNA processing centre, Pol II rather than Pol V is associated with the RdDM effector complex at target sites in the nucleoplasm. © 2010 Macmillan Publishers Limited. All rights reserved.

  3. A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple.

    Science.gov (United States)

    You, Chun-Xiang; Zhao, Qiang; Wang, Xiao-Fei; Xie, Xing-Bin; Feng, Xiao-Ming; Zhao, Ling-Ling; Shu, Huai-Rui; Hao, Yu-Jin

    2014-02-01

    Although numerous miRNAs have been already isolated from fruit trees, knowledge about miRNA biogenesis is largely unknown in fruit trees. Double-strand RNA-binding (DRB) protein plays an important role in miRNA processing and maturation; however, its role in the regulation of economically important traits is not clear yet in fruit trees. EST blast and RACE amplification were performed to isolate apple MdDRB1 gene. Following expression analysis, RNA binding and protein interaction assays, MdDRB1 was transformed into apple callus and in vitro tissue cultures to characterize the functions of MdDRB1 in miRNA biogenesis, adventitious rooting, leaf development and tree growth habit. MdDRB1 contained two highly conserved DRB domains. Its transcripts existed in all tissues tested and are induced by hormones. It bound to double-strand RNAs and interacted with AtDCL1 (Dicer-Like 1) and MdDCL1. Chip assay indicated its role in miRNA biogenesis. Transgenic analysis showed that MdDRB1 controls adventitious rooting, leaf curvature and tree architecture by modulating the accumulation of miRNAs and the transcript levels of miRNA target genes. Our results demonstrated that MdDRB1 functions in the miRNA biogenesis in a conserved way and that it is a master regulator in the formation of economically important traits in fruit trees. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    Science.gov (United States)

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  5. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    Science.gov (United States)

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-07-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.

  6. Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2016-12-01

    Full Text Available An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32 were allocated to two equal treatment groups: Fed basal diet (control or fed basal diet with additional 200 mg/kg niacin supplementation (niacin. The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p0.05. However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05. In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.

  7. Cloning of cDNA sequences of a progestin-regulated mRNA from MCF7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalbos, D; Westley, B; Alibert, C; Rochefort, H

    1986-01-24

    A cDNA clone corresponding to an mRNA regulated by the progestin R5020, has been isolated by differential screening of a cDNA library from the MCF7 breast cancer cell line, which contains estrogen and progesterone receptors. This probe hybridized with a single species of poly A + RNA of 8-kb molecular weight as shown by Northern blot analysis and could also be used to total RNA preparation. This recombinant cone hybridized specifically to an mRNA coding for a 250,000 daltons protein when translated in vitro. This protein was identical to the 250 kDa progestin-regulated protein that the authors previously described as shown by immunoprecipitation with specific rabbit polyclonal antibodies. Dose-response curve and specificity studies show that the accumulation of the Pg8 mRNA and that of the 250-kDa protein was increased by 5 to 30-fold following progestin treatment and that this effect was mediated by the progesterone receptor. Time course of induction indicated that the accumulation of mRNA was rapid and preceded that of the protein. This is the first report on a cloned cDNA probe of progestin-regulated mRNA in human cell lines.

  8. New insights into siRNA amplification and RNAi.

    Science.gov (United States)

    Zhang, Chi; Ruvkun, Gary

    2012-08-01

    In the nematode Caenorhabditis elegans (C. elegans), gene inactivation by RNA interference can achieve remarkable potency due to the amplification of initial silencing triggers by RNA-dependent RNA polymerases (RdRPs). RdRPs catalyze the biogenesis of an abundant species of secondary small interfering RNAs (siRNAs) using the target mRNA as template. The interaction between primary siRNAs derived from the exogenous double-stranded RNA (dsRNA) trigger and the target mRNA is required for the recruitment of RdRPs. Other genetic requirements for RdRP activities have not been characterized. Recent studies have identified the RDE-10/RDE-11 complex which interacts with the primary siRNA bound target mRNA and acts upstream of the RdRPs. rde-10 and rde-11 mutants show an RNAi defective phenotype because the biogenesis of secondary siRNAs is completely abolished. In addition, the RDE-10/RDE-11 complex plays a similar role in the endogenous RNAi pathway for the biogenesis of a subset of siRNAs targeting recently acquired, duplicated genes.

  9. Cleavage of influenza RNA by using a human PUF-based artificial RNA-binding protein–staphylococcal nuclease hybrid

    International Nuclear Information System (INIS)

    Mori, Tomoaki; Nakamura, Kento; Masaoka, Keisuke; Fujita, Yusuke; Morisada, Ryosuke; Mori, Koichi; Tobimatsu, Takamasa; Sera, Takashi

    2016-01-01

    Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to construct an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms. - Highlights: • A novel RNA restriction enzyme using SNase was developed tor cleave viral RNA. • Our enzyme cleaved influenza RNA with rates >120-fold higher rates a PIN-fusion one. • Our artificial enzyme with the L5 linker showed the highest RNA cleavage rate. • Our artificial enzyme site-selectively cleaved influenza RNA in vitro.

  10. Constitutive mRNA expression and protein activity levels of nine ABC efflux transporters in seven permanent cell lines derived from different tissues of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Fischer, Stephan; Loncar, Jovica; Zaja, Roko; Schnell, Sabine; Schirmer, Kristin; Smital, Tvrtko; Luckenbach, Till

    2011-01-25

    Permanent fish cell lines have become common model systems for determining ecotoxicological effects of pollutants. For these cell lines little is known on the cellular active transport mechanisms that control the amount of a compound entering the cell, such as the MXR (multixenobiotic resistance) system mediated by ATP binding cassette (ABC) transport proteins. Therefore, for toxic evaluation of chemicals with those cells information on MXR is important. We here present data on constitutive mRNA expression and protein activity levels of a series of ABC efflux transporters in seven permanent cell lines derived from liver (RTL-W1; R1) and liver hepatoma (RTH-149), gill (RTgill-W1), gonad (RTG-2), gut (RTgutGC) and brain (RTbrain) of rainbow trout (Oncorhynchus mykiss). In addition to known transporters abcb1 (designated here abcb1a), abcb11, abcc1-3, abcc5 and abcg2, we quantified expression levels of a newly identified abcb1 isoform (abcb1b) and abcc4, previously unknown in trout. Quantitative real time PCR (qPCR) indicated that mRNA of the examined ABC transporters was constitutively expressed in all cell lines. Transporter mRNA expression patterns were similar in all cell lines, with expression levels of abcc transporters being 80 to over 1000 fold higher than for abcg2, abcb1a/b and abcb11 (abcc1-5>abcg2>abcb1a/b, 11). Transporter activity in the cell lines was determined by measuring uptake of transporter type specific fluorescent substrates in the presence of activity inhibitors. The combination of the ABCB1 and ABCC transporter substrate calcein-AM with inhibitors cyclosporine A, PSC833 and MK571 resulted in a concentration-dependent fluorescence increase of up to 3-fold, whereas reversin 205 caused a slight, but not concentration-dependent fluorescence increase. Accumulation of the dyes Hoechst 33342 and 2',7'-dichlorodihydrofluorescein diacetate was basically unchanged in the presence of Ko134 and taurocholate, respectively, indicating low Abcg2 and Abcb11

  11. Shift of microRNA profile upon glioma cell migration using patient-derived spheroids and serum-free conditions

    DEFF Research Database (Denmark)

    Munthe, Sune; Halle, Bo; Boldt, Henning B

    2017-01-01

    Glioblastoma multiforme (GBM) is the most frequent malignant primary brain tumor. A major reason for the overall median survival being only 14.6 months is migrating tumor cells left behind after surgery. Another major reason is tumor cells having a so-called cancer stem cell phenotype being...... therefore resistant towards traditional chemo- and radiotherapy. A group of novel molecular targets are microRNAs (miRNAs). MiRNAs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. The aim of this study was to identify differentially expressed miRNAs in migrating GBM...... cells using serum-free stem cell conditions. We used patient-derived GBM spheroid cultures for a novel serum-free migration assay. MiRNA expression of migrating tumor cells isolated at maximum migration speed was compared with corresponding spheroids using an OpenArray Real-Time PCR System. The mi...

  12. Effects of Enzymatically Synthesized Glycogen and Exercise on Abdominal Fat Accumulation in High-Fat Diet-Fed Mice.

    Science.gov (United States)

    Tamura, Shohei; Honda, Kazuhisa; Morinaga, Ryoji; Saneyasu, Takaoki; Kamisoyama, Hiroshi

    2017-01-01

    The combination of diet and exercise is the first choice for the treatment of obesity and metabolic syndrome. We previously reported that enzymatically synthesized glycogen (ESG) suppresses abdominal fat accumulation in obese rats. However, the effect of the combination of ESG and exercise on abdominal fat accumulation has not yet been investigated. Our goal in this study was therefore to evaluate the effects of dietary ESG and its combination with exercise on abdominal fat accumulation in high-fat diet (HFD)-fed mice. Male ICR mice were assigned to four groups: HFD, HFD containing 20% ESG, HFD with exercise, HFD containing 20% ESG with exercise. Treadmill exercise was performed for 3 wk (25 m/min, 30 min/d, 3 d/wk) after 5-d adaption to running at that speed. Both ESG and exercise significantly reduced the weights of abdominal adipose tissues. In addition, the combination of ESG and exercise significantly suppressed abdominal fat accumulation, suggesting that ESG and exercise showed an additive effect. Exercise significantly increased the mRNA levels of lipid metabolism-related genes such as lipoprotein lipase, peroxisome proliferator-activated receptor delta; factor-delta (PPARδ), carnitin palmitoyltransferase b, adipose triglyceride lipase (ATGL), and uncoupling protein-3 in the gastrocnemius muscle. On the other hand, dietary ESG significantly decreased the mRNA levels of PPARδ and ATGL in the gastrocnemius muscle. These results suggest that the combined treatment of ESG and exercise effectively suppresses abdominal fat accumulation in HFD-fed mice by different mechanisms.

  13. An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing.

    Science.gov (United States)

    Bienk, Konrad; Hvam, Michael Lykke; Pakula, Malgorzata Maria; Dagnæs-Hansen, Frederik; Wengel, Jesper; Malle, Birgitte Mølholm; Kragh-Hansen, Ulrich; Cameron, Jason; Bukrinski, Jens Thostrup; Howard, Kenneth A

    2016-06-28

    Major challenges for the clinical translation of small interfering RNA (siRNA) include overcoming the poor plasma half-life, site-specific delivery and modulation of gene silencing. In this work, we exploit the intrinsic transport properties of human serum albumin to tune the blood circulatory half-life, hepatic accumulation and gene silencing; based on the number of siRNA cholesteryl modifications. We demonstrate by a gel shift assay a strong and specific affinity of recombinant human serum albumin (rHSA) towards cholesteryl-modified siRNA (Kd>1×10(-7)M) dependent on number of modifications. The rHSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies using multiple cholesteryl modifications. A structural-activity-based screen of in vitro EGFP-silencing was used to select optimal siRNA designs containing cholesteryl modifications within the sense strand that were used for in vivo studies. We demonstrate plasma half-life extension in NMRI mice from t1/2 12min (naked) to t1/2 45min (single cholesteryl) and t1/2 71min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing of 28% (rHSA/siRNA) compared to 4% (naked siRNA) 6days post-injection. This work presents a novel albumin-mediated cholesteryl design-based strategy for tuning pharmacokinetics and systemic gene silencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression.

    Science.gov (United States)

    Yao, Shutong; Zong, Chuanlong; Zhang, Ying; Sang, Hui; Yang, Mingfeng; Jiao, Peng; Fang, Yongqi; Yang, Nana; Song, Guohua; Qin, Shucun

    2013-01-01

    This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.

  15. The RNA Polymerase II C-Terminal Domain Phosphatase-Like Protein FIERY2/CPL1 Interacts with eIF4AIII and Is Essential for Nonsense-Mediated mRNA Decay in Arabidopsis

    KAUST Repository

    Cui, Peng; Chen, Tao; Qin, Tao; Ding, Feng; Wang, Zhenyu; Chen, Hao; Xiong, Liming

    2016-01-01

    © 2016 American Society of Plant Biologists. All rights reserved. Nonsense-mediated decay (NMD) is a posttranscriptional surveillance mechanism in eukaryotes that recognizes and degrades transcripts with premature translation-termination codons. The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2 (FRY2; also known as C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 [CPL1]) plays multiple roles in RNA processing in Arabidopsis thaliana. Here, we found that FRY2/CPL1 interacts with two NMD factors, eIF4AIII and UPF3, and is involved in the dephosphorylation of eIF4AIII. This dephosphorylation retains eIF4AIII in the nucleus and limits its accumulation in the cytoplasm. By analyzing RNA-seq data combined with quantitative RT-PCR validation, we found that a subset of alternatively spliced transcripts and 59-extended mRNAs with NMD-eliciting features accumulated in the fry2-1 mutant, cycloheximidetreated wild type, and upf3 mutant plants, indicating that FRY2 is essential for the degradation of these NMD transcripts.

  16. The RNA Polymerase II C-Terminal Domain Phosphatase-Like Protein FIERY2/CPL1 Interacts with eIF4AIII and Is Essential for Nonsense-Mediated mRNA Decay in Arabidopsis

    KAUST Repository

    Cui, Peng

    2016-02-18

    © 2016 American Society of Plant Biologists. All rights reserved. Nonsense-mediated decay (NMD) is a posttranscriptional surveillance mechanism in eukaryotes that recognizes and degrades transcripts with premature translation-termination codons. The RNA polymerase II C-terminal domain phosphatase-like protein FIERY2 (FRY2; also known as C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 [CPL1]) plays multiple roles in RNA processing in Arabidopsis thaliana. Here, we found that FRY2/CPL1 interacts with two NMD factors, eIF4AIII and UPF3, and is involved in the dephosphorylation of eIF4AIII. This dephosphorylation retains eIF4AIII in the nucleus and limits its accumulation in the cytoplasm. By analyzing RNA-seq data combined with quantitative RT-PCR validation, we found that a subset of alternatively spliced transcripts and 59-extended mRNAs with NMD-eliciting features accumulated in the fry2-1 mutant, cycloheximidetreated wild type, and upf3 mutant plants, indicating that FRY2 is essential for the degradation of these NMD transcripts.

  17. MMP2-A2M interaction increases ECM accumulation in aged rat kidney and its modulation by calorie restriction

    Science.gov (United States)

    Kim, Kyung Mok; Chung, Ki Wung; Jeong, Hyeong Oh; Lee, Bonggi; Kim, Dae Hyun; Park, June Whoun; Kim, Seong Min; Yu, Byung Pal; Chung, Hae Young

    2018-01-01

    Age-associated renal fibrosis is related with renal function decline during aging. Imbalance between accumulation and degradation of extracellular matrix is key feature of fibrosis. In this study, RNA-sequencing (RNA-Seq) results based on next-generation sequencing (NGS) data were analyzed to identify key proteins that change during aging and calorie restriction (CR). Among the changed genes, A2M and MMP2, which are known to interact, exhibited the highest between centrality (BC) and degree values when analyzed by protein–protein interaction (PPI). Both mRNA and protein levels of MMP2 and A2M were increased during aging. Furthermore, the interaction between MMP2 and A2M was verified by immunoprecipitation and immunohistochemistry. MMP2 activity was further measured under the presence or absence of A2M-MMP2 interaction. MMP2 activity, which was increased under the absence of A2M-MMP2 interaction, was significantly decreased under the presence of interactions in aged kidney. We further hypothesized that the interaction between A2M-MMP2 played a role in the inactivation of MMP2 leading to accumulation of ECM including collagen type I and IV. Aged kidney showed highly accumulated MMP2 substrate proteins despite of increased MMP2 protein expression and CR blunted these accumulation. Additional in vivo analysis revealed that the signal transducer and activator of transcription (STAT) 3 transcriptional factor was significantly increased thus increasing A2M expression during aging. STAT3 activating cytokines were also highly increased in aged kidney. In conclusion, the results of the present study indicate that A2M-MMP2 interaction has a role in age-associated renal ECM accumulation and in the suppression such fibrosis by CR. PMID:29464020

  18. MicroRNA-1 Regulates the Differentiation of Adipose-Derived Stem Cells into Cardiomyocyte-Like Cells

    Directory of Open Access Journals (Sweden)

    Can Chen

    2018-01-01

    Full Text Available Stem cell transplantation is one of most valuable methods in the treatment of myocardial infarction, and adipose-derived stem cells (ASCs are becoming a hot topic in medical research. Previous studies have shown that ASCs can be differentiated into cardiomyocyte-like cells, but the efficiency and survival rates are low. We investigated the role and mechanism of microRNA-1 (miR-1 in the differentiation of ASCs into cardiomyocyte-like cells. ASCs and cardiomyocytes were isolated from neonatal rats. We constructed lentivirus for overexpressing miR-1 and used DAPT, an antagonist of the Notch1 pathway, for in vitro analyses. We performed cocultures with ASCs and cardiomyocytes. The differentiation efficiency of ASCs was detected by cell-specific surface antigens. Our results showed that miR-1 can promote the expression of Notch1 and reduce the expression of Hes1, a Notch pathway factor, and overexpression of miR-1 can promote the differentiation of ASCs into cardiomyocyte-like cells, which may occur by regulating Notch1 and Hes1.

  19. Construction and analysis of lncRNA-lncRNA synergistic networks to reveal clinically relevant lncRNAs in cancer.

    Science.gov (United States)

    Li, Yongsheng; Chen, Juan; Zhang, Jinwen; Wang, Zishan; Shao, Tingting; Jiang, Chunjie; Xu, Juan; Li, Xia

    2015-09-22

    Long non-coding RNAs (lncRNAs) play key roles in diverse biological processes. Moreover, the development and progression of cancer often involves the combined actions of several lncRNAs. Here we propose a multi-step method for constructing lncRNA-lncRNA functional synergistic networks (LFSNs) through co-regulation of functional modules having three features: common coexpressed genes of lncRNA pairs, enrichment in the same functional category and close proximity within protein interaction networks. Applied to three cancers, we constructed cancer-specific LFSNs and found that they exhibit a scale free and modular architecture. In addition, cancer-associated lncRNAs tend to be hubs and are enriched within modules. Although there is little synergistic pairing of lncRNAs across cancers, lncRNA pairs involved in the same cancer hallmarks by regulating same or different biological processes. Finally, we identify prognostic biomarkers within cancer lncRNA expression datasets using modules derived from LFSNs. In summary, this proof-of-principle study indicates synergistic lncRNA pairs can be identified through integrative analysis of genome-wide expression data sets and functional information.

  20. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Luo, Di-xian; Xia, Cheng-lai; Li, Jun-mu; Xiong, Yan; Yuan, Hao-yu; TANG, Zhen-Wang; Zeng, Yixin; Liao, Duan-fang

    2010-01-01

    Research highlights: → Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. → Static pressure induces SREBP-1 activation. → Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. → Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. → Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different static pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 ± 2.8 mg/g, 31.8 ± 0.7 mg/g, 92.3 ± 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 ± 9.4 mg/g, 235.9 ± 3.0 mg/g, 386.7 ± 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were upregulated. Conclusion: Static

  1. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Di-xian, E-mail: luodixian_2@163.com [Department of Pharmacology, School of Pharmaceutics, Central South University, Changsha 410083, Hunan (China); Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan (China); First People' s Hospital of Chenzhou City, Chenzhou 423000, Hunan (China); Xia, Cheng-lai [Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan (China); Department of Pharmacy, Third Affiliated Hospital Medical College of Guangzhou, Guangzhou 510150, Guangdong (China); Li, Jun-mu [Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan (China); Xiong, Yan [Department of Pharmacology, School of Pharmaceutics, Central South University, Changsha 410083, Hunan (China); Yuan, Hao-yu [Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan (China); Lusong Center for Disease Control and Prevention, Zhuzhou 412000, Hunan (China); TANG, Zhen-Wang; Zeng, Yixin [Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan (China); Liao, Duan-fang, E-mail: dfliao66@yahoo.com.cn [Institute of Pharmacy and Pharmacology, College of Science and Technology, University of South China, Hengyang 421001, Hunan (China); Department of Traditional Chinese Diagnostics, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 420108, Hunan (China)

    2010-12-03

    Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different static pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were

  2. Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell cultures.

    Science.gov (United States)

    Facchini, P J; Johnson, A G; Poupart, J; de Luca, V

    1996-01-01

    Treatment of opium poppy (Papaver somniferum L.) cell cultures with autoclaved mycelial homogenates of Botrytis sp. resulted in the accumulation of sanguinarine. Elicitor treatment also caused a rapid and transient induction in the activity of tyrosine/dopa decarboxylase (TYDC, EC 4.1.1.25), which catalyzes the conversion of L-tyrosine and L-dopa to tyramine and dopamine, respectively, the first steps in sanguinarine biosynthesis. TYDC genes were differentially expressed in response to elicitor treatment. TYDC1-like mRNA levels were induced rapidly but declined to near baseline levels within 5 h. In contrast, TYDC2-like transcript levels increased more slowly but were sustained for an extended period. Induction of TYDC mRNAs preceded that of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) mRNAs. An elicitor preparation from Pythium aphanidermatum was less effective in the induction of TYDC mRNA levels and alkaloid accumulation; however, both elicitors equally induced accumulation of PAL transcripts. In contrast, treatment with methyl jasmonate resulted in an induction of TYDC but not PAL mRNAs. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and the protein kinase inhibitor staurosporine partially blocked the fungal elicitor-induced accumulation of sanguinarine. However, only staurosporine and okadaic acid, an inhibitor of protein phosphatases 1 and 2A, blocked the induction of TYDC1-like transcript levels, but they did not block the induction of TYDC2-like or PAL transcript levels. These data suggest that activation mechanisms for PAL, TYDC, and some later sanguinarine biosynthetic enzymes are uncoupled. PMID:8754678

  3. Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing.

    Science.gov (United States)

    Liang, Xue-Hai; Crooke, Stanley T

    2011-06-01

    Little is known about whether components of the RNA-induced silencing complex (RISC) mediate the biogenesis of RNAs other than miRNA. Here, we show that depletion of key proteins of the RISC pathway by antisense oligonucleotides significantly impairs pre-rRNA processing in human cells. In cells depleted of Drosha or Dicer, different precursors to 5.8S rRNA strongly accumulated, without affecting normal endonucleolytic cleavages. Moderate yet distinct processing defects were also observed in Ago2-depleted cells. Physical links between pre-rRNA and these proteins were identified by co-immunoprecipitation analyses. Interestingly, simultaneous depletion of Dicer and Drosha led to a different processing defect, causing slower production of 28S rRNA and its precursor. Both Dicer and Ago2 were detected in the nuclear fraction, and reduction of Dicer altered the structure of the nucleolus, where pre-rRNA processing occurs. Together, these results suggest that Drosha and Dicer are implicated in rRNA biogenesis.

  4. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.

    Science.gov (United States)

    Sridhar, Akshayalakshmi; Ohlemacher, Sarah K; Langer, Kirstin B; Meyer, Jason S

    2016-04-01

    The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has allowed for the development of novel approaches to studies of human development and disease. However, traditional methods of generating hiPSCs involve the risks of genomic integration and potential constitutive expression of pluripotency factors and often exhibit low reprogramming efficiencies. The recent description of cellular reprogramming using synthetic mRNA molecules might eliminate these shortcomings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed hiPSCs were established and were subsequently differentiated into a retinal fate using established protocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-derived hiPSC counterparts. Thus, given that hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell research, in particular, those for translational applications. In the current report, the ability to derive mRNA-reprogrammed human induced pluripotent stem cells (hi

  5. MicroRNA expression characterizes oligometastasis(es.

    Directory of Open Access Journals (Sweden)

    Yves A Lussier

    Full Text Available Cancer staging and treatment presumes a division into localized or metastatic disease. We proposed an intermediate state defined by ≤ 5 cumulative metastasis(es, termed oligometastases. In contrast to widespread polymetastases, oligometastatic patients may benefit from metastasis-directed local treatments. However, many patients who initially present with oligometastases progress to polymetastases. Predictors of progression could improve patient selection for metastasis-directed therapy.Here, we identified patterns of microRNA expression of tumor samples from oligometastatic patients treated with high-dose radiotherapy.Patients who failed to develop polymetastases are characterized by unique prioritized features of a microRNA classifier that includes the microRNA-200 family. We created an oligometastatic-polymetastatic xenograft model in which the patient-derived microRNAs discriminated between the two metastatic outcomes. MicroRNA-200c enhancement in an oligometastatic cell line resulted in polymetastatic progression.These results demonstrate a biological basis for oligometastases and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment.

  6. Gene expression profiling of non-polyadenylated RNA-seq across species

    Directory of Open Access Journals (Sweden)

    Xiao-Ou Zhang

    2014-12-01

    Full Text Available Transcriptomes are dynamic and unique, with each cell type/tissue, developmental stage and species expressing a different repertoire of RNA transcripts. Most mRNAs and well-characterized long noncoding RNAs are shaped with a 5′ cap and 3′ poly(A tail, thus conventional transcriptome analyses typically start with the enrichment of poly(A+ RNAs by oligo(dT selection, followed by deep sequencing approaches. However, accumulated lines of evidence suggest that many RNA transcripts are processed by alternative mechanisms without 3′ poly(A tails and, therefore, fail to be enriched by oligo(dT purification and are absent following deep sequencing analyses. We have described an enrichment strategy to purify non-polyadenylated (poly(A−/ribo− RNAs from human total RNAs by removal of both poly(A+ RNA transcripts and ribosomal RNAs, which led to the identification of many novel RNA transcripts with non-canonical 3′ ends in human. Here, we describe the application of non-polyadenylated RNA-sequencing in rhesus monkey and mouse cell lines/tissue, and further profile the transcription of non-polyadenylated RNAs across species, providing new resources for non-polyadenylated RNA identification and comparison across species.

  7. Conservation of RNA sequence and cross-linking ability in ribosomes from a higher eukaryote: photochemical cross-linking of the anticodon of P site bound tRNA to the penultimate cytidine of the UACACACG sequence in Artemia salina 18S rRNA

    International Nuclear Information System (INIS)

    Ciesiolka, J.; Nurse, K.; Klein, J.; Ofengand, J.

    1985-01-01

    The complex of Artemia salina ribosomes and Escherichia coli acetylvalyl-tRNA could be cross-linked by irradiation with near-UV light. Cross-linking required the presence of the codon GUU, GUA being ineffective. The acetylvalyl group could be released from the cross-linked tRNA by treatment with puromycin, demonstrating that cross-linking had occurred at the P site. This was true both for pGUU- and also for poly(U2,G)-dependent cross-linking. All of the cross-linking was to the 18S rRNA of the small ribosomal subunit. Photolysis of the cross-link at 254 nm occurred with the same kinetics as that for the known cyclobutane dimer between this tRNA and Escherichia coli 16S rRNA. T1 RNase digestion of the cross-linked tRNA yielded an oligonucleotide larger in molecular weight than any from un-cross-linked rRNA or tRNA or from a prephotolyzed complex. Extended electrophoresis showed this material to consist of two oligomers of similar mobility, a faster one-third component and a slower two-thirds component. Each oligomer yielded two components on 254-nm photolysis. The slower band from each was the tRNA T1 oligomer CACCUCCCUVACAAGp, which includes the anticodon. The faster band was the rRNA 9-mer UACACACCGp and its derivative UACACACUG. Unexpectedly, the dephosphorylated and slower moving 9-mer was derived from the faster moving dimer. Deamination of the penultimate C to U is probably due to cyclobutane dimer formation and was evidence for that nucleotide being the site of cross-linking. Direct confirmation of the cross-linking site was obtained by Z-gel analysis

  8. RNA Editing in Plant Mitochondria

    Science.gov (United States)

    Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel

    1989-12-01

    Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.

  9. Characterization of the ptr5+ gene involved in nuclear mRNA export in fission yeast

    International Nuclear Information System (INIS)

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka; Tani, Tokio

    2012-01-01

    Highlights: ► We cloned the ptr5 + gene involved in nuclear mRNA export in fission yeast. ► The ptr5 + gene was found to encode nucleoporin 85 (Nup85). ► Seh1p and Mlo3p are multi-copy suppressors for the ptr5 mutation. ► Ptr5p/Nup85p functions in nuclear mRNA export through the mRNA export factor Rae1p. ► Ptr5p/Nup85p interacts genetically with pre-mRNA splicing factors. -- Abstract: To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A) + RNA transport] 1 to 11, which accumulate poly(A) + RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5–1 mutant shows dots- or a ring-like accumulation of poly(A) + RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5 + gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5–1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5–1 mutation. In addition, we found that the ptr5–1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5–1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  10. In vitro fatty acid enrichment of macrophages alters inflammatory response and net cholesterol accumulation

    Science.gov (United States)

    Wang, Shu; Wu, Dayong; Lamon-Fava, Stefania; Matthan, Nirupa R.; Honda, Kaori L.; Lichtenstein, Alice H.

    2010-01-01

    Dietary long-chain PUFA, both n-3 and n-6, have unique benefits with respect to CVD risk. The aim of the present study was to determine the mechanisms by which n-3 PUFA (EPA, DHA) and n-6 PUFA (linoleic acid (LA), arachidonic acid (AA)) relative to SFA (myristic acid (MA), palmitic acid (PA)) alter markers of inflammation and cholesterol accumulation in macrophages (MΦ). Cells treated with AA and EPA elicited significantly less inflammatory response than control cells or those treated with MA, PA and LA, with intermediate effects for DHA, as indicated by lower levels of mRNA and secretion of TNFα, IL-6 and monocyte chemoattractant protein-1. Differences in cholesterol accumulation after exposure to minimally modified LDL were modest. AA and EPA resulted in significantly lower MΦ scavenger receptor 1 mRNA levels relative to control or MA-, PA-, LA- and DHA-treated cells, and ATP-binding cassette A1 mRNA levels relative to control or MA-, PA- and LA-treated cells. These data suggest changes in the rate of bidirectional cellular cholesterol flux. In summary, individual long-chain PUFA have differential effects on inflammatory response and markers of cholesterol flux in MΦ which are not related to the n position of the first double bond, chain length or degree of saturation. PMID:19660150

  11. Enumeration of RNA complexes via random matrix theory

    DEFF Research Database (Denmark)

    Andersen, Jørgen E; Chekhov, Leonid O.; Penner, Robert C

    2013-01-01

    molecules and hydrogen bonds in a given complex. The free energies of this matrix model are computed using the so-called topological recursion, which is a powerful new formalism arising from random matrix theory. These numbers of RNA complexes also have profound meaning in mathematics: they provide......In the present article, we review a derivation of the numbers of RNA complexes of an arbitrary topology. These numbers are encoded in the free energy of the Hermitian matrix model with potential V(x)=x(2)/2 - stx/(1 - tx), where s and t are respective generating parameters for the number of RNA...

  12. Determination of an effective scoring function for RNA-RNA interactions with a physics-based double-iterative method.

    Science.gov (United States)

    Yan, Yumeng; Wen, Zeyu; Zhang, Di; Huang, Sheng-You

    2018-05-18

    RNA-RNA interactions play fundamental roles in gene and cell regulation. Therefore, accurate prediction of RNA-RNA interactions is critical to determine their complex structures and understand the molecular mechanism of the interactions. Here, we have developed a physics-based double-iterative strategy to determine the effective potentials for RNA-RNA interactions based on a training set of 97 diverse RNA-RNA complexes. The double-iterative strategy circumvented the reference state problem in knowledge-based scoring functions by updating the potentials through iteration and also overcame the decoy-dependent limitation in previous iterative methods by constructing the decoys iteratively. The derived scoring function, which is referred to as DITScoreRR, was evaluated on an RNA-RNA docking benchmark of 60 test cases and compared with three other scoring functions. It was shown that for bound docking, our scoring function DITScoreRR obtained the excellent success rates of 90% and 98.3% in binding mode predictions when the top 1 and 10 predictions were considered, compared to 63.3% and 71.7% for van der Waals interactions, 45.0% and 65.0% for ITScorePP, and 11.7% and 26.7% for ZDOCK 2.1, respectively. For unbound docking, DITScoreRR achieved the good success rates of 53.3% and 71.7% in binding mode predictions when the top 1 and 10 predictions were considered, compared to 13.3% and 28.3% for van der Waals interactions, 11.7% and 26.7% for our ITScorePP, and 3.3% and 6.7% for ZDOCK 2.1, respectively. DITScoreRR also performed significantly better in ranking decoys and obtained significantly higher score-RMSD correlations than the other three scoring functions. DITScoreRR will be of great value for the prediction and design of RNA structures and RNA-RNA complexes.

  13. Detection of Aspergillus fumigatus pulmonary fungal infections in mice with 99mTc-labeled MORF oligomers targeting ribosomal RNA

    International Nuclear Information System (INIS)

    Wang Yuzhen; Chen Ling; Liu Xinrong; Cheng Dengfeng; Liu Guozheng; Liu Yuxia; Dou Shuping; Hnatowich, Donald J.; Rusckowski, Mary

    2013-01-01

    Purpose: Invasive aspergillosis is a major cause of infectious morbidity and mortality in immunocompromised patients. The fungus Aspergillus fumigatus (A. fumigatus) is the primary causative agent of invasive aspergillosis. However, A. fumigatus infections remain difficult to diagnose particularly in the early stages due to the lack of a rapid, sensitive and specific diagnostic approach. In this study, we investigated 99m Tc labeled MORF oligomers targeting fungal ribosomal RNA (rRNA) for the imaging detection of fungal infections. Procedures: Three phosphorodiamidate morpholino (MORF) oligomer (a DNA analogue) probes were designed: AGEN, complementary to a sequence of the fungal 28S ribosomal RNA (rRNA) of Aspergillus, as a genus-specific probe; AFUM, complementary to the 28S rRNA sequence of A. fumigatus, as a fungus species-specific probe; and cMORF, irrelevant to all fungal species, as a control probe. The probes were conjugated with Alexa Fluor 633 carboxylic acid succinimidyl ester (AF633) for fluorescence imaging or with NHS-mercaptoacetyl triglycine (NHS-MAG3) for nuclear imaging with 99m Tc and then evaluated in vitro and in vivo. Results: The specific binding of AGEN and AFUM to fungal total RNA was confirmed by dot blot hybridization while specific binding of AGEN and AFUM in fixed and live A. fumigatus was demonstrated by both fluorescent in situ hybridization (FISH) analysis and accumulation in live cells. SPECT imaging of BALB/c mice with pulmonary A. fumigatus infections and administered 99m Tc labeled AGEN and AFUM showed immediate and obvious accumulation in the infected lungs, while no significant accumulation of the control 99m Tc-cMORF in the infected lung was observed. Compared to non-infected mice, with sacrifice at 1 h, the accumulation of 99m Tc-AGEN and 99m Tc-AFUM in the lungs of mice infected with A. fumigatus was 2 and 2.7 fold higher respectively. Conclusions: In vivo targeting fungal ribosomal RNA with 99m Tc labeled MORF probes AGEN

  14. The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during MicroRNA biogenesis

    KAUST Repository

    Liu, Chenggang

    2012-04-03

    Dicer-Like1 (DCL1), an RNaseIII endonuclease, and Hyponastic Leaves1 (HYL1), a double-stranded RNA-binding protein, are core components of the plant microRNA (miRNA) biogenesis machinery. hyl1 mutants accumulate low levels of miRNAs and display pleiotropic developmental phenotypes. We report the identification of five new hyl1 suppressor mutants, all of which are alleles of DCL1. These new alleles affect either the helicase or the RNaseIIIa domains of DCL1, highlighting the critical functions of these domains. Biochemical analysis of the DCL1 suppressor variants reveals that they process the primary transcript (pri-miRNA) more efficiently than wild-type DCL1, with both higher Kcat and lower Km values. The DCL1 variants largely rescue wild-type miRNA accumulation levels in vivo, but do not rescue the MIRNA processing precision defects of the hyl1 mutant. In vitro, the helicase domain confers ATP dependence on DCL1-catalyzed MIRNA processing, attenuates DCL1 cleavage activity, and is required for precise MIRNA processing of some substrates. © 2012 American Society of Plant Biologists.

  15. CBC bound proteins and RNA fate

    DEFF Research Database (Denmark)

    Giacometti, Simone

    ) complex (CBCN), were recently shown to target capped RNA either toward export or degradation, but the mechanisms by which they can discriminate between different RNA families and route them toward different metabolic pathways still remain unclear. A major question to be answered is how and when...... the different CBC subcomplexes are recruited to the RNP. Here, we used an individual nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP) approach to identify the transcriptome-wide targets for 5 different components of the CBCAP and CBCN complexes, and compared results to the previously...... analysed NEXT-component RBM7. We report that: (i) CBP20, ARS2, PHAX and ZC3H18 bind close to the cap, while RBM7 and MTR4 bind throughout the mRNA body; (ii) CBP20, ARS2, PHAX and ZC3H18 associate with a broad set of RNA polymerase II (PolII)-derived RNAs and have only mild species preferences; (iii...

  16. Improved nucleic acid descriptors for siRNA efficacy prediction.

    Science.gov (United States)

    Sciabola, Simone; Cao, Qing; Orozco, Modesto; Faustino, Ignacio; Stanton, Robert V

    2013-02-01

    Although considerable progress has been made recently in understanding how gene silencing is mediated by the RNAi pathway, the rational design of effective sequences is still a challenging task. In this article, we demonstrate that including three-dimensional descriptors improved the discrimination between active and inactive small interfering RNAs (siRNAs) in a statistical model. Five descriptor types were used: (i) nucleotide position along the siRNA sequence, (ii) nucleotide composition in terms of presence/absence of specific combinations of di- and trinucleotides, (iii) nucleotide interactions by means of a modified auto- and cross-covariance function, (iv) nucleotide thermodynamic stability derived by the nearest neighbor model representation and (v) nucleic acid structure flexibility. The duplex flexibility descriptors are derived from extended molecular dynamics simulations, which are able to describe the sequence-dependent elastic properties of RNA duplexes, even for non-standard oligonucleotides. The matrix of descriptors was analysed using three statistical packages in R (partial least squares, random forest, and support vector machine), and the most predictive model was implemented in a modeling tool we have made publicly available through SourceForge. Our implementation of new RNA descriptors coupled with appropriate statistical algorithms resulted in improved model performance for the selection of siRNA candidates when compared with publicly available siRNA prediction tools and previously published test sets. Additional validation studies based on in-house RNA interference projects confirmed the robustness of the scoring procedure in prospective studies.

  17. Changes in RNA Splicing in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Delasa Aghamirzaie

    2013-11-01

    Full Text Available Developing soybean seeds accumulate oils, proteins, and carbohydrates that are used as oxidizable substrates providing metabolic precursors and energy during seed germination. The accumulation of these storage compounds in developing seeds is highly regulated at multiple levels, including at transcriptional and post-transcriptional regulation. RNA sequencing was used to provide comprehensive information about transcriptional and post-transcriptional events that take place in developing soybean embryos. Bioinformatics analyses lead to the identification of different classes of alternatively spliced isoforms and corresponding changes in their levels on a global scale during soybean embryo development. Alternative splicing was associated with transcripts involved in various metabolic and developmental processes, including central carbon and nitrogen metabolism, induction of maturation and dormancy, and splicing itself. Detailed examination of selected RNA isoforms revealed alterations in individual domains that could result in changes in subcellular localization of the resulting proteins, protein-protein and enzyme-substrate interactions, and regulation of protein activities. Different isoforms may play an important role in regulating developmental and metabolic processes occurring at different stages in developing oilseed embryos.

  18. Cardiac lipid accumulation associated with diastolic dysfunction in obese mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Bollano, Entela; Lindegaard, Marie L S

    2003-01-01

    Obesity may confer cardiac dysfunction due to lipid accumulation in cardiomyocytes. To test this idea, we examined whether obese ob/ob mice display heart lipid accumulation and cardiac dysfunction. Ob/ob mouse hearts had increased expression of genes mediating extracellular generation, transport....../ob mice and 2.5 +/- 0.1 in ob/+ mice (P = 0.0001). In contrast, the indexes of systolic function and heart brain natriuretic peptide mRNA expression were only marginally affected and unaffected, respectively, in ob/ob compared with ob/+ mice. The results suggest that ob/ob mouse hearts have increased...... across the myocyte cell membrane, intracellular transport, mitochondrial uptake, and beta-oxidation of fatty acids compared with ob/+ mice. Accordingly, ob/ob mouse hearts contained more triglyceride (6.8 +/- 0.4 vs. 2.3 +/- 0.4 microg/mg; P hearts. Histological examinations...

  19. MicroRNA Profiling of Neurons Generated Using Induced Pluripotent Stem Cells Derived from Patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del.

    Directory of Open Access Journals (Sweden)

    Dejian Zhao

    Full Text Available We are using induced pluripotent stem cell (iPSC technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del, the most common known schizophrenia (SZ-associated genetic factor. Several genes in the region have been implicated; a promising candidate is DGCR8, which codes for a protein involved in microRNA (miRNA biogenesis. We carried out miRNA expression profiling (miRNA-seq on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del. Using thresholds of p<0.01 for nominal significance and 1.5-fold differences in expression, 45 differentially expressed miRNAs were detected (13 lower in SZ and 32 higher. Of these, 6 were significantly down-regulated in patients after correcting for genome wide significance (FDR<0.05, including 4 miRNAs that map to the 22q11.2 del region. In addition, a nominally significant increase in the expression of several miRNAs was found in the 22q11.2 neurons that were previously found to be differentially expressed in autopsy samples and peripheral blood in SZ and autism spectrum disorders (e.g., miR-34, miR-4449, miR-146b-3p, and miR-23a-5p. Pathway and function analysis of predicted mRNA targets of the differentially expressed miRNAs showed enrichment for genes involved in neurological disease and psychological disorders for both up and down regulated miRNAs. Our findings suggest that: i. neurons with 22q11.2 del recapitulate the miRNA expression patterns expected of 22q11.2 haploinsufficiency, ii. differentially expressed miRNAs previously identified using autopsy samples and peripheral cells, both of which have significant methodological problems, are indeed disrupted in neuropsychiatric disorders and likely have an underlying genetic basis.

  20. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lasrich, Dorothee; Bartelt, Alexander [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au [Faculty of Pharmacy A15, The University of Sydney, Sydney, NSW 2006 (Australia); Heeren, Joerg, E-mail: heeren@uke.de [Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  1. A 3' UTR-Derived Small RNA Provides the Regulatory Noncoding Arm of the Inner Membrane Stress Response.

    Science.gov (United States)

    Chao, Yanjie; Vogel, Jörg

    2016-02-04

    Small RNAs (sRNAs) from conserved noncoding genes are crucial regulators in bacterial signaling pathways but have remained elusive in the Cpx response to inner membrane stress. Here we report that an alternative biogenesis pathway releasing the conserved mRNA 3' UTR of stress chaperone CpxP as an ∼60-nt sRNA provides the noncoding arm of the Cpx response. This so-called CpxQ sRNA, generated by general mRNA decay through RNase E, acts as an Hfq-dependent repressor of multiple mRNAs encoding extracytoplasmic proteins. Both CpxQ and the Cpx pathway are required for cell survival under conditions of dissipation of membrane potential. Our discovery of CpxQ illustrates how the conversion of a transcribed 3' UTR into an sRNA doubles the output of a single mRNA to produce two factors with spatially segregated functions during inner membrane stress: a chaperone that targets problematic proteins in the periplasm and a regulatory RNA that dampens their synthesis in the cytosol. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export.

    Science.gov (United States)

    Karijolich, John; Zhao, Yang; Alla, Ravi; Glaunsinger, Britt

    2017-06-02

    Short interspersed nuclear elements (SINEs) are retrotransposons evolutionarily derived from endogenous RNA Polymerase III RNAs. Though SINE elements have undergone exaptation into gene regulatory elements, how transcribed SINE RNA impacts transcriptional and post-transcriptional regulation is largely unknown. This is partly due to a lack of information regarding which of the loci have transcriptional potential. Here, we present an approach (short interspersed nuclear element sequencing, SINE-seq), which selectively profiles RNA Polymerase III-derived SINE RNA, thereby identifying transcriptionally active SINE loci. Applying SINE-seq to monitor murine B2 SINE expression during a gammaherpesvirus infection revealed transcription from 28 270 SINE loci, with ∼50% of active SINE elements residing within annotated RNA Polymerase II loci. Furthermore, B2 RNA can form intermolecular RNA-RNA interactions with complementary mRNAs, leading to nuclear retention of the targeted mRNA via a mechanism involving p54nrb. These findings illuminate a pathway for the selective regulation of mRNA export during stress via retrotransposon activation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Thermo-sensitive nanoparticles for triggered release of siRNA.

    Science.gov (United States)

    Yang, Zheng; Cheng, Qiang; Jiang, Qian; Deng, Liandong; Liang, Zicai; Dong, Anjie

    2015-01-01

    Efficient delivery of small interfering RNA (siRNA) is crucially required for cancer gene therapy. Herein, a thermo-sensitive copolymer with a simple structure, poly (ethylene glycol) methyl ether acrylate-b-poly (N-isopropylacrylamide) (mPEG-b-PNIPAM) was developed. A novel kind of thermo-sensitive nanoparticles (DENPs) was constructed for the cold-shock triggered release of siRNA by double emulsion-solvent evaporation method using mPEG-b-PNIPAM and a cationic lipid, 3β [N-(N', N'-dimethylaminoethane)-carbamoyl] cholesterol [DC-Chol]. DENPs were observed by transmission electron microscopy and dynamical light scattering before and after 'cold shock' treatment. The encapsulation efficiency (EE) of siRNA in DENPs, which was measured by fluorescence spectrophotometer was 96.8% while it was significantly reduced to be 23.2% when DC-Chol was absent. DENPs/siRNA NPs exhibited a thermo-sensitive siRNA release character that the cumulatively released amount of siRNA from cold shock was approximately 2.2 folds higher after 7 days. In vitro luciferase silencing experiments indicated that DENPs showed potent gene silencing efficacy in HeLa-Luc cells (HeLa cells steadily expressed luciferase), which was further enhanced by a cold shock. Furthermore, MTT assay showed that cell viability with DENPs/siRNA up to 200 nM remained above 80%. We also observed that most of siRNA was accumulated in kidney mediated by DENPs instead of liver and spleen in vivo experiments. Thus, DENPs as a cold shock responsive quick release model for siRNA or hydrophilic macromolecules delivery provide a new way to nanocarrier design and clinic therapy.

  4. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity.

    Science.gov (United States)

    Chiang, Jessica J; Sparrer, Konstantin M J; van Gent, Michiel; Lässig, Charlotte; Huang, Teng; Osterrieder, Nikolaus; Hopfner, Karl-Peter; Gack, Michaela U

    2018-01-01

    The sensor RIG-I detects double-stranded RNA derived from RNA viruses. Although RIG-I is also known to have a role in the antiviral response to DNA viruses, physiological RNA species recognized by RIG-I during infection with a DNA virus are largely unknown. Using next-generation RNA sequencing (RNAseq), we found that host-derived RNAs, most prominently 5S ribosomal RNA pseudogene 141 (RNA5SP141), bound to RIG-I during infection with herpes simplex virus 1 (HSV-1). Infection with HSV-1 induced relocalization of RNA5SP141 from the nucleus to the cytoplasm, and virus-induced shutoff of host protein synthesis downregulated the abundance of RNA5SP141-interacting proteins, which allowed RNA5SP141 to bind RIG-I and induce the expression of type I interferons. Silencing of RNA5SP141 strongly dampened the antiviral response to HSV-1 and the related virus Epstein-Barr virus (EBV), as well as influenza A virus (IAV). Our findings reveal that antiviral immunity can be triggered by host RNAs that are unshielded following depletion of their respective binding proteins by the virus.

  5. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons.

    Directory of Open Access Journals (Sweden)

    José R Sotelo

    Full Text Available To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells at the site of injury to promote regeneration.

  6. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons.

    Science.gov (United States)

    Sotelo, José R; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José R; Xu, Lei; Wallrabe, Horst; Calliari, Aldo; Rosso, Gonzalo; Cal, Karina; Mercer, John A

    2013-01-01

    To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells) at the site of injury to promote regeneration.

  7. RNase MRP cleaves pre-tRNASer-Met in the tRNA maturation pathway.

    Science.gov (United States)

    Saito, Yuichiro; Takeda, Jun; Adachi, Kousuke; Nobe, Yuko; Kobayashi, Junya; Hirota, Kouji; Oliveira, Douglas V; Taoka, Masato; Isobe, Toshiaki

    2014-01-01

    Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNA(Ser-Met). To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNA(Ser-Met), suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry-based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute "Domain 1" in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.

  8. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in Macrophages.

    Science.gov (United States)

    Lin, Hung-Chih; Lii, Chong-Kuei; Chen, Hui-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Chen, Haw-Wen

    2018-01-01

    oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent

  9. Unzippers, Resolvers and Sensors: A Structural and Functional Biochemistry Tale of RNA Helicases

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Leitão

    2015-01-01

    Full Text Available The centrality of RNA within the biological world is an irrefutable fact that currently attracts increasing attention from the scientific community. The panoply of functional RNAs requires the existence of specific biological caretakers, RNA helicases, devoted to maintain the proper folding of those molecules, resolving unstable structures. However, evolution has taken advantage of the specific position and characteristics of RNA helicases to develop new functions for these proteins, which are at the interface of the basic processes for transference of information from DNA to proteins. RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Structural biology studies during the last decade, founded in X-ray crystallography, have characterized in detail several RNA-helicases. This comprehensive review summarizes the structural knowledge accumulated in the last two decades within this family of proteins, with special emphasis on the structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes.

  10. Discovery of replicating circular RNAs by RNA-seq and computational algorithms.

    Directory of Open Access Journals (Sweden)

    Zhixiang Zhang

    2014-12-01

    Full Text Available Replicating circular RNAs are independent plant pathogens known as viroids, or act to modulate the pathogenesis of plant and animal viruses as their satellite RNAs. The rate of discovery of these subviral pathogens was low over the past 40 years because the classical approaches are technical demanding and time-consuming. We previously described an approach for homology-independent discovery of replicating circular RNAs by analysing the total small RNA populations from samples of diseased tissues with a computational program known as progressive filtering of overlapping small RNAs (PFOR. However, PFOR written in PERL language is extremely slow and is unable to discover those subviral pathogens that do not trigger in vivo accumulation of extensively overlapping small RNAs. Moreover, PFOR is yet to identify a new viroid capable of initiating independent infection. Here we report the development of PFOR2 that adopted parallel programming in the C++ language and was 3 to 8 times faster than PFOR. A new computational program was further developed and incorporated into PFOR2 to allow the identification of circular RNAs by deep sequencing of long RNAs instead of small RNAs. PFOR2 analysis of the small RNA libraries from grapevine and apple plants led to the discovery of Grapevine latent viroid (GLVd and Apple hammerhead viroid-like RNA (AHVd-like RNA, respectively. GLVd was proposed as a new species in the genus Apscaviroid, because it contained the typical structural elements found in this group of viroids and initiated independent infection in grapevine seedlings. AHVd-like RNA encoded a biologically active hammerhead ribozyme in both polarities, and was not specifically associated with any of the viruses found in apple plants. We propose that these computational algorithms have the potential to discover novel circular RNAs in plants, invertebrates and vertebrates regardless of whether they replicate and/or induce the in vivo accumulation of small

  11. Characterization of the Zika virus induced small RNA response in Aedes aegypti cells.

    Directory of Open Access Journals (Sweden)

    Margus Varjak

    2017-10-01

    Full Text Available RNA interference (RNAi controls arbovirus infections in mosquitoes. Two different RNAi pathways are involved in antiviral responses: the PIWI-interacting RNA (piRNA and exogenous short interfering RNA (exo-siRNA pathways, which are characterized by the production of virus-derived small RNAs of 25-29 and 21 nucleotides, respectively. The exo-siRNA pathway is considered to be the key mosquito antiviral response mechanism. In Aedes aegypti-derived cells, Zika virus (ZIKV-specific siRNAs were produced and loaded into the exo-siRNA pathway effector protein Argonaute 2 (Ago2; although the knockdown of Ago2 did not enhance virus replication. Enhanced ZIKV replication was observed in a Dcr2-knockout cell line suggesting that the exo-siRNA pathway is implicated in the antiviral response. Although ZIKV-specific piRNA-sized small RNAs were detected, these lacked the characteristic piRNA ping-pong signature motif and were bound to Ago3 but not Piwi5 or Piwi6. Silencing of PIWI proteins indicated that the knockdown of Ago3, Piwi5 or Piwi6 did not enhance ZIKV replication and only Piwi4 displayed antiviral activity. We also report that the expression of ZIKV capsid (C protein amplified the replication of a reporter alphavirus; although, unlike yellow fever virus C protein, it does not inhibit the exo-siRNA pathway. Our findings elucidate ZIKV-mosquito RNAi interactions that are important for understanding its spread.

  12. Characterization of the ptr5{sup +} gene involved in nuclear mRNA export in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Nobuyoshi; Ikeda, Terumasa; Mizuki, Fumitaka [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555 (Japan); Tani, Tokio, E-mail: ttani@sci.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555 (Japan)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We cloned the ptr5{sup +} gene involved in nuclear mRNA export in fission yeast. Black-Right-Pointing-Pointer The ptr5{sup +} gene was found to encode nucleoporin 85 (Nup85). Black-Right-Pointing-Pointer Seh1p and Mlo3p are multi-copy suppressors for the ptr5 mutation. Black-Right-Pointing-Pointer Ptr5p/Nup85p functions in nuclear mRNA export through the mRNA export factor Rae1p. Black-Right-Pointing-Pointer Ptr5p/Nup85p interacts genetically with pre-mRNA splicing factors. -- Abstract: To analyze the mechanisms of mRNA export from the nucleus to the cytoplasm, we have isolated eleven mutants, ptr [poly(A){sup +} RNA transport] 1 to 11, which accumulate poly(A){sup +} RNA in the nucleus at a nonpermissive temperature in Schizosaccharomyces pombe. Of those, the ptr5-1 mutant shows dots- or a ring-like accumulation of poly(A){sup +} RNA at the nuclear periphery after shifting to the nonpermissive temperature. We cloned the ptr5{sup +} gene and found that it encodes a component of the nuclear pore complex (NPC), nucleoporin 85 (Nup85). The ptr5-1 mutant shows no defects in protein transport, suggesting the specific involvement of Ptr5p/Nup85p in nuclear mRNA export in S. pombe. We identified Seh1p, a nucleoporin interacting with Nup85p, an mRNA-binding protein Mlo3p, and Sac3p, a component of the TREX-2 complex involved in coupling of nuclear mRNA export with transcription, as multi-copy suppressors for the ptr5-1 mutation. In addition, we found that the ptr5-1 mutation is synthetically lethal with a mutation of the mRNA export factor Rae1p, and that the double mutant exaggerates defective nuclear mRNA export, suggesting that Ptr5p/Nup85p is involved in nuclear mRNA export through Rae1p. Interestingly, the ptr5-1 mutation also showed synthetic effects with several prp pre-mRNA splicing mutations, suggesting a functional linkage between the NPCs and the splicing apparatus in the yeast nucleus.

  13. Circulating type 1 vaccine-derived poliovirus may evolve under the pressure of adenosine deaminases acting on RNA.

    Science.gov (United States)

    Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Xu, Ruixue; Wang, Shujing

    2015-01-01

    Poliovirus, the causative agent of poliomyelitis, is a human enterovirus and member of the Picornaviridae family. An effective live-attenuated poliovirus vaccine strain (Sabin 1) has been developed and has protected humans from polio. However, a few cases of vaccine virulence reversion have been documented in several countries. For instance, circulating type 1 vaccine-derived poliovirus is a highly pathogenic poliovirus that evolved from an avirulent strain, but the mechanism by which vaccine strains undergo reversion remains unclear. In this study, vaccine strains exhibited A to G/U to C and G to A/C to U hypermutations in the reversed evolution of Sabin 1. Furthermore, the mutation ratios of U to C and C to U were higher than those of other mutation types. Dinucleotide editing context was then analyzed. Results showed that A to G and U to C mutations exhibited preferences similar to adenosine deaminases acting on RNA (ADAR). Hence, ADARs may participate in poliovirus vaccine evolution.

  14. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation.

    Science.gov (United States)

    Jin, Shuangxia; Singh, Nameirakpam D; Li, Lebin; Zhang, Xianlong; Daniell, Henry

    2015-04-01

    In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/μg total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice

    Science.gov (United States)

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-01-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  16. microRNA Regulation of Peritoneal Cavity Homeostasis in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Melisa Lopez-Anton

    2015-01-01

    Full Text Available Preservation of peritoneal cavity homeostasis and peritoneal membrane function is critical for long-term peritoneal dialysis (PD treatment. Several microRNAs (miRNAs have been implicated in the regulation of key molecular pathways driving peritoneal membrane alterations leading to PD failure. miRNAs regulate the expression of the majority of protein coding genes in the human genome, thereby affecting most biochemical pathways implicated in cellular homeostasis. In this review, we report published findings on miRNAs and PD therapy, with emphasis on evidence for changes in peritoneal miRNA expression during long-term PD treatment. Recent work indicates that PD effluent- (PDE- derived cells change their miRNA expression throughout the course of PD therapy, contributing to the loss of peritoneal cavity homeostasis and peritoneal membrane function. Changes in miRNA expression profiles will alter regulation of key molecular pathways, with the potential to cause profound effects on peritoneal cavity homeostasis during PD treatment. However, research to date has mainly adopted a literature-based miRNA-candidate methodology drawing conclusions from modest numbers of patient-derived samples. Therefore, the study of miRNA expression during PD therapy remains a promising field of research to understand the mechanisms involved in basic peritoneal cell homeostasis and PD failure.

  17. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR

    Science.gov (United States)

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand

    2012-01-01

    Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology. PMID:22833816

  18. The effect of tanespimycin (17-AAG) on radioiodine accumulation in sodium iodide symporter expressing cells

    International Nuclear Information System (INIS)

    Yu, Kyoung Hyun; Youn, Hyewon; Song, Myung Geun; Lee, Dong Soo; Chung, June Key

    2012-01-01

    The heat shock protein 90 inhibitor, tanespimycin, is an anticancer agent known to increase iodine accumulation in normal and cancerous thyroid cells. Iodine accumulation is regulated by membrane proteins such as sodium iodide sym porter (NIS) and pendrin (PDS), and thus we attempted to characterize the effects of tanespimycin on those genes. Cells were incubated with tanespimycin in order to evaluate 125 I accumulation and efflux ability. Radioiodine uptake and efflux were measured by a gamma counter and normalized by protein amount. RT PCR were performed to measure the level of gene expression. After tanespimycin treatment, 125 uptake was in creased by ∼2.5 fold in FRTL 5, hNIS ARO. and hNIS MDA MB 231 cells, but no changes were detected in the hNIS HeLa cells. Tanespimycin significantly reduced the radioiodine efflux rate only in the FRTL 5 cell. in the FRTL 5 and hNIS ARO cells, PDS mRNA levels were markedly reduced; the only other observed alteration in the levels of NIS mRNA after tanespimtycin treatment was an observed increase in the h hNIS ARO cells. These results indicate that cellular responses against tanespimycin treatment differed between the normal rat thyroid cells and human cancer cells, and the reduction in the 125I efflux rate by tanespimycin in the normal rat thyroid cells might be attributable to reduced PDS gene expression

  19. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    International Nuclear Information System (INIS)

    Miyamae, Yusaku; Nishito, Yukina; Nakai, Naomi; Nagumo, Yoko; Usui, Takeo; Masuda, Seiji; Kambe, Taiho; Nagao, Masaya

    2016-01-01

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A_1. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  20. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyamae, Yusaku, E-mail: ymiyamae@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nishito, Yukina; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagumo, Yoko; Usui, Takeo [Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A{sub 1}. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  1. A Chimeric Peptide Composed of a Dermaseptin Derivative and an RNA III-Inhibiting Peptide Prevents Graft-Associated Infections by Antibiotic-Resistant Staphylococci

    Science.gov (United States)

    Balaban, Naomi; Gov, Yael; Giacometti, Andrea; Cirioni, Oscar; Ghiselli, Roberto; Mocchegiani, Federico; Orlando, Fiorenza; D'Amato, Giuseppina; Saba, Vittorio; Scalise, Giorgio; Bernes, Sabina; Mor, Amram

    2004-01-01

    Staphylococcal bacteria are a prevalent cause of infections associated with foreign bodies and indwelling medical devices. Bacteria are capable of escaping antibiotic treatment through encapsulation into biofilms. RNA III-inhibiting peptide (RIP) is a heptapeptide that inhibits staphylococcal biofilm formation by obstructing quorum-sensing mechanisms. K4-S4(1-13)a is a 13-residue dermaseptin derivative (DD13) believed to kill bacteria via membrane disruption. We tested each of these peptides as well as a hybrid construct, DD13-RIP, for their ability to inhibit bacterial proliferation and suppress quorum sensing in vitro and for their efficacy in preventing staphylococcal infection in a rat graft infection model with methicillin-resistant Staphylococcus aureus (MRSA) or S. epidermidis (MRSE). In vitro, proliferation assays demonstrated that RIP had no inhibitory effect, while DD13-RIP and DD13 were equally effective, and that the chimeric peptide but not DD13 was slightly more effective than RIP in inhibiting RNA III synthesis, a regulatory RNA molecule important for staphylococcal pathogenesis. In vivo, the three peptides reduced graft-associated bacterial load in a dose-dependent manner, but the hybrid peptide was most potent in totally preventing staphylococcal infections at the lowest dose. In addition, each of the peptides acted synergistically with antibiotics. The data indicate that RIP and DD13 act in synergy by attacking bacteria simultaneously by two different mechanisms. Such a chimeric peptide may be useful for coating medical devices to prevent drug-resistant staphylococcal infections. PMID:15215107

  2. Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice.

    Science.gov (United States)

    Katsumura, Masanori; Takagi, Shoko; Oya, Hana; Tamura, Shohei; Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2017-08-01

    Animal by-products can be recycled and used as sources of essential nutrients. Water-soluble heme iron (WSHI), a functional food additive for supplementing iron, is produced by processing animal blood. In this study, we investigated the effects of dietary supplementation of 3% WSHI and exercise training for 4 weeks on the accumulation of abdominal fat and lipid metabolism in mice fed high-fat diet. Exercise-trained mice had significantly less perirenal adipose tissue, whereas WSHI-fed mice tended to have less epididymal adipose tissue. In addition, total weight of abdominal adipose tissues was significantly decreased in the Exercise + WSHI group. Dietary WSHI significantly increased the messenger RNA (mRNA) levels of lipoprotein lipase and hormone-sensitive lipase. WSHI-fed mice also tended to show increased mRNA levels of adipose triglyceride lipase in their epididymal adipose tissue. Dietary WSHI also significantly decreased the mRNA levels of fatty acid oxidation-related enzymes in the liver, but did not influence levels in the Gastrocnemius muscle. Exercise training did not influence the mRNA levels of lipid metabolism-related enzymes in the epididymal adipose tissue, liver or the Gastrocnemius muscle. These findings suggest that the accumulation of abdominal fat can be efficiently decreased by the combination of dietary WSHI and exercise training in mice fed high-fat diet. © 2016 Japanese Society of Animal Science.

  3. Probabilistic assessment methodology for continuous-type petroleum accumulations

    Science.gov (United States)

    Crovelli, R.A.

    2003-01-01

    The analytic resource assessment method, called ACCESS (Analytic Cell-based Continuous Energy Spreadsheet System), was developed to calculate estimates of petroleum resources for the geologic assessment model, called FORSPAN, in continuous-type petroleum accumulations. The ACCESS method is based upon mathematical equations derived from probability theory in the form of a computer spreadsheet system. ?? 2003 Elsevier B.V. All rights reserved.

  4. An albumin-mediated cholesterol design-based strategy for tuning siRNA pharmacokinetics and gene silencing

    DEFF Research Database (Denmark)

    Bienk, Konrad; Hvam, Michael Lykke; Pakula, Malgorzata Maria

    2016-01-01

    /2 12 min (naked) to t1/2 45 min (single cholesteryl) and t1/2 71 min (double cholesteryl) using fluorescent live bioimaging. The biodistribution showed increased accumulation in the liver for the double cholesteryl modified siRNA that correlated with an increase in hepatic Factor VII gene silencing......HSA/siRNA complex exhibited reduced nuclease degradation and reduced induction of TNF-α production by human peripheral blood mononuclear cells. The increased solubility of heavily cholesteryl modified siRNA in the presence of rHSA facilitated duplex annealing and consequent interaction that allowed in vivo studies...

  5. The Influence of Tissue Ischemia Time on RNA Integrity and Patient-Derived Xenografts (PDX) Engraftment Rate in a Non-Small Cell Lung Cancer (NSCLC) Biobank.

    Science.gov (United States)

    Guerrera, Francesco; Tabbò, Fabrizio; Bessone, Luca; Maletta, Francesca; Gaudiano, Marcello; Ercole, Elisabetta; Annaratone, Laura; Todaro, Maria; Boita, Monica; Filosso, Pier Luigi; Solidoro, Paolo; Delsedime, Luisa; Oliaro, Alberto; Sapino, Anna; Ruffini, Enrico; Inghirami, Giorgio

    2016-01-01

    Bio-repositories are invaluable resources to implement translational cancer research and clinical programs. They represent one of the most powerful tools for biomolecular studies of clinically annotated cohorts, but high quality samples are required to generate reliable molecular readouts and functional studies. The objective of our study was to define the impact of cancer tissue ischemia time on RNA and DNA quality, and for the generation of Patient-Derived Xenografts (PDXs). One-hundred thirty-five lung cancer specimens were selected among our Institutional BioBank samples. Associations between different warm (surgical) and cold (ex-vivo) ischemia time ranges and RNA quality or PDXs engraftment rates were assessed. RNA quality was determined by RNA integrity number (RINs) values. Fresh viable tissue fragments were implanted subcutaneously in NSG mice and serially transplanted. RNAs with a RIN>7 were detected in 51% of the sample (70/135), with values of RIN significantly lower (OR 0.08, P = 0.01) in samples preserved for more than 3 hours before cryopreservation. Higher quality DNA samples had a concomitant high RIN. Sixty-three primary tumors (41 adenocarcinoma) were implanted with an overall engraftment rate of 33%. Both prolonged warm (>2 hours) and ex-vivo ischemia time (>10 hours) were associated to a lower engraftment rate (OR 0.09 P = 0.01 and OR 0.04 P = 0.008, respectively). RNA quality and PDXs engraftment rate were adversely affected by prolonged ischemia times. Proper tissue collection and processing reduce failure rate. Overall, NSCLC BioBanking represents an innovative modality, which can be successfully executed in routine clinical settings, when stringent Standard Operating Procedures are adopted.

  6. Regulation of rice root development by a retrotransposon acting as a microRNA sponge.

    Science.gov (United States)

    Cho, Jungnam; Paszkowski, Jerzy

    2017-08-26

    It is well documented that transposable elements (TEs) can regulate the expression of neighbouring genes. However, their ability to act in trans and influence ectopic loci has been reported rarely. We searched in rice transcriptomes for tissue-specific expression of TEs and found them to be regulated developmentally. They often shared sequence homology with co-expressed genes and contained potential microRNA-binding sites, which suggested possible contributions to gene regulation. In fact, we have identified a retrotransposon that is highly transcribed in roots and whose spliced transcript constitutes a target mimic for miR171. miR171 destabilizes mRNAs encoding the root-specific family of SCARECROW-Like transcription factors. We demonstrate that retrotransposon-derived transcripts act as decoys for miR171, triggering its degradation and thus results in the root-specific accumulation of SCARECROW-Like mRNAs. Such transposon-mediated post-transcriptional control of miR171 levels is conserved in diverse rice species.

  7. Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle.

    Science.gov (United States)

    Shock, Jennifer L; Fischer, Kael F; DeRisi, Joseph L

    2007-01-01

    The rate of mRNA decay is an essential element of post-transcriptional regulation in all organisms. Previously, studies in several organisms found that the specific half-life of each mRNA is precisely related to its physiologic role, and plays an important role in determining levels of gene expression. We used a genome-wide approach to characterize mRNA decay in Plasmodium falciparum. We found that, globally, rates of mRNA decay increase dramatically during the asexual intra-erythrocytic developmental cycle. During the ring stage of the cycle, the average mRNA half-life was 9.5 min, but this was extended to an average of 65 min during the late schizont stage of development. Thus, a major determinant of mRNA decay rate appears to be linked to the stage of intra-erythrocytic development. Furthermore, we found specific variations in decay patterns superimposed upon the dominant trend of progressive half-life lengthening. These variations in decay pattern were frequently enriched for genes with specific cellular functions or processes. Elucidation of Plasmodium mRNA decay rates provides a key element for deciphering mechanisms of genetic control in this parasite, by complementing and extending previous mRNA abundance studies. Our results indicate that progressive stage-dependent decreases in mRNA decay rate function are a major determinant of mRNA accumulation during the schizont stage of intra-erythrocytic development. This type of genome-wide change in mRNA decay rate has not been observed in any other organism to date, and indicates that post-transcriptional regulation may be the dominant mechanism of gene regulation in P. falciparum.

  8. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export.

    Science.gov (United States)

    Neumann, Bettina; Wu, Haijia; Hackmann, Alexandra; Krebber, Heike

    2016-01-01

    The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms.

  9. Overexpression of a natural chloroplast-encoded antisense RNA in tobacco destabilizes 5S rRNA and retards plant growth

    Directory of Open Access Journals (Sweden)

    Stern David B

    2010-09-01

    Full Text Available Abstract Background The roles of non-coding RNAs in regulating gene expression have been extensively studied in both prokaryotes and eukaryotes, however few reports exist as to their roles in organellar gene regulation. Evidence for accumulation of natural antisense RNAs (asRNAs in chloroplasts comes from the expressed sequence tag database and cDNA libraries, while functional data have been largely obtained from artificial asRNAs. In this study, we used Nicotiana tabacum to investigate the effect on sense strand transcripts of overexpressing a natural chloroplast asRNA, AS5, which is complementary to the region which encodes the 5S rRNA and tRNAArg. Results AS5-overexpressing (AS5ox plants obtained by chloroplast transformation exhibited slower growth and slightly pale green leaves. Analysis of AS5 transcripts revealed four distinct species in wild-type (WT and AS5ox plants, and additional AS5ox-specific products. Of the corresponding sense strand transcripts, tRNAArg overaccumulated several-fold in transgenic plants whereas 5S rRNA was unaffected. However, run-on transcription showed that the 5S-trnR region was transcribed four-fold more in the AS5ox plants compared to WT, indicating that overexpression of AS5 was associated with decreased stability of 5S rRNA. In addition, polysome analysis of the transformants showed less 5S rRNA and rbcL mRNA associated with ribosomes. Conclusions Our results suggest that AS5 can modulate 5S rRNA levels, giving it the potential to affect Chloroplast translation and plant growth. More globally, overexpression of asRNAs via chloroplast transformation may be a useful strategy for defining their functions.

  10. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    Science.gov (United States)

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Differentially expressed microRNA in multiple sclerosis: A window into pathogenesis?

    DEFF Research Database (Denmark)

    Martin, Nellie Anne; Illés, Zsolt

    2014-01-01

    MicroRNA are small non-coding RNA that mediate mRNA translation repression or mRNA degradation, and thereby refine protein expression levels. More than 30–60% of all genes are regulated by microRNA. Exploring disease-related microRNA signatures is an emerging tool in biomarker discovery, and sile......MicroRNA are small non-coding RNA that mediate mRNA translation repression or mRNA degradation, and thereby refine protein expression levels. More than 30–60% of all genes are regulated by microRNA. Exploring disease-related microRNA signatures is an emerging tool in biomarker discovery......RNA related to multiple sclerosis has increased significantly in recent years. Differentially expressed microRNA have been identified in the whole blood, serum, plasma, cerebrospinal fluid, peripheral blood mononuclear cells, blood-derived cell subsets and brain lesions of patients with multiple sclerosis....... Most studies applied a non-candidate approach of screening by microarray and validation by quantitative polymerase chain reaction or next generation sequencing; others used a candidate-driven approach. Despite a relatively high number of multiple sclerosis-associated microRNA, just a few could...

  12. CPB1 of Aedes aegypti Interacts with DENV2 E Protein and Regulates Intracellular Viral Accumulation and Release from Midgut Cells

    Directory of Open Access Journals (Sweden)

    Hong-Wai Tham

    2014-12-01

    Full Text Available Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV. To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H screenings against DENV2 envelope (E protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1 was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network.

  13. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    International Nuclear Information System (INIS)

    Li Heng; Li Yupeng; Zhang Xiaodong; Li Xiaoqiang; Liu Wei; Gillin, Michael T.; Zhu, X. Ronald

    2012-01-01

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a “pulsed beam”; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a “continuous beam.” A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose

  14. Poliovirus RNA synthesis in vitro: structural elements and antibody inhibition

    International Nuclear Information System (INIS)

    Semler, B.L.; Hanecak, R.; Dorner, L.F.; Anderson, C.W.; Wimmer, E.

    1983-01-01

    The poliovirus RNA polymerase complex has been analyzed by immunoautoradiography using antibody probes derived from purified replicase (P3) region viral polypeptides. Antibody preparations made against the polio RNA polymerase, P3-4b, detected a previously unreported cellular protein that copurifies with the RNA polymerase. An IgG fraction purified from rabbit antiserum to polypeptide P3-2, a precursor fo the RNA polymerase, specifically inhibits poliovirus RNA synthesis in vitro. The authors have also immunoprecipitated a 60,000-dalton protein (P3-4a) with antiserum to protein P3-4b and have determined the precise genomic map position of this protein by automated Edman degradation. Protein P3-4a originates by cleavage of the RNA polymerase precursor at a glutamine-glucine amino acid pair not previously reported to be a viral cleavage site

  15. Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7.

    Science.gov (United States)

    Coleman, Leon G; Zou, Jian; Crews, Fulton T

    2017-01-25

    Toll-like receptor (TLR) signaling is emerging as an important component of neurodegeneration. TLR7 senses viral RNA and certain endogenous miRNAs to initiate innate immune responses leading to neurodegeneration. Alcoholism is associated with hippocampal degeneration, with preclinical studies linking ethanol-induced neurodegeneration with central innate immune induction and TLR activation. The endogenous miRNA let-7b binds TLR7 to cause neurodegeneration. TLR7 and other immune markers were assessed in postmortem human hippocampal tissue that was obtained from the New South Wales Tissue Bank. Rat hippocampal-entorhinal cortex (HEC) slice culture was used to assess specific effects of ethanol on TLR7, let-7b, and microvesicles. We report here that hippocampal tissue from postmortem human alcoholic brains shows increased expression of TLR7 and increased microglial activation. Using HEC slice culture, we found that ethanol induces TLR7 and let-7b expression. Ethanol caused TLR7-associated neuroimmune gene induction and initiated the release let-7b in microvesicles (MVs), enhancing TLR7-mediated neurotoxicity. Further, ethanol increased let-7b binding to the danger signaling molecule high mobility group box-1 (HMGB1) in MVs, while reducing let-7 binding to classical chaperone protein argonaute (Ago2). Flow cytometric analysis of MVs from HEC media and analysis of MVs from brain cell culture lines found that microglia were the primary source of let-7b and HMGB1-containing MVs. Our results identify that ethanol induces neuroimmune pathology involving the release of let-7b/HMGB1 complexes in microglia-derived microvesicles. This contributes to hippocampal neurodegeneration and may play a role in the pathology of alcoholism.

  16. Myb-binding protein 1a (Mybbp1a) regulates levels and processing of pre-ribosomal RNA.

    Science.gov (United States)

    Hochstatter, Julia; Hölzel, Michael; Rohrmoser, Michaela; Schermelleh, Lothar; Leonhardt, Heinrich; Keough, Rebecca; Gonda, Thomas J; Imhof, Axel; Eick, Dirk; Längst, Gernot; Németh, Attila

    2012-07-13

    Ribosomal RNA gene transcription, co-transcriptional processing, and ribosome biogenesis are highly coordinated processes that are tightly regulated during cell growth. In this study we discovered that Mybbp1a is associated with both the RNA polymerase I complex and the ribosome biogenesis machinery. Using a reporter assay that uncouples transcription and RNA processing, we show that Mybbp1a represses rRNA gene transcription. In addition, overexpression of the protein reduces RNA polymerase I loading on endogenous rRNA genes as revealed by chromatin immunoprecipitation experiments. Accordingly, depletion of Mybbp1a results in an accumulation of the rRNA precursor in vivo but surprisingly also causes growth arrest of the cells. This effect can be explained by the observation that the modulation of Mybbp1a protein levels results in defects in pre-rRNA processing within the cell. Therefore, the protein may play a dual role in the rRNA metabolism, potentially linking and coordinating ribosomal DNA transcription and pre-rRNA processing to allow for the efficient synthesis of ribosomes.

  17. Characterization of bacteriophage KVP40 and T4 RNA ligase 2

    International Nuclear Information System (INIS)

    Yin Shenmin; Kiong Ho, C.; Miller, Eric S.; Shuman, Stewart

    2004-01-01

    Bacteriophage T4 RNA ligase 2 (Rnl2) exemplifies a subfamily of RNA strand-joining enzymes that includes the trypanosome RNA editing ligases. A homolog of T4 Rnl2 is encoded in the 244-kbp DNA genome of vibriophage KVP40. We show that the 335-amino acid KVP40 Rnl2 is a monomeric protein that catalyzes RNA end-joining through ligase-adenylate and RNA-adenylate (AppRNA) intermediates. In the absence of ATP, pre-adenylated KVP40 Rnl2 reacts with an 18-mer 5'-PO 4 single-strand RNA (pRNA) to form an 18-mer RNA circle. In the presence of ATP, Rnl2 generates predominantly AppRNA. Isolated AppRNA can be circularized by KVP40 Rnl2 in the absence of ATP. The reactivity of phage Rnl2 and the distribution of the products are affected by the length of the pRNA substrate. Whereas 18-mer and 15-mer pRNAs undergo intramolecular sealing by T4 Rnl2 to form monomer circles, a 12-mer pRNA is ligated intermolecularly to form dimers, and a 9-mer pRNA is unreactive. In the presence of ATP, the 15-mer and 12-mer pRNAs are converted to AppRNAs, but the 9-mer pRNA is not. A single 5' deoxynucleotide substitution of an 18-mer pRNA substrate has no apparent effect on the 5' adenylation or circularization reactions of T4 Rnl2. In contrast, a single deoxyribonucleoside at the 3' terminus strongly and selectively suppresses the sealing step, thereby resulting in accumulation of high levels of AppRNA in the absence of ATP. The ATP-dependent 'capping' of RNA with AMP by Rnl2 is reminiscent of the capping of eukaryotic mRNA with GMP by GTP:RNA guanylyltransferase and suggests an evolutionary connection between bacteriophage Rnl2 and eukaryotic RNA capping enzymes

  18. An RNA-binding compound that stabilizes the HIV-1 gRNA packaging signal structure and specifically blocks HIV-1 RNA encapsidation.

    Science.gov (United States)

    Ingemarsdotter, Carin K; Zeng, Jingwei; Long, Ziqi; Lever, Andrew M L; Kenyon, Julia C

    2018-03-14

    NSC260594, a quinolinium derivative from the NCI diversity set II compound library, was previously identified in a target-based assay as an inhibitor of the interaction between the HIV-1 (ψ) stem-loop 3 (SL3) RNA and Gag. This compound was shown to exhibit potent antiviral activity. Here, the effects of this compound on individual stages of the viral lifecycle were examined by qRT-PCR, ELISA and Western blot, to see if its actions were specific to the viral packaging stage. The structural effects of NSC260594 binding to the HIV-1 gRNA were also examined by SHAPE and dimerization assays. Treatment of cells with NSC260594 did not reduce the number of integration events of incoming virus, and treatment of virus producing cells did not affect the level of intracellular Gag protein or viral particle release as determined by immunoblot. However, NSC260594 reduced the incorporation of gRNA into virions by up to 82%, without affecting levels of gRNA inside the cell. This reduction in packaging correlated closely with the reduction in infectivity of the released viral particles. To establish the structural effects of NSC260594 on the HIV-1 gRNA, we performed SHAPE analyses to pinpoint RNA structural changes. NSC260594 had a stabilizing effect on the wild type RNA that was not confined to SL3, but that was propagated across the structure. A packaging mutant lacking SL3 did not show this effect. NSC260594 acts as a specific inhibitor of HIV-1 RNA packaging. No other viral functions are affected. Its action involves preventing the interaction of Gag with SL3 by stabilizing this small RNA stem-loop which then leads to stabilization of the global packaging signal region (psi or ψ). This confirms data, previously only shown in analyses of isolated SL3 oligonucleotides, that SL3 is structurally labile in the presence of Gag and that this is critical for the complete psi region to be able to adopt different conformations. Since replication is otherwise unaffected by NSC260594

  19. A conserved small RNA promotes silencing of the outer membrane protein YbfM

    DEFF Research Database (Denmark)

    Rasmussen, Anders Aamann; Johansen, Jesper; Nielsen, Jesper S

    2009-01-01

    important physiological role of regulatory RNA molecules in Gram-negative bacteria is to modulate the cell surface and/or to prevent accumulation of OMPs in the envelope. Here, we extend the OMP-sRNA network by showing that the expression of the outer membrane protein YbfM is silenced by a conserved sRNA......In the past few years an increasing number of small non-coding RNAs (sRNAs) in enterobacteria have been found to negatively regulate the expression of outer membrane proteins (OMPs) at the post-transcriptional level. These RNAs act under various growth and stress conditions, suggesting that one......, designated MicM (also known as RybC/SroB). The regulation is strictly dependent on the RNA chaperone Hfq, and mutational analysis indicates that MicM sequesters the ribosome binding site of ybfM mRNA by an antisense mechanism. Furthermore, we provide evidence that Hfq strongly enhances the on-rate of duplex...

  20. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Bo Kyung Sun

    2015-07-01

    Full Text Available Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA, significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

  1. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells

    Science.gov (United States)

    Sun, Bo Kyung; Kim, Ji Hye; Choi, Joon-Seok; Hwang, Sung-Joo; Sung, Jong-Hyuk

    2015-01-01

    Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs) or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA), significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation. PMID:26204837

  2. “Positive Regulation of RNA Metabolic Process” Ontology Group Highly Regulated in Porcine Oocytes Matured In Vitro: A Microarray Approach

    Directory of Open Access Journals (Sweden)

    Piotr Celichowski

    2018-01-01

    Full Text Available The cumulus-oocyte complexes (COCs growth and development during folliculogenesis and oogenesis are accompanied by changes involving synthesis and accumulation of large amount of RNA and proteins. In this study, the transcriptomic profile of genes involved in “oocytes RNA synthesis” in relation to in vitro maturation in pigs was investigated for the first time. The RNA was isolated from oocytes before and after in vitro maturation (IVM. Interactions between differentially expressed genes/proteins belonging to “positive regulation of RNA metabolic process” ontology group were investigated by STRING10 software. Using microarray assays, we found expression of 12258 porcine transcripts. Genes with fold change higher than 2 and with corrected p value lower than 0.05 were considered as differentially expressed. The ontology group “positive regulation of RNA metabolic process” involved differential expression of AR, INHBA, WWTR1, FOS, MEF2C, VEGFA, IKZF2, IHH, RORA, MAP3K1, NFAT5, SMARCA1, EGR1, EGR2, MITF, SMAD4, APP, and NR5A1 transcripts. Since all of the presented genes were downregulated after IVM, we suggested that they might be significantly involved in regulation of RNA synthesis before reaching oocyte MII stage. Higher expression of “RNA metabolic process” related genes before IVM indicated that they might be recognized as important markers and specific “transcriptomic fingerprint” of RNA template accumulation and storage for further porcine embryos growth and development.

  3. Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Fatima Khaja

    2016-01-01

    Full Text Available Since its discovery, small interfering RNA (siRNA has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA not easily accessed by conventional drugs. Hence, RNA interference (RNAi therapeutics have great potential in the treatment of many diseases caused by faulty protein expression such as fibrosis and cancer. However, for clinical application siRNA faces a number of obstacles, such as poor in vivo stability, and off-target effects. Here we developed a unique targeted nanomedicine to tackle current siRNA delivery issues by formulating a biocompatible, biodegradable and relatively inexpensive nanocarrier of sterically stabilized phospholipid nanoparticles (SSLNPs. This nanocarrier is capable of incorporating siRNA in its core through self-association with a novel cationic lipid composed of naturally occuring phospholipids and amino acids. This overall assembly protects and delivers sufficient amounts of siRNA to knockdown over-expressed protein in target cells. The siRNA used in this study, targets connective tissue growth factor (CTGF, an important regulator of fibrosis in both hepatic and renal cells. Furthermore, asialoglycoprotein receptors are targeted by attaching the galactosamine ligand to the nanocarries which enhances the uptake of nanoparticles by hepatocytes and renal tubular epithelial cells, the major producers of CTGF in fibrosis. On animals this innovative nanoconstruct, small interfering RNA in sterically stabilized phospholipid nanoparticles (siRNA-SSLNP, showed favorable pharmacokinetic properties and accumulated mostly in hepatic and renal tissues making siRNA-SSLNP a suitable system for targeting liver and kidney fibrotic diseases.

  4. Characterization of hydrocortisone bioconversion and 16S RNA gene in Synechococcus nidulans cultures.

    Science.gov (United States)

    Rasoul-Amini, S; Ghasemi, Y; Morowvat, M H; Ghoshoon, M B; Raee, M J; Mosavi-Azam, S B; Montazeri-Najafabady, N; Nouri, F; Parvizi, R; Negintaji, N; Khoubani, S

    2010-01-01

    A unicellular cyanobacterium, Synechococcus nidulans (Pringsheim) Komárek, was isolated from paddy-fields and applied in the biotransformation experiment of hydrocortisone (1). This strain has not been previously tested for steroid bioconversion. Fermentation was carried out in BG-11 medium supplemented with 0.05% substrate at 25 degrees C for 14 days of incubation. The obtained products were chromatographically purified followed by their characterization using spectroscopic methods. 11beta,17beta-dihydroxyandrost-4-en-3-one (2), 11beta-hydroxyandrost-4-en-3,17-dione (3), and androst-4-ene-3,17-dione (4) were the main bioproducts in the hydrocortisone bioconversion. The observed bioreaction characteristics were the side chain degradation of the substrate to prepare compounds (2) and (3) following the 11beta-dehydroxylation for accumulation of the compound (4). Time course study showed the accumulation of the product (2) from the second day of the fermentation and compounds (3) and (4) from the third day. All the metabolites reached their maximum concentration in seven days. Cyanobacterial 16S rRNA gene was also amplified by PCR. Sequences were amplified using the universal prokaryotic primers which amplify a approximately 400-bp region of the 16S rRNA gene. PCR products were sequenced to confirm their authenticity as 16S rRNA gene of cyanobacteria. The result of PCR blasted with other sequenced cyanobacteria in NCBI showed 99% identity to the 16S small subunit rRNA of seven Synechococcus species.

  5. Comparative miRNA-Based Fingerprinting Reveals Biological Differences in Human Olfactory Mucosa- and Bone-Marrow-Derived Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Susan Louise Lindsay

    2016-05-01

    Full Text Available Previously we reported that nestin-positive human mesenchymal stromal cells (MSCs derived from the olfactory mucosa (OM enhanced CNS myelination in vitro to a greater extent than bone-marrow-derived MSCs (BM-MSCs. miRNA-based fingerprinting revealed the two MSCs were 64% homologous, with 26 miRNAs differentially expressed. We focused on miR-146a-5p and miR-140-5p due to their reported role in the regulation of chemokine production and myelination. The lower expression of miR-140-5p in OM-MSCs correlated with higher secretion of CXCL12 compared with BM-MSCs. Addition of CXCL12 and its pharmacological inhibitors to neural co-cultures supported these data. Studies on related miR-146a-5p targets demonstrated that OM-MSCs had lower levels of Toll-like receptors and secreted less pro-inflammatory cytokines, IL-6, IL-8, and CCL2. OM-MSCs polarized microglia to an anti-inflammatory phenotype, illustrating potential differences in their inflammatory response. Nestin-positive OM-MSCs could therefore offer a cell transplantation alternative for CNS repair, should these biological behaviors be translated in vivo.

  6. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon

    Science.gov (United States)

    The molecular mechanism controlling accumulation of soluble sugars in watermelon (Citrullus lanatus) fruit, a trait associated with sweet-dessert watermelon domestication, is still unknown. We re-sequenced 96 recombinant inbred lines, derived from a cross between sweet and unsweet watermelon accessi...

  7. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Kim, Yoon Young; Ku, Seung-Yup; Huh, Yul; Liu, Hung-Ching; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong

    2013-10-01

    Human pluripotent stem cells (hPSCs) have arisen as a source of cells for biomedical research due to their developmental potential. Stem cells possess the promise of providing clinicians with novel treatments for disease as well as allowing researchers to generate human-specific cellular metabolism models. Aging is a natural process of living organisms, yet aging in human heart cells is difficult to study due to the ethical considerations regarding human experimentation as well as a current lack of alternative experimental models. hPSC-derived cardiomyocytes (CMs) bear a resemblance to human cardiac cells and thus hPSC-derived CMs are considered to be a viable alternative model to study human heart cell aging. In this study, we used hPSC-derived CMs as an in vitro aging model. We generated cardiomyocytes from hPSCs and demonstrated the process of aging in both human embryonic stem cell (hESC)- and induced pluripotent stem cell (hiPSC)-derived CMs. Aging in hESC-derived CMs correlated with reduced membrane potential in mitochondria, the accumulation of lipofuscin, a slower beating pattern, and the downregulation of human telomerase RNA (hTR) and cell cycle regulating genes. Interestingly, the expression of hTR in hiPSC-derived CMs was not significantly downregulated, unlike in hESC-derived CMs. In order to delay aging, vitamin C was added to the cultured CMs. When cells were treated with 100 μM of vitamin C for 48 h, anti-aging effects, specifically on the expression of telomere-related genes and their functionality in aging cells, were observed. Taken together, these results suggest that hPSC-derived CMs can be used as a unique human cardiomyocyte aging model in vitro and that vitamin C shows anti-aging effects in this model.

  8. Cell lineage specific distribution of H3K27 trimethylation accumulation in an in vitro model for human implantation.

    Directory of Open Access Journals (Sweden)

    Gijs Teklenburg

    Full Text Available Female mammals inactivate one of their two X-chromosomes to compensate for the difference in gene-dosage with males that have just one X-chromosome. X-chromosome inactivation is initiated by the expression of the non-coding RNA Xist, which coats the X-chromosome in cis and triggers gene silencing. In early mouse development the paternal X-chromosome is initially inactivated in all cells of cleavage stage embryos (imprinted X-inactivation followed by reactivation of the inactivated paternal X-chromosome exclusively in the epiblast precursors of blastocysts, resulting temporarily in the presence of two active X-chromosomes in this specific lineage. Shortly thereafter, epiblast cells randomly inactivate either the maternal or the paternal X-chromosome. XCI is accompanied by the accumulation of histone 3 lysine 27 trimethylation (H3K27me3 marks on the condensed X-chromosome. It is still poorly understood how XCI is regulated during early human development. Here we have investigated lineage development and the distribution of H3K27me3 foci in human embryos derived from an in-vitro model for human implantation. In this system, embryos are co-cultured on decidualized endometrial stromal cells up to day 8, which allows the culture period to be extended for an additional two days. We demonstrate that after the co-culture period, the inner cell masses have relatively high cell numbers and that the GATA4-positive hypoblast lineage and OCT4-positive epiblast cell lineage in these embryos have segregated. H3K27me3 foci were observed in ∼25% of the trophectoderm cells and in ∼7.5% of the hypoblast cells, but not in epiblast cells. In contrast with day 8 embryos derived from the co-cultures, foci of H3K27me3 were not observed in embryos at day 5 of development derived from regular IVF-cultures. These findings indicate that the dynamics of H3K27me3 accumulation on the X-chromosome in human development is regulated in a lineage specific fashion.

  9. From the clouds to the ground - snow precipitation patterns vs. snow accumulation patterns

    Science.gov (United States)

    Gerber, Franziska; Besic, Nikola; Mott, Rebecca; Gabella, Marco; Germann, Urs; Bühler, Yves; Marty, Mauro; Berne, Alexis; Lehning, Michael

    2017-04-01

    Knowledge about snow distribution and snow accumulation patterns is important and valuable for different applications such as the prediction of seasonal water resources or avalanche forecasting. Furthermore, accumulated snow on the ground is an important ground truth for validating meteorological and climatological model predictions of precipitation in high mountains and polar regions. Snow accumulation patterns are determined by many different processes from ice crystal nucleation in clouds to snow redistribution by wind and avalanches. In between, snow precipitation undergoes different dynamical and microphysical processes, such as ice crystal growth, aggregation and riming, which determine the growth of individual particles and thereby influence the intensity and structure of the snowfall event. In alpine terrain the interaction of different processes and the topography (e.g. lifting condensation and low level cloud formation, which may result in a seeder-feeder effect) may lead to orographic enhancement of precipitation. Furthermore, the redistribution of snow particles in the air by wind results in preferential deposition of precipitation. Even though orographic enhancement is addressed in numerous studies, the relative importance of micro-physical and dynamically induced mechanisms on local snowfall amounts and especially snow accumulation patterns is hardly known. To better understand the relative importance of different processes on snow precipitation and accumulation we analyze snowfall and snow accumulation between January and March 2016 in Davos (Switzerland). We compare MeteoSwiss operational weather radar measurements on Weissfluhgipfel to a spatially continuous snow accumulation map derived from airborne digital sensing (ADS) snow height for the area of Dischma valley in the vicinity of the weather radar. Additionally, we include snow height measurements from automatic snow stations close to the weather radar. Large-scale radar snow accumulation

  10. Domestication of transposable elements into MicroRNA genes in plants.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Transposable elements (TE usually take up a substantial portion of eukaryotic genome. Activities of TEs can cause genome instability or gene mutations that are harmful or even disastrous to the host. TEs also contribute to gene and genome evolution at many aspects. Part of miRNA genes in mammals have been found to derive from transposons while convincing evidences are absent for plants. We found that a considerable number of previously annotated plant miRNAs are identical or homologous to transposons (TE-MIR, which include a small number of bona fide miRNA genes that conform to generally accepted plant miRNA annotation rules, and hairpin derived siRNAs likely to be pre-evolved miRNAs. Analysis of these TE-MIRs indicate that transitions from the medium to high copy TEs into miRNA genes may undergo steps such as inverted repeat formation, sequence speciation and adaptation to miRNA biogenesis. We also identified initial target genes of the TE-MIRs, which contain homologous sequences in their CDS as consequence of cognate TE insertions. About one-third of the initial target mRNAs are supported by publicly available degradome sequencing data for TE-MIR sRNA induced cleavages. Targets of the TE-MIRs are biased to non-TE related genes indicating their penchant to acquire cellular functions during evolution. Interestingly, most of these TE insertions span boundaries between coding and non-coding sequences indicating their incorporation into CDS through alteration of splicing or translation start or stop signals. Taken together, our findings suggest that TEs in gene rich regions can form foldbacks in non-coding part of transcripts that may eventually evolve into miRNA genes or be integrated into protein coding sequences to form potential targets in a "temperate" manner. Thus, transposons may supply as resources for the evolution of miRNA-target interactions in plants.

  11. Loss of tumorigenic potential by human lung tumor cells in the presence of antisense RNA specific to the ectopically synthesized alpha subunit of human chorionic gonadotropin.

    Science.gov (United States)

    Rivera, R T; Pasion, S G; Wong, D T; Fei, Y B; Biswas, D K

    1989-06-01

    A clonal strain of human lung tumor cells in culture (ChaGo), derived from a bronchogenic carcinoma, synthesizes and secretes large amounts of alpha (alpha) and a comparatively lower level of beta (beta) subunit of the glycoprotein hormone, human chorionic gonadotropin (HCG). ChaGo cells lost their characteristic anchorage-independent growth phenotype in the presence of anti-alpha-HCG antibody. The effect of the antibody was partially reversed by addition of alpha-HCG to the culture medium. ChaGo cells were transfected with an expression vector (pRSV-anti-alpha-HCG), that directs synthesis of RNA complementary to alpha-HCG mRNA. The transfectants produced alpha-HCG antisense RNA which was associated with the reduced level of alpha-HCG. Transfectants also displayed several altered phenotypic properties, including altered morphology, less mitosis, reduced growth rate, loss of anchorage-independent growth, and loss of tumorigenicity in nude mice. Treatment of transfectants with 8,bromo-cAMP resulted in increased accumulation of alpha-HCG mRNA, no change in the level of alpha-HCG antisense RNA, release of the inhibition of [3H]thymidine incorporation, and restoration of anchorage-independent growth phenotype. The overexpression of c-myc, observed in ChaGo cells, was unaffected by the reduced level of alpha-HCG. These results suggest that ectopic synthesis of the alpha subunit of HCG plays a functional role in the transformation of these human lung cells.

  12. The Microprocessor controls the activity of mammalian retrotransposons

    DEFF Research Database (Denmark)

    Heras, Sara R.; Macias, Sara; Plass, Mireya

    2013-01-01

    RNA biogenesis, also recognizes and binds RNAs derived from human long interspersed element 1 (LINE-1), Alu and SVA retrotransposons. Expression analyses demonstrate that cells lacking a functional Microprocessor accumulate LINE-1 mRNA and encoded proteins. Furthermore, we show that structured regions...

  13. Antisense RNA: a genetic approach to cell resistance against Parvovirus; RNA antisentido: una aproximacion de resistencia genetica a Parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Martinez, J.C.

    1992-12-31

    The Minute Virus of Mice (MVMp), an autonomous Parvovirus that replicates cytolytically in the A9 mouse fibroblast cell line, was interfered by constitutive expression of an antisense RNA targeted against the major non-structural NS-1 protein. Permanently transfected A9 clones expressing NS-1 antisense, showed increased proliferative capacity upon virus infection, and likewise cultures infected at low multiplicity by MVMp reached confluence overcoming virus growth. Correspondingly, an inhibition in virus multiplication was demonstrated by a significant lower virus production and plaque forming ability in clones expressing antisense RNa. At the molecular level, several fold reduction in viral DNA, RNA and proteins was quantitated by respective analysis of Southern, RNase protection and bidimensional gels. Remarkably, the accumulation of all three viral messengers(R1,R2,R3) was decreased both in the cytoplasm and in the nucleus, suggesting that antisense-mediated inhibition is primarily exerted at the level of viral transcription or nuclear post-transcriptional events. Thus, this system illustrates the possibility to create an antisense-mediated protective stage to highly cytotoxic viruses in permissive cells, by down-modulation the expression of a transactivator of virus genes. (author)180 refs., 25 figs.

  14. Antisense RNA: a genetic approach to cell resistance against Parvovirus. RNA antisentido: una aproximacion de resistencia genetica a Parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Martinez, J.C.

    1992-01-01

    The Minute Virus of Mice (MVMp), an autonomous Parvovirus that replicates cytolytically in the A9 mouse fibroblast cell line, was interfered by constitutive expression of an antisense RNA targeted against the major non-structural NS-1 protein. Permanently transfected A9 clones expressing NS-1 antisense, showed increased proliferative capacity upon virus infection, and likewise cultures infected at low multiplicity by MVMp reached confluence overcoming virus growth. Correspondingly, an inhibition in virus multiplication was demonstrated by a significant lower virus production and plaque forming ability in clones expressing antisense RNa. At the molecular level, several fold reduction in viral DNA, RNA and proteins was quantitated by respective analysis of Southern, RNase protection and bidimensional gels. Remarkably, the accumulation of all three viral messengers(R1,R2,R3) was decreased both in the cytoplasm and in the nucleus, suggesting that antisense-mediated inhibition is primarily exerted at the level of viral transcription or nuclear post-transcriptional events. Thus, this system illustrates the possibility to create an antisense-mediated protective stage to highly cytotoxic viruses in permissive cells, by down-modulation the expression of a transactivator of virus genes. (author)180 refs., 25 figs.

  15. Carbon accumulation in peatlands of West Siberia over the last 2000 years

    Science.gov (United States)

    Beilman, David W.; MacDonald, Glen M.; Smith, Laurence C.; Reimer, Paula J.

    2009-03-01

    We use a network of cores from 77 peatland sites to determine controls on peat C content and peat C accumulation over the last 2000 years (since 2 ka) across Russia's West Siberian Lowland (WSL), the world's largest wetland region. Our results show a significant influence of fossil plant composition on peat C content, with peats dominated by Sphagnum having a lower C content. Radiocarbon-derived C accumulation since 2 ka at 23 sites is highly variable from site to site, but displays a significant N-S trend of decreasing accumulation at higher latitudes. Northern WSL peatlands show relatively small C accumulation of 7 to 35 kg C m-2 since 2 ka. In contrast, peatlands south of 60°N show larger accumulation of 42 to 88 kg C m-2. Carbon accumulation since 2 ka varies significantly with modern mean annual air temperature, with maximum C accumulation found between -1 and 0°C. Rates of apparent C accumulation since 2 ka show no significant relationship to long-term Holocene averages based on total C accumulation. A GIS-based extrapolation of our site data suggests that a substantial amount (˜40%) of total WSL peat C has accumulated since 2 ka, with much of this accumulation south of 60°N. The large peatlands in the southern WSL may be an important component of the Eurasian terrestrial C sink, and future warming could result in a shift northward in long-term WSL C sequestration.

  16. BIOLOGICAL FUNCTION OF TOMBUSVIRUS-ENCODED SUPPRESSOR OF RNA SILENCING IN PLANTS

    Directory of Open Access Journals (Sweden)

    Omarov R.T.

    2012-08-01

    Full Text Available RNA interference (RNAi plays multiple biological roles in eukaryotic organisms to regulate gene expression. RNAi also operates as a conserved adaptive molecular immune mechanism against invading viruses. The antiviral RNAi pathway is initiated with the generation of virus-derived short-interfering RNAs (siRNAs that are used for subsequent sequence-specific recognition and degradation of the cognate viral RNA molecules. As an efficient counter-defensive strategy, most plant viruses evolved the ability to encode specific proteins capable of interfering with RNAi, and this process is commonly known as RNA silencing suppression. Virus-encoded suppressors of RNAi (VSRs operate at different steps in the RNAi pathway and display distinct biochemical properties that enable these proteins to efficiently interfere with the host-defense system. Tombusvirus-encoded P19 is an important pathogenicity factor, required for symptom development and elicitation of a hypersensitive response in a host-dependent manner. Protein plays a crucial role of TBSV P19 in protecting viral RNA during systemic infection on Nicotiana benthamiana. The X-ray crystallographic studies conducted by two independent groups revealed the existence of a P19-siRNA complex; a conformation whereby caliper tryptophan residues on two subunits of P19 dimers measure and bind 21-nt siRNA duplexes. These structural studies provided the first details on the possible molecular mechanism of any viral suppressor to block RNAi. The association between P19 and siRNAs was also shown to occur in infected plants These and related studies revealed that in general the ability of P19 to efficiently sequester siRNAs influences symptom severity, however this is not a strict correlation in all hosts.The current working model is that during TBSV infection of plants, P19 appropriates abundantly circulating Tombusvirus-derived siRNAs thereby rendering these unavailable to program RISC, to prevent degradation of

  17. Carbon accumulation in pristine and drained mires

    Energy Technology Data Exchange (ETDEWEB)

    Maekilae, M.

    2011-07-01

    The carbon accumulation of 73 peat columns from 48 pristine and drained mires was investigated using a total of 367 dates and age-depth models derived from bulk density measurements. Peat columns were collected from mires of varying depth, age, degree of natural state and nutrient conditions in aapa mire and raised bog regions and coastal mires from southern and central Finland and Russian Karelia. Particular attention was paid to the accumulation of carbon over the last 300 years, as this period encompasses the best estimates of the oxic layer (acrotelm) age across the range of sites investigated. In general, drained mires are initially more nutrient-rich than pristine mires. Organic matter decomposes more rapidly at drained sites than at pristine sites, resulting in thinner peat layers and carbon accumulation but a higher dry bulk density and carbon content. The average carbon accumulation was calculated as 24.0 g m-2 yr-1 at pristine sites and 19.4 g m-2 yr-1 at drained sites, while for peat layers younger than 300 years the respective figures were 45.3 and 34.5 g m-2 yr-1 at pristine and drained sites. For the <300-year-old peat layers studied here, the average thickness was 19 cm less and the carbon accumulation rate 10.8 g m-2 yr-1 lower in drained areas than in pristine areas. The amount carbon accumulation of surface peat layers depends upon the mire site type, vegetation and natural state; variations reflect differences in plant communities as well as factors that affect biomass production and decay rates. The highest accumulation rates and thus carbon binding for layers younger than 300 years were measured in the ombrotrophic mire site types (Sphagnum fuscum bog and Sphagnum fuscum pine bog), and the second highest rates in wet, treeless oligotrophic and minerotrophic mire site types. The lowest values of carbon accumulation over the last 300 years were obtained for the most transformed, sparsely forested and forested mire site types, where the water

  18. The accumulation of nickel in human lungs.

    OpenAIRE

    Edelman, D A; Roggli, V L

    1989-01-01

    Using data from published studies, lung concentrations of nickel were compare for persons with and without occupational exposure to nickel. As expected, the concentrations were much higher for persons with occupational exposure. To estimate the effects of nickel-containing tobacco smoke and nickel in the ambient air on the amount of nickel accumulated in lungs over time, a model was derived that took into account various variables related to the deposition of nickel in lungs. The model predic...

  19. Generation of human β-thalassemia induced pluripotent cell lines by reprogramming of bone marrow-derived mesenchymal stromal cells using modified mRNA.

    Science.gov (United States)

    Varela, Ioanna; Karagiannidou, Angeliki; Oikonomakis, Vasilis; Tzetis, Maria; Tzanoudaki, Marianna; Siapati, Elena-Konstantina; Vassilopoulos, George; Graphakos, Stelios; Kanavakis, Emmanuel; Goussetis, Evgenios

    2014-12-01

    Synthetic modified mRNA molecules encoding pluripotency transcription factors have been used successfully in reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs). We have applied this method on bone marrow-derived mesenchymal stromal cells (BM-MSCs) obtained from a patient with β-thalassemia (β-thal) with the aim to generate trangene-free β-thal-iPSCs. Transfection of 10(4) BM-MSCs by lipofection with mRNA encoding the reprogramming factors Oct4, Klf4, Sox2, cMyc, and Lin28 resulted in formation of five iPSC colonies, from which three were picked up and expanded in β-thal-iPSC lines. After 10 serial passages in vitro, β-thal-iPSCs maintain genetic stability as shown by array comparative genomic hybridization (aCGH) and are capable of forming embryoid bodies in vitro and teratomas in vivo. Their gene expression profile compared to human embryonic stem cells (ESCs) and BM-MSCs seems to be similar to that of ESCs, whereas it differs from the profile of the parental BM-MSCs. Differentiation cultures toward a hematopoietic lineage showed the generation of CD34(+) progenitors up to 10%, but with a decreased hematopoietic colony-forming capability. In conclusion, we report herein the generation of transgene-free β-thal-iPSCs that could be widely used for disease modeling and gene therapy applications. Moreover, it was demonstrated that the mRNA-based reprogramming method, used mainly in fibroblasts, is also suitable for reprogramming of human BM-MSCs.

  20. Data Mining of Small RNA-Seq Suggests an Association Between Prostate Cancer and Altered Abundance of 5′ Transfer RNA Halves in Seminal Fluid and Prostatic Tissues

    Directory of Open Access Journals (Sweden)

    Joseph M Dhahbi

    2018-02-01

    Full Text Available Extracellular RNAs are gaining clinical interest as biofluid-based noninvasive markers for diseases, especially cancer. In particular, derivatives of transfer RNA (tRNA are emerging as a new class of small-noncoding RNAs with high biomarker potential. We and others previously reported alterations in serum levels of specific tRNA halves in disease states including cancer. Here, we explored seminal fluid for tRNA halves as potential markers of prostate cancer. We found that 5′ tRNA halves are abundant in seminal fluid and are elevated in prostate cancer relative to noncancer patients. Importantly, most of these tRNA halves are also detectable in prostatic tissues, and a subset were increased in malignant relative to adjacent normal tissue. These findings emphasize the potential of 5′ tRNA halves as noninvasive markers for prostate cancer screening and diagnosis and provide leads for future work to elucidate a putative role of the 5′ tRNA halves in carcinogenesis.

  1. Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of sweet potato chlorotic stunt virus isolates infecting sweetpotato and related wild species.

    Directory of Open Access Journals (Sweden)

    Arthur K Tugume

    Full Text Available BACKGROUND: The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae encodes a Class 1 RNase III (RNase3, a putative hydrophobic protein (p7 and a 22-kDa protein (p22 from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b encoding an RNase3 homolog (<56% identity to SPCSV RNase3 able to suppresses sense-mediated RNA silencing was detected in I. sinensis. CONCLUSIONS/SIGNIFICANCE: SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in

  2. 3' RNA ligase mediated rapid amplification of cDNA ends for validating viroid induced cleavage at the 3' extremity of the host mRNA.

    Science.gov (United States)

    Adkar-Purushothama, Charith Raj; Bru, Pierrick; Perreault, Jean-Pierre

    2017-12-01

    5' RNA ligase-mediated rapid amplification of cDNA ends (5' RLM-RACE) is a widely-accepted method for the validation of direct cleavage of a target gene by a microRNA (miRNA) and viroid-derived small RNA (vd-sRNA). However, this method cannot be used if cleavage takes place in the 3' extremity of the target RNA, as this gives insufficient sequence length to design nested PCR primers for 5' RLM RACE. To overcome this hurdle, we have developed 3' RNA ligase-mediated rapid amplification of cDNA ends (3' RLM RACE). In this method, an oligonucleotide adapter having 5' adenylated and 3' blocked is ligated to the 3' end of the cleaved RNA followed by PCR amplification using gene specific primers. In other words, in 3' RLM RACE, 3' end is mapped using 5' fragment instead of small 3' fragment. The method developed here was verified by examining the bioinformatics predicted and parallel analysis of RNA ends (PARE) proved cleavage sites of chloride channel protein CLC-b-like mRNA in Potato spindle tuber viroid infected tomato plants. The 3' RLM RACE developed in this study has the potential to validate the miRNA and vd-sRNA mediated cleavage of mRNAs at its 3' untranslated region (3' UTR). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. SELEX-Based Screening of Exosome-Tropic RNA.

    Science.gov (United States)

    Yamashita, Takuma; Shinotsuka, Haruka; Takahashi, Yuki; Kato, Kana; Nishikawa, Makiya; Takakura, Yoshinobu

    2017-01-01

    Cell-derived nanosized vesicles or exosomes are expected to become delivery carriers for functional RNAs, such as small interfering RNA (siRNA). A method to efficiently load functional RNAs into exosomes is required for the development of exosome-based delivery carriers of functional RNAs. However, there is no method to find exosome-tropic exogenous RNA sequences. In this study, we used a systematic evolution of ligands by exponential enrichment (SELEX) method to screen exosome-tropic RNAs that can be used to load functional RNAs into exosomes by conjugation. Pooled single stranded 80-base RNAs, each of which contains a randomized 40-base sequence, were transfected into B16-BL6 murine melanoma cells and exosomes were collected from the cells. RNAs extracted from the exosomes were subjected to next round of SELEX. Cloning and sequencing of RNAs in SELEX-screened RNA pools showed that 29 of 56 clones had a typical RNA sequence. The sequence found by SELEX was enriched in exosomes after transfection to B16-BL6 cells. The results show that the SELEX-based method can be used for screening of exosome-tropic RNAs.

  4. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    Science.gov (United States)

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.

  5. [Dynamic accumulation regulation of curcumin, demethoxycurcumin and bisdemethoxyeurcumin in three strains of curcuma longae rhizome].

    Science.gov (United States)

    Li, Qing-Miao; Yang, Wen-Yu; Tang, Xue-Mei; Zhang, Mei; Zhou, Xian-Jian; Shu, Guang-Ming; Zhao, Jun-Ning; Fang, Qing-Mao

    2014-06-01

    The paper is aimed to study the dynamic accumulation regulation of curcumin (Cur), demethoxycurcumin (DMC) and bisdemethoxyeurcumin (BDMC) in three strains of Curcuma longa, and provide scientific references for formalized cultivation, timely harvesting, quality control and breeding cultivation of C. longa. The accumulation regulation of the three curcumin derivatives was basically the same in rhizome of three strains. The relative contents decreased along with plant development growing, while the accumulation per hectare increased with plant development growing. The accumulation of curcuminoids per hectare could be taken as the assessment standard for the best harvest time of C. longa. A3 was the best strain in terms of Cur and BDMC content.

  6. Analysis of the complement and molecular evolution of tRNA genes in cow

    Directory of Open Access Journals (Sweden)

    Barris Wesley C

    2009-04-01

    Full Text Available Abstract Background Detailed information regarding the number and organization of transfer RNA (tRNA genes at the genome level is becoming readily available with the increase of DNA sequencing of whole genomes. However the identification of functional tRNA genes is challenging for species that have large numbers of repetitive elements containing tRNA derived sequences, such as Bos taurus. Reliable identification and annotation of entire sets of tRNA genes allows the evolution of tRNA genes to be understood on a genomic scale. Results In this study, we explored the B. taurus genome using bioinformatics and comparative genomics approaches to catalogue and analyze cow tRNA genes. The initial analysis of the cow genome using tRNAscan-SE identified 31,868 putative tRNA genes and 189,183 pseudogenes, where 28,830 of the 31,868 predicted tRNA genes were classified as repetitive elements by the RepeatMasker program. We then used comparative genomics to further discriminate between functional tRNA genes and tRNA-derived sequences for the remaining set of 3,038 putative tRNA genes. For our analysis, we used the human, chimpanzee, mouse, rat, horse, dog, chicken and fugu genomes to predict that the number of active tRNA genes in cow lies in the vicinity of 439. Of this set, 150 tRNA genes were 100% identical in their sequences across all nine vertebrate genomes studied. Using clustering analyses, we identified a new tRNA-GlyCCC subfamily present in all analyzed mammalian genomes. We suggest that this subfamily originated from an ancestral tRNA-GlyGCC gene via a point mutation prior to the radiation of the mammalian lineages. Lastly, in a separate analysis we created phylogenetic profiles for each putative cow tRNA gene using a representative set of genomes to gain an overview of common evolutionary histories of tRNA genes. Conclusion The use of a combination of bioinformatics and comparative genomics approaches has allowed the confident identification of a

  7. Complete probabilistic analysis of RNA shapes

    Directory of Open Access Journals (Sweden)

    Voß Björn

    2006-02-01

    Full Text Available Abstract Background Soon after the first algorithms for RNA folding became available, it was recognised that the prediction of only one energetically optimal structure is insufficient to achieve reliable results. An in-depth analysis of the folding space as a whole appeared necessary to deduce the structural properties of a given RNA molecule reliably. Folding space analysis comprises various methods such as suboptimal folding, computation of base pair probabilities, sampling procedures and abstract shape analysis. Common to many approaches is the idea of partitioning the folding space into classes of structures, for which certain properties can be derived. Results In this paper we extend the approach of abstract shape analysis. We show how to compute the accumulated probabilities of all structures that share the same shape. While this implies a complete (non-heuristic analysis of the folding space, the computational effort depends only on the size of the shape space, which is much smaller. This approach has been integrated into the tool RNAshapes, and we apply it to various RNAs. Conclusion Analyses of conformational switches show the existence of two shapes with probabilities approximately 23 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabikdaYaqaaiabiodaZaaaaaa@2EA2@ vs. 13 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaadaWcaaqaaiabigdaXaqaaiabiodaZaaaaaa@2EA0@, whereas the analysis of a microRNA precursor reveals one shape with a probability near to 1.0. Furthermore, it is shown that a shape can outperform an energetically more favourable one by

  8. Translational control by the DEAD Box RNA helicase belle regulates ecdysone-triggered transcriptional cascades.

    Directory of Open Access Journals (Sweden)

    Robert J Ihry

    Full Text Available Steroid hormones act, through their respective nuclear receptors, to regulate target gene expression. Despite their critical role in development, physiology, and disease, however, it is still unclear how these systemic cues are refined into tissue-specific responses. We identified a mutation in the evolutionarily conserved DEAD box RNA helicase belle/DDX3 that disrupts a subset of responses to the steroid hormone ecdysone during Drosophila melanogaster metamorphosis. We demonstrate that belle directly regulates translation of E74A, an ets transcription factor and critical component of the ecdysone-induced transcriptional cascade. Although E74A mRNA accumulates to abnormally high levels in belle mutant tissues, no E74A protein is detectable, resulting in misregulation of E74A-dependent ecdysone response genes. The accumulation of E74A mRNA in belle mutant salivary glands is a result of auto-regulation, fulfilling a prediction made by Ashburner nearly 40 years ago. In this model, Ashburner postulates that, in addition to regulating secondary response genes, protein products of primary response genes like E74A also inhibit their own ecdysone-induced transcription. Moreover, although ecdysone-triggered transcription of E74A appears to be ubiquitous during metamorphosis, belle-dependent translation of E74A mRNA is spatially restricted. These results demonstrate that translational control plays a critical, and previously unknown, role in refining transcriptional responses to the steroid hormone ecdysone.

  9. Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection

    Science.gov (United States)

    Doria, Margherita; Neri, Francesca; Gallo, Angela; Farace, Maria Giulia; Michienzi, Alessandro

    2009-01-01

    Adenosine deaminases that act on dsRNA (ADARs) are enzymes that target double-stranded regions of RNA converting adenosines into inosines (A-to-I editing) thus contributing to genome complexity and fine regulation of gene expression. It has been described that a member of the ADAR family, ADAR1, can target viruses and affect their replication process. Here we report evidence showing that ADAR1 stimulates human immuno deficiency virus type 1 (HIV-1) replication by using both editing-dependent and editing-independent mechanisms. We show that over-expression of ADAR1 in HIV-1 producer cells increases viral protein accumulation in an editing-independent manner. Moreover, HIV-1 virions generated in the presence of over-expressed ADAR1 but not an editing-inactive ADAR1 mutant are released more efficiently and display enhanced infectivity, as demonstrated by challenge assays performed with T cell lines and primary CD4+ T lymphocytes. Finally, we report that ADAR1 associates with HIV-1 RNAs and edits adenosines in the 5′ untranslated region (UTR) and the Rev and Tat coding sequence. Overall these results suggest that HIV-1 has evolved mechanisms to take advantage of specific RNA editing activity of the host cell and disclose a stimulatory function of ADAR1 in the spread of HIV-1. PMID:19651874

  10. The human nucleolar protein FTSJ3 associates with NIP7 and functions in pre-rRNA processing.

    Directory of Open Access Journals (Sweden)

    Luis G Morello

    Full Text Available NIP7 is one of the many trans-acting factors required for eukaryotic ribosome biogenesis, which interacts with nascent pre-ribosomal particles and dissociates as they complete maturation and are exported to the cytoplasm. By using conditional knockdown, we have shown previously that yeast Nip7p is required primarily for 60S subunit synthesis while human NIP7 is involved in the biogenesis of 40S subunit. This raised the possibility that human NIP7 interacts with a different set of proteins as compared to the yeast protein. By using the yeast two-hybrid system we identified FTSJ3, a putative ortholog of yeast Spb1p, as a human NIP7-interacting protein. A functional association between NIP7 and FTSJ3 is further supported by colocalization and coimmunoprecipitation analyses. Conditional knockdown revealed that depletion of FTSJ3 affects cell proliferation and causes pre-rRNA processing defects. The major pre-rRNA processing defect involves accumulation of the 34S pre-rRNA encompassing from site A' to site 2b. Accumulation of this pre-rRNA indicates that processing of sites A0, 1 and 2 are slower in cells depleted of FTSJ3 and implicates FTSJ3 in the pathway leading to 18S rRNA maturation as observed previously for NIP7. The results presented in this work indicate a close functional interaction between NIP7 and FTSJ3 during pre-rRNA processing and show that FTSJ3 participates in ribosome synthesis in human cells.

  11. Salinity inhibits post transcriptional processing of chloroplast 16S rRNA in shoot cultures of jojoba (Simmondsia chinesis).

    Science.gov (United States)

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2005-03-01

    Chloroplast metabolism is rapidly affected by salt stress. Photosynthesis is one of the first processes known to be affected by salinity. Here, we report that salinity inhibits chloroplast post-transcriptional RNA processing. A differentially expressed 680-bp cDNA, containing the 3' sequence of 16S rRNA, transcribed intergenic spacer, exon 1 and intron of tRNA(Ile), was isolated by differential display reverse transcriptase PCR from salt-grown jojoba (Simmondsia chinesis) shoot cultures. Northern blot analysis indicated that although most rRNA appears to be fully processed, partially processed chloroplast 16S rRNA accumulates in salt-grown cultures. Thus, salinity appears to decrease the processing of the rrn transcript. The possible effect of this decreased processing on physiological processes is, as yet, unknown.

  12. Excretion of purine base derivatives after intake of bacterial protein meal in pigs

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Skrede, A.

    2007-01-01

    Bacterial protein meal has a high content ofprotein but also of RNA and DNA. Sixteen barrows were allocated to four diets containing increasing levels of bacterial protein meal (BPM), from weaning to 80 kg live weight, to evaluate whether the RNA and DNA contents of BPM influenced the retention...... of nitrogen. It was hypothesised that an increased intake of RNA and DNA would lead to an increased urinary excretion of purine base derivatives and increased plasma concentrations. Retention of nitrogen was unaffected by dietary content of BPM (P=0.08) and the urinary excretion of purine base derivatives...

  13. HIV-1 RNAs are Not Part of the Argonaute 2 Associated RNA Interference Pathway in Macrophages.

    Directory of Open Access Journals (Sweden)

    Valentina Vongrad

    Full Text Available MiRNAs and other small noncoding RNAs (sncRNAs are key players in post-transcriptional gene regulation. HIV-1 derived small noncoding RNAs (sncRNAs have been described in HIV-1 infected cells, but their biological functions still remain to be elucidated. Here, we approached the question whether viral sncRNAs may play a role in the RNA interference (RNAi pathway or whether viral mRNAs are targeted by cellular miRNAs in human monocyte derived macrophages (MDM.The incorporation of viral sncRNAs and/or their target RNAs into RNA-induced silencing complex was investigated using photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP as well as high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP, which capture Argonaute2-bound miRNAs and their target RNAs. HIV-1 infected monocyte-derived macrophages (MDM were chosen as target cells, as they have previously been shown to express HIV-1 sncRNAs. In addition, we applied small RNA deep sequencing to study differential cellular miRNA expression in HIV-1 infected versus non-infected MDMs.PAR-CLIP and HITS-CLIP data demonstrated the absence of HIV-1 RNAs in Ago2-RISC, although the presence of a multitude of HIV-1 sncRNAs in HIV-1 infected MDMs was confirmed by small RNA sequencing. Small RNA sequencing revealed that 1.4% of all sncRNAs were of HIV-1 origin. However, neither HIV-1 derived sncRNAs nor putative HIV-1 target sequences incorporated into Ago2-RISC were identified suggesting that HIV-1 sncRNAs are not involved in the canonical RNAi pathway nor is HIV-1 targeted by this pathway in HIV-1 infected macrophages.

  14. Primary induction of vitellogenin mRNA in the rooster by 17beta-estradiol.

    Science.gov (United States)

    Burns, A T; Deeley, R G; Gordon, J I; Udell, D S; Mullinix, K P; Goldberger, R F

    1978-01-01

    We have studied the kinetics of vitellogenin mRNA accumulation in rooster liver after a primary injection of 17beta-estradiol. The levels of vitellogenin mRNA have been determined both by hybridization of total cellular RNA to vitellogenin cDNA and by translation of vitellogenin mRNA in a wheat germ cell-free system. The results obtained by both methods of analysis are in good agreement and indicate that vitellogenin mRNA is present in the liver of normal roosters at a level of 0-5 molecules per liver cell and increases in amount during the 3 days following injection of estrogen, reaching a level of almost 6000 molecules per cell at the peak of the response. The level of vitellogenin mRNA declined exponentially during the next 14 days with a half-life of 29 hr, reaching a level of less than 10 molecules per cell at 17 days after injection of the hormone. The levels of vitellogenin mRNA after stimulation with estrogen have been correlated with the in vivo rate of synthesis of the vitellogenin polypeptide. The results indicate that the rate of vitellogenin synthesis is closely correlated with the level of vitellogenin mRNA. On the basis of these findings, we conclude that vitellogenin mRNA does not exist in the liver in an untranslated form after withdrawal from estrogen. PMID:273910

  15. Biodistribution and Pharmacokinetics Study of siRNA-loaded Anti-NTSR1-mAb-functionalized Novel Hybrid Nanoparticles in a Metastatic Orthotopic Murine Lung Cancer Model

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    2016-01-01

    Full Text Available Small interfering RNA (siRNA is effective in silencing critical molecular pathways in cancer. The use of this tool as a treatment modality is limited by lack of an intelligent carrier system to enhance the preferential delivery of this molecule to specific targets in vivo. In the present study, the in vivo behavior of novel anti-NTSR1-mAb-functionalized antimutant K-ras siRNA-loaded hybrid nanoparticles, delivered by i.p. injection to non-small-cell lung cancer in mice models, was investigated and compared to that of a naked siRNA formulation. The siRNA in anti-NTSR1-mAb-functionalized hybrid nanoparticles was preferentially accumulated in tumor-bearing lungs and metastasized tumor for at least 48 hours while the naked siRNA formulation showed lack of preferential accumulation in all of the organs monitored. The plasma terminal half-life of nanoparticle-delivered siRNA was 11 times higher (17–1.5 hours than that of the naked siRNA formulation. The mean residence time and AUClast were 3.4 and 33 times higher than the corresponding naked siRNA formulation, respectively. High-performance liquid chromatography analysis showed that the hybrid nanoparticle carrier system protected the encapsulated siRNA against degradation in vivo. Our novel anti-NTSR1-mAb-functionalized hybrid nanoparticles provide a useful platform for in vivo targeting of siRNA for both experimental and clinical purposes.

  16. 20-Hydroxyecdysone stimulates nuclear accumulation of BmNep1, a nuclear ribosome biogenesis-related protein in the silkworm, Bombyx mori.

    Science.gov (United States)

    Ji, M-M; Liu, A-Q; Sima, Y-H; Xu, S-Q

    2016-10-01

    The pathway of communication between endocrine hormones and ribosome biogenesis critical for physiological adaptation is largely unknown. Nucleolar essential protein 1 (Nep1) is an essential gene for ribosome biogenesis and is functionally conserved in many in vertebrate and invertebrate species. In this study, we cloned Bombyx mori Nep1 (BmNep1) due to its high expression in silk glands of silkworms on day 3 of the fifth instar. We found that BmNep1 mRNA and protein levels were upregulated in silk glands during fourth-instar ecdysis and larval-pupal metamorphosis. By immunoprecipitation with the anti-BmNep1 antibody and liquid chromatography-tandem mass spectrometry analyses, it was shown that BmNep1 probably interacts with proteins related to ribosome structure formation. Immunohistochemistry, biochemical fractionation and immunocytochemistry revealed that BmNep1 is localized to the nuclei in Bombyx cells. Using BmN cells originally derived from ovaries, we demonstrated that 20-hydroxyecdysone (20E) induced BmNep1 expression and stimulated nuclear accumulation of BmNep1. Under physiological conditions, BmNep1 was also upregulated in ovaries during larval-pupal metamorphosis. Overall, our results indicate that the endocrine hormone 20E facilitates nuclear accumulation of BmNep1, which is involved in nuclear ribosome biogenesis in Bombyx. © 2016 The Royal Entomological Society.

  17. In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design.

    Science.gov (United States)

    Chuai, Guo-Hui; Wang, Qi-Long; Liu, Qi

    2017-01-01

    CRISPR-based genome editing has been widely implemented in various cell types. In silico single guide RNA (sgRNA) design is a key step for successful gene editing using the CRISPR system, and continuing efforts are aimed at refining in silico sgRNA design with high on-target efficacy and reduced off-target effects. Many sgRNA design tools are available, but careful assessments of their application scenarios and performance benchmarks across different types of genome-editing data are needed. Efficient in silico models can be built that integrate current heterogeneous genome-editing data to derive unbiased sgRNA design rules and identify key features for improving sgRNA design. Comprehensive evaluation of on-target and off-target effects of sgRNA will allow more precise genome editing and gene therapies using the CRISPR system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. HIV-1 nef suppression by virally encoded microRNA

    Directory of Open Access Journals (Sweden)

    Brisibe Ebiamadon

    2004-12-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are 21~25-nucleotides (nt long and interact with mRNAs to trigger either translational repression or RNA cleavage through RNA interference (RNAi, depending on the degree of complementarity with the target mRNAs. Our recent study has shown that HIV-1 nef dsRNA from AIDS patients who are long-term non-progressors (LTNPs inhibited the transcription of HIV-1. Results Here, we show the possibility that nef-derived miRNAs are produced in HIV-1 persistently infected cells. Furthermore, nef short hairpin RNA (shRNA that corresponded to a predicted nef miRNA (~25 nt, miR-N367 can block HIV-1 Nef expression in vitro and the suppression by shRNA/miR-N367 would be related with low viremia in an LTNP (15-2-2. In the 15-2-2 model mice, the weight loss, which may be rendered by nef was also inhibited by shRNA/miR-N367 corresponding to suppression of nef expression in vivo. Conclusions These data suggest that nef/U3 miRNAs produced in HIV-1-infected cells may suppress both Nef function and HIV-1 virulence through the RNAi pathway.

  19. Enterovirus Control of Translation and RNA Granule Stress Responses.

    Science.gov (United States)

    Lloyd, Richard E

    2016-03-30

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  20. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    Science.gov (United States)

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  1. Evolutionary relationships between miRNA genes and their activity.

    Science.gov (United States)

    Zhu, Yan; Skogerbø, Geir; Ning, Qianqian; Wang, Zhen; Li, Biqing; Yang, Shuang; Sun, Hong; Li, Yixue

    2012-12-22

    The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.

  2. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hiraku Takada

    Full Text Available Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon, within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons

  3. Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans.

    Science.gov (United States)

    Parrish, S; Fire, A

    2001-10-01

    RNA interference (RNAi) is a cellular defense mechanism that uses double-stranded RNA (dsRNA) as a sequence-specific trigger to guide the degradation of homologous single-stranded RNAs. RNAi is a multistep process involving several proteins and at least one type of RNA intermediate, a population of small 21-25 nt RNAs (called siRNAs) that are initially derived from cleavage of the dsRNA trigger. Genetic screens in Caenorhabditis elegans have identified numerous mutations that cause partial or complete loss of RNAi. In this work, we analyzed cleavage of injected dsRNA to produce the initial siRNA population in animals mutant for rde-1 and rde-4, two genes that are essential for RNAi but that are not required for organismal viability or fertility. Our results suggest distinct roles for RDE-1 and RDE-4 in the interference process. Although null mutants lacking rde-1 show no phenotypic response to dsRNA, the amount of siRNAs generated from an injected dsRNA trigger was comparable to that of wild-type. By contrast, mutations in rde-4 substantially reduced the population of siRNAs derived from an injected dsRNA trigger. Injection of chemically synthesized 24- or 25-nt siRNAs could circumvent RNAi resistance in rde-4 mutants, whereas no bypass was observed in rde-1 mutants. These results support a model in which RDE-4 is involved before or during production of siRNAs, whereas RDE-1 acts after the siRNAs have been formed.

  4. The RNA gene information: retroelement-microRNA entangling as the RNA quantum code.

    Science.gov (United States)

    Fujii, Yoichi Robertus

    2013-01-01

    MicroRNA (miRNA) and retroelements may be a master of regulator in our life, which are evolutionally involved in the origin of species. To support the Darwinism from the aspect of molecular evolution process, it has tremendously been interested in the molecular information of naive RNA. The RNA wave model 2000 consists of four concepts that have altered from original idea of the miRNA genes for crosstalk among embryonic stem cells, their niche cells, and retroelements as a carrier vesicle of the RNA genes. (1) the miRNA gene as a mobile genetic element induces transcriptional and posttranscriptional silencing via networking-processes (no hierarchical architecture); (2) the RNA information supplied by the miRNA genes expands to intracellular, intercellular, intraorgan, interorgan, intraspecies, and interspecies under the cycle of life into the global environment; (3) the mobile miRNAs can self-proliferate; and (4) cells contain two types information as resident and genomic miRNAs. Based on RNA wave, we have developed an interest in investigation of the transformation from RNA information to quantum bits as physicochemical characters of RNA with the measurement of RNA electron spin. When it would have been given that the fundamental bases for the acquired characters in genetics can be controlled by RNA gene information, it may be available to apply for challenging against RNA gene diseases, such as stress-induced diseases.

  5. Probing binding hot spots at protein-RNA recognition sites.

    Science.gov (United States)

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. The Biodistribution and Immune Suppressive Effects of Breast Cancer-Derived Exosomes.

    Science.gov (United States)

    Wen, Shu Wen; Sceneay, Jaclyn; Lima, Luize Goncalves; Wong, Christina S F; Becker, Melanie; Krumeich, Sophie; Lobb, Richard J; Castillo, Vanessa; Wong, Ke Ni; Ellis, Sarah; Parker, Belinda S; Möller, Andreas

    2016-12-01

    Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45 + bone marrow-derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. ©2016 AACR. ©2016 American Association for Cancer Research.

  7. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function.

    Science.gov (United States)

    Saiki, Asako; Ishida, Yasuaki; Segawa, Shuichi; Hirota, Ryuichi; Nakamura, Takeshi; Kuroda, Akio

    2016-05-01

    Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.

  8. Overexpression of Cholesteryl Ester Transfer Protein Increases Macrophage-Derived Foam Cell Accumulation in Atherosclerotic Lesions of Transgenic Rabbits

    Directory of Open Access Journals (Sweden)

    Shoucui Gao

    2017-01-01

    Full Text Available High levels of plasma high-density lipoprotein-cholesterol (HDL-C are inversely associated with the risk of atherosclerosis and other cardiovascular diseases; thus, pharmacological inhibition of cholesteryl ester transfer protein (CETP is considered to be a therapeutic method of raising HDL-C levels. However, many CETP inhibitors have failed to achieve a clinical benefit despite raising HDL-C. In the study, we generated transgenic (Tg rabbits that overexpressed the human CETP gene to examine the influence of CETP on the development of atherosclerosis. Both Tg rabbits and their non-Tg littermates were fed a high cholesterol diet for 16 weeks. Plasma lipids and body weight were measured every 4 weeks. Gross lesion areas of the aortic atherosclerosis along with lesional cellular components were quantitatively analyzed. Overexpression of human CETP did not significantly alter the gross atherosclerotic lesion area, but the number of macrophages in lesions was significantly increased. Overexpression of human CETP did not change the plasma levels of total cholesterol or low-density lipoprotein cholesterol but lowered plasma HDL-C and increased triglycerides. These data revealed that human CETP may play an important role in the development of atherosclerosis mainly by decreasing HDL-C levels and increasing the accumulation of macrophage-derived foam cells.

  9. Malignant transformation of colonic epithelial cells by a colon-derived long noncoding RNA

    International Nuclear Information System (INIS)

    Franklin, Jeffrey L.; Rankin, Carl R.; Levy, Shawn; Snoddy, Jay R.; Zhang, Bing; Washington, Mary Kay; Thomson, J. Michael; Whitehead, Robert H.; Coffey, Robert J.

    2013-01-01

    Highlights: •Non-coding RNAs are found in the colonic crypt progenitor compartment. •Colonocytes transformed by ncNRFR are highly invasive and metastatic. •ncNRFR has a region similar to the miRNA, let-7 family. •ncNRFR expression alters let-7 activity as measured by reporter construct. •ncNRFR expression upregulates let-7b targets. -- Abstract: Recent progress has been made in the identification of protein-coding genes and miRNAs that are expressed in and alter the behavior of colonic epithelia. However, the role of long non-coding RNAs (lncRNAs) in colonic homeostasis is just beginning to be explored. By gene expression profiling of post-mitotic, differentiated tops and proliferative, progenitor-compartment bottoms of microdissected adult mouse colonic crypts, we identified several lncRNAs more highly expressed in crypt bottoms. One identified lncRNA, designated non-coding Nras functional RNA (ncNRFR), resides within the Nras locus but appears to be independent of the Nras coding transcript. Stable overexpression of ncNRFR in non-transformed, conditionally immortalized mouse colonocytes results in malignant transformation, as determined by growth in soft agar and formation of highly invasive tumors in nude mice. Moreover, ncNRFR appears to inhibit the function of the tumor suppressor let-7. These results suggest precise regulation of ncNRFR is necessary for proper cell growth in the colonic crypt, and its misregulation results in neoplastic transformation

  10. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Susanne Huch

    2016-10-01

    Full Text Available The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization.

  11. Regulation of human histone gene expression: transcriptional and posttranscriptional control in the coupling of histone messenger RNA stability with DNA replication

    International Nuclear Information System (INIS)

    Baumbach, L.L.; Stein, G.S.; Stein, J.L.

    1987-01-01

    The extent to which transcriptional and posttranscriptional regulation contributes to the coupling of histone gene expression and DNA replication was examined during the cell cycle in synchronized HeLa S3 cells. Rates of transcription were determined in vitro in isolated nuclei. A 3-5-fold increase in cell cycle dependent histone gene transcription was observed in early S phase, prior to the peak of DNA synthesis. This result is consistent with a previous determination of histone mRNA synthesis in intact cells. The transcription of these genes did not change appreciably after inhibition of DNA replication by hydroxyurea treatment, although Northern blot analysis indicated that cellular levels of histone mRNA decreased rapidly in the presence of the drug. Total cellular levels of histone mRNA closely parallel the rate of DNA synthesis as a function of cell cycle progression, reaching a maximal 20-fold increase as compared with non S phase levels. This DNA synthesis dependent accumulation of histone mRNA occurs predominantly in the cytoplasm and appears to be mediated primarily by control of histone mRNA stability. Changes in nuclear histone mRNA levels were less pronounced. These combined observations suggest that both transcriptional regulation and posttranscriptional regulation contribute toward control of the cell cycle dependent accumulation of histone mRNA during S phase, while the stability of histone mRNA throughout S phase and the selective turnover of histone mRNAs, either at the natural termination of S phase or following inhibition of DNA synthesis, are posttranscriptionally regulated

  12. Heavy ion effects on yeast: Inhibition of ribosomal RNA synthesis

    International Nuclear Information System (INIS)

    Weber, K.J.; Schneider, E.; Kiefer, J.; Kraft, G.

    1990-01-01

    Diploid wild-type yeast cells were exposed to beams of heavy ions covering a wide range of linear energy transfer (LET) (43-13,700 keV/microns). Synthesis of ribosomal RNA (rRNA) was assessed as a functional measure of damage produced by particle radiation. An exponential decrease of relative rRNA synthesis with particle fluence was demonstrated in all cases. The inactivation cross sections derived were found to increase with LET over the entire range of LET studied. The corresponding values for relative biological effectiveness were slightly less than unity. Maximum cross sections measured were close to 1 micron 2, implying that some larger structure within the yeast nucleus (e.g., the nucleolus) might represent the target for an impairment of synthetic activity by very heavy ions rather than the genes coding for rRNA. Where tested, an oxygen effect for rRNA synthesis could not be demonstrated

  13. Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients.

    Science.gov (United States)

    Figueroa, Javier M; Skog, Johan; Akers, Johnny; Li, Hongying; Komotar, Ricardo; Jensen, Randy; Ringel, Florian; Yang, Isaac; Kalkanis, Steven; Thompson, Reid; LoGuidice, Lori; Berghoff, Emily; Parsa, Andrew; Liau, Linda; Curry, William; Cahill, Daniel; Bettegowda, Chetan; Lang, Frederick F; Chiocca, E Antonio; Henson, John; Kim, Ryan; Breakefield, Xandra; Chen, Clark; Messer, Karen; Hochberg, Fred; Carter, Bob S

    2017-10-19

    RNAs within extracellular vesicles (EVs) have potential as diagnostic biomarkers for patients with cancer and are identified in a variety of biofluids. Glioblastomas (GBMs) release EVs containing RNA into cerebrospinal fluid (CSF). Here we describe a multi-institutional study of RNA extracted from CSF-derived EVs of GBM patients to detect the presence of tumor-associated amplifications and mutations in epidermal growth factor receptor (EGFR). CSF and matching tumor tissue were obtained from patients undergoing resection of GBMs. We determined wild-type (wt)EGFR DNA copy number amplification, as well as wtEGFR and EGFR variant (v)III RNA expression in tumor samples. We also characterized wtEGFR and EGFRvIII RNA expression in CSF-derived EVs. EGFRvIII-positive tumors had significantly greater wtEGFR DNA amplification (P = 0.02) and RNA expression (P = 0.03), and EGFRvIII-positive CSF-derived EVs had significantly more wtEGFR RNA expression (P = 0.004). EGFRvIII was detected in CSF-derived EVs for 14 of the 23 EGFRvIII tissue-positive GBM patients. Conversely, only one of the 48 EGFRvIII tissue-negative patients had the EGFRvIII mutation detected in their CSF-derived EVs. These results yield a sensitivity of 61% and a specificity of 98% for the utility of CSF-derived EVs to detect an EGFRvIII-positive GBM. Our results demonstrate CSF-derived EVs contain RNA signatures reflective of the underlying molecular genetic status of GBMs in terms of wtEGFR expression and EGFRvIII status. The high specificity of the CSF-derived EV diagnostic test gives us an accurate determination of positive EGFRvIII tumor status and is essentially a less invasive "liquid biopsy" that might direct mutation-specific therapies for GBMs. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  14. RNA binding efficacy of theophylline, theobromine and caffeine.

    Science.gov (United States)

    Johnson, I Maria; Kumar, S G Bhuvan; Malathi, R

    2003-04-01

    The binding of naturally occurring methylxanthines such as theophylline, theobromine and caffeine to nucleic acids are reckoned to be pivotal as they are able to modulate the cellular activities. We explore the interaction of yeast RNA binding efficacy of the above xanthine derivatives by using UV absorption differential spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Both the analyses show discrimination in their binding affinity to RNA. The differential UV-spectrum at P/D 3.3 reveals the greater RNA binding activity for theophylline (85 +/- 5%), whereas moderate and comparatively less binding activity for theobromine (45 +/- 5%) and caffeine (30 +/- 5%) and the binding activity was found to depend on concentration of the drugs. In FTIR analysis we observed changes in the amino group (NH) of RNA complexed by drugs, where the NH band is found to become very broad, indicating hydrogen bonding (H-bonding) with theophylline (3343.4 cm(-1)), theobromine (3379.8 cm(-1)) and caffeine (3343 cm(-1)) as compared to the free RNA (3341.6 cm(-1)). Furthermore in RNA-theophylline complex, it is observed that the carbonyl (C=O) vibration frequency (nu(C=O)) of both drug (nu(C=O)=1718, 1666 cm(-1)) as well as RNA (nu(C=O)=1699, 1658 cm(-1)) disappeared and a new vibration band appeared around 1703 cm(-1), indicating that the C=O and NH groups of drug and RNA are effectively involved in H-bonding. Whereas in RNA-theobromine and RNA-caffeine complexes, we found very little changes in C=O frequency and only broadening of the NH band of RNA due to complexation is observed in these groups. The changes in the vibrations of G-C/A-U bands and other bending frequencies are discussed. Thus the discrimination in the binding affinity of methylxanthines with RNA molecule shows that strong RNA binding drugs like theophylline can selectively be delivered to RNA targets of microbial pathogens having the mechanism of RNA catalysis.

  15. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.

    Science.gov (United States)

    Ruiz, Oscar N; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-06-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183,000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioneins in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  16. Nuclear export of human hepatitis B virus core protein and pregenomic RNA depends on the cellular NXF1-p15 machinery.

    Science.gov (United States)

    Yang, Ching-Chun; Huang, Er-Yi; Li, Hung-Cheng; Su, Pei-Yi; Shih, Chiaho

    2014-01-01

    Hepatitis B virus (HBV) core protein (HBc) can shuttle between nucleus and cytoplasm. Cytoplasm-predominant HBc is clinically associated with severe liver inflammation. Previously, we found that HBc arginine-rich domain (ARD) can associate with a host factor NXF1 (TAP) by coimmunoprecipitation. It is well known that NXF1-p15 heterodimer can serve as a major export receptor of nuclear mRNA as a ribonucleoprotein complex (RNP). In the NXF1-p15 pathway, TREX (transcription/export) complex plays an important role in coupling nuclear pre-mRNA processing with mRNA export in mammalian cells. Here, we tested the hypothesis whether HBc and HBV specific RNA can be exported via the TREX and NXF1-p15 mediated pathway. We demonstrated here that HBc can physically and specifically associate with TREX components, and the NXF1-p15 export receptor by coimmunoprecipitation. Accumulation of HBc protein in the nucleus can be induced by the interference with TREX and NXF1-p15 mediated RNA export machinery. HBV transcripts encodes a non-spliced 3.5 kb pregenomic RNA (pgRNA) which can serve as a template for reverse transcription. Cytoplasmic HBV pgRNA appeared to be reduced by siRNA treatment specific for the NXF1-p15 complex by quantitative RT-qPCR and Northern blot analyses. This result suggests that the pgRNA was also exported via the NXF1-p15 machinery. We entertain the hypothesis that HBc protein can be exported as an RNP cargo via the mRNA export pathway by hijacking the TREX and NXF1-p15 complex. In our current and previous studies, HBc is not required for pgRNA accumulation in the cytoplasm. Furthermore, HBc ARD can mediate nuclear export of a chimeric protein containing HBc ARD in a pgRNA-independent manner. Taken together, it suggests that while both pgRNA and HBc protein exports are dependent on NXF1-p15, they are using the same export machinery in a manner independent of each other.

  17. Enhancement of Gene Silencing Effect and Membrane Permeability by Peptide-Conjugated 27-Nucleotide Small Interfering RNA

    Directory of Open Access Journals (Sweden)

    Toshio Seyama

    2012-09-01

    Full Text Available Two different sizes of siRNAs, of which one type was 21-nucleotide (nt siRNA containing 2-nt dangling ends and the other type was 27-nt siRNA with blunt ends, were conjugated with a nuclear export signal peptide of HIV-1 Rev at the 5′-sense end. Processing by Dicer enzyme, cell membrane permeability, and RNAi efficiency of the peptide-conjugated siRNAs were examined. Dicer cleaved the peptide-conjugated 27-nt siRNA leading to the release of 21-nt siRNA, whereas the peptide-conjugated 21-nt siRNA was not cleaved. High membrane permeability and cytoplasmic localization was found in the conjugates. Moreover, the peptide-conjugated 27-nt siRNA showed increased potency of RNAi in comparison with the nonmodified 21-nt and 27-nt siRNAs, whereas the peptide-conjugated 21-nt siRNA showed decreased RNAi efficacy. This potent RNAi efficacy is probably owing to acceleration of RISC through recognition by Dicer, as well as to the improvement of cell membrane permeability and intracellular accumulation.

  18. Evaluation of mRNA expression levels and electrophysiological function of neuron-like cells derived from canine bone marrow stromal cells.

    Science.gov (United States)

    Nakano, Rei; Edamura, Kazuya; Sugiya, Hiroshi; Narita, Takanori; Okabayashi, Ken; Moritomo, Tadaaki; Teshima, Kenji; Asano, Kazushi; Nakayama, Tomohiro

    2013-10-01

    To investigate the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into functional, mature neurons. Bone marrow from 6 adult dogs. BMSCs were isolated from bone marrow and chemically induced to develop into neurons. The morphology of the BMSCs during neuronal induction was monitored, and immunocytochemical analyses for neuron markers were performed after the induction. Real-time PCR methods were used to evaluate the mRNA expression levels of markers for neural stem or progenitor cells, neurons, and ion channels, and western blotting was used to assess the expression of neuronal proteins before and after neuronal induction. The electrophysiological properties of the neuron-like cells induced from canine BMSCs were evaluated with fluorescent dye to monitor Ca(2)+ influx. Canine BMSCs developed a neuron-like morphology after neuronal induction. Immunocytochemical analysis revealed that these neuron-like cells were positive for neuron markers. After induction, the cells' mRNA expression levels of almost all neuron and ion channel markers increased, and the protein expression levels of nestin and neurofilament-L increased significantly. However, the neuron-like cells derived from canine BMSCs did not have the Ca(2)+ influx characteristic of spiking neurons. Although canine BMSCs had neuron-like morphological and biochemical properties after induction, they did not develop the electrophysiological characteristics of neurons. Thus, these results have suggested that canine BMSCs could have the capacity to differentiate into a neuronal lineage, but the differentiation protocol used may have been insufficient to induce development into functional neurons.

  19. Enumeration of RNA complexes via random matrix theory.

    Science.gov (United States)

    Andersen, Jørgen E; Chekhov, Leonid O; Penner, Robert C; Reidys, Christian M; Sułkowski, Piotr

    2013-04-01

    In the present article, we review a derivation of the numbers of RNA complexes of an arbitrary topology. These numbers are encoded in the free energy of the Hermitian matrix model with potential V(x)=x2/2-stx/(1-tx), where s and t are respective generating parameters for the number of RNA molecules and hydrogen bonds in a given complex. The free energies of this matrix model are computed using the so-called topological recursion, which is a powerful new formalism arising from random matrix theory. These numbers of RNA complexes also have profound meaning in mathematics: they provide the number of chord diagrams of fixed genus with specified numbers of backbones and chords as well as the number of cells in Riemann's moduli spaces for bordered surfaces of fixed topological type.

  20. The nucleotide sequence of RNA1 of Lettuce big-vein virus, genus Varicosavirus, reveals its relation to nonsegmented negative-strand RNA viruses.

    Science.gov (United States)

    Sasaya, Takahide; Ishikawa, Koichi; Koganezawa, Hiroki

    2002-06-05

    The complete nucleotide sequence of RNA1 from Lettuce big-vein virus (LBVV), the type member of the genus Varicosavirus, was determined. LBVV RNA1 consists of 6797 nucleotides and contains one large ORF that encodes a large (L) protein of 2040 amino acids with a predicted M(r) of 232,092. Northern blot hybridization analysis indicated that the LBVV RNA1 is a negative-sense RNA. Database searches showed that the amino acid sequence of L protein is homologous to those of L polymerases of nonsegmented negative-strand RNA viruses. A cluster dendrogram derived from alignments of the LBVV L protein and the L polymerases indicated that the L protein is most closely related to the L polymerases of plant rhabdoviruses. Transcription termination/polyadenylation signal-like poly(U) tracts that resemble those in rhabdovirus and paramyxovirus RNAs were present upstream and downstream of the coding region. Although LBVV is related to rhabdoviruses, a key distinguishing feature is that the genome of LBVV is segmented. The results reemphasize the need to reconsider the taxonomic position of varicosaviruses.

  1. A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Adams, Eri; Miyazaki, Takae; Hayaishi-Satoh, Aya

    2017-01-01

    Phytoaccumulation is a technique to extract metals from soil utilising ability of plants. Cesium is a valuable metal while radioactive isotopes of cesium can be hazardous. In order to establish a more efficient phytoaccumulation system, small molecules which promote plants to accumulate cesium we...

  2. SKI2 mediates degradation of RISC 5'-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis.

    Science.gov (United States)

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-12-15

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20-24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5', but not 3'-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5' to the cleavage site, but several examples of 3'-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5'-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5'-cleavage fragments. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells

    OpenAIRE

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S.; Woollard, John R.; Tang, Hui; Dasari, Surendra; Lerman, Amir; van Wijnen, Andre J.; Lerman, Lilach O.

    2017-01-01

    Background Mesenchymal stromal/stem cell (MSC) transplantation is a promising therapy for tissue regeneration. Extracellular vesicles (EVs) released by MSCs act as their paracrine effectors by delivering proteins and genetic material to recipient cells. To assess how their cargo mediates biological processes that drive their therapeutic effects, we integrated miRNA, mRNA, and protein expression data of EVs from porcine adipose tissue-derived MSCs. Methods Simultaneous expression profiles of m...

  4. Hepatitis C virus translation preferentially depends on active RNA replication.

    Directory of Open Access Journals (Sweden)

    Helene Minyi Liu

    Full Text Available Hepatitis C virus (HCV RNA initiates its replication on a detergent-resistant membrane structure derived from the endoplasmic reticulum (ER in the HCV replicon cells. By performing a pulse-chase study of BrU-labeled HCV RNA, we found that the newly-synthesized HCV RNA traveled along the anterograde-membrane traffic and moved away from the ER. Presumably, the RNA moved to the site of translation or virion assembly in the later steps of viral life cycle. In this study, we further addressed how HCV RNA translation was regulated by HCV RNA trafficking. When the movement of HCV RNA from the site of RNA synthesis to the Golgi complex was blocked by nocodazole, an inhibitor of ER-Golgi transport, HCV protein translation was surprisingly enhanced, suggesting that the translation of viral proteins occurred near the site of RNA synthesis. We also found that the translation of HCV proteins was dependent on active RNA synthesis: inhibition of viral RNA synthesis by an NS5B inhibitor resulted in decreased HCV viral protein synthesis even when the total amount of intracellular HCV RNA remained unchanged. Furthermore, the translation activity of the replication-defective HCV replicons or viral RNA with an NS5B mutation was greatly reduced as compared to that of the corresponding wildtype RNA. By performing live cell labeling of newly synthesized HCV RNA and proteins, we further showed that the newly synthesized HCV proteins colocalized with the newly synthesized viral RNA, suggesting that HCV RNA replication and protein translation take place at or near the same site. Our findings together indicate that the translation of HCV RNA is coupled to RNA replication and that the both processes may occur at the same subcellular membrane compartments, which we term the replicasome.

  5. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault.

    Science.gov (United States)

    Hussain, Ekbal; Wright, Tim J; Walters, Richard J; Bekaert, David P S; Lloyd, Ryan; Hooper, Andrew

    2018-04-11

    Earthquakes are caused by the release of tectonic strain accumulated between events. Recent advances in satellite geodesy mean we can now measure this interseismic strain accumulation with a high degree of accuracy. But it remains unclear how to interpret short-term geodetic observations, measured over decades, when estimating the seismic hazard of faults accumulating strain over centuries. Here, we show that strain accumulation rates calculated from geodetic measurements around a major transform fault are constant for its entire 250-year interseismic period, except in the ~10 years following an earthquake. The shear strain rate history requires a weak fault zone embedded within a strong lower crust with viscosity greater than ~10 20  Pa s. The results support the notion that short-term geodetic observations can directly contribute to long-term seismic hazard assessment and suggest that lower-crustal viscosities derived from postseismic studies are not representative of the lower crust at all spatial and temporal scales.

  6. An amphipathic alpha-helix controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function.

    Directory of Open Access Journals (Sweden)

    Ling Liu

    2009-03-01

    Full Text Available Brome mosaic virus (BMV protein 1a has multiple key roles in viral RNA replication. 1a localizes to perinuclear endoplasmic reticulum (ER membranes as a peripheral membrane protein, induces ER membrane invaginations in which RNA replication complexes form, and recruits and stabilizes BMV 2a polymerase (2a(Pol and RNA replication templates at these sites to establish active replication complexes. During replication, 1a provides RNA capping, NTPase and possibly RNA helicase functions. Here we identify in BMV 1a an amphipathic alpha-helix, helix A, and use NMR analysis to define its structure and propensity to insert in hydrophobic membrane-mimicking micelles. We show that helix A is essential for efficient 1a-ER membrane association and normal perinuclear ER localization, and that deletion or mutation of helix A abolishes RNA replication. Strikingly, mutations in helix A give rise to two dramatically opposite 1a function phenotypes, implying that helix A acts as a molecular switch regulating the intricate balance between separable 1a functions. One class of helix A deletions and amino acid substitutions markedly inhibits 1a-membrane association and abolishes ER membrane invagination, viral RNA template recruitment, and replication, but doubles the 1a-mediated increase in 2a(Pol accumulation. The second class of helix A mutations not only maintains efficient 1a-membrane association but also amplifies the number of 1a-induced membrane invaginations 5- to 8-fold and enhances viral RNA template recruitment, while failing to stimulate 2a(Pol accumulation. The results provide new insights into the pathways of RNA replication complex assembly and show that helix A is critical for assembly and function of the viral RNA replication complex, including its central role in targeting replication components and controlling modes of 1a action.

  7. RNA Binding Proteins in Eye Development and Disease: Implication of Conserved RNA Granule Components

    Science.gov (United States)

    Dash, Soma; Siddam, Archana D.; Barnum, Carrie E.; Janga, Sarath Chandra

    2016-01-01

    The molecular biology of metazoan eye development is an area of intense investigation. These efforts have led to the surprising recognition that although insect and vertebrate eyes have dramatically different structures, the orthologs or family members of several conserved transcription and signaling regulators such as Pax6, Six3, Prox1 and Bmp4 are commonly required for their development. In contrast, our understanding of post-transcriptional regulation in eye development and disease, particularly regarding the function of RNA binding proteins (RBPs), is limited. We examine the present knowledge of RBPs in eye development in the insect model Drosophila, as well as several vertebrate models such as fish, frog, chicken and mouse. Interestingly, of the 42 RBPs that have been investigated with for their expression or function in vertebrate eye development, 24 (~60%) are recognized in eukaryotic cells as components of RNA granules such as Processing bodies (P-bodies), Stress granules, or other specialized ribonucleoprotein (RNP) complexes. We discuss the distinct developmental and cellular events that may necessitate potential RBP/RNA granule-associated RNA regulon models to facilitate post-transcriptional control of gene expression in eye morphogenesis. In support of these hypotheses, three RBPs and RNP/RNA granule components Tdrd7, Caprin2 and Stau2 are linked to ocular developmental defects such as congenital cataract, Peters anomaly and microphthalmia in human patients or animal models. We conclude by discussing the utility of interdisciplinary approaches such as the bioinformatics tool iSyTE (integrated Systems Tool for Eye gene discovery) to prioritize RBPs for deriving post-transcriptional regulatory networks in eye development and disease. PMID:27133484

  8. Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (Carthamus tinctorius L. plants

    Directory of Open Access Journals (Sweden)

    Shijiang eCao

    2013-12-01

    Full Text Available Vegetable oils high in oleic acid are considered to be advantageous because of their better nutritional value and potential industrial applications. The oleic acid content in the classic safflower oil is normally 10-15% while a natural mutant (ol accumulates elevated oleic acid up to 70% in seed oil. As a part of our investigation into the molecular features of the high oleic (HO trait in safflower we have profiled the microRNA (miRNA populations in developing safflower seeds expressing the ol allele in comparison to the wild type high linoleic (HL safflower using deep sequencing technology. The small RNA populations of the mid-maturity developing embryos of homozygous ol HO and wild type HL safflower had a very similar size distribution pattern, however, only ~16.5% of the unique small RNAs were overlapping in these two genotypes. From these two small RNA populations we have found 55 known miRNAs and identified two candidate novel miRNA families to be likely unique to the developing safflower seeds. Target genes with conserved as well as novel functions were predicted for the conserved miRNAs. We have also identified 13 miRNAs differentially expressed between the HO and HL safflower genotypes. The results may lay a foundation for unravelling the miRNA-mediated molecular processes that regulate oleic acid accumulation in the HO safflower mutant and developmental processes in safflower embryos in general.

  9. Phosphorylation and nuclear accumulation are distinct events contributing to the activation of p53

    International Nuclear Information System (INIS)

    O'Hagan, Heather M.; Ljungman, Mats

    2004-01-01

    It has been recently shown that ionizing radiation (IR) and the mRNA synthesis inhibitor 5,6-dichloro-1-b-D-ribofuranosylbenzimidazole (DRB) act in synergy to induce p53-mediated transactivation of reporter plasmids in human cells [Oncogene 19 (2000) 3829]. We have extended these studies and show that ionizing radiation and DRB also act in synergy to induce ATM-mediated phosphorylation of the ser15 site of p53 and enhance the expression of endogenous p21 protein. Examination of the localization of p53 revealed that while DRB did not induce phosphorylation of the ser15 site of p53 but efficiently accumulated p53 in the nucleus, ionizing radiation induced phosphorylation of the ser15 site of p53 without prolonged nuclear accumulation. Importantly, the combination of DRB and IR resulted in a strong accumulation of phosphorylated p53 in the nucleus that was more persistent then p53 accumulation after IR alone. Furthermore, the nuclear export inhibitor leptomycin B showed a similar synergy with IR as did DRB regarding ser15 phosphorylation of p53 and p21 induction. These results suggest that the synergistic activation of the p53 response by the combination treatment is due to the activation of two distinct pathways where DRB causes the prolonged nuclear accumulation of p53 while ionizing radiation activates p53 by ATM-mediated phosphorylation

  10. Site-specific accumulation and dynamic change of flavonoids in Apocyni Veneti Folium.

    Science.gov (United States)

    Chen, Cui-Hua; Xu, Hu; Liu, Xun-Hong; Zou, Li-Si; Wang, Mei; Liu, Zi-Xiu; Fu, Xing-Sheng; Zhao, Hui; Yan, Ying

    2017-12-01

    Site-specific accumulation of flavonoids in Apocyni Veneti Folium was determined by laser scanning confocal microscope (LSCM) and the localization of catechins also was observed via vanillin-HCl staining under the conventional optical microscope. The contents of five flavonoids in Apocyni Veneti Folium from different harvest times and growth parts were measured using HPLC method. LSCM observation showed that flavonoids are accumulated in cuticle of epidermal cells and vessel walls, especially in protoplasts and nucleolus of the collenchyma cells and the epidermal cells. Catechins are localized in the palisade parenchyma cells and vessel walls, particularly in the laticifers found in the phloem. On the basis of the difference of the maximal emission wavelength between quercetin and kaempferol derivatives which have fluorescence behavior by appropriate treatment, kaempferol and its derivatives are localized exclusively in the cuticle. Results showed that the content of astragalin in Apocyni Veneti Folium from different parts revealed the decreasing trend, while hyperin and isoquercitrin were higher in June and July analyzed by HPLC. In summary, the site-specific accumulation of flavonoids in Apocyni Veneti Folium can be determined by LSCM and vanillin-HCl staining. The contents of flavonoids in Apocyni Veneti Folium are correlated with harvest times and growth parts. © 2017 Wiley Periodicals, Inc.

  11. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, Keisuke; Yamaguchi, Atsushi, E-mail: atsyama@restaff.chiba-u.jp

    2014-09-26

    Highlights: • Aggregation of ALS-linked FUS mutant sequesters ALS-associated RNA-binding proteins (FUS wt, hnRNP A1, and hnRNP A2). • Aggregation of ALS-linked FUS mutant sequesters SMN1 in the detergent-insoluble fraction. • Aggregation of ALS-linked FUS mutant reduced the number of speckles in the nucleus. • Overproduced ALS-linked FUS mutant reduced the number of processing-bodies (PBs). - Abstract: Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusion of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.

  12. iDoRNA: An Interacting Domain-based Tool for Designing RNA-RNA Interaction Systems

    Directory of Open Access Journals (Sweden)

    Jittrawan Thaiprasit

    2016-03-01

    Full Text Available RNA-RNA interactions play a crucial role in gene regulation in living organisms. They have gained increasing interest in the field of synthetic biology because of their potential applications in medicine and biotechnology. However, few novel regulators based on RNA-RNA interactions with desired structures and functions have been developed due to the challenges of developing design tools. Recently, we proposed a novel tool, called iDoDe, for designing RNA-RNA interacting sequences by first decomposing RNA structures into interacting domains and then designing each domain using a stochastic algorithm. However, iDoDe did not provide an optimal solution because it still lacks a mechanism to optimize the design. In this work, we have further developed the tool by incorporating a genetic algorithm (GA to find an RNA solution with maximized structural similarity and minimized hybridized RNA energy, and renamed the tool iDoRNA. A set of suitable parameters for the genetic algorithm were determined and found to be a weighting factor of 0.7, a crossover rate of 0.9, a mutation rate of 0.1, and the number of individuals per population set to 8. We demonstrated the performance of iDoRNA in comparison with iDoDe by using six RNA-RNA interaction models. It was found that iDoRNA could efficiently generate all models of interacting RNAs with far more accuracy and required far less computational time than iDoDe. Moreover, we compared the design performance of our tool against existing design tools using forty-four RNA-RNA interaction models. The results showed that the performance of iDoRNA is better than RiboMaker when considering the ensemble defect, the fitness score and computation time usage. However, it appears that iDoRNA is outperformed by NUPACK and RNAiFold 2.0 when considering the ensemble defect. Nevertheless, iDoRNA can still be an useful alternative tool for designing novel RNA-RNA interactions in synthetic biology research. The source code of iDoRNA

  13. Yeast as a model host to study replication and recombination of defective interfering RNA of Tomato bushy stunt virus

    International Nuclear Information System (INIS)

    Panavas, Tadas; Nagy, Peter D.

    2003-01-01

    Defective interfering (DI) RNA associated with Tomato bushy stunt virus (TBSV), which is a plus-strand RNA virus, requires p33 and p92 proteins of TBSV or the related Cucumber necrosis virus (CNV), for replication in plants. To test if DI RNA can replicate in a model host, we coexpressed TBSV DI RNA and p33/p92 of CNV in yeast. We show evidence for replication of DI RNA in yeast, including (i) dependence on p33 and p92 for DI replication; (ii) presence of active CNV RNA-dependent RNA polymerase in isolated membrane-containing preparations; (iii) increasing amount of DI RNA(+) over time; (iv) accumulation of (-)stranded DI RNA; (v) presence of correct 5' and 3' ends in DI RNA; (vi) inhibition of replication by mutations in the replication enhancer; and (vii) evolution of DI RNA over time, as shown by sequence heterogeneity. We also produced evidence supporting the occurrence of DI RNA recombinants in yeast. In summary, development of yeast as a host for replication of TBSV DI RNA will facilitate studies on the roles of viral and host proteins in replication/recombination

  14. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation.

    Science.gov (United States)

    Wen, Di; Peng, Yang; Liu, Di; Weizmann, Yossi; Mahato, Ram I

    2016-09-28

    Human bone marrow mesenchymal stem cells (hBMSCs) and their exosomes can suppress immune reaction and deliver small RNAs. Thus, they may improve islet transplantation by delivering small RNAs for promoting islet function and inhibiting immune rejection. Here, we proposed an hBMSC and its exosome-based therapy to overcome immune rejection and poor islet function, both of which hinder the success of islet transplantation. We found overexpressed siFas and anti-miR-375 in plasmid encoding shFas and anti-miR-375 transfected hBMSC-derived exosomes, which silenced Fas and miR-375 of human islets and improved their viability and function against inflammatory cytokines. This plasmid transfected hBMSCs downregulated Fas and miR-375 of human islets in a humanized NOD scid gamma (NSG) mouse model, whose immune reaction was inhibited by injecting hBMSC and peripheral blood mononuclear cell (PBMC) co-cultured exosomes. These exosomes suppressed immune reaction by inhibiting PBMC proliferation and enhancing regulatory T cell (Treg) function. Collectively, our studies elucidated the mechanisms of RNA delivery from hBMSCs to human islets and the immunosuppressive effect of hBMSC and peripheral blood mononuclear cell co-cultured exosomes for improving islet transplantation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures

    Directory of Open Access Journals (Sweden)

    Wasik Szymon

    2010-05-01

    Full Text Available Abstract Background Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization. Description RNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA

  16. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Johnston, C.J.; Piedboeuf, B.; Finkelstein, J.N.; Baggs, R.; Rubin, P.

    1995-01-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The purpose of this study was to determine if extracellular matrix protein and transforming growth factor β mRNA expression are altered late in the course of pulmonary fibrosis after irradiation, and then to determine if these changes differ between two strains of mice which vary in their sensitivity to radiation. Radiation-sensitive (C57BL/6) and radiation-resistant (C3H/HeJ) mice were irradiated with a single dose of 5 or 12.5 Gy to the thorax. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabeled cDNA probes for collagens I, III and IV, fibronectin, and transforming growth factor β 1 and β 3 . Autoradiographic data were quantified by video densitometry and results normalized to a control probe encoding for glyceralde-hyde-3-phosphate dehydrogenase. Alterations in mRNA abundance were observed in the sensitive mice at all times, while levels in the resistant mice were unaffected until 26 weeks after irradiation. The relationship between extracellular matrix protein per se and increased mRNA abundance suggests that late matrix protein accumulation may be a function of gene expression. Differences in levels of transforming growth factor βmRNA may lead to strain-dependent variation in fibrotic response and may also contribute to the radiation-induced component of pulmonary fibrosis. 32 refs., 5 figs

  17. An ATR-dependent function for the Ddx19 RNA helicase in nuclear R-loop metabolism.

    Science.gov (United States)

    Hodroj, Dana; Recolin, Bénédicte; Serhal, Kamar; Martinez, Susan; Tsanov, Nikolay; Abou Merhi, Raghida; Maiorano, Domenico

    2017-05-02

    Coordination between transcription and replication is crucial in the maintenance of genome integrity. Disturbance of these processes leads to accumulation of aberrant DNA:RNA hybrids (R-loops) that, if unresolved, generate DNA damage and genomic instability. Here we report a novel, unexpected role for the nucleopore-associated mRNA export factor Ddx19 in removing nuclear R-loops formed upon replication stress or DNA damage. We show, in live cells, that Ddx19 transiently relocalizes from the nucleopore to the nucleus upon DNA damage, in an ATR/Chk1-dependent manner, and that Ddx19 nuclear relocalization is required to clear R-loops. Ddx19 depletion induces R-loop accumulation, proliferation-dependent DNA damage and defects in replication fork progression. Further, we show that Ddx19 resolves R-loops in vitro via its helicase activity. Furthermore, mutation of a residue phosphorylated by Chk1 in Ddx19 disrupts its interaction with Nup214 and allows its nuclear relocalization. Finally, we show that Ddx19 operates in resolving R-loops independently of the RNA helicase senataxin. Altogether these observations put forward a novel, ATR-dependent function for Ddx19 in R-loop metabolism to preserve genome integrity in mammalian cells. © 2017 The Authors.

  18. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    Science.gov (United States)

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  19. Accumulation and suppressive function of regulatory T cells in malignant ascites: Reducing their suppressive function using arsenic trioxide in vitro.

    Science.gov (United States)

    Hu, Zilong; Hu, Shidong; Wu, Youjun; Li, Songyan; He, Changzheng; Xing, Xiaowei; Wang, Yufeng; Du, Xiaohui

    2018-04-01

    Although adoptive cell therapy (ACT) has demonstrated effective and remarkable clinical responses in several studies, this approach does not lead to objective clinical responses in all cases. The function of ACT is often compromised by various tumor escape mechanisms, including the accumulation of immunoregulatory cells. As a result of peritoneal metastasis in the terminal stage, malignant ascites fluid lacks effectiveness and is a poor prognostic factor for gastric cancer. The present study assessed T-cell subsets in lymphocytes derived from malignant ascites, and investigated the effects of arsenic trioxide (As 2 O 3 ) on regulatory T cells (Tregs) and ascites-derived tumor-infiltrating lymphocytes (TILs) in vitro . In this study, lymphocytes were separated from malignant ascites and T-cell subsets were detected via flow cytometry. Forkhead box P3 (FoxP3) expression was assessed by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. In addition, cytokines, including interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and interferon-γ (IFN-γ), were measured by enzyme-linked immunosorbent assay (ELISA). Abundant Tregs were observed in ascites lymphocytes, which and exhibited a significantly increased frequency compared with that in the peripheral blood of patients. Furthermore, As 2 O 3 treatment significantly reduced Treg numbers and Foxp3 mRNA levels in vitro (P<0.05). IFN-γ levels in the supernatant of ascites-derived TILs were increased by As 2 O 3 , whereas IL-10 and TGF-β levels were significantly reduced (P<0.05). As 2 O 3 may induce selective depletion and inhibit immunosuppressive function of Tregs, and may enhance the cytotoxic activity of ascites-derived TILs.

  20. Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat

    DEFF Research Database (Denmark)

    Ci, Dunwei; Jiang, Dong; Li, Sishen

    2012-01-01

    Quantitative trait loci (QTL) for Cadmium (Cd) tolerance and accumulation in wheat (Triticum aestivum L.) were identified, using 103 recombinant inbred lines (RILs) derived from a cross of Ch×Sh at germination and seedling stages. The traits of germination, growth and physiology were measured. Cd...

  1. Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells.

    Science.gov (United States)

    Seo, Min-Jung; Lee, Ok-Hwan; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPARγ peroxisome proliferator-activated receptor-γ and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dis-mutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

  2. Combinatorics of RNA-RNA interaction

    DEFF Research Database (Denmark)

    Li, Thomas J X; Reidys, Christian

    2012-01-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure...... means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including...

  3. Can Observation Skills of Citizen Scientists Be Estimated Using Species Accumulation Curves?

    Directory of Open Access Journals (Sweden)

    Steve Kelling

    Full Text Available Volunteers are increasingly being recruited into citizen science projects to collect observations for scientific studies. An additional goal of these projects is to engage and educate these volunteers. Thus, there are few barriers to participation resulting in volunteer observers with varying ability to complete the project's tasks. To improve the quality of a citizen science project's outcomes it would be useful to account for inter-observer variation, and to assess the rarely tested presumption that participating in a citizen science projects results in volunteers becoming better observers. Here we present a method for indexing observer variability based on the data routinely submitted by observers participating in the citizen science project eBird, a broad-scale monitoring project in which observers collect and submit lists of the bird species observed while birding. Our method for indexing observer variability uses species accumulation curves, lines that describe how the total number of species reported increase with increasing time spent in collecting observations. We find that differences in species accumulation curves among observers equates to higher rates of species accumulation, particularly for harder-to-identify species, and reveals increased species accumulation rates with continued participation. We suggest that these properties of our analysis provide a measure of observer skill, and that the potential to derive post-hoc data-derived measurements of participant ability should be more widely explored by analysts of data from citizen science projects. We see the potential for inferential results from analyses of citizen science data to be improved by accounting for observer skill.

  4. Synthetic cold-inducible promoter enhances recombinant protein accumulation during Agrobacterium-mediated transient expression in Nicotiana excelsior at chilling temperatures.

    Science.gov (United States)

    Gerasymenko, I M; Sheludko, Y V

    2017-07-01

    To exploit cold-inducible biochemical processes beneficial for foreign mRNA transcription, translation and storage, as well as protein product stability, during Agrobacterium-mediated transient expression. The efficiency of three different 5'-regulatory sequences to achieve transient expression of the GFP-based reporter gene under chilling conditions (6-8 °C since the 3rd day post inoculation) was compared. We studied the upstream sequences of a cold-inducible Arabidopsis thaliana cor15a gene, the core element of 35S CaMV promoter fused to the TMV omega 5'-UTR, and the synthetic promoter including the 35S core sequence and two binding sites for cold-inducible CBF transcription factors (P_DRE::35S). Cultivation of plants transiently expressing reporter gene under control of the synthetic P_DRE::35S promoter under chilling conditions since the 3rd dpi led to the reliably higher reporter accumulation as compared to the other tested regulatory sequences under chilling or greenhouse conditions. Reporter protein fluorescence under chilling conditions using P_DRE::35S reached 160% as compared to the transient expression in the greenhouse. Period of transient expression considerably extended if plants were cultivated at chilling temperature since the 3rd dpi: reporter protein fluorescence reached its maximum at the 20th dpi and was detected in leaves up to the 65th dpi. The enhanced protein accumulation at low temperature was accompanied by the prolonged period of corresponding mRNA accumulation. Transient expression under chilling conditions using synthetic cold-inducible promoter enhances target protein accumulation and may decrease greenhouse heating expenses.

  5. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice

    International Nuclear Information System (INIS)

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan; Kim, Hyung Sik; Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung; Oh, Seon-Hee; Jun, Dae Won; Lee, Byung-Hoon

    2017-01-01

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.

  6. Activation of AMPK by berberine induces hepatic lipid accumulation by upregulation of fatty acid translocase CD36 in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, You-Jin; Lee, Kang-Yo; Jung, Seung-Hwan [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyung Sik [School of Pharmacy, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shim, Gayong; Kim, Mi-Gyeong; Oh, Yu-Kyoung [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of); Oh, Seon-Hee [The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju 501-759 (Korea, Republic of); Jun, Dae Won [Internal Medicine, Hanyang University School of Medicine, Seoul 133-791 (Korea, Republic of); Lee, Byung-Hoon, E-mail: lee@snu.ac.kr [College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-02-01

    Emerging evidence has shown that berberine has a protective effect against metabolic syndrome such as obesity and type II diabetes mellitus by activating AMP-activated protein kinase (AMPK). AMPK induces CD36 trafficking to the sarcolemma for fatty acid uptake and oxidation in contracting muscle. However, little is known about the effects of AMPK on CD36 regulation in the liver. We investigated whether AMPK activation by berberine affects CD36 expression and fatty acid uptake in hepatocytes and whether it is linked to hepatic lipid accumulation. Activation of AMPK by berberine or transduction with adenoviral vectors encoding constitutively active AMPK in HepG2 and mouse primary hepatocytes increased the expression and membrane translocation of CD36, resulting in enhanced fatty acid uptake and lipid accumulation as determined by BODIPY-C16 and Nile red fluorescence, respectively. Activation of AMPK by berberine induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2) and subsequently induced CCAAT/enhancer-binding protein β (C/EBPβ) binding to the C/EBP-response element in the CD36 promoter in hepatocytes. In addition, hepatic CD36 expression and triglyceride levels were increased in normal diet-fed mice treated with berberine, but completely prevented when hepatic CD36 was silenced with adenovirus containing CD36-specific shRNA. Taken together, prolonged activation of AMPK by berberine increased CD36 expression in hepatocytes, resulting in fatty acid uptake via processes linked to hepatocellular lipid accumulation and fatty liver. - Highlights: • Berberine increases the expression and membrane translocation of CD36 in hepatocytes. • The increase of CD36 results in enhanced fatty acid uptake and lipid accumulation. • Berberine-induced fatty liver is mediated by AMPK-ERK-C/EBPβ pathway. • CD36-specific shRNA inhibited berberine-induced lipid accumulation in liver.

  7. Myelosuppressive conditioning using busulfan enables bone marrow cell accumulation in the spinal cord of a mouse model of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Coral-Ann B Lewis

    Full Text Available Myeloablative preconditioning using irradiation is the most commonly used technique to generate rodents having chimeric bone marrow, employed for the study of bone marrow-derived cell accumulation in the healthy and diseased central nervous system. However, irradiation has been shown to alter the blood-brain barrier, potentially creating confounding artefacts. To better study the potential of bone marrow-derived cells to function as treatment vehicles for neurodegenerative diseases alternative preconditioning regimens must be developed. We treated transgenic mice that over-express human mutant superoxide dismutase 1, a model of amyotrophic lateral sclerosis, with busulfan to determine whether this commonly used chemotherapeutic leads to stable chimerism and promotes the entry of bone marrow-derived cells into spinal cord. Intraperitoneal treatment with busulfan at 60 mg/kg or 80 mg/kg followed by intravenous injection of green fluorescent protein-expressing bone marrow resulted in sustained levels of chimerism (~80%. Bone marrow-derived cells accumulated in the lumbar spinal cord of diseased mice at advanced stages of pathology at both doses, with limited numbers of bone marrow derived cells observed in the spinal cords of similarly treated, age-matched controls; the majority of bone marrow-derived cells in spinal cord immunolabelled for macrophage antigens. Comparatively, significantly greater numbers of bone marrow-derived cells were observed in lumbar spinal cord following irradiative myeloablation. These results demonstrate bone marrow-derived cell accumulation in diseased spinal cord is possible without irradiative preconditioning.

  8. Marine debris accumulation in the Northwestern Hawaiian Islands: an examination of rates and processes.

    Science.gov (United States)

    Dameron, Oliver J; Parke, Michael; Albins, Mark A; Brainard, Russell

    2007-04-01

    Large amounts of derelict fishing gear accumulate and cause damage to shallow coral reefs of the Northwestern Hawaiian Islands (NWHI). To facilitate maintenance of reefs cleaned during 1996-2005 removal efforts, we identify likely high-density debris areas by assessing reef characteristics (depth, benthic habitat type, and energy regime) that influence sub-regional debris accumulation. Previously cleaned backreef and lagoonal reefs at two NWHI locations were resurveyed for accumulated debris using two survey methods. Accumulated debris densities and weights were found to be greater in lagoonal reef areas. Sample weight-based debris densities are extrapolated to similar habitats throughout the NWHI using a spatial 'net habitat' dataset created by generalizing IKONOS satellite derivatives for depth and habitat classification. Prediction accuracy for this dataset is tested using historical debris point data. Annual NWHI debris accumulation is estimated to be 52.0 metric tonnes. For planning purposes, individual NWHI atolls/reefs are allotted a proportion of this total.

  9. SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis

    Science.gov (United States)

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-01-01

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20–24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragments. PMID:26464441

  10. Synthesis of 4-thiouridine, 6-thioinosine, and 6-thioguanosine 3',5'-O-bisphosphates as donor molecules for RNA ligation and their application to the synthesis of photoactivatable TMG-capped U1 snRNA fragments.

    Science.gov (United States)

    Kadokura, M; Wada, T; Seio, K; Sekine, M

    2000-08-25

    4-Thiouridine, 6-thioguanosine, and 6-thioinosine 3',5'-bisphosphates (9, 20, and 28) were synthesized in good yields by considerably improved methods. In the former two compounds, uridine and 2-N-phenylacetylguanosine were converted via transient O-trimethylsilylation to the corresponding 4- and 6-O-benzenesulfonyl intermediates (2 and 13), which, in turn, were allowed to react with 2-cyanoethanethiol in the presence of N-methylpyrrolidine to give 4-thiouridine (3) and 2-N-phenylacetyl-6-thioguanosine derivatives (14), respectively. In situ dimethoxytritylation of these thionucleoside derivatives gave the 5'-masked products 4 and 15 in high overall yields from 1 and 11. 6-S-(2-Cyanoethyl)-5'-O-(4,4'-dimethoxytrityl)-6-thioinosine (23) was synthesized via substitution of the 5'-O-tritylated 6-chloropurine riboside derivative 22 with 2-cyanoethanethiol. These S-(2-cyanoethyl)thionucleosides were converted to the 2'-O-(tert-butyldimethylsilyl)ribonucleoside 3'-phosphoramidite derivatives 7, 18, and 26 or 3',5'-bisphosphate derivatives 8, 19, and 27. Treatment of 8, 19, and 27 with DBU gave thionucleoside 3',5'-bisphosphate derivatives 9, 20, and 28, which were found to be substrates of T4 RNA ligase. These thionucleoside 3',5'-bisphosphates were examined as donors for ligation with m3(2,2,7) G5'pppAmUmA, i.e., the 5'-terminal tetranucleotide fragment of U1 snRNA, The 4-thiouridine 3',5'-bisphosphate derivative 9 was found to serve as the most active substrate of T4 RNA ligase with a reaction efficiency of 96%.

  11. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells.

    Science.gov (United States)

    Van Tendeloo, V F; Ponsaerts, P; Lardon, F; Nijs, G; Lenjou, M; Van Broeckhoven, C; Van Bockstaele, D R; Berneman, Z N

    2001-07-01

    Designing effective strategies to load human dendritic cells (DCs) with tumor antigens is a challenging approach for DC-based tumor vaccines. Here, a cytoplasmic expression system based on mRNA electroporation to efficiently introduce tumor antigens into DCs is described. Preliminary experiments in K562 cells using an enhanced green fluorescent protein (EGFP) reporter gene revealed that mRNA electroporation as compared with plasmid DNA electroporation showed a markedly improved transfection efficiency (89% versus 40% EGFP(+) cells, respectively) and induced a strikingly lower cell toxicity (15% death rate with mRNA versus 51% with plasmid DNA). Next, mRNA electroporation was applied for nonviral transfection of different types of human DCs, including monocyte-derived DCs (Mo-DCs), CD34(+) progenitor-derived DCs (34-DCs) and Langerhans cells (34-LCs). High-level transgene expression by mRNA electroporation was obtained in more than 50% of all DC types. mRNA-electroporated DCs retained their phenotype and maturational potential. Importantly, DCs electroporated with mRNA-encoding Melan-A strongly activated a Melan-A-specific cytotoxic T lymphocyte (CTL) clone in an HLA-restricted manner and were superior to mRNA-lipofected or -pulsed DCs. Optimal stimulation of the CTL occurred when Mo-DCs underwent maturation following mRNA transfection. Strikingly, a nonspecific stimulation of CTL was observed when DCs were transfected with plasmid DNA. The data clearly demonstrate that Mo-DCs electroporated with mRNA efficiently present functional antigenic peptides to cytotoxic T cells. Therefore, electroporation of mRNA-encoding tumor antigens is a powerful technique to charge human dendritic cells with tumor antigens and could serve applications in future DC-based tumor vaccines.

  12. Guanine is indispensable for immunoglobulin switch region RNA-DNA hybrid formation

    International Nuclear Information System (INIS)

    Mizuta, Ryushin; Mizuta, Midori; Kitamura, Daisuke

    2005-01-01

    It is suggested that the formation of the switch (S) region RNA-DNA hybrid and the subsequent generation of higher-order chromatin structures including R-loop initiate a class switch recombination of the immunoglobulin gene. The primary factor of this recombination is the S-region derived noncoding RNA. However, the biochemical character of this guanine-rich (G-rich) transcript is poorly understood. The present study was performed to analyze the structure of this G-rich RNA using atomic force microscope (AFM). The in vitro transcribed S-region RNA was spread on a mica plate, air-dried and observed by non-contact mode AFM in air. The G-rich transcripts tend to aggregate on the template DNA and to generate a higher-order RNA-DNA complex. However, the transcripts that incorporated guanine analogues as substitutes for guanine neither aggregated nor generated higher-order structures. Incorporation of guanine analogues in transcribes RNA partially disrupts hydrogen bonds related to guanine, such as Watson-Crick GC-base pair and Hoogsteen bond GG-base pair. Thus, aggregation of S-region RNA and generation of the higher-order RNA-DNA complex are attributed to hydrogen bonds of guanine. (author)

  13. Correlation of RNA secondary structure statistics with thermodynamic stability and applications to folding.

    Science.gov (United States)

    Wu, Johnny C; Gardner, David P; Ozer, Stuart; Gutell, Robin R; Ren, Pengyu

    2009-08-28

    The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.

  14. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  15. Killing Effect of Ad5/F35-APE1 siRNA Recombinant Adenovirus in Combination with Hematoporphrphyrin Derivative-Mediated Photodynamic Therapy on Human Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Lei Xia

    2013-01-01

    Full Text Available The main goal of this work is to investigate the killing effects and molecular mechanism of photodynamic therapy (PDT mediated by the Ad5/F35-APE1 siRNA recombinant adenovirus in combination with a hematoporphrphyrin derivative (HpD in the A549 human lung adenocarcinoma cell line in vitro to provide a theoretical reference for treating lung cancer by HpD-PDT. By using the technologies of MTT, flow cytometry, ELISA, and western blot, we observed that the proliferation inhibition and apoptosis of the A549 cells were significantly higher than the control group ( after HpD-PDT was performed. The inhibitory efficiency is dependent on the HpD concentration and laser intensity dose. The inhibitory effect on the proliferation of A549 cells of Ad5/F35-APE1 siRNA is more significant after combining with PDT, as indicated by a significant elevation of the intracellular ROS level and the expression of inflammatory factors (. The HpD-PDT-induced expression of the APE1 protein reached the peak after 24 h in A549 cells. The inhibition of APE1 expression in A549 cells was most significant after 48 hours of infection by Ad5/F35-APE1 siRNA recombinant adenovirus (10 MOI. In conclusion, the Ad5/F35-APE1 siRNA recombinant adenovirus could efficiently inhibit the HpD-PDT-induced APE1 expression hence could significantly enhance the killing effect of HpD-PDT in lung cancer cells.

  16. The human nuclear poly(a-binding protein promotes RNA hyperadenylation and decay.

    Directory of Open Access Journals (Sweden)

    Stefan M Bresson

    Full Text Available Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A-binding protein (PABPN1, the poly(A polymerases (PAPs, PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression.

  17. DNApi: A De Novo Adapter Prediction Algorithm for Small RNA Sequencing Data.

    Science.gov (United States)

    Tsuji, Junko; Weng, Zhiping

    2016-01-01

    With the rapid accumulation of publicly available small RNA sequencing datasets, third-party meta-analysis across many datasets is becoming increasingly powerful. Although removing the 3´ adapter is an essential step for small RNA sequencing analysis, the adapter sequence information is not always available in the metadata. The information can be also erroneous even when it is available. In this study, we developed DNApi, a lightweight Python software package that predicts the 3´ adapter sequence de novo and provides the user with cleansed small RNA sequences ready for down stream analysis. Tested on 539 publicly available small RNA libraries accompanied with 3´ adapter sequences in their metadata, DNApi shows near-perfect accuracy (98.5%) with fast runtime (~2.85 seconds per library) and efficient memory usage (~43 MB on average). In addition to 3´ adapter prediction, it is also important to classify whether the input small RNA libraries were already processed, i.e. the 3´ adapters were removed. DNApi perfectly judged that given another batch of datasets, 192 publicly available processed libraries were "ready-to-map" small RNA sequence. DNApi is compatible with Python 2 and 3, and is available at https://github.com/jnktsj/DNApi. The 731 small RNA libraries used for DNApi evaluation were from human tissues and were carefully and manually collected. This study also provides readers with the curated datasets that can be integrated into their studies.

  18. A Rapid and Efficient Method for Purifying High Quality Total RNA from Peaches (Prunus persica for Functional Genomics Analyses

    Directory of Open Access Journals (Sweden)

    LEE MEISEL

    2005-01-01

    Full Text Available Prunus persica has been proposed as a genomic model for deciduous trees and the Rosaceae family. Optimized protocols for RNA isolation are necessary to further advance studies in this model species such that functional genomics analyses may be performed. Here we present an optimized protocol to rapidly and efficiently purify high quality total RNA from peach fruits (Prunus persica. Isolating high-quality RNA from fruit tissue is often difficult due to large quantities of polysaccharides and polyphenolic compounds that accumulate in this tissue and co-purify with the RNA. Here we demonstrate that a modified version of the method used to isolate RNA from pine trees and the woody plant Cinnamomun tenuipilum is ideal for isolating high quality RNA from the fruits of Prunus persica. This RNA may be used for many functional genomic based experiments such as RT-PCR and the construction of large-insert cDNA libraries.

  19. Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles.

    Science.gov (United States)

    Mueller, Christian; Tang, Qiushi; Gruntman, Alisha; Blomenkamp, Keith; Teckman, Jeffery; Song, Lina; Zamore, Phillip D; Flotte, Terence R

    2012-03-01

    α-1 antitrypsin (AAT) deficiency can exhibit two pathologic states: a lung disease that is primarily due to the loss of AAT's antiprotease function, and a liver disease resulting from a toxic gain-of-function of the PiZ-AAT (Z-AAT) mutant protein. We have developed several recombinant adeno-associated virus (rAAV) vectors that incorporate microRNA (miRNA) sequences targeting the AAT gene while also driving the expression of miRNA-resistant wild-type AAT-PiM (M-AAT) gene, thus achieving concomitant Z-AAT knockdown in the liver and increased expression of M-AAT. Transgenic mice expressing the human PiZ allele treated with dual-function rAAV9 vectors showed that serum PiZ was stably and persistently reduced by an average of 80%. Treated animals showed knockdown of Z-AAT in liver and serum with concomitant increased serum M-AAT as determined by allele-specific enzyme-linked immunosorbent assays (ELISAs). In addition, decreased globular accumulation of misfolded Z-AAT in hepatocytes and a reduction in inflammatory infiltrates in the liver was observed. Results from microarray studies demonstrate that endogenous miRNAs were minimally affected by this treatment. These data suggests that miRNA mediated knockdown does not saturate the miRNA pathway as has been seen with viral vector expression of short hairpin RNAs (shRNAs). This safe dual-therapy approach can be applied to other disorders such as amyotrophic lateral sclerosis, Huntington disease, cerebral ataxia, and optic atrophies.

  20. Inhibition of the Mitochondrial Glutamate Carrier SLC25A22 in Astrocytes Leads to Intracellular Glutamate Accumulation

    Directory of Open Access Journals (Sweden)

    Emmanuelle Goubert

    2017-05-01

    Full Text Available The solute carrier family 25 (SLC25 drives the import of a large diversity of metabolites into mitochondria, a key cellular structure involved in many metabolic functions. Mutations of the mitochondrial glutamate carrier SLC25A22 (also named GC1 have been identified in early epileptic encephalopathy (EEE and migrating partial seizures in infancy (MPSI but the pathophysiological mechanism of GC1 deficiency is still unknown, hampered by the absence of an in vivo model. This carrier is mainly expressed in astrocytes and is the principal gate for glutamate entry into mitochondria. A sufficient supply of energy is essential for the proper function of the brain and mitochondria have a pivotal role in maintaining energy homeostasis. In this work, we wanted to study the consequences of GC1 absence in an in vitro model in order to understand if glutamate catabolism and/or mitochondrial function could be affected. First, short hairpin RNA (shRNA designed to specifically silence GC1 were validated in rat C6 glioma cells. Silencing GC1 in C6 resulted in a reduction of the GC1 mRNA combined with a decrease of the mitochondrial glutamate carrier activity. Then, primary astrocyte cultures were prepared and transfected with shRNA-GC1 or mismatch-RNA (mmRNA constructs using the Neon® Transfection System in order to target a high number of primary astrocytes, more than 64%. Silencing GC1 in primary astrocytes resulted in a reduced nicotinamide adenine dinucleotide (Phosphate (NAD(PH formation upon glutamate stimulation. We also observed that the mitochondrial respiratory chain (MRC was functional after glucose stimulation but not activated by glutamate, resulting in a lower level of cellular adenosine triphosphate (ATP in silenced astrocytes compared to control cells. Moreover, GC1 inactivation resulted in an intracellular glutamate accumulation. Our results show that mitochondrial glutamate transport via GC1 is important in sustaining glutamate homeostasis in

  1. Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function.

    Directory of Open Access Journals (Sweden)

    Arturo Diaz

    2015-03-01

    Full Text Available Positive-strand RNA viruses genome replication invariably is associated with vesicles or other rearranged cellular membranes. Brome mosaic virus (BMV RNA replication occurs on perinuclear endoplasmic reticulum (ER membranes in ~70 nm vesicular invaginations (spherules. BMV RNA replication vesicles show multiple parallels with membrane-enveloped, budding retrovirus virions, whose envelopment and release depend on the host ESCRT (endosomal sorting complexes required for transport membrane-remodeling machinery. We now find that deleting components of the ESCRT pathway results in at least two distinct BMV phenotypes. One group of genes regulate RNA replication and the frequency of viral replication complex formation, but had no effect on spherule size, while a second group of genes regulate RNA replication in a way or ways independent of spherule formation. In particular, deleting SNF7 inhibits BMV RNA replication > 25-fold and abolishes detectable BMV spherule formation, even though the BMV RNA replication proteins accumulate and localize normally on perinuclear ER membranes. Moreover, BMV ESCRT recruitment and spherule assembly depend on different sets of protein-protein interactions from those used by multivesicular body vesicles, HIV-1 virion budding, or tomato bushy stunt virus (TBSV spherule formation. These and other data demonstrate that BMV requires cellular ESCRT components for proper formation and function of its vesicular RNA replication compartments. The results highlight growing but diverse interactions of ESCRT factors with many viruses and viral processes, and potential value of the ESCRT pathway as a target for broad-spectrum antiviral resistance.

  2. Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism

    Science.gov (United States)

    Waight, Jeremy D.; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I.

    2011-01-01

    Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy. PMID:22110722

  3. Enzymatic synthesis of tRNA-peptide conjugates and spectroscopic studies of fluorine-modified RNA

    International Nuclear Information System (INIS)

    Graber, D.

    2010-01-01

    recognizing the modified uridine and isomerizing it to a fluorinated pseudouridine derivative. The here described NMR study monitors this RNA transformation in presence of the enzyme TruB. The process was visualized by following the alterations of the respective 19F chemical shift pattern over time and the experiment indicated enzymatic conversion to one distinct RNA species of limited life time. During isolation, this intermediate was transformed into a thermodynamically stable product which was analyzed by HPLC and MS and identified as the literature-known RNA hydrate. Unfortunately, the short-living intermediate resisted detailed characterization. (author) [de

  4. A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis

    KAUST Repository

    Chen, Tao; Cui, Peng; Chen, Hao; Ali, Shahjahan; Zhang, ShouDong; Xiong, Liming

    2013-01-01

    Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. © 2013 Chen et al.

  5. A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis

    KAUST Repository

    Chen, Tao

    2013-10-17

    Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. © 2013 Chen et al.

  6. Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles

    International Nuclear Information System (INIS)

    Dufresne, Philippe J.; Thivierge, Karine; Cotton, Sophie; Beauchemin, Chantal; Ide, Christine; Ubalijoro, Eliane; Laliberte, Jean-Francois; Fortin, Marc G.

    2008-01-01

    Tandem affinity purification was used in Arabidopsis thaliana to identify cellular interactors of Turnip mosaic virus (TuMV) RNA-dependent RNA polymerase (RdRp). The heat shock cognate 70-3 (Hsc70-3) and poly(A)-binding (PABP) host proteins were recovered and shown to interact with the RdRp in vitro. As previously shown for PABP, Hsc70-3 was redistributed to nuclear and membranous fractions in infected plants and both RdRp interactors were co-immunoprecipitated from a membrane-enriched extract using RdRp-specific antibodies. Fluorescently tagged RdRp and Hsc70-3 localized to the cytoplasm and the nucleus when expressed alone or in combination in Nicotiana benthamiana. However, they were redistributed to large perinuclear ER-derived vesicles when co-expressed with the membrane binding 6K-VPg-Pro protein of TuMV. The association of Hsc70-3 with the RdRp could possibly take place in membrane-derived replication complexes. Thus, Hsc70-3 and PABP2 are potentially integral components of the replicase complex and could have important roles to play in the regulation of potyviral RdRp functions

  7. Nonlinear physics approach to RNA cross-replication: Marginal stability, generalized logistic growth, and impacts of degradation

    Energy Technology Data Exchange (ETDEWEB)

    Frank, T.D., E-mail: till.frank@ucd.ie [UCD School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Systems Biology Ireland, University College Dublin, Belfield, Dublin 4 (Ireland); Center for the Ecological Study of Perception and Action, Department of Psychology, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269 (United States)

    2011-10-24

    Highlights: → RNA cross-replication is a marginally stable but not asymptotically stable process. → RNA enzymes exhibits a generalized logistic growth pattern with exponent equal to 2. → Degradation results in non-symmetric saturation levels of cross-replicating RNAs. -- Abstract: It is nowadays believed that the evolution of life involved as an intermediate step an RNA world. In such an RNA world RNA molecules replicate themselves in catalytic reactions. Recent experiments on cross-replicating RNA support the RNA world hypothesis. We derive a nonlinear mass-action kinetics model to explain logistic growth patterns and non-symmetric saturation levels observed in those experiments. We also demonstrate that fixed points of the RNA growth process are only marginally stable rather than asymptotically stable.

  8. Evidence for an RNA polymerization activity in axolotl and Xenopus egg extracts.

    Directory of Open Access Journals (Sweden)

    Hélène Pelczar

    2010-12-01

    Full Text Available We have previously reported a post-transcriptional RNA amplification observed in vivo following injection of in vitro synthesized transcripts into axolotl oocytes, unfertilized (UFE or fertilized eggs. To further characterize this phenomenon, low speed extracts (LSE from axolotl and Xenopus UFE were prepared and tested in an RNA polymerization assay. The major conclusions are: i the amphibian extracts catalyze the incorporation of radioactive ribonucleotide in RNase but not DNase sensitive products showing that these products correspond to RNA; ii the phenomenon is resistant to α-amanitin, an inhibitor of RNA polymerases II and III and to cordycepin (3'dAMP, but sensitive to cordycepin 5'-triphosphate, an RNA elongation inhibitor, which supports the existence of an RNA polymerase activity different from polymerases II and III; the detection of radiolabelled RNA comigrating at the same length as the exogenous transcript added to the extracts allowed us to show that iii the RNA polymerization is not a 3' end labelling and that iv the radiolabelled RNA is single rather than double stranded. In vitro cell-free systems derived from amphibian UFE therefore validate our previous in vivo results hypothesizing the existence of an evolutionary conserved enzymatic activity with the properties of an RNA dependent RNA polymerase (RdRp.

  9. Implications of metal accumulation mechanisms to phytoremediation.

    Science.gov (United States)

    Memon, Abdul R; Schröder, Peter

    2009-03-01

    example, glutathione (GSH), a precursor of phytochelatin synthesis, plays a key role not only in metal detoxification but also in protecting plant cells from other environmental stresses including intrinsic oxidative stress reactions. In the last decade, tremendous developments in molecular biology and success of genomics have highly encouraged studies in molecular genetics, mainly transcriptomics, to identify functional genes implied in metal tolerance in plants, largely belonging to the metal homeostasis network. Analyzing the genetics of metal accumulation in these accumulator plants has been greatly enhanced through the wealth of tools and the resources developed for the study of the model plant Arabidopsis thaliana such as transcript profiling platforms, protein and metabolite profiling, tools depending on RNA interference (RNAi), and collections of insertion line mutants. To understand the genetics of metal accumulation and adaptation, the vast arsenal of resources developed in A. thaliana could be extended to one of its closest relatives that display the highest level of adaptation to high metal environments such as A. halleri and T. caerulescens. This review paper deals with the mechanisms of heavy metal accumulation and tolerance in plants. Detailed information has been provided for metal transporters, metal chelation, and oxidative stress in metal-tolerant plants. Advances in phytoremediation technologies and the importance of metal accumulator plants and strategies for exploring these immense and valuable genetic and biological resources for phytoremediation are discussed. A number of species within the Brassicaceae family have been identified as metal accumulators. To understand fully the genetics of metal accumulation, the vast genetic resources developed in A. thaliana must be extended to other metal accumulator species that display traits absent in this model species. A. thaliana microarray chips could be used to identify differentially expressed genes in

  10. Peptide catalysed prebiotic polymerization of RNA

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Luisi, Pier Luigi; Monnard, Pierre-Alain

    A short peptide composed of only two amino acid residues, serine and histidine, is here reported to enable oligomerization of RNA monomers. SerHis dipeptide was previously reported to catalyse formation of peptide bonds (Gorlero et al. 2009) as well as possessing broad hydrolytic activities...... – in such environment hydrolysis is thermodynamically favoured over condensation. However, the thermodynamic equilibrium towards condensation can be shifted even in this environment. In this poster we describe a prebiotically plausible system in which the SerHis dipeptide acts as catalyst for the formation of RNA...... oligomers from imidazole derivatives of mononucleotides. The thermodynamic shift towards condensation was achieved using water/ice eutectic phase environment (Monnard and Ziock 2008). To obtain such an environment, a reaction solution is cooled below its freezing point, but above the eutectic point. Under...

  11. Comparative analysis among the small RNA populations of source, sink and conductive tissues in two different plant-virus pathosystems.

    Science.gov (United States)

    Herranz, Mari Carmen; Navarro, Jose Antonio; Sommen, Evelien; Pallas, Vicente

    2015-02-22

    In plants, RNA silencing plays a fundamental role as defence mechanism against viruses. During last years deep-sequencing technology has allowed to analyze the sRNA profile of a large variety of virus-infected tissues. Nevertheless, the majority of these studies have been restricted to a unique tissue and no comparative analysis between phloem and source/sink tissues has been conducted. In the present work, we compared the sRNA populations of source, sink and conductive (phloem) tissues in two different plant virus pathosystems. We chose two cucurbit species infected with two viruses very different in genome organization and replication strategy; Melon necrotic spot virus (MNSV) and Prunus necrotic ringspot virus (PNRSV). Our findings showed, in both systems, an increase of the 21-nt total sRNAs together with a decrease of those with a size of 24-nt in all the infected tissues, except for the phloem where the ratio of 21/24-nt sRNA species remained constant. Comparing the vsRNAs, both PNRSV- and MNSV-infected plants share the same vsRNA size distribution in all the analyzed tissues. Similar accumulation levels of sense and antisense vsRNAs were observed in both systems except for roots that showed a prevalence of (+) vsRNAs in both pathosystems. Additionally, the presence of overrepresented discrete sites along the viral genome, hot spots, were identified and validated by stem-loop RT-PCR. Despite that in PNRSV-infected plants the presence of vsRNAs was scarce both viruses modulated the host sRNA profile. We compare for the first time the sRNA profile of four different tissues, including source, sink and conductive (phloem) tissues, in two plant-virus pathosystems. Our results indicate that antiviral silencing machinery in melon and cucumber acts mainly through DCL4. Upon infection, the total sRNA pattern in phloem remains unchanged in contrast to the rest of the analyzed tissues indicating a certain tissue-tropism to this polulation. Independently of the

  12. Nuclease-resistant c-di-AMP derivatives that differentially recognize RNA and protein receptors

    Science.gov (United States)

    Meehan, Robert E.; Torgerson, Chad D.; Gaffney, Barbara L.; Jones, Roger A.; Strobel, Scott A.

    2016-01-01

    The ability of bacteria to sense environmental cues and adapt is essential for their survival. The use of second-messenger signaling molecules to translate these cues into a physiological response is a common mechanism employed by bacteria. The second messenger 3’-5’-cyclic diadenosine monophosphate (c-di-AMP) has been linked to a diverse set of biological processes involved in maintaining cell viability and homeostasis, as well as pathogenicity. A complex network of both protein and RNA receptors inside the cell activate specific pathways and mediate phenotypic outputs in response to c-di-AMP. Structural analysis of these RNA and protein receptors has revealed the different recognition elements employed by these effectors to bind the same small molecule. Herein, using a series of c-di-AMP analogs, we probed the interactions made with a riboswitch and a phosphodiesterase protein to identify the features important for c-di-AMP binding and recognition. We found that the ydaO riboswitch binds c-di-AMP in two discrete sites with near identical affinity and a Hill coefficient of 1.6. The ydaO riboswitch distinguishes between c-di-AMP and structurally related second messengers by discriminating against an amine at the C2 position, more than a carbonyl at the C6 position. We also identified phosphate-modified analogs that bind both the ydaO RNA and GdpP protein with high affinity, while symmetrically-modified ribose analogs exhibited a substantial decrease in ydaO affinity, but retained high affinity for GdpP. These ligand modifications resulted in increased resistance to enzyme-catalyzed hydrolysis by the GdpP enzyme. Together, these data suggest that these c-di-AMP analogs could be useful as chemical tools to specifically target subsections of the second-messenger signaling pathways. PMID:26789423

  13. Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers

    Science.gov (United States)

    Feng, Li; Li, Feng; Sun, Zeguo; Wu, Tan; Shi, Xinrui; Li, Jing; Li, Xia

    2016-01-01

    Recent studies indicate that long noncoding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs) to indirectly regulate mRNAs through shared microRNAs, which represents a novel layer of RNA crosstalk and plays critical roles in the development of tumor. However, the global regulation landscape and characterization of these lncRNA related ceRNA crosstalk in cancers is still largely unknown. Here, we systematically characterized the lncRNA related ceRNA interactions across 12 major cancers and the normal physiological states by integrating multidimensional molecule profiles of more than 5000 samples. Our study suggest the large difference of ceRNA regulation between normal and tumor states and the higher similarity across similar tissue origin of tumors. The ceRNA related molecules have more conserved features in tumor networks and they play critical roles in both the normal and tumorigenesis processes. Besides, lncRNAs in the pan-cancer ceRNA network may be potential biomarkers of tumor. By exploring hub lncRNAs, we found that these conserved key lncRNAs dominate variable tumor hallmark processes across pan-cancers. Network dynamic analysis highlights the critical roles of ceRNA regulation in tumorigenesis. By analyzing conserved ceRNA interactions, we found that miRNA mediate ceRNA regulation showed different patterns across pan-cancer; while analyzing the cancer specific ceRNA interactions reveal that lncRNAs synergistically regulated tumor driver genes of cancer hallmarks. Finally, we found that ceRNA modules have the potential to predict patient survival. Overall, our study systematically dissected the lncRNA related ceRNA networks in pan-cancer that shed new light on understanding the molecular mechanism of tumorigenesis. PMID:27580177

  14. MicroRNA-31 Regulates Chemosensitivity in Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Hannah L. Moody

    2017-09-01

    Full Text Available Malignant pleural mesothelioma (MPM is associated with an extremely poor prognosis, and most patients initially are or rapidly become unresponsive to platinum-based chemotherapy. MicroRNA-31 (miR-31 is encoded on a genomic fragile site, 9p21.3, which is reportedly lost in many MPM tumors. Based on previous findings in a variety of other cancers, we hypothesized that miR-31 alters chemosensitivity and that miR-31 reconstitution may influence sensitivity to chemotherapeutics in MPM. Reintroduction of miR-31 into miR-31 null NCI-H2452 cells significantly enhanced clonogenic resistance to cisplatin and carboplatin. Although miR-31 re-expression increased chemoresistance, paradoxically, a higher relative intracellular accumulation of platinum was detected. This was coupled to a significantly decreased intranuclear concentration of platinum. Linked with a downregulation of OCT1, a bipotential transcriptional regulator with multiple miR-31 target binding sites, we subsequently identified an indirect miR-31-mediated upregulation of ABCB9, a transporter associated with drug accumulation in lysosomes, and increased uptake of platinum to lysosomes. However, when overexpressed directly, ABCB9 promoted cellular chemosensitivity, suggesting that miR-31 promotes chemoresistance largely via an ABCB9-independent mechanism. Overall, our data suggest that miR-31 loss from MPM tumors promotes chemosensitivity and may be prognostically beneficial in the context of therapeutic sensitivity. Keywords: malignant pleural mesothelioma, microRNA-31, chemoresistance, cisplatin, ABCB9

  15. Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation

    Science.gov (United States)

    Martos, Laura; Fernández-Pardo, Álvaro; Oto, Julia; Medina, Pilar; España, Francisco; Navarro, Silvia

    2017-01-01

    microRNAs are promising biomarkers in biological fluids in several diseases. Different plasma RNA isolation protocols and carriers are available, but their efficiencies have been scarcely compared. Plasma microRNAs were isolated using a phenol and column-based procedure and a column-based procedure, in the presence or absence of two RNA carriers (yeast RNA and MS2 RNA). We evaluated the presence of PCR inhibitors and the relative abundance of certain microRNAs by qRT-PCR. Furthermore, we analyzed the association between different isolation protocols, the relative abundance of the miRNAs in the sample, the GC content and the free energy of microRNAs. In all microRNAs analyzed, the addition of yeast RNA as a carrier in the different isolation protocols used gave lower raw Cq values, indicating higher microRNA recovery. Moreover, this increase in microRNAs recovery was dependent on their own relative abundance in the sample, their GC content and the free-energy of their own most stable secondary structure. Furthermore, the normalization of microRNA levels by an endogenous microRNA is more reliable than the normalization by plasma volume, as it reduced the difference in microRNA fold abundance between the different isolation protocols evaluated. Our thorough study indicates that a standardization of pre- and analytical conditions is necessary to obtain reproducible inter-laboratory results in plasma microRNA studies. PMID:29077772

  16. Exploring the impact of the side-chain length on peptide/RNA binding events.

    Science.gov (United States)

    Sbicca, Lola; González, Alejandro López; Gresika, Alexandra; Di Giorgio, Audrey; Closa, Jordi Teixido; Tejedor, Roger Estrada; Andréola, Marie-Line; Azoulay, Stéphane; Patino, Nadia

    2017-07-19

    The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K D ) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.

  17. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhang

    2015-01-01

    Full Text Available Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs through integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM, to identify MM subtype specific MFRMs. The constructed miRNA-mRNA regulatory networks provide modular outlook at subtype specific miRNA-mRNA interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to guide MM subtype diagnosis and treatment.

  18. Characterization of a novel single-stranded RNA mycovirus in pleurotus ostreatus

    International Nuclear Information System (INIS)

    Yu, Hyun Jae; Lim, Dongbin; Lee, Hyun-Sook

    2003-01-01

    A mycovirus, named oyster mushroom spherical virus (OMSV), was isolated from cultivated oyster mushrooms with a severe epidemic of oyster mushroom Die-back disease. OMSV was a 27-nm spherical virus encapsidating a single-stranded RNA (ssRNA) of 5.784 kb with a coat protein of approximately 28.5 kDa. The nucleotide sequence of the virus revealed that its genomic RNA was positive strand, containing 5784 bases with seven open reading frames (ORF). ORF1 had the motifs of RNA-dependent RNA polymerases (RdRp) and helicase. ORF2 encoded a coat protein. ORF3 to 7 could encode putative polypeptides of approximately 12, 12.5, 21, 14.5, and 23 kDa, respectively, but none of them showed significant similarity to any other known polypeptides. The 5' end of the viral RNA was uncapped and the 3' end was polyadenylated with 74 bases. Genomic structure and organization and the derived amino acid sequence of RdRp and helicase domain were similar to those of tymoviruses, a plant virus group

  19. RNA Profiling for Biomarker Discovery: Practical Considerations for Limiting Sample Sizes

    Directory of Open Access Journals (Sweden)

    Danny J. Kelly

    2005-01-01

    Full Text Available We have compared microarray data generated on Affymetrix™ chips from standard (8 micrograms or low (100 nanograms amounts of total RNA. We evaluated the gene signals and gene fold-change estimates obtained from the two methods and validated a subset of the results by real time, polymerase chain reaction assays. The correlation of low RNA derived gene signals to gene signals obtained from standard RNA was poor for less to moderately abundant genes. Genes with high abundance showed better correlation in signals between the two methods. The signal correlation between the low RNA and standard RNA methods was improved by including a reference sample in the microarray analysis. In contrast, the fold-change estimates for genes were better correlated between the two methods regardless of the magnitude of gene signals. A reference sample based method is suggested for studies that would end up comparing gene signal data from a combination of low and standard RNA templates; no such referencing appears to be necessary when comparing fold-changes of gene expression between standard and low template reactions.

  20. Classification of follicular cell-derived thyroid cancer by global RNA profiling

    DEFF Research Database (Denmark)

    Rossing, Maria

    2013-01-01

    The incidence of thyroid cancer is increasing worldwide and thyroid nodules are a frequent clinical finding. Diagnosing follicular cell-derived cancers is, however, challenging both histopathologically and especially cytopathologically. The advent of high-throughput molecular technologies has...... profiling of follicular cell-derived thyroid cancers....... prompted many researchers to explore the transcriptome and, in recent years, also the miRNome in order to generate new molecular classifiers capable of classifying thyroid tumours more accurately than by conventional cytopathological and histopathological methods. This has led to a number of molecular...